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Abstract

This thesis focuses on cavity optomechanics with an optically levitated dielectric ob-

ject. We develop the underlying theory and propose and analyze various protocols to

prepare these macroscopic systems in superposition states. Optical levitation circum-

vents the direct thermal coupling of the mechanical oscillator to its environment and

holds the promise to enable ground-state cooling even at room temperature. This thesis

approaches this novel optomechanical system from two different angles reflected in the

division into the main parts of Theory and Protocols.

In the first part of the thesis, we derive a theoretical description of the system from

first principles. A master equation describing the interaction of light with dielectric

objects of arbitrary sizes and shapes is developed. It does not rely on the point-particle

approximation by taking into account scattering processes to all orders in perturbation

theory and treats both the motion of the object and the light quantum-mechanically.

This formalism extends the standard master-equation approach to the case where in-

teractions among different modes of the environment are considered. We apply this

general method to the specific setup of levitating dielectrics in optical cavities. Apart

from photon scattering, we also take into account various other dissipation processes,

e.g., blackbody radiation, scattering of gas molecules, or coupling to internal vibra-

tional modes, and compare them to the coherent coupling rates of the system. To

analyze the feasibility of ground-state cooling, we derive the steady-state phonon num-

bers without relying on resolved-sideband or bad-cavity approximations. Within this

theoretical framework, the optomechanical performance for realistic experimental pa-

rameters is analyzed. We show that cavity cooling of the center-of-mass (cm) mode to

the motional ground state is possible for spheres with radius R . 260nm.

The focus of the second part of the thesis is to provide protocols for the preparati-

on of the mechanical oscillator in nonclassical states. The realization of superposition

states is essential to most of the proposed applications of nano-mechanical oscillators,

i.e., for sensing or to find an answer to foundational questions. We confront this pro-

blem from three different angles. First, we propose several state-preparation protocols

relying on the efficient coupling to single photons, thus projecting their nonclassical
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state to the mechanical oscillator. These protocols require different cavity finesses and

coupling strengths and thus are suitable for implementation in various regimes. Second,

preparation of the nonclassical state by coupling to a qubit, e.g., a two-level atom, via

the cavity mode is proposed. We show that it is possible to use such a coupling for

the dissipative preparation of nonclassical states with high fidelity. This setup can be

extended to a nonlinear many-partite system via stroboscopic driving of the oscilla-

tors and we illustrate the effectiveness of the state-preparation protocols even in this

case. Results from both the single-photon and the dissipative-qubit protocol are not

restricted to levitating spheres and may be applied to other optomechanical systems.

Third, the last protocol exploits the levitation of the mechanical oscillator and is thus

in particular suitable for the setup described above. We propose an optomechanical

version of a double-slit experiment achieving spatial superpositions of the order on the

size of the dielectric. This method provides unprecedented bounds for objective collapse

models of the wave function by merging techniques and insights from cavity quantum

optomechanics and matter-wave interferometry.

In summary, this thesis aims at advancing the field of optomechanics with levitating

dielectrics by providing a theoretical description for this system and various protocols

for the preparation of nonclassical states.



Zusammenfassung

Thema dieser Arbeit ist Optomechanik mit schwebenden Nano-Dielektrika in optischen

Resonatoren. Wir entwickeln die zugrunde liegende Theorie zur Charakterisierung die-

ser makroskopischen Systeme und analysieren verschiedene Protokolle, um sie in quan-

tenmechanischen Zuständen zu präparieren. Dadurch, dass die Nano-Dielektrika optisch

gefangen sind und somit nicht direkt an ihre thermische Umgebung koppeln, bergen sie

die Möglichkeit sich sogar bei Raumtemperatur in ihren quantenmechanischen Grund-

zustand kühlen zu lassen. In dieser Arbeit untersuchen wir diese neuartigen Systeme

aus zwei verschiedenen Blickwinkeln, die sich in der Gliederung in Theorie und Pro-

tokolle widerspiegeln.

Im ersten Teil leiten wir eine konsistente theoretische Beschreibung für Optome-

chanik mit schwebenden Dielektrika her. Wir entwickeln eine Master-Gleichung, die

die Wechselwirkung zwischen Licht und dielektrischen Objekten beliebiger Größe und

Form beschreibt. Sie berücksichtigt sowohl die quantisierte Bewegung des Dielektri-

kums, als auch die quantenmechanische Beschreibung von Licht. Die Streuung von

Photonen wird in allen Ordnungen der Störungstheorie berechnet, was eine Analy-

se ermöglicht, die über die Punktteilchen-Näherung hinausgeht. Dieser Formalismus

erweitert den Standard-Ansatz für Master-Gleichungen durch die Einbeziehung der

Wechselwirkung verschiedener Moden der Umgebung. Dies führt zu einer quantenme-

chanischen Beschreibung, in der Renormierungskorrekturen und Dekohärenzraten vor-

ausgesagt werden können. Wir wenden diesen allgemeinen Formalismus auf den Spe-

zialfall schwebender Nano-Kugeln in optischen Resonatoren an. Dabei berücksichtigen

wir neben der Streuung von Photonen verschiedene weitere Dekohärenz-Mechanismen

wie beispielsweise die Streuung von Gasmolekülen, Schwarzkörperstrahlung, oder die

Kopplung an Vibrationsmoden, und vergleichen diese mit den kohährenten Kopplungs-

konstanten des Systems. Um zu untersuchen ob die Nano-Kugeln in den Grundzustand

gekühlt werden können, leiten wir die Phonenzahl der stationären Zustände des Systems

her, ohne uns dabei der herkömmlichen Seitenband-Näherung zu bedienen. In diesem

Rahmen zeigen wir, dass es möglich ist die Schwerpunktsmode (cm) von Kugeln mit

Radien R . 260 nm in den Grundzustand zu kühlen.
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Der Fokus des zweiten Teils der Arbeit liegt darauf, Protokolle zur Präparation des

nano-mechanischen Oszillators in nicht-klassischen Zuständen vorzuschlagen und zu

analysieren. Die Erzeugung solcher Zustände ist ausschlaggebend für die Realisierung

vieler der vorgesehenen Anwendungen optomechanischer Oszillatoren. Wir gehen dieses

Problem aus drei verschiedenen Richtungen an. Erstens schlagen wir mehrere Proto-

kolle vor, die auf der effizienten Kopplung einzelner Photonen an den mechanischen

Oszillator beruhen und den nicht-klassischen photonischen Zustand auf den mechani-

schen übertragen. Diese Protokolle benötigen unterschiedliche Kopplungsstärken und

können somit in verschiedenen Parameter-Bereichen implementiert werden. Zweitens

untersuchen wir die Möglichkeit den mechanischen Oszillator durch den optischen Re-

sonator an ein Qubit, beispielsweise ein Zwei-Niveau-Atom, zu koppeln und so in einem

nicht-klassischen Zustand zu präparieren. Insbesondere präsentieren wir eine Methode

mit deren Hilfe der mechanische Oszillator mit hoher Wahrscheinlichkeit dissipativ in

einem stationären nicht-klassischen Zustand präpariert werden kann. Weiterhin zei-

gen wir, dass dieses Setup, wenn es stroboskopisch angetrieben wird, ein nichtlineares

Vielteilchenteilchen-System darstellt und demonstrieren die Effektivität der Protokolle

zur Präparation nicht-klassischer Zustände auch in diesem Fall. Die Methoden sowohl

der Einzel-Photon-Protokolle als auch der dissipativen Präparation mit Hilfe von Qubits

sind nicht auf schwebende Nano-Kugeln beschränkt, sondern können auf beliebige op-

tomechanische Systeme angewendet werden. Drittens schlagen wir ein Protokoll vor,

das auf der konkreten Implementierung mit schwebenden Nano-Dielektrika basiert. Wir

diskutieren eine optomechanische Version des Doppelspaltversuches. Durch die Kombi-

nation von Techniken und Erkenntnissen aus der Optomechanik und der Materiewellen-

Interferometrie ermöglicht es diese Methode, die Vorhersagen von Kollapsmodellen in

einem bisher unerreichten Parameterbereich experimentell zu überprüfen.

Zusammenfassend ist es das Ziel dieser Arbeit, zur Weiterentwicklung der Optome-

chanik mit schwebenden Nano-Objekten in optischen Resonatoren beizutragen, indem

wir sowohl ein theoretisches Fundament als auch mehrere Protokolle zur Präparation

nicht-klassischer Zustände entwickeln.
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Chapter 1

Introduction

1.1 Optomechanics: Quantum mechanics at unprecedented

length scales

This year we celebrate the 100th anniversary of the Bohr model [1], the first atomic

model containing elements of quantum mechanics. In the model’s derivation, Bohr gave

up on several laws of classical mechanics, realizing that this theory alone was insufficient

to explain the atom’s stability. Today, the model embodies the paradigm shift that the

evolution of quantum mechanics brought along – the theory has come a long way since

then. While the beginning of the century was characterized by establishing the math-

ematical background of the theory and understanding its fundamental aspects [2–4],

formerly purely theoretical models became accessible in the laboratory in recent years.

After achieving the probably most successful technological invention of the laser in the

1950s [5,6], today novel technologies based on quantum phenomena promise to change

several disparate fields. Among these, computation [7–9], telecommunication [10], cryp-

tography [11], and metrology [12] are the most prominent examples.

Despite the rapid advances of quantum technologies, some fundamental questions

have remained elusive since the early days mentioned above. Namely, the fact that

while quantum mechanics gives the right description of the microscopic world, it is

obviously not the right theory for macroscopic objects, has raised dispute over the

years. This is illustrated most vividly in Schrödinger’s famous cat paradoxon [13], and

the realization of macroscopic objects in quantum states has been a long outstanding

research goal in modern physics. The observation of quantum effects at a macroscopic

scale would help finding the answer to such questions as: Why does the world of our

every-day experience appear to behave classical, not quantum-mechanically? Is there

a fundamental size limit for quantum-mechanical behavior? Can a possible quantum

nature of macroscopic objects be used for technological applications?
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During the past decades important advances in answering these questions exper-

imentally have been made by seminal matter-wave interferometry experiments [14].

While interference with electrons [15], neutrons [16], and small dimers [17] has been

implemented at the beginning of the last century, only recent years brought the demon-

stration of the wave-nature of even nanometer-sized objects [18, 19]. Besides revealing

quantum-mechanical behavior at unprecedented length scales, these experiments also

supported the standard quantum theory of decoherence and dissipation, developed by

Leggett [20,21], Joos and Zeh [22], and Zurek [23], among others.

Today, another promising candidate for the realization of quantum effects at a

macroscopic scale are mechanical oscillators. Reduced to its essential, an optomechan-

ical system is an optical or microwave cavity containing a mechanical element that

supports oscillations (phonons) and interacts with the photons of the cavity. The ear-

liest such systems, albeit at a very different length scale from what is used today,

were the gravitational wave detectors developed in the 1970s and 1980s [24–26]. The

realization that measurement and manipulation of macroscopic objects at their quan-

tum limit was possible [27], led to the exploration of these phenomena in numerous

table-top-experiments. This evolution has been advanced by technological progress

in two distinct fields: on the one side, nano-science and semiconductor industries have

developed processing technologies and novel materials enabling the fabrication of ultra-

sensitive mechanical devices [28]. On the other side, in the field of quantum optics, and

in particular cavity-quantum-electrodynamics, improvements on optical cavities as well

as an improved understanding of light-matter interactions resulted in an unprecedented

control over quantum-mechanical states [29]. The combination of these disciplines and

the recent advances therein have led to quantum control over mechanical oscillators in

optomechanical devices (see [30–33] for some reviews).

Today, there is an enormous variety of experimental implementations on different

length scales. Among others, these range from implementations with atomic clouds [34–

36], micromirrors [37], membranes in an optical cavity [38], to microtorroids [39],

nanoscale waveguides with both an optical and a mechanical resonance [40], electrome-

chanical systems [41,42], and piezoelectric resonators [43]. Essential to any observation

of quantum-mechanical behavior is the preparation of pure states. This is the case at

low temperatures, and thus a preparation of the mechanical oscillator in the coldest

state achievable, its ground state, is desirable. It has been theoretically predicted that

ground-state cooling of a mechanical oscillator is indeed possible [44–48] by using the

radiation pressure exerted by the photons on the mechanical structure. The technique

relies on resolved sidebands, illustrating the close similarity between optomechanics

and other quantum-optical systems [49]. Based on this, ground-state cooling has been

realized experimentally in some of the above-mentioned systems. The first demonstra-
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tion has been achieved in 2010, and did not rely on the interaction with light, but was

implemented using a mechanical oscillator with such high oscillations frequencies that

its ground state was reached at temperatures around 25 mK, accessible to conventional

dilution refrigerators [43]. The second setup to realize ground-state cooling was an

aluminum membrane tightly coupled to a superconducting microwave cavity that was

prepared in its ground state by sideband cooling [50]. In the same year, the ground

state was reached in a nanoscale waveguide [40], the first demonstration of optome-

chanical cooling. Very low phonon numbers have also been achieved in other systems,

so that direct coupling between photons and phonons can be witnessed [51].

The experimental realization of the ground state has indeed demonstrated that these

macroscopic oscillators reveal quantum-mechanical behavior when sufficiently isolated

from the environment. The proposed applications are diverse and range from using

the mechanical systems as quantum transducers [52–55], building ultra-high sensitivity

detectors exploiting quantum metrology [56–59], to proposals for fundamental tests of

quantum mechanics [60–63]. The two main challenges in realizing these goals are:

• An improved isolation of the mechanical oscillator from its environment to achieve

longer coherence times.

• The realization of nonlinearities required for the preparation of superposition

states, essential to many of the desired applications.

In the following two sections, we will further describe these challenges and outline

possible solutions.

1.2 Optomechanics with levitating dielectrics

Achieving longer coherence times is one of the most urgent goals in the research field of

optomechanics. They are required for essentially any application of the optomechan-

ical system, such as state preparation [60, 61, 64], or metrology [56–59]. One crucial

requirement for long coherence times is good isolation from the environment. In gen-

eral, the interaction of a quantum system with its environment creates entanglement

between the small system and its surrounding, leading to a decay of coherence and a

loss of quantum-mechanical behavior in the small system [65]. Due to their increased

size as compared to e.g., atomic systems, nanomechanical resonators consist of many

more atoms that couple to the environment resulting in decreased coherence times.

In addition, in most optomechanical systems the mechanical oscillator is unavoidably

attached to its suspension providing a thermal contact that prevents longer coherence

times [66–71].
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ωt
ωL

ωc

κ
z

Figure 1.1: Schematic representation of the setup. A nanodielectric is confined by

optical tweezers which provide a trapping frequency of ωt. The nanodielectric is placed

inside an optical cavity with resonance frequency ωc, decay rate κ, and is driven by a

laser at a frequency ωL.

A potential improvement to better isolate the system is to avoid its direct at-

tachment to the thermal environment and provide the spring force for the mechanical

oscillator by other means. One possibility to achieve this is to rely on optical methods

i.e., optical levitation with lasers. The field of optical trapping and manipulation of

small neutral particles using the radiation pressure force was founded in 1970 by the

seminal experiments of Ashkin [72]. Over the course of the next 40 years, the techniques

of optical trapping and manipulation have stimulated revolutionary developments in

the fields of atomic physics, biological sciences, and chemistry [73]. In physics, the

progress in optical cooling and manipulation of single atoms opened up a plethora of

novel perspectives. The precise control over the atomic degrees of freedom has created

applications ranging from atom interferometry [74], quantum simulations of condensed-

matter systems with ultracold gases [75], to the implementation of quantum gates for

quantum-computation purposes [76].

The system proposed to implement the optical trapping are optically levitated di-

electrics [77,78] (see also [64,79,80]). In particular, the setup consists in optically trap-

ping a nanodielectric by means of optical tweezers inside a high-finesse optical cavity,

see Fig. 1.1 for an illustration. Due to the absence of clamping losses [66–70] the levita-

tion allows for a very good thermal isolation and it will be shown in this thesis that this

enables ground-state cooling even at room temperature. From a broader perspective us-

ing optically levitated dielectrics as a cavity-optomechanical system aims at extending

the techniques developed during the last decades of optical cooling and manipulation

of atoms (e.g., like in cavity QED with single atoms and molecules [81–84]), back to

the nanodielectrics that were first used in the early times of optical trapping [85–87].
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After the original proposals [77,78] for the setup, there has been wide experimental

and theoretical progress in this direction. Part of this thesis is dedicated to provid-

ing a theoretical description of the system as a basis for further applications. More

specifically, we focused on a better understanding of the theory of optomechanics with

levitating dielectrics in [64], and in particular the light-matter interactions of dielectrics

beyond the point-particle approximation in [88] (see Chap. 2 and Chap. 3). During the

past years, several alternated setups, such as levitation of micromirrors [80], or nan-

odumbbells [89], and even alternative cooling techniques, such as Doppler cooling of a

microsphere [79], have been proposed. Modified systems, using a loosely-clamped mem-

brane instead of a fully-levitated object have been investigated both theoretically [90]

and experimentally [91]. Moreover, diverse applications for levitated nanospheres have

been studied, among these detection of single molecules [92], using them as force de-

tectors at small length scales [93], their potential to test foundational questions such

as collapse models [61, 62], or using them as detectors for gravitational waves [94].

Furthermore, there have even been proposals to use levitating nanospheres in space

experiments [95].

There has also been remarkably broad experimental progress: After measuring the

instantaneous velocity of the Brownian motion of a µm-sized particle in air [96], the

same group reported feedback cooling of these glass beads in vacuum [97]. A simi-

lar direction is taken by [98], and [99, 100], where feedback cooling of nanometer-sized

particles has been demonstrated. Recent experiments even reported on the implemen-

tation of a cavity in the nanomechanical system [101]. With the proposal of levitating

dielectrics, also the fields of optomechanics and matter-wave-interferometry begin to

overlap and stimulate each other increasingly [102]. This wide range of experiments and

methods illustrates the evolution of a new generation of exciting experiments, aiming at

bringing levitating dielectrics into the quantum regime. By bridging the gap between

atomic physics and conventional nanomechanical resonators, they hold the promise to

realize quantum mechanics in an entirely novel parameter regime.

1.3 State preparation protocols for Optomechanics

The achievement of ground-state cooling [40,43,50] constitutes a milestone for the field

of optomechanics. Nevertheless, the ground state of a harmonic oscillator is a Gaussian

state, which is similar to classical states. A state is called Gaussian if its character-

istic function, or equivalently its Wigner function are Gaussian [103]. Some examples

of Gaussian states are the vacuum state, thermal states or squeezed states. At the

same time, the so-called Gaussian unitaries are operations that preserve the Gaussian

character of the state. The Hamiltonians and Lindbalds forming the class of Gaussian
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transformations are at most quadratic in the field operators. With its positive Wigner

function, a Gaussian state is very different from the superposition states envisaged by

Schrödinger in his cat paradox [13]. The preparation of non-Gaussian states is essential

for most applications of nanomechanical oscillators, namely for metrology [56–58,66,93],

quantum-information processing [104], quantum simulations [105], or fundamental tests

of the foundations of quantum mechanics [60,61,63,106].

This leads to the basic question of why it is so hard to realize non-Gaussian states

in nanomechanical systems. In optomechanics, the initially prepared state has a Gaus-

sian form and all Hamiltonians are linear in the couplings – precisely the setting for

Gaussian states described above. Although there even exists an instrinsic nonlinearity

of the optomechanical interaction at the single-photon level, the resulting couplings

are usually very small [40, 51]. In most setups, the single-photon interactions are thus

enhanced by strongly driving the light field [30, 31] at the price of rendering all cou-

plings linear. Consequently, the resulting Hamiltonians are at most quadratic in the

field operators and do not alter the character of an initially Gaussian state. There are

several strategies to circumvent this problem. In principle, non-Gaussianities can either

be achieved by

• introducing a nonlinear interaction in the Hamiltonian, or

• coupling to an auxiliary system which is in a non-Gaussian state.

Following the first strategy, in optomechanics, nonlinear interactions can be realized

by increasing the single-photon coupling strength [53,107,108]. While this is certainly

a promising path, recent experiments still require an improvement by several orders

of magnitude to reach the regime where the effect of single-photon coupling can be

useful [40]. Other proposals to realize nonlinearities are based on the behavior near the

critical strain [109], applying inhomogeneous electrostatic fields to the oscillator [110,

111], or positioning the mechanical oscillator in the quadratic instead of the linear part

of the standing wave in the cavity [61,62].

Following the second strategy means to couple the mechanical oscillator to an aux-

iliary system that can be easily prepared in a non-Gaussian state. Already in the early

days of this research area, several groups proposed to create non-classical states of

a movable mirror [112–114] by coupling it to single photons. The idea behind these

proposals is to use the optomechanical interaction to entangle a small quantum sys-

tem in a non-Gaussian state with the macroscopic object. By observing the state

of the small quantum system, the creation and loss of the non-classical state in the

macroscopic system can be monitored. This idea was also used in the theoretical [115]

and experimental [43] studies where the coupling between a micromechanical resonator
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and a Cooper pair box was used to prepare entanglement between the quantum system

(Cooper pair box) and the cantilever. Possible other candidates are quantum dots [116],

an intrinsic two-level defect [117] or an atom’s internal degrees of freedom [118]. Cou-

pling to the atomic motion has been proposed [119] and even recently demonstrated

experimentally [120] for a cloud of ultracold atoms.

In summary, progress has been made on the implementation of non-Gaussian states

in optomechanics. However, their efficient experimental realization remains one of the

most urgent goals in the field. Moreover, the spatial superposition size of these states is

typically on the subatomic length scale. This raises the question for the right definition

of macroscopic superposition states: is it more important to achieve larger superposi-

tion sizes with smaller objects or small superpositions with larger objects? There has

been an extended discussion on this topic [121–126], but a general definition of macro-

scopicity remains elusive and the usefulness of the various definitions depends on the

envisaged application. In this thesis, we propose a scheme to prepare superpositions

of nanomechanical oscillators on the order of their own size in Chap. 6 (i.e., large su-

perpositions of large objects) by combining methods from matter-wave interferometry

with nanomechanical oscillators.

1.4 Outline of this thesis

The goal of this thesis is to advance the theoretical understanding of optomechanics

with levitating dielectrics by providing the theoretical background of this novel setup

and proposing protocols to prepare superposition states. We approach this topic from

two different angles reflected in the division of the thesis into the main blocks of The-

ory and Protocols. In the Theory part, we derive a master-equation description

for levitating dielectrics in optical cavities from first principles. For this purpose, in

Chap. 2, we combine techniques from scattering theory with quantum master equations

and take into account the quantum motion of the object, the quantum nature of light,

and scattering processes to all orders. This extends the standard approach of master

equations to the regime where interactions between the different environmental modes

are taken into account, necessary when going beyond the point-particle approximation.

In Chap. 3, this master equation is applied to the particular setup of levitating dielec-

tric spheres in optical cavities. We derive all optomechanical parameters including the

most prominent decoherence mechanisms. To complete the analysis, cooling of gen-

eral Gaussian systems without relying on sideband techniques is discussed. Combining

these two approaches, we show that ground-state cooling is possible for small spheres

fulfilling R . 260 nm.

This forms the basis for the second part of the thesis which is focussed on protocols
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Figure 1.2: Graphical illustration of the structure of this thesis: optomechanics with

levitating dielectrics is analyzed from two different perspectives. The main division is

between theory and protocols. We start with a general approach to describe the light-

matter interaction of dielectrics with light in Chap. 2. This is followed by Chap. 3, where

the theory is applied to levitating dielectric spheres in an optical cavity. The second

part on protocols contains three different approaches to the preparation of nonclassical

states. Chap. 4 is based on coupling a single photon to the cavity-optomechanical

system. Chap. 5 proposes to couple a mechanical oscillator to a qubit via the cavity

mode and relies on dissipative state preparation. Finally, in Chap. 6, we show how to

prepare the mechanical oscillator in large spatial superpositions.

for the preparation of non-Gaussian states in optomechanical systems. The urgency

of this goal has been outlined in Sec. 1.3 and we propose three different angles to

confront the challenge. Chap. 4 proposes to exploit single photons as a source of non-

Gaussianity. In order to enhance the weak coupling between single photons and the

optomechanical structure, the cavity is strongly driven. Three different approaches

based on this fundamental idea are investigated: first, coupling a single-photon pulse

on top of the driving field into the optomechanical cavity followed by a measurement

of the reflected part of the photon. Second, in order to circumvent the measurement of

the single photon, the cavity is modulated time-dependently, thus allowing for a perfect

coupling of the pulse into the cavity. Third, the last protocol exploits teleportation in

the bad-cavity limit to imprint the non-Gaussian state on the mechanical resonator.

While decoherence needs to be avoided during these protocols, we propose a dissipation-
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based approach in Chap. 5. It promotes to couple the mechanical resonator to an in-

trinsically non-Gaussian two-level system. The latter enables the preparation of the

mechanical-oscillator in a non-Gaussian steady state through the fast decay of the cav-

ity. We extend this approach to many-partite systems, where we also investigate the

possibility of coherent state preparation.

Both of the approaches described in Chap. 4 and Chap. 5 are applicable to any

opto- or electromechanical system and do not rely on a particular implementation with

levitated dielectrics. On the contrary, the last method for state preparation described

in Chap. 6 relies on the flexibility of the trapping frequency and thus the levitation

of the dielectric object. An optomechanical double slit is proposed that prepares the

dielectric in a large spatial superposition on the order of its own size. This allows for

possible tests of some of the most paradigmatic collapse models [127].

In combination, the two parts of this thesis provide both the theoretical background

to utilize levitating dielectrics as optomechanical systems as well as protocols to pre-

pare nonclassical states offering the opportunity to challenge quantum mechanics at

unprecedented length scales. The thesis is concluded by an outlook and discussion of

further directions in Chap. 7.
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Part I

Theory of levitating dielectrics





Chapter 2

Master equation for the

light-matter interaction of

dielectrics

We present a master equation describing the interaction of light with dielectric objects

of arbitrary sizes and shapes. The quantum motion of the object, the quantum na-

ture of light, as well as scattering processes to all orders in perturbation theory are

taken into account. This formalism extends the standard master-equation approach to

the case where interactions among different modes of the environment are considered.

This is necessary when the interaction between dielectrics beyond the point-particle ap-

proximation and light is considered. We combine methods from scattering theory with

quantum master equations yielding a genuine quantum description, including a renor-

malization of the couplings and decoherence terms. The small-particle limit within the

Born-Markov approximation is recovered when neglecting interactions among the envi-

ronmental modes. This chapter mainly bases on and uses parts of [88].

2.1 Introduction

In quantum optomechanics, light is used to cool and control the mechanical motion of

massive objects in the quantum regime [30, 31, 128, 129]. In the broad research area

of cavity quantum optomechanics two classes of systems can be distinguished: the re-

flective case, realized in deformable Fabry-Pérot resonators [130, 131] or microtoroidal

cavities [39], and the dispersive case, like in the membrane-in-the-middle configura-

tion [38,91,132] or in optically levitating nano-dielectrics [64,77,78,99,133]. In the lat-

ter, the dimension of the object along the cavity axis (i.e., the width of the membrane

or the diameter of the nanosphere) is typically much smaller than the optical wave-
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length. This implies that the dielectric can be treated as a dipole with some induced

polarizability [64,78]. The problem is akin to that of single point particles, like atoms or

ions, in the weak excitation regime. Thus, the theory and methods that have been de-

veloped in the context of laser cooling, trapping, and manipulation of single atoms and

ions can be directly applied to optomechanical systems (see, e.g., [49,134,135] for some

expository articles). In particular, sideband-cooling techniques [45, 47] have been suc-

cessfully employed to achieve the ground state in a nano-optomechanical system [40,51]

(see also [43,50]).

The control that is being achieved in dispersive quantum optomechanics opens up

the challenge to explore the physics of larger objects. While this is certainly within

experimental reach [97], the existing quantum theories are not applicable since the

dielectric object can no longer be considered as a simple dipole. In contrast, for sizes

comparable or larger than the optical wavelength, multi-scattering processes within

the dielectric have to be taken into account. As it is well-known from classical nano-

photonics, they give rise to a modification of the forces experienced by the system, as

well as other interesting phenomena [136].

In this chapter, we present a quantum theory describing the interaction of light

with the center-of-mass of non-absorbing dielectrics of arbitrary shapes and sizes. In

particular, we derive a master equation for the motion of the particle and the cavity

mode. This method considers the full scattering process by linking the coefficients of

the master equation to the scattering matrix. It does not rely on the point-particle

approximation, but takes higher orders of the scattering process into account.

This allows one to use the tools and techniques developed in the context of classical

nano-photonics to determine the evolution of the quantum system. These include ad-

vanced numerical techniques, like the discrete-dipole approximation [137], the T-matrix

method [138], or, for some special geometrical shapes, even analytical solutions, like the

so-called Mie solution [139–141]. We compare these results to a description within an

extended Wigner-Weisskopf approach. While this general theory is applicable for arbi-

trary dielectrics, we demonstrate that it simplifies for small objects, and correlations

between different modes can be neglected.

2.1.1 Reader’s guide

The chapter is organized as follows: In Sec. 2.2, we describe the system, list the as-

sumptions and define the Hamiltonian. Following this, we present the main result of

this chapter in Sec. 2.3: a master equation describing the interaction between light and

the motion of arbitrary dielectric objects. First, the effect of the presence of a dielec-

tric on a free electromagnetic field is discussed in Sec. 2.3.1, where the corresponding
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scattering equations are solved. Based on this, we derive a general master equation

describing the joint dynamics of the cavity mode and the center-of-mass motion of

a dielectric in Sec. 2.3.2. An analogous derivation of the equations of motion within

an extended Wigner-Weisskopf approach is given in App. 2.B. The description of the

optomechanical setup is obtained by assuming the Lamb-Dicke regime and a strong

driving field in Sec. 2.3.3. The chapter is rounded off in Sec. 2.4 by a discussion of the

small-particle limit.

2.2 Physical model and Hamiltonian

In this section we describe the system consisting of a dielectric object interacting with

one or several confined electromagnetic modes. We discuss the assumptions that are

taken and derive the complete Hamiltonian.

2.2.1 Assumptions

In this description of the interaction between a dielectric with a center-of-mass position

r̂ and a photonic field, the following assumptions are taken:

1. The object has a volume V , a density distribution ρ, and a mass M = ρV . Note

that the density distribution is assumed to be homogeneous for simplicity. In

contrast to the common assumption, see e.g. [64], we do not restrict the size of

the dielectric to the sub-wavelength scale of the light field, but allow for arbitrary

sizes.

2. The relative dielectric constant εr is assumed to be homogeneous. The perme-

ability of the object µ is chosen to be equal to the vacuum permeability, µ = µ0,

which is a good approximation for the dielectric objects we are mainly interested

in.

3. As we will show in Sec. 3.4, the center-of-mass (cm) mode of dielectrics at the

micron-scale is decoupled from the vibrational ones. Hence, we will only consider

the motion of the cm degree of freedom r̂ and neglect its coupling to vibrational

modes.

4. We assume the dielectric constant of the object to be real, i.e., no absorption

effects are taken into account. In the language of scattering theory, this signifies

that only elastic scattering processes are accounted for. The effect of a nonvan-

ishing absorption is studied in Sec. 3.5.3.
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5. Throughout this chapter, we assume the electromagnetic field to be scalar and

neglect polarizations for a better readability of the equations. The derivations

for polarizations can be carried out in full analogy. We use the results including

polarizations in the analysis of cavity optomechanics with levitating spheres in

Sec. 3.2.

6. We assume that all photons are scattered into the bath modes. This is a valid

assumption for geometries that do not fit the cavity’s geometry like, e.g., spheres,

whereas for membranes the scattering into the cavity mode has to be taken into

account [90].

2.2.2 Hamiltonian

The Hamiltonian consists of three parts,

Ĥtot = ĤM + ĤL + ĤLM : (2.1)

the cm motion of the dielectric is described by ĤM, the energy of the electromagnetic

field by ĤL, and the interaction between the light and matter is given by ĤLM. For

the master-equation description that we want to pursue in the proceeding, it is useful

to divide the total Hamiltonian into

Ĥtot = ĤS + ĤB + ĤBS, (2.2)

where ĤS denotes the Hamiltonian describing the system, ĤB denotes the part describ-

ing the bath and ĤBS the coupling between the two. Each of these terms will be defined

in the following.

The kinetic energy

The motion of the free untrapped dielectric is described by ĤM = p̂2/(2M), where p̂

denotes the momentum operator of the cm coordinates in the direction we are interested

in. While the dielectric object we investigate may have an arbitrary three-dimensional

shape, we consider only its motion in one dimension. Due to the harmonicity of the

trap, the coupling between the different directions can be neglected. Nevertheless, in

many cases it might still be necessary to control the motion in the other directions,

e.g., via feedback cooling [92]. In particular for linear or quadratic potentials, also the

coupling to internal vibrational modes of the sphere can be neglected. In the absence

of an additional external potential, the Hamiltonian can be diagonalized in the basis

of the vibrational eigenmodes. Adding an external potential leads to some coupling

between the cm degree of freedom and the vibrational modes. The frequency of the
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vibrational eigenmodes is roughly given by ωn ∝ n csound/R, where csound denotes the

sound velocity and R the extension of the dielectric. For micron-scale objects it is

several orders of magnitude larger than the trapping frequencies typically achieved for

the cm degree of freedom. This enables one to adiabatically eliminate the vibrational

modes merely leading to a negligible renormalization of the system’s energy. A detailed

discussion using a theory of quantum elasticity can be found in Sec. 3.4.

The energy of the free electromagnetic field

The energy of the free electromagnetic field is described by

ĤL =
1

2

∫
dx

[
ε0Ê

2
tot(x) +

B̂2
tot(x)

µ0

]
, (2.3)

where ε0 denotes the vacuum permittivity, Êtot the electric field and B̂tot the magnetic

one. The total electromagnetic field can be divided into a part containing the continuous

modes and one or several confined modes. The continuous part is defined as

ÊB(x) =
i

(2π)3/2

∫
dk

√
ωk

2ε0
(âke

−ikx −H.c.), (2.4)

where the label B signifies that this continuum of plane-wave modes will generally be

treated as a bath. The different modes are characterized by the annihilation (creation)

operators âk (â†k) with a mode frequency ωk and a wave vector k, where we will denote

k = |k|. Note that we set ~ = 1 throughout this thesis. In the next step we define

a confined mode of the electromagnetic field with annihilation (creation) operator â0

(â†0), mode frequency ω0, mode volume V0 and a mode profile given by f(x). Typically

it describes a mode in a cavity subject to some boundary conditions. We label this

inhomogeneous part of the electromagnetic field S (for system), it is given by

ÊS(x) = i

√
ω0

2ε0V0
(â0f(x)−H.c.) . (2.5)

The extension to several inhomogeneous modes can be achieved in an analogous fashion.

Light-matter interaction

The most interesting part of the Hamiltonian describes the interaction between the

dielectric and the electromagnetic field. The response of the object’s polarization is

assumed to be linear to the electric field, which is fulfilled for the typical light intensities

considered in this manuscript. The interaction Hamiltonian is given by

ĤLM = −1

2

∫
V (r̂)

dxP̂tot(x)Êtot(x), (2.6)
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where P̂tot(x) is the object’s polarization and the integration is performed over the

volume of the dielectric V with center-of-mass coordinate r̂. Assuming P̂tot(x) =

αpÊtot(x) and comparing the resulting relation between the polarization and the electric

field for the macroscopic [142] and microscopic case (see [64] for a concise derivation),

one obtains αp = ε0εr and

ĤLM = −εcε0
2

∫
V (r̂)

dxÊtot(x)2, (2.7)

where εc = 3(εr − 1)/(εr + 2) is defined in terms of the relative dielectric constant εr.

Here, the cm is treated as an operator, such that Eq. (2.7) gives the coupling terms

between the object’s position and the light field.

Before describing the different contributions in detail, we reconsider the inhomoge-

neous mode ÊS that has been separated from the continuum, see Eq. (2.5). It describes

one (or several) mode(s) that differs from the continuum. While in the specific setup of

optomechanics with levitating spheres both the tweezer and the cavity field contribute,

we describe this mode in general as the system mode. Due to the high photonic occupa-

tion numbers that might occur in the presence of a strong driving field, it can be divided

into a classical part and a quantum part by displacing the operators â0 = 〈â0〉 + â′0
(note that we will omit the prime hereafter). This yields an additional contribution to

the electromagnetic field given by

ES(x) = i

√
ω0

2ε0V0
(αf(x)−H.c.) , (2.8)

where ES(x, t) is not an operator and describes the classical part of the light field

with α = 〈â0〉, the square root of the photon number. Plugging Êtot(x) = ÊS(x) +

ES(x) + ÊB(x) into Eq. (2.7) leads to different contributions in the Hamiltonian Ĥtot

of Eq. (2.1). The Hamiltonian describing the system consisting of the inhomogeneous

mode and the mechanical degree of freedom can be written as

ĤS =
p̂2

2M
+ ω0â

†
0â0 −

εcε0
2

∫
V (r̂)

dx
(
ES(x) + ÊS(x)

)2
. (2.9)

The energy of the bath modes is given by

ĤB =

∫
dkωkâ

†
kâk + Ŵ (r̂), (2.10)

where Ŵ (r̂) describes the interaction between different bath modes induced by the

presence of the dielectric,

Ŵ (r̂) = −εcε0
2

∫
V (r̂)

dxÊ2
B(x). (2.11)
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The interaction between the system and the bath modes is denoted by

ĤBS = −εcε0
∫
V (r̂)

dx
(
ES(x) + ÊS(x)

)
ÊB(x). (2.12)

The noninteracting part of the Hamiltonian describing the energy of the system and

the bath is given by

Ĥ0 = ĤS + ĤB. (2.13)

In quantum optics, the interaction between different bath modes, Eq. (2.11), is com-

monly neglected. In contrast, when describing the scattering of light from larger ob-

jects, interactions among the bath modes have to be taken into account, such that it

is no longer justified to neglect W (r̂). Ĥ0 thus effects a coupling between different

modes of the bath, such that the bath operators are not a diagonal basis anymore. We

demonstrate in the following how this problem can be addressed and connected to a

description within scattering theory.

2.3 Master equation for arbitrary dielectrics

We give a concise description of the two modes of the system we are interested in, the

mechanical mode describing the center-of-mass motion of the dielectric and the cavity

mode of the light. Therefore, we trace out the other modes of the electromagnetic

field, the free modes. The typical quantum-optical approach to these systems is the

method of Born-Markov master equations, where the bath is eliminated to derive a

description exclusively for the system’s dynamics. The Hamiltonian is split into a part

describing the energy of the system and the bath, Ĥ0, and the interaction between the

two, ĤBS. For typical quantum-optical systems, Ĥ0 is diagonal in the bath operators

âk as interactions among them are negligible, such that the transformation to the

interaction picture is straightforward. The difficulty we confront when describing the

interaction between light and a dielectric sphere in a cavity larger than the wavelength

is that due to the large number of scattered photons, interactions within the bath,

given by Eq. (2.11), have to be taken into account. This effects a Hamiltonian which

is non-diagonal in the bath operators âk.

The strategy to approach this problem is to first solve the equations of motion,

effected by the interaction with the dielectric, for the bath operators. Connecting these

expressions to the Lippmann-Schwinger equation for the scattering process of a sin-

gle photon, we give the solution for the bath operators containing the full scattering

interaction in Sec. 2.3.1. Subsequently, we derive the master equation in Sec. 2.3.2

describing the cavity mode and the center-of-mass mode in this new basis of bath
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operators, enabling one to express all quantities in terms of scattering operators. Fi-

nally, in Sec. 2.3.3, we specify this approach to optomechanical systems, assuming a

strongly-driven cavity and the Lamb-Dicke regime for the cm operator.

2.3.1 Solution of the scattering equations for the free field

The equations of motion of the electromagnetic field in the Heisenberg picture are

determined and connected to the Lippmann-Schwinger equation. We are only interested

in the homogeneous part of the electromagnetic field ÊB(x, t) given by Eq. (2.4) and

assume that no inhomogeneity (i.e., cavity) is present, leaving us with a system fully

described by ĤB, Eq. (2.10). We keep the center-of-mass operator r̂ in the equations

of motion, but neglect its action for now assuming M → ∞. The Heisenberg eqs. of

motion can thus be determined as

ȧk(t) = −iωkâk(t)− i

√
ε2cε0ωk

2(2π)3

∫
V (r̂)

dxÊB(x, t)eikx. (2.14)

Let us first define ÊB = Ê
(+)
B + Ê

(−)
B , where Ê

(−)
B = Ê

(+)†
B with

Ê
(+)
B (x, t) =

i

(2π)3/2

∫
dk

√
ωk

2ε0
e−ikxâk(t), (2.15)

and the incoming field is given by

Ê
(+)
B,in(x, t) =

i

(2π)3/2

∫
dk

√
ωk

2ε0
e−ikxâk(0)e−iωkt. (2.16)

With these definitions at hand, we can close the set of equations given by Eq. (2.14) by

carrying out the following steps: we formally integrate Eq. (2.14) over time, multiply

both sides by i
√
ωk/2ε0(2π)3e−ikx, and take the integration over k to obtain

Ê
(+)
B (x, r̂, t) =Ê

(+)
B,in(x, t) +

∫
V (r̂)

dx′
∫
dk

εcωk

2(2π)3
eik(x′−x)e−iωkt

×
[
Ê
′(+)
B (x′, t)

∫ t

0
dτe−i(ω0−ωk)τ + Ê

′(−)
B (x′, t)

∫ t

0
dτei(ω0+ωk)τ

]
.

(2.17)

Note that we assume the spectral distribution of the electromagnetic field to be peaked

at a certain frequency ω0 and we thus have introduced the slowly-varying field Ê′B(x, t)

here, Ê′±B (x, t) = e±iω0tÊ±B (x, t). This justifies the assumption that Ê′±B (x, t) remains

constant on the time scales of the system’s evolution which allows one to take it out of

the integration in Eq. (2.17). Integrating dk in Eq. (2.17) yields a function that decays

quickly in τ . This allows for an extension of the upper integration boundary t to ∞
(Markov approximation) and hence yields

Ê
(+)
B (x, r̂, t) =Ê

(+)
B,in(x, t) +

εc
2(2π)3

∫
V (r̂)

dx′
∫
dke−ik(x−x′) ωk

ωk − ω0 + iγ
Ê

(+)
B (x′, t),

(2.18)
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where the limit γ → 0+ is understood. Taking the inverse transformation, the field

operators can be written as

âk(t) =âk(0)e−iωkt +
εc
2

∫
V (r̂)

dx′
∫
dk′ei(k−k′)x′

√
ωk′ωk

ωk′ − ω0 + iγ
âk′(t). (2.19)

This equation for the operators of the electromagnetic field resembles the Lippmann-

Schwinger equation [143, 144]. In order to connect the two descriptions, enabling one

to employ solutions known from scattering theory in our approach, we proceed in the

same way defining

Vk,k′(r̂) =
εc
2

∫
V (r̂)

dx′
√
ωk′ωke

i(k−k′)x′
(2.20)

as the matrix elements of the operator describing the scattering interaction. In analogy

we define the transition matrix Tk,k′(r̂), given by

Tk,k′(r̂) =

∫
dk′′Vk,k′′(r̂)

(
δ(k′ − k′′) +

Tk′′k′(r̂)
ωk′′ − ωk + iγ

)
. (2.21)

Note that both Vk,k′(r̂) and Tk,k′(r̂) are operators for the center-of-mass degree of free-

dom but not for the photonic ones. That is, if we fix r̂, neglecting the object’s motion,

Vk,k′(r̂) and Tk,k′(r̂) are simply numbers without operator-character. By iteration, the

transition matrix describes scattering processes to all orders of perturbation theory, as

illustrated in Fig. 2.1 (see [144] for a more detailed derivation),

Tk,k′(r̂) = Vk,k′(r̂) +

∫
dk′′Vk,k′′(r̂)

1

ωk′′ − ωk + iγ
Vk′′k′(r̂)

+

∫
dk′′dk′′′Vk,k′′(r̂)

1

ωk′′ − ωk + iγ
Vk′′k′′′(r̂)

1

ωk′′′ − ωk′′ + iγ
Vk′′′k′(r̂) + ...

(2.22)

Subsequently, Eq. (2.21) enables one to rewrite the total time evolution of the

operators, Eq. (2.19) as

âk(t) =

∫
dk′e−iωk′ t

(
δ(k− k′) +

Tk,k′(r̂)
ωk′ − ω0 + iγ

)
âk′(0). (2.23)

This expression is equivalent to the classical field equations given by Eq. (2.70). For its

solution we can thus rely on the variety of methods that have been developed during

the past decades described in Sec. 2.A.

A useful relation that will be used to simplify the computation of transition ampli-

tudes for spheres in Sec. 3.2, is the optical theorem connecting the scattering amplitude

in forward-direction to the scattering in all other directions [143]:

Im[Tk,k′(r̂)] = −π
∫
dk′|Tk,k′(r̂)|2δ(ωk − ωk′). (2.24)
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Figure 2.1: Graphical illustration of the transition matrix Tk,k0(r̂) as an infinite series

in the light-matter interaction. The first term denotes the direct interaction between

the dielectric and light, the second one a process, where a photon is virtually absorbed

and reemitted, the third one a process, where two intermediate photons are involved,

etc.

Before we continue the analysis, to ease the notation, it is useful to define the space

of mode functions in which the matrices Tk,k′(r̂) and Vk,k′(r̂) act, and consider them as

operators, i.e., Vk,k′(r̂) = 〈k|V̂ (r̂)|k′〉, where |k〉 are the basis vectors of such a space.

They can be viewed as mode functions with momentum k. As we describe scattering

out of the cavity mode in this article, let us now define the transition amplitudes for

mode shapes different from plane waves and express them in the basis |k〉. For the Born

approximation of scattering theory 1, consisting in setting T̂ (r̂) ≈ V̂ (r̂), we obtain

Vk,c(r̂) =

∫
dk′〈k|V̂ (r̂)|k′〉〈k′|c〉, (2.25)

where |c〉 describes the mode function of the cavity, which can be written as 〈x|c〉 =

f(x)/
√
V0 in position-representation, where f(x) is assumed to be real. Evaluating this

expression yields

Vk,c(r̂) =

√
ε2cωkω0

4V0

∫
V (r̂)

dxf(x)eikx, (2.26)

1Note, that we refer to the Born approximation of scattering theory here, where the action of the

scattering event on the electromagnetic field is neglected in the lowest-order approximation. Thus, no

multi-scattering events are accounted for. This is different from the Born-Markov approximation often

taken in the derivation of master equations, which assumes the separability of the density matrices of

the system and the bath.
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where we have used that the distribution of ωk is peaked around ω0, allowing for the

substitution ωk ≈ ω0.

2.3.2 General master equation for the cavity and the center-of-mass

mode

Within the Born-Markov approximation, the master equation describing the system’s

full dynamics is given by

ρ̇S(t) ≈ −
∫ ∞

0
trB[ĤI

BS(t), [ĤI
BS(t− τ), ρ̂S(t)⊗ ρ̂B]]dτ. (2.27)

The Born-Markov approximation consists in the following assumptions: the density

matrices of the system and the environment are considered to be separable, ρ̂tot = ρ̂S⊗
ρ̂B, and correlations between bath operators are taken to decay quickly. Furthermore,

the bath is assumed to remain unchanged during the interaction with the system,

ρ̂B(t) ≈ ρ̂B(0). This is valid given that the bath is very large and the effect of the

interaction with the system can be neglected.

Moreover, for typical quantum-optical systems interactions between different bath

operators âk, â
†
k′ , Eq. (2.11), are negligible, i.e., Ŵ (r̂) ≈ 0, such that

Ĥ0 ≈ ĤS +

∫
dkωkâ

†
kâk. (2.28)

While these approximations are typically fulfilled for point-particles as demonstrated

in Sec 2.4, difficulties are encountered when extending the method to larger objects. It

is in particular the negligence of interactions between different bath operators that is

no longer justified. More specifically, we realize that contributions, where interactions

among bath operators are taken into account to different orders, scale as ∝ (R/λc)
2n.

Here, R denotes the dimensions of the object, λc the wavelength of the inhomogeneous

light mode, and n the nth order of the multiple scattering process.

Consequently, an approach where these interactions are accounted for is necessary for

R ≥ λc. This is achieved by including the correlations between the bath operators

described by Ŵ (r̂) in the Hamiltonian that is used to transform to the interaction

picture,

ĤI
BS(t) = eiĤ0tĤBS(0)e−iĤ0t. (2.29)

To find a solution, we connect this approach to the description within scattering theory

given in Sec. 2.3.1. Based on this analysis, we can develop a master equation that

accounts for interactions among different bath modes. As an example we now discuss

the first term of the master equation, where all operators are in front of the density
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matrix, in more detail:

ρ̇S =− â†0â0

∫ ∞
0

dτ

∫
dkeiω0τ 〈Ω|F(t, r̂)â†k(0)|Ω〉〈Ω|âk(0)F(t− τ, r̂)|Ω〉ρ̂S + ... (2.30)

Here, |Ω〉 denotes the vacuum state and we have defined

F(t, r̂) =

√
ε2cω0ε0

4V0

∫
V (r̂)

dxf(x)ÊB(x, t), (2.31)

where counter-rotating terms have been neglected. Let us now connect Eq. (2.30) to

the description in terms of mode functions in the scattering picture. First, we shift the

time dependance of F(t, r̂) to the operators by

〈Ω|F(t, r̂)â†k(0)|Ω〉 = 〈Ω|F(0, r̂)â†k(−t)|Ω〉, (2.32)

where the invariance of the vacuum state under time evolution has been used. In

order to make the procedure more transparent, as a first step, only the 0th order

Born approximation of scattering theory is identified. Subsequently, the treatment

is extended to a description of all orders. The lowest order of the Born series gives

âk(t) ≈ âk(0) exp(−iωkt), so that we need to evaluate

〈Ω|F(0, r̂)â†k(0)|Ω〉 =

√
ε2cωkω0

4V0

∫
V (r̂)

dxf(x)e−ikx. (2.33)

Recalling the definition of the expectation value Vk,c(r̂) in the scattering picture,

Eq. (2.26), we identify

〈Ω|F(0, r̂)â†k(0)|Ω〉 = V∗c,k(r̂). (2.34)

The same procedure can now be applied without taking the Born approximation and

considering the full transition matrix, by plugging Eq. (2.23) into Eq. (2.59), which

yields

〈Ω|F(0, r̂)â†k(−t)|Ω〉

=

∫
dk′V∗c,k′(r̂)

(
δ(k− k′) +

T ∗k′k(r̂)

ωk − ω0 − iγ

)
e−iωkt

= e−iωktT ∗c,k(r̂),

(2.35)

where Eq. (2.21) has been used.

All other terms of the master equation can be determined in full analogy yielding

ρ̇S = i[ρ̂S, ĤS +Ĥrn]+

∫
dkδ(ωk−ω0)

(
2Tk,c(r̂)â0ρ̂Sâ

†
0T ∗c,k(r̂)−

[
|Tk,c(r̂)|2â†0â0, ρ̂S

]
+

)
,

(2.36)
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where ĤS is the system Hamiltonian given by Eq. (2.9) and Ĥrn the renormalization

Ĥrn = â†0â0

∫
dk|Tk,c(r̂)|2P

1

ωk − ω0
, (2.37)

where P denotes Cauchy’s principal value. Note that a similar master equation for the

cm degree of freedom has been discussed in the context of scattering of air molecules [145–

149].

2.3.3 Master equation for the optomechanical setup

In this section, we adapt the general master equation Eq. (2.36) to the specific optome-

chanical setup we are interested in. Therefore, we take the following approximations:

1. The inhomogeneous mode is assumed to be a strongly-driven cavity effecting large

cavity occupation numbers nphot = |α|2, such that |α| � 1. This enables one to

neglect certain terms in the master equation.

2. We assume the Lamb-Dicke regime: the dielectric is positioned close to the maxi-

mal slope of the standing wave in the cavity and close to the minimum of the har-

monic trapping potential of the optical tweezers. The motion around its cm posi-

tion is considered to be small, such that the Lamb-Dicke parameter η = k∆r̂ � 1

(with ∆r̂ =
√
〈r̂2〉 − 〈r̂〉2), facilitating an expansion of the transition operator

matrix elements Tk,c(r̂) in kr̂.

Displacing the cavity operator by α such that â0 → â′0 +α and expanding the transition

operator to second order, Tk,c(r̂) ≈ Tk,c(0) + T ′k,c(r̂)|r̂=0r̂ + T ′′k,c(r̂)|r̂=0r̂
2 leads to a

master equation, where we take into account terms that are at most of quadratic order

in the cavity operators â0, â
†
0 and the cm operators r̂ = x0(b̂ + b̂†). Here, T nk,c(r̂) =

∂nTk,c(r̂)/∂r̂n denotes the nth partial derivative and x0 =
√

1/2Mωt the zero-point

motion of the center-of mass mode where ωt is its trapping frequency.

In the following we give an interpretation of the different contributions to the master

equation and indicate which terms yield a renormalization to the Hamiltonian, can be

neglected, or describe decoherence. We describe these terms in decreasing order in α.

Contributions ∝ |α|2

The largest contribution to the master equation are terms ∝ |α|2|Tk,c(0)|2. As they do

not contain operator-character, these terms cancel due to the master equation’s bracket

structure.

The next order in the Lamb-Dicke parameter η is given by terms ∝ r̂, which can

be shown to vanish using Hilbert transforms and the analytic property of the function
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T ′k,c(r̂)|r̂=0T ∗c,k(0). The total contribution ∝ r̂ consisting of the renormalization of the

Hamiltonian and the decoherence part is hermitian and can be written as

Ĥshift
rn =α2

∫
dk
(
δ(ωk − ω0)Im

[
T ′k,c(r̂)|r̂=0T ∗c,k(0)

]
+ P 1

ωk − ω0
Re
[
T ′k,c(r̂)|r̂=0T ∗c,k(0)

] )
r̂.

(2.38)

Under the assumption that t(ωk) = T ′k,c(r̂)|r̂=0T ∗c,k(0) is analytic in ωk, the Hilbert

transformation can be used to show that∫
dωkP

1

ωk − ω0
Re [t(ωk)] = −Im [t(ω0)] (2.39)

and consequently Ĥshift
rn = 0. Consequently, all contributions ∝ r̂ vanish.

The only contributing terms are ∝ r̂2 and describe a renormalization of the trapping

frequency of the dielectric provided by the optical tweezers and decoherence of the cm

operator. The renormalization of the trapping frequency

ω0
t = ωt + ∆M (2.40)

can be simplified exploiting the analytic properties of the functions (in analogy to the

previous analysis) and is given by

∆M = |α|2x2
0

∫
dkP 1

ωk − ω0

[
T ′k,c(r̂)T ′∗c,k(r̂)

]
r̂=0

. (2.41)

Here the unrenormalized trapping frequency is given by the contribution to Eq. (2.9)

∝ E2
S ,

ω0
t =

√
4εcI

ρcW 2
t

. (2.42)

The decoherence of the mechanical motion is described by

LM[ρ̂S] = Γphot

(
2(b̂+ b̂†)ρ̂S(b̂+ b̂†)− {(b̂+ b̂†)2, ρ̂S}+

)
(2.43)

with

Γphot = |α|2x2
0

∫
dkδ(ωk − ω0)

[
T ′k,c(r̂)T ′∗c,k(r̂)

]
r̂=0

. (2.44)

The decoherence of the cm thus depends on the form of the transition amplitudes

with respect to the cm position. The physical process underlying this effect is recoil

heating via photon scattering.
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Contributions ∝ α

Also to determine the contributions ∝ α∗â0|Tk,c(0)|2, the analyticity of the transition

operator can be exploited. Applying a Hilbert transformation, we can show that these

contributions cancel in full analogy to the analysis carried out above.

Terms ∝ α∗â0r̂ effect both a coherent and an incoherent contribution. The incoher-

ent part describes decoherence of the mechanical and the light degree of freedom and

can be shown to be negligible. It is given by

Lg[ρ̂S] =2Γg(â0ρ̂S(b̂+ b̂†)− [â0(b̂+ b̂†), ρ̂S]) + 2Γ∗g((b̂+ b̂†)ρ̂Sâ
†
0 − [â†0(b̂+ b̂†), ρ̂S]),

(2.45)

where

Γg = x0α
∗
∫
dkδ(ωk − ω0)T ∗c,k(0)T ′k,c(r̂)|r̂=0. (2.46)

This contribution can in general be neglected for the cm degree of freedom, as it is

suppressed by 1/α compared to Eq. (2.43). Requiring that αη � 1, we can also neglect

the effect of this contribution on the cavity mode. This requirement becomes clear

when comparing Eq. (2.45) to the decay of the cavity described by Eq. (3.12).

In contrast, the coherent contribution yields a non-negligible renormalization of the

optomechanical coupling

g = g0 + grn (2.47)

defined by

grn = α∗x0

∫
dkP 1

ωk − ω0
Tk,c(0)T ′∗c,k(r̂)|r̂=0. (2.48)

Here, the optomechanical coupling g0 is given by the contributions to HS (Eq. (2.9))

∝ ESÊS

g0 = −x0α
εcω

2
cV

4cV0
. (2.49)

Furthermore, terms ∝ r̂2 describe decoherence of both the mechanical mode and the

light mode. Comparing to Eq. (2.44) for the cm mode, these contributions are sup-

pressed by 1/α and can thus be neglected. Also for the cavity mode, these terms are

negligible, given that η2α� 1.

Contributions ∝ â†0â0

Terms ∝ |Tk,c(0)|2 yield both a coherent and an incoherent contribution describing

a renormalization of the resonance frequency of the cavity and a part describing the

cavity’s decay:

LL[ρ̂S] =κ
(

2â0ρ̂Sâ
†
0 − [â†0â0, ρ̂S]+

)
(2.50)
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with

κ =

∫
dkδ(ωk − ω0)|Tk,c(0)|2. (2.51)

The renormalization of the cavity’s resonance frequency

ω̃0 = ω0
0 + ∆L (2.52)

is defined by

∆L =

∫
dkP 1

ωk − ω0
|Tc,k(0)|2. (2.53)

These are the only non-vanishing contributions as terms ∝ r̂ are suppressed by the

Lamb-Dicke parameter η and terms ∝ r̂2 even by η2 compared to Eqs. (3.12), (2.53).

Final master equation

To summarize, we identify the contributions to the final master equation:

ρ̇S =i[ρ̂S, ĤS + Ĥrn] + LM[ρ̂S] + LL[ρ̂S]. (2.54)

They can be grouped as follows:

1. Contributions of Hamiltonian-type,

ĤS + Ĥrn =δâ†0â0 + ωtb̂
†b̂+ g(â0 + â†0)(b̂+ b̂†), (2.55)

where the frequencies and couplings stemming from the system’s Hamiltonian

ĤS, given by Eq. (2.9), are renormalized by

Ĥrn = ∆Mb̂†b̂+ ∆Lâ†0â0 + grn(â0 + â†0)(b̂+ b̂†). (2.56)

The corresponding renormalizations are defined by Eqs. (2.41), (2.48), (2.53).

Note that the Hamiltonian of Eq. (2.55) has been transformed to a frame rotating

at the laser frequency ωL, where δ now denotes its detuning from the cavity

resonance frequency ω̃0 (for details on the transformation see Sec.4.2.2).

2. The recoil heating via photon scattering of the cm mode yields LM[ρ̂S], given by

Eq. (2.43).

3. The decay of the cavity mode due to the presence of the object yielding LL[ρ̂S],

is described by Eq. (3.12).

Consequently, all frequencies, couplings, and decay rates are renormalized taking into

account all terms beyond the first Born approximation of scattering theory. This en-

ables one to use exact solutions if available, or in general to truncate the perturbation

series in a controlled way.
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While this master equation only contains the time evolution of the cavity and the

cm operators, information about the scattered fields can be obtained by applying the

quantum regression theorem. The scattered light is directly accessible in experiments

and can, e.g., be used to monitor the cooling of the mechanical motion [150]. To com-

plement the analysis given here, we show how to derive the scattered fields directly in

App. 2.B within an approach similar to Wigner-Weisskopf, but accounting for interac-

tion processes between the bath modes.

2.4 The small-particle limit

In this section, the important limit of the general theory, where the scattering object is

smaller than the wavelength, R� λc, is considered. In this case, it is justified to neglect

the introduced couplings among the different modes of the environment described by

Eq. (2.11). It is shown, that this approximation is equivalent to considering only the

first order of the Born series of scattering theory and is sufficient when treating spheres

smaller than the wavelength.

2.4.1 General master equation

Neglecting interactions among the bath modes, Ŵ (r̂) ≈ 0, yields

Ĥ0 ≈ ĤS +

∫
dkωkâ

†
kâk. (2.57)

The crucial difference between this Hamiltonian and the more general one employed in

the previous sections (Eq. (2.13)), is that it is already diagonal in the bath operators

âk significantly simplifying the further analysis. To apply the master equation given

by Eq. (2.27), we transform ĤBS to the interaction picture

ĤI
BS(t) = eiĤ0tĤBS(0)e−iĤ0t. (2.58)

In analogy to Sec. 2.3.2, we consider the expectation values

〈Ω|F(t, r̂)â†k(0)|Ω〉 = 〈Ω|F(0, r̂)â†k(−t)|Ω〉, (2.59)

and shift the time dependance to the field operators with

âk(t) = eiĤ0tâk(0)e−iĤ0t = e−iωktâk(0) (2.60)

to lowest order in the Born series. This gives

〈Ω|F(0, r̂)â†k(−t)|Ω〉 = e−iωktV∗c,k(r̂), (2.61)
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with all operators and variables defined in analogy to the previous section. Inserting

these expectation values into the master equation yields

ρ̇S = i[ρ̂S, ĤS+Ĥ0
rn]+

∫
dkδ(ωk−ω0)

(
2Vk,c(r̂)â0ρ̂Sâ

†
0V∗c,k(r̂)−

[
|Vk,c(r̂)|2â†0â0, ρ̂S

]
+

)
,

(2.62)

where ĤS is the system Hamiltonian given by Eq. (2.9) and Ĥ0
rn the renormalization

Ĥ0
rn = â†0â0

∫
dk|Vk,c(r̂)|2P

1

ωk − ω0
, (2.63)

where P denotes Cauchy’s principal value. This master equation relies on taking the

lowest order of the Born series and can directly be obtained form Eq. (2.36) by inserting

Tk,c(r̂) ≈ Vk,c(r̂).

2.4.2 Master equation for the optomechanical setup

We proceed to determine the optomechanical parameters for objects smaller than the

wavelength obtained by considering only the lowest terms of the Born series of scattering

theory. Having given the general description in the previous section, we now will discuss

how the various coupling and decoherence terms are modified:

1. All terms in ĤS remain the same, the trapping frequency ω̃t can be determined

from Eq. (2.9), which for objects much smaller than the wavelength is given by

ω0
t =

√
4εc
ρc

I

W 2
t

, (2.64)

where ρ is the material’s density, I the laser intensity of the optical tweezer and

Wt its waist. Also the optomechanical coupling g0 is given by Eq. (2.9) simplifying

to

g0 = −x0
εcω

2
cV

4cV0
, (2.65)

where V is the object’s volume. Note that the expressions for ĤS are not af-

fected by neglecting the coupling among the bath modes as these quantities are

determined only by system operators.

2. The renormalization of the optomechanical coupling and the trapping frequency

are obtained by considering only the lowest order of the Born series Tk,c(r̂) ≈
Vk,c(r̂) in the expressions for ∆ and grn given by Eqs. (2.41), (2.48). This gives

g0
rn = −εck2

0R
2g0 (2.66)

with R being the sphere’s radius. The renormalization of the trapping frequency

is obtained by inserting the trapping mode and leads to

∆M,0 = −εck2
0R

2ω0
t . (2.67)
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3. The same procedure, namely taking the lowest order in the Born series by setting

Tc,k(r̂) ≈ Vc,k(r̂) is also applied to obtain the decoherence rates. For the cavity

decay rate this gives

κ0 =
ε2ck

4
0V

2c

24πV0

(2.68)

and for the recoil heating of the cm we obtain

Γ0 =
ε2ck

6
0V

6πρωt

(
Pt

ωLπW 2
t

+
nphc

2V0

)
, (2.69)

where the first term describes decoherence due to recoil heating by photons from the

tweezers and the second term by photons of the cavity mode. Comparison to [64] shows

that this result is in agreement with what is obtained when directly taking the Born-

Markov approach, neglecting interactions between bath modes and deriving the master

equation in the standard way.

2.A The classical approach

This Appendix sketches the solution of the equations of motion of the classical electro-

magnetic field, giving an overview of the possibilities and limitations of the description

in classical scattering theory. The approach in the classical case is to solve Maxwell’s

equations [142]. Neglecting polarizations yields

E(x, t) = Ein(x, t) + εc

∫
dx′G(x′,x)E(x′, t), (2.70)

where Ein(x, t) denotes the incoming electromagnetic field and

G(x′,x) = |k0|2
exp(i|k0||x− x′|)

|x− x′| (2.71)

the propagator (k0 being the wave vector of the incoming field). This self-consistent

equation has been intensely studied in classical scattering theory and is in general only

solvable approximately. There exist only few geometries, like, e.g., a cylinder, a sphere,

or an ellipsoid, where analytical solutions are tractable. In the special case of a spherical

object, the scattered electric field can be determined exactly by expanding the field in

spherical waves and subsequently applying boundary conditions, yielding the so-called

Mie solution [139–141] (see also App. 2.C). Perturbative approaches [151, 152], based

on the analytical solution and an extension of the treatment via distorting the surfaces

at different points, only allow for calculations of small perturbations. Numerical ap-

proaches like the discrete dipole ansatz [137] or the T-matrix method (see, e.g., [138]
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for an expository article) are applicable to a larger class of objects and are widely

used today. Indeed, these approaches coincide with the analytical solution for perfectly

spherical objects [137]. In the limit of very large dielectrics, R � λc, applying a ray-

optics approach immensely simplifies the calculation of forces on the dielectric [153]. A

further analysis of the classical solution is beyond the scope of this thesis and we refer

the reader to the literature, for example, [136] for a more detailed discussion.

Once the electromagnetic field including the scattering is obtained, the classical

radiation force is determined via the momentum conservation law: the force acting

on the dielectric is the change in momentum of the EM field and can be determined

from Maxwell’s stress tensor. The total force on an object interacting with the EM

field consists of the change of mechanical momentum and field momentum Ftot =

dPmech/dt+ dPfield/dt with

d

dt
Pmech =

∫
V
dx(ρeE + J×B)

d

dt
Pfield =

d

dt

∫
V
dx(E×B),

(2.72)

where B denotes the magnetic field, ρe the charge density and J the current. Rewriting

and manipulating this equation (see [142] for details) yields a formulation in terms of

Maxwell’s stress tensor,

Ftot =

∫
S

TndA, (2.73)

where the integration is taken over the surface dA of the object and n is the outward

normal vector to the closed surface S. Maxwell’s stress tensor is given by the electric

and magnetic fields

Tαβ = ε0

[
EαEβ + c2BαBβ −

1

2
(EE + c2BB)δαβ

]
. (2.74)

Plugging in the expression for the scattered electromagnetic field in the above equation,

we can determine the forces on the dielectric. This method to determine forces enables

one to calculate trapping of dielectrics and also to determine radiation pressure effects.

However, this approach cannot be used to determine a full dynamical description of

the system and its decoherence rates.

2.B Wigner-Weisskopf with correlations in the field

In this Appendix, an alternative approach to the description of the interaction between

a single photon and a dielectric is given within the Wigner-Weisskopf ansatz. In contrast

to a direct description with master equations, where information about the light fields
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can be extracted via the quantum regression theorem, the Wigner-Weisskopf approach

directly yields expressions for the photonic fields. Analyzing the light emitted from the

cavity yields information about the mechanical state of the system. Following [150], it

is possible to determine the occupation of the mechanical mode, and thus, to monitor

the cooling of the system. Complementing the master equation ansatz, in App. 2.B.1,

we solve the equations of motion for the coefficients of the density matrix taking into

account correlations among the free modes of the field. In full analogy to the solution

of the Heisenberg equations of motion given in Sec. 2.3.1, the equations of motion

for the coefficients of the density matrix can be demonstrated to be equivalent to the

Lippmann-Schwinger equation enabling one to use solutions of the classical scattering

equations. Subsequently, an inhomogeneity in the electromagnetic field is added in

App. 2.B.2 and its effect on the scattered fields is investigated yielding a master equation

describing the decay of the cavity mode.

2.B.1 Free photons

Here, the evolution of a single photon in a plane-wave state interacting with a dielectric

is discussed. For simplicity, the motion of the object is neglected for now, assuming

M → ∞. The coefficients of the wave function in the Schrödinger picture are defined

by

|ψ〉 =

∫
dkck(t)â†k|Ω〉, (2.75)

where |Ω〉 denotes the vacuum state. The assumption that the object’s mass is infinite

manifests itself in the independence of the wave function of the object’s momentum

state: the effect of the photon’s recoil on the dielectric is neglected. Note however

that the dependance of the equations of motion on r̂ is kept for later convenience. To

obtain the equations of motion, we let the homogeneous part of the Hamiltonian given

by Eq. (2.10), ĤB, act on the above wave function. This yields

iċk(t) =ωkck(t) + εc

∫
V (r̂)

dx

∫
dk′
√
ωkωk′(ck′(t

′)ei(k−k′)x + c∗k′(t)e
i(k+k′)x). (2.76)

In order to close this system of equations, we define

h(+)(x, r̂, t) = i

∫
dk
√
ωke

−ik(x+r̂)ck(t), (2.77)

with h(x, r̂, t) = h(+)(x, r̂, t) + h(−)(x, r̂, t). Subsequently we multiply both sides of

Eq. (2.76) by i
∫
dk
√
ωk exp(−ikx). A formal integration over time and a transition to

the frame rotating at a frequency ω0, h̃(x, r̂, t)(±) = exp(±iω0t)h
(+)(x, t), yields

h(+)(x, r̂, t) =h
(+)
in (x, r̂, t) + εc

∫
dk

∫
V (r̂)

dx′e−ik(x−x′) ωk

ωk − ω0 + iγ
h(+)(x′, r̂, t),

(2.78)
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where h
(+)
in (x, r̂, t) is defined in analogy to Eq. (2.16). Also here, we assume h(+)(x, r̂, t)

to be peaked at ω0. In order to solve this differential equation, we have taken the slowly-

varying approximation, assuming that h̃(x, r̂, t)(±) can be taken out of the integration

that is extended to t→∞. A transformation back to the coefficient picture thus gives

in full analogy to the operators of the electromagnetic field, Sec. 2.3.1,

ck(t) =

∫
dk′e−iωk′ t

(
δ(k− k′) +

Tk,k′(r̂)
ω′k − ω0 + iγ

)
ck′(0). (2.79)

The coefficients contain the information about the full dynamical evolution of the sys-

tem and can be used to reconstruct its density matrix.

2.B.2 Cavity field

In this section the analysis of the main part of this chapter is extended to the more

general case, where an inhomogeneity in the electromagnetic field is present. This

inhomogeneity is typically a cavity that changes the system’s mode distribution. Also

in this case, the cm degree of freedom is treated as a number and its motion in the

cavity is neglected. We solve the Schrödinger eqs. of motion for the coefficients in

Sec. 2.B.2 and subsequently derive the master equation for the time evolution of the

cavity mode â0 in Sec. 2.B.2.

Solution of the inhomogeneous part

The wave function including the cavity mode is written as

|ψ〉 = c0(t)â†0|Ω〉+

∫
dkck(t)â†k|Ω〉+ s0|Ω〉, (2.80)

where s0 is constant and c0(t), ck(t) are time-dependent. The Hamiltonian, Eq. (2.7)

causing the scattering consists of two parts, Ŵ (r̂), Eq. (2.11) describing the coupling

among the homogeneous modes and ĤBS, Eq. (2.12) denoting the coupling of the

inhomogeneity (cavity mode) to the free ones. The following equations of motion are

obtained:

iċk(t) =εc

∫
V (r̂)

dx

∫
dk′ei(k−k′)x√ωkωk′ck′(t)

+εc

∫
V (r̂)

dx

√
ωkω0

2V0
e−ikxf(x)c0(t) + ωkck(t)

(2.81)

and

iċ0(t) =εc

∫
V (r̂)

dx

∫
dk

√
ω0ωk

2V0
eikxf∗(x)ck(t) + ω0c0(t), (2.82)
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where the rotating-wave approximation has been taken, which is equivalent to remain-

ing in the one-excitation manifold. Using Eq. (2.77), we can simplify Eqs. (2.81), (2.82)

to obtain after an integration over time

h
(+)
inh (x, r̂, t) = h(+)(x, r̂, t) + d(x, r̂, t) (2.83)

with

d(x, r̂, t) =

∫
dkA(k, r̂, t)eikx, (2.84)

and

A(k, r̂, t) =εc

∫ t

0
dτe−i(ω0−ωk)τ

∫
V (r̂)

dx′ωk

√
ω0

2V0
e−ikx′f(x′)c0(τ). (2.85)

The first part of the integration in Eq. (2.83) has been carried out under the Markov

assumption, which is justified as correlations in the electromagnetic field decay quickly.

No approximation is taken for the time evolution of the inhomogeneous part and it

is kept in the most general form for now. The strategy to find a solution for the

inhomogeneous case described by Eq. (2.83) is to connect it to the homogeneous one,

described in the previous section, Sec. 2.B.1.

The solution of the homogeneous case, Eq. (2.78), can be formally written in vector-

form as

h = hin + B̂h

h =
1

1− B̂
hin,

(2.86)

where B̂ describes the scattering operator in matrix form and h denotes the continuous

vector-representation of h(x, r̂, t). Comparing the homogeneous case to the inhomoge-

neous one, an additional inhomogeneous term is present leading in analogy to Eq. (2.86)

to

h = hin + B̂h + d

h =
1

1− B̂
(hin + d),

(2.87)

where 1/(1 − B̂) denotes the solution-operator for the plane-wave state. This equiv-

alence facilitates the solution of the inhomogeneous system by connecting it to the

homogeneous one. The system is initially assumed to have one photon in the cavity

mode and none in the homogeneous modes, ck(0) = 0, such that hin = 0 and Eq. (2.83)

can be solved as

h
(+)
inh (x, r̂, t) =din(x, r̂, t) + εc

∫
dk

∫
V (r̂)

dx′e−ik(x−x′) ωk

ωk − ω0 + iγ
d(x, r̂, t), (2.88)
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where din(x, r̂, t) is defined in analogy to Eq. (2.16). Taking the inverse transformation

yields the solution for the coefficients ck(t)

ck(t) =

∫
dk′e−iωk′ t

(
δ(k− k′) +

Tk,k′(r̂)
ωk′ − ω0 + iγ

)
A(k′, r̂, 0). (2.89)

Plugging Eq. (2.88) back into Eq. (2.82), we can close the equations of motion. After

taking the Markov approximation assuming that the system does not change signifi-

cantly during the interaction with the environment, such that c0(t − τ) ≈ c0(t), and

using some standard relations for the scattering operators, the time evolution of the

inhomogeneous mode in terms of transition operators is given by

ċ0(t)

c0(t)
= −

∫
dk|Tk,c(r̂)|2

[
πδ(ωk − ω0) + iP 1

ωk − ω0

]
. (2.90)

The effect on the light field can be determined approximating Tk,c(r̂) ≈ Tk,c(0) thus

neglecting the effect on the cm mode. Integration gives

c0(t) = exp((−κ+ i∆L)t)c0(0) (2.91)

with the decay rate

κ = −Re

(
ċ0(t)

c0(t)

)
(2.92)

and a Lamb shift

∆L = −Im

(
ċ0(t)

c0(t)

)
. (2.93)

These results are in accordance with Fermi’s Platinum Rule, the extension of Fermi’s

Golden Rule to all orders in multiple-scattering processes [154].

From the coefficients to the master equation

Starting from the wave function Eq. (2.80), the system’s density matrix is obtained by

tracing out the environment and can be written as [155]

ρ̂S(t) =

(
|c0(t)|2 s∗0c0(t)

s0c0(t)∗ 1− |c0(t)|2

)
. (2.94)

Taking the derivative gives

ρ̇S(t) =

(
d
dt |c0(t)|2 s∗0ċ0(t)

s0ċ0(t)∗ − d
dt |c0(t)|2

)
. (2.95)
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Using Eqs. (2.92), (2.93) finally yields

ρ̇S = −i
[
∆Lâ†0â0, ρ̂S

]
+ LL[ρ̂S] (2.96)

with

LL[ρ̂S] = κ
(

2â0ρ̂Sâ
†
0 − [â†0â0, ρ̂S)]

)
, (2.97)

where ∆L denotes a shift of the energy levels, and κ describes the decay rate of the

cavity photons due to losses effected by the presence of the dielectric. This master

equation and its decay rates are equivalent to the result for the light fields obtained in

Sec. 2.3.

2.C Mie scattering theory

In this Appendix we outline the method of Mie scattering theory applicable to spherical

objects, one of the few cases, where an analytic solution of light scattering beyond the

point-particle approximation is possible. We only give a brief summary of the theory

here, for more details we refer the reader to standard textbooks [141, 142]. The Mie

solution is used in this thesis to give a description of optomechanics with levitating

dielectrics in Chap. 3. The idea behind the solution is to express all fields in spherical

coordinates facilitating the application of boundary conditions for spherical objects 2.

2.C.1 Expansion of the incoming electric field in terms of spherical

harmonics

In general, a plane wave can be expanded in sphercial harmonics [141,142],

ψ = exp(ikz) = exp(ikr cos(θ)) =
∞∑
n=0

in(2n+ 1)jn(kr)Pn(cos(θ)), (2.98)

where jn(kr) is a Bessel function and Pn(cos(θ)) the Legendre polynomial. Here z =

r cos(θ) in spherical coordinates. In combination with its conjugate this gives

cos(kr cos(θ)) =

∞∑
n=0

(in + (−i)n)(2n+ 1)jn(kr)Pn(cos(θ)). (2.99)

These scalar functions are solutions to the Helmholtz equation

∇2ψ = −k2ψ. (2.100)

2Note that due to the supplementary character of this section, not all of the parameters defined

here are listed in Sec. 8.
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As the electric fields considered throughout the thesis are not scalar, but vectorial, we

are interested in the expansion of the vector field polarized in x-direction

E(x) = ex cos(kr cos(θ)− φ0), (2.101)

where φ0 is an arbitrary phase shift. This solution can be constructed from the scalar so-

lution ψ in the following way: It can be shown that when ψ fulfills the scalar Helmholtz

equation, vectors constructed like

M = ∇× (cψ), N =
1

k
∇×M, (2.102)

fulfill the vector Helmholtz equation

∇2A = k2A, (2.103)

where A denotes any vector. Now the generating function ψ and the pilot vector c have

to be chosen appropriate to the problem- for the sphere, one typically chooses c = r,

which is the radius vector and ψ is chosen such that it fulfills the scalar wave equation

in spherical coordinates

ψemn = cos(mφ)Pmn (cos(θ))zn(kr) (2.104)

ψomn = sin(mφ)Pmn (cos(θ))zn(kr), (2.105)

where zn(kR) is any Bessel function and the subscripts denote even (e) and odd (o).

We obtain for the vectors M,N in component form

Memn = − m

sin θ
sin(mφ)Pmn (cos(θ))zn(kr)eθ − cos(mφ)

dPmn (cos(θ))

dθ
zn(kr)eφ,

Momn = − m

sin θ
cos(mφ)Pmn (cos(θ))zn(kr)eθ − sin(mφ)

dPmn (cos(θ))

dθ
zn(kr)eφ,

Nemn =
zn(kr)

kr
cos(mφ)n(n+ 1)Pmn (cos(θ))er + cos(mφ)

dPmn (cos(θ))

dθ

1

kr

d

dkr
(krzn(kr))eθ

−m sin(mφ)
Pmn (cos(θ))

sin(θ)

1

kr

d

dkr
(krzn(kr))eφ,

Nomn =
zn(kr)

kr
sin(mφ)n(n+ 1)Pmn (cos(θ))er + sin(mφ)

dPmn (cos(θ))

dθ

1

kr

d

dkr
(krzn(kr))eθ,

+m cos(mφ)
Pmn (cos(θ))

sin(θ)

1

kr

d

dkr
(krzn(kr))eφ.

(2.106)

From the consideration of odd and even properties of the above vectors, we see that in

order to represent the unitary vector

ex = sin θ cosφer + cos θ cosφeθ − sinφeφ, (2.107)
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the expansion of the electric field has to be of the form

Ei(x) = E0ex cos(kr cos(θ)− φ0) = E0

∞∑
n=1

(βnMo1n + δnNe1n). (2.108)

The coefficients βn, δn can be determined by the overlap with the expanded wave funtion

under consideration of the orthogonality relations of the Legendre polynomials. β0 and

δ0 are always zero, such that the summation begins at n = 1. Finally

Ei(x) = E0

∞∑
n=1

(
ine−iφ0 + (−i)neiφ0

) 2n+ 1

n(n+ 1)
(M

(1)
o1n − iN

(1)
e1n), (2.109)

where the superscript (1) denotes the use of the spherical Bessel functions of the first

kind for the radial dependece.

2.C.2 Determination of the fields due to the boundary conditions

We can now determine the scattered field and the field inside the sphere by means of

the boundary conditions at the surface of the sphere. In component from, these read

Ei,θ + Es,θ = Ein,θ, Ei,φ + Es,φ = Ein,φ (2.110)

Hi,θ +Hs,θ = Hin,θ, Hi,φ + Es,φ = Hin,φ (2.111)

at r = R (radius of the sphere). Here Ein is the field inside the sphere, Es is the

scattered field, Ei the incoming one, and H denotes the magnetic part of the electro-

magnetic field. From this, the field inside the sphere can be written as

Ein(x) = E0

∞∑
n=1

(
ine−iφ0 + (−i)neiφ0

) 2n+ 1

n(n+ 1)
(cnM

(1)
o1n − idnN

(1)
e1n), (2.112)

and the scattered field as

Es(x) = E0

∞∑
n=1

(
ine−iφ0 + (−i)neiφ0

) 2n+ 1

n(n+ 1)
(−bnM(3)

o1n + ianN
(3)
e1n), (2.113)

where the superscript (3), denotes the use of spherical Hankel functions for the radial

dependance. The expansion coefficients can thus be obtained by the above boundary

condition and can be written as

an =

√
εrψn(

√
εrx)ψ′n(x)− ψ′n(

√
εrx)ψn(x)√

εrψn(
√
εrx)ζ ′n(x)− ψ′n(

√
εrx)ζn(x)

(2.114)

bn =
ψn(
√
εrx)ψ′n(x)−√εrψ′n(

√
εrx)ψn(x)

ψn(
√
εrx)ζ ′n(x)−√εrψ′n(

√
εrx)ζn(x)

(2.115)

cn =
i√

εrψn(
√
εrx)ζ ′n(x)− ψ′n(

√
εrx)ζn(x)

(2.116)

dn =
i

ψn(
√
εrx)ζ ′n(x)−√εrψ′n(

√
εrx)ζn(x)

, (2.117)
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where x = kcR = 2πR/λc and ψn(x) = xjn(x), ζn(x) = xh(1)(x) are the so-called

Ricati-Bessel functions.

2.C.3 Determination of the scattering cross section

The scattering cross section is defined as

σscatt =
Ws

Ii
, (2.118)

where Ii is the inicident intensity

Ii =
E2

0 cos2(φ0)k

2
(2.119)

and

Ws =
1

2
Re

∫ 2π

0

∫ π

0
r2 sin(θ)dθdφ(Es ×Hs)er. (2.120)

Exploiting the properties of the Legendre polynomials, we are left with

Ws =
π

kc

∞∑
n=1

E2
0(2n+ 1) cos2

(nπ
2
− φ0

)
(|an|2 + |bn|2). (2.121)

And conseqeuntly

σscatt =
2π

k2
c

∞∑
n=1

(2n+ 1)
cos2

(
nπ
2 − φ0

)
cos2(φ0)

(|an|2 + |bn|2) (2.122)

For a position of the center of mass of the sphere at r = π
4 , the scattering cross section

finally reads

σscatt =
2π

k2
c

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (2.123)

with the coefficents as defined above.



Chapter 3

Cavity-optomechanics with

levitating spheres

We apply the master-equation approach developed in Chapter 2 to the specific setup of

levitating dielectric spheres in optical cavities. The optomechanical parameters are de-

rived and the suitability of the system for cavity-optomechanical applications is analyzed.

Different sources of decoherence e.g., photon scattering, scattering of air molecules,

blackbody radiation and others are taken into account. In addition, a quantum theory

of elasticity is used to study the coupling of the center-of-mass motion with internal

vibrational excitations of the dielectric. To analyze the possibility of ground-state cool-

ing, we derive an expression for the steady-state phonon numbers without relying on

resolved-sideband or bad-cavity approximations. Within this theoretical framework, we

analyze the optomechanical properties for realistic experimental parameters and show

that cavity-cooling to the motional ground state of the cm mode is possible for spheres

with R . 260nm. This chapter mainly bases on and uses parts of [64, 88].

3.1 Introduction

After the original proposal [77, 78] to use levitating dielectrics as an optomechanical

system, broad interest in the community with several experimental groups working

on their realization has been generated [91, 97–99, 101] (also see Sec. 1.2 for a more

complete introduction). We aim at providing a complete theoretical description of this

novel system. This is particularly challenging when objects on the order of the optical

wavelength are considered– the regime, where the point-particle approximation looses

its validity. Therefore, we apply the general theory for the interaction between light and

dielectrics, developed in Chap. 2, to this optomechanical setup. This promotes a the-

oretical derivation from first principles and all optomechanical parameters are derived
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within this framework. We also take into account various decoherence mechanisms rele-

vant for this system. We investigate the coupling of the center-of-mass motion to other

(vibrational) modes of the dielectric and show that it is negligible. Also cooling is an-

alyzed in a general framework, without relying on the common approximations. More

specifically, we obtain the steady-state phonon numbers of the system without relying

on the common resolved-sideband or bad-cavity approximations. We analyze the prob-

lem of laser-cooling with spheres of diameters ranging from the nm-scale to dielectrics

comparable or even larger than the cavity mode wavelength. While ground-state cool-

ing can be achieved for spheres much smaller than the wavelength, the minimal phonon

numbers attainable for larger spheres oscillate around values of nmin ≈ 500. Note that

this approach assumes that all photons are scattered into the bath modes, which is

justified for objects that are not adapted to the cavity geometry, such as spheres or

cylinders, but not for membranes [90].

3.1.1 Reader’s guide

The chapter is organized as follows: in Sec. 3.2 we specify the master-equation to the

experimental setup of levitating dielectric spheres in an optomechanical cavity including

optomechanical couplings, decay and decoherence rates. To describe couplings between

the cm motion and the vibrational modes, we derive a theory of quantum elasticity in

Sec. 3.4. This is followed by an analysis of various sources of noise and decoherence

in Sec. 3.5. We begin with a study of the general form of the master equation in

Sec. 3.5.1 to analyze scattering of air molecules (Sec. 3.5.2), the effect of blackbody

radiation (Sec 3.5.3), parametric heating due to shot noise (Sec. 3.5.4), fluctuations

in the trap center (Sec. 3.5.5), anisotropies (Sec. 3.5.6), and the effect of coupling to

internal two-level systems of the material (Sec. 3.5.7). In Sec. 3.3 we derive and solve

the cooling equations and finally analyze the possibility of ground state cooling for

realistic experimental parameters in Sec.3.6.

3.2 Cavity quantum-optomechanics with levitating spheres

We thus proceed to determine the optomechanical parameters related to interactions

with light for levitating dielectric spheres. The setup is sketched in Fig. 3.1: a classical

light field, effected by a retro-reflected optical tweezers, Etw(x, t), creates a harmonic

trap for the cm of the dielectric, (note that trapping via a strongly-populated cavity

mode can be described in full analogy). Besides, a second cavity mode Êcav(x, t) is



3.2 Cavity quantum-optomechanics with levitating spheres 43

Figure 3.1: Schematic representation of the setup: A dielectric sphere of a radius

similar or larger than the cavity wave length is trapped by optical tweezers providing

a trapping frequency ωt. It is placed inside an optical cavity, where a second laser is

used to optically manipulate the dielectric’s center-of-mass degree of freedom.

used to manipulate it, such that

ÊS(x, t) = Êcav(x, t)

ES(x, t) = Etw(x, t) + Ecav(x, t).
(3.1)

The optical tweezers used for the trapping is given by

Etw(x, t) = E0
Wt

W (y)
exp

(
−x

2 + z2

W (y)2

)
, (3.2)

where

E0 =

√
Pt

ε0cπW 2
t

, (3.3)

Pt is the laser power, Wt is the laser beam waist,

W (y) = Wt

√
1 +

(
y
λc
πW 2

t

)2

(3.4)

and we assume the beam to be aligned as sketched in Fig. 3.1. While we are only

interested in the classical part of this field (as it is used solely for the trapping), we

include both the quantum and the classical part of the cavity field consisting of a

standing wave in z-direction and a Gaussian profile in x- and y-direction,

Êcav(x, t) = i

√
ω0

ε0V0
(fcav(x)â0 −H.c.)

Ecav(x, t) = i

√
ω0

ε0V0
(fcav(x)α−H.c.) .

(3.5)
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This equation denotes the cavity field in the displaced form, where |α|2 = nphot is the

mean number of photons in the steady state,

nphot =

√
2Pcκ/ω0

iδ + κ
, (3.6)

with Pc being the power of the driving laser, κ the cavity decay rate and δ the detuning.

The mode function is given by

fcav(x) = exp

(
−x

2 + y2

W 2
0

)
cos(k0,zz − ϕ), (3.7)

where ϕ denotes the equilibrium position of the dielectric, k0 the wave vector of the

cavity light, and the mode volume is given by V0 = LπW 2
0 /4 with L being the cavity

length and W0 its waist. While the classical term merely yields a shift of the trapping

frequency and the equilibrium position, the quantum part of the mode function is used

to manipulate the cm degree of freedom of the dielectric including the part describing

the opto-mechanical coupling. Note that we only consider one mode of the cavity here,

higher harmonics are not included, they are contained in the continuum of homogeneous

modes and coupling to them is treated as losses. In case of using a second cavity mode

for the trapping instead of the tweezers, Eq. (3.5) simply has to be summed over several

modes with different profiles.

The full dynamics of the system is obtained taking into account the coupling of

the tweezers and the cavity mode to the vacuum modes, given by Eq. (2.4). The full

master equation is described by Eq. (2.54) with the corresponding decay rates given by

Eq. (2.44) and Eq. (2.51), where Γ contains contributions of the cavity mode and the

tweezers.

The specific description of spheres is eased by the availability of an analytical solu-

tion, the Mie solution, for the scattered fields and cross sections [140,141]. Recall that

the Mie solution is based on expanding the incoming electromagnetic field in spherical

waves, an expansion that suits the sphere’s geometry and it is thus possible to apply

boundary conditions to determine the scattered fields. Note that while the polarization

of the electromagnetic field has been neglected to ease the notation in the previous sec-

tions, we take it into account here. The Mie solution is defined for plane-wave states,

and we use the relation

Tk,k′ =
ic2

2πωk
f(k,k′) (3.8)

between the matrix elements of the scattering operator and the classical amplitudes to

simplify the solution.

For spherical objects, assuming a vanishing absorption, Im[εr] ≈ 0, it is possible

to connect all quantities to the classical scattering amplitude in the forward direction
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using the optical theorem, Eq. (2.24), which yields

f(k,k) =

√
2π

|k|
∞∑
n=1

(2n+ 1)(an + bn). (3.9)

The coefficients an, bn depend on the dielectric constant and the radius of the sphere,

they are defined in terms of spherical Bessel functions, see Chapter 2.C for their specific

form. Hence, the optomechanical parameters can be determined:

1. The optomechanical coupling is defined by

g =α
x0πc

2k0Vc
sin(2ϕ)Im

[ ∞∑
n=1

(2n+ 1)(−1)n+1(an + bn)

]
, (3.10)

where c denotes the velocity of light and ϕ the position of the sphere in the cavity.

2. The total cavity decay rate is defined by

κ =κ0 +
cπ

2k2
0Vc

Re[

∞∑
n=1

(2n+ 1)(1 + (−1)n cos(2ϕ))(an + bn)], (3.11)

where κ0 denotes the intrinsic cavity decay rate resulting from imperfections in

the mirrors and the second term describes the additional contribution effected by

the presence of the dielectric.

3. The recoil heating of the dielectric due to scattering of cavity photons can be

computed as

Γcav =
x2

0cα
2π

Vc
Re[

∞∑
n=1

(2n+ 1)(1 + (−1)n cos(2ϕ))(an + bn)]. (3.12)

Note that the recoil heating from the trapping lasers can be obtained in full

analogy by inserting the tweezers mode.

Besides the minimal phonon number nmin describing the possibility to cool the system

(close) to its quantum-mechanical ground state, another figure of merit to describe the

cavity-optomechanical properties is the cooperativity C. This measure for the coherent

coupling between the motion and light is defined by

C =
g2

Γκ
(3.13)

and depends on the size of the particle and its position in the cavity, where Γ denotes

the sum of all relevant decoherence mechanisms. It is in particular essential to have a

sufficiently high cooperativity to perform protocols coupling the cm to the light [64].
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Assuming that the object is positioned at the maximal slope of the standing wave and

is much smaller than the laser’s waist, the asymptotic form in the two limits of the

cooperativity is given by

C ∝
{

1/ε2ck
6
0R

6 ifR� λc;

1/k2
0R

2 if R� λc
(3.14)

under the assumption that the laser’s waist is larger than the object. In case the

dielectric is not fully covered by the laser’s waist, the beam’s Gaussian shape has to

be taken into account [156] leading to an even lower cooperativity. Note that this

definition applies for κ � κ0, where the main contribution to the cavity decay results

from the presence of the dielectric.

3.3 Cooling

Before applying the master equation discussed in the previous section to the particular

case of cavity optomechanics with optically levitating spheres, we provide a general

description of optomechanical cooling and the minimal phonon number attainable with

master equations of at most quadratic order in the operators of the mechanical and the

cavity mode. Cooling is in general a vital ingredient in any attempt to demonstrate

quantum-mechanical behavior. Ground-state cooling in an optomechanical setup has

first been studied in [45, 47, 157]. Most descriptions make certain approximations to

ease calculations e.g., the sideband regime is commonly employed in optomechanical

setups. Here, the system will be treated in the most general way not relying on any

approximations (as some of them might not be fulfilled for larger objects). The master

equations we are interested in are typically of the form (given by Eq. (2.54)),

ρ̇S =i[ρ̂S, ĤS + Ĥrn] + LM[ρ̂S] + LL[ρ̂S]. (3.15)

The mean phonon number 〈b̂†b̂〉 is coupled to all other expectation values of combi-

nations of the operators â0, â
†
0, b̂, and b̂†, yielding the Eqs. of motion in matrix form

v̇ = M̂v + c, (3.16)

where

v = (〈b̂†b̂〉, 〈â0b̂
†〉, 〈â†0â†0〉, 〈â†0b̂〉, ....)T , (3.17)

M̂ denotes the interaction matrix, and c a constant vector. The master equation

Eq. (3.15) keeps the Gaussian character for an initially Gaussian state. Subsequently,

also the system of equations Eq. (3.16) is Gaussian in the operators â0, â
†
0... and linear
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in the expectation values 〈b̂†b̂〉. Since Eq. (3.16) represents a closed system of equations,

they can be solved as

v = eM̂tv(0) +
(
eM̂t − 1

)
M̂−1c, (3.18)

yielding

v = −M̂−1c (3.19)

for the steady state. The steady-state phonon number can be extracted from this

quantity as

n̄phon = limt→∞〈b̂†b̂〉 =
A1 −A2 + A3

A4
. (3.20)

with

A1 = −32g4δ[4δ2κ+ κ3 + 16δ(κ− Γ)ωt + 8κω2
t ],

A2 = −Γ[4δ2 + κ2]ωt[16δ4 + 8δ2
(
κ2 − 4ω2

t

)
+
(
κ2 + 4ω2

t

)2
],

A3 = 4g2{−κ(4δ2 + κ2)[κ2 + 4(δ + ωt)
2]ωt − 2Γδ[32ω4

t + (4δ2 + κ2)2 + 4(−20δ2 + 3κ2)ω2
t ]},

A4 = 64g2δκωt[16g2δ +
(
4δ2 + κ2

)
ωt].

(3.21)

This solution might contain unphysical results. To verify that n̄phon is indeed a steady

state of the system, the eigenvalues of M̂ additionally have to fulfill Re[eig[M̂]] ≤ 0.

In general, all parameters are determined by the properties of the system, solely the

detuning δ can be chosen. According to the definition of Eq. (2.55), δ < 0 denotes

red detuning and δ > 0 blue detuning. To obtain the optimal point for cooling, one

consequently has to optimize n̄phon with respect to δ. Let us now compare this exact

solution to the one obtained after an adiabatic elimination of the cavity mode. Starting

from Eq. (3.15), we eliminate the cavity mode assuming that its decay rate is much

larger than the coupling between the mechanical degree of freedom and the light, κ� g.

In this case it is justified to assume that the cavity is either empty or contains only

one photon, therefore reducing the master equation to the one-excitation manifold,

described by ρ00, ρ10, ρ01, ρ11. Due to the fast decay of the cavity mode described by

κ, the change of all contributions involving an excitation is approximately zero, finally

yielding an equation of motion for the empty cavity ρ00. After carrying out a rotating

wave approximation assuming ωt � |g2/(κ+ i(δ ± ωt))|, the final steady state phonon

occupation is given by:

n̄adiab = − [4g2κ+ Γ(κ2 + 4(ωt − δ)2)][κ2 + 4(δ + ωt)
2]

64g2δκωt
. (3.22)

To obtain the minimal occupation number, this equation needs to be optimized with

respect to δ. Comparing the adiabatically-eliminated solution to the exact one, it be-

comes clear that the approximation breaks down in the strong-coupling regime g ≈ ωt,
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Figure 3.2: Minimal phonon numbers for different detunings comparing the exact result

(blue straight line) to the one with the cavity mode eliminated (red dashed line).

Differences between the two solutions evolve as g is increased. Only the regions, where

a steady state is attainable have been plotted, they all lie within the red-sideband

regime. For blue detuning or an optomechanical coupling which is too strong, the

system is heated and no steady state can be obtained. Upper left pannel: Sideband-

resolved regime with weak coupling, κ = 0.3 ωt,Γ = 0.03 ωt, g = 0.07 ωt, Upper right

pannel: κ = 0.3 ωt,Γ = 0.03 ωt, g = 0.3 ωt, Lower left pannel: Bad-cavity limit for

weak coupling κ = 3 ωt,Γ = 0, g = 0.1 ωt,Lower right pannel: Bad-cavity limit for

strong coupling, κ = 3 ωt,Γ = 0, g = 0.864 ωt

where the rotating-wave approximation is no longer valid, see Fig. 3.2 for an illustra-

tion. Note that Eq. (3.22) can be derived from Eq. (3.20) taking the approximation

κ � g. In case we choose the detuning δ = −ωt and ωt � κ, we obtain the minimal

occupation number in the sideband regime

n̄sb =

(
κ

4ωt

)2

+
1

4C , (3.23)

where C denotes the cooperativity, given by Eq. (3.13).
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3.4 Quantum elasticity

Besides the dissipation caused by the scattering of light, various sources of decoherence

generally set limits on ground-state cooling of optomechanical systems and the appli-

cation of state-preparation protocols. In the following chapters, we will give a detailed

overview of diverse sources of decoherence and discuss the dominant ones for different

sizes of the levitating dielectrics. Let us begin with the coupling of the center-of-mass

motion to other internal vibrational modes. One can model the dielectric as an object

containing N constituents, in this case atoms, that are coupled to each other by mutual

interactions, here modeled by springs. The entire nanodielectric inherits N different

modes, one of them is the center of mass mode; a collective movement of all the system’s

constituents into the same direction. The other modes can be described as movements

of the different constituents relative to each other, mediated by the springs. All of these

different modes are also coupled to each other, which, in turn, influences their form

and lifetime. In principle, one can couple any of these modes to light, especially if the

object is sufficiently large. The direct coupling of the cavity mode to the vibrational

modes is typically very small, as will be shown below, and we focus on coupling to the

cm mode throughout this thesis. We will focus on investigating the influence of the

relative modes, also denoted as vibrational modes, on the center of mass mode treating

them as a source of decoherence: the vibrational modes can in principle take the role of

a thermal bath and prevent ground state cooling of the cm degree of freedom. In order

to investigate this source of noise, we use an elasticity theory for quantum systems in

this section. After introducing a field characterizing the object’s deformation, we deter-

mine the vibrational eigenmodes in Sec. 3.4.1. Thereafter, we analyze the effect of an

additional external potential and the induced interactions between cm and vibrational

modes in Sec. 3.4.2. Finally, in Sec. 3.4.3 we discuss the effect for small objects and

obtain an effective Hamiltonian by adiabatically eliminating the internal modes.

3.4.1 Vibrational eigenmodes

Let us start by defining the coordinate x′, which describes a point in the dielectric

object. As illustrated in Fig. 3.3, this can be written in the most general form as

x′ = r + R̂(φ1, φ2, φ3) (u(x) + x) , (3.24)

where r denotes the center of mass position. We are not treating r as an operator for

now, but as a three-dimensional vector, and will state it explicitly when we quantize

and introduce operators later in the section. In the coordinate system centered at the

center of mass position, x is the coordinate describing an equilibrium point and u(x)

its deformation field. The term R̂(φ1, φ2, φ3) is the Euler rotation matrix with the
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r

x′

x

y

xu(x)
R

Figure 3.3: Coordinates used to describe a position x′ within an arbitrary dielectric

object given by x′ = r + R̂(φ1, φ2, φ3) (u(x) + x), where r denotes the center of mass,

u(x) a small displacement from the equilibrium position x and R(φ1, φ2, φ3) the Euler

rotation matrix acting on the entire object.

Euler angles φ1, φ2, φ3 that is used to rotate the coordinates x and u(x). Note that the

center-of-mass-position can be defined as

r =

∫
dxρ(x)x′∫
dxρ(x)

, (3.25)

with ρ(x) denoting the system’s density distribution. Therefore,∫
dxρ(x)[x + u(x)] = 0. (3.26)

In order to guarantee that r remains the cm coordinate in case of a vanishing deforma-

tion field i.e., u(x) = 0, one requires∫
dxρ(x)x = 0, (3.27)

and consequently, the deformation field always has to fulfill∫
dxρ(x)u(x) = 0. (3.28)

The system’s Lagrangian in the presence of a general three-dimensional potential Vext(x
′)

reads [158,159]

L =

∫
V
dx

[
1

2
ρ(x)ẋ′

2 − Vext(x
′)− VE(x)

]
. (3.29)
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The elasticity potential is given by

VE(x) =
1

2

∑
i,j

σij(x)εij(x), (3.30)

where

εij(x) =
1

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
σij(x) = 2µEεij(x) + λEδij

∑
k

εkk(x)
(3.31)

are the elasticity and the stress tensor. The Lamé constants are defined as

λE =
σEY

(1 + σE)(1− 2σE)
(3.32)

and µE = Y [2(1 + σE)]−1, with σE being the Poisson ratio and Y the Young modulus

characterizing the elastic properties of the material. One can now replace the expression

of x′ in the kinetic part of Lagrangian and obtains

L =
1

2
Mṙ2 +

1

2

∑
i

Iiφ̇
2
i +

1

2

∫
V
dxρ(x)u̇(x)2 −

∫
V
dx
[
Vext(x

′) + VE(x)
]
, (3.33)

where the dots denote time derivatives and Ii is the object’s moment of inertia. We

have used that in the kinetic part of the Lagrangian, the rotational, vibrational, and

center of mass degrees of freedom decouple [159].

Let us now determine the unperturbed vibrational eigenmodes of the system, that is,

the modes obtained without considering the potential density Vext(x
′). In the following,

we will assume for simplicity the homogenous case ρ(x) = ρ, the non-homogeneous case

can be incorporated easily. Also, we will omit the rotational modes since they decouple

without the presence of the external potential. Let us first derive the Hamiltonian by

defining the cm momentum as

pi =
∂L
∂ṙi

(3.34)

and the momentum density as

vi(x) =
∂L

∂u̇i(x)
, (3.35)

leading to

Hel
0 =

p2

2M
+

∫
V
dx

(
v(x)2

2ρ
+ VE(x)

)
. (3.36)

One can determine the vibrational eigenmodes by separating variables in the corre-

sponding equation of motion for u(x, t), which reads [158]

ρü(x, t) = µE∇2u(x, t) +
1

2
λE∇[∇ · u(x, t)]. (3.37)
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Here, u(x, t) can be separated into transversal and longitudinal oscillation modes

u(x, t) = u⊥(x, t) + u||(x, t), (3.38)

where ∇·u⊥(x, t) = 0 and ∇×u||(x, t) = 0, and either open or periodic boundary con-

ditions can be used. The longitudinal modes describe compression waves propagating

at velocity

c|| =

√
λE + 2µE

ρ
(3.39)

and the transversal modes torsion wave propagating at c⊥ = [µE/ρ]1/2. In the following

we will only consider the longitudinal modes along the cavity axis. We expand the

elasticity field along the cavity axis for the eigenmodes u0
n(z) normalized by∫

V
dxu0

n(z)u0
m(z) = δnmV. (3.40)

This yields

u(z, t) =
∑
n

u0
n(z)Qn(t)

v(z, t) =
∑
n

u0
n(z)Pn(t),

(3.41)

where Pn(t) = ρ Q̇n(t). At this point, it is straightforward to perform a canonical quan-

tization of the eigenmodes Qn, by considering them as operators fulfilling the canonical

commutation rules
[
Q̂n, P̂m

]
= i (the quantized eigenmodes have operator-character,

they will be denoted by Q̂n, P̂n in the following). As already done in the previous

sections, the momentum operator of the cm will also be quantized with the external

harmonic trap. By plugging this decomposition into the Hamiltonian Eq. (3.36), one

obtains after some algebra

Ĥel
0 =

p̂2

2M
+
∑
n

[
P̂ 2
n

2M
+

1

2
Mω2

nQ̂
2
n

]
, (3.42)

where the frequency of the internal modes is given by

ω2
n =

λE(1− σE)

MσE

∫
V
dx

[
d

dz
un(z)

]2

. (3.43)

The eigenmodes u0
n(z) have to be chosen accordingly to the geometry of the object. We

will discuss the specific form of the mode and the value of the parameters in Sec. 3.4.3.
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3.4.2 Effect of the external potential

The external potential V̂ext(x
′) can in principle effect a coupling between the rota-

tional, the center-of-mass, and the vibrational degrees of freedom. In case of a purely

isotropic harmonic potential, it can be easily verified that the coupling vanishes. On

the other hand, for arbitrarily-shaped objects, the external anharmonic part of the po-

tential effects some coupling between all degrees of freedom. In the following analysis

we assume spherical objects, for which the direct coupling between the cm and the

rotational degrees of freedom vanishes. Even in the case of a prolate spheroid, the

coupling is negligible, see Chapter 3.5.6. For spherical objects, there is only an indirect

coupling between the cm and the rotations, mediated by the vibrational modes, which

is negligible and will be omitted hereafter. Therefore, with these assumptions one can

consider the center-of-mass mode to be decoupled from the rotational motion, and we

consequently omit the rotational modes in the rest of the section. One can then focus

on the one-dimensional case derived in the previous section by only considering the

longitudinal modes.

The total Hamiltonian, including the external potential, is hence given by

Ĥel = Ĥel
0 +

∫
V
dxV̂ext(z

′) (3.44)

Assuming that the deformations û(z) are small and that the object is trapped at r̂ ≈ 0,

one can expand Vext(z
′ = z + u(z) + r̂) to second order in r̂ and û(z), which leads to

Ĥel = Ĥel
0 + r̂

∫
V
dxV ′ext(z) +

r̂2

2

∫
V
dxV ′′ext(z) +

1

2

∑
n,m

Q̂nQ̂m

∫
V
dxu0

n(z)u0
m(z)V ′′ext(z)

+
∑
n

Q̂n

∫
V
dxu0

n(z)V ′ext(z) + r̂
∑
n

Q̂n

∫
V
dxu0

n(z)V ′′ext(z).

(3.45)

Here, the primes denote spatial derivatives. By recalling that the external potential is,

in our case, given by the light-matter interaction term Eq. (2.6), that is

V̂ext(x
′) = −εcε0

2
Êtot(x

′)2, (3.46)

one can understand the terms appearing in Eq. (3.45) as follows:

1. The term r̂
∫
V dxV

′
ext(z) yields the optomechanical coupling of the center of mass

mode as described in Chapter 3.2.

2. The second term r̂2
∫
V dxV

′′
ext(z)/2 describes the harmonic trap for the cm mode

given by the optical tweezers, as described in Chapter 3.2.
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3. The term Q̂nQ̂m
∫
V dxu

0
n(z)u0

m(z)V ′′ext(z)/2 gives a correction to the harmonic

trap for the internal modes as well as a coupling between internal modes.

4. The first new interesting term is Q̂n
∫
V dxu

0
n(z)V ′ext(z), which describes an op-

tomechanical coupling between the internal modes and the cavity field.

5. Finally, the most relevant term for our purposes is r̂Q̂n
∫
V dxu

0
n(z)V ′′ext(z), which

describes the coupling between the vibrational degrees of freedom Q̂n and the

center of mass mode r̂.

Taking into consideration these terms, one can now write the center-of-mass mode

as r̂ = x0(b̂† + b̂), where x0 = (2Mωt)
−1/2 is the ground state size as defined in

Sec. 2.4.2. The internal modes are defined in full analogy, Q̂n = q0,n

(
ĉn + ĉ†n

)
, with

q0,n = (2Mω′n)−1/2. Note that, due to the additional external trapping with frequency

ωt, the effective vibrational frequencies are changed to ω′n = (ω2
t +ω2

n)1/2 (we will omit

the prime hereafter). The new part that has to be added to the total Hamiltonian Ĥtot,

see Eq. (2.1), which takes into account the presence of internal modes, is given by

ĤE =
∑
n

ωnĉ
†
nĉn +

∑
n

gn(â, â†)(ĉn + ĉ†n)

+
∞∑
n,m

ξnm(ĉn + ĉ†n)(ĉm + ĉ†m) +
∞∑
n

γn(ĉn + ĉ†n)(b̂+ b̂†).
(3.47)

The coupling between the cavity field (which depends on the cavity mode â) and the

vibrational modes is given by gn(â, â†) = q0,n

∫
V dxV

′
ext(z)u

0
n(z). The coupling between

the internal modes is ξnm = q0,nq0,m

∫
V dxu

0
n(z)u0

m(z)V ′′ext(z)/2. Finally, the coupling

between the cm mode and the vibrational modes is given by

γn = x0q0,n

∫
V
dxV ′′ext(z)u

0
n(z). (3.48)

Summing up this subsection, we have derived the quantized Hamiltonian describing

the coupling between the cm and the vibrational modes in the presence of an exter-

nal potential density. It can be shown that for a harmonic external potential, the cm

mode is decoupled from the internal ones since V ′′ext(z) is constant and by recalling that∫
V dxu

0
n(z) = 0, one obtains γn = 0. In the next section, we estimate the order of mag-

nitude of the parameters for objects smaller or on the order of the optical wavelength

in the presence of the anharmonic potential given by the standing wave.

3.4.3 Coupling to vibrational modes as a source of decoherence

First of all, let us estimate the order of magnitude of the internal vibrational frequencies,

see Eq. (3.43), for the case of a sphere of radius R. To get an estimation of the order
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of magnitude, for simplicity one can simply use the eigenmode u0
n(z) = cos(knz) with

kn = nπ/(2R), obtained for a cube of length 2R and with open free periodic boundary

conditions. Then, using typical values of Young’s elasticity module Y and the Poisson

constant σE (see Sec. 3.6), the vibrational frequencies for R = 10 nm− 2 µm are of the

order ωn ≈ 109− 1012Hz (ωn ∼ nc||/R). Note that comparing this to the typical values

of the cm frequency ωt ∼ 106 Hz, the internal frequencies are five orders of magnitude

larger for objects of the order of 100 nm and still three orders of magnitude apart for

spheres of 10 µm.

This large difference in frequencies between the cm modes and the internal modes en-

ables us to adiabatically eliminate the vibrational energy levels. It is shown in App. 3.A

that this approximation is justified by solving the equations of motion for the cm and

vibrational operators by applying a Laplace transformation [160]. The solution ob-

tained in this way contains parts oscillating at frequencies ωt and ωn, where all terms

oscillating at ωn are suppressed by a factor ωt/ωn � 1. Thus, it is well-justified to

neglect these terms and to perform an adiabatic elimination. One can perform this

by eliminating the vibrational levels on top of the steady state. Within this approx-

imation, the only effect is a shift of the trapping frequency of the cm mode given by(
ω′t
ωt

)2

= 1−
∑
n

4γ2
n

ωt(ωn − ωt)
(

2
〈
ĉ†nĉn

〉
+ 1
)
. (3.49)

Here,
〈
ĉ†nĉn

〉
is the occupation number of phonons in the vibrational mode n. By

plugging in typical numbers, one gets a correction to the trapping frequency of, e.g.,

(ω′t − ωt)/ωt ≈ 10−12 for spheres of R = 100nm, which shows that the cm mode

is decoupled from the internal modes for objects in the range R . 10µm and their

coupling can be neglected.

3.5 Other sources of decoherence

In this section, we give an overview of the various sources of heating and decoherence for

levitating spheres. For spheres on the order of the optical wavelength, recoil heating

by photons from the laser modes (Sec. 3.2) dominates all decoherence processes as

it has been shown in Sec. 3.6. The most common decoherence mechanisms are of

position-localization type and the corresponding master equation is derived in Sec 3.5.1.

Besides photon scattering, the dominating processes are the scattering of air molecules

(Sec. 3.5.2) and absorption and emission of blackbody radiation (Sec. 3.5.3). It is thus

essential to isolate the optomechanical system from its environment to keep these rates

low. For completeness, we also discuss the effect of photon shot noise (Sec. 3.5.4),

anisotropies of the sphere’s shape (Sec. 3.5.6), and the coupling to two-level fluctuators
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present in any amorphous material (Sec. 3.5.7). We compare the various sources of

dissipation and analyze the experimental parameters required for ground-state cooling

in Sec. 3.6. A detailed overview of decoherence processes is given in [62,77,78] and we

refer the reader to these articles for more information.

3.5.1 Position-localization decoherence

The master equation for decoherence of the center-of-mass mode for photon scattering

has been derived in Sec. 3.2, Eq. (2.43) and has the form

LM[ρ̂S] = Γphot

(
2(b̂+ b̂†)ρ̂S(b̂+ b̂†)− {(b̂+ b̂†)2, ρ̂S}+

)
, (3.50)

where Γphot depends on the ground-state size as described by Eq. (2.44). Essentially

all decoherence mechanisms relevant for dielectric spheres are described by a master

equation of this form. It is valid for decoherence due to position localization, where in

this case the ground-state size x0 is the length scale of correlations as the oscillator is

prepared close to its ground state. The strength of decoherence is generally described

by Γ and depends quadratically on x0. A generalized form of this position-localization

decoherence for an arbitrary coherence length ∆r = |r−r′| is derived in [65,161]. These

references show that the interaction with the environment causes an exponential decay

of position correlations i.e.,

〈r|ρ̂S(t)|r′〉 ∝ e−Γt〈r|ρ̂S(0)|r′〉. (3.51)

In the position basis, the decoherence is qualitatively described by

〈r|ρ̇S(t)|r′〉 = i〈r|[ρ̂S(t), ĤS]|r′〉 − Γ∆r〈r|ρS(t)|r′〉 (3.52)

with a decoherence rate given by

Γ = γ

(
1− exp

[
−∆r2

4a2

])
. (3.53)

This function depends on two parameters: the localization strength γ > 0 with dimen-

sions of frequency, and the localization distance a > 0 with dimensions of length. The

values of these parameters depend on the particular source of decoherence. There are

two different regimes depending on the superposition size

Γ ≈
{

Λ∆r2, ∆r� 2a,

γ, ∆r� 2a,
(3.54)

where

Λ =
γ

4a2
(3.55)
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is the localization parameter. In the short-distance limit, where superpositions are

smaller than the localization distance, ∆r� 2a, the decoherence rate depends quadrat-

ically on ∆r and the dynamics is described by Eq. (3.50). In the opposite case ∆r� 2a,

where the superposition is much larger than the localization distance, the decoherence

rate saturates and the position correlations decay as

〈r|ρ̂S(t)|r′〉 ∝ e−γt〈r|ρ̂S(0)|r′〉. (3.56)

Let us proceed to determine the decoherence rate Γ more specifically for the case, where

decoherence is caused by scattering of environmental particles. Research on the topic

was first triggered by the work of Joos and Zeh [22] and we refer the reader to [65,161]

for extensive reviews, while we merely describe the results required for our analysis

here. The decoherence rate as a function of the superposition size ∆r = |r−r′| is given

by [65]

Γ =

∫ ∞
0

dqρ(q)v(q)

∫
dndn′

4π

(
1− eiq(n−n′)∆r

)
|f(qn, qn′)|2. (3.57)

Here, ρ(q) describes the number density of incoming particles with momentum q in the

direction n,n′ with |n| = |n′| = 1, and v(q) = q/m (v(q) = c) the velocity distribution

of massive (massless) particles of mass m. The elastic scattering amplitude is given by

f(qn, qn′). The derivation assumes an object that is infinitely massive interacting with

incoming particles that are isotropically distributed in space, for further details see [65].

As indicated in Eq. (3.54), the decoherence depends on the superposition size and the

localization length. As shown in [162, 163], the thermal wavelength of the incoming

scattering particles is related to the localization length and the localization strength by

a =
λth

2
, (3.58)

and

γ = λ2
thΛ, (3.59)

respectively. Consequently, the decoherence rate in the long-wavelength limit, λth �
|r− r′|, is Γ ∝ Λ∆r2. An intuitive way to understand this is the explanation that the

scattering event of a single particle cannot resolve the separation ∆r and only carries

an insufficient amount of which-path information. It will thus take a large number of

scattering events to spatially localize the object. In contrast, in the short-wavelength-

limit, λth � ∆r, the decoherence is Γ ∝ γ. In this case, each interacting particle

can resolve the separation ∆r carrying away the maximum of which-path information,

consequently inducing the system to decohere after only one interaction. The different

scaling of the decoherence rate for the two cases is illustrated in Fig. 3.4.
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Figure 3.4: Blue solid line: Plot of the decoherence Γ (Eq. (3.54)) saturating for an

increasing superposition size ∆r. For comparison, the dashed grey line describes the

small-superposition limit.

Formal solution of the master equation

To complete the analysis, let us formally solve the master equation in the position basis,

Eq. (3.52), which reads

〈r|ρ̂S(t)|r′〉 =

∫ ∞
−∞

dpdy

2π
e−ipyB(p, r − r′, t)〈r + y|ρ̂0(t)|r′ + y〉. (3.60)

Here, ρ̂0(t) denotes the system’s density matrix without taking into account decoher-

ence. The influence of the decoherence processes are accounted for by

B(p, r − r′, t) = e−γt exp

[
γ

∫ t

0
dτe[(r−r′−pτ/m)/(2a)]2

]
. (3.61)

This term, describing the modification of the Hamiltonian evolution of the density

matrix by the presence of decoherence, will be particularly useful in Sec. 6.3.

3.5.2 Scattering of air molecules

Here, we analyze the effect caused by the impact of air molecules in the vacuum chamber

on the levitating sphere. The random scattering with the surrounding gas molecules

causes heating and decoherence of the sphere and we determine the decoherence rate Γair

for the mechanical oscillator. We consider air molecules of mass m in a vacuum chamber

of room temperature T at pressure P which have a mean velocity v̄ =
√

3kBT/m, where

kB is the Boltzmann constant. The decoherence caused by scattered air molecules is of

localization-type described by a master equation in analogy to Eq. (2.43),

Lair = Γair

(
2(b̂+ b̂†)ρ̂S(b̂+ b̂†)− {(b̂+ b̂†)2, ρ̂S}+

)
. (3.62)
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The thermal wavelength of air molecules is given by

λair
th =

2π√
2πmkBT

. (3.63)

For typical parameters, m ≈ 28.97 amu one obtains 2aair ≈ 2 10−11m. The typical

ground state size of the dielectrics we consider here is on the order of x0 ≈ 10−14m and

for states close to the ground state, the long-wavelength limit applies. Following [65],

the decoherence rate can be derived from Eq. (3.57) and is given by

Γair ≈
6πP

ρRωt

√
3kBTm, (3.64)

where ρ denotes the density of the sphere. The decoherence induced by interactions

with gas molecules is thus inversely proportional to the object’s size.

In contrast, in Sec. 6.3, the case of large spatial superpositions will be investigated,

where the superpostion size ∆r is of the order of nanometers. In this case, the thermal

wavelength of the air molecules is shorter than the superposition size and scattering of

air molecules goes into saturation as described in Sec. 3.5.1 and is given by

γair =
16πPR2

3

√
2πm

kBT
. (3.65)

3.5.3 Blackbody radiation

In analogy to the scattering of laser light, absorption and emission of blackbody photons

also lead to decoherence of the cm motion of the sphere. Albeit we assume the dielectrics

to be non-absorbing throughout this thesis, a small imaginary part of εr εr = ε1 +

iε2 is taken into account here for completeness. We first determine the equilibrium

temperature to then determine the decoherence rate caused by blackbody-radiation.

The power dissipated by blackbody radiation is usually given by

P bb
e = AeσSB

[
T 4

S − T 4
E

]
, (3.66)

where A is the area of the object, e the emissivity (≈1), σSB the Stefan-Boltzmann

constant, TS the temperature of the object and TE the temperature of the environment.

If the sphere is of the same order or smaller than the wavelength of the blackbody

radiation, the radiated power has to be modified as the object is not an efficient absorber

(emitter) of radiation at this wavelength anymore. As we concentrate on dielectrics of

this size, the power emitted (absorbed) through blackbody radiation for small spheres

is given by [78,164]

P bb
e(a) =

72ζ(5)

π2

V

c3
Im

εbb − 1

εbb + 2

(
kBTS(E)

)5
, (3.67)
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where ζ(x) is the Riemann zeta function with ζ(5) ≈ 1.04. εbb is the blackbody permit-

tivity, which we assume to be constant throughout the blackbody radiation spectrum,

and V is the volume of the sphere. The internal temperature TS is determined as the

equilibrium between absorption of laser photons and emission via blackbody radiation

(we assume that, due to the low pressure, thermalization via scattering of air molecules

is negligible). Laser photons cause an energy absorption described by [142]

Pabs =
12πI3ε2V

λc
[
(ε1 + 2)2 + ε22

] , (3.68)

where λc is the wavelength and I the laser intensity. Setting Pabs = P bb
e yields the

sphere’s equilibrium temperature

TS = 5

√√√√ Ic3π3

ζ(5)6λck5
B

Im εr−1
εr+2

Im εbb−1
εbb+2

+ TE. (3.69)

The decoherence by blackbody radiation consists of three contributions: emission, ab-

sorption and scattering of thermal photons :

Λbb = Λbb,e + Λbb,a + Λbb,sc. (3.70)

The thermal wavelength for photons is given by

λbb
th =

π2c

kBTE
, (3.71)

which takes values λbb
th ≈ 10−4 m at room temperature. Thus, for this source of decoher-

ence, the long-wavelength-limit can be employed for all superposition sizes considered

in this thesis. The emission (absorption) rate of blackbody radiation is given by [65]

Λbb
e(a) =

16π5R3

189

[
kBTE

c

]6

Im

[
εbb − 1

εbb + 2

]
. (3.72)

Scattering of blackbody radiation is described by [65]

Λbb
sc =

8!8ζ(9)cR6

9π

[
kBTE

c

]9

Re

[
εbb − 1

εbb + 2

]
, (3.73)

where ζ(x) again denotes the Riemann zeta function. While we merely give the resulting

rates here, we refer the reader to [65,78] for further details. For the set of experimental

parameters that are specified in Sec. 3.6, the equilibrium temperature of the sphere is

∆TS = 270K above the temperature of the environment. The effect of the decoherence

via blackbody radiation will be discussed in Sec. 3.6 and compared to other sources of

decoherence for different sizes of the sphere.
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3.5.4 Photon shot noise

It is well-known from atomic physics that fluctuations in the trap parameters cause

atom heating and storage times are limited by trap losses [165]. While in Bose-

Einstein condensate experiments this is typically circumvented by also applying mag-

netic traps [166], the dielectric spheres considered here are not susceptible to magnetic

trapping, and fluctuations need to be considered. Photon shot noise leads to heating

via fluctuations in the mechanical trapping frequency ωt,

ωt(t) = 〈ωt(t)〉
[
1 +

δα(t)2

|α2|

]
, (3.74)

where 〈ωt(t)〉 is the mean trapping frequency. |α2| denotes the mean number of photons

in the cavity and δα2(t) describes the number fluctuation of the cavity mode. These

stochastic fluctuations in the spring constant lead to parametric heating depending on

the form of the one-sided power spectrum of the fractional fluctuations in the spring

constant [78,165]

Scav(ωt) =
2

π|α|4
∫ ∞

0
dt cos(ωtt)〈δα2(t)δα2(0)〉. (3.75)

The power spectrum for a cavity of linewidth κ driven on resonance can be determined

as

Scav(ωt) =
1

π|α|2
4κ

κ2 + 4ω2
t

. (3.76)

The rate at which parametric transitions to higher phonon numbers (n→ n±2) happen,

can be determined within perturbation theory and is given by [165]

Rn→n±2 =
πω2

t

16
S(2ωt)(n+ 1± 1)(n± 1). (3.77)

The rate at which transitions from the ground state of the mechanical oscillator happen

is thus given by

Γshot =
κω2

t

4|α|2(κ2 + 16ω2
t )
. (3.78)

The contribution of this decoherence source will be quantified for specific experimental

parameters in Sec. 3.6.

3.5.5 Fluctuations in the trap center

Another source of noise that can be treated in full analogy to the photon shot noise of

the previous chapter are fluctuations in the trap center. These fluctuations are caused

by vibrations of the experimental apparatus due to thermal and seismic noise and effect
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fluctuations of the location of the center of the harmonic trap. A calculation within

perturbation theory yields transition rates describing the heating by one phonon as

Rn→n±1 =
π

2
Mω3

tSvib(ωt)

(
n+

1

2
± 1

2

)
, (3.79)

and thus for the heating of the ground state

Γtrap =
π

2
Mω3

tSvib(ωt). (3.80)

Here, Svib(ωt) describes the power spectrum of the fluctuations of the trap frequency.

3.5.6 Anisotropies in the sphere

In this section, we consider the effect of small deviations from the spherical shape of

the dielectric. We only give a schematic overview, for more details see [78]. In case the

sphere is not completely isotropic, it becomes necessary to take its rotational motion

into account. We only want to give an estimation of the effect and therefore consider

a simplified version of the problem: the rotation is limited to one axis and the sphere’s

deformation is spheroid-like. We therefore assume a prolate spheroid with semi-major

axis a and semi-minor axis b with only little deviation from a sphere, a/b ≈ 1. The

effect of this anisotropy is twofold: on the one side, there is an indirect optical coupling

between the rotational motion and the cm-motion of the sphere caused by the change

in the cavity resonance frequency due to the rotational motion. Similar to the coupling

to internal modes as described in Sec. 3.4, this interaction is very weak and it is shown

in [78] that it can be neglected to first order for the small anisotropies considered

here. On the other side, the dielectric properties of the object i.e., its polarization, are

changed, which leads to a modification of the trapping frequency ωt. Its dependance

on the sphere’s orientation is given by

δωt(t) = ε(θ)ωt cos(2θ), (3.81)

where θ is defined as the angle of rotation of the spheroid. The dielectric constant

depends on the deformation of the dielectric

εθ =
9

40

εr − 1

εr + 2

[(a
b

)4/3
− 1

]
. (3.82)

In full analogy to the shot noise considered in 3.5.4, this leads to parametric heating

with a jump rate out of the ground state given by

R0→2 =
1

2

∫ ∞
0

dt cos(2ωt)t〈δωt(0)δωt(t)〉. (3.83)
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Making a Gaussian approximation for the correlations leads to

Γanis = ε2θ

√
2πω2

t

16
√
〈ω2

r 〉
exp

[
− ω2

t

2〈ω2
r 〉

]
, (3.84)

with the rotational frequency ωr = dθ/dt. This rate reaches its maximum for ωr = ωt.

We will give an estimation of the strength of this contribution to the heating in Sec. 3.6.

3.5.7 Coupling to two-level systems

The dielectric spheres analyzed in this thesis typically consist of fused silica, an amor-

phous medium containing a large number of tunnel systems. Tunnel systems occur due

to frustration in amorphous materials and have been intensively studied in the context

of low-temperature physics [167]. These two-level systems couple to strain fields con-

stituting a possible source of heating [168,169] in particular at low temperatures. This

has been one of the main obstacles for ground state cooling in experiments with mi-

crotorroids and has been extensively studied [170–172]. More recently, even proposals

to use these intrinsic material defects to realize nonlinearities of the optomechanical

resonator [117], have been studied. However, in the setup analyzed in this thesis, this

source of decoherence is not a relevant factor. The two-level systems only couple to

the vibrational modes of the sphere, not to the cm mode. Subsequently, the cm mode

can only indirectly couple to the tunnel systems through the vibrational modes. As

it has been shown in Sec. 3.4, this coupling can be neglected for the spheres we are

considering.

3.6 Results for given experimental parameters

In the following, both the minimal phonon number and the cooperativity are used to

quantify the system’s performance as an optomechanical setup. The optomechanical

parameters are determined for varying sphere sizes. The experimental parameters are

chosen as follows:

• Dielectric object: We assume spheres of fused silica with density ρ = 2201 kg/m3,

a dielectric constant Re[εr] = 2.1 and Im[εr] ∼ 2.5 × 10−10. For the blackbody

radiation of the sphere, we choose εbb = 2.1 + 0.57i. We vary their radii be-

tween R = 10nm − 2µm and position them at the maximal slope of the cavity

field, ϕ = π/4. Their Young modulus is Y = 73 GPa and their Poisson con-

stant σ = 0.17, giving internal vibrational modes with frequencies of the order of

ωn ∼ 109 − 1012 Hz.
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Figure 3.5: decoherence rates for levitating dielectrics for experimental parameters as

given in the main text and varying sphere sizes. Left : Decoherence due to scatter-

ing of air molecules (Sec. 3.5.2), Right: Decoherence due to emission, absorption and

scattering of blackbody radiation (Sec. 3.5.3)

• Cavity: We assume a confocal high-finesse cavity of length L = 4 mm and finesse

F = 5 × 105 leading to a cavity decay rate κ0 = cπ/2FL = 2π × 44kHz. This

cavity is impinged by a laser of power Pc = 0.1 mW, wavelength λc = 1064 nm,

which gives a waist of W0 =
√
λcd/2π ≈ 26 µm. The external pressure is chosen

as P = 10−6mbar.

• Optomechanical parameters: The tweezers are constructed with a laser of

wavelength λc = 1064 nm and a lense of high numerical aperture. They supply a

harmonic trap for the object of frequency ωt = 2π × 136 kHz in the transversal

direction and a slightly smaller one in the direction of light propagation. The

cavity photons have a frequency ω0 = 2π × 2.8 × 1014 Hz and the steady state

photon occupation is |α|2 ≈ 3.7× 108.

The dominating source of decoherence, in particular for large spheres, is the recoil

heating by scattering of cavity photons, Γcav, described by Eq. (3.12). Other dominat-

ing sources of decoherence are the scattering of air molecules, Γair (Eq. (3.64)), and

the scattering of blackbody radiation, Γbb = x2
0Λbb (Eqs. (3.70)). These decoherence

mechanisms are illustrated in Fig. 3.5 for the experimental parameters given in the

main text and spheres ranging from R = 10nm − 2µm. Other sources of decoherence

are given by parametric heating via photon shot noise, Γshot/ωt ≈ 10−11 (Eq. (3.78)),

which is typically negligible. Fluctuations in the trap center due to seismic and ther-

mal noise depend on the power spectrum of the fluctuations with a typical maximum

of the power spectrum at ωmax ≈ Hz and only a vanishing tail at the typical trapping

frequencies ωt ≈ 106 Hz. For the experimental parameters considered here and the

maximal sphere size R = 2µm, Γtrap/ωt . 1015m2/Hz Svib(ωt). For the power spectral
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Figure 3.6: Cavity-Optomechanical parameters for different sizes of the object. Upper

left panel: Optomechnical coupling g, Upper right pannel: Cavity decay rate κ, Lower

left pannel: Cooperativity C, Lower right pannel: Decoherence due to elastic scattering

of photons

distributions obtained in current experiments these fluctuations are typically negligible

e.g., in LIGO [173], Svib(ωt) < 10−23 Hz/m2 for ωt ≈ MHz. However, when lower trap-

ping frequencies and higher masses are considered, care has to be taken to control these

effects. Another minor source of decoherence is given by anisotropies in the sphere’s

shape, Γanis (Eq. (3.84)). The parametric heating takes its maximum when the vibra-

tional frequency is similar to the cm trapping, 〈ωr〉 = ωt. In this case, Γanis/ωt ≈ 10−5,

which is negligible compared to other sources of dissipation. Also decoherence via cou-

pling to vibrational modes as well as coupling to two-level fluctuators can be neglected

(see Secs. 3.4, 3.5.7).

Let us now take a closer look at the optomechanical parameters as illustrated in

Fig. 3.6: the absolute value of the optomechanical coupling g first increases with the

radius R reaching a local maximum at R ≈ 260 nm, then decreases and even vanishes

at R ≈ 370 nm. In the following it continues these oscillations. The decoherence

rate of the cm motion due to light scattering (see Fig. 3.5) first increases ∝ R3, then

begins to fall off for R & 600 nm. This is due to its dependence on the ground-state

size and the cross section, where the scattering is described by the Rayleigh cross

section ∝ R6 for small objects, to give way to a scaling ∝ R2 in the limit of geometrical

scattering and the squared ground state size, which is ∝ R−3. Also the cavity decay rate
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Figure 3.7: Minimal phonon numbers attainable with experimental parameters given in

the main text:Left: Sphere sizes ranging between R = 10nm− 2µm, Right: For smaller

spheres between R ≤ 300nm

increases ∝ R6 at first, then shows some plateaus to finally converge to a scaling ∝ R2.

Consequently, the cooperativity first decreases immensely to exhibit oscillations later

on. These oscillations can only be predicted taking multiple-scattering processes into

account. Nevertheless, the maximal values of the cooperativity are merely C ≈ 0.05.

The minimal phonon number is obtained by minimizing the function n̄phon described

in Eq. (3.20) with respect to δ. While ground-state cooling is feasible for spheres

R . 250 nm, only relatively large final phonon numbers can be achieved for larger

spheres, e.g., nmin ≈ 350 for R ≈ 1.3µm.

3.A Justification of the adiabatic elimination of the vi-

brational modes

In this Appendix, we show that an adiabatic elimination of the vibrational modes in

Sec. 3.4.3 is justified due to the separate time scales of the problem. For this purpose,

the equations of motion of b̂, b̂† are solved via a Laplace transformation [160]. For

simplicity, we neglect the coupling to the light field and among the vibrational modes

for this analysis leading to a simplified Hamiltonian

Ĥlap = ωtb̂
†b̂+

∑
n

ωnĉ
†
nĉn +

∞∑
n

γn(ĉn + ĉ†n)(b̂+ b̂†). (3.85)
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This gives the following equations of motion

ḃ = −iωtb̂− i
∑
n

γn(ĉn + ĉ†n) (3.86)

ċn = −iωnĉn − iγn(b̂+ b̂†) (3.87)

ḃ† = iωtb
† + i

∑
n

γn(ĉn + ĉ†n) (3.88)

ċ†n = iωnĉ
†
n + iγn(b̂+ b̂†). (3.89)

Integrating ĉn over time and inserting it back into Eq. (3.86) gives

ḃ(t) = −iωtb̂− i
∑
n

γn[ĉn(0)e−iωnt + ĉ†n(0)eiωnt]

+
∑
n

γ2
n

[∫ t

0
eiωn(t−τ)

[
b̂†(τ) + b̂(τ)

]
dτ −

∫ t

0
e−iωn(t−τ)

[
b̂†(τ) + b̂(τ)

]
dτ

]
.

(3.90)

Applying a Laplace transformation

L[f ] =

∫ ∞
0

e−stf(t)dt = f̃(s) (3.91)

to this differential equation gives

sb̃(s)− b̂(0) + iωtb̃(s) = −
∑
n

(
iγnĉn(0)

s+ iωn
+
iγnĉ

†
n(0)

s− iωn

)
−
[
b̃(s) + b̃†(s)

]
F (s) (3.92)

with

F (s) =
∑
n

2iωnγ
2
n

s2 + ω2
n

. (3.93)

To obtain the equation of motion for b̃(t),we need to write the equations in matrix form

b̃(s) = M−1b(0) (3.94)

with

M−1 =
1

s2 + ω2
t − 2iF (s)ωt

(
s− F (s)− iωt F (s)

F (s) s+ iωt + F (s)

)
and

b̃(s) =

(
b̃(s)

b̃†(s)

)
.

The transformed operator b̃(s) is thus given by

b̃(s) =
s− F (s)− iωt

s2 + ω2
t − 2iF (s)ωt

b̃(0)− F (s)

s2 + ω2
t − 2iF (s)ωt

b̃†(0)

+
s+ iωt

2iωtF (s)− ω2
t − s2

∑
n

(
iγnĉn(0)

s+ iωn
+
iγnĉ

†
n(0)

s− iωn

)
.

(3.95)
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F (s) contains several poles into which it can be decomposed. We want to show that

after a back-transformation, b̂(t) can be described by contributions of the system’s slow

time scale given by ωt. A back-transformation of the part describing the poles in the

eqs. of motion gives

L−1[
1

s2 + ω2
t − 2iF (s)ωt

]

=
exp[iωtt]

2iωtΠn
i=1(iωt − iωi)

+
exp[−iωtt]

2iωtΠn
i=1(iωt + iωi)

+
n∑

m=1

(
exp[iωmt]

2iωm(iωm − iωt)Πi 6=m(iωm − iωi)
+

exp[−iωmt]
−2iωm(−iωm − iωt)Πi 6=m(−iωm − iωi)

)
≈ exp[iωtt]

2iωtΠn
i=1(iωt − iωi)

+
exp[−iωtt]

2iωtΠn
i=1(iωt + iωi)

.

(3.96)

In the last line we exploit the scaling ωt/ωn � 1 due to the separation of the cm

mode from the higher vibrational modes. It is thus justified to neglect all terms except

the ones given by the first two poles, as described in the last line of Eq. (3.96). The

same scaling holds for the terms in the back transformation of b̃(s) as they contain at

most the same number of poles as Eq. (3.96). It can thus be demonstrated that all

terms in the evolution of b̂(t) due to higher-order poles are suppressed by ωt/ωn and

can thus be neglected. The lowest poles in the expansion that are kept correspond to

the terms obtained when treating the higher-lying vibrational modes as a first-order

perturbation to the cm mode [174]. This approximation is equivalent to carrying out

an adiabatic elimination and we have thus shown that adiabatically eliminating the

vibrational modes yields a good description of the system’s dynamics, given ωt � ωn.



Part II

State preparation protocols





Chapter 4

Single-Photon Protocols

We propose three protocols to prepare non-Gaussian states of a mechanical oscilla-

tor. All protocols use single photon as a resource to prepare quantum superpositions

of a mechanical oscillator. The first protocol consists in sending a resonant photon

on top of the driving field used to enhance its interaction with the mechanical mode,

and measuring its reflected part. The motivation of the second protocol is to circum-

vent the single-photon measurement on top of a strong driving field by time-dependently

modulating the optomechanical coupling strength allowing for a perfect mapping of the

non-classical photon state. The third protocol poses less demanding requirements on the

cavity and is based on a teleportation scheme. To perform full tomography of the pre-

pared states, we propose a time-of-flight measurement of the levitating object. While the

focus of this thesis is on levitating dielectrics, the state-preparation protocols presented

in this chapter are general and apply to any optomechanical setup with sufficiently low

decoherence rates. This chapter mainly bases on and uses parts of [64].

4.1 Introduction

The idea to use single photons to prepare nonclasscial states of a mechanical oscillator

has been present since the early days of optomechanics. Already in Marshall et al. [60]

(see also [175]) a scheme to prepare a superposition state of two distinct locations of a

mirror through the optomechanical interaction with a single photon has been proposed.

These ideas pose a major challenge to an experimental realization mainly due to the

following reasons: (i) the coupling between the small quantum system and the macro-

scopic mechanical system is very weak and (ii) the mechanical system suffers from its

fast decoherence due to the thermal contact. In this chapter, we show possible ways to

circumvent these two restrictions. We propose two protocols to strongly couple a non-

Gaussian light state to a mechanical object. This is achieved by using a driving field
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which enhances the interaction into the strong-coupling regime (the interaction time has

to be faster than the decoherence times). This enhancement of the optomechanical cou-

pling by the driving field was suggested in [47,176] and experimentally observed in [51].

Then, on top of the driving field, which is red-detuned, a quantum light state is sent

into the cavity which is transferred to the mechanical system by the strong coupling.

This idea has been introduced in [77] (see also [177, 178]). Additionally, we propose

an alternative protocol that uses the weak-coupling regime to prepare non-Gaussian

states. These protocols, which can be applied to general optomechanical systems, are

ideally suitable for optically levitating nanodielectrics, since they do not suffer from

clamping losses [77, 78], and thus possess long coherence times. The light-mechanics

interfaces described in this chapter allow us to prepare non-Gaussian states by using a

Gaussian Hamiltonian. Their key ingredient is to use non-Gaussian input states (simi-

lar ideas have been proposed in the context of quantum computation [179,180]). Hence,

these protocols represent an effective and simple way to produce non-linearities in op-

tomechanical systems, a goal that is intensively pursued (see the introduction Sec. 1.3).

Finally, we remark that in case of a levitating object in particular light scattering yields

decoherence of the mechanical state with a rate given by Γphot. For sufficiently small

objects, this effect is much smaller than κ (see Fig. 3.7). In the following, where we

are interested in designing the protocols, we will neglect the effects of decoherence by

assuming that the protocols can be realized on a time scale much shorter than 1/Γ.

This can be achieved by choosing small spheres, R ≤ 100nm, for more details see

Sec. 3.6. For other optomechanical setups, decoherence in the mechanical system can

be incorporated easily into the protocols.

4.1.1 Reader’s guide

This chapter is organized as follows: first, in Sec. 4.2 we provide the necessary theoreti-

cal background and introduce the notation used throughout the chapter. In particular,

we introduce the output field in Sec. 4.2.1 and transform the total Hamiltonian of the

system in order to account for the driving field of the laser in Sec. 4.2.2. Based on

this, three single-photon protocols to prepare non-Gaussian states are proposed. In

Sec. 4.3, it is discussed how coupling a single photon on top of the driving field and

taking a subsequent measurement of the output field prepares the mechanical oscillator

in a non-Gaussian state. In Sec. 4.4, an alternative approach that circumvents the

single-photon measurement by introducing a time-dependent coupling is described. In

Sec. 4.5, a teleportation scheme also applicable in the bad-cavity limit is introduced.

To enable a measurement of the prepared states, a tomography scheme based on a

time-of-flight-measurement is proposed in Sec. 4.6. One particular theoretical diffi-
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culty encountered in this analysis is the correct treatment of the displaced output field,

addressed in App. 4.A.

4.2 The setup

4.2.1 The output field

So far, we have described the optomechanical system by Ĥtot (Eq. (2.2)),

Ĥtot = ĤS + ĤB + ĤBS, (4.1)

containing contributions from the system, the bath, and the interaction between them.

We now want to consider how photonic states can be transferred from the outside

through the cavity to the mechanical mode. For this purpose, the modes that are

coupled in and out of the cavity will be treated separately from ĤB [181, 182]. In this

picture, the total Hamiltonian reads

Ĥ ′tot = ĤS + ĤB + ĤBS + Ĥout + Ĥcav−out, (4.2)

where

Ĥout =

∫ ∞
0

dωωâ†out(ω)âout(ω), (4.3)

describes the energy of the output modes and

Ĥcav−out = i

∫ ∞
0

dωγ(ω)
[
â†0âout(ω)−H.c.

]
, (4.4)

their interaction with the cavity mode. ω denotes the different frequencies of the output

modes, âout(ω)
(
â†out(ω)

)
the annihilation (creation) of a photon in the output field, and

the coupling strength between the cavity modes and the output field is approximated

by γ(ω) ≈
√
κ/π [181]. We are thus double-counting the output modes by writing

them separately from the remaining bath. This is usually done in QED and does not

pose a problem, as they have zero measure. For simplicity, we will neglect decoherence

mechanisms in the description of the state preparation protocols here and also neglect

the interaction between the cavity mode and all other external modes except the output

mode. Consequently, we approximate

Ĥ ′tot ≈ ĤS + Ĥout + Ĥcav−out (4.5)

for the remainder of this section and will leave the prime out for simplicity.
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4.2.2 The displaced frame

As mentioned in the introduction, we want to enhance the interaction between photonic

states and the dielectric by strongly driving the cavity mode. For this analysis, it is

useful to transform the operators to the rotating frame [46, 47, 176] as outlined in

Sec. 2.2.2, shifting the coherent part of the states obtained when driving the cavity

with a laser. However, in contrast to what is usually done, it is also necessary to

displace the output modes since they are used in the light-mechanics interface.

First, one moves the cavity and the output field to the frame rotating with the laser

frequency ωL. This is described by the unitary operator

Ûr(t) = exp

[
−iωLt

(
â†0â0 +

∫ ∞
0

â†out(ω)âout(ω)dω

)]
. (4.6)

To ease the notation, after this transformation we redefine âout(ω) and γ(ω) such that

âout(ω) ≡ âout(ω + ωL), and γ(ω) ≡ γ(ω + ωL). The total Hamiltonian before the

displacement reads

Ĥtot =δâ†0â0 + ωtb̂
†b̂+ g0â

†
0â0(b̂† + b̂) +

∫ ∞
−ωL

dωωâ†out(ω)âout(ω)

+ i

∫ ∞
−ωL

dωγ(ω)(â†0âout(ω)−H.c.),

(4.7)

where δ = ωc−ωL. Then, one displaces the cavity field with the displacement operator

D̂a0(α), the mechanical mode with D̂b(β), and the output modes with D̂out(αω), that

is,

D̂†a0(α)â0D̂a0(α) = â0 + α,

D̂†b(β)b̂D̂b(β) = b̂+ β,

D̂†out(αω)âout(ω)D̂out(αω) = âout(ω) + αω.

(4.8)

After applying this transformation to the Hamiltonian, one fixes α, β, and αω, such that

the terms in the Hamiltonian that contain only one or none creation or annihilation

operator vanish. This corresponds to solving the following set of equations:

δα+ 2g0αβ + i

∫ ∞
−ωL

γ(ω)αωdω = 0,

ωtβ + g0|α|2 = 0,∫ ∞
−ωL

dωωâ†out(ω)αω − i

∫ ∞
−ωL

dωγ(ω)â†out(ω)α = 0,

(4.9)
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which have the solutions

α =
ΩL

iδ̃ + κ
,

β = −g0|α|2
ωt

,

αω =

(
ΩL

γ(0)
− παγ(0)

)
δ(ω) + iαγ(ω)P(ω−1).

(4.10)

Here, δ̃ = δ + 2g0β, and

ΩL =

√
2Pcκ

ωL
, (4.11)

with Pc being the laser power and δ(ω) the Dirac-Delta function. The symbol P
denotes the principal part, and we have used that γ2(ω) ≈ κ/π in a finite region

around ω = 0 [181] in order to perform the integral∫ ∞
−∞
P
(
ω−1

)
dω = 0. (4.12)

In App. 4.A.1, we show how to obtain the expression of αω from a more physical

perspective.

To sum up, the transformation applied to the Hamiltonian can be defined as D̂ ≡
D̂out(αω)D̂b(β)D̂a0(α), and the transformed Hamiltonian is given by

Ĥ ′tot =D̂†ĤtotD̂ = Ĥ ′S + Ĥ ′out + Ĥ ′cav−out, (4.13)

where

Ĥ ′S = ωtb̂
†b̂+ δ̃â†0â0 + g(â†0 + â0)(b̂† + b̂) (4.14)

is the enhanced optomechanical Hamiltonian, and Ĥ ′out + Ĥ ′cav−out is transformed into

Ĥ ′out + Ĥ ′cav−out =

∫ ∞
−ωL

ωâ†out(ω)âout(ω)dω + i

∫ ∞
−ωL

γ(ω)(â†outâout(ω)−H.c.)dω.

(4.15)

Note that Eq. (4.13) has the same structure as Eq. (4.7) with the only replacement

δ → δ̃ (we will approximate δ̃ ≈ δ in the following as βg0 � δ), and g0â
†
0â0(b̂† + b̂) →

g(â†0 + â0)(b̂† + b̂). As previously defined, g = g0|α|, and ξ = arg(α), and we have

redefined the â0 (âout(ω)) operators as â′0 = â0e
−iξ
(
â′out(ω) = âout(ω)e−iξ

)
(we omit the

prime hereafter). A crucial remark is that the optomechanical coupling g is enhanced

by α, which is the square root of the mean number of photons inside the cavity in the

steady state (see Sec. 2.2.2 for comparison). This will allow us to reach the strong

coupling g ∼ κ in the light-mechanics interface.
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We remark that in case of using levitating objects, the shift to the trapping fre-

quency as well as the shift in the equilibrium position should be taken into account in the

Ĥ ′S Hamiltonian. This would imply to change the trapping frequency to ωt → ωt+ωsh,

and the displacement of the cavity mode to β → β+ ξsh/ω, where ωsh and ξsh describe

these shift parameters. However, to keep the section in a general form, so that it can

also be applied to other optomechanical systems, we will omit this effect hereafter.

The transformed Hamiltonian can now be written in the interaction picture, assum-

ing that the free part is given by

Ĥ0 = ωtb̂
†b̂+ δâ†0â0 +

∫ ∞
−ωL

ωâ†out(ω)âout(ω)dω (4.16)

as

ĤI
tot = g(â†0e

iδt + â0e
−iδt)(b̂†eiωtt + b̂e−iωtt) + i

∫ ∞
−ωL
γ(ω)(â†0âout(ω)ei(δt−ωt) −H.c.)dω.

(4.17)

Now, by choosing a red-detuned driving δ = −ωt, one can perform the rotating-wave

approximation (RWA) (valid at ωt � g), and obtain the beam-splitter interaction form

of the total transformed Hamiltonian in the Schrödinger picture

Ĥr
tot = ωt(â

†
0â0 + b̂†b̂) + g(â†0b̂+ â0b̂

†) + Ĥ ′out + Ĥ ′cav−out. (4.18)

Analogously, one can consider a blue-detuned driving δ = ωt in order to get the two

mode squeezing interaction Hamiltonian:

Ĥb
tot =− ωt(â†0â0 − b̂†b̂) + g(â†0b̂

† + â0b̂) + Ĥ ′out + Ĥ ′cav−out. (4.19)

These two types of interaction are used throughout the chapter to design different

protocols in the light-mechanics interface.

Initial state

All the protocols that we shall discuss in the next section assume that the initial state

is the ground state cooled by the red-detuned field (δ = −ωt). As discussed in the

previous section, this state is given by

|in〉 = |β〉b ⊗ |α〉a0 ⊗
∫ ∞
−ωL

D̂out(αω)dω |Ω〉out = D̂ |00Ω〉 , (4.20)

where “b(a0)” labels the subspace of the mechanical mode (cavity mode), “out” the

subspace of the output modes, and Ω denotes the vacuum state for the output modes.

The displacements α, β, and αω are defined in Eqs. (4.10).
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Note that |in〉 is an eigenstate of the total Hamiltonian Ĥtot, see Eq. (4.7). This can

be demonstrated by using that D̂†ĤtotD̂ = Ĥr
tot (for the red-detuned case Eq. (4.18)),

and that Ĥr
tot |00Ω〉 = 0, which gives

Ĥtot |in〉 = D̂D̂†ĤtotD̂ |00Ω〉 = D̂Ĥr
tot |00Ω〉 = 0. (4.21)

The state |in〉 (namely |00Ω〉 in the displaced frame) will be considered as the initial

state upon which the protocols are designed using either the beam splitter interaction

(Eq. (4.18)) or the two mode sequeezing interaction (Eq. (4.19)).

4.3 One-photon reflected

The first protocol consists in sending one resonant photon on top of the driving field

and measuring the reflected part. More specifically, the cavity is driven with a red-

detuned field in order to induce the beam-splitter interaction. The mechanical object is

assumed to be in its ground state. Then, on top of the driving field, a one-photon pulse

centered at the resonance frequency is sent into the cavity. Impinging the cavity, part

of it enters and part is reflected. At the time th, where the part of the beam that has

entered the cavity is transferred to the mechanical oscillator through the beam-splitter

interaction, the light field is switched off. Consequently, the light mode corresponding

to the reflected photon is entangled with the mechanical system inside the cavity. We

can obtain the exact form of the state by solving the input-output problem in the

Schrödinger picture. The final state in the displaced frame is given by

|ψ(th)〉 = cb(th) |10Ω〉+

∫ ∞
−ωL

dωc(ω, th)â†out(ω) |00Ω〉 , (4.22)

where |nbna0Ω〉 describes a state with nb phonons, na0 photons, and all the output

modes in the vacuum state. Here, the coefficients cb(t) and c(ω, t) are obtained ana-

lytically. Considering Eq. (4.22) makes it clear that by measuring the quadrature of

the output mode of the photon, one prepares a superposition state of zero and one

phonons with coefficients given by the outcome of the measurement. Some technical

issues are addressed in detail for this protocol in this thesis, such as the fact that in

the original frame, the state |ψ(th)〉 is displaced by a considerable amount. This makes

it challenging to obtain a significant signal-to-noise ratio in the measurement of the

output mode.

Let us now proceed and describe the preparation of the superposition state in more

detail. The outlined protocol is general and can be applied to various optomechanical

systems. Let us remark that it has already been introduced in [64,77] and that related

ideas have been reported in [177, 178]. In this section we will provide a thorough
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analysis. In particular, we develop a formalism to solve the input-output formalism in

the Schrödinger picture in order to be able to describe the final state of the protocol.

Let us start by sketching the different steps of the protocol:

1. Cool the mechanical motion to the ground state by the red-detuned driving field.

2. Keep the strong driving field switched on such that the beam-splitter interaction

is induced inside the cavity.

3. Impinge the cavity with a resonant single-photon state, sent on top of the driving

field as a result of parametric down conversion followed by a detection of a single

photon [183].

4. When impinging the cavity, part of the field is reflected and part transmitted [184].

5. The beam-splitter interaction Eq. (4.18) caused by the red-detuned laser, swaps

the state of light inside the cavity to the state of the mechanical motion.

6. By tuning the width of the light pulse appropriately, one finds that at time

th, the maximum mean number of phonons of 1/2 in the mechanical system is

obtained. At that time, the driving field is switched off. Then, the entangled

state |E〉out,b ∼
∣∣0̃〉

out
|1〉b + eiφ

∣∣1̃〉
out
|0〉b is prepared. Here out(b) stands for

the reflected cavity field (mechanical motion) of the system, and
∣∣0̃(1̃)

〉
out

is a

displaced vacuum (one-photon) light state in the output mode of the cavity Âout.

The phase φ, given by the light-mechanics interaction, is always fixed.

7. At a later time, once the reflected photon is far away from the cavity, a bal-

anced homodyne measurement of the output mode is performed. The motional

state collapses into the superposition state |Ψ〉b = c0 |0〉b + c1e
iφ |1〉b, where the

coefficients c0(1) depend on the measurement result.

In the following we will analyze the important steps of the protocol. In the shifted

frame, the initial state (according to Sec. 4.2.2) consists of a photon on top of the

ground state of the mechanical oscillator. It is given by

|Ψ(0)〉 =

∫ ∞
−ωL

dωφ∗in(ω)â†out(ω) |00Ω〉 , (4.23)

where φ∗in(ω) is the shape of the photon pulse which is assumed to be Gaussian

φin(ω) =

(
2

πσ2

)1/4

e−
(ω−δ)2

σ2 e−iωxin . (4.24)

Here, xin is the position from which the pulse has been sent (it is considered to be large,

xin � 0, with the cavity denoting the zero-point). δ = ωc − ωL = ωt is the detuning,
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which shows that in the non-rotating frame the pulse is centered at the resonance

frequency of the cavity. Note also that one can express the mode function in position

space by the Fourier transform

φ̃in(x) =
1√
2π

∫
dωφin(ω)eiωx. (4.25)

The time-evolved state with the beam-splitter interaction Eq. (4.18),

|ψ(t)〉 = exp[−iĤr
tott] |ψ(0)〉 (4.26)

can be expanded in the following basis,

|ψ(t)〉 = cb(t) |10Ω〉+ ca0(t) |01Ω〉+

∫ ∞
−ωL

c(ω, t)â†out(ω)dω |00Ω〉 . (4.27)

The time-dependence of the coefficients can be obtained using the Wigner-Weisskopf

formalism. The Schrödinger equation gives

ċb(t) = −iωtcb(t)− igca0(t),

ċa0(t) = −iωtca0(t)− igcb(t) +

∫ ∞
−ωL

γ(ω)c(ω, t)dω,

ċ(ω, t) = −iωc(ω, t)− γ(ω)ca0(t).

(4.28)

This system can be further simplified by formally solving the differential equation for

c(ω, t), plugging it into the equation for ċa0(t), and using the approximation γ(ω) ≈
γ(0) =

√
κ/π. This gives

ċb(t) = −iωtcb(t)− igca0(t),

ċa0(t) = −(iωt + κ)ca0(t)− igcb(t) +

∫ ∞
−ωL

γ(ω)e−iωtc(ω, 0)dω,

ċ(ω, t) = −iωc(ω, t)− γ(ω)ca0(t).

(4.29)

This system of differential equations can be solved by using that ca0(0) = cb(0) = 0

and c(ω, 0) = φ∗in(ω). This leads to

ca0(t) =
√

2κ

∫ t

0
p−(t− τ)φ̃∗in(τ)e−iωt(t−τ)dτ,

cb(t) =
√

2κ

∫ t

0
q(t− τ)φ̃∗in(τ)e−iωt(t−τ)dτ.

(4.30)

The functions q(t) and p±(t) are defined by

p±(t) = e−κt/2
[
cosh(χt)± κ

2χ
sinh(χt)

]
,

q(t) = −i
g

χ
e−κt/2 sinh(χt),

(4.31)
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Fig. 4.1: Input-output dynamics after sending a one-photon pulse centered at xin = 5/κ

(where the cavity defines the zero point) at t = 0. A Gaussian pulse of width σ = 5.6κ

is used. We plot the mean number of phonons in the mechanical system n̄b(t) = |cb(t)|2
(red solid line) and the mean number of cavity photons n̄a0(t) = |ca0(t)|2 (blue dashed

line). We consider the strong coupling regime g = κ, and tune the width of the pulse

so that the maximum mean number of phonons is ∼ 1/2 (dotted grey line) at t = th.

where χ =
√
κ2/4− g2. This result is illustrated by plotting the mean number of

phonons n̄b(t) = |cb(t)|2 and photons n̄a0(t) = |ca0(t)|2, see Fig. 4.1 for some parameters

given in its caption. Note that at t = th, where

th = xin +
arccos(κ/2g)√
g2 − κ2/4

, (4.32)

the mean number of phonons n̄b is maximized. By tuning the width of the initial pulse,

one obtains that ca0(th) ≈ 0 and |cb(th)| ≈ 1/
√

2. In this case, the total state at th is

given by

|ψ(th)〉 =cb(th) |10Ω〉+

∫ ∞
−ωL

c(ω, th)â†out(ω)dω |00Ω〉 . (4.33)

This is an entangled state between the ouptut photon mode, described by the pulse

shape c(ω, th), and the mechanical phonon mode. In the non-displaced frame, the state

at th is described by |ψ′(th)〉 = D̂ |ψ(th)〉.
At t = th the driving field is switched off. However, at this time, there is still a

large number of photons |α|2 present inside the cavity. They will leak out reducing the

classical force that they were exerting on the mechanical system, which is described by

the displacement of the mechanical system, β. In order to compensate this effect, one

could move the center of the trap mω2
t (x − xt(t))2/2 accordingly, which yields a force

term −mω2
t xt(t)x0(b̂+ b̂†), in order to keep the ground state of the harmonic oscillator.
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Another effect of this leakage of photons is that the coefficient cb(th) will decrease with

time. Note however, that one could send a pulse that generates |cb(th)| > 1/
√

2 such

that, after the decrease due to the leakage of coherent photons, one obtains |cb(t >
th)| = 1/

√
2. The discussion on how to compute and estimate this effect is given in

App. 4.A.3.

Here, we simply approximate the state at t� th by

|ψ(t)〉 = cb(th)e−iωt(t−th)D̂out |10Ω〉+ D̂outÂ
†
out,t |00Ω〉 . (4.34)

where the output mode of the cavity is defined as

Â†out,t =

∫ ∞
−ωL

φout(ω, t)â
†
out(ω)dω, (4.35)

with

φout(ω, t) = c(ω, th)e−iω(t−th). (4.36)

Note that the displacement is only in the output modes since the photons inside the

cavity, and the consequent radiation force into the mechanical object, are not present

at times t� th since the driving field is switched off.

Measurement of the output mode

The final step of the protocol is the measurement of the quadrature of the output mode

Âout,t, that is

X̂out,t = Â†out,t + Âout,t. (4.37)

This measurement consists in integrating the signal of a continuous measurement with

the mode shape given by φout(ω, t).

More generally, the output operator Â†out =
∫∞
−ωL φout(ω)â†out(ω)dω can be written

as a combination of mode operators at position x by using

âout(ω) =
1√
2π

∫ ∞
0

e−iωxâout(x)dx, (4.38)

leading to

Âout =

∫ ∞
0

φ̃out(x)âout(x)dx. (4.39)

Note that now the mode âout(x) can be determined at the position x = xd of the detector

at time t by the relation âout(xd, t) = âout(x = xd − t, 0). Then, by a continuous

measurement of âout(xd, t), one gains access to the measurement of all âout(x) and

consequently, also to Âout by integrating the signal over φ̃out(x) (note that Âout is a

linear combination of the independent modes âout(x)).
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After the continuous measurement, let us assume one obtains the value xout. Then,

the superposition state of the mechanical object,

|Ψ〉 =
1√
2

(c0 |0〉b + c1 |1〉b) , (4.40)

is prepared, where c0(1) = 〈xout| 1(0)〉.
The proposed measurement of the quadrature poses an experimental challenge. If

we define the two orthogonal states |±〉0 = |Ω〉 ± Â†out,t |Ω〉 and their displaced states

|±〉 = D̂out |±〉0, one obtains that the mean value and fluctuations of X̂out are given by

〈
X̂out,t

〉
±

= αx +
〈
X̂out,t

〉
±,0

,〈
X̂2

out,t

〉
±

= α2
x + 2αx

〈
X̂out,t

〉
±,0

+
〈
X̂2

out,t

〉
±,0

,
(4.41)

where we have defined αx = D̂†out,tX̂out,tD̂out−X̂out,t. Thus,
〈

∆X̂out,t

〉
±

=
〈

∆X̂out,t

〉
±,0

.

This shows, that from the theoretical point of view, the two displaced states |±〉 are as

distinguishable as the non displaced ones |±〉0. From the experimental point of view,

the problem is that the signal-to-noise ratio in a balanced homodyne measurement is

too low. Although the displacement αx can be computed by using φout(ω, t) and αω

(see Eq. (4.10)), the final expression is not conclusive. In App. 4.A.2, we analyze the

problem of the measurement of the output field when a photon on top of the coherent

field was prepared inside the cavity. This general problem shows that the displacement

of the output field is of the order of α ∼ 104: detection of a single-photon on top of

such a strong driving field is challenging.

In order to circumvent this experimental challenge we propose the following solu-

tions:

• Subtract the coherent part by destructively interfering a coherent beam with the

same phase.

• Use an optomechanical system where the detuning between the resonant photon

and the red-detuned driving is much larger (since δ = −ωt, this would correspond

to a mechanical oscillator with a high frequency). This must be done without

loosening the strong coupling requirement which is based on the enhanced cou-

pling g = |ΩL|g0/
√
δ2 + κ2.

• Use a scheme similar to the one proposed in [178], where the photon is sent in

the dark port of an interferometer.

• Design a scheme where the light pulse is perfectly absorbed in the cavity and

therefore no measurement is needed.
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In the following section we present a protocol which follows the ideas of the last point.

4.4 Time-modulated coupling

Here we present a protocol that circumvents measuring the displaced output mode in

the reflected one-photon protocol [64, 77]. The goal is to perfectly absorb the light

pulse, which is in a non-Gaussian state, into the cavity, and transfer it to the me-

chanical system. This is achieved by using a time modulation of the optomechanical

coupling g(t), which can be implemented by varying the intensity of the driving field.

Then, by imposing the condition that the output field, with the transformed Hamil-

tonian, is zero, we can obtain the equation of motion for the optomechanical coupling

g(t). In this section we also discuss some technical details on the transformation of the

Hamiltonian containing time-dependent displacements. Similar ideas have been pro-

posed in the context of quantum communication [185], and in quantum-optomechanical

transducers [186].

Time-dependent displacement

In this section, the beam-splitter interaction (4.18) cannot be employed, since the

laser intensity is time-dependent. Care has to be taken when performing the time-

dependent displacement. Let us start with the basic Hamiltonian in the non-displaced

frame Eq. (4.7) and derive the evolution equations for â0, b̂, and âout(ω)

d

dt
â0 = −iδâ0 − ig0â0(b̂† + b̂) +

∫ ∞
−ωL

dωγ(ω)âout(ω, t),

d

dt
b̂ = −iωtb− ig0â

†
0â0,

d

dt
âout(ω, t) = −iωâout(ω, t)− γ(ω)â0.

(4.42)

The tool that will be used in this section is a time-dependent driving field at the laser

frequency ωL = 0 (in the rotating frame). This can be incorporated by applying the

following displacement to the output modes

âout(ω, t)→ âout(ω, t)−
√
π

κ
ΩL(t)δ(ω), (4.43)

where δ(ω) denotes the Dirac-delta function. By formally integrating the equation for

d/dt âout(ω, t), and using the Markov approximation γ(ω) ≈
√
κ/π, the system (4.42)
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reads

d

dt
â0 = −(iδ + κ)â0 − ig0â0(b̂† + b̂) + ΩL(t) +

√
2κâin(t),

d

dt
b̂ = −iωtb̂− ig0â

†
0â0,

d

dt
âout(ω, t) = −iωâout(ω, t)− γ(ω)â0 +

√
π

κ
Ω̇L(t)δ(ω),

(4.44)

where we have defined the so-called input operator as

âin(t) ≡ 1√
2π

∫
dωâout(ω, 0)e−iωt. (4.45)

Next, we perform the following time-dependent displacement

â0(t)→ â0(t) + α(t),

b̂(t)→ b̂(t) + β(t),
(4.46)

and choose α(t) and β(t), such that non-operator terms in the equations for d/dt â0(t)

and d/dt b̂(t) vanish, that is

d

dt
α = −(iδ + κ)α− ig0α(β + β∗) + ΩL,

d

dt
β = −iωtβ − ig0|α|2.

(4.47)

Then, we perform the following changes of variables

â0(t)→ â0(t)e−iδt,

b̂(t)→ b̂(t)e−iωtt,

α(t) =
g(t)

g0
eiξ,

(4.48)

(g(t) is real) and perform the RWA considering the red-detuned case δ = −ωt. Putting

all of this together, Eqs. (4.44) read

d

dt
â0 = −κâ0 − ig(t)eiξ b̂+

√
2κâin(t)eiδt,

d

dt
b̂ = −ig(t)e−iξâ0,

d

dt
âout(ω, t) = −iωâout(ω, t)− γ(ω)

[
â0e
−iδt + α(t)

]
+

√
π

κ
Ω̇L(t)δ(ω).

(4.49)

We have neglected the small terms (not proportional to α) −ig0a0(b̂ + b̂†), −ig0â
†
0â0,

and −ig0â0(β + β∗) in the equation of motion. In particular −ig0â0(β + β∗), which

is smaller than −ig0â0δ, complicates the equation describing the shape of g(t) (to be

derived below) and is neglected since it does not change the physics of the problem.
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Finally, note that Eqs. (4.47) give the solution for the time-dependent laser am-

plitude ΩL(t) such that the time-dependent coupling g(t) is implemented. In the next

sections, we derive the pulse g(t) for which any light state is absorbed into the cavity

and therefore perfectly mapped onto the mechanical system.

Condition for perfect absorption

The formal condition for perfect absorption can be derived as follows. After the trans-

formations are made, the evolution equation for âout(ω, t) reads

d

dt
âout(ω, t) =− iωâout(ω, t)− γ(ω)â0e

−iδt − γ(ω)α(t) +

√
π

κ
Ω̇L(t)δ(ω). (4.50)

By formally integrating this equation for the initial condition t = 0, as well as for the

final condition t = t1, and subtracting these two solutions after integrating over ω, one

obtains (using the approximation γ(ω) ≈
√
κ/π and that ΩL(0) = ΩL(t1) = 0)

0 =âin(t)− 1√
2π

∫ ∞
−ωL

e−iω(t−t1)âout(ω, t1)−
√

2κ
(
â0(t)e−iδt + α(t)

)
. (4.51)

This is the so called input-output relation [181], which relates the output field (the

second term containing the âout(ω, t1) modes) with the input field âin(t), the quantum

field from the cavity â0(t), and its coherent part α(t). The condition for perfect ab-

sorption is that the mean value of the output field only contains the coherent part from

the cavity, that is

1√
2π

∫ ∞
−ωL

dωe−iω(t−t1) 〈âout(ω, t1)〉 = −
√

2κα(t). (4.52)

With this condition, Eq. (4.51) reads

〈âin(t)〉 =
√

2κ 〈â0(t)〉 e−iδt. (4.53)

One can now plug this condition into the Eqs. (4.49) and obtains〈
d

dt
â0(t)

〉
= κ 〈â0(t)〉 − ig(t)

〈
b̂(t)
〉
eiξ,〈

d

dt
b̂(t)

〉
= −ig(t) 〈â0(t)〉 e−iξ,

(4.54)

which can be further simplified to

η(t)ġ(t)− η̇(t)g(t) + g3(t) 〈â0(t)〉 = 0, (4.55)

where

η(t) = κ 〈â0(t)〉 −
〈
d

dt
â0(t)

〉
. (4.56)
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State-independent pulse

The solution of Eq. (4.55) yields the optomechanical pulse g(t) necessary to per-

fectly transmit a light state into the mechanical system. In order to obtain a state-

independent solution, we will assume that a coherent state with phase αs is sent to the

cavity and we will show that the solution does not depend on αs. Therefore any linear

combination of coherent states (and therefore any state since they form a complete

basis) will be perfectly transmitted to the cavity with the pulse g(t).

The initial state is assumed to be

|ψ(0)〉 = exp

[
αs

∫ ∞
−ωL

φin(ω)â†out(ω)dω −H.c.

]
|00Ω〉 , (4.57)

where φ∗in(ω) is the shape of the pulse. One can then obtain that

〈âin(t)〉 = αsφ̃
∗
in(t), (4.58)

where φ̃∗in(t) is the Fourier transform of φin(ω), and using Eq. (4.53),

〈â0(t)〉 =
αsφ̃

∗
in(t)eiδt

√
2κ

. (4.59)

Then, Eq. (4.55) reads

[κµ(t)− µ̇(t)]ġ(t)− [κµ̇(t)− µ̈(t)]g(t) + µ(t)g3(t) = 0, (4.60)

where

µ(t) ≡ φ̃∗in(t)eiδt. (4.61)

This is the main result of the section since its solution yields the time-dependent cou-

pling g(t) for perfect mapping of any light state into the mechanical system: it does not

dependent on the coherent phase αs. In Fig. 4.2, the solution g(t) is plotted considering

φin(ω) to be the same Gaussian pulse as used in the reflected one-photon protocol, see

Eq. (4.24).

As an example, let us assume that one wants to transfer a photon in a superposition

state described by

|ψ〉 =
1√
2
|00Ω〉+

1√
2

∫ ∞
−∞

dωφin(ω)â†out(ω) |00Ω〉 . (4.62)

In Fig. 4.2 the mean value of b̂(t) is plotted using the g(t) solution obtained for the

Gaussian case. As expected,
〈
b̂(t)
〉

attains the value 1/2, showing that the superpostion

state (|0〉+ |1〉)/
√

2 has been prepared.

To sum up, this protocol facilitates a perfect mapping of any state of light into the

mechanical system without performing any measurement, merely by using a smooth

modulation of the optomechanical coupling.
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Fig. 4.2: Perfect state transfer of a |0〉+ |1〉 photonic state by sending a Gaussian light

pulse of width σ = 2κ/3 from a distance xin = 10κ. We plot the time modulation

of g(t)/κ (solid red line) and
〈
b̂(t)
〉

(dashed blue line). After the modulation, when

g(t) = 0, one obtains that
〈
b̂(t)
〉

= 1/2. This shows that the superposition state has

been mapped to the mechanical system without requiring a measurement.

4.5 Teleportation

Both protocols described in Sec. 4.3 and Sec. 4.4 require a moderately strong coupling

g ∼ κ. Despite the vast experimental progress [51], this regime still poses a challenge

to most optomechanical setups. As an alternative, in this section we derive a proto-

col, called teleportation in the bad-cavity limit (κ > g), which does not require the

strong-coupling regime [64, 77]. Once the mechanical oscillator is in the ground state,

it consists in driving the cavity with a blue-detuned field, such that the two-mode-

squeezing interaction is induced inside the cavity. The two-mode squeezed state is then

prepared by the optomechanical coupling between the mechanical mode and the cavity

mode, which rapidly leaks out of the cavity. The output mode of the cavity, which

is in a two-mode squeezed state with the mechanical system, can then be used as an

entanglement channel to teleport [187, 188] a non-Gaussian state of light from outside

the cavity onto the mechanical system (see Fig. 4.3 for an illustration of the protocol).

This protocol has first been introduced as an interface between quantum dots in optical

cavities [189]. In this reference, a detailed discussion of the protocol is provided, which

applies to our optomechanical setup in complete analogy. Thus, we will only summarize

and remark the important aspects of the protocol here.

Using the Hamiltonian Eq. (4.19), one can obtain the equations of evolution for
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|ψ〉e

|TMS〉b,out

ωL > ωc

Figure 4.3: Schematic representation of a light-mechanics interface of teleportation in

the bad-cavity limit. The cavity is driven by a blue-detuned laser which induces a

two-mode squeezing interaction between the cavity mode and the mechanical mode.

Being in the bad cavity limit κ > g, the cavity photons, which are in a two-mode

squeezed state |TMS〉 with the mechanical phonons, rapidly leak out. The output field

is combined in a beam splitter together with the non-Gaussian state to be teleported

|ψ〉e. A measurement of the output quadratures realizes the Bell measurement required

for teleportation [188].

â0(t) and b̂(t),

d

dt
â0(t) = −(iδ + κ)â0(t)− igb̂†(t) +

√
2κâin(t)

d

dt
b̂(t) = −iωtb̂(t)− igâ†0(t).

(4.63)

Transforming to the interaction picture (â0(t)→ â0(t)e−iδt and b̂(t)→ b̂(t)e−iωtt), and

considering the bad cavity limit (κ � g) one can adiabatically eliminate â0(t), by

setting d/dt â0(t) = 0. This gives

d

dt
b̂(t) =

g2

κ
b̂(t)− ig

√
2

κ
â†in(t)e−iδt. (4.64)

Formally integrating this equation and using the initial conditions
〈
â†in(t)âin(t)

〉
=〈

b̂†(0)b̂(0)
〉

= 0 (the mechanical initial state is assumed to be in the ground state)

yields 〈
b̂†(t)b̂(t)

〉
= e2 g

2

κ
t − 1. (4.65)

This can be used to obtain the squeezing parameter r of the entangled state, which will

provide the fidelity of the teleportation scheme. As proved in [189], the output mode of

the cavity and the mechanical system are in the two-mode-squeezed state |TMS〉b,out,
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defined by (in the displaced frame)

|TMS〉b,out = Ŝ
(
rsqe

iφ
)
|00〉

=
1

cosh rsq

∞∑
n=0

[
−eiφ tanh rsq

]n
|nn〉b,out

≡
∞∑
n=0

Θ̂n |nn〉b,out .

(4.66)

Here, φ = π/2 with the squeezing operator defined as

Ŝ
(
rsqe

iφ
)

= exp[−rsq(eiφâ†outb̂
† − e−iφâoutb̂)]. (4.67)

The squeezing parameter r can be obtained using the relation〈
b̂†b̂
〉

=
cosh r − 1

2
(4.68)

as

rsq = arcosh
(

2e2g2t/κ − 1
)
. (4.69)

The teleportation fidelity is given by [190]

Ftel =
1

1 + e−2rsq
. (4.70)

Let us now discuss the fact that the entangled state in the original frame is given by

D̂b(β)D̂out(αout) |TMS〉b,out . (4.71)

Here, D̂out(αout) is the displacement operator of the output mode, which is displaced by

αout as a consequence of the displacement of the output operators âout(ω) by αω (anal-

ogously to the discussion in App. 4.A.2). First, let us generally define the teleportation

scheme as the map K that teleports a light state |ψ〉e as follows:

K
[
|TMS〉b,out ⊗ |ψ〉e

]
=
∣∣ψ′〉

b
. (4.72)

Here, the subindex e labels the external system containing the state that will be tele-

ported. Let us remark that perfect teleportation |〈ψ|ψ′〉| = 1 can only be achieved for

the maximally entangled state rsq →∞. In order to determine the output state in the

original frame, let us first transform the initial state

D̂bD̂out |TMS〉b,out = D̂bÔb ⊗ D̂out

∞∑
n=0

|nn〉b,out

= [D̂bÔbD̂ᵀ
out]b ⊗ 1

∞∑
n=0

|nn〉b,out ,

(4.73)
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where Ôb =
∑∞

n=0 Θn |n〉〈n|. The relation Â⊗ B̂∑n |nn〉 = ÂB̂ᵀ⊗1∑n |nn〉 has been

used, where B̂ᵀ denotes the transpose of B̂. Using this relation, the output state of the

teleportation scheme with the original state is given by

K
[
D̂bD̂out |TMS〉b,out ⊗ |ψ〉e

]
= D̂bÔbD̂ᵀ

out |ψ〉b . (4.74)

This gives the final state of the teleportation protocol in the original frame. Note that

D̂ᵀ
out(αout) = D̂†out(α

∗
out). Therefore, one can get rid of this displacement by teleporting

the state D̂(α∗out) |ψ〉e, such that the state teleported in the mechanical system is given

by D̂b(β)O |ψ〉b (the displacement D̂b(β) can also be reduced by varying the center of

the trap when switching off the cavity lasers). Besides, note that one can in principle

also choose the appropriate initial state |ψ〉 in order to prepare a desired mechanical

system |φ〉, such that D̂b |φ〉b = D̂bO |ψ〉b.

4.6 Tomography

This chapter is concluded by providing a direct method to perform full tomography of

the state of the mechanical oscillator. In general optomechanical systems, tomography

can be carried out by coupling the mechanical resonator to a well-controlled quan-

tum system (e.g., a qubit), subsequently measuring the quantum system. This could

be analogously achieved in our setup by mapping the mechanical state to the cavity

mode using the enhanced beam-splitter interaction and performing full tomography of

the output field. However, this technique suffers from the drawback that the output

field contains a quantum state displaced by the large driving field and therefore, the

signal-to-noise ratio would be challenging for experimental detection with present-day

technology.

The method we propose here performs direct tomography of the mechanical os-

cillator [64]. It is well-known that measuring the rotated phase-quadrature operator

X̂ (θ) = eiθ b̂† + e−iθ b̂, (4.75)

for all θ, facilitates the reconstruction of the Wigner function and therefore contains

all the information about the state of the harmonic oscillator [183]. In this section we

propose an alternative method to directly perform full tomography of the mechanical

system. In particular, we exploit the analogy of levitated nanodielectric objects to

atomic physics, more specifically to cold gases, where time-of-flight measurements are

used to experimentally probe different many-body states [75]. In particular, the proto-

col to perform direct full tomography of the mechanical state consists of the following

steps (see Fig. 4.4):
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p(te)

z(t + tf ) ≈ (tf − t)p(te)/M

tf

Figure 4.4: Schematic illustration of the time-of-flight protocol to perform full tomog-

raphy of the mechanical state. The momentum operator at times te, which corresponds

to the rotated phase-quadrature χ̂(ωtte + π/2), is determined by measuring the posi-

tion of the dielectric after some time of flight. By repeating the experiment at different

times te, one can perform full tomography of the mechanical state.

1. We consider that at t = 0 a particular state |ψ〉 in the mechanical system is

prepared (for instance, a non-Gaussian state using the light-mechanics interface

introduced in Secs. 4.3, 4.4, 4.5). Immediately after the preparation of the state,

the cavity field is switched off and only the optical trapping remains switched on.

During these transient times the center of the trap has to be changed in order

to account for the variation in the classical force created by the driving field, as

discussed in the light-mechanics interface.

2. Then, during some given time te, the system is evolving within the harmonic

potential, such that the mechanical momentum operator in the Heisenberg picture

is given by

p̂(t) = ipm(b̂†eiωtt − b̂e−iωtt), t ∈ [0, te], (4.76)

where pm =
√
Mωt/2.

3. At t = te, the trap is switched off and the nanodielectric falls freely for the time

of flight tf , such that the distance from the center of the cavity along the cavity
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axis is given by

ẑ(te + tf ) = ẑ(te) + (tf − te)
p̂(te)

M

∼ (tf − te)
p̂(te)

M
,

(4.77)

where we assume that tf is sufficiently large such that

(tf − te)
p̂(te)

M
� ẑ(te). (4.78)

4. At t = te + tf , the position-operator ẑ(te + tf ) is measured (e.g., by imaging the

object and measuring the center of the light spot at the screen), which means

that the in-trap momentum p̂(te) is effectively measured.

5. The experiment is repeated in order to obtain statistics for any time te ∈ [0, 2π/ωt].

The data gained in this protocol provides the statistical distribution of the rotated

phase-quadrature operator, X̂ (θ). There exists the following one-to-one relation be-

tween the momentum operator and the rotated quadrature phase operator,

p̂(te) = X̂ (ωtte + π/2). (4.79)

Let us now discuss some experimental considerations. First, we will estimate the

order of magnitude of tf (and therefore the time-of-flight distance df = Gt2f/2, where

G is the gravitational acceleration). In particular, let us assume that after the time

of flight the position can be measured with a resolution given by δz. This implies

that the object has to spread over a distance much larger than δz, which means that

tf � Mδz/pm is required. Using the parameters given in Sec. 3.6 and sphere sizes

R ≈ 50nm, one obtains that tf is of the order of tens of ms, which would require a

time-of-flight distance of the order of one centimeter. Although this position resolution

is feasible, the requirement could even be relaxed with the same duration of time of

flight. The idea is to amplify the oscillation via driving the field with a blue-detuned

laser prior to the time of flight. More specifically, let us assume that just after the

preparation of the mechanical state, the cavity is impinged with a laser detuned to the

blue sideband of the cavity. This corresponds to including an additional step (point 1.b)

between steps 1 and 2 in the previous protocol. The blue-detuned driving is performed

during a certain time τ < 1/Γ (where Γ is the decoherence rate when the cavity field

is switched on). After this amplification, the momentum operator is transformed to

p̂(τ) = ipmp+(τ)(b̂†eiωtτ − b̂e−iωtτ ) + p̂cav(τ), (4.80)
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where p+(τ) is the amplifying parameter given by

p+(τ) = e−κt/2
[
cosh(χτ) +

κ

2χ
sinh(χτ)

]
(4.81)

with χ =
√
g2 + κ2/4. The term pcav(τ) results from the entanglement of the me-

chanical system to the cavity field due to the two-mode-squeezing interaction. It reads

p̂cav(τ) =
[
q∗(τ)eiωτ â0(0) + H.c.

]
, (4.82)

where

q(t) = −ige−
κt
2

sinh(χt)

χ
, (4.83)

and fulfills 〈p̂cav(τ)〉 = 0 (the cavity field is empty at t = 0) and
〈
p̂2

cav(τ)
〉

= |q(τ)|2.

After this amplification, step 2 of the protocol follows. If one assumes g = κ = 2π×100

kHz, and τ = 0.02 ms, one obtains that p+(τ) ∼ 103 and hence with the same time of

flight tf the required resolution is only

δz � tfpmp+(τ)/M ∼ 100µm; (4.84)

three orders of magnitude lower. Note that the amplification is restricted by keeping

the nanodielectric object in the region, where it still sees the slope of the standing wave,

i.e., the condition x0p+(τ) < 1 nm has to be fulfilled, where x0 ∼ 10−12 m is the ground

state size. In addition, one has to make sure that a sufficiently good signal-to-noise

ratio is achieved.

Let us remark that the rotated quadrature χ(θ) could, in principle, also be measured

by a quantum non-demolition measurement. This could be done by using the back-

action evasion scheme proposed by Braginsky in the 80’s [24], and recently revised from

a quantum noise perspective [191]. This protocol would also benefit from the absence

of clamping losses in the setup. The key idea of this method is to impinge the cavity

at the two motional sidebands, a scheme that has already been realized with trapped

ions [150,192].

The time of flight protocol presented in this section exploits the unique property of

using levitating objects in quantum optomechanical systems; the mechanical resonator

is unattached to other objects and therefore can fall freely.

4.A Displacement of the output modes

In this section we show how the expression of the displacement of the output modes,

αω, results from the steady state in the presence of a driving field. Then we discuss

how to measure a photon created on top of the coherent cavity driving in the output
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field. To simplify the problem, we assume a cavity of resonance frequency ωc, driven by

a laser at ωL. For this purpose, we exclusively analyze the cavity mode and the output

modes and take into account the mechanical mode only in the last subsection 4.A.3.

In the rotating frame with δ = ωc − ωL, the Hamiltonian reads

ĤL−out =δâ†0â0 +

∫ ∞
−ωL

ωâ†out(ω)âout(ω)dω + i

∫ ∞
−ωL

γ(ω)(â†0âout(ω)−H.c.)dω. (4.85)

4.A.1 Steady-state with a driving field

The initial state of the cavity and the output modes is given by.

|in〉 = |α〉 ⊗
∫ ∞
−ωL

dωδ(ω)D̂out(α0) |Ω〉 . (4.86)

Here, the cavity is in a coherent state with phase α, and all the output modes are

empty, only the laser mode is in a coherent state with phase α0 = ΩL/γ(0). In the

following, we will compute the final state

|st〉 = lim
t→∞

exp[−iĤL−outt] |in〉 . (4.87)

First, let us write the Heisenberg equations of motion:

d

dt
â0(t) = −iδâ0(t) +

∫ ∞
−ωL

dωγ(ω)âout(ω, t),

d

dt
âout(ω, t) = −iωâout(ω, t)− γ(ω)â0(t).

(4.88)

Then, one can formally integrate the differential equation for âout(ω, t),

âout(ω, t) = e−iωtâout(ω, 0)− γ(ω)

∫ t

0
dτ â0(τ)e−iω(t−τ). (4.89)

This solution can be inserted into the differential equation for â0(t). By using the

approximation γ(ω) ≈ γ(0) =
√
κ/π, one gets

d

dt
â0(t) = −(iδ + κ)â0(t) +

∫ ∞
−ωL

γ(ω)e−iωtâout(ω, 0), (4.90)

which can be integrated to

â0(t) =e−(iδ+κ)tâ0(0) +

∫ t

0
dτ

∫ ∞
−ωL

dωγ(ω)e−iωτ âout(ω, 0)e−(iδ+κ)(t−τ). (4.91)

Taking the mean value of this expression, using that 〈â0(0)〉 = α and 〈âout(ω, 0)〉 = α0,

gives

〈â0(t)〉 = e−(iδ+κ)tα+ γ(0)α0
1− e−(iδ+κ)t

iδ + κ
. (4.92)
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In the steady state, this is

α ≡ lim
t→∞
〈â0(t)〉 =

γ(0)α0

iδ + κ
=

ΩL

iδ + κ
. (4.93)

Note that we have assumed that the initial coherent state of the cavity is equal to the

steady state obtained when driving the cavity with the laser. Let us now compute the

mean value of the output modes, which after some algebra is given by

〈âout(ω, t)〉 = α0δ(ω)− γ(ω)

∫ t

0
dτ 〈â0(τ)〉 e−iω(t−τ)

= α0δ(ω)− αγ(ω)

∫ t

0
dτe−iωτ .

(4.94)

Then, the steady-state phase of the output modes can be expressed by

αω = lim
t→∞
〈âout(ω, t)〉

= [α0 − παγ(0)] δ(ω) + iαγ(ω)P
(
ω−1

)
,

(4.95)

which is identical to the expression used in Eq. (4.10).

It can be easily shown that the Hamiltonian is invariant under the displacement

operation D̂ = D̂aD̂out, with D̂†aâ0D̂a = â0 + α, and D̂†outâout(ω)D̂out = âout(ω) + αω.

By using that P
∫∞
−∞ ω

−1dω = 0, one can check that

D̂†ĤL−outD̂ = ĤL−out. (4.96)

This implies that the steady state

|in〉 = D̂ |0Ω〉 = |α〉 ⊗
∫ ∞
−ωL

dωD̂(αω) |0Ω〉 (4.97)

is indeed an eigenstate of the Hamiltonian:

ĤL−out |in〉 = D̂D̂†ĤL−outD̂ |0Ω〉 = D̂ĤL−out |0Ω〉 = 0. (4.98)

4.A.2 Measurement of a photon

In this section we compute the displacement of the output mode of the cavity. We

assume that at t = 0 a photon is present inside the cavity in the displaced frame, such

that

|ψ(0)〉 = |1Ω〉 . (4.99)

The Wigner-Weisskopf formalism gives for the state at some later time

|ψ(t)〉 = ca0(t) |1Ω〉+

∫ ∞
−ωL

dωc(ω, t)â†out(ω) |0Ω〉 , (4.100)
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where the coefficients are given by

ca0(t) = e−(iδ+κ)t,

c(ω, t) =
γ(ω)

(
e−iωt − e−(iδ+κ)t

)
i(ω − δ) + κ

.
(4.101)

For large t, the final state is given by |ψ(t)〉 = Â†out,t |0Ω〉, where the collective output

mode is defined as

Âout,t =

∫
φ∗out(ω)eiωtâout(ω)dω, (4.102)

with the mode function

φout(ω) =
γ(ω)

κ− i(ω − δ) . (4.103)

Let us now compute the number of photons in this collective mode after transforming

back to the non-displaced frame. By using the expression of the displacement of the

output modes αω, one obtains for the displacement of the output mode Âout,t,

αout =

∫ ∞
−ωL

φout(ω)eiωtαωdω = α. (4.104)

4.A.3 Switching off the driving field

In this Appendix, the final state of the one-photon protocol after switching off the driv-

ing field is discussed. The Hamiltonian in the frame rotating with the laser frequency

ωL, is given by

Ĥ ′tot =ωtb̂
†b̂+ δâ†0â0 +

∫ ∞
−ωL

ωâ†out(ω)âout(ω)dω + g0â
†
0â0(b̂† + b̂)

+ i

∫ ∞
−ωL

γ(ω)(â†0âout(ω)−H.c.)dω + λ(t)(b̂† + b̂),

(4.105)

where the term with λ(t) accounts for the variation of the center of the harmonic trap.

By writing the Langevin equations, and considering that there are no input fields since

they have already been switched off, one obtains

d

dt
â0 = −iδâ0 − κâ0 − ig0â0(b̂† + b̂),

d

dt
b̂ = −iωtb̂− ig0â

†
0â0 − iλ(t).

(4.106)

By displacing the operators by â0 → â0 + α, and restricting

α̇ = −iδα− κα,
0 = −ig0|α|2 − iλ(t),

(4.107)
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the following equations are obtained:

d

dt
â0 = −iδâ0 − κâ0 − ig0|α|(b̂† + b̂),

d

dt
b̂ = −iωtb̂− ig0|α|(â†0 + â0).

(4.108)

In the interaction picture one can perform the RWA in order to get

d

dt
â0 = −κâ0 − ig(t)b̂,

d

dt
b̂ = −ig(t)â0,

(4.109)

where

g(t) = g0|α(0)|e−κt. (4.110)

The equation for b̂ is then given by

d2

dt2
b̂− d

dt
b̂

(
ġ(t)

g(t)
− κ
)

+ b̂g2(t) = 0. (4.111)

The solution of this equation gives an estimation for the variation of the mechanical

state by switching off the driving field.
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Chapter 5

State preparation assisted with a

qubit

We propose and analyze nonlinear optomechanical protocols that can be implemented

by adding a single atom to an optomechanical cavity. In particular, we show how to

engineer the environment in order to dissipatively prepare the mechanical oscillator in a

superposition of Fock states with fidelity close to one. Furthermore, we demonstrate that

a single atom in a cavity with several mechanical oscillators can be exploited to realize

nonlinear many-partite systems by stroboscopically driving the mechanical oscillators.

This can be used to prepare nonlinear many-partite states by either applying coherent

protocols or engineering dissipation. The analysis of the protocols is carried out using a

perturbation theory for degenerate Liouvillians and numerical tools. Our results apply

to other systems where a qubit is coupled to a mechanical oscillator via a bosonic mode,

e.g., in cavity quantum electromechanics. This chapter mainly bases on and uses parts

of [118].

5.1 Introduction

As outlined in the introduction, Sec. 1.3, the prepraration of non-Gaussian states is one

of the most urgent challenges in optomechanics. Having investigated the coupling of a

single photon to the mechanical oscillator in Chap. 4, here we propose to couple the

mechanical oscillator to an auxiliary system that can easily be prepared in a nonclassical

state. In particular, we propose to add a single atom to the optomechanical cavity and

to couple the mechanical oscillator to its internal structure. This is motivated by the

improved finesse of optomechanical cavities approaching the strong-coupling regime for

single atoms [51,193].

We show that not only may coherent methods be applied to realize non-Gaussian
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physics, but that the strong decoherence through the cavity can prepare the nanome-

chanical oscillator in a non-Gaussian steady state with fidelity close to one. The main

idea is to exploit the dissipation rather than treating it as an obstacle [194]. While this

approach has been proposed to prepare squeezed and entangled states of mechanical

oscillators [48,195–202], here we show how to use it to prepare non-Gaussian states. We

extend the analysis to many-partite systems, where we show that adding N mechanical

oscillators into a cavity containing the single atom, realizes a system with N nonlinear

modes. This is achieved via stroboscopically driving the oscillators’ frequencies. Based

on this, we show how both dissipative and coherent state-preparation methods may be

applied. The results presented here are applicable to the general case where a single

qubit is coupled to a mechanical oscillator via a bosonic mode. This can be achieved

in a variety of physical systems, e.g., in cavity quantum electromechanics [43,50].

5.1.1 Reader’s guide

The Chapter is organized as follows: in Sec. 5.2 we describe the system, list the as-

sumptions and define the Hamiltonian. Following this, in Sec. 5.3, we present the main

result of this chapter, the dissipative preparation of the system in a non-Gaussian state.

First, a general perturbation theory for degenerate Liouvillians is described in Sec. 5.3.1

that will be used throughout the chapter to explain the numerical result. Based on this,

we describe how the interplay between the jump operators and the noise terms of the

mechanical oscillator and the qubit prepares the system in a steady state in Sec. 5.3.2.

To increase the fidelity for the preparation of the non-Gaussian state, additional noise

operators are included in Sec. 5.3.3. This is followed by an analysis of their perturba-

tive effect in Sec. 5.3.4. For comparison, in Sec. 5.4 the coherent approach for state

preparation is described. The analysis is rounded off by the extension of the protocol

to many-partite systems in Sec. 5.5, where both dissipative (Sec. 5.5.1) and coherent

protocols (Sec. 5.5.2) are described.

5.2 The setup

We consider a two-level system and a mechanical oscillator both coupled to a cavity.

The system’s Hamiltonian is given by

Ĥmq =δâ†1â1 +
∆

2
σ̂z + ωtb̂

†b̂+ g(â†1b̂+ â1b̂
†)− gq(â1σ̂

+ + â†1σ̂
−) + Ω(σ̂+ + σ̂−)

+ Ĥaux,

(5.1)

with

Ĥaux = δauxâ†2â2 − gaux(â†2b̂
† + â2b̂) + gaux

q (â†2σ̂
+ + â2σ̂

−). (5.2)
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b̂(b̂†) describe the annihilation (creation) operators of the mechanical mode at frequency

ωt. We assume that the cavity supports two modes with annihilation (creation) op-

erators âi(â
†
i ) (i = 1, 2) detuned by δ and δaux respectively. Both modes are strongly

driven, â1 (â2) with a red (blue)-detuned field, such that their single-photon coupling

strength is enhanced by the square root of the number of steady-state photons to g

(gaux) (see Sec. 4.2.2 for more details on the displacement of the driving field). The

qubit is described by the lowering (raising) operators σ̂−(σ̂+) detuned from the laser

frequency by ∆, strongly driven at Ω, and coupled to the two cavity modes by gq and

gaux
q respectively.

The dissipative processes are described by master equations of Lindblad form. The

loss of cavity photons with a decay rate κ is given by

LL[ρ̂] = 2κ

[
â1ρ̂â

†
1 −

1

2
{â†1â1, ρ̂}+

]
. (5.3)

The decay of the auxiliary mode â2 is defined in full analogy with decay rate κaux. The

dissipation caused by the qubit is given by

LQ[ρ̂] = Γq

[
σ̂−ρ̂σ̂+ − 1

2
{σ̂+σ̂−, ρ̂}+

]
, (5.4)

where Γq is the spontaneous emission rate. For the mechanical oscillator the decoher-

ence at a rate Γm is described by

LM[ρ̂] = Γm

[
(b̂+ b̂†)ρ̂(b̂† + b̂)− 1

2
{(b̂+ b̂†)2, ρ̂}+

]
. (5.5)

We choose decoherence of the localization type [64, 88] e.g., dominant in levitating

dielectrics (see also Sec. 3.6 for more details). For a different decoherence mechanism,

the analysis is in full analogy.

Throughout the chapter we consider the regime where the cavity merely mediates

the interaction between the oscillator and the two-level system, and can be adiabatically

eliminated. Therefore, the following conditions have to be fulfilled: first, the coupling

between the cavity and both the oscillator and the qubit has to be small, fulfilling either

gq(m)/κ � 1 (dissipative dynamics, see Sec. 5.3), or gq/|δ − ∆| � 1, g/|δ − ωt| � 1

(coherent dynamics, see Sec. 5.4), or both conditions. Second, the interaction mediated

by the cavity has to be stronger than the dissipative processes leading to the good-

cooperativity requirement for both the qubit Cq = g2
q/(κΓq) > 1, and the mechanical

oscillator Cm = g2/(κΓm) > 1. Note that the more demanding strong-coupling limit,

g > Γm, κ and gq > Γq, κ is not necessary (the same conditions apply to the cavity

mode â2).



102 5. State preparation assisted with a qubit

Possible realizations of the Hamiltonian of Eq. (5.1) range from electromechanical

setups [41, 50], where a microresonator couples a mechanical oscillator to a supercon-

ducting qubit, to cavity-optomechanical systems with a cavity mediating the interac-

tion between a two-level atom and a mechanical membrane [119,120,193] or a levitating

sphere [64, 77, 78]. Remarkably, in the specific case of levitating spheres, the regime

where ground-state cooling is possible makes the same cavity suitable for coupling to

single atoms [64]. This is due to the fact that in this case, the cooperativity of the

mechanical oscillator reduces to the single-atom case Cm = Cq and only depends on

cavity parameters 1.

5.3 Dissipative dynamics

The goal of preparing non-Gaussian states of nano-mechanical oscillators is often hin-

dered by the unavoidable occurrence of dissipation. In contrast, the proposed protocol

exploits the interaction with the environment to prepare a mechanical oscillator in a

non-Gaussian dark state with fidelity close to one. This goes along the line of ideas

developed and analyzed recently for a variety of different systems [194, 200, 201, 203].

We assume the limit where dissipation dominates, namely gq(m)/κ � 1, and choose

g = gq, Ω = 0, ∆ = δ = ωt, and Ĥaux = 0. An adiabatic elimination of the cavity mode

in the Hamiltonian, Eq. (5.1), yields an effective dissipative dynamics governed by the

Liouvillian

L0[ρ̂] = Γeff

[
Ĵ0ρ̂J

†
0 −

1

2
{Ĵ†0 Ĵ0, ρ̂}+

]
. (5.6)

Here, the jump operator is given by Ĵ0 = b̂ − σ̂− and the effective decay rate by

Γeff = 2g2/κ. L0[ρ̂] possesses two degenerate steady states,

ρ̂A =
1

2
(|g, 1〉+ |e, 0〉) (〈g, 1|+ 〈e, 0|) , (5.7)

and ρ̂B = |g, 0〉〈g, 0|. Here, g (e) describes the qubit’s ground (excited) state in the

basis of σ̂z, and 0 (1) the ground (excited) state of the phononic mode. While ρ̂A is a

non-Gaussian entangled state for the phonon, ρ̂B describes the Gaussian ground state.

This degeneracy can be lifted by additional dissipative terms and is very sensitive to

any perturbation, as shown below. The goal is to lift the degeneracy such that the

1Light-induced dissipation processes dominate Γm reducing the cooperativity of the nanomechanical

resonator to the one of the single-atom case entirely determined by the cavity, Cm = Cq = c3/(2ω2
cVcκ),

where Vc is the cavity volume and c the speed of light. The minimal phonon number attainable when

cooling a mechanical oscillator in the resolved sideband regime is given by nmin = (κ/(4ωt))
2 +1/(4Cm),

thus the two conditions are equivalent.
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probability to prepare ρ̂A is maximized. To achieve this, we introduce a perturbation

theory for degenerate Liouvillians in Sec. 5.3.1. Following this, we investigate the steady

states including the noise operators LQ (Eq. (5.4)) and LM (Eq. (5.5)) in Sec. 5.3.2. In

Sec. 5.3.3, an additional general linear jump operator is introduced and specified such

that the probability to prepare the non-Gaussian state is maximized. In Sec. 5.3.4, the

analysis is completed by a consideration of the perturbative regime that explains the

results.

5.3.1 Perturbation theory for degenerate Liouvillians

In the following, we give a description of the perturbation theory for degenerate Liou-

villians [194] used throughout the paper. In order to determine the steady state of a

Liouvillan described by

L = L0 + εLpert, (5.8)

with ε � 1, we can treat Lpert as a perturbation to L0. The underlying concept is to

provide an effective description of the dynamics of the fast subspace (given by Lpert) by

applying a transformation that dresses the eigenstates of the slow subspace (given by

L0). An expansion of the effective Liouvillian in terms of the perturbation parameter

ε yields

Leff = L0 + εPLpertP− ε2PLpertQL−1
0 QLpertP+ ...., (5.9)

where P (Q = 1 − P) projects into the subspace that is kept (eliminated). In the

following, we show how to determine P. We define

P = ρ̂A ⊗ χA + ρ̂B ⊗ χB. (5.10)

Its action on an arbitrary density matrix µ̂ is given by

Pµ̂ = ρ̂Atr(χAµ̂) + ρ̂Btr(χBµ̂). (5.11)

Here, ρ̂i (χi) (with i = A,B) denote right (left) eigenvectors of the Liouvillian L0 (L♦0 )

with eigenvalue zero, where L♦0 denotes the Liouville operator acting on left states.

That is,

L0[ρ̂A(B)] = 0, (5.12)

and

χA(B)L♦0 = 0. (5.13)

Besides, for P to be a projector,

P (Pρ̂) = P (ρ̂) (5.14)
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and the completeness relation ∑
i,j=A,B

ρ̂i ⊗ χj = 1 (5.15)

have to be fulfilled. This imposes biorthonormality, tr (χAρ̂B) = tr (χBρ̂A) = 0 and

tr (χAρ̂A) = tr (χBρ̂B) = 1. Since the definition of P is not unique due to the degeneracy

of the Liouvillian L0, we impose the additional condition on

PLpertP =
∑

i,j=A,B

tr (χiLpert[ρ̂j]) ρ̂i ⊗ χj (5.16)

to be diagonal, i.e., tr (χiLpert[ρ̂j]) = 0 for i 6= j. This is analogous to degenerate

perturbation theory in the Hamiltonian case.

The steady state of the Liouvillian in perturbation theory to first order is thus

given by the eigenstate of L0 + εPLpertP with eigenvalue zero. It can be shown that

L0 + εPLpertP with Liouvillians of Lindblad form always possess a zero eigenvalue. To

prove this, it is sufficient to demonstrate 2

tr [(L0 + εPLpertP)[µ̂]] = 0. (5.17)

The Lindblad form of L0 and the trace’s invariance under cyclic permutations yields

tr (L0[µ̂]) = 0. Furthermore,

tr (PLpertP[µ̂]) =
∑

i,j=A,B

tr (χiLpert[ρ̂j]) tr (χjµ̂)

=
∑
j=A,B

tr (χjµ̂) tr
(
Lpert[ρ̂j]

∑
i=A,B

χi︸ ︷︷ ︸
=1

)

= 0,

(5.18)

where the completeness of the left eigenvectors
∑

i χi = 1 and the Lindblad form of

Lpert have been used.

Higher orders of the perturbation theory can be determined analogously, but we

will restrict the analysis to the lowest order in ε throughout this chapter.

5.3.2 Steady state with noise

We analyze the effect of the additional noise caused by the spontaneous decay of the

atom Lq (Eq. (5.4)) and the decoherence of the mechanical oscillator Lm (Eq. (5.5)).

2Given the spectrum of Leff with the real part of all eigenvalues smaller or equal to zero, and the

preservation of the trace, its direct consequence is the existence of a steady state.
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Figure 5.1: (Color online) Fidelity for the preparation of the non-Gaussian state ρ̂A as

a function of Cm for different qubit cooperativities Cq. Solid blue: Cq =∞, Dashed red :

Cq = 100, Dash-dotted green: Cq = 20 (Dotted black: comparison to the analytic result

for Cq = 20), Solid orange: Cq = 10, Dashed purple: Cq = 5.

These additional Liouvillians lift the original degeneracy of the steady state of L0.

Perturbation theory to first order yields the unique dark state

ρ̂SS = αnρ̂A + βnρ̂B (5.19)

for L0 +P (Lm + Lq)P. The coefficients depend on the noise parameters and are given

by

αn =
4Γm

4Γq + 9Γm
(5.20)

and

βn =
4Γq + 5Γm

4Γq + 9Γm
. (5.21)

To complement the analytical study, we carry out a numerical evaluation of the steady

state, which is shown to be in good agreement with the perturbation theory for Cq, Cm �
1, as illustrated in Fig. 5.1. As expected from the analytical result, the fidelity to

prepare the entangled non-Gaussian state ρ̂A is maximized for Γq = 0 and can reach

F [ρ̂A] = tr[ρ̂SSρ̂A] = αn = 4/9. (5.22)

The optimal value of Cm to maximize F [ρ̂A] for a given Cq can be read from Fig. 5.1.

Thus, the system’s inherent noise leads to the preparation of a mechanical oscillator in

a non-Gaussian state with a fidelity F [ρ̂A] ≤ 4/9.



106 5. State preparation assisted with a qubit

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ζ

F
[ρ̃

A
]

0 0.5 10

0.5

1

ζ

F
[ρ̃

A
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ζ

F
[ρ

m
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

γaux/γeff

F
[ρ

m
]

Figure 5.2: (Color online) Fidelity to prepare a) ρ̃A and b) ρ̂A,m as functions of ζ

for Γaux/Γeff = 1 and different cooperativities. The size of the Hilbert space for the

mechanical oscillator is chosen as N = 10. Solid blue: Cq = Cm = ∞, Dashed red :

Cq = Cm = 100, Dash-dotted green: Cq = Cm = 20, Solid orange: Cq = Cm = 10. Inset:

Comparison of the simulation for Cm = Cq = 100 and different sizes of the Hilbert space.

Solid blue: N = 30, Dashed red: N = 10. c) Fidelity to prepare ρ̂A,m as a function

of Γaux/Γeff for ζ = 0.2, Cm = Cq = 1000 and different jump operators Ĵ1. Solid blue:

Ĵ1 = σ̂+ − ζb̂†, Dashed red: Ĵ1 = σ̂+, Dash-dotted green: Ĵ1 = σ̂+ + ζb̂†, Solid orange:

Ĵ1 = b̂†.
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5.3.3 Steady state with an engineered environment

In the following we propose a protocol to enhance the fidelity for the preparation of non-

Gaussian states. For this purpose, we consider the modified jump operator J̃0 = b̂−ζσ̂−
for L0 (given by Eq. (5.6)) with ζ = (gq/g)2 (we choose ζ ≤ 1). It can be realized with

the Hamiltonian Eq. (5.1) for g 6= gq. The steady state of L0 is thus degenerate and

composed of ρ̂B as defined previously and

ρ̃A =
1

1 + ζ2
(ζ|g, 1〉+ |e, 0〉)(ζ〈g, 1|+ 〈e, 0|). (5.23)

In order to lift the degeneracy in a way that leads to an increased population in ρ̃A, we

introduce an additional Liouvillian

Laux = Γaux

[
Ĵ1ρ̂Ĵ

†
1 −

1

2
{Ĵ†1 Ĵ1, ρ̂}+

]
, (5.24)

with jump operator Ĵ1 = σ̂+ − ζb̂†. This jump operator can be realized by including

Haux 6= 0 in the Hamiltonian of Eq. (5.1) with a blue detuning δaux = ωt = −∆. This

yields Γaux = 2
(
gaux

q

)2
/κaux and ζ = (gaux/gaux

q )2 = (gq/g)2. Together with the noise

terms Lm and Lq, the steady state is given by

ρ̃SS = αauxρ̃A + βauxρ̂B. (5.25)

In the presence of the inherent noise, the fidelity to prepare the system in the

entangled non-Gaussian state ρ̃A is strongly enhanced by Laux as shown in Fig. 5.2

a) 3. For example, for Cm = Cq = 100 and ζ = 0.2, the fidelity for the preparation

of ρ̃A is close to one, F [ρ̃A] = 0.98. Even for much smaller cooperativies, e.g., for

Cm = Cq = 10, the fidelity is F [ρ̃A] = 0.82.

Despite the increment of the fidelity for the preparation of ρ̃A, the amount of entan-

glement of the steady state depends on ζ. For small ζ, the state is close to the ground

state of the harmonic oscillator and shows only little entanglement. To prevent this,

we propose to measure the qubit in the basis

|+〉q =
(ζ|e〉+ |g〉)√

1 + ζ2
, (5.26)

3Some care has to be taken in the numerical study as the system only exhibits a steady state for

ζ < 1: in the regime where the bosonic operator b̂† dominates, no steady state is reached. Consequently,

the Hilbert space for the phononic mode needs to be sufficiently large, as a finite Hilbert space generally

might yield a steady state although it does not exist. This is illustrated in the inset of Fig. 5.2 a),

where the steady state obtained for a Hilbert space of size N = 10 is compared to N = 30. It

demonstrates that in the regime of interest, namely where the fidelity to prepare ρ̃A is high, they are

in good agreement and the numerical study is valid.
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|−〉q =
(|e〉 − ζ|g〉)√

1 + ζ2
, (5.27)

and postselect to keep only the |+〉q-result. This prepares the mechanical oscillator in

ρ̂SS,m = αmρ̂A,m + βmρ̂B,m, (5.28)

with

ρ̂A,m =
(|0〉+ |1〉)(〈0|+ 〈1|)

2
(5.29)

and

ρ̂B,m = |0〉〈0|. (5.30)

In Fig. 5.2 b), we show that the maximal fidelity is F [ρ̂A,m] = αm = 0.83 for ζ = 0.25

and cooperativities Cm = Cq = 100. In comparison, when only the system’s inherent

noise is included, the maximal fidelity is F [ρ̂A] = 4/9 for Cm = Cq = ∞. In full

analogy, Fock states can be prepared via a suitable choice of the measurement basis.

For instance, by measuring in the |g〉 and |e〉-basis and postselecting to keep the |g〉-
result, we can prepare the |1〉-state for the mechanical oscillator. For ζ = 0.25 and

cooperativities Cq = Cm = 100, a fidelity of F ≈ 0.83 is achievable .

Furthermore, we investigate the dependence of F [ρ̂A,m] on Γaux/Γeff as shown in

Fig. 5.2c). We also analyze different jump operators Ĵ1 and demonstrate that the

optimal configuration to maximize F [ρ̂A,m] is achieved for Ĵ1 = σ̂+−ζb̂† and Γaux/Γeff ≈
1. Note that throughout this subsection we rely on numerical simulations since the

perturbation theory of Sec. 5.3.1 is only valid in the regime Γaux/Γeff � 1.

5.3.4 Insights from perturbation theory

In this section we show how the previous results can be understood within perturbation

theory. As the optimal case Γeff = Γaux cannot be described within perturbation theory,

we focus on the perturbative limit Γaux � Γeff . We consider the general jump operator

Ĵ1 = σ̂+ + ησ̂− + νb̂− ζb̂† (5.31)

that prepares the qubit and the oscillator in the steady state given by Eq. (5.25).

Perturbation theory shows that the maximal value for both F [ρ̃A] and F [ρA,m] is

obtained for ν = η = 0. We thus choose Ĵ1 = σ̂+ − ζb̂† to compare with the

numerical study 4. Within perturbation theory to first order, the steady state of

4Note that in principle the perturbation theory also applies for ζ ≤ 0. However, care has to be

taken as the range of validity of the analytical result depends on ζ. This is because it is carried out

assuming a finite-sized Hilbert space with maximal occupation number two for the harmonic oscillator.

For ζ ≤ 0, high-occupation number states of the harmonic oscillator are excited more frequently than

for ζ ≥ 0.



5.3 Dissipative dynamics 109

0 0.2 0.4 0.6

0.4

0.6

0.8

1

ζ

F
[ρ̃

A
]

0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

ζ

F
[ρ

A
,m

]

Figure 5.3: (Color online) Fidelity for the preparation of a) ρ̃A and b) ρ̂A,m as a function

of ζ in the perturbative regime Γaux/Γeff = 0.1. The different colors show various

cooperativities and compare the numerical result (solid line) to the perturbative one

(dashed line). Blue: Cq = Cm = ∞, Red : Cq = Cm = 100, Green: Cq = Cm = 20,

Orange: Cq = Cm = 10.

L0 + P
(
Laux + LQ + LM

)
P is given by Eq. (5.25) with

αaux =
A
(
Γmζ

2 + Γaux(1− ζ2)2
)

ΓqA+ ΓmB + ΓauxC
,

βaux =
A(Γq + Γmζ

2) + 2Γauxζ
4(3− ζ2(2− ζ2))

ΓqA+ ΓmB + ΓauxC
,

(5.32)

where A =
(
3 + 4ζ2 + ζ4

)
, B = 2ζ2

(
3 + 4ζ2 + 2ζ4

)
, and C = 3−2ζ2 + 2ζ4−2ζ6 + 3ζ8.

This perturbative result is compared to a numerical simulation in Fig. 5.3 for Γaux �
Γeff . It is in good agreement with the numerical results, with an increasing deviation

for lowered cooperativities.

Also the results for the preparation of ρ̂SS,m after carrying out the measurement

as given by Eq. (5.28) can be understood within perturbation theory. αm and βm are
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given by

αm =
2ζ2Γaux(3− 5ζ2 + ζ4 + ζ6) + 2ζ4Γm(3 + ζ2)

AΓq +DΓm + EΓaux
,

βm =
AΓq + Γmζ

2(3 + 4ζ2 + 3ζ4) + 2Γauxζ
4(3− 2ζ2 + ζ4)

AΓq +DΓm + EΓaux
,

(5.33)

with D = ζ2(3 + 10ζ2 + 5ζ4) and E = ζ2(6− 4ζ2 − 2ζ4 + 4ζ6). A numerical evaluation

for different ζ as demonstrated in Fig. 5.3 b) shows that the perturbation theory is in

accordance with the numerical prediction.

5.4 Coherent dynamics

Let us now consider the coherent dynamics corresponding to the regime given by

gq

|δ −∆| � 1,
g

|δ − ωt|
� 1. (5.34)

Eliminating the cavity mode from Eq. (5.1) (with Haux = 0) gives

Ĥeff =
∆̃

2
σ̂z + ω̃tb̂

†b̂− g(σ̂+b̂+ σ̂−b̂†) + Ω(σ̂+ + σ̂−), (5.35)

where

∆̃ = ∆−
2g2

q

δ −∆
(5.36)

and

ω̃t = ωt −
2g2

δ − ωt
(5.37)

are the renormalized frequencies. The cavity-mediated coupling between the qubit and

the mechanical oscillator is given by

g =
gqg(2δ − ωt −∆)

(δ −∆)(δ − ωt)
. (5.38)

In the good-cooperativity limit, several interesting phenomena can be observed.

First, the Hamiltonian of Eq. (5.35), which is the well-known Jaynes-Cummings

Hamiltonian, enables the preparation of arbitrary Fock states following the proposal of

Law and Eberly [204]. It relies on switching interaction strengths time-dependently by

varying the laser intensities driving the different couplings. This requires M steps for

the preparation of arbitrary superposition states with maximal occupation number M .

Therefore, all dissipation processes have to be slower than the coherent manipulation

time, which is fulfilled for
gqg

κΓq(m)
, Cq(m) �M. (5.39)
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Second, Eq. (5.35) predicts the occurence of blockade phenomena, a typical indicator

of nonlinear behavior. Due to the presence of the qubit, the photon blockade [205] is

observable for gq � κ,Γq. Additionally, also the phonon blockade can be observed [107,

108]: eliminating the atom to fourth order from Eq. (5.35) (justified for g/|∆−ωt| � 1

and |∆− ωt| > Γq) yields an effective nonlinear Hamiltonian

Ĥphon = ω̃tb̂
†b̂+

g4

∆− ω3
t

(b̂†b̂)2. (5.40)

In addition, the good cooperativity

gqg

κΓq(m)
, Cq(m) � 1 (5.41)

ensures that the splittings effected by the nonlinear interaction are not smeared out by

noise processes.

5.5 Many-partite system

An intriguing perspective in the field of optomechanics is to couple several nonlinear

nanomechanical oscillators to realize a many-partite system. This is required for quan-

tum simulation [105,206] and might be particularly useful for the preparation of many-

partite states for quantum metrology. To achieve this goal, we propose to use a cavity

to mediate the interaction between several mechanical oscillators and a single qubit.

In order to realize N nonlinear modes, we suggest to drive the mechanical frequencies

stroboscopically. Any physical system with a tunable mechanical frequency, e.g., lev-

itating dielectric spheres, can realize this protocol. In the following, the operators for

each mechanical mode are termed b̂i (i = 1, ...N) with corresponding time-dependent

frequencies ωi(t) that are switched between a value on resonance ωon and off resonance

ωoff . The case where the modulation of the couplings is achieved via a sinusoidal drive

can be treated in full analogy.

The proposal requires the following conditions:

1. Due to the time-dependence of ωi(t), also the operators b̂i(b̂
†
i ) are time-dependent.

Requiring b̂i(b̂
†
i ) to be identical at the time of switching requires it to take place

with a periodicity τ = 2πn/ωoff .

2. The adiabatic elimination requires g/|δ−ωi(t)|, gq/|δ−∆| � 1 (coherent dynam-

ics) or gq(m)/κ� 1 (dissipative dynamics).

3. The stroboscopic switching has to be faster than the interaction between the

different components of the system, therefore gτ, gqτ � 1.
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4. The frequency change has to be the fastest time scale in the system, (ωon −
ωoff)τ � 1.

5. The good cooperativity limit Cq, Cm � 1 is necessary.

In order to verify these conditions, we numerically simulate the stroboscopic driving

of two oscillators as illustrated in Fig. 5.4. Initially, the qubit is in an excited state and

it is shown that this excitation is coherently shifted to the mechanical oscillators and

back to the qubit resulting in Rabi oscillations. We show in the upper panel that the

stroboscopic driving is effective if conditions (i)-(v) are fulfilled. The robustness of the

setup towards noise is illustrated in the lower panel, where the decay of the oscillations

of the stroboscopically-driven system is analyzed for different cooperativities. It shows

that the good-cooperativity limit is necessary, as otherwise oscillations decay rapidly.

We plot the population of the first oscillator, as all other oscillators coupled to the

qubit behave in full analogy. As shown below, the stroboscopic driving enables the

individual addressability of each oscillator as opposed to the continous driving, where

only the center-of-mass-mode is coupled.

5.5.1 State preparation of the many-partite system

Let us now translate the ideas for state preparation from the single-oscillator to the

many-partite case. To start the state-preparation in a well-defined state, each oscillator

is cooled to its ground state via stroboscopic driving without coupling to the qubit. It

can be shown that the effective coupling strength is ∝ g/N , and the light-scattering-

induced dissipation scales ∝ Γm/N
2, rendering the cooperativity independent of the

number of oscillators. Hence, the same conditions as in the single-particle case apply

for ground-state cooling 5. This can be used to prepare all the oscillators in their

respective ground state,

|ψ〉ini = ⊗Ni=1|0〉i. (5.42)

One can now employ dissipative protocols to prepare interesting many-partite non-

Gaussian entangled states, e.g., the W-state

|ψ〉W =
1√
N

(|10...0〉+ ...+ |0...01〉). (5.43)

This can be achieved as follows. Starting from the ground state given by Eq. (5.42),

all oscillators are tuned on resonance. In this case, the interaction between the qubit

5Note that in systems where other sources of decoherence e.g., heating through a direct thermal

contact are dominant, the cooperativity might depend on the number of oscillators. This has to be

taken into account accordingly.
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Figure 5.4: (Color online) Dynamics of two stroboscopically-driven mechanical oscilla-

tors coupled to an initially excited qubit. Top: Comparison between the population

of the mechanical mode under the full evolution (solid blue line) and the adiabatically

eliminated one (dashed red line), all parameters are given in units of gqg/δ and no

dissipation is included. Left: Conditions (i)-(v) are fulfilled, Right: Condition (i) is

not fulfilled. Bottom: Evolution under the influence of dissipation over time [δ/ggq]

for different cooperativities: Solid Blue: Cm = Cq = ∞, Dashed red: Cm = Cq = 1000,

Dotted green: Cm = Cq = 100, Solid orange: Cm = Cq = 10.

and the oscillators can be described in analogy to eqs. (5.6) and (5.24) by the effective

Liouvillians Lcm
0 [ρ̂] + Lcm

1 [ρ̂] with jump operators

Ĵcm
0 = b̂cm − ζσ̂− (5.44)

and

Ĵcm
1 = σ̂+ − ζb̂†cm. (5.45)

Here

b̂cm =
N∑
i=1

b̂i/
√
N (5.46)

denotes the center-of-mass operator. In full analogy to the single-oscillator case, the

system can be dissipatively prepared in a Fock state of the center-of-mass-motion of

the mechanical oscillators by performing a measurement of the qubit’s state followed by
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postselection. This leads to the W-state given by Eq. (5.43), namely |ψ〉W = b̂†cm |ψ〉ini.

The fidelity to prepare the system in this dark state is thus given by the fidelity of the

protocol for single oscillators and can reach e.g.,

F [|ψ〉W 〈ψ|] ≈ 0.83 (5.47)

for Γaux = Γeff and Cq = Cm = 100.

5.5.2 Coherent state preparation of N mechanical oscillators

In the following we develop a method for coherent state preparation of a system con-

sisting of N mechanical oscillators and a single qubit. Our approach is based on a

protocol proposed by Law and Eberly, see [204], that has already been mentioned in

Sec. 5.4. Here, we provide its extension to N -body systems. The goal is to determine

the full time evolution U(tfin) that prepares a system, initially in its ground state |ψ〉ini

(Eq. (5.42)), in a target state |ψ〉target. The key tool of [204] is to realize that this

evolution operator may be obtained by solving the equations of motion of the inverse

evolution U(−tfin) given by

|g〉 ⊗ |ψ〉ini = U(−tfin)|g〉 ⊗ |ψ(tfin)〉target. (5.48)

That is, it transfers the system from the target state |ψ(tfin)〉target to its ground state.

In the many-partite case the goal is to evolve the initial state, Eq. (5.42), to the

general Fock state

|ψ(tfin)〉target =
M∑

n1=0,...,nN=0

cn1...nN |n1, ..., nN 〉, (5.49)

with maximal occupation number M for each of the N oscillators at time tfin. In

order to extend the Law-Eberly approach, it is essential to address each of the states

separately. This requires a Hamiltonian that is only on resonance with one specific

state at a time.

As it has been demonstrated previously, the time-dependent switching of the fre-

quencies of the mechanical oscillators enables single-oscillator addressability. The

Hamiltonian of the system is given by the many-partite extension of Eq. (5.35) with

Ĥaux = 0. Being off-resonant, the other oscillators may be adiabatically eliminated

during the manipulation of the jth oscillator, which gives

Ĥeff
j =

∆

2
σ̂z +

N∑
i 6=j

liniσ̂z + ωj b̂
†
j b̂j − gj(t)(σ̂+b̂j + σ̂−b̂j) + Ωj(t)(σ̂

+ + σ̂−), (5.50)

with li = −2g2
i /(∆− ωi). The second term in Eq. (5.50) describes the renormalization

of the atomic frequency determined by the occupation number ni of all off-resonant
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oscillators. It has to be taken into account when turning the jth oscillator on resonance

with the atom. This additional renormalization shift enables a unique addressing of

each state of the many-partite system provided that
∑

i 6=j li(ni−n′i) = 0 iff ni = n′i,∀i.
Hence, the operation that prepares the jth oscillator in the desired state is given

by

Ûj = Û
(n1=M,...,nN=M)
j ...Û

(n1=1,...,nN=1)
j , (5.51)

where the dots in the multiplication account for all possible permutations of occupa-

tion numbers of the off-resonant oscillators. Each Û
(n1,...,nN )
j performs the Law-Eberly

protocol on the jth oscillator under the condition that the other oscillators are in state

|n1, ..., nN〉. The mechanism is subsequently applied to all oscillators yielding the full

time evolution Û(tfin) = ÛN ...Û1. In general, the maximal number of necessary steps

for the preparation of an arbitrary state Eq. (5.49) is given by

#(steps) =

N−1∑
i=0

(M + 1)M. (5.52)

It increases from M steps for the preparation of the Mth Fock state in the single-

oscillator case to at most MN steps in the many-partite case.

As an illustration, let us consider the necessary steps for the preparation of

|ψ〉spec =
1√
3

(|0, 5, 0〉+ |1, 5, 10〉+ |1, 1, 1〉) . (5.53)

We consider the inverse evolution Û(−tfin) = Û †3 Û
†
2 Û
†
1 preparing Eq. (5.53) in the

ground state. Applying

Û †1 = Û
†,(n2=1,n3=1)
1 Û

†,(n2=5,n3=10)
1 , (5.54)

as defined in Eq. (5.51), requires 2 steps and prepares the first oscillator in the ground

state. The subsequent preparation of the second oscillator is performed by

Û †2 = Û
†,(n1=0,n3=0)
1 Û

†,(n1=0,n3=1)
1 Û

†,(n1=0,n3=10)
1 (5.55)

and requires 11 steps. Finally, we apply Û †3 = Û
†,(n1=0,n2=0)
3 to the third oscillator,

which requires 10 steps. In total, the preparation of Eq. (5.53) can be achieved in 23

steps and the specific operators may be determined in full analogy to the single-particle

case [204].
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Chapter 6

Large spatial quantum

superpositions

We propose a method to prepare and verify spatial quantum superpositions of a nanometer-

sized object separated by distances of the order of its size. The protocol consists in

coherently expanding the wave function of a ground-state-cooled mechanical resonator,

performing a squared position measurement that acts as a double slit, and observing in-

terference after further evolution. Various sources of decoherence are taken into account

and the achievable superposition sizes are analyzed for presently available experimental

parameters. This method provides unprecedented bounds for objective collapse models

of the wave function by merging techniques and insights from cavity quantum optome-

chanics and matter-wave interferometry. This chapter mainly bases on and uses parts

of [61].

6.1 Introduction

Various protocols for the generation of non-Gaussian states have already been analyzed

in Chapters 4, 5. We have in particular discussed the creation of nonclassical states

via coupling to single photons in Chapter 4, and even considered how dissipation can

assist the state preparation in Chapter 5. However, the size of the superpositions pre-

pared in this way is typically only on the order of the ground state ∆r̂, which is still

subatomic for objects containing billions of atoms. Realizing larger spatial superpo-

sitions of nanomechanical objects holds the promise of testing quantum mechanics in

a new regime. In principle, superpositions of massive objects at two distinctly sepa-

rated spatial locations are allowed by quantum mechanics. However, the preparation of

superposition states remains challenging for experiments. The reason for this is stan-

dard decoherence, describing the quantum-to-classical transition, see [65, 161] for an
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introduction. Nevertheless, there exist several conjectures predicting the breakdown

of quantum mechanics even in the absence of standard decoherence induced by the

environment [121,207–215]. Testing the prediction of these theories is very challenging

due to the above-mentioned standard decoherence [65, 161], which predicts very short

lifetimes for large superposition states of massive objects thus easily masking the ef-

fects of collapse models. This poses a major challenge to tests of these models, as the

predicted effects must be distinguished from standard decoherence. The second major

motivation for the preparation of large superposition states lies precisely in their sen-

sitivity towards environmental decoherence. This fragility of the quantum-mechanical

superpositions could be used to design sensors of unprecedented sensitivity [59,93,94].

In this chapter, we propose a state-preparation protocol that combines the optome-

chanical approach with the one of matter-wave interferometry. The proposal relies, on

the one hand, on techniques from cavity electro/optomechanics to prepare a mechan-

ical resonator in the ground state of its harmonic potential. On the other hand, the

protocol mimics matter-wave interferometry by applying an optomechanical double slit

that collapses the mechanical oscillator’s state into a superposition of different spatial

locations. In order to produce nonlinearities in the system, a method to enlarge the

object’s wave function by free evolution is proposed. The size of the prepared super-

position may be on the same order as the object’s extension thus providing access to

an entirely new parameter regime of quantum mechanics.

6.1.1 Reader’s guide

The chapter is organized as follows: in Sec. 6.2, we give a detailed description of the

different steps of the state-preparation protocol. In Sec. 6.2.1, we recall the form of the

initially-prepared ground state of the nano-mechanical oscillator. This is followed by

a description of the wave-function expansion in Sec. 6.2.2, the optomechanical double

slit, Sec. 6.2.3, and the formation of the interference pattern, Sec. 6.2.4, after further

evolution of the wave function. We proceed to define measures to classify the relevant

decoherence in Sec. 6.3, where we define the coherence length of the system in Sec. 6.3.1,

describe the reduction of the visibility of the interference pattern in Sec. 6.3.2, reconsider

the relevant processes of decoherence in Sec. 6.3.3, and finally give the experimental

parameters for the operational regime of the protocol in Sec. 6.3.4. Finally, we apply the

protocol to establish new bounds for parameters of collapse models in Sec. 6.4, where

we show that it puts new bounds on the CSL model in Sec. 6.4.1, whereas confronting

the Penrose-Diósi models remains impossible with this particular setup in Sec. 6.4.2.
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6.2 The protocol

In this section, we describe the protocol for the creation of large superposition states. It

combines techniques from optomechanical resonators with matter-wave interferometry

and is described in detail in [62]. As analyzed in the previous Chapters 4, 5, the

main difficulty in realizing nonlinearities in optomechanics is the weak single-photon

coupling strength [53,107,108]. To enhance the optomechanical coupling, the cavity is

typically strongly driven rendering all couplings linear (see Sec. 4.2.2 for more details).

Different strategies to overcome the linear character of the equations of motion are

described in Chapters 4, 5. The linearity results from the position of the dielectric

(the same holds for membranes) at the maximal slope of the standing wave in the

cavity. Alternatively positioning the nanomechanical object in a minimum of the light

field effects a quadratic coupling. It is proportional to the size of the wave packet and

thus is typically suppressed by the square of the ground-state size, ∝ x2
0. In order

to enhance the coupling, the proposed protocol exploits the flexibility of the trap by

letting the dielectric fall for some time hence coherently expanding its wave function.

The transformation of the size of the wave packet from x0 to σ enhances the quadratic

coupling. This gives rise to a nonlinearity that will be used in the state preparation

protocol as described below.

6.2.1 Step (a): Preparation of the initial state

In a first step, the dielectric sphere is trapped in an optomechanical cavity and cooled

to its ground state, as outlined in Chapters 2, 3. As demonstrated in Sec. 3.6, ground-

state cooling of levitating dielectric spheres is possible for objects of R . 260 nm and

can be realized with already available experimental resources. If the preparation is

perfect, the dielectric’s wave function is given by

〈x|0〉 =
1

[2πx2
0]1/4

exp

[
− x2

4x2
0

]
, (6.1)

In a realistic situation, the initial state is given by a thermal state with mean occupation

number

n̄phon = (exp[β~ω]− 1)−1, (6.2)

where β−1 = kBTb, with Tb being the effective temperature of the dielectrics’s center-

of-mass movement in one direction. Its density operator can be written as

ρ̂(0) =

∞∑
n=0

n̄nphon

(1 + n̄phon)n+1
|nphon〉 〈nphon| (6.3)



120 6. Large spatial quantum superpositions

t1 t2

τ

pL
a) c)

d)b)

x

Figure 6.1: Schematic representation of the proposal. (a) The optically trapped object

is laser-cooled using a high-finesse optical cavity. (b) The trap is switched off and the

wave function expands for some time t1. (c) The object enters into a second small cavity

where a pulsed (of time τ) interaction is performed using the quadratic optomechanical

coupling. The homodyne measurement of the output phase measures x̂2 and prepares

a quantum superposition state conditional on the outcome pL. (d) The particle falls for

a time t2 until its center-of-mass position is measured, which after repetition unveils

an interference pattern for each pL.

in a Fock basis. For sideband cooling, the mean value of the final occupation number

depends on cavity properties and dissipation rates and is given by

n̄phon =

(
κ

4ωt

)2

+
1

4C , (6.4)

where all parameters have been defined previously, and the linear cooperativity is given

by

C =
g2

κΓ
, (6.5)

where Γ contains all sources of noise as listed in Sec. 3.5. Also here, recoil heating due

to photon scattering is the dominating decoherence mechanism, see Sec. 3.2. To achieve

ground-state cooling it is thus necessary to be in the resolved-sideband limit (ωt > κ)

and realize C ≥ 1. The resulting thermal state thus has the following moments〈
x̂2(0)

〉
= (2n̄phon + 1)x2

0,〈
p̂2(0)

〉
=

2n̄phon + 1

4x2
0

,
(6.6)

with
〈
[x̂(0), p̂(0)]+

〉
= 0.
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6.2.2 Step (b): Expansion of the wave function

The goal of this step of the protocol is to increase the extension of the object’s wave

function. This will be useful for the implementation of the optomechanical double slit

described in the next section 6.2.3. Thus, this step of the protocol (see Fig. 6.1 b)

consists in switching off the trap and letting the wave function evolve freely with the

unitary time evolution

Û0(t) = exp[−i
p̂2

2m
t]. (6.7)

Considering the initial state to be the pure ground state, after some time t1 it is given

by

〈x| Û0(t1) |0〉 =
1

[2πσ2]1/4
exp

[
− x2

4σ2
+ iφtof

x2

σ2

]
, (6.8)

where σ2 = x2
0(1 + t21ω

2
t ) is the size of the expanded wavefunction, and φtof = ωtt1/4 is

the global phase accumulated during the free evolution. We do not consider decoher-

ence processes here, but the restrictions they impose on the experimental realization

are discussed in Sec. 6.3. Note that, however, during the free expansion of the wave

function, the lasers are switched off and the dominating source of decoherence (light

scattering) is thus absent.

Application of the increased size of the wave function

Using the expansion described above, it is possible to increase the size of the wave

packet from x0 to σ. One application of this modified wave function is to enhance

the quadratic coupling of the oscillator to the cavity field. Before the wave function

expansion, the quadratic part of the Hamiltonian reads

Ĥqu = gqu(â0 + â†0)x̃2, (6.9)

where x̃ = x̂/x0 is the dimensionless position operator of the mechanical resonator,

with x0 being its zero-point motion. The photon-enhanced quadratic optomechanical

coupling is given by gqu = kcx0g, where kc = 2π/λc is the wave number of the cavity

mode. In the optomechanical scenario, a Hamiltonian of this form applies when the

equilibrium position of the mechanical oscillator is at the antinode of the standing wave,

such that gqu 6= 0 and g = 0. A fundamental figure of merit of any cavity-mechanical

system is the cooperativity as defined previously in Eq. (3.13) for the linear coupling.

In comparison, the quadratic cooperativity is given by

Cqu =
g2

qu

κΓ
= C × (kcx0)2, (6.10)

with the optomechanical parameters as defined previously. Ground-state cooling re-

quires C & 1, whereas non-linear effects, such as energy quantization detection [38]



122 6. Large spatial quantum superpositions

or preparation of non-Gaussian states without using hybrid systems or single photon

resources, require Cqu & 1. The latter is a very demanding condition due to the strong

reduction given by (kcx0)2 � 1.

By expanding the wave function to a given size
〈
x̂2
〉
∼ σ2 � x0 via a free evolution,

this regime can be achieved [62], and the enhanced cooperativity is given by

C̄qu =
g2

qu

κΓ
= C × (kcσ)2. (6.11)

Thus, for sufficiently large σ and C, the non-linear regime C̄qu & 1 can be attained.

We remark that this technique is also applicable to other setups where the mechanical

frequency can be varied and hence the wave function of the mechanical oscillator is

expanded [80,90].

6.2.3 Step (c): The optomechanical double slit

After the expansion of duration t1, a second cavity is used to implement an optomechan-

ical double slit (Fig. 6.1 c). The setup is aligned such that the object passes through

a small high-finesse optical cavity at an antinode of the cavity mode. Simultaneously,

a pulse of length τ ≈ 2π/κ is fed into the cavity such that a short interaction is trig-

gered. In this configuration, the optomechanical coupling is ∝ x̂2. Consequently, the

light leaking from the cavity contains information about x̂2, which can be extracted

by a homodyne measurement. The wave function after the collapse caused by the

measurement is given by

|ψ〉 ≡ M̂dÛ0(t1) |0〉
||M̂dÛ0(t1) |0〉 ||

. (6.12)

Here, the measurement operator M̂d is given by

M̂d = exp
[
iφds(x̂/σ)2

] [
exp

(
−
(
x̂− d

2

)2
4σ2

d

)
+ exp

(
−
(
x̂+ d

2

)2
4σ2

d

)]
. (6.13)

It prepares a quantum superposition of Gaussian wave functions of width σd separated

by a distance d, with an added global phase that will be discussed below. The object is

in a well-resolved spatial superposition provided that d > 2σd. The second limitation

is imposed by realizing a non-negligible probability to obtain the result d when taking

the measurement. Therefore, requiring∣∣∣〈d2 ∣∣ Û0(t1)
∣∣d

2

〉∣∣∣2
| 〈0| Û0(t1) |0〉 |2

> e−1, (6.14)

yields the condition
√

8σ > d.
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Let us now define the dimensionless coupling strength as

χ ≡ σ2

2σdd
. (6.15)

Physically, this means that for a fixed measurement outcome d, the larger the value

of χ, the more resolved the superposition. Figure 6.2 shows the position probability

distribution of the state of Eq. (6.12) with d = σ/2 for different measurement strengths

χ. Note that also a global phase φds is added during the measurement. Both this phase

-0.5 0.0 0.5

x�Σ

ÈΨ
Hx
L

2

Figure 6.2: |ψ(x)|2 = |〈x|ψ〉|2, see Eq. (6.12), is plotted for d = σ/2 and measurement

strength χ = 4 (dotted gray), χ = 10 (dashed red), and χ = 25 (solid blue). Note that

the superposition is not resolved for the weakest coupling χ = 4.

and the one accumulated during the time of flight, φtof (see Eq. (6.8)) are essential

to the implementation. The condition |φds + φtof|d2/(4σ2) � 1 needs to be fulfilled

in order to build the interference of the two wave packets centered at x = d/2 and

x = −d/2 (see [62] for more details).

Implementation

The optomechanical Hamiltonian describing this quadratic interaction before displacing

the cavity operators is given by

Ĥmeas(t) =
p̂2

2m
+ ḡ0â

†
0â0x̃

2 + iE(t)(â0 − â†0). (6.16)

The first term describes the kinetic energy of the sphere along the cavity axis (note that

there is no harmonic potential since the particle does not need to be trapped during

the short interaction time required to measure x̂2). The third term describes the time-

dependent driving at frequency ωL = ωc, which is used to parametrize the short light

pulse. Finally, the second one is the important term describing the optomechanical
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coupling when the sphere is placed at the antinode of the cavity mode. We define the

dimensionless position operator x̃ = x̂/σ, and the optomechanical coupling rate is given

by ḡ0 = g0σ
2/x2

0, see Eq. (2.65) for the specific form of g0 for levitating nanospheres

below the optical wavelength. As discussed in [62], note that ḡ0 is enhanced compared to

g0 by a potentially very large factor σ2/x2
0 depending on the size of the wave packet. The

interaction time is assumed to be very small so that methods from pulsed optomechanics

can be applied [216]. In contrast to the latter, we do not optimize the pulse shape, but

simply assume a time-dependent driving given by

E(t) =
√

2κnphΘ(t), (6.17)

where Θ(t) is a Heaviside-Theta function of length τ and amplitude ∼ 1/
√
τ such that∫ τ

0 ξ
2(t)dt = 1.

Measurement operator and strength

Let us show here in more detail how the measurement of the phase quadrature of the

output light realizes a measurement of x̂2. The protocol is based on techniques from

pulsed optomechanics [216] consisting in implementing only a very short interaction of

duration τ ∼ κ−1 such that 〈
p̂2
〉

2m
τ =

(2n̄phon + 1)ωtτ

4
� 1. (6.18)

The kinetic term in Eq. (6.16) can thus be neglected yielding

Ĥmeas(t) ≈ ḡ0â
†
0â0x̃

2 + iE(t)(â0 − â†0). (6.19)

We want to establish the connection between the operators in the cavity and the output

fields that can be measured and thus apply the input-output formalism [181,182]. The

equation of motion for â0 reads

d

dt
â0(t) = −(iḡ0x̃

2 + κ)â0(t) + E(t) +
√

2κâin(t), (6.20)

where âin is the input cavity noise operator. We also assume κ � ḡ0, facilitating the

adiabatic elimination of the cavity mode by setting d/dt â0(t) = 0. This leads to

â0(t) ≈
[
E(t) +

√
2κâin(t)

] [1

κ
− iḡ0x̃

2

κ2

]
. (6.21)

By using the input-output relation

âout(t) =
√

2κâ0(t)− âin(t), (6.22)
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and defining the output phase quadrature

P̂Lout(t) ≡
i√
2

(
â†out(t)− âout(t)

)
, (6.23)

one obtains the relation

P̂Lout(t) ≈ P̂Lin(t) + χ(t)x̃2, (6.24)

where

χ(t) ≡ 2ḡ0E(t)

κ
√
κ

, (6.25)

and we have neglected the small term ∼ 2ḡ0x̃
2P̂Lin/κ. Balanced homodyning of the

output field measures the time-integrated output quadrature given by [62]

P̂Lout ≡
1√
τ

∫ τ

0
P̂Lout(t)dt = P̂Lin + χx̃2. (6.26)

This implies

χ ≈ 2
√

2
ḡ
√
nph

κ
(6.27)

for the measurement strength. A slight increment can be achieved by optimizing the

pulse shape (see [216,217]). For a measurement outcome pL, the measurement operator

(Eq. (6.12)) describing the collapse of the center-of-mass state of the sphere can also

be written as

M̂d = exp
[
iφdsx̃

2 −
(
pL − χx̃2

)2]
. (6.28)

This operator prepares a superposition of two wave packets of width

σd ∼
σ

4
√
pLχ

=
σ2

2dχ
, (6.29)

separated by a distance d = 2σ
√
pL/χ. The global phase accumulated during the

interaction with the classical part of the field is given by

φds = −
∫ τ

0
ḡ0

〈
â†0(t)â0(t)

〉
dt

= −
∫ τ

0
E2(t)

(
1

κ2
+
ḡ2

0

〈
x̃4
〉

κ4

)
dt ≈ −2ḡ0nph

κ
,

(6.30)

where the second term can be neglected in the regime κ� ḡ0.

6.2.4 Step (d): The interference pattern

After the preparation of the superposition state by the pulsed interaction, the particle

falls freely for another time of flight of duration t2 as illustrated in Fig. 6.1 c). This

time evolution is described by

|ψf 〉 ≡
Û0(t2)M̂dÛ0(t1) |0〉
||Û0(t2)M̂dÛ0(t1) |0〉 ||

. (6.31)
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The state |ψf 〉 contains interference peaks separated by a distance

xf =
2πt2
md

, (6.32)

under the condition
|φds + φtof|d2

4σ2
� 1. (6.33)

The peaks are clearly visible when the two wave packets overlap, that is, when

d ≤ t2
2σdm

. (6.34)

Combining Eq. (6.15) and σ2 ≈ x2
0t

2
1ω

2
t (valid at t1ωt � 1), gives a lower bound for t1,

t1 .

√
2t2χ

ωt
. (6.35)

The final step of the protocol consists in performing a position measurement of the

center of mass (Fig. 6.1d). This requires a resolution δx < xf , providing a fourth upper

bound for d,

d <
2πt2
mδx

. (6.36)

In contrast to typical time-of-flight experiments in ultracold atoms [75], where many

constituents form an interference pattern, in our case, only one sphere is prepared

at a time. Naturally, the measurement of the sphere’s position does not reveal an

interference pattern, but only a single point. In order to obtain the interference pattern

and extract useful information from the system, all previous steps have to be repeated

for the same parameters providing a different interference pattern for each double slit

length d.

6.3 Decoherence

In this section, we review various decoherence mechanisms for the dielectric spheres

and describe how they influence the implementation of the protocol to prepare large

quantum superpositions. We consider decoherence of position-localization form as dis-

cussed in Sec. 3.5. Instead of an exhaustive analysis, in this section, we only review the

relevant processes and introduce some additional quantities useful for the description

of large superposition states.

6.3.1 Coherence length

When preparing large quantum superpositions, it is essential that the measurement

protocol prepares a coherent superposition instead of a statistical mixture. This is
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the case when the system’s coherence length is larger than the separation of the slits

described by d. The coherence length ξ(t) can be derived from the decay of position

correlations described by

C(r, t) =
〈r

2
|ρ̂(t)| − r

2

〉
. (6.37)

Let us consider the time evolution of the first moments of r̂ and p̂, given by

〈r̂(t)〉 = 〈r̂(0)〉+ t
〈p̂(0)〉
m

〈p̂(t)〉 = 〈p̂(0)〉〈
r̂2(t)

〉
=
〈
r̂2(0)

〉
+

〈
p̂2(0)

〉
t2

2m
+

2Λ

3m2
t3〈

p̂2(t)
〉

=
〈
p̂2(0)

〉
+ 2Λt

〈[r̂(t), p̂(t)]+〉 =
2
〈
p̂2(0)

〉
t

m
+

2Λt2

m
.

(6.38)

The parameters are defined in Sec. 3.5 and the dependance on t3 of
〈
x̂2(t)

〉
is typical for

random forces as described by the position-localization decoherence. The correlation

function C(r−r′, t) can be computed using Eqs. (3.61), (6.38) and can be approximated

by

C(r − r′, t)
C(0, t) =≈

{
exp[− (r−r′)2

ξ2(t)
], (r − r′)� 2a,

exp[− (r−r′)2

ξ2
s(t)

− γt], (r − r′)� 2a.
(6.39)

in the long- and short-wavelength limit. The coherence length in the two limits is given

by

ξ2(t) =
8
〈
r̂2(t)

〉
4 〈r̂2(t)〉 〈p̂2(t)〉 −

〈
[r̂(t), p̂(t)]+

〉2 , (6.40)

and

ξ2
s (t) =

8σ2(t)

2n̄phon + 1
. (6.41)

Here, σ2(t) = x2
0(1 + t2ω2

t ) as defined previously. ξs increases monotonically in time

and ξ(t) reaches its maximum

ξmax =
√

2

[
2ωt

3mΛ2(2n̄phon + 1)

]1/6

(6.42)

at

tmax =

[
3m(2n̄phon + 1)

2Λωt

]1/3

. (6.43)

The achievable coherence length thus depends on the localization parameter, Λ, of the

decoherence mechanisms. In order to prepare a coherent superposition, the coherence

length has to be larger than the superposition size i.e., d < ξ(t1)� ξmax, and d < ξs(t).
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6.3.2 Reduction of the visibility

Another effect of the position-localization decoherence is the decay of the visibility of

the interference pattern. When neglecting decoherence, the position distribution is

given by P0(r, t) and has peaks at a distance pf = md/t. When decoherence is taken

into account, according to Eq. (3.60), the position distribution is given by

P (r, t) =
1

2π

∫ ∞
−∞

dpdr′eiprB(p, 0, t)e−ipr
′
P0(r′, t). (6.44)

The visibility of the interference peaks (see [62] for a more detailed description) is thus

given by

V(t) = B
(

2π

xf

)
= exp[−tΘ], (6.45)

with

Θ = γ − γ
√
πa

d
erf

[
d

2a

]
, (6.46)

where a is the coherence length (see Eq. (3.58)) and γ (Eq. (3.59)) the localization

strength. For d� 2a, we can approximate Θ ≈ Λd2/3, and Θ ≈ γ in the limit d� 2a.

In order to resolve the interference pattern, we require Θt2 � 1 implying d <
√

3/(Λt2),

and t2 � 1/γ.

6.3.3 Standard decoherence

In this section, we consider the restrictions imposed by the interaction of the nanome-

chanical oscillator with the environment. The same decoherence processes that have

been identified as dominant in Sec. 3.5 are also the most important ones here. Namely,

as the lasers are switched off during the time-of-flight (steps (b) and (d)) of the protocol,

scattering of air molecules (see Sec. 3.5.2) and blackbody radiation (see Sec. 3.5.3) are

dominating. On the other hand, during the measurement protocol photon scattering

(see Sec. 2.3.2) is the most important source of decoherence and restricts the choice of

parameters in the protocol.

We are interested in preparing nanometer-sized superpositions, therefore, the short-

wavelength limit for the scattering of air molecules applies. Here, d � 2a, and deco-

herence is described by (also see Eq. (3.65))

γair =
16πPR2

3

√
2πm

kBT
. (6.47)

As illustrated in Fig. 6.3, long coherence times can be achieved, in particular for small

spheres, where D = 2R denotes the diameter of the object.

The second important decoherence mechanism is blackbody radiation. In partic-

ular, the emission is dominating due to the increased internal temperature caused by
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Figure 6.3: Left pannel: Coherence time 1/γair as a function of the sphere size. Exper-

imental parameters as defined in the main text and pressures as indicated in the plot.

Right pannel: Coherence time tmax caused by scattering, emission and absorption of

blackbody radiation for different internal temperatures Ti.

absorption of photons from the laser (see Sec. 3.5.3). In Fig. 6.3, we plot the coherence

time tmax as a function of the temperature of the sphere, where its dependance on the

sphere’s size is negligible.

Another restriction is imposed by the scattering of photons during the measure-

ment step of the optomechanical double slit (step (c)). Elastic scattering of photons is

generally one of the main problems when implementing optomechanics with levitating

dielectrics and puts restrictions on the size of the object that can be used, also see

Sec. 3.6. When preparing large spatial superpositions, it is also essential to minimize

the photon scattering. For this purpose, the sphere only interacts for a short pulse

time with the lasers when the optomechanical double slit is applied, in the other steps

of expansion, interaction with the lasers is avoided. The decoherence is described by

replacing x0 by σ in Eq. (2.69),

Γ̃phot = Γphot
σ2

x2
0

=
ε2ck

6
0V

2σ2

6π

nphc

2Vc
. (6.48)

In order to prevent this form of decoherence on the time scale of the protocol,∫ τ

0
Γ̃photdt� 1, (6.49)

has to be fulfilled. This can be achieved for a sufficiently small σ yielding a condition

for the expansion time,

t1 �
4g0

ωtΓphot
. (6.50)

A second restriction arises from the adiabatic elimination, which is justified for κ� ḡ0
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implying [62]

t1 �
κ

g0ω2
t

. (6.51)

Inserting these two conditions into Eq. (6.27) for the measurement strength gives

χ� min


(
κ

g0

)1/4

,
8g2

0√
κΓ3

phot

 = χmax. (6.52)

The second parameter that needs to be considered is the phase accumulated during

the time of flight, φtof = t1ωt/4, which has to be compensated by the one picked up

during the measurement protocol, such that φtof +φds ≈ 0. Following Eq. (6.30) gives

φds =
ωtt1κx

2
0

8g0σ2
≈ κ

8g0t1ωt
, (6.53)

with σ2 ≈ x2
0t

2
1ω

2
t for t1ωt � 1. In combination with Eq. (6.27), this gives

χ ≈ (t1ωt)
3/2

√
g0

κ
. (6.54)
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Figure 6.4: Maximally achievable measurement strength χmax for different sphere sizes.

All parameters are as given in the main text.

6.3.4 Operational regime

Let us now describe the operational regime for the protocol’s implementation in an

optomechanical setup. The set of experimental parameters is as follows:

• Dielectric object: We assume spheres of fused silica with density ρ = 2201 kg/m3,

a dielectric constant Re[εr] = 2.1 and Im[εr] ∼ 2.5 × 10−10. For the blackbody

radiation of the sphere, we choose εbb = 2.1 + 0.57i. We assume the external
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temperature at Te = 4.5K and the internal temperature of the sphere due to

absorption of laser photons is given by Ti ≈ 270K (see Sec. 3.5.3). The trapping

frequency is given by ωt = 2π 100kHz.

• Cavity: For the cooling, we assume a typical optomechanical cavity as described

in Sec. 3.6. For the implementation of the optomechanical double slit, we propose

to use a fiber-based cavity of finesse F ≈ 1.3 105 and cavity length of L =

2 µm [218, 219]. These cavities are impigned by a laser of λc = 1064nm, have a

waist Wc = 1.5µm, and the measurement strength χmax depends on the size of

the sphere, see Fig. 6.4. The pressure is chosen as P = 10−13mbar.
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Figure 6.5: Operational regime of the optomechanical protocol. The maximal achiev-

able superposition size d is plotted for a given diameter of the sphere D. The ex-

perimental parameters are chosen as given in the main text and the expansion times

are assumed to be t1 = min
{√

κ/g0/ωt, 4g0/Γ0

}
and t2 = 10−2/γair. The grey area

denotes the superposition sizes that can be realized within the optomechanical setup.

Solid black: condition d > σ/
√
χ, Dashed red: condition on the coherence length,

d < ξ(t1), Dotted orange: d <
√

3/(Λtott2) (Λtot denotes the total localization rate),

Thin grey: d = D. All other conditions mentioned in the section are less restrictive

setting up only higher boundaries and are thus not displayed in the plot.

As shown in Fig. 6.5, it is possible to prepare spatial superpositions larger than the

size of the dielectric. The lower bound on the superposition size is given by d > σ/
√
χ,

which is imposed by the necessity to resolve the superposition peaks i.e., d > σd.

The first upper bound on the achievable superposition size is given by d < ξ(t): the

superposition size cannot be larger than the coherence length, see Sec. 6.3.1. The
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second upper bound is imposed by the decoherence during the second time of flight,

d <
√

3/(Λt2). It is thus, for instance, possible to prepare a sphere of a D = 40nm in

a superposition of the size of its own extension with d = 40nm.

6.4 Applications: testing collapse models

One of the most discussed questions in quantum mechanics remains the quantum-to-

classical transition. It is generally believed that the standard theory of decoherence [20,

22, 23] provides a description of this phenomenon. Nevertheless, there exists a large

number of collapse theories. They predict a collapse of the wave function beyond a

certain size of the object and the superposition, independent of the interaction with

the environment [208, 210–213, 220–222]. In this section, we will review the principles

underlying these models and discuss the predictions that are made. We do not give an

overview of the large class of collapse models, but merely discuss the ones most present

in the literature i.e., the CSL model and the Penrose-Diósi model. We investigate the

parameter regime required to confront the predictions made by the collapse models and

distinguish them from standard decoherence. Note that it is much more challenging

to confirm these models than to falsify them as any standard source of decoherence,

responsible for the disappearance of the interference pattern, needs to be excluded.

All exotic decoherence models considered here predict decoherence of the position-

localization form, described by Eq. (3.52),

〈r|ρ̇S(t)|r′〉 = i〈r|[ρ̂S(t), ĤS]|r′〉 − Γ∆r〈r|ρ̂S(t)|r′〉. (6.55)

This enables one to directly compare the decoherence through the collapse models to

the one caused by the interaction with the environment and to identify the regime

where the first dominates. The form and strength of the decoherence rate Γ depends

on the model that is employed and will be given in the following. We only provide a

brief summary of the results here, for more details see [62] and the original papers.

6.4.1 The CSL model

One of the most famous models is the continuous spontaneous localization (CSL)

model [210,213,222], introduced by Ghirardi, Rimini, Weber (GRW) [208]. The idea of

the model is to add a stochastic nonlinear term to the Schrödinger equation. It predicts

a localization of the wave function with a strength directly proportional to the mass.

Its two phenomenological parameters are constrained by the fact that on the one hand,

the model should predict a collapse of the wave function for large objects, and on the

other hand reproduce the quantum-mechanical results for small objects. These two
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Figure 6.6: Upper left panel : Plot of the superposition size d depending on the diameter

D of the sphere for the parameters given in Fig. 6.5. The green area indicates the

regime, where the CSL model with an increased collapse rate γ̃0
CSL = 104γ0

CSL can

be tested. Upper right panel: Simulation of the interference pattern for D = 40nm

and superposition size d = D. Dashed Grey line: Interference pattern neglecting

decoherence, Solid blue: Interference taking into account standard decoherence, Dashed

red: Decoherence caused by the CSL model. Lower left panel: Interference pattern for

d = 1.3D, all parameters and color lines as defined previously, Lower right panel:

Interference pattern for d = 0.7D, all parameters and color lines as defined previously.

parameters make the model testable, their value is bounded by experimental data and

some philosophical reasoning, see [223] for a recent review. The two free parameters are

the localization distance, aCSL, and the single-nucleon collapse rate, γ0
CSL. The decay

rate in the single-nucleon case is thus given by

ΓCSL(∆r) = γ0
CSL

(
1− exp

[
− ∆r2

4a2
CSL

])
. (6.56)

The standard values originally proposed in [208] are aCSL = 100 nm and γ0
CSL =

10−16 Hz. However, γ0
CSL has recently been reestimated by Adler to be 8-10 orders

of magnitude larger than originally predicted [215, 222]. A short derivation [62] gives
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ΓCSL = d2ΛCSL with

ΛCSL =
m2

m2
0

γ0
CSL

4a2
CSL

f

(
R

aCSL

)
. (6.57)

Here, m0 denotes the mass of a single nucleon and f(x) is given by

f(x) =
6

x4

[
1− 2

x2
+

(
1 +

2

x2

)
e−x

2

]
. (6.58)

This leads to a collapse rate

γCSL =
m2

m2
0

γ0
CSLf

(
R

aCSL

)
(6.59)

growing quadratically with the number of nucleons per sphere for R < aCSL.

Employing the set of parameters described in Sec. 6.3.4, it is possible to tighten the

bounds on the CSL model. Namely, it is possible to test the prediction by Adler with

γ̃0
CSL = 104γ0

CSL. This is illustrated in Fig. 6.5, where we show that the decoherence

imposed by the CSL model dominates standard decoherence in the green region of

the diagram. The interference pattern obtained after the time-of-flight-measurement

thus shows some additional blurring in the presence of the decoherence through the CSL

model. The outcome of this protocol is consequently sufficient to falsify the CSL model,

for a corroboration of the theory, it would be necessary to distinguish the induced effect

from environmental decoherence.

6.4.2 Gravitationally-induced decoherence

The influence of gravity on quantum superpositions and its action as a mechanism

for the collapse of the wave function have been discussed extensively in the literature.

The most famous analyses are the independent works of Diósi [207, 214, 224–226] and

Penrose [212, 227]. The model can be casted into the von-Neumann-Newton equation,

which has the form of Eq. (6.55) with the decoherence rate given by

ΓNN =
1

2

(
Ug(r, r)− Ug(r′, r′)

)
+ Ug(r, r

′). (6.60)

Here,

Ug(r, r
′) = −G

∫
ρ(x|r)ρ(x′|r′)
|x− x′| dxdx′, (6.61)

denotes the Newtonian interaction between two spheres centered at r, r′ with mass

densities ρ(x|r) at position x of a sphere with cm position r and G is the gravitational

constant. For a rigid homogeneous sphere, the mass density is uniform and given by

ρ̄ =
3m

4πR3
. (6.62)
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This gives

ΓNN =

{
Gm2/(2R3)∆r2, ∆r � R,

6Gm2/(5R), ∆r � R.
(6.63)

The localization parameter can thus be written as

ΛNN =
gm2

2R3
(6.64)

and the saturation distance as 2aNN = R.

The decoherence of this model is much weaker than the ones predicted by the CSL

and cannot be tested with the proposed protocol. Note however that the decoherence

rate can be strongly enhanced by considering a different mass density at the microscopic

level [60,214]. In particular, in this case the mass density of the sphere is not assumed

to be smeared out homogeneously over the entire volume of the sphere, but only on a

much smaller length scale, r0 � R. The localization parameter is thus enhanced to

Λ̃NN =

(
R

r0

)3

ΛNN. (6.65)

This assumption is taken in the famous proposal by Marshall [60], where the authors

propose to test the Penrose model with a superposition of a micromirror. However, this

choice of the mass density leads to divergencies in the von-Neumann-Newton equation

describing the dynamics. To avoid this problem, we assume the mass density to be

spread out over the volume of the entire sphere in this thesis. Unfortunately, this makes

it impossible to test this model with the proposed protocol as standard decoherence

will mask the effect of the Penrose-Diósi model. See [62] for a more detailed discussion.
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Chapter 7

Conclusion and Outlook

During the past years, levitating dielectrics have been established as a novel optome-

chanical setup and have seen vast interest from both the theoretical and the experimen-

tal side [64,77–80,88,97–101,118]. They are predicted to allow for ground-state cooling

even at room temperature due to the absence of clamping losses avoided through the

levitation of the mechanical oscillator. Remarkable experimental progress has been

made on the implementation of cooling both via feedback- and cavity-cooling tech-

niques [97–99, 101]. In this thesis we study these systems from two different perspec-

tives, represented by the main parts Theory and Protocols.

The first part of the thesis focusses on providing a consistent Theory for the

quantum-mechanical description of the setup. We derive a general master equation for

the interaction between arbitrary dielectrics and light in Chap. 2. Our approach takes

into account the quantum-mechanical motion of the dielectric, the quantum nature of

light, and scattering processes to all orders in perturbation theory. It is applicable

to dielectrics of arbitrary size and does not rely on the point-particle approximation.

Within this framework, we determine coupling strengths and decoherence rates, en-

abling us to predict final phonon numbers achievable with laser cooling in Chap. 3. We

show that ground-state cooling is possible for small spheres, R . 260 nm, but remains

impractical for larger ones, at least with cavity-cooling methods. The limitation is set

by recoil heating via elastic photon scattering.

Several directions of research might potentially offer a solution to this problem: the

first one relies on choosing shapes for the dielectric and the mode function that are

well-fitted to each other. This could be achieved by employing the framework derived

in Chap. 2 and minimizing both the cavity decay rate κ and the decoherence rate Γ

with respect to the mode profile and the shape of the dielectric. Another solution might

be to introduce additional degrees of freedom to the system. For example, coupling to

vibrational or whispering gallery modes, inserting an additional qubit into the dielectric
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(e.g., in the form of an NV-center), or even charging the sphere, would increase the

flexibility and the possibilities for cooling and state manipulation. Coupling to the

vibrational or whispering gallery modes [79] implements a multi-mode optomechanical

setup with modes varying in life time, coupling strength, and frequency. Some of them

might be used as auxiliary modes, enabling more efficient cooling schemes similar to

Raman cooling of atoms [228]. In particular the high-frequency vibrational modes of

small nanoparticles open up an entirely new parameter regime. Although it has been

shown in Sec. 3.4 that couplings between vibrational modes and the light field are weak

for spherical objects, differently-shaped dielectrics could be used to enable stronger

interactions. Similar in spirit is the approach of introducing an additional degree of

freedom, such as an NV-center to the levitating object [229]. However, the effect of a

single qubit on a mechanical oscillator is typically weak, due to the difference in mass,

and methods to increase this coupling are required. One is confronted with a similar

problem when introducing charges: the charge-to-mass scaling with the size of the

object is unfavorable as the mass increases proportional to the volume (∝ R3), while

charges accumulate on the surface of the object, and thus scale ∝ R2. Consequently,

the charge-to-mass ratio is always small compared to e.g., ions and reaching efficient

coupling strenghts is challenging. Another path to ground-state cooling of larger spheres

is to entirely avoid the use of lasers and to exploit magnetic fields instead. This has

been proposed in [230], where it is shown that a superconducting microsphere trapped

by magnetic fields may be cooled to its ground state and even prepared in quantum

superpositions. This opens a new size regime inhibited for optically levitated dielectrics

due to strong photon scattering.

The second part of this thesis focuses on Protocols for the preparation of non-

Gaussian states in optomechanical systems. The protocols proposed in Chap. 4 and

Chap. 5 rely on coupling the macroscopic system (the optomechanical oscillator) to a

small quantum system in a non-Gaussian state (e.g., a single photon, or a two-level

atom). We propose methods to imprint the non-Gaussian state of the small system

onto the macroscopic oscillator. Chap. 4 promotes three protocols for the coupling of

single photons to the mechanical system applicable in different cavity regimes. Chap. 5

proposes to couple the mechanical oscillator to a two-level system e.g., by adding an

additional atom to the optomechanical cavity. We explore dissipative methods and

show that steady-state preparation of the nanomechanical oscillator in a non-Gaussian

state is possible with fidelity close to one. However, the states prepared this way ex-

hibit only a subatomic superposition size ∆r̂ =
√

~/2Mωt ∼ 100nm/
√

Natom. The

novel perspectives offered by levitating dielectrics are exploited in Chap. 6, where we

propose an optomechanical version of a double slit experiment to prepare levitating

dielectrics in superpositions on the order of their own size. We show that this setup
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may be used to put more restrictive bounds on collapse theories [208], but that the-

ories on gravitationally-induced decoherence remained challenging [212]. To confront

these conjectures, larger superpositions with more massive objects are required. As

mentioned previously, the limitations on the size of the object are imposed by recoil

heating, strongly increasing with the object’s size (see Chap. 2). Due to absorption of

photons, the internal temperature of the sphere is above the temperature of its envi-

ronment and emitted blackbody radiation puts a fundamental limit on the achievable

superposition size (see Chap. 6). Both of these sources of decoherence can be circum-

vented using magnetically-levitated spheres [230], where photon scattering is negligible

due to the absence of lasers. These systems hence might lead to more macroscopic

superpositions and pave the way to tests of models predicting gravitationally-induced

decoherence [212]. Moreover, some ideas contained in the proposal of Chap. 6 might

also be relevant for other applications. The optomechanical double-slit protocol exhibits

some similarity to matter-wave interferometry [14], and further approaches between the

two systems e.g., preparation of the initial sate of the interfering object with optomech-

nical methods, are an interesting perspective [102]. Besides, the main concept behind

the increment of the quadratic interaction in this proposal is the expansion of the wave

function’s ground state size which could be useful in other application e.g., in quantum

tunneling.

As mentioned in the introduction (Sec. 1.1), we see the three major applications of

optomechanical systems, namely

• quantum transducers

• tests of the foundations of quantum mechanics

• quantum metrology.

There have been several proposals of using nanomechanical resonators as quantum

transducers (see, eg, [54, 186]), a potential advantage of levitating spheres in this con-

text is their controllability even at room temperature, making them akin to other

room-temperature devices, such as NV-centers. Regarding tests of the foundations of

quantum mechanics, Chap. 6 describes some first steps into this direction, and we be-

lieve that levitated spheres are the ideal testbed for foundational questions as they allow

for unprecedented superposition sizes. But most importantly, there is much potential

to be explored in the area of metrology. Various applications have been promoted in

this direction [59, 94], but particularly the possibility to prepare large quantum super-

positions promises a further increment in sensitivity. In this context, extensions to

many-partite systems, where several dielectrics are trapped in the cavity (as outlined

in Chap. 5), may bring improvements.
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From a broader perspective, the novel optomechanical system of levitated spheres

provides a toolbox for the manipulation of dielectrics in a new parameter regime. Meth-

ods that have been developed for the manipulation of single atoms in optical cavities

over the years [29] are now applied to nanodielectrics. This leads to unprecedented

isolation and control over these objects several orders of magnitude larger than a single

atom. Hence, levitating dielectrics offer a platform to study systems ranging from mi-

croorganisms [77] to novel nanomaterials [231], offering a diversity of new perspectives.

The contribution of this thesis to this quickly-growing line of research is to aim at pro-

viding a theoretical background and suggesting several protocols for the preparation of

nonclassical states. Nevertheless, the most exciting development in this research pro-

gram is expected from the experimental implementation of the setup. Similar to the

field of cold atoms [75], experiments and theory are closely connected in optomechanics,

with vivid interchange and stimulation of ideas. The experimental implementation of

levitating dielectrics [97, 100, 101] is thus expected to come in hand with a plethora of

new, exciting questions and further challenges for theoretical studies.



Chapter 8

List of parameters

We give a list of the parameters and operators used throughout this thesis in the order

of their appearance. Some merely auxiliary variables are not included in the list. Note

that we set ~ = 1 throughout this thesis.

Symbol Definition Defined in

V Volume of the dielectric Sec. 2.2.1

M Mass of the dielectric Sec. 2.2.1

ρ density distribution of the dielectric Sec. 2.2.1

εr relative dielectric constant Sec. 2.2.1

ε0 vacuum permittivity Sec. 2.2.1

µ = µ0 permeablity Sec. 2.2.1

r̂ center-of-mass (cm) mode Sec. 2.2.1

Ĥtot total Hamiltonian Sec. 2.2.2

ĤM motional Hamiltonian for the dielectric Sec. 2.2.2

ĤL Hamiltonian for the electromagnetic field Sec. 2.2.2

ĤLM interaction between the light and matter Sec. 2.2.2

ĤS system Hamiltonian Sec. 2.2.2

ĤB bath Hamilotnian Sec. 2.2.2

ĤBS interaction between system and bath Sec. 2.2.2

p̂ momentum of the dielectric Sec. 2.2.2

ωn frequency of the dielectric’s eigenmodes Sec. 2.2.2

csound sound velocity Sec. 2.2.2

R extension of the dielectric, radius for a sphere Sec. 2.2.2

Êtot total electric field Sec. 2.2.2

B̂tot total magnetic field Sec. 2.2.2

ÊB homogeneous field (bath modes) Sec. 2.2.2
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ÊS inhomogeneous field (system modes) Sec. 2.2.2

k wave vector of the bath modes Sec. 2.2.2

ωk frequency of the bath modes Sec. 2.2.2

ω0 frequency of the system mode Sec. 2.2.2

V0 volume of the system mode Sec. 2.2.2

f(x) profile of the system mode Sec. 2.2.2

âk(â†k) annihilation (creation) operator of the bath Sec. 2.2.2

â0(â†0) annihilation (creation) operator of the system Sec. 2.2.2

P̂tot polarization of the dielectric Sec. 2.2.2

αp polarizability Sec. 2.2.2

εc modified dielectric constant Sec. 2.2.2

α = 〈a0〉 displacement of the inhomogeneous mode Sec. 2.2.2

ξ phase of the displacement Sec. 2.2.2

ES classical part of the light field Sec. 2.2.2

Ŵ (r̂) interaction between the bath modes Sec. 2.2.2

Ĥ0 noninteracting part of the Hamiltonian Sec. 2.2.2

Ê
(+)
B annihilation (creation) part of the EM field Sec. 2.3.1

Êin incoming field Sec. 2.3.1

Vk,k′(r̂) matrix element of the scattering interaction Sec. 2.3.1

Tk,k′(r̂) transition matrix Sec. 2.3.1

V̂ (r̂) operator corresponding to Vk,k′(r̂) Sec. 2.3.1

T̂ (r̂) operator corresponding to Tk,k′(r̂) Sec. 2.3.1

ρ̂tot density operator for the total system Sec. 2.3.2

ρ̂B density operator for the bath Sec. 2.3.2

ρ̂S density operator for the system Sec. 2.3.2

λc wavelength of the inhomogeneous mode Sec. 2.3.2

F(t, r̂) interaction between the bath and the system Sec. 2.3.2

|Ω〉 vacuum state Sec. 2.3.2

nphot = |α|2 cavity occupation number Sec. 2.3.3

∆r̂ variance of the cm operator Sec. 2.3.3

η Lamb-Dicke parameter Sec. 2.3.3

b̂(b̂†) annihilation (creation) of a cm excitation Sec. 2.3.3

x0 ground-state size Sec. 2.3.3

ωt trapping frequency of the dielectric Sec. 2.3.3

ω0
t trapping frequency in Born approx. Sec. 2.3.3

∆M renormalization of the trapping frequency Sec. 2.3.3

Ĥshift
rn renormalization contribution ∝ r̂ Sec. 2.3.3

LM[ρ̂S] Liouvillian for the mechanical motion Sec. 2.3.3



143

Γphot photon decoherence rate for the cm mode Sec. 2.3.3

g0 optomechanical coupling in Born approx. Sec. 2.3.3

g renormalized optomechanical coupling Sec. 2.3.3

grn renormalization to the optomechanical coupling Sec. 2.3.3

LL[ρ̂S] Liouvillian describing the cavity decay Sec. 2.3.3

κ cavity decay rate Sec. 2.3.3

ω̃0 renormalized cavity resonance frequency Sec. 2.3.3

∆L renormalization to the cavity resonance frequency Sec. 2.3.3

Ĥrn total renormalization of the Hamiltonian Sec. 2.3.3

ωL laser frequency Sec. 2.3.3

δ detuning of ωL from ω̃0 Sec. 2.3.3

Ĥ0
rn total renormalization in Born approx. Sec. 2.4.1

ωt trapping frequency in Born approx. Sec. 2.4.1

g0 optomechanical coupling in Born approx. Sec. 2.4.1

g0
rn lowest renormalization to optomech. coupl. Sec. 2.4.1

∆M,0 lowest renormalization of the trapping Sec. 2.4.1

κ0 cavity decay rate in Born approx. Sec. 2.4.1

Γ0 photon decoherence in Born approx. Sec. 2.4.1

E(x, t) EM field in the classical formulation Sec. 2.A

Ein(x, t) incoming EM field in the classical formulation Sec. 2.A

G(x′,x) propagator Sec. 2.A

Ftot total force on the dielectric Sec. 2.A

Pmech mechanical momentum Sec. 2.A

Pfield field momentum Sec. 2.A

ρe charge density Sec. 2.A

J current Sec. 2.A

T Maxwell’s stress tensor Sec. 2.A

ck(t) coefficient of the wave function Sec. 2.B

h(x, r̂, t) Fourier transformation of the coefficient Sec. 2.B

c0(t) coefficient of the inhomogeneous mode Sec. 2.B

an, bn, cn, dn expansion coefficients of the Mie solution Sec. 2.C

σscatt scattering cross section of the Mie solution Sec. 2.C

Êcav(x, t) Cavity field Sec. 3.2

Ecav(x, t) Classical part of the cavity field Sec. 3.2

Etw(x, t) Classical part of the tweezers Sec. 3.2

E0 field strength of the tweezer Sec. 3.2

Pt laser power of the tweezer Sec. 3.2

Wt beam waist of the tweezer Sec. 3.2
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fcav beam profile of the cavity field Sec. 3.2

L cavity length Sec. 3.2

W0 waist of the cavity Sec. 3.2

f(k,k′) classical scattering amplitude Sec. 3.2

κ0 intrinsic cavity decay Sec. 3.2

Γcav photon decoherence rate for the cavity Sec. 3.2

Γ total decoherence rate including all relevant sources Sec. 3.2

C cooperativity Sec. 3.2

n̄phon steady-state phonon number Sec. 3.3

n̄adiab the same in adiabatic approximation Sec. 3.3

n̄sb the same for sideband cooling Sec. 3.3

R̂(φ1, φ2, φ3) Euler rotation matrix and Euler angles Sec. 3.4.1

u(x) Deformation field of the dielectric Sec. 3.4.1

VE(x) elasticity potential Sec. 3.4.1

εij(x) elasticity tensor Sec. 3.4.1

σij(x) stress tensor Sec. 3.4.1

λE, µE Lamé constants Sec. 3.4.1

Y Young’s modulus Sec. 3.4.1

σE Poisson ratio Sec. 3.4.1

Ii dielectric’s moment of inertia Sec. 3.4.1

vi(x) momentum density Sec. 3.4.1

Hel
0 elasticity Hamiltonian Sec. 3.4.1

c|| velocity of compression waves in the dielectric Sec. 3.4.1

Q̂n position operator of a vibrational phonon Sec. 3.4.1

P̂n momentum operator of a vibrational phonon Sec. 3.4.1

V̂ext(x) additional external potential Sec. 3.4.1

ĉn(ĉ†n) annihilation (creation) operator of a vibrational phonon Sec. 3.4.2

q0,n ground state size of the vibrational excitations Sec. 3.4.2

ξnm coupling between the internal modes Sec. 3.4.2

γn coupling between the cm and the vibrational modes Sec. 3.4.2

γ localization strength Sec. 3.5.1

a localization distance Sec. 3.5.1

Λ localization parameter Sec. 3.5.1

ρ(q) number density of incoming particles Sec. 3.5.2

v(q) velocity distribution of incoming particles Sec. 3.5.2

λth thermal wavelength of scattered particles Sec. 3.5.2

B(p, r − r′, t) Influence of decoherence on total dynamics Sec. 3.5.2

Lair Liouvillian for scattering of air molecules Sec. 3.5.2
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Γair decoherence rate for scattering of air molecules Sec. 3.5.2

m mass of scattered air molecules Sec. 3.5.2

P pressure Sec. 3.5.2

kB Boltzmann constant Sec. 3.5.2

γair localization strenght for air molecules Sec. 3.5.2

P bb
e(a) power emitted (absorbed) by blackbody radiation Sec. 3.5.3

TS(E) Temperature of the system (the environment) Sec. 3.5.3

εbb blackbody permittivity Sec. 3.5.3

Pabs power absorption from the lasers Sec. 3.5.3

I laser intensity Sec. 3.5.3

σSB Stefan-Boltzmann constant Sec. 3.5.3

Λbb localization rate for blackbody radiation Sec. 3.5.3

Scav fluctuation spectrum of the spring constant Sec. 3.5.4

Rn→n+1 transition rate Sec. 3.5.4

Γshot decoherence rate due to shot noise Sec. 3.5.4

Svib fluctuation spectrum of the trap frequency Sec. 3.5.5

Γtrap decoherence rate due to trap fluctuations Sec. 3.5.5

εΘ dependance of the dielectric constant on rotations Sec. 3.5.6

Γanis decoherence rate due to sphere anisotropy Sec. 3.5.6

ωr rotational frequency of the dielectric Sec. 3.5.6

F cavity finesse Sec. 3.6

Pc laser power Sec. 3.6

nmin minimal phonon number Sec. 3.6

L[f ] Laplace transformation of a function Sec. 3.6

Ĥout energy of the output modes Sec. 4.2

Ĥcav−out coupling between the cavity and the output modes Sec. 4.2

âout(in) output (input) mode of the cavity Sec. 4.2

Ûr(t) transformation operator to the rotating frame Sec. 4.2

γ(ω) coupling between the cavity and the output modes Sec. 4.2

D̂a0 displacement operator for the cavity Sec. 4.2

β displacement of the mechanical mode Sec. 4.2

αω displacement of the output mode Sec. 4.2

D̂b displacement operator for the mechanical mode Sec. 4.2

D̂out displacement operator for the output Sec. 4.2

D̂ total displacement operator Sec. 4.2

Ĥr
tot total red-detuned Hamiltonian Sec. 4.2

Ĥb
tot total blue-detuned Hamiltonian Sec. 4.2

ΩL driving strength of the cavity Sec. 4.2
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|nbna0Ω〉 state with nb photons, na0 photons, vacuum in the output Sec. 4.2

th pulse length for the one-photon reflected protocol Sec. 4.3

φin(ω) shape of the photon pulse Sec. 4.3

xin spatial position to send the pulse Sec. 4.3

cb, ca0, c(ω) coefficients for the mechanical, cavity and output mode Sec. 4.3

Âout annihilation (creation) operator of the output Sec. 4.3

λ(t) variation of the center of the trap Sec. 4.3

X̂out quadrature of the output mode Sec. 4.3

αx displacement of the output mode in position basis Sec. 4.3

p+, q+ amplifying parameters Sec. 4.3

|RMS〉 two-mode-squeezed state Sec. 4.5

Ŝ
(
rsqe

iφ
)

squeezing operator Sec. 4.5

rsq squeezing parameter Sec. 4.5

Ftel teleportation fidelity Sec. 4.5

K teleportation map Sec. 4.5

|ψ〉e light state to be teleported Sec. 4.5

X̂ (θ) quadrature phase operator Sec. 4.6

δz resolution for the time-of-flight measurement Sec. 4.6

ĤL−out Hamiltonian of the cavity mode and the output modes Sec. 4.A

â1(â†1) cavity mode Sec. 5.2

â2(â†2) auxiliary cavity mode Sec. 5.2

σ̂−(σ̂+) annihilation (creation) operator of the qubit Sec. 5.2

Ĥmq Interaction between the mechanical resonator and the qubit Sec. 5.2

∆ laser detuning from the atomic frequency Sec. 5.2

gq coupling between the cavity and the qubit Sec. 5.2

Ω driving of the qubit Sec. 5.2

δaux laser detuning from the auxiliary cavity mode Sec. 5.2

gaux
q coupling between the auxiliary mode and the qubit Sec. 5.2

gaux coupling between the auxiliary mode and the resonator Sec. 5.2

Γm decoherence rate of the mechanical oscillator Sec. 5.2

Γq decoherence rate of the qubit Sec. 5.2

LQ[ρ̂] Liouvillian for the qubit’s decoherence Sec. 5.2

Cq cooperativity of the qubit Sec. 5.2

Cm cooperativity of the mechanical resonator Sec. 5.2

L0[ρ̂] Liouvillian for the lowest-order adiabatic elimination Sec. 5.3

Ĵ0 dominant jump operator Sec. 5.3

Γeff effective decay rate Sec. 5.3

ρ̂SS steady state Sec. 5.3
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ρ̂A(ρ̂B) degenerate steady states Sec. 5.3

Lpert perturbative Liouvillian Sec. 5.3

Leff effective Liouvillian Sec. 5.3

L♦0 Liouvillian acting on left states Sec. 5.3

χi left eigenvector of L♦0 Sec. 5.3

αn, βn coefficients for the dark state Sec. 5.3

F fidelity for the state preparation Sec. 5.3

ζ relation between qubit and mechanical oscillator Sec. 5.3.3

Ĵ1 auxiliary jump operator Sec. 5.3.3

Laux auxiliary Liouvillian Sec. 5.3.3

Γaux auxiliary dissipation Sec. 5.3.3

ρ̃A steady state for engineered-noise preparation Sec. 5.3.3

αaux, βaux steady state coeff. for eng.-noise prep. Sec. 5.3.3

ρ̂A,m, ρ̂B,m steady state of the mech. oscillator Sec. 5.3.3

αaux, βaux steady state coeff. of the mech. oscillator Sec. 5.3.3

Ĥphon effective Hamiltonian after tracing the qubit Sec. 5.4

b̂i ith oscillator in the many-mode system Sec. 5.5

ωi(t) time-dependent oscillator frequencies Sec. 5.5

ωon(ωoff) frequency of the oscillators on (off) resonance Sec. 5.5

τ switching time of the stroboscopic drive Sec. 5.5

b̂cm annihilation operator of the many-sphere mode Sec. 5.5

Ĵcm
0(1) dissipation operator of the many-sphere mode Sec. 5.5

Lcm
0 [ρ̂], Lcm

1 [ρ̂] effective Liouvillian for the many-sphere mode Sec. 5.5

Ĥeff
j effective Hamiltonian for the many-sphere system Sec. 5.5

ωi, gi frequency and coupling in the many-sphere system Sec. 5.5

Tb effective temperature of the cm mode Sec. 6.2.1

Ĥqu Hamiltonian with quadratic coupling Sec. 6.2.1

gqu quadratic coupling strength Sec. 6.2.1

Cqu, (C̄qu) (enhanced) quadratic cooperativity Sec. 6.2.1

kc cavity wave number Sec. 6.2.1

x̃ renormalized position operatorr Sec. 6.2.1

Û0(t) operator for the free time evolution Sec. 6.2.2

φtof phase accumulated during the time of flight Sec. 6.2.2

t1, (t2) duration of the first (second) time of flight Sec. 6.2.2

M̂d measurement operator Sec. 6.2.3

d superposition distance of the prepared state Sec. 6.2.3

σd width of the prepared peaks Sec. 6.2.3

φds phase accumulated during the double-slit preparation Sec. 6.2.3
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χ coupling strength of the optomechanical double slit Sec. 6.2.3

Ĥmeas quadratic Hamiltonian before displacement Sec. 6.2.3

E(t) time-dependent driving of the cavity Sec. 6.2.3

ḡ0 wave-packet-enhanced optomechanical coupling Sec. 6.2.3

P̂L
out(t), (P̂L

in(t)) output (input) phase quadrature Sec. 6.2.3

pL measurement outcome of the double slit Sec. 6.2.3

xf separation of the interference peaks Sec. 6.2.4

C(r, t) decay of position correlations Sec. 6.3.1

ξ(t) coherence length Sec. 6.3.1

V(t) visibility of the interference peaks Sec. 6.3.2

D diameter of the sphere Sec. 6.3.3

ΛCSL localization rate of the CSL model Sec. 6.4.1

γCSL collapse rate of the CSL model Sec. 6.4.1

aCSL localization distance of the CSL model Sec. 6.4.1

ΛNN localization rate of the gravitationally-induced model Sec. 6.4.1

aNN localization distance of the CSL model Sec. 6.4.1
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[82] V. Vuletić and S. Chu. Laser Cooling of Atoms, Ions, or Molecules by Coherent

Scattering, Physical Review Letters 84, 3787 (2000).
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