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ABSTRACT: An energy prediction along a specified route is necessary for various applications of electric vehicles (EVs). The energy 

consumption of EVs depends on several different impact factors. Because of their different dynamic behaviour and their interdependency, a 

server-based energy prediction system is used consisting of an in-vehicle part and a part realized on a backend server. This system 

architecture requires a modular and dynamic model to predict the energy consumption of EVs, which is introduced in this paper. Three 

modules are used to estimate the required propulsion energy. The average propulsion energy is predicted in a first step by an in-vehicle 

system that takes vehicle-specific influencing factors into account. This is then adapted in a second step to map attributes that occur along the 

chosen route. In a third module, the expected deviation from the predicted mean value is estimated using speed profiles that have been 

collected from a huge number of vehicles. The proposed system architecture is discussed with its requirements. Finally, first results of the 

prediction of the mean propulsion energy are presented. 
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1. INTRODUCTION 

Despite efforts of the vehicle industry to develop electric vehicles 

(EVs) their market penetration rate is still very low. One of the main 

reasons is the discrepancy between the range, charging time and 

prices of EVs offered on the market and the consumer expectations 

[1]. Due to the limited capacity and long recharging times of the 

currently available energy-storage technology, range anxiety is a 

limiting factor for market penetration. This is why a reliable and 

accurate EV range estimation is indispensable to increase consumer 

acceptance of EVs. 

An accurate prediction of the energy consumption for a 

specified route is the basis for different important EV applications: 

The residual range can be calculated by considering the predicted 

future energy consumption of EVs and the estimated energy 

available in the battery. EV energy prediction is also used for 

vehicle navigation functions such as eco-routing [2] or for 

operational strategies in order to reduce the energy consumption 

needed to reach a destination [3]. Apart from in-vehicle 

applications, the energy prediction of EVs is required for charging 

strategies or travel planning applications [4].  

Energy prediction is a complex problem since the energy 

consumption of vehicles depends on various factors [5]: Vehicle-

specific parameters like mass, aerodynamic, rolling resistance and 

drivetrain efficiency affect the energy consumption. The operational 

strategy (e.g. recuperation during braking) or the energy needed for 

heating or air-conditioning due to different weather conditions also 

have an important influence on the energy consumption of electric 

vehicles. Similarly, different attributes of the chosen route (e.g. type 

of roads or topography) and attributes related to the prevailing 

traffic conditions (e.g. traffic congestion, traffic signals) also 

influence the energy consumption. Furthermore, the driver's 

individual driving style based on their skills and attitude can 

significantly influence the required energy consumption. Of course, 

these numerous impact factors interact strongly with each other. 

Besides, their temporal variability differs and various data sources 

are necessary in order to consider all relevant impact factors.  

Cars will soon be able to exchange data about their position or 

speed via vehicle communication systems which can then be used 

by other vehicles. This prospective but realistic scenario may help 

improve energy predictions for EVs due to the described complexity 

of impact factors. As some of the varying influencing factors cannot 

be detected with in-vehicle sensors, up-to-date information from 

different data sources is needed. This is why we assume that parts of 

the energy prediction can be realized in a backend system connected 

to different vehicles.   

This paper introduces an approach for a system to predict the 

necessary energy to reach a specified destination. The system is 

suitable for a server-based approach. The focus in this paper is on 

the general description of the energy prediction system and on the 

simulation test bed to develop the prediction system.  

The motivation for a server-based approach is described in 

section 3. The comparability of energy consumption of different 

vehicles is a problem for these kinds of approaches. Collected speed 

profiles should be used for the proposed prediction system for the 

exchange of information among different vehicles. The speed 

profiles contain information about the individual driving style and 

the prevailing traffic situations. The consideration of the individual 

driving style and other effects on energy consumption will be 

developed in future and is not part of this paper. But these relevant 

impact factors on energy consumption of EVs are considered in the 

development of the system architecture of the whole prediction 

system.   

 

2. RELATED WORK 

This section introduces relevant existing systems for energy 

prediction of EVs.  

In [6], a machine-learning engine (MLE) is used to predict the 

energy costs and travel time for road segments based on vehicle-

specific data and context data such as time attributes or weather 

conditions. Additional machine-learning engines are needed to 

convert actual vehicle-specific energy costs per road segment into 

standardised values and vice versa. Different MLEs are necessary to 

compare data from different vehicles. The predicted energy 

consumption is used for energy efficient routing algorithms that are 

also based on machine-learning techniques.  

Machine-learning algorithms, as used for e.g. in [6], are 

applicable for crowd-sourcing server-based systems like in the 

introduced project. Since collected speed profiles are the basis for 

our proposed prediction system different algorithms are necessary.  

Other methods for energy prediction do not simply use the 

vehicles’ energy costs but rather speed profiles to calculate the 

necessary energy for a specified trip. One possibility is the 

prediction of possible future speed profiles by using known 

geographical data along a specified route. In [7], a target speed 

profile is used to predict the energy consumption for every section 

along a trip. Geographical map data such as speed limits, slopes, 

traffic lights, road signs or traffic patterns are used to calculate the 

future speed profile. The future speed profiles are based only on 

map attributes, individual driving styles are not taken into account.  

Features of collected speed profiles are used for the energy 

prediction based on statistical methods. Thus a prediction of speed 

profiles on the basis on map attributes is not intended in our project.  

Another solution is the use of statistical methods to predict the 

energy consumption based on speed profiles. Paper [8] presents a 

method to quickly calculate the energy consumption for each link in 

a map for routing algorithms. The actual power of conventional 

vehicles depends on road gradient resistance, rolling resistance, air 



 

resistance, acceleration resistance, demanded auxiliary power and a 

factor for the engine-dependent transmission efficiency. An 

estimation function for the average acceleration and deceleration 

depending on traffic congestion, road type and gradient for every 

link is generated to calculate the necessary driving forces and engine 

power. Depending on traffic congestion, road type and gradient for 

each link; several estimation functions calculate the relative time 

share of different driving phases (cruising, idling, acceleration and 

deceleration phase). The estimation functions are calculated using a 

database of driving cycles. The influence of the different driving 

resistance forces varies depending on the driving phases (e.g. the 

rolling resistance has no influence when idling), so that they are 

weighted depending on the calculated share of time spent in each 

driving phase.   

The aim of this solution is the fast calculation of energy 

consumption. Since in the proposed project a more detailed 

prediction is necessary a more detailed approach is intended. 

Nevertheless the described statistical methods can be used. 

An eco-routing navigation system is presented in [9]. An 

emission model that predicts the necessary energy on the selected 

links in the roadway network is needed to calculate an eco-friendly 

route. Various parameters are thus used such as vehicle 

characteristics and roadway characteristics from a digital map. 

Different sources (vehicle sensors, point measurements, car floating 

data or traffic simulation models) provide real-time and historic 

traffic parameters. Furthermore, other parameters such as driver 

characteristics and environmental factors are also used. Multivariate 

regression techniques are employed to develop a prediction model. 

The described parameters, a vehicle-specific validated microscopic 

fuel consumption model and real-world vehicle velocity trajectories 

are used in the regression model. The routing engine uses the energy 

costs for every link estimated by using the vehicle-specific 

calibrated regression coefficients of the prediction model.  

This approach can partly be used, since the model has to be 

recalibrated for different types of vehicles. Besides, the individual 

driving style is not considered. The described statistical methods can 

be used for our project. 

Another statistical method is employed in [10]. A driving 

pattern recognition strategy uses different features from traffic and 

road conditions. A hilly-zone-clustering algorithm based on road 

gradient information along with a speed-zone-clustering method that 

employs speed limits and is based on future speed predictions are 

used to partition a complete route. As a result, every segment of the 

route has a different combination of features. A library of 

normalized driving force distributions is saved for every possible 

driving pattern. The corresponding force distribution is used for the 

energy prediction according to the sequence of feature zones with 

their identified driving patterns along a trip.  

The method described in [10] does not use crowd-sourced 

collected information extracted from speed profiles, which we want 

to use in our project. Nevertheless the described driving patterns or 

features can be evaluated for possible usage. 

 

3. SERVER-BASED SYSTEM FOR ENERGY 

PREDICTION  

Studies show that there will be a great change in information and 

communications technology (ICT) in the automotive industry. A 

cloud-based ICT-architecture will replace likely today’s in-vehicle 

centralized ICT-architecture [11]. On the other hand, the major 

challenges of e-mobility are intelligent knowledge distribution, 

predicting EV travel time, and energy and journey planning [12]. 

Cloud-based ICT-architectures might help to solve these. 

We are currently experiencing a rapid increase in the use of 

different crowdsourcing applications such as Waze, OpenStreetMap 

or INRIX Traffics [13], since users benefit from the huge amount 

and actuality of data collected by the community. Crowdsourcing 

applications will enter the automotive sector since the data can be 

collected easily by smart phone sensors and the number of vehicles 

with an UMTS or LTE connection will increase.  

These trends enable us to develop a server-based system for EV 

energy prediction (Fig.1): The energy prediction system consists of 

an in-vehicle system and a backend part which is connected to the 

vehicle via a wireless communication link. Various up-to-date 

databases can be accessed in the backend and used for the energy 

prediction. All vehicles (even those not using the energy prediction 

system) collect the required information as rolling sensors and this is 

then stored in the backend on a server.  

 

   Figure 1: Server-based system for energy prediction 

 

3.1 System requirements for server-based energy prediction 

A server-based system has different and additional requirements for 

energy prediction models. Data collected for energy-related factors 

has to be used for all vehicles despite their different attributes. And 

it has to be remembered that the crowd sourced data is collected on 

different routes depending on the drivers’ choice. This is not made 

easier by the fact that the collected data varies greatly depending on 

the different personal driving styles and further conditions (e.g. 

weather or traffic flow) (see figure 2). 

 

 
Figure 2: Problem for a server-based system for energy prediction 

 

For this reason, the impact of driver, vehicle and route topography 

have to be considered separately, or at least appropriate interfaces 

have to be defined so that the database with collected energy 

relevant signals can be used for all types of vehicles. Separate 

systems would not be possible because the quantity of up-to-date 

data has to reach a critical size.    

Following system requirements are identified: 

 Combination of an in-vehicle and server-based system  

EVs’ energy consumption depends on different impact factors. 

By using a server-based energy prediction system it is possible 

to enhance in-vehicle data with different up-to-date online 

resources. Since the remaining range is relevant information 

when driving an EV, a stand-alone backend system is not 

possible if a connection to the backend is not available. In this 

case, an in-vehicle system has to predict the energy 

consumption. Besides, it is not practical to send all vehicle-

specific data to the backend, so that a combination of an in-

vehicle and server-based prediction system is necessary.  

 Modularity 

Different usable data sources (e.g. attributes of digital maps, 

traffic information) are not always available for every road 

segment. Thus, a modular system architecture is required to 

realize an energy prediction with limited available data. 

Furthermore, modularity enables the energy prediction system to 

be used for various applications.  

 Independence of crowdsourcing-based and user- or vehicle- 

specific influencing factors 

In community-based systems, a group of users exchange data. If 

the shared data is collected under equal conditions the data can 



 

be exchanged easily. The exchange of energy consumption 

figures for EVs is more difficult since the data is very dependent 

on individual factors such as vehicle parameters or individual 

driving style. Besides, impact factors that are the same for all 

users exist to a limited extent (e.g. traffic conditions, weather), 

though they can vary a lot over time. Thus, crowdsourcing data 

can only be used for EVs’ energy prediction if the collected and 

shared data is separated from individual influences. This calls 

for the definition of appropriate interfaces or the use of 

normalization processes. 

 Dynamic adaption 

User-specific, in-vehicle parameters are not known in advance 

and can vary greatly during a trip. Some EVs have different 

operational modes (e.g. eco-mode, sport-mode) or different 

settings for the deceleration mode. Studies have shown, for 

example, that the deceleration mode in particular changes 

several times during a trip [14].  Because of the high number of 

impact factors and the changeable behaviour of some factors, no 

accurate prediction for an entire route is possible before starting 

a trip. Instead, a dynamic adaption to the current situation is 

necessary. As the prediction system consists of several modules, 

a dynamic adaption of every module is necessary. 

 Link-based approach 

Since the system could be used for eco-routing and other 

navigational applications, the energy has to be predicted for 

every single link along a selected route. These link values can be 

used for known navigation algorithms as link weights to find an 

optimal route. A quick update of several link weights has to be 

possible during navigation, which has to be considered when the 

necessary algorithms for energy prediction are selected. 

Furthermore, additional requirements such as calculation time are 

important for real-time applications. Since we are discussing an 

approach there will be no evaluation of the performance of the 

system, though a possible realization in an EV is taken into account 

in the system design process.  

Database requirements such as privacy, security, redundancy or 

largest number of users have to be taken into account for server-

based systems, but they are not discussed in this research.  

   

3.2 System design 

3.2.1 Energy consumption of EVs 

The energy consumption of vehicles depends primarily on the 

energy needed to overcome the forces opposing the vehicle’s 

motion. These include the power of the rolling friction Proll, the 

aerodynamic drag force Pair, the inertia at slopes Pslope and the 

acceleration force Pacc. Pwl is the driveshaft output power on wheels 

depending on vehicle parameters.  

                                 (1) 

 

The power needed to overcome the driving forces opposing the 

vehicle’s motion is supplied by the battery. Losses occur in the 

driveline components (inverter, electric machine and transmission 

box). The transmission efficiency factor ηpos represents all losses (2). 

The electric machine is used in EVs for regenerative braking. 

Part of the driveshaft output power Pwl is recuperated and helps 

charge the battery. The ratio between regenerative braking and 

mechanical braking depends on the operational strategy of the EV 

and the driver’s requested deceleration. This ratio and the 

transmission losses are represented by the efficiency factor ηneg.  

The values for ηpos and ηneg depend a lot on the corresponding 

operating point of the electric machine. 

     {
                           

                                 
  (2) 

 

The propulsion power Ppt is mainly independent of the travel time 

ttrip in EVs. What's more, auxiliary power Paux is needed for the on-

board power supply and for heating and air conditioning. Their 

energy consumption depends only on travel time ttrip. Paux is more or 

less independent of the spatial domain s. Losses between the battery 

and the consumers are taken into account. The necessary total 

energy demand for an EV is supplied from the traction battery and 

can be calculated:  

      ∫          
     

 ∫          ∫        
 

 
 

     

 
  (3) 

 

3.2.2 Prediction of auxiliary energy 

Compared to conventional vehicles, the power for heating or air 

conditioning has a higher ratio of the total energy consumption. As 

Paux is independent of the route and selected speed, the prediction for 

the necessary energy Êaux can be calculated independent of the 

necessary propulsion energy Êpt. Êaux depends on vehicle parameters, 

user settings (e.g. desired interior temperature) and prevailing 

weather conditions, which can be measured by common in-vehicle 

sensors. The vehicle’s navigation system provides the required trip 

time ttrip. Since Êaux depends mainly on vehicle und user-specific 

parameters, the potential for improving the prediction by using a 

server-based approach is not very high. Crowd based information 

only allows a more accurate estimation of ttrip. For this reason, we 

suggest an in-vehicle prediction system for Êaux, which is updated 

dynamically according to user-settings and the progression of the 

temperature inside the vehicle. A dynamic update of the travel time 

estimation as in today’s navigation systems is necessary. 

 

3.2.3 Prediction of propulsion energy 

Unlike Êaux, the prediction of the necessary propulsion energy can 

be improved by using a server-based approach since the energy 

consumption of the EV is largely determined by driving patterns 

represented by variations of vehicle speed and inertial acceleration 

[10].  

The first question to be discussed is the choice of variables to be 

exchanged between several users via the backend system. The 

exchange of energy values requires a normalisation process as in 

[6]. If the normalisation system is realized in the backend a 

continuous transmission of the numerous relevant in-vehicle signals 

is necessary. Another possibility is to exchange speed profiles or 

extracted features from speed profiles via the backend system. In 

this paper it was decided to use speed profiles to exchange 

information between different EVs because they offer several 

advantages:  

 Speed profiles contain information about driving style, 

traffic conditions and road attributes and take into account 

most of the impact factors on propulsion energy 

consumption.  

 A number of applications and technologies exist for 

collecting speed profiles such as the collection of floating 

car data (FCD) for intelligent transportation systems. 

 Data from conventional vehicles can be used, which is very 

important since EVs do not yet have a high penetration.  

 Information can be merged more easily with existing data 

bases (e.g. traffic information) since these are often based on 

speed profiles too. 

By using speed profiles to exchange information via the backend, 

we can implement intelligent prediction models that do not depend 

on vehicle attributes. In comparison the algorithms introduced in [8] 

or [9] have to be adapted or relearned for different vehicles. 

As discussed in section 3.1. the crowd-based influence has to be 

separated from the vehicle-specific one in the prediction of the 

propulsion energy Êpt. The average energy consumption of the EV 

can be predicted by using vehicle attributes such as mass or the 

rolling resistance of the tire and selected road attributes such as 

grade or road type (e.g. specific average speed depending on speed 

limit). Because individual driving styles and traffic congestions vary 

greatly, the real energy consumption fluctuates around the average 

consumption. For this reason the propulsion energy Êpt is split into a 

mean value ØÊpt and into the corresponding deviation ∆Êpt from 

ØÊpt in the introduced prediction model. The mean value ØÊpt will 

be predicted using vehicle-specific and route-specific parameters, 

whereas the deviation ∆Êpt will be predicted using driving patterns 



 

collected in the backend. The mean average power does not 

fluctuate that much compared to ∆Êpt as it depends largely on near-

constant values during single segments along a selected route.  

Since the ratio of recuperation depends on both the driving 

forces on user-settings and the vehicle operational strategy (e.g. on 

the state of charge of the traction battery), the powertrain energy in 

acceleration mode Êpt,pos is predicted independent of that in 

deceleration mode Êpt,neg. 

                             (4) 

                             (5) 
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Figure 3: Energy prediction for power train 

 

According to the requirements described in section 3.1., the energy 

should be predicted for every link i along the selected route. Thus, 

the mean energy ØÊpt is predicted for every segment i. A function 

with specific energy values for existing road classes is used to 

predict ØÊpt,i and the result is adapted according to additional road 

attributes such as slope or top speed. The calculation of the mean 

energy ØÊpt is based on the prediction of the actual propulsion 

power of the vehicle. The prediction is adapted dynamically if the 

energy consumption of the vehicle varies. 

Driving patterns that may influence emissions of conventional 

vehicles are described in [15]. Examples of these statistical driving 

patterns are average speed, standard deviation of speed or average 

acceleration. The same or adapted driving patterns can be used for 

EVs. A prediction model estimates the deviation of the propulsion 

energy ∆Êpt by using a certain number of j driving patterns F (6). It 

is important that suitable driving patterns F are selected, which are 

independent of vehicle specific attributes, since the F has to be used 

for every type of EV. 

                (6) 

 

The necessary driving patterns are extracted from the recorded 

speed profiles. The extraction process can be realized inside the 

vehicle so that specific, driver-related values for F can be stored in a 

local, in-vehicle database. This allows the influence of personal 

driving style in the actual vehicle to be used when predicting ∆Êpt.     

The values for the driving patterns are anonymized and 

transmitted to the backend. The values F for all participating users 

are averaged and stored in an appropriate way in the backend.  

The values F from both the in-vehicle driver-specific database 

and the crowd based database in the backend are used to predict 

∆Êpt. Collected data only exists for frequently-travelled routes and 

might be outdated. The in-vehicle prediction system allows a 

verification of server-based data. 

 

3.2.4 System architecture 

If the prediction of the propulsion energy for every road segment i 

along the selected route and the prediction of the necessary auxiliary 

energy is combined, the total requested energy for a trip is (7):  

      ∑        
           

                                    

                      (7) 

 

Êaux depends mainly on ttrip, but can be calculated for every segment 

i if the energy is requested for every link (e.g. for navigation 

applications). Figure 4 provides an overview of the whole system. 
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Figure 4: Server-based system for energy prediction 

Several CAN-signals containing energy-relevant measured values 

are needed to realize the prediction system in an EV. Additionally, a 

navigation system with a digital map has to provide road attributes 

for the selected route. An appropriate communication device is 

necessary for receiving and transmitting data to the backend. 

The database with collected speed profile features in the 

backend can be used to correct or update out-of-date map attributes 

or to enhance existing digital maps with new features as suggested 

in [16].      

Since we chose a modular system architecture, different variants 

of realization are possible for the system, especially for the 

distribution of the modules between the backend and in-vehicle 

ECUs.  For example, the calculation of the deviation of powertrain 

energy, the navigation system and the prediction of the necessary 

mean powertrain energy can be implemented in the backend. A 

discussion of these variants is not part of this paper. 

 

4. SIMULATION TEST BED 

Data recorded from a fleet of different electric vehicles is needed to 

develop the proposed server-based energy prediction system. Since 

the market penetration of electric vehicles is low and the costs of 

extensive fleet tests with a significantly large number of test persons 

are high, a different approach is used.  

 

4.1. Data acquisition and system overview 

In a system described in [17], smartphones are used to track the 

mobility behaviour of a group of participants in a fleet test. The 

vehicle speed, time of day and GPS position are recorded using the 

sensors in the smartphones, with a frequency of 1 Hz and the 

collected data is transmitted to a database in the backend. Since the 



 

selected test persons take their smartphones with them in the car, 

real world speed profiles are collected. A process that runs 

simultaneous to data acquisition process filters the raw data and cuts 

the data stream into segments to identify complete car rides, called 

tracks.  

It is easy to collect a vast amount of real world driving cycles 

using this method. This is necessary because deviations that occur in 

reality in speed profiles depending on traffic congestion, time of 

day, route-specific impact factors or individual driving patterns have 

to be taken into account when developing the proposed system. The 

vehicle speed and the required trip time ttrip are necessary for the 

energy prediction system; these can be extracted from the recorded 

tracks. In order to use attributes from digital maps, a map-matching 

algorithm is necessary (see section 4.2.). 

The variance of the energy consumption of different EVs 

depending on their vehicle attributes or external conditions such as 

weather have to be considered too. Parameter variations that occur 

can be taken into account by using a simulation model (see section 

4.3.). The real world speed profiles are used as input for the 

simulation model.  

The developed system can be validated and optimized by 

comparing the predicted energy Ê and the simulated energy 

consumption Esim. An overview of the complete simulation test bed 

is shown in Figure 5.  

4.2. Map 

A digital map has to be chosen in order to use route-specific 

attributes for the collected speed profiles. One possibility is the 

crowdsourced data of the OpenStreetMap (OSM) project, which is 

accessible under the Open Database Licence [18].  

 

4.2.1 Use of OpenStreetMap data 

Features such as road type, speed limit, number of lanes and length 

of the links in the road network are tagged in the OSM map. A brief 

evaluation is provided before the data is used for the energy 

prediction system.  

OSM data is compared with TomTom’s commercial datasets in [19]. 

Since OSM data contains a lot of roads for pedestrian and cycle 

navigation, the OSM dataset contains more data for the total street 

network but less data needed for car navigation. The data 

completeness depends on the selected region. In the Munich area, 

where most of the tracks were recorded, the OSM data contains 

around 97% of all objects compared to commercial datasets  [19]. 
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Figure 5: Simulation test bed for energy prediction system 

Nevertheless, only 50% of all speed limits are tagged. However, if 

we focus on the area around Munich the speed limits can be updated 

using the collected car floating data. Compared to commercial data, 

the number of turn restrictions and one-way streets is much lower in 

OSM, but these disadvantages don’t affect the energy prediction 

system as we use real world speed profiles. Another disadvantage is 

the missing traffic information, which has to be discussed later in 

this project.  

OSM data can be used to develop our energy prediction system. 

But because OSM data is not routable, the oms2po script [20] is 

used to make the data set routable. The converted OSM data is 

stored in a PostgresSQL/PostGIS database. 

Because OSM data is only two-dimensional, height data has to 

be added to the recorded speed profiles. A freely accessible source 

for a digital elevation model is the data collected by the Shuttle 

Radar Topography Mission (SRTM) [21]. The influence of different 

elevation models on the accuracy of eco-routing is analysed in [22]. 

The accuracy of the SRTM dataset is valid for eco-routing because 

the differences in energy consumption based on different elevation 

models are less than 1% on average for routes. Nevertheless, the 

deviation is up to 30% for a few single short segments, where large 

height differences occur. In the selected area around Munich the 

error is lower since a region with large height differences in the pre-

Alps was selected in [22] for the analysis of elevation models. As 

suggested in [23], we use a two-dimensional, low-pass filter to filter 

the noise caused by detected buildings or trees during the radar 

mission. According to these results, the SRTM dataset can be used 

for our energy prediction system in the area around Munich. 

 

Table 1: Road segments travelled in the selected area 

Road type Distance in road 

network [km] 

Distance travelled 

[km] 

Motorway + trunk 972 31412 

Primary + secondary 3080 30210 

Tertiary + residential 

(intown) 

10449 5466 

Tertiary + residential  

(out of town) 

4125 1122 

 

Most of the speed profiles were collected in the area around 

Munich, so that we focus on a specific area (11.2 < longitude <  12; 

47.9 < longitude < 48.4). Table 1 shows the number of total 

distances in the road network in the specified area compared to the 

distance of collected data. The road types are distinguished 

according to the OSM definition. As seen in Table 1, we collected 

enough data for a statistical evaluation for a range prediction of EVs 

on the main roads in particular. The amount of data is not so high 

for side roads (in town and out of town), but the variation of road 

attributes is lower (e.g. inside a residential area) for these road types. 

 

4.2.2 Map-Matching 

A map-matching algorithm is needed to use the OSM map features 

for the collected real world speed profiles. We define the following 

requirements for the map-matching algorithm in our simulation test 

bed of our prediction system:  

 Suitability for low-sampling rates with minimal input values 

We are currently recording speed profiles at a sample rate of 1 

Hz. As we plan to extend the database in future, the matching 

algorithm should work for speed profiles with lower sampling 

rates (e.g. traffic flow data, one point every 30s).  

 Matching accuracy  
The main goal of the algorithm is matching accuracy. We want 

to use the data to develop intelligent prediction algorithms based 

on artificial intelligence (AI) or statistical methods, which 

require a high data accuracy. The quality of the recorded GPS 

tracks depends largely on the accuracy of GPS-sensors in the 

used smartphones. Furthermore, smartphones inside vehicles, 

especially in urban areas, often do not have a clear line-of-sight 

to GPS-satellites, leading to poor signal accuracy. The matching 



 

accuracy has to be high for our system despite the described 

difficulties in recording speed profiles with smartphones. 

 Offline algorithm in the backend 

The collected GPS-tracks should be matched in the backend. 

Problems such as the energy consumption of battery-powered 

smartphones are thus irrelevant. Besides, the entire track can be 

used for the matching process with offline algorithms, leading to 

a higher accuracy.  

We chose the ST-matching algorithm based on a spatio-temporal 

analysis for our project [24] because of the execution time, mapping 

accuracy and flexibility for variable sampling rates. The algorithm 

works for a track consisting of a collection of GPS points   
{         } as follows (see figure 6): 

 

ST-matching [24]

1) candidate 

preparation

2) spatio-

temporal analysis

3) result matching

- topological 

information of road 

network
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between points
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fleet data OSM data

- insert single unmatched points

pre-filter

plausibility check

- check tunnel areas - find unrealistic connections in result

- insert points for unmachted OSM links 

using shortest path alogrithm
 

Figure 6: Overview of the map-matching algorithm 

 

c possible candidate points (  
    

     
 ) are found on the road 

network within a defined neighbourhood of a measured GPS point 

   . The topological information of the road network is taken into 

account in the spatial analysis and a so-called observation 

probability is calculated for each candidate point   
 . In the temporal 

analysis for all candidate points   
 , a so-called transmission 

probability is calculated on the basis on the distance and travelled 

speed between two neighbouring candidate points    and     . A 

graph consisting of the set of candidate points (   
    

   ) 

connecting all candidate points of neighboured GPS points    and 

    is created after the spatio-temporal analysis. The best matching 

path sequence with the highest score of both probabilities is selected 

(e.g.      
     

     
   ) as a result.  

Problems of GPS accuracy for automotive applications in urban 

canyons are known. We extend the known ST-matching algorithm 

to increase the mapping accuracy since we use smartphone sensors. 

As an offline algorithm is selected, not every data point of the 

recorded track has to be used for the matching algorithm, so that the 

accuracy of the matching result can be increased. Data points with 

low values for the calculated probabilities are filtered and a link-

based plausibility check is carried out after map-matching. 

Unmatched points or segments are corrected in a post-matching 

process, so that in the end, all recorded data points are matched (see 

Figure 6). 

GPS points of a poor quality are ignored for the ST-matching 

process. Thus, GPS points with high values for horizontal dilution of 

precision (HDOP) or with low GPS-speed (especially during 

standstill inaccuracy is high) are filtered. In addition, GPS points 

that differ greatly from the heading of the previous points are not 

taken into account. 

The result of the ST-matching algorithm is checked for 

plausibility. To begin with, tunnels or long bridges often appear in 

urban areas where the GPS-signal reception is not possible or noisy. 

The ST-matching algorithm has problems in these areas because of 

the illogical GPS signals. Matched points in these areas are checked 

for plausibility according to their transmission probability; wrongly 

matched points are identified and the whole segment is set as 

unmatched so that it can be corrected in the post-matching process.  

Next, the distance between matched points is compared to the 

distance calculated according to the average speed between the two 

points for each connection between neighbouring GPS points. In the 

event of any deviation or in case of low values for the transmission 

probability, all of the GPS points for the actual OSM link are set as 

unmatched. Since we use an offline-method, this plausibility check 

is carried out in both directions, from the beginning of the track to 

the end and vice versa. 

The post-matching process inserts all unmatched points and 

OSM segments of a recorded track into the validated matching 

results. Single points are inserted according to their GPS-positions 

and speed-values. If points of complete OSM-links have to be 

inserted, the points are distributed along a probable route according 

to their speed-values and GPS-positions. The probable route is 

calculated using a shortest path algorithm.   

850 randomly chosen tracks are used to evaluate the map 

matching system. The accuracy of the map matching algorithm is 

evaluated for every navigable OSM-segment by observing two 

criteria:  

     
|∫                         |     

    
  (8) 

     
|∫               |     

    
   (9) 

 

In (8), the relative deviation     is the distance calculated from 

the matched GPS points               and defined segment 

length     . Since GPS points are recorded with 1 Hz, we allow a 

tolerance      of the travelled distance in one second.     does not 

show if the points are matched on the correct street. This is why we 

use    , which is the relative deviation of the integrated GPS speed 

from the defined segment length     . The integrated value for the v 

have to be consistent with the distance defined in OSM if the track 

is matched correctly. 

The result of the standalone ST-matching algorithm (ST-M) as 

was introduced in [24] is compared with the result of complete map-

matching system, including a plausibility check and post-matching 

process (P-M). About 2.8% of the points could not be matched at all 

for different reasons (e.g. different routes because of construction 

work, driving on parking lots, data recording problems). Figure 7 

shows the cumulative probability density functions (CDF) of the 

defined evaluation criteria.  

 

Figure 7: Evaluation of map matching 

 

The results show that the post-matching process clearly improves 

the matching accuracy. The CDF for     is lower than the CDF for 

   , which does not mean that the points are matched to undriven 

roads. This is because the GPS speed is not accurate enough so that 



 

the integrated GPS-speed of a segment does not correspond exactly 

to the defined length of the segment. All in all, the match quality is 

good enough for the development of the proposed approach. 

 

4.3. Simulation model 

A simulation model is used to calculate the energy consumption. 

The collected speed profiles are used as inputs in the model. A PI-

controller is used as a driver model to follow the desired speed 

profile. Further input values are the slope calculated using the 

SRTM data and parameters for weather conditions, which are 

necessary for modelling the power consumption of the auxiliaries. 
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Figure 8: Simulation model 

 

The vehicle model (see Figure 8) consists of various component 

models. We used an equivalent circuit model parameterized by the 

results of measured lithium cells for the battery. The electric 

machine is modelled with an efficiency map based on validated 

measurements. The efficiency map and battery parameters used are 

scaled for the adaption to vehicle parameters (e.g. max. acceleration 

torque). Parameters for the operational strategy during braking (e.g. 

max. deceleration for recuperation) can also be adapted.  

Parts of the system have to be independent of vehicle parameters 

when developing a server-based energy prediction model. 

Simulations with varied vehicle parameters are needed to test these 

prediction systems. For this reason validated component models are 

used. 

Eight different vehicle models are simulated for the estimation 

of propulsion power; the most important parameters are shown in 

Table 2. The efficiency map of the electric machine and battery 

parameters of vehicles 1 to 4 are different from the other vehicles. 

    is a constant powertrain efficiency factor (e.g. transmission).  

 

Table 2: Most important parameters for simulated vehicles 

Vehicle 

parameter 

1 2 3 4 5 6 7 8 

Mass [kg] 1200 900 900 1300 1900 1600 1600 1100 

cd value  [-] 0.33 0.28 0.28 0.28 0.32 0.32 0.32 0.28 

Cross-sect. 

Area [m2] 

2.04 2.04 2.04 1.9 1.9 1.9 1.9 1.9 

    [-] 0.92 0.92 0.81 0.92 0.98 0.98 0.98 0.92 

Rolling 

resist. [-] 

0.015 0.015 0.015 0.015 0.007 0.01 0.01 0.007 

max. decel-

eration for 

recuperation 

[ms-2] 

-0.8 -0.8 -0.5 -0.6 -0.6 -0.6 -0.6 -0.4 

 

5. ESTIMATION OF POWERTRAIN POWER 

An appropriate clustering of the road segments based on energy 

consumption is necessary to predict the propulsion power since the 

average energy consumption varies according to different impact 

factors. The necessary mean energy is predicted for every road class 

along the chosen route.  

 

5.1. Clustering of road segments based on energy consumption 

A clustering method based on road attributes is used to define road 

classes based on energy consumption, since these are available in 

common for every link along a route. We analysed the influence of 

the following map attributes: road type (e.g. highway, primary, 

residential), maximum speed, integrated topographical gradient 

upwards       and downwards       per navigable link and the 

number of crossing roads per km. We simulated the propulsion 

energy         and the recuperated energy         for every track for 

a clustering based on energy consumption (see Table 1).  

A Kruskal-Wallis test was used to rank the influence of the 

tested map attributes on         and         and to identify the most 

significant road attributes. This test is a non-parametric method to 

test for differences among two or more groups and does not require 

a normal distribution [25].  

As a result, the road type and maximum speed are the most 

significant map attributes for         and           A clustering by  

one map attribute is not possible since the average energy 

consumption on a road type varies with different speed limits and 

the energy consumption of some different road types (e.g. for 

motorways and primary) is similar. The following method is used 

for clustering the road segments: 

1) Calculation of the mean energy consumption of different 

vehicles depending on speed limit and road type 

Since the road classes have to be used for all different types of 

vehicles, the necessary energy for the recorded tracks (see Table 

1) is simulated for different vehicle attributes (see Table 2). 

Because the ratio of recuperation depends on vehicle attributes, 

the energy to overcome the driving resistances is used for 

clustering. According to the defined speed limit and road type, 

the calculated distance-based energy         and         of 

every navigable OSM-link is used to calculate a mean value for 

every combination of the two road attributes for every of the 8 

simulated vehicles (         and         ). Only observations 

with a significantly high number of measurements are taken into 

account for clustering. Moreover, the median value is used 

instead of the mean value to filter out statistical outliers.  

2) Clustering the mean energy consumption for different 

vehicles  
A two-dimensional feature vector    
                     exists for every observation n (every 

existing combination of speed limit and road type). These n 

objects are split into k clusters using the k-means algorithm, 

which is a simple unsupervised learning algorithm for solving 

clustering problems [26]. The number of clusters k has to be 

chosen before starting the algorithm, which assigns each 

observation n to one of the k clusters by minimizing the metric 

distance to the centroids of the k clusters.  

 
Figure 9: Road segment clustering based on simulated energy 

consumption for vehicle 7 

An example of clustering                          for vehicle 

7 is shown in Figure 9. The upper part shows the assignment to 



 

the 10 clusters. In the lower part, the result of clustering is 

arranged by maximum speed and road type. The nomenclature 

of the road types can be found in Figure 10; the names of the 

road types conform with the definition in OSM [27]. 

The results in Figure 9 show differences according to the 

different road types. On driveways in particular (e.g. road type 

12, 14 or 16) and on roads in residential areas, the part of the 

energy potentially to be recuperated is higher than on arterial 

roads (e.g. road type 15). 

After running the cluster algorithm with a different number of 

clusters we set the number of clusters to ten. On the one hand, 

fewer clusters lead to higher silhouette coefficients providing a 

representation how well each object lies within its cluster. On 

the other hand, more clusters do not seem to be necessary. 

3) Definition of road classes based on energy consumption 
The clusters for each vehicle are sorted ascending by energy 

consumption. The final road classes based on energy 

consumption are defined in a heuristic way. The vehicle-specific 

clustering results are combined to one final clustering. The 

clustered road segments are adapted by considering some 

additional requirements: 

 separation into in-town and out-of-town segments 

 join links to the corresponding road type (except road type 

11, because of the length of motorway links) 

 separation of completely different road types in terms of 

traffic (e.g. secondary and motorway) 

These additional requirements are necessary since the energy 

consumption can be similar for complete different road classes 

with various road types and speed limits (e.g. same energy 

consumption on segments in in-town residential area and out-of 

town motorways with a speed limit). Finally twelve road classes 

are defined, which are shown in Table 3. If not enough recorded 

data exists for clustering a feature vector, the road class from 

similar feature vectors is used. 

 

5.2. Estimation of powertrain energy 

In a first step the module to estimate the powertrain energy is 

realized, which will be used for adaption according to route-specific 

impact factors.  

 

Table 3: Road classes based on energy consumption 

tertiary residential living street

11 12 13 14 15 16 21 22 31 32 63

30 1 1 1 1 1 1 2 2 3 2 5

40 4 1 4 4 6 6 8 8 8 8 5

50 4 1 4 4 6 6 8 8 8 8 5

60 4 4 4 4 6 6 7 7 7 7

70 10 10 10 10 7 7 7 7 7 7

80 10 10 10 10 7 7 7 7 9

100 10 10 11 11 11 11 7 7 9

110 12 10 11 11 11 11

120 12 11 11 11 11 11 x

130 12 11 11 11 x

road type 12, 14, 16 and 22 are the links to the corresponding road types 11, 13, 15 and 21
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5.2.1. System overview 

We defined the following requirements for the prediction of the 

mean powertrain energy:  

 consideration of all relevant vehicle-specific impact factors 

 prediction of a mean value for every road class 

 fast online adaption to changing vehicle parameters 

 easy applicability to different electric vehicles 

As physical modelling of the powertrain with nonlinear equations is 

complicated and depends on many varying parameters, we aim to 

use dynamic system identification methods to predict the necessary 

propulsion energy. Thus, the number of impact factors used can be 

reduced and a dynamic adaption to different vehicles or vehicle 

parameters is possible. 

As shown in (1) and (2), the necessary propulsion power 

depends largely on the chosen speed v and acceleration a. Apart 

from the gradient of the road in Pslope, the additional vehicle-specific 

impact factors on the propulsion power (e.g. drivetrain efficiency 

ηpos /ηneg or the mass of the vehicle m) display a dynamic behaviour 

but do not vary as frequently as a or v. For this reason, it is possible 

to describe the stationary behaviour of the nonlinear correlation 

between propulsion energy consumption and a and v with a look-up 

table, called the powertrain characteristic map (PCM). The influence 

of all relevant vehicle parameters such as the mass m or the 

drivetrain efficiency is considered in the PCM. The influence of the 

road gradient is taken into account later, when the mean energy is 

adapted to road parameters (see Figure 10). The PCM can be 

estimated online in the vehicle by using system identification 

methods and is continuously adapted to parameter changes. 
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Figure 10: Estimation of the powertrain energy 

 

The frequency of different values for the speed v or the acceleration 

a depend on different impact factors such as driving style or chosen 

road type. Because the influence of these factors is considered in 

subsequent modules in our system, the calculated mean propulsion 

energy consumption has to be independent of these factors, but 

should take into account the vehicle specific impact factors.  

We use a two-dimensional probability density function (PDF) of 

the speed v and acceleration a for every road class for normalization. 

The PDF is created on the basis of the recorded tracks in the 

database. The road class-specific and distance-based propulsion 

energy consumption can be calculated with the PDF and the 

estimated powertrain characteristic map. This allows all relevant 

vehicle-specific parameters to be considered in the predicted 

propulsion energy. 

 

5.2.2. Online identification of a powertrain characteristic map 

The powertrain characteristic map describes the necessary power 

          to overcome the driving resistances depending on vehicle 

speed v and acceleration a. An online parameter identification 

method is used to estimate  ̂        . One interpolation node of 

          according to the actual value of a and v can be updated at 

time t with the actual measured power      .       is calculated 

using the consumed power at the battery, less the consumption of 

the auxiliaries     . As the influence of the road gradient is 

considered later, the corresponding driving force       , depending 

on the gradient   and the vehicle mass m, has to be subtracted: 

   {          }                                          (10) 

 

The powertrain characteristic map           is defined as a two-

dimensional, grid-based look-up-table of the size r x s. It consists of 

interpolation nodes      located on the grid lines v1,…,vi,…,vr and 

a1,…,aj,…,as defined by the vehicle speed v and acceleration a. As a, 

v and    {         }     are based on noisy measurements, we have a 

noisy measurement vector for every interpolation node       
. 

Recursive least-square (RLS) methods are often applied to estimate 

the optimal value  ̂     
 by minimizing the sum of the squared error 

of the measurements [28] [29]. The estimation of all interpolation 

nodes forms the estimated powertrain characteristic map  ̂   . 



 

 
Figure 11: Powertrain characteristic map 

 

Thus, we use an RLS-algorithm for every interpolation node       
 

of the powertrain characteristic map           (see Figure 11). 

The RLS-algorithm of our system is can be simplified as we use 

a constant value for every interpolation node. We would like to 

explain the recursive least square algorithm in detail for the 

interpolation node       
 with the measured input ym and the 

predicted output  ̂ (11): 

                     ̂    ̂     (11) 

             ̂      (12) 

 

The RLS-algorithm is used for adaptive identification systems and 

only uses the prediction result of the previous time step t-1. 

Minimizing the square sum of error e(t) (12), the predicted value 

 ̂    can be calculated as follows [29]:  

 ̂       ̂       
 

 
         ̂          (13) 

 

The influence of the error on the adaption of the prediction becomes 

smaller with an increasing measurement time. Several RLS-

algorithms exist with weighting factors or forgetting factors [28]. 

We use an RLS-algorithm with a dynamic weighting factor      for 

the dynamic adaption to changing vehicle parameters. 

 ̂       ̂       
 

    
         ̂          (14) 
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Figure 12: Recursive least-square estimation of powertrain 

characteristic map 

A global weighting factor      for the whole powertrain 

characteristic map           is used. The value of      is set 

depending on the average error of a fixed number of the last 

appearing interpolation nodes. The weighting factor      is 

decreased with an increasing e in order to accelerate the dynamic 

adaption. 

The prediction of           is evaluated by simulating a real 

world track with the parameters of vehicle 8 (see Table 2) . During 

the length of the track three different parameter changes are 

simulated, which lead to a significant change in the powertrain 

characteristic map: 

 t=5 min: increase of mass (+300 kg) 

 t=20 min: increase of rolling resistance (+0.002) 

 t=45 min: decrease of maximum deceleration for recuperation   

(- 0.6 ms-2) 

The first results show that an RLS-algorithm with a dynamic 

weighting factor is possible for the prediction of          . The 

powertrain characteristic map           respectively the estimated 

 ̂         are calculated according the simulated power        

along the selected track. Possible prevailing measuring inaccuracies 

(e.g. for the calculation of       ) are taken into account.           

and  ̂         are used to calculate        respectively   ̂    . 

The error of the estimation for the calculated mean energy 

consumption of several road classes is shown in Figure 13. The error 

and the setting time of the powertrain characteristic map depends on 

the operating points of the vehicle. Since each node of           is 

corrected separately, a correction of the mean energy consumption is 

only possible if the significant nodes of the corresponding 

probability density function (PDF) appear in the track. This is the 

reason why         is not corrected at all in the first 20 minutes of 

the track. The adaption to the parameter changes is fast, if the 

significant speed and acceleration values for a road class appear in 

the track (e.g. around t=17 min for road class 6). The time to correct 

the           due to impact factors on recuperation depends on the 

number of decelerations phases.  

 

Figure 13: Estimation of powertrain energy for different road classes 

The accuracy of the estimation is evaluated by analysing the total 

energy of the complete track. In Figure 14 the consumed energy is 

compared with the calculated energy by using the powertrain 

characteristic map           at the beginning of the trip and with 

the estimated energy according to the continuously 

corrected   ̂         The difference between real energy con-

sumption and the predicted energy is small. The results show that 

the correction of the           of driven road classes is fast enough. 

 

Figure 14: Estimation of powertrain energy 

An accurate prediction of the energy consumption is also necessary 

for road classes, which are actually not driven, but will be driven 

later in the trip. Thus, a faster adaption is necessary for these 

operating areas of          , for which no measurement values are 

available due to the actual vehicle speed or acceleration. One 



 

possibility is the use of extrapolation algorithms for these operating 

areas. 

6. CONCLUSION  

This paper has introduced a concept for predicting the energy 

consumption of EVs on a selected route. Due to the high number of 

impact factors and the complexity of their interdependence, a 

concept is proposed consisting of an in-vehicle part and a part 

realized on a server in the backend. Crowd sourced data from 

several vehicles is used for energy prediction in this kind of system.  

Speed profiles are used to exchange data related to the energy 

consumption of EVs via the backend. The speed profiles are used to 

predict the deviation of the propulsion energy from its mean value. 

The model to predict the deviation is almost independent of the 

vehicle attributes. The necessary mean energy consumption of the 

powertrain is predicted in an in-vehicle system.  

The first part to be introduced is the prediction of the mean 

energy consumption of the powertrain. We used a least-mean square 

algorithm to estimate a characteristic map of the drivetrain. The 

estimation is adapted online due to parameter variations and is based 

on only a few measured in-vehicle signals. The results show 

appropriate behaviour for the road classes, which are driven during 

the track. The estimation has to be expanded to correct the 

prediction of the mean energy consumption for the actual non driven 

road classes.  

In future, the part of the system to predict the deviation from 

mean energy consumption will be realized. Intelligent algorithms 

will be used to consider the individual driving behaviour and the 

impact of prevailing traffic conditions.   
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