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1 Introduction 

 
1.1 Setting the Stage—Genetic Traits 

Genetic disorders in the most classical sense, such as Huntington`s disease or cystic fibrosis, 

are inherited in a “Mendelian” (or monogenic) fashion, that is with only one major genetic 

alteration determining the trait of interest. However, with an overall prevalence of about 

20/100,000 1, monogenic diseases only account for a small portion of human traits believed to 

be influenced by genetic components. In many instances monogenic patterns of inheritance 

underlie rare diseases (prevalence less than 1/2000 per definition of the European 

Organisation for Rare Diseases2). In the far more prevalent portion of human diseases—the 

common diseases—multiple genetic and environmental factors collaborate in bringing about a 

specific phenotype (multifactorial diseases).3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex genetic traits—such as height or most forms of Parkinson`s disease—are rendered 

complex by two factors. Firstly, these traits are polygenic acknowledging the contribution 

(and likely the complex interplay) of many variants in different genes (Figure 1.1). Secondly, 

factors other than alterations in the DNA nucleotide sequence are believed to play roles in  

 

Figure 1.1: Schematic representation of the contribution of genetic variation as well as 
epigenetic and environmental factors to monogenic, oligogenic and polygenic diseases 
resulting in an overall phenotypic expression of either “red” or “green”. In complex 
polygenic diseases, the overall sum of genetic contribution results in the “red” or “green” trait 
although alleles predisposing for the opposite trait are also present. Lighter colors depict 
variants of smaller effect on a given phenotype and vice versa.  
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Such factors can include, but are not limited to, DNA modifications such as methylation or 

changes in chromatin conformation (epigenetics), aging or environmental influences (Figure 

1.2).4 Yet, this does not mean that in monogenic diseases additional genetic factors next to the 

causal variant, which is both necessary and sufficient to bring about the disease, do not act in 

phenotype modification.5-7 Accordingly, monogenic and polygenic diseases are not likely to 

represent completely separate entities but rather two sides of a continuous spectrum (Figure 

1.2). 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.2: Spectrum of contribution of genetic and non-genetic factors to different 
forms of genetic disease. In complex genetic diseases such as most forms of Parkinson`s 
disease (or Parkinson disease, PD) or restless legs syndrome (RLS), many genetic variants 
alongside a significant contribution of epigenetic and environmental factors are supposed to 
bring about and also modify the phenotype. In monogenic diseases, the effect size of the 
causal variant is like to be much larger and the effects of external factors less pronounced. 
However, the exact contribution of the individual components involved in bringing about the 
phenotype are likely to differ from one phenotype to the next but often also within a given 
phenotype, creating a genetic framework unique to each (endo-) phenotype. Positioning of the 
different diseases on the spectrum of genetic complexity reflects the current best estimation of 
the genetic framework in the majority of individuals displaying a given trait and may vary for 
individual endophenotypes, such as in the case of monogenic familial PD. 
GnRH=gonadotropin releasing hormone 
 

1.2 Variance and Heritability 

Especially with regard to non-monogenic diseases, in which several factors act in generating a 

given phenotype, it is relevant to understand the degree to which each factor contributes to the 

phenotype. Two central concepts in the study of trait-related genetic variation are heritability 
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and variance. The overall variance of a phenotype (VP) is the sum of all independent genetic 

(VG) and environmental (VE) variation.  

VP = VG + VE 

In other words, VG is the contribution of genotypic differences among individuals to 

phenotypic variation. It can be broken down further to accommodate not only simple additive 

genetic effects (VA) but also dominance effects at a given locus (VD) and interaction effects 

(VI). 

Heritability (H2, h2), on the other hand, describes the proportion of VP in a population that is 

due to either only additive (allelic, VA) or all (VG) genotypic differences among individuals.  

 

H2 = VG/VP                                      (broad-sense heritability) 

h2 = VA/VP                       (narrow-sense heritability)  

 

In the hypothetical scenario of a purely genetic disease, VP = VG = H2. In reality, however, 

this scenario is unlikely, as is the assumption that the contributions of VG and VE to VP are 

completely independent of each other. Heritability (h2) estimates are usually derived from 

family or twin studies under the assumption of shared VE and solely additive genetic 

variance.4,8,9 It is important to note, however, that heritability describes the genetic 

contribution to a trait at the population and not the individual level. The contribution of a 

specific genetic variant to a phenotype is often given as a percent measure of h2.  

 

1.3 The Spectrum of Genetic Variation 

Although nature has invested humans with a number of DNA repair and proofreading 

mechanisms10,11, errors occur during DNA replication at a rate of approximately one every 10 

to 100 million bases. Most sequence variation in humans can be attributed to such failures in 

DNA damage repair or the correction of replication errors.8 Overall, the mutation rate has 

been estimated to be approximately 1.1x10-8 per site per generation12-14 across the entire 

genome or 1.47x10-8 per person per generation15 for non-synonymous changes. Within the 

protein-coding regions of the genome (exome), one single nucleotide variant (SNV) is found 

approximately every 52 base pairs (bp) when compared to the reference sequence.16 

Known genetic variations in humans differ in size and composition (non-structural vs. 

structural). Other classifications include the location (within the coding vs. non-coding 

regions or intra- vs. intergenic regions), frequency and pathogenicity (also see discussion on 

the terminology in sections 1.3.2 and 1.3.3 below).  
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1.3.1 Different Classes of Genetic Variants 

Genomic DNA can differ either with regard to its sequence (non-structural variation) or the 

number of copies that are present or an aberrant location or orientation (structural variation) in 

the form of so-called copy number variants (CNVs) and chromosomal abnormalities. Sizes 

can range from one nucleotide as in the form of most single nucleotide polymorphisms 

(SNPs) to CNVs of several thousand kb to duplications or deletions of entire chromosomes 

such as in Down or Turner syndrome.  

Classically, the genome is divided into coding and non-coding parts—that is those that are 

translated into proteins and those that are not. Coding variants, in turn, can be either 

synonymous or non-synonymous depending on whether the amino acid sequence of the 

translated protein is changed by the variant or not (compare Figure 1.3).  

 

 

 

Variants that alter the amino acid sequence can either result from single amino acid 

substitutions (missense variants), the introduction of a stop codon and a resulting truncation of 

the amino acid sequence (stop-loss variants) or the creation of a codon that does not naturally 

code for any amino acid (nonsense variants). Moreover, insertions or deletions (indels) of one 

to several hundred thousand nucleotides can also be found.8  

Genetic variation is the norm and not the exception as demonstrated even by the first human 

genomes that were sequenced and published in 2001.17,18 Compared to the reference 

sequence19, the “Venter genome” supposed to belong to geneticist Craig Venter differed from 

the reference sequence in 12,290,978 nucleotide positions including 3.2 million SNVs, 

849,000 heterozygous or homozygous indels (ranging from 1 to 82,711 bp), 90 large 

inversions and 62 large copy number variants.8,17,18  

Furthermore, additional levels of genetic variation have been proposed such as the disruption 

of genomic DNA by retrotransposons (mobile genetic elements or ´jumping genes` belonging 

to the LINE1 and Alu families)20-23 or the disputed extent of the introduction of sequence 

Figure 1.3: Schematic representation of possible locations of coding 
and non-coding genetic variants. UTR=untranslated region 
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changes at the RNA level (RNA editing)24,25. The notion is that we are currently just 

beginning to understand the factors involved in bringing about phenotypes and modifying 

them throughout an organism´s lifetime.  

 

1.3.2 Genetic Variation by Frequency 

The minor allele frequency (MAF) describes the frequency of the less common allele of two 

alleles at a given locus and is generally used to gage how frequently a variant occurs in a 

population. While strict definitions are lacking, if divided into two frequency categories—

“common” and “rare”—variants in the first category usually have MAFs>5% whereas “rare” 

variants exhibit MAFs<5%. In recent years, an additional category of “low frequency” 

variants has been added, which most commonly comprises variants of 1%>MAF<5% or 

0.5%>MAF<5%26. Accordingly, some publications only differentiate between common and 

rare variants, while others also describe low-frequency variants as a separate category. 

Throughout this work, wherever possible, all three frequency categories are addressed 

separately. 

Although individually rare, variants with MAF ≤ 0.5% represent the most frequent variants 

while common variants with MAF>5% account for the largest portion of genetic differences 

between individuals16,27 (Figure 1.4).  

 

 

 

Figure 1.4: Rare variants with MAF ≤ 0.5% represent the proportionally largest 
contributor to genetic diversity in humans (taken from ref. 27). AA=African American, 
EA=European American 
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It is important to realize that variant frequencies can differ between populations and that this 

can pose specific problems both in the analysis of common but also in the assessment of rare 

variants. These will be addressed in section 3.2.2 of the discussion. 

 
 
1.3.2.1 Common Variants 

Common variants are most frequently found as SNPs28,29 but can also present as tandem or 

interspersed repeats or copy number polymorphisms (CNPs)8. While there are no strict 

definitions, SNPs with a MAF>5% are usually described as common. Throughout the human 

genome, one SNP is found approximately every 300 bp8 and population geneticists project the 

existence of around 11 million SNPs with MAF>1%  in the human genome28,29. Most SNPs 

have persisted from the earliest days of human evolution and most are found across all ethnic 

groups although often times at different allele frequencies.8,16 They are frequently located in 

non-coding regions of the genome where some may serve gene regulatory functions.30 

Disease associations are typically identified by means of genome-wide association studies 

(GWAS) in which the allele frequencies of currently more than one million SNPs across the 

genome are compared in case/control samples comprising tens to hundreds of thousands of 

individuals.31  

With few exceptions32, the disease-associated common variants identified thus far harbor only 

small effect sizes (odds ratio (OR) 1.1 to 1.5)26,30,33 (Figure 1.6). According to the original 

“common disease, common variant” hypothesis34-37, common, genetically complex diseases 

are caused by a collection of a few dozen loci of moderate effect. Yet, when looking at the 

hundreds of GWAS that have been published to date, this statement needs to be modified. 

When hundreds of thousands of individuals were examined for highly heritable traits such as 

height (heritability estimate = 0.838), approximately 180 associated loci of small effect sizes 

were identified.39,40 However, variants at these loci taken together only explain about 10.5 % 

of the total variance40. It is a common finding that the associated common variants identified 

as part of GWAS efforts across all different phenotypes rarely explain more than 5 to 10 % of 

the estimated heritability.41 This dilemma has been termed “missing heritability”33 and could 

be the result of a number of things: (1) the heritability estimates are inflated creating 

heritability that does not truly exist (so-called “phantom heritability”)9,42, (2) synthetic 

associations43—that is associations between common variants and a phenotype that in reality 

are not due to the common variant but due to (multiple) rare variants on the same haplotype—

in certain constellations, (3) larger numbers of common variants of very small effects that the 

current GWAS are underpowered to detect26,33,44,45, (4) rare variants of possibly stronger 
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effect that have escaped detection by GWAS because of their low MAFs26,33,45, (5) structural 

variants30,31,41, (6) epigenetic and environmental effects30,31,41 (including parent-of-origin46,47 

and  transgenerational effects), (7) (phase-dependent) interactions between genes30,31,41. Since 

the genetic architecture differs between diseases, it can be assumed that the “missing 

heritability” can be attributed to different causes in different diseases.  

 

1.3.2.2 Low Frequency Variants 

In between common and rare variants, low frequency variants, roughly defined by MAFs 

between 0.5 and 5 %26 populate the middle ground. These variants have not received very 

much attention in the past because they were neither covered by the available SNP arrays 

used in GWAS (although some current generation arrays do cover variants down to MAFs of 

about 1% and variants of this frequency range can also be analyzed by imputation) nor were 

they detectable by linkage analyses48-51. Recently, newer technologies such as next generation 

sequencing (NGS, described in section 1.5.4 below) have been used to identify some low-

frequency alleles associated with complex diseases52,53. These so-called “goldilocks” alleles41 

may actually prove very valuable to the study of genetic variation in complex diseases. 

Although this class of variants will often only account for a minor fraction of the population 

attributable risk, they are still frequent enough to be used in high-powered population-based 

studies (i.e. GWAS) while at the same time harboring effect sizes large enough to make them 

subject to purifying selection and, at the same time, suitable to functional analysis.26,41,54-56 

The effect of purifying selection is reflected in the fact that they were found to be 1.8 fold 

more likely predicted to be non-synonymous and deleterious than synonymous and benign.57 

In one study of 202 drug target genes sequenced in 14,002 people, goldilocks alleles (here 

defined as 0.5% < MAF ≥ 2%) were found in 73 genes and about half of the variants were 

predicted to be functional, compared to 31% of variants with MAF > 2% and 65% of 

singletons (also see section 1.3.2.3 below).54  

 

1.3.2.3 Rare and Very Rare Variants 

Variants with a MAF < 0.5% are generally referred to as rare variants. However, this category 

is broad, ranging from variants with MAF = 0.5% that can be found in approximately 400,000 

German citizens to “singletons”, that is variants that are only found in a single individual or 

family.  

Generally, rare variants are expected to harbor larger effect sizes than more common variants 

(Figure 1.6) and are subject to purifying selection. Purifying selection describes nature´s 
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tendency to “purify” the genetic pool by selecting against variants that are directly disease-

related and thus deleterious to an individual`s fitness to reproduce.4 (Figure 1.5) Thus, 

comparatively deleterious variants stay rare within a population and reach MAFs near 1% 

only occasionally in recessive diseases.4  

Overall, an excess of rare variants has been reported27,54,58 with rare variants expected to 

effect approximately 1 out of every 2.5 intragenic bp in a linearly extrapolated sample of 1 

million individuals.54 This phenomenon has been ascribed to both rapid population growth 

over the past 1,400 years and relatively weak purifying selection in modern day societies 

(Figure 1.5).27,54,58,59 In line with this, rare variants are also younger16 and more likely to be 

non-synonymous and to harbor (predicted) functional effects54,60 than more common alleles.  

 

 

Figure 1.5: An excess of nonsense, missense and variants predicted to be damaging is 
found in human exomes due to the effect of purifying selection. To a lesser extent, 
explosive population growth has also sparked an increase in the number of (rare) variants 
found in human exomes across all functional classes. (taken from ref. 61) 
 

Consequently, this argues for a distinctive value in studying rare variants in any disease 

context but also suggests that very large and homogeneous samples will need to be evaluated 

to statistically link rare variants to complex diseases.54,61 Many presumably monogenic 

diseases are caused by rare variants of large effect. Traditionally, these were identified by 

linkage analysis and more recently also by whole-exome sequencing in families in which a 

single rare variant segregates with the disease.62-64 Under the “common disease, rare variant” 

hypothesis65-67, it has also been postulated that rare variants contribute to complex diseases. 

Several such rare variants have been identified via the re-analysis of GWAS data and next-

generation sequencing.68-75  
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1.3.3 Variants vs. Mutations vs. Polymorphisms ?  

Generally, the terms “variant”, “mutation”, and “polymorphism” can refer to an alteration in 

the nucleotide sequence of the DNA. The three terms are used by different branches of 

genetics in different ways. To molecular geneticist, “polymorphisms” are variants with MAF 

> 1%, while to population geneticists they are variants that stably coexist in a population at 

frequencies that cannot be explained by recurring mutations and to clinical geneticists they 

are simply non-pathogenic variants.76  Along the same lines, “mutation” is sometimes used to 

describe variants of pathogenic effect but sometimes simply for variants of very low 

frequency.76  For the sake of neutrality and lucidity, in this work, the term “variant” will be 

used to describe genetic alterations regardless of their frequency or supposed pathogenicity; 

“polymorphism” shall only be utilized in the context of SNPs, as defined above. In rare 

instances, variants that are accepted as being causal for a disease by the research community 

in the field will be referred to as “mutations”.  

 

1.4 Different Effect Sizes 

Next to the frequency, genetic variants also differ in the strength of the effect that they bring 

to the development of a given phenotype. This effect size is commonly measured as odds ratio 

(OR). An OR of 2, for example, would indicate that a carrier of the given variant is twice as 

likely to suffer from a given disease or display a given trait than one who does not harbor this 

variant. 

Apart from a few exceptions32, there appears to be an inverse correlation between the 

frequency of a given variant in the population and its effect size.26 As explained above, this is 

mostly owed to the selective pressure that effects variants of large effect more than those of 

small effect. Today, there are strategies in place to examine all variants along this axis–money 

and sample number permitting31 (also see Figure 1.6 below). In contrast, the discovery of rare 

variants of small effect (or reduced penetrance), which liably also exist and play a role in 

phenotype modification in complex diseases77, will remain very difficult or impossible by 

genetic means. 

 
 
 
 
 

 
 
 
 



 
_____________________________________________________________________________________________________ 

10 

 
 

 
 

Figure 1.6: Relationship between allele frequency and effect size of a genetic variant. 
Generally, the rarer the variant, the stronger its effect on a given phenotype. (taken from ref. 
26) 
 
 
 
1.5 Methods of Investigating Genetic Variation 

Approaches used in evaluating genetic variation vary depending on both the study sample to 

be used and the projected frequency and effect sizes of the variants to be analyzed. Also, these 

strategies are subject to a constant flux as new technologies become available42 and especially 

in the field of human genetics, current “next generation” (or “second generation”) sequencing 

technologies are vastly different now from what they were 10 years ago.78 The past decade 

has seen a paradigm shift from sequence production to, currently, sequence analysis to soon 

sequence storage as the rate limiting factors in variant discovery.41,78 While rare Mendelian 

diseases have proven well-suited to linkage analysis and especially exome sequencing, 

GWAS have contributed enormously to the identification of susceptibility alleles for common 

complex diseases.79 (Figure 1.7) 

Yet, as it becomes increasingly clear that not only common variants contribute to the genetic 

framework of complex genetic diseases, it has been argued that a “holistic” approach to the 

study of complex genetic diseases—combining family, case/control and extreme phenotype 

studies and all currently available technical approaches as illustrated in Figure 1.7 below—is 
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Figure 1.7: Strategies of analyzing genetic variation. (modified after ref. 31) 
 

imperative.41 This should become feasible within the next decade as tens to hundreds of 

thousands of samples become available through the collaborative efforts of consortia41, the 

sequencing costs continue to drop and even newer, “third generation” sequencing 

technologies80 become available. 

In the dissertation work depicted herein, several of the above approaches were utilized to 

study the involvement of genetic variants of different frequency and effect sizes in two 

genetically complex neurogenetic diseases—Restless legs syndrome (RLS) and Parkinson`s 

disease (PD).  

 

1.5.1 Association studies 

The contribution of common variants to the genetic architecture of a disease is frequently 

assessed via association studies, which compare allele or genotype frequencies of genetic 

variants between unrelated affected (i.e. cases) and unaffected (i.e. controls) individuals 

within a given population. Controls can either be general population controls in which one 

can find the phenotype of interest at the same prevalence as in the general population or 

disease-free controls, which have been screened for the phenotype of interest (i.e. “super 

controls”). The controls used in all aspects of this work belong to the KORA (Kooperative 

Gesundheitsforschung in der Region Augsburg) general population cohort81 or the KORA-

AGE sub-survey of KORA, which specifically interrogates individuals born before 1944.82  



 
_____________________________________________________________________________________________________ 

12 

A given variant is said to be associated with the phenotype if there is a statistically significant 

difference in variant frequency between cases and controls.83,84 Accordingly, common 

variants are more suitable as genomic markers in association studies because they invest 

studies with much higher power to detect associations than rare variants.  

Although current generation common variant genotyping arrays assess up to 4.3 million 

SNPs85, this represents only a fraction of the genetic variation present in a given individual. 

However, alleles at genetic loci are not inherited independently but in blocks of 10 to 200kb, 

which are often times separated by recombination hotspots86,87, and are, therefore, found more 

often together than expected by chance as reflected by the linkage disequilibrium (LD; r2 

ranging from 0 (no LD) to 1 (perfect LD)) between them88,89. Accordingly, tagging SNPs can 

be utilized to indirectly evaluate many more genetic variants known to be inherited together 

with the genotyped variant. Conversely, this also means that an association between a 

genotyped SNP and a phenotype is not necessarily caused by precisely that common variant 

but could be dependent upon any number of genetic variants—both common or rare—passed 

on together with the genotyped variant.  

For genetically complex diseases, where additive effects are usually assumed90, the Armitage 

trend test provides a powerful statistical tool which incorporates a suspected genotype-

dependent ordering of effects56,91,92  and was applied in the statistical analyses of the work 

illustrated below. Association studies can analyze either candidate genomic regions in a 

hypothesis-driven manner93 or variants covering the entire genome in a hypothesis-free 

approach94-96. Association may also be analyzed between genotype and clinical phenotype 

directly or via an intermediate phenotype (i.e. a quantitative trait locus (QTL)) such as gene 

expression (eQTL) or metabolite levels97-100. 

In the work depicted herein, genotyping was performed either using genome-wide SNP arrays 

(Affymetrix Genome-Wide Human SNP Arrays 5.0 and 6.0)I,II or on the Sequenom 

MassARRAY system using matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectrometry with iPLEX Gold chemistry.I-X  

 

1.5.2 Variant Screening 

Next to the analysis of known variants by the genotyping methods outlined above, variant 

discovery also represents a central methodology in the study of genetic variants. 
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1.5.2.1 Sanger Sequencing 

Since 1975, when Frederick Sanger first described a method of DNA sequencing by in vitro 

DNA replication using chain-terminating dideoxynucleotides (ddNTPs) by a DNA 

polymerase, “Sanger” sequencing has been the most widely used method in DNA sequence 

analysis.101,102 In contemporary Sanger sequencing, an automated format using fluorescently 

labeled ddNTPs and polyacrylamide-gel-based size-fractionation in glass capillaries is 

employed.8 Though arduous compared to other currently available sequencing technologies, it 

still counts as the most reliable method in DNA sequence detection and can be used to 

identify both known but more importantly also novel genetic variants. Sanger sequencing on 

an ABI Prism 3730 automated sequencer using BigDye chemistry was used in a number of 

projects depicted in this work, either for variant discoveryVII,IX, the validation of variants 

discovered by medium- or high-throughput approaches such as high-resolution melting curve 

analysis or next generation sequencingIII-X, segregation testing in familiesVII-X or as fragment 

analysis in the evaluation of haplotypesVI or small indelsVII. 

 

1.5.2.2 High-Resolution Melting Curve Analysis 

High-resolution melting curve analysis on the LightScanner system (Idaho Technology, 

Inc./BioFire Diagnostics, Inc.) represents an alternative method used in variant screening 

studies.103-108 As it represents one of the central methods to the work depicted in this 

dissertation thesis, it shall be explained below in more detail. 

When the melting process is visualized over time, each double-stranded DNA fragment has a 

characteristic melting temperature and pattern depending on its nucleotide composition. This 

can be utilized to identify DNA fragments with differences in the nucleotide composition by 

high-resolution melting curve analysis using the LightScanner system. Here, PCR 

amplification of a genomic region of interest is performed in a 384-well format in the 

presence of a fluorescent dye (LCGreen; excitation 440 to 470 nm, emission 470 to 520 nm) 

that labels double-stranded DNA. In a second step, the melting of the amplified and labeled 

DNA is visualized by laser detection using the LightScanner. After normalization of the 

recorded melting curves to wildtype DNA, DNAs with differing nucleotide composition can 

easily be recognized due to their altered melting profile (Figure 1.8).103-108 In order to 

determine the exact underlying nucleotide alteration, the PCR product is, in a third step, 

sequenced using the Sanger method. Both heterozygous and homozygous variants as well as 

small indels can be identified using high resolution melting curve analysis. In a diagnostic 

context, where known heterozygous BRCA1 mutations were detected within previously 

http://en.wikipedia.org/wiki/Dideoxynucleotide
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optimized PCR amplicons, sensitivity was reported to be 100% with an average specificity of 

98%. However, 3.4% of false positives where also seen in the same sample comprising 155 

DNAs and only 93% of the known homozygous mutations were found even on repeated 

evaluation of multiple amplicons for the same stretch of DNA.109 Moreover,  

 

 

 

Figure 1.8: Examples of variant detection using high-resolution melting curve analysis 
(LightScanner). The left panel depicts the position on the 384-well PCR plate (top) as well 
as the aberrant melting patterns (bottom) of two different rare variants. The central panel 
shows the same for a low-frequency variant present in heterozygous form in 13 out of 188 
DNA samples (MAF = 3.5 %) tested. In the panel on the right, both a common variant present 
in the heterozygous (green) and homozygous (turquoise) state as well as an additional rare 
variant (red) is seen. All samples are run in duplicates for increased assay sensitivity. 
 
additional predicaments specific to the identification of novel variants exist. For example,  

sensitivity varies with the location of the variant within the amplicon (peripheral vs. central),  

the overall variance within the amplicon, the GC-content (optimal range: 31% to 54%), the 

physical distance between the variants, the zygocity state (heterozygous variants, which alter 

the shape of the melting curve, are more easily detected than homozygous ones, which may 

only alter the melting temperature110) and the variant class (single bp exchanges are more 

readily detected than indels).109, personal observation 

In the work described here, high-resolution melting curve analysis was used for variant 

screening entailing the coding regions and splice boundaries (± 10 bp) and—in some 

instance—the 5`and 3` untranslated regions (UTRs) of a total of 19 candidate genes for PD or 

RLS.III-X  
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1.5.3 Linkage Analysis 

Linkage studies detect the co-segregation of genetic loci (as defined by specific genetic 

markers such as microsatellites or, more recently, SNPs) and a disease in a given family. A 

marker that is located in close physical proximity to a disease-causing genetic variant is 

inherited together with the causal variant more frequently than expected by chance because of 

the reduced meiotic recombination frequency between the two. Consequently, markers can be 

utilized to define candidate genomic regions expected to harbor the disease-causing 

variant.8,111 Prerequisites for successful linkage studies include an unambiguous segregation 

patter in the family to be evaluated, a family structure resulting in sufficient number of 

meioses (i.e. several generations of affected individuals) and an underlying genetic variant of 

fairly large effect on disease risk  (OR ≥ 4)37,48-50. Most often, linkage analyses are 

encountered in a primary context in which they are used to highlight genomic regions 

suspected to be home to disease-causing genetic variants. In the context of whole exome or 

whole genome sequencing studies, however, it has also been shown that linkage signals below 

the generally accepted threshold for statistical significance (logarithm of the odds (LOD) 

score > 3.3) can be used as secondary analysis to prioritize candidate variants obtained 

independently112,113. As part of this work, parametric linkage analysis using a subset of 12,875 

SNPs genotyped on the 500K oligonucleotide SNP array (Illumina) was used to prioritize 

variants identified by whole exome sequencing in six members of a family with autosomal 

dominant PDX as part of a collaboration with Dr. Darina Czamara and Prof. Bertram Müller-

Myhsok (both Max-Planck Institut für Psychiatrie, Munich, Germany). 

 

1.5.4 Next-Generation Sequencing 

Starting in 2005, the first instruments of a completely new generation of sequencing 

technology became available. The specifics of  “massively parallel” or “next generation” 

sequencing differ by the company, which developed it (reviewed in ref. 114). In the next 

generation sequencing (NGS) studies performed as part of this work, Illumina`s sequencing-

by-synthesis technology was used. Here, in brief, a library of DNA fragments is prepared and 

via the addition of adaptors attached to a glass surface where it is amplified in an enzymatic 

reaction.  A polymerase incorporates fluorescently labeled terminator nucleotides into 

growing DNA strands. After each cycle, the fluorescence signal is imaged and the fluorescent 

dye and the 3` blocking group that prevents elongation by more than one nucleotide at a time 

is chemically cleaved away. After a washing step, the cycle starts over.78,115 DNA libraries 

were sequenced as paired-end reads of 100 bp length each, meaning that sequences were 
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determined from both ends of a linear DNA fragment.  The three most basic applications of 

NGS are whole-genome, whole-exome and targeted resequencing of specific genes or 

genomic regions of interest. While per base, NGS is much cheaper and much faster than any 

previous sequencing approach, sequencing entire genomes is still costly and time-

consuming.78 Accordingly, the vast majority of NGS studies published to date have relied on 

whole exome sequencing, that is the analysis of solely those approximately 2% of the genome 

that are known to be protein-codinge.g.3,62-64,116, and only few have assessed whole 

genomes12,113,117. Like targeted resequencing of genomic regions of interest, whole exome 

sequencing involves the targeted capture of predefined regions of the genome (i.e. all exons). 

In this work, Agilent`s SureSelect Human All Exon 38Mb and 50Mb kits were used for in-

solution enrichment of coding sequences of DNA derived from peripheral blood lymphocytes. 

While initially the focus was placed on the study of familial diseases as here as little as one or 

a few exomes or genomes are sufficient to successfully identify disease genes, recently, as the 

cost of NGS continued to drop, first studies applying a case/control sample design known 

from GWAS to whole exome or targeted resequencing have been performed6,70,73,74,118.  

While the ability to sequence entire exomes or genomes is one thing, the ability to analyze the 

generated sequences is another.  First, the generated sequences need to be aligned to a 

reference genome, then, deviations from the reference genome can be identified. In the exome 

sequencing projects described hereinVIII-X, read alignment was carried out with Burrows-

Wheeler Aligner (BWA, version 0.5.8)119 to the human genome assembly hg19. SNVs and 

indels were detected using SAMtools (version 0.1.7)120.  Both exome sequencing and 

bioinformatics analysis were performed using the Institut für Humangenetik`s in-house exome 

sequencing pipeline established and run by PD Dr. Tim Strom (Institut für Humangenetik, 

Helmholtz Zentrum München, Munich, Germany).  

Currently, 20,000 to 50,000 coding variants that differ from the human reference genome will 

be identified per individual in a typical exome.3 Accordingly, the next challenge is to dissect 

out the one or a few disease-causing alleles from this large number of potential candidates.121 

A number of strategies based on (1) variant class37,64, (2) variant frequency in public 

databases (dbSNP122, 1000 genomes123,124, NHLBI-ESP exomes125), the in house exome 

database or independent case/control samples, (3) conservation126 and predicted functional 

relevance121,127 and (4), in the case of family studies, segregation with the disease phenotype 

have been devised to address this challenge3,121 and to reduce the number of potential variants 

to be followed up to a more manageable number. An example of the filtering algorithm used 

in the exome sequencing studies depicted in this work is given below (Figure 1.9).  
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Although NGS is most frequently encountered in the context of studies seeking trait-

associated genetic variants, additional applications have been developed and are likely to gain 

increased importance in the future. These include but are not limited to studies of RNA and 

small RNA expression (RNA-Seq), the exact placement of regulatory DNA binding proteins 

(e.g. chromatin immunoprecipitation and sequencing (ChIP-Seq)) and genome-wide DNA 

methylation profiles.78,128 

 

Figure 1.9: Filtering algorithm to prioritize variants identified by whole exome 
sequencing for follow up studies. First, variants common to two affected individuals from a 
family with autosomal dominant PD (PARK_0005) were filtered to remove common and low-
frequency variants found in dbSNP135 and 1739 in house exomes. Then, variants were 
filtered by variant class to include only variant classes likely to comprise disease-causing 
variants. Lastly, variant frequency was assessed in a case/control sample and variants found at 
similar frequencies in both cases and controls were excluded, thus reducing the number of 
potential candidate variants from 28,803 to four.X  
 

1.5.5 Rare and Low Frequency Variant Statistics 

One of the most challenging aspects of all rare variant studies is the statistical evaluation of a 

potential link to a given phenotype, as the investigated variants are, by definition, rare and, 

accordingly, analyses are chronically underpowered129-131. According to current estimates, 

several tens of thousands of cases and controls—and likely even more—will be needed to 

confidently link rare variants to specific phenotypes27,61. The simplest way of statistically 

analyzing a possible contribution of rare variants to a specific phenotype is by simple group 

comparisons of the number of occurrences of a specific rare variant in cases vs. controls such 

as by Fisher`s exact or χ2 tests.61,132 However, in nearly all instances, this approach will be 
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unsuccessful due to a lack of power.132 Consequently, alternate statistical analyses tools 

needed to be developed.  The “collapsing” of variants provides one such tool45,55,131-134. It was 

first proposed in 2007 in its simplest form as the cohort allelic sum test (CAST)135, which 

utilizes standard contingency table-based Fisher`s exact or χ2 tests. To increase power, 

variants can be collapsed across a specific (1) genomic region, gene(s) or region of a gene, (2) 

variant class, (3) variant frequency70, (4) predicted or experimentally ascertained 

function62,63,70 or (5) pathway136,137. A number of extensions of the collapsing method 

integrating multivariate analysis (combined multivariate and collapsing method (CMC)131), 

the analysis of variants of different frequencies (weighted sum statistics (WSS)138) or different 

predicted functional impact (variable weight test (VWT)55) or different direction (adaptive 

sums test139) or size (kernel-based adaptive cluster test (KBAC)140) of effect have been 

published and it has been demonstrated that these invest the statistical analysis of rare variants 

with more power than CAST132. However, it has also been shown that for aggregate rare and 

low frequency variant analyses the genetic variance for a gene or a genomic region will 

always be underestimated because it is highly unlikely that all variants at a given locus will be 

disease-relevant and even the disease-related variants will have different effect sizes and 

directions.141 With regard to performing rare variant statistics, it is also imperative to note, 

that the analysis of the most homogenous samples possible is imperative as population 

substructure and admixture play much larger roles in rare variant analyses as these variants 

show much larger population diversity than common variants.45,142 Even within European 

populations, where common variation is fairly constant, rare variants show large differences54. 

In the work illustrated herein, CAST was used for aggregate analysis of rare and low 

frequency variants collapsed across genes, variant class, variant frequency, predicted 

functional impact and experimentally determined functionality.IV,VII,IX,X  

 

1.5.6 Functional Assessment 

NGS has opened the door to the discovery of innumerable genetic variants.121 Now, it is no 

longer the rate of variant discovery that represents the limiting factor to uncovering the 

genetic factors underlying diseases but rather the development of bioinformatics capacities 

(Moore`s and Kryder`s Laws) and the functional analysis of variants.41  

Evidence derived from variant frequency, segregation analyses, variant class, positional 

conservation, location directly or from in silico prediction of functionality (using prediction 

algorithms such as PolyPhen2143, SIFT/PROVEAN144,145 or MutationTaster146 or a 

combination of a number of prediction algorithms such as described inIX) can provide some 
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idea of the likelihood with which a given variant will harbor a functional effect of 

pathophysiologic relevance.121 Yet, prediction tools are notoriously inaccurate.147 

Accordingly, especially with regard to rare variants—where statistical evidence may not be 

very convincing due to impeded statistical power and where very rare variants or even 

singletons represent the largest fraction16,27,54—experimental functional analysis is vital to 

judge the nature of an identified variant.  

In the work depicted herein, a number of standard experimental set-ups commonly employed 

in molecular biology were used to assess the functional effect of identified variants. These 

include the analysis of variant-dependent RNA and protein expression and localization by 

PCR, immunocytochemistry or Western blot in primary patient-derived fibroblasts or 

transfected HEK-T or SH-SY5Y cells as well as cell death detection by flow cytometry. 

However, the analysis of large numbers of variants by conventional cell biological and 

biochemical analyses is time consuming and more efficient strategies are needed to facilitate 

the evaluation of potentially pathophysiologically relevant variants and genes identified by 

various NGS approaches.41 In this work, an in vivo complementation assay in zebrafish was 

employed as a medium-throughput way to evaluate the functionality of given coding 

variantsIV and shall, therefore, be described in more depth.  

In this assay, translation- or splice-blocking morpholinos (Gene Tools, Inc.) are used to ablate 

functional protein of a gene of interest in zebrafish embryos. Morpholinos are synthetic 

antisense RNA oligomers of approximately 25 bp in length that either prevent protein 

production or pre-mRNA splicing148,149. The resulting morphant phenotype is assessed and—

where possible—analyzed quantitatively. To evaluate the effect of individual genetic variants, 

human cDNA of the gene of interest is cloned into the pCS2+ Gateway destination 

expression vector. Subsequently, missense mutations are introduced into the open reading 

frame of the gene of interest using QuikChange site-directed mutagenesis (Stratagene) and 

confirmed by Sanger sequencing. Morpholinos are injected into wildtype zebrafish embryos 

at the two-cell stage along with mRNA transcribed from linearized pCS2+-cDNA harboring 

the wildtype sequence or a specific variant. The wildtype mRNA should be able to rescue the 

morpholino-induced phenotype. With regard to the variants, however, this rescue capacity 

may be lacking (i.e. a null allele), attenuated (i.e. a hypomorphic allele) or uncompromised 

(i.e. a benign allele), thus providing information on the impact of a specific variant on the 

functionality of the gene of interest (also cf. Figure 1.10 panel A). Rescue capacity is usually 

evaluated in two rounds of approximately 100 injected zebrafish embryos each for each 

variant and either quantified—if the morphant phenotype allows this—or grouped into 
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different severity classes. The actual phenotype developed by the embryos is not necessarily 

related to the disease phenotype. Rather, the in vivo complementation assay is designed to test 

the impact of a genetic variant on the general function of a gene of interest in a disease-

unspecific yet semi-high-throughput fashion. Figure 1.10 below gives an example of the in 

vivo complementation assay as used to assess the functionality of rare variants in the RLS-

associated gene MEIS1. In vivo complementation assays described here were performed in 

conjunction with Dr. Maria Kousi and Prof. Dr. Nicholas Katsanis at the Center for Human 

Disease Modeling, Duke University, Durham, NC, USA.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.10: (A) Schematic depiction and (B) examples of the in vivo complementation 
assay in zebrafish. Injection of zebrafish eggs with a morpholino targeting meis1 leads to a 
reduction in optic tectum size, which can be restored by co-injection with human wildtype 
MEIS1 mRNA. (B, top row) Co-injection of meis1 morpholino and MEIS1 mRNA containing 
a number of different non-synonymous variants identified in patients with RLS leads to 
variably successful restoration of the optic tectum phenotype suggesting functional effects of 
differing severity on MEIS1 (B, bottom row; benign, hypomorphic and null allele left to 
right).IV 

B 

A 
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1.6  Restless Legs Syndrome (adapted from book chapters published as ref. XI,XII) 
 
 
1.6.1 Clinical Phenotype of RLS 
 
1.6.1.1 Epidemiology 

Age- and sex-dependent prevalences around 10% in adult populations of European descent 

render RLS one of the most common neurologic disorders overall150,151. In populations of 

Asian descent, prevelances are lower, ranging from around 1.57% in Taiwan152 to 3.2% in 

Turkey153. However, a female preponderance (female to male ratio approx. 1.4:1.0154) is 

found in most populations examined so far. The cause for this overrepresentation of females 

in the RLS patient population is unclear to date. One study proposed that it could be related to 

the fact that pregnancies are associated with an increased risk of RLS.155 The fact that brother-

brother pairs have a higher RLS correlation than brother-sister or sister-sister pairs156 also 

argues that non-genetic factors could contribute to the increased prevalence of RLS among 

women.   

 

1.6.1.2 Definition 

To date, there are no known biomarkers for RLS. During polysomnography, approximately 

80% of individuals with RLS show an increased occurrence of periodic limb movements in 

sleep (PLMS)157. PLMS are defined as movements of >0.5s duration, occurring at 4 to 90 s 

intervals and of an amplitude of at least 25% of the calibration amplitude158. However, they 

are unspecific and also seen in other sleep disorders such as narcolepsy and rapid eye 

movement sleep behavior disorder (RBD) as well as in healthy individuals.159 Accordingly, 

RLS remains a clinical diagnosis based largely on the patient`s account of his or her 

symptoms. The International RLS Study Group (IRLSSG) set forth four essential criteria as 

well as supportive and associated diagnostic features to be used in the diagnosis of RLS160. 

The essential criteria include the following: (1) dysesthesias affecting the legs, (2) triggered 

by periods of rest or inactivity, (3) relieved by movement and (4) occurring mostly during the 

evening and at night. Supportive criteria and associated features complete the current 

diagnostic criteria160. (Text Box 1.1) Specificity of the four essential diagnostic criteria has 

been estimated to be about 84%, with most of the diagnostic accuracy ascribed to the first and 

fourth criterion161.  
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Text Box 1.1: Essential criteria and supportive and associated features comprising the 
RLS diagnostic criteria set forth by the IRLSSG160.  
 

1.6.1.3 The Clinical Phenotype 

Subjectively, patients often times find it very difficult to give an accurate rendition of the 

sensory phenomena they experience. The description of dysesthesia qualities is consequently 

broad and can vary from “tingeling” and “electrifying” sometimes “painful” sensations to 

“pulling”, “working”, “tensing” and  “rumbeling” to “itching” and “pulsations” or 

“vibrations” which are classically felt deep inside the affected extremities. Dysesthesias 

typically begin after 10 to 20 minutes of rest but the time to the onset of symptoms can vary 

with severity and, in very severe cases, symptoms can be present near continuously. 

Emblematic accounts usually describe the occurrence of symptoms during periods of rest such 

as when falling asleep, during meetings in the afternoon or at night, during visits to the theater 

Essential criteria 

1. an urge to move the legs, usually accompanied or caused by 
uncomfortable and unpleasant sensations in the legs 

2.  the urge to move or unpleasant sensations begin or worsen during 
periods of rest or inactivity such as lying or sitting 

3.  the urge to move or unpleasant sensations are partially or totally 
relieved by movement, at least as long as the activity continues 

4.  the urge to move or unpleasant sensations are worse in the evening 
or at night than during the day or only occur in the evening or at night 

 

Supportive features 

1. positive family history 

2. positive response to levodopa or dopamine agonists 

3. periodic limb movements in sleep 

 

Associated features 

1. a progressive and fluctuating natural clinical course of disease 

2. sleep disturbances 

3. normal physical examination findings in cases of primary RLS or 
findings of underlying conditions in cases of secondary RLS 
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or cinema or while watching TV at night, long bus, airplane or car rides or immobilization of 

the legs after surgery. There is a clear preponderance for the evening and night time, with the 

hours between midnight and 2 am representing the symptom maximum162,163. Moving the legs 

and feet or getting up and walking around usually provides prompt symptom relief. Patients 

have also reported to benefit from other sensory stimuli such as massaging their legs with 

cooling gels or cold showers. Moreover, >90% respond positively to treatment with 

dopaminergic drugs164. Generally, symptom intensity and frequency increase with disease 

duration and it is common to find symptom-free intervals of several weeks or months during 

the early stages of disease progressing to quotidian symptoms after a course of several years 

or decades.  

Consequences of leg discomfort and restlessness are severe disturbances in sleep architecture 

and quality including a fragmented sleep profile with frequent changes in sleep stages and 

arousals as well increased stage 1 sleep, extended wake periods after sleep onset and 

increased latency to sleep onset165-169. Clinically, this results in difficulties in both falling and 

staying asleep as well as daytime sleepiness and fatigue166. Furthermore, RLS has also been 

linked to an increased incidence of depression, anxiety and possibly also increased 

cardiovascular diseases170-173. Diagnosis is made solely based on the medical history reported 

by the patient accompanied by an unremarkable examination finding, in the case of primary 

RLS, or an examination finding in line with the underlying condition in secondary RLS.  

RLS is a disorder combining both sensory and motor symptoms on a spectrum that at its 

extremes consists of presentations with stark predominance of either one of the two features.  

Next to PLMS, paroxysmal myocloniformic hyperkinesias may also occur which can be 

severe enough to impair locomotion174. Sensory symptoms, on the other hand, can be very 

painful or cramp-like175 rendering “leg pain” the chief complaint in some individuals with 

RLS.  

Although the pathophysiologic factors underlying disease development are just starting to be 

uncovered, it is well established that sensory and motor symptoms can be alleviated by 

dopaminergic (levodopa and dopamine agonists176,177), opioidergic178, and antiepileptic drugs 

such as alpha-2-delta calcium channel ligands179. Additionally, it has been shown that some 

individuals with RLS benefit from oral180 and intravenous181 iron substitution. At present, the 

mechanism of action of all of these treatments with regard to either the motor or the sensory 

components of the RLS phenotype remains unclear. 
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1.6.1.4 Endophenotypes—Primary and Secondary RLS 

It is important to recognize that RLS can be a primary disorder or secondary to a number of 

other medical conditions. Primary RLS can be subdivided further into familial and idiopathic 

forms. A positive family history as defined by at least one affected 1st degree relative is 

reported by 40 to 90% of patients.182-184 In 232 individuals with idiopathic or primary RLS, 

individuals with a positive family history had a younger age of onset (35.5 vs. 47.2 years, 

p<0.05)183. The age of onset shows a bimodal distribution with a larger suspected genetic 

contribution in those who start experiencing symptoms before the age of 30 and a larger 

contribution of environmental factors and secondary causes in those with an age of onset after 

30 years185. 

Common causes of secondary RLS include pregnancy, iron deficiency and renal failure. 

Overall, about a third of all individuals with any one of these conditions also develop 

symptoms of RLS.186-189  

A number of situations depleting body iron stores such as repeated blood donations190 or 

disorders with increased blood loss such as severe myomas (personal observation) can lead to 

RLS. In 365 individuals between the age of 65 and 83 years of age, those with the lowest 

quantile of serum iron levels (odds ratio (OR)=3.08) and transferrin saturation (OR=5.68) 

were more likely to have RLS191. 

RLS during pregnancy is a common phenomenon reported by 28.9% of the total collective of 

1079 women in three large studies from Norway, France, and Italy.186-188 Symptoms are most 

severe during the third trimester. In most cases, RLS symptoms that first manifested during 

pregnancy disappear shortly after delivery but are believed to represent a predictor for the 

development of primary RLS later in life.  

Approximately one third of hemodialysis patients suffer from RLS. Although, it has been 

reported that RLS symptoms in uremic patients positively correlate with serum kreatinin 

levels by some189, a trustworthy serological correlate of RLS in hemodialysis patients is still 

lacking.  

In the clinical setting, individuals with both RLS and polyneuropathy are also frequently 

encountered, however, it is unclear which percentage of these patients has RLS symptoms 

secondary to underlying polyneuropathy and in whom the two disease, which are both 

common in the elderly population, merely co-occur as no large studies have been conducted 

to date. Estimates of the prevalence of RLS in individuals with polyneuropathies vary widely 

(between 5.2% and 40%)192-195.  
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When compared to its prevalence in the general population, RLS is also seen more frequently 

in a number of different conditions ranging from neurologic diseases such as amyotrophic 

lateral sclerosis196, Parkinson`s disease197 and multiple sclerosis198 to rheumatoid arthritis199 

and celiac200 as well as Crohn`s disease201. If the underlying condition can be treated, RLS 

symptoms also improve. Finally, a number of drugs affecting dopaminergic, serotoninergic, 

histaminergic or noradrenergic neurotransmission can also precipitate or worsen symptoms of 

RLS.202-204  

 

1.6.1.5 Pathophysiologic Concepts 

The pathophysiology and pathoanatomy underlying RLS are largely unclear. Although the 

age-dependent prevalence might suggest otherwise, there is no overt involvement of 

neurodegenerative processes.205-207 Functional imaging studies and electrophysiological 

studies have seen both cortical and spinal hyperexcitability in individuals with RLS.208-215  

The therapeutic benefit derived from dopaminergics176,177 and opioids178,216 has implicated 

these neurotransmitter systems and the central nervous system (CNS) in the pathogenic 

framework of RLS. Yet, both the mechanism and the exact pathoanatomic location remain 

subject to speculation. The dopaminergic neurotransmitter system is intriguing because 

dopaminergic dysfunction could explain both motor and sensory symptoms217 as well as the 

circadian predilection218,219. The nigrostriatal (A9) and diencephalospinal (A11) dopaminergic 

systems are most intensively discussed in the context of RLS.217,220 A11 neurons inhibit both 

afferent sensory neurons and preganglionic sympathetic neurons and are involved in pain 

modulation and the control of autonomic and motor functions and could, in the case of 

dysfunction, amount in the spinal hyperexcitability seen in individuals with RLS.221 Their 

location close to the suprachiasmatic nucleus, the “control hub” for circadian rhythms in the 

human body, further fuels speculations regarding a possible role in RLS.222 Some clinical 

aspects of RLS, such as increased locomotion, which is attenuated by dopamine agonists and 

augmented by iron deficiency, can be reproduced in controversial mouse and rat models with 

A11 lesions.223-225 However, in patients with RLS no signs of a neurodegenerative process 

could be detected in the A11 region207. With regard to the A9 region, the situation is equally 

as uncertain. A number of neuroimaging studies assessing both pre- and postsynaptic 

dopamine status in the nigrostriatal system have yielded contradicting results but insinuate a 

dys- and possible hypofunction in RLS.226-231 However, an involvement of other structures of 

the CNS can also not be excluded as these have not been investigated in detail. 
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Clinical evidence also points to a role for iron in the pathogenesis of RLS (cf. section 1.7.1.3 

above, reviewed in 232). This is supported by the neuroimaging and transcranial sonography 

finding of reduced iron levels in the SN and multiple other brain regions in individuals with 

RLS.233-240 Moreover, cerebrospinal fluid (CSF) studies revealed decreased ferritin and 

increased transferrin indicative of a depletion of body iron stores in the CSF of RLS patients 

when compared to controls.241,242 The molecular mechanisms responsible for this iron 

depletion is not known.  Attenuated uptake by dopaminergic neurons of the SN, the 

endothelial cells of the choroid plexus and the brain microvasculature or oligodendrocytes has 

been postulated, with a dysregulation of multiple players of the iron metabolism seen in these 

cells in post mortem neuropathological studies of a limited number of RLS brains.206,243-248 

One possible link between the dopamine and iron pathways in RLS is that the rate-limiting 

enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), requires iron as a cofactor. 

Accordingly, decreased iron availability in dopaminergic neurons could amount in the 

dopaminergic hypofunction proposed to exist in RLS.217 Yet, animal models of iron 

deficiency show increased extracellular dopamine and intracellular TH, while still 

recapitulating the dopaminergic alterations seen in RLS patients, at least in part.248  

Overall, significant work remains on the road to fully understanding the pathogenic 

mechanisms involved in RLS. Recently, the discovery of the first genetic susceptibility 

factors for the disease have, moreover, implicated novel concepts, such as 

neurodevelopmental dysregulation, in the underpinnings of RLS.I,249-252  

 

1.6.2 Genetics of RLS 

 

1.6.2.1  RLS as a Genetic Disorder  

During the first half of the 20th century, two of the earliest RLS researchers, Hermann 

Oppenheim and Karl Ekbom, already observed a familial aggregation of RLS cases. Ekbom 

estimated ‘one-third’ of all RLS cases to be hereditary and described families with an 

apparent autosomal-dominant pattern of inheritance.253,254 

Next to an assessment of families, twin studies can be used to further investigate the heritable 

component of a disease and to evaluate the contribution of genotype and environment 

interactions to a phenotype. The larger the difference in concordance rates between 

monozygotic (MZ) and dizygotic (DZ) twins, the larger the genetic contribution to a given 

trait. With regard to RLS, three twin studies have been published with concordance rates 

ranging between 15% and 45% for DZ twin pairs255,256 and 53% and 83% for MZ twin 
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pairs255-257. Under the assumption of shared environmental variation (VE), the narrow-sense 

heritability (h2) for RLS was estimated to be between 54% and 69%255,256 and a collection of 

additive genetic effects combined with unique environmental influence proved to be the best 

approximation in multifactorial liability threshold modeling.256  

Taken together the twin studies lend support to the perception of RLS as a highly heritable 

disease. At the same time, concordance rates among MZ twins fell short of 100% arguing for 

the existence of important individual epigenetic or environmental factors.  

Genetic factors play a role in bringing about RLS in both primary and secondary cases—

though likely to very different extends. Classically, RLS has been considered to be a complex 

genetic disorder. In secondary RLS, this may simply mean that individuals who develop RLS 

due to an underlying condition possess genetic variants conferring increased susceptibility to 

RLS but without an additional insult such as another predisposing medical condition these 

individuals would never develop symptoms of RLS.  Some of these genetic risk factors may 

be identical to those seen in individuals with primary RLS (e.g. rs3923809 in BTBD9 in 

hemodialysis patients with RLS258), however, it is also likely that genetic risk factors unique 

to secondary forms of RLS exist. On the other end of the spectrum, in familial RLS, mono- or 

oligogenic forms may exist in which, in the most extreme scenario, only one genetic alteration 

would be sufficient to cause disease. However, it is unclear whether this means that there is a 

single genetic variant in a single gene, different variants in a single gene or different variants 

in different genes in the affected individuals. Further, as discussed below in more detail, 

variable expressivity even within a single family, incomplete penetrance, the existence of 

phenocopies and genetic heterogeneity further characterize the genetics of RLS.  

  

1.6.2.2   Family Studies of RLS 

The large heritability estimates and the occurrence of large pedigrees with RLS prompted the 

first systematic family studies in the 1980s and 1990s178,184,259,260. Here, it was noted that in 

most pedigrees the recurring pattern of transmission seemed to be autosomal dominant.259,260  

This observation was later substantiated by the systematic evaluation of the pattern of 

inheritance in 300 individuals with RLS183. Under the assumption of a single causative gene 

playing a role in familial RLS, linkage analyses were used to identify genomic regions shared 

by affected individuals from a family.  

To date, a total of seven such genomic loci have been identified (Table 1.1). In all but one, a 

model of autosomal dominant inheritance with reduced penetrance yielded the highest LOD 

scores.156,261-267 For RLS-1, however, the first RLS linkage locus identified in a French-



 
_____________________________________________________________________________________________________ 

28 

Canadian family on chromosome 12q12-21, an autosomal-recessive model with a high allele 

frequency of 0.25, resulting in a pseudodominant mode of inheritance, represented the best 

fit264,268. 

Next to the seven linkage regions that were found to have genome-wide significant LOD 

scores above the conventional threshold of 3.3, a total of 21 linkage regions on 14 

chromosomes have also been reported with LOD scores ranging between 1.00 and 2.61156,262-

265,269. For a more in-depth discussion of the RLS linkage loci, please cf.270. 

Despite this plethora of evidence supporting the existence of single genetic variants of strong 

effect that play a role in familial RLS, it is also important to realize, that most of these loci 

where only found in single or—in the best case—a few families leaving many more families 

where the underlying genetic factors remain obscure.  

The recurrent finding in the family studies was that of genetic heterogeneity and complexity 

in RLS. Interestingly, a large German RLS family in whom linkage analysis argued for the 

existence of two independent linkage loci on chromosomes 4 and 17 also exists, possibly 

reflecting an oligogenic mode of inheritance in this family. (Winkelmann et al., unpublished 

observation) Also, replication of the above loci has proven very difficult266,268,269,271-274 and 

the maximum LOD scores found fall short of the maximum attainable scores projected by the 

pedigree structure. Overall, linkage studies in RLS have failed to the extent that no underlying 

genetic factor could be identified for any of the above loci, even when the most up-to-date 

technologies such as targeted next-generation sequencing were employed to resolve the 

regions275. 



Chr Region Peak Marker Size  max LOD Model Replication Reference 
  (hg19)   (Mb)     Status   
12q12-21 94176800-104264737 D12S1044 10.09 3.59 auto rec + 264 
    94176800     pseudodominant    
14q13-21 34459194-47133518 D14S288 12.68 3.23 auto dom + 263 
    43171519 (1.3)        
9p24-22 516800-19680020 D9S286 19.18 3.9 auto dom + 156 
    8043378 (16.60) 3.22 model-free    
9p21 22340644-ca. 3225000 D9S147E 9.9 3.6 auto dom - 266 
    31044744          
2q33 197566845-208825061 D2S325 11.26 5.5 auto dom (+) 265 
    207978881 (0.045)   reduced pen (0.7)    
20p13 82754-5315186 D20S849 5.2 3.86 auto dom (+) 261 
    5142034 (4.5)   reduced pen (0.7)    
16p12 22758479-23312075 several 1.18 3.5 auto dom  (+) 262 
         reduced pen (0.8)    
19p13 0-2518075 D19S878 2.5 3.59 auto dom - 267 

    2310697           
Table 1.1: Linkage regions in RLS. For the size of the linkage region, first the originally reported size is given and, secondly, if pertinent, the best 
current approximation after additional fine-mapping and replication studies.  + = replicated with significant LOD score, (+) = replicated with LOD 
score suggestive of linkage, - = not replicated. (published in ref. XI,XII)
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1.6.3 Genome-Wide Association Studies 

To date, three genome-wide association studies (GWAS) have been carried out for RLS and 

one for RLS and periodic limb movements in sleep (PLMS) (Tables 1.3 and 1.4). The PLMS 

GWAS was performed out under the deCODE Genetics umbrella and included 306 cases with 

RLS and PLMS and 15,664 controls from Iceland in the genome-wide phase. An intronic 

variant in BTBD9 within an LD block on chromosome 6p21.2 showed genome-wide 

significant association (pnominal=2x10-9, OR=1.8) and was replicated in a second Icelandic and 

a US-American sample (combined sample (617 cases/17,528 controls): pnominal=3x10-14, 

OR=1.7, lead SNP=rs3923809).252 

Simultaneously, the first RLS GWAS, which included 401 German cases and 1,644 general 

population controls in the genome-wide phase as well as 903 German cases and 891 controls 

and 255 Canadian cases and 287 controls in the replication samples, also showed association 

to the same SNP and the same 115kb LD block on chromosome 6p containing intron 5 of 

BTBD9. However, on chromosome 2p, an association signal located within a 32 kb LD block 

containing intron 8 and exon 9 of MEIS1 was more strongly associated with the RLS 

phenotype in all individuals included in the genome-wide phase as well as the combined 

sample (rs2300478, pnominal=3.41x10-28, OR=1.74). Fine mapping and haplotype analysis in 

the German replication sample revealed a haplotype associated with RLS with an increased 

OR of up to 2.75 (95% CI: 2.23-3.41) (pnominal=5.87x10-20, frequency in cases 0.231 vs. 0.102 

in controls). A third association signal of genome-wide significance was located within a 

48kb locus on chromosome 15q spanning the 3`end of MAP2K5 as well as SKOR1 (formerly 

called LBXCOR1) (combined pnominal=6.09x10-17).249  

A GWAS-based analysis of the RLS-3 locus encompassing 31 Mb on chromosome 9p23-24 

revealed and replicated two independent (r2=0) SNPs within two independent LD blocks in 

intron 8 (rs4626664) and intron 10 (rs1975197) of the 5’ UTR of PTPRD. In the combined 

analysis of discovery and replication samples, both SNPs surpassed thresholds for genome-

wide significance (rs4626664: pnominal=5.91x10-10, OR=1.44; rs1975197: pnominal=5.81x10-9, 

OR=1.31). No variants in any of the 35 coding and 10 non-coding exons of PTPRD could be 

identified in nine affected individuals from an RLS-3 linked family and the common variants 

in PTPRD only explain a minor portion of the original RLS-3 linkage signal.251  

An increased sample size of 922 cases and 1,526 controls in the genome-wide phase and a 

multi-national replication sample of 3,935 cases and 5,754 controls of European descent 

revealed two new loci of genome-wide significance: an intergenic region on chromosome 

2p14 approximately 1.3 Mb downstream of MEIS1 (rs6747972, pnominal=9.03x10-11, OR=1.23) 
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as well as a locus on chromosome 16q12.1 encompassing an LD block of 140 kb containing 

both the 5`-end of TOX3 and the non-coding RNA BC034767 (rs3104767, pnominal=9.4x10-19, 

OR=1.35).I  

 

 

Figure 1.11: Manhattan plot showing RLS GWAS loci. By means of three GWAS, a total 
of six genomic loci of genome-wide significance were identified for RLS. (modified after ref. 
I) 
 

While the two most recent loci still await replication in independent studies, the first four loci 

have been replicated in independent case/control samples276-279 and the lead SNPs in BTBD9 

were also associated with increased susceptibility to RLS in European dialysis patients with 

RLS258. To date, no GWAS in non-European populations or considering specific 

endophenotypes have been performed for RLS.  

Single SNPs at the RLS-associated loci identified by the above studies bear effect sizes 

between 1.23 and 1.68 and risk allele frequencies between 0.19 and 0.82.I (Tables 1.2 & 1.3) 

Although the conferred risk is large when compared to common variants associated with other 

complex traits, when taken together, the most significant SNPs at these loci only explain 

about 6.8% of the total heritability of RLSI. The significant portion of heritability that remains 

to be accounted for—the so-called “missing heritability”33—argues for—most likely—both 

the existence of additional independent RLS-related variants within these loci as well as a 

number of additional loci.  

 

 



Genome-wide 
sample 

Origin SNP Array Replication 
sample(s) 

Origin Lead SNPs Candidate gene Replication 
status 

Reference 

(cases/controls)     (cases/controls)          
306/15,633 Iceland Human Hap300 & Hap300-duo+  123/1233 Iceland rs3923809 BTBD9 + 252 

    Bead, Illumina 188/662 USA        
401/1,644 Germany 500K, Affymetrix 903/891 Germany rs2300478 MEIS1 + 249 

      255/287 Canada rs9296249 BTBD9 +  
          rs1026732 MAP2K5/SKOR1 +  

628/1,644 Germany 500K, Affymetrix (n=401+1,644) 1,271/1,901 Germany rs4626664 PTPRD + 251 
    Genome-Wide Human SNP 5.0  279/368 Czech Republic rs1975197 PTPRD +  
    Array, Affymetrix (n=227) 285/842 Canada        

954/1,814 Germany  Genome-Wide Human SNP 5.0  1,236/1,471 Germany & Austria rs2300478 MEIS1 + I 

  & Austria Array, Affymetrix (cases) 1,104/1,065 Germany & Austria rs9357271 BTBD9 +   
    Genome-Wide Human SNP 6.0 351/597 Czech Republic rs1975197 PTPRD +   
    Array, Affymetrix (controls)  141/360 Finland rs12593813 MAP2K5/SKOR1 +   
      182/768 France rs6747972 intergenic -   
      285/285 Canada rs3104767 TOX3/BC034767 -   

      556/1,208 USA         
Table 1.2: Summary of RLS GWAS. (published in ref. XI,XII)  
 
 
 
 

Table 1.3: Summary of RLS GWAS loci. (published in ref. XI,XII)

Locus Chr LD Block (Mb) Lead SNP Risk allele Risk allele freq Pjoint Odds ratio 
      cases/controls  (95% CI) 
MEIS1 2 66.57-66.64 rs2300478 G 0.35/0.24 3.40x10-49 1.68 (1.57-1.81) 
MAP2K5/SKOR1 15 65.25-65.94 rs12593813 G 0.75/0.68 1.37x10-22 1.41 (1.32-1.52) 
BTBD9 6 37.82-38.79 rs9357271 T 0.82/0.76 7.75x10-22 1.47 (1.35-1.47) 
TOX3/BC034767 16 51.07-51.21 rs3104767 G 0.65/0.58 9.40x10-19 1.35 (1.27-1.43) 
intergenic 2 67.88-68.00 rs6747972 A 0.47/0.44 9.03x10-11 1.23 (1.16-1.31) 
PTPRD 9 8.80-8.88 rs1975197 A 0.19/0.16 3.49x10-10 1.29 (1.19-1.40) 
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1.6.1.3  Following-up on GWAS 

The link between the most likely candidate genes at the associated GWAS loci and RLS is not 

readily apparent. It is also important to realize that the lead SNPs may not be identical with 

the causal genetic variants at these loci, which makes functional follow-up studies 

indispensible in order to utilize genetic variants to inform the pathophysiology of RLS. 

Functionally, most of the candidate genes highlighted by the GWAS are not well 

characterized. Transcriptional regulation especially in developmental processes in the nervous 

system seems to be the largest common denominator. 

 

1.6.2.3.1   MEIS1  

In the following, GWAS follow-up efforts regarding the MEIS1 locus are portrayed in greater 

detail because it represents the currently only candidate gene at its locus, shows the most 

significant association with the RLS phenotype in the GWAS performed to date and because 

it is the most pertinent to the studies depicted in this dissertation. For a detailed review of the 

additional RLS GWAS loci (Table 1.3), please see ref. 270,280. 

The transcription factor MEIS1 (myeloid ecotropic viral insertion site 1 homolog) belongs to 

the family of highly conserved three-amino acid loop extension (TALE) homeobox (HOX) 

genes and interacts with PBX and HOX proteins to increase the affinity and specificity of 

HOX proteins281 as well as CREB1282 in DNA binding. In Xenopus laevis, meis1 is known to 

be involved in neural crest development.283 Murine Meis1 is essential for proximo-distal limb 

patterning284 and plays a role in defining Hox transcriptional regulatory networks285 that 

specify among others spinal motor neuron pool identity and connectivity286. In the CNS of 

adult mice, Meis1 is expressed in cerebellar granule cells, the forebrain and the SN287. While 

MEIS1 was initially identified in the context of acute myeloid leukemia288,289, in recent years, 

a role in murine heart development has also been recognized290 and SNPs in intron 8 (but in 

weak LD (r2=0.3) with the known RLS SNPs) play a role in determining atrio-ventricular 

conduction velocity in both Europeans and African Americans291,292. Meis1-/- mice develop 

ocular and vascular defects, fail to produce megakaryocytes and display extensive 

hemorrhaging. They also die by embryonic day 14.5.293 

Several rare non-synonymous variants in MEIS1 have been identified in RLS patients.294-296 

However, coding variants in MEIS1 are very rare in general (13 out of approximately 4300 

individuals with a non-synonymous variant in the NHLBI-ESP exomes), possibly owing to 

the fact that MEIS1 represents one of the most highly conserved genes in the human genome, 
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and, therefore, remain ambiguous with regard to possible causality of the RLS 

phenotype.294,295,297 

Since the publication of the first GWAS, which identified SNPs in MEIS1 as susceptibility 

factors for RLS, two studies have been reported which examine the functional differences 

brought about by the RLS-associated intronic variants. In the first, a significant decrease in 

MEIS1 mRNA and protein expression was found in lymphoblastoid cell lines and brain tissue 

(pons and thalamus) from homozygous carriers of the risk haplotype when compared to 

homozygous carriers of the non-risk haplotype.297 In a second study, knock-down of the 

MEIS1 orthologue unc-62 by RNA interference in Caenorhabditis elegans was related to 

increased ferritin expression and an extended lifespan. In thalamus but not in pons samples of 

RLS patients homozygous for the MEIS1 risk haplotype (n=9), ferritin light and heavy chain 

as well as divalent metal transporter 1 (DMT1) mRNA and protein expression were 

significantly increased when compared to RLS patients carrying the protective haplotype 

(n=7).298 The authors argue that these data are in support of a disruption of physiological iron 

transport into the brain and—in conjunction with the also observed decrease of MEIS1 

expression in in vitro cell models of iron deprivation—provide a functional link between the 

RLS gene MEIS1 and the iron metabolism.298 

 

1.6.2.3.3   BTBD9, PTPRD, MAP2K5/SKOR1 & TOX3/BC034767 

BTBD9, PTPRD, TOX3, MAP2K5, and LBX1, the transcriptional target of co-repressor 

SKOR1, have been reported to be—directly or indirectly—involved in transcription regulation 

and neuromuscular developmental processes.299-304 All of them are expressed in a number of 

different cortical and subcortical brain regions.305-308 Very little is known about the function 

of the non-coding RNA BC034767, the second candidate gene at the RLS-associated locus on 

chromosome 16. Common SNPs and structural variation in the above genes have also been 

related to a range of other neurologic—Tourette syndrome (BTBD9)309, neuroblastoma 

(PTPRD)310,311 and attention-deficit and hyperactivity disorder (PTPRD)312—and non-

neurologic—type II diabetes (PTPRD)313, coronary artery disease (PTPRD)314 and breast 

cancer (TOX3)315—diseases. The only RLS-specific follow-up studies have been performed 

with regard to BTBD9. Here, in both drosophila and mice, the knock-down of dBTBD9/Btbd9 

leads to hyperlocomotion and changes in sleep architecture such as increased awake time and 

number of arousals as well as—in mice—decreased stage 3 and non-REM sleep reminiscent 

of RLS.316-318 Although GWAS have written the first real “success stories” in RLS genetics, 

the identified genes only represent the most likely candidates at the given loci and one can 
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also not exclude that other genetic variants in high LD with the lead SNPs play a role or that 

the SNPs hold long-range regulatory function on other genes. Accordingly, ongoing efforts to 

functionally link the identified genes to the RLS phenotype will be important to better inform 

the nature of the observed associations. 

 

 

1.7  Parkinson`s Disease 

 

1.7.1 The Clinical Presentation of PD 

 

1.7.1.1 Epidemiology 

Next to Alzheimer`s disease (AD), PD represents the second most common 

neurodegenerative condition known today319. The point prevalence of PD in industrialized 

countries is estimated to be 0.3% with an age-dependent increase to 3 to 4% in those over the 

age of 80 years.320-322 In Western Europe, the life time risk of developing PD currently ranges 

around 4% in European populations.323 Men are more commonly affected than women (m:f = 

1.46:1) in Caucasian but not in Asian populations, where men and women develop PD at 

equal frequencies.324 

 

1.7.1.2 Definition and Diagnostics 

Clinically, PD is characterized by a tetrad of motor symptoms consisting of (1) a low-

frequency resting tremor (classically 4 to 6 Hz), (2) rigidity, (3) bradykinesia and (4) postural 

instability. Next to the motor impairments, non-motor features exemplified by 

neuropsychiatric symptoms—such as cognitive impairment325,326, depression327,328 and 

psychotic symptoms329 —, dysautonomia330,331 and sleep-wake330,332 (reviewed in333) as well 

as pain disorders334,335 also represent debilitating clinical aspects of PD336 and can, in 

approximately 20% of cases, represent the initial presenting symptom in PD337. 

Internationally, the “UK Brain Bank Criteria”338,339 are the most widely utilized diagnostic 

criteria for PD (Text Box 1.2) and also represent the criteria employed to ascertain PD cases 

in the studies depicted in this work.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Text Box 1.2: The UK Brain Bank Criteria.338,339 
 
Yet, it can be difficult to clinically differentiate PD from other disorders presenting with 

parkinsonism and generally a final diagnosis can only be established post mortem. In one 

study of 100 individuals prospectively diagnosed with PD, only 76 % to 82 % also showed 

neuropathologic features diagnostic of PD. The “misdiagnosed” cases displayed 

Step 1—Diagnosis of a parkinsonian syndrome 

Bradykinesia and at least one of the following: 

                1. Muscular rigidity 
                2. Resting tremor (4–6 Hz) 
                3. Postural instability unrelated to primary visual, cerebellar,  
                    vestibular or proprioceptive dysfunction 
 

Step 2—Exclusion criteria for PD 
 

1. Repeated strokes or head traumas 
2. Dopamine depleting drugs 
3. Encephalitis or oculogyric crisis  
4. (More than one affected relative) 
5. Sustained remission 
6. Lacking response to large doses of levodopa  
7. Strictly unilateral features after 3 years 
8. Other neurological features: supranuclear gaze palsy, 

cerebellar signs, early severe autonomic involvement, 
Babinski sign, early severe dementia with disturbances 
of language, memory or praxis 

9. Exposure to known neurotoxins 
10. Presence of cerebral neoplasm or hydrocephalus on  

            neuroimaging 

Step 3—Supportive criteria for PD 
Three or more required for the diagnosis of definite PD: 
 
1. Unilateral onset 
2. Excellent response to levodopa 
3. Rest tremor 
4. Severe levodopa-induced chorea 
5. Progressive disorder 
6. Levodopa response for over 5 years 
7. Persistent asymmetry affecting the side of onset most 
8. Clinical course of over 10 years 
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neuropathologic characteristics of progressive supranuclear palsy, multiple system atrophy, 

AD or vascular disease affecting the basal ganglia.338  

Neuropathologically, PD is characterized by the loss of dopaminergic neurons in the pars 

compacta of the SN and the presence of alpha-synuclein deposits in the form of Lewy bodies 

and Lewy neurites. In a quintessential study, Braak et al. defined the progression of PD 

neuropathology through six stages (I to VI)340. Under this hypothesis, the first alpha-synuclein 

deposits are described to appear in the olfactory bulb and the motor nuclei of the caudal 

cranial nerves followed on an ascending path by inclusions in the raphe nuclei, the 

gigantocellular reticular nucleus and the locus coeruleus before reaching the amygdala, the 

cholinergic nuclei of the basal forebrain and the SN. Stages V and VI see alpha-synuclein-

positive deposits also in various sensory and motor regions of the cortex.340 (Figure 1.12) 

 

 
 

Figure 1.12: Braak Stages as applied in the neuropathological diagnosis of PD. (taken 
from ref. 340) 
 

Because Lewy bodies are generally acknowledged as a neuropathologic hallmark of 

idiopathic PD341,342, it was a striking finding that no Lewy bodies were found in a number of 

individuals who suffered from autosomal recessive PD harboring exonic deletions in the 

parkin gene343,344 (for a detailed discussion of the genetic factors involved in autosomal 
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recessive PD, please cf. section 1.7.2.2 below). Overall, the neuropathologic findings in 

individuals with familial PD—sometimes even due to the same genetic alteration and within 

the same family—are very heterogeneous and not always reminiscent of the classical findings 

in idiopathic PD344,345. For example, four different neuropathologic profiles exist in the family 

in whom the p.R1441C missense variant in LRRK2 was first identified, with 50 % of 

clinically affected carriers of the variant not showing any Lewy pathology346,347. 

Yet, despite this apparent discrepancy between the clinical and neuropathologic findings in 

idiopathic and familial PD345, it was actually the discovery that Lewy bodies are comprised of 

alpha-synuclein348,349—encoded by SNCA, the first PD gene reported—that provided the first, 

lucid link between the neuropathology and genetics of PD.  

 

1.7.1.3    Pathophysiologic Concepts 

According to the current understanding, the loss of dopaminergic neurons in the pars 

compacta of the SN (SNpc) is central to the pathophysiology of PD. The loss of 

dopaminergeric projections from the SNpc to the striatum leads to a loss of inhibition of the 

globus pallidus internus (1) via the dopamine D1-receptor-dependent “direct” pathway and 

(2) by an excessive inhibition of the globus pallidus externus and subsequent loss of inhibition 

of the subthalamic nucleus and excessive activation of the globus pallidus internus via the D2-

receptor-dependent “indirect” pathway. The result, in both cases, is an over-activation of 

inhibitory GABA-ergic projections from the globus pallidus internus to the ventrolateral 

thalamus and, thus, starkly decreased activation of glutamatergic neurons projecting to 

different cortical regions. (Figure 1.13) Overall, this dysfunction of the basal ganglial motor 

loop results in an inability to initiate automated movements. Goal-directed movements, on the 

other hand, remain unaffected.350 On the contrary, the pathophysiology behind the resting 

tremor seen in PD is much less well defined. It has been postulated that the lack dopaminergic 

inhibition leads to dysfunction of the pallido-thalamic tracts and subsequently the cerebellar-

thalamic innervation of the thalamus, where thalamic neurons turn into autonomous, 

synchronized rhythm generators, which further project to the motor cortex.351,352  
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Figure 1.13: The neuroanatomy of PD. 
(http://upload.wikimedia.org/wikipedia/commons/9/9e/Basal_ganglia_in_Parkinson%27s_dis
ease.svg (accessed April 22, 2013; open source)) 
 
 
Yet, understanding the neuroanatomy of the cardinal symptoms seen in PD has far from 

explained its pathogenesis. The most central question that needs to be answered asks for the 

reason of neuronal cell death and the particular susceptibility of the dopaminergic neurons of 

the SNpc. The most widely accepted hypotheses revolve around—but are by no means limited 

to—oxidative stress and the mitochondriae.g. 353-356, dysfunction of lysosomal pathways e.g. 357-

359 and the ubiquitin-proteasome system e.g.360-362, aggregation and direct toxic effects of 

alpha-synuclein e.g.348,363,364, neuroinflammation e.g. 365-367 and environmental toxins e.g.368-370.  

Genetics (also see further discussion below) has played a large role in identifying most of 

these potential pathomechanisms.371-379, reviewed in 345  

Overall, it seems fair to say that the picture remains very much obscure and the true cause of 

PD is likely to constitute a mix of a number of interdependent aspects—both genetic and 

environmental. 

 

http://upload.wikimedia.org/wikipedia/commons/9/9e/Basal_ganglia_in_Parkinson%27s_disease.svg
http://upload.wikimedia.org/wikipedia/commons/9/9e/Basal_ganglia_in_Parkinson%27s_disease.svg
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1.7.2  Genetics of PD 

 

1.7.2.1 PD as a Genetic Disease 

Although less than 15% of individuals with PD report a positive family history345, it is likely 

that genetic factors contribute to PD development in nearly all cases—to a greater or lesser 

extend depending on the nature of the genetic variants involved. The heritability estimate 

derived from twin studies ranges around 34%380 with MZ concordance rates in the two largest 

twin studies (n=19360 and n=542380) between 11% and 15.5% and DZ concordance rates 

between 4% and 11.1%60,380. Although both heritability estimates and concordance rates are 

higher in RLS (compare section 1.6.3 above), in both diseases, in the large majority of cases, 

genetics are complex which a significant contribution of non-genetic factors to the phenotype. 

Among the much less common (near) monogenic forms of PD (summarized in Table 1.5), 

both autosomal dominant and autosomal recessive patterns of inheritance have been 

recognized (reviewed in ref. 345,381). While in most of the autosomal dominant cases reported 

so far the phenotype is very similar to that of sporadic PD, autosomal recessive cases are 

characterized by a markedly earlier age of onset (mostly between the age of 20 and 30 years), 

slow disease progression, an excellent therapeutic response to levodopa but early fluctuations 

and dyskinesias, and additional clinical features such as dystonia or hyperreflexia382.  

 

1.7.2.2 Family Studies in PD 

Only in 1996 and 1997, the first PD locus harboring the alpha-synuclein gene (SNCA) was 

identified in the large Italian-American Controusi kindred bearing the p.A53T 

substitution371,383. Additional missense variants384,385 as well as duplications and 

triplications372,386-389 of SNCA have also been shown to cause monogenetic forms of PD. A 

gene-dosage/disease severity relationship has been demonstrated for SNCA, in line with the 

hypothesis that increased deposition of abnormal proteins pathomechanistically contributes to 

the development of PD by a “toxic-gain-of-function” mechanism381,389,390.  The second 

autosomal dominant PD gene encoding leucine-rich repeat kinase 2 (LRRK2, PARK8) was 

identified by two groups in 2004.346,391 Missense variants in LRRK2 represent the, to date, 

most common genetic factor in familial PD346,391-393. The most frequent missense variant 

p.G2019S394-396 is estimated to be responsible for approximately 3.6 % of sporadic and 

approximately 10 % of autosomal dominant familial cases of PD in Europe397 with reported 

frequencies of up to 20% in Ashkenazi Jewish398 and up to 40% in the North African Berber 

Arab PD populations399,400. However, PD-linked variants are also found in 1.8 % of healthy 



 
_____________________________________________________________________________________________________ 

41 

controls397 and the penetrance of LRRK2 p.G2019S is known to be incomplete with only 51 % 

of carriers showing clinical signs of PD by the age of 69330. Phenotypically, PD due to 

underlying variants in LRRK2 shows a presentation very similar to idiopathic PD with 

symptom onset in the 6th or 7th decade but slightly slower progression and more prominent 

resting tremor and dystonia330. Interestingly, the neurologic phenotype of symptomatic 

carriers of LRRK2 variants does not seem to be limited to PD as clinical and neuropathologic 

presentations reminiscent of multiple system atrophy or pure dementia have also been 

described330,346. The pathomechanism underlying LRRK2 variants in PD has been subject of 

intense research efforts over the past decade but still remains very much unexplained. No 

gene dosage effect has been observed400,401. The fact that LRRK2 holds both GTPase and 

kinase activity has sustained the notion that abnormal protein phosphorylation could play a 

role in PD pathogenesis. However, results regarding differential kinase activity in LRRK2 

mutants are conflicting402,403 and several variants have also been linked to alterations in 

GTPase activity404-406 or unspecific neurotoxic effects407,408.  

Linkage analyses have identified a total of four additional genes and two unresolved linkage 

regions segregating with the PD phenotype in an autosomal dominant fashion in single or a 

few families409-415 (compare Table 1.5). Published in 2011, eukaryotic translation initiation 

factor 4G1 (EIF4G1, PARK18) is the newest of these loci and was initially found in a family 

from Northern France409. Since variants in these genes in PD are extremely rare, many of 

these loci still await replication.  

Most recently, family studies of familial PD have graduated from linkage analyses to the 

sequencing of entire exomes. Using whole exome sequencing, vacuolar protein sorting-

associated protein 35 (VPS35, PARK17) was identified simultaneously in a Swiss and an 

Austrian familyVIII,378,379. Here, the pattern of inheritance of the index variant VPS35 p.D620N 

was also autosomal dominant with near complete penetrance and the phenotype, as reported 

so far, was indistinguishable from “idiopathic” PDVIII,378,379,416. 

Next to autosomal dominant forms of familial PD, a number of genetic factors inherited in an 

autosomal recessive fashion have been identified. As a group, these lead to a PD phenotype 

characterized by an early age of onset and more benign course of disease than seen in 

“idiopathic” PD345.  Shortly after the discovery of point mutations in SNCA in PD, 

homozygous multiple-exon deletions in PARK2 encoding parkin were uncovered as the cause 

of juvenile-onset PD in a large Japanese family374. Today, homozygous and compound 

heterozygous missense variants as well as exonic deletions and rearrangements are estimated 

to account for up to 20 % of early-onset PD cases382,417. Functionally it has been postulated 
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that dysfunction of parkin, an E3 ubiquitin ligase, results in insufficient substrate clearance 

and, consequently, substrate aggregation418. Next to PARK2 variants, homozygous and 

compound heterozygous loss-of-function variants (missense variants as well as small 

insertions or deletions) in PTEN-induced kinase 1 (PINK-1, PARK6) are the second most 

common genetic factor in autosomal recessive PD identified thus far. Depending on the 

population, genetic variants have been reported to be the underlying cause in 0 % to 15 % of 

individuals with suspected autosomal recessive PD419,420. Clinically, PD related to PINK-1 

variants is very similar to the early-onset, levodopa-responsive, slowly progressive form with 

additional dystonic features and hyperreflexia, which is seen in carriers of parkin or DJ-1 (see 

below) variants. Interestingly, in Asian populations, digenic inheritance of PINK-1 and 

parkin421 or DJ-1422 variants has also been reported. The third uncontested genetic factor 

involved in early-onset autosomal recessive PD, DJ-1 (PARK7), was discovered in the form 

of homozygous deletions and missense variants in two consanguineous families from the 

Netherlands and Italy376. A full array of point mutations in coding and promoter regions, 

frame-shift and splice-site mutations as well as exonic deletions in DJ-1 have been identified 

in PD345. Mechanistically, both PINK-1 and DJ-1 have been linked to neuroprotection from 

oxidative stress and have highlighted a potential role of the mitochondria in PD 

pathogenesis423,424. In addition to these three “canonical” genetic factors in autosomal 

recessive PD, several other genes have also been reported to cause autosomal dominant or 

recessive parkinsonism (Table 1.5). Yet, in the large majority of cases, a number of other 

neurologic features such as ataxia, dementia, supranuclear gaze palsy, dysarthria, dystonia, or 

developmental delay differentiate these from “classical” autosomal recessive PD381.   

Controversy still abounds regarding the significance of heterozygous variants in the known 

autosomal recessive factors. Carriers of heterozygous variants in parkin, PINK-1 or DJ-1 

show evidence of presynaptic dopamine deficits425,426. However, rare heterozygous variants in 

these three genes have been found in both PD cases and controls and variant rarity has so far 

precluded conclusive statistical evaluation. The current assumption is that these variants 

represent susceptibility factors for PD427 and may modulate the phenotype by, for example, 

decreasing age of onset428, but are not sufficient to cause overt PD on their own. 

Despite large and successful strides that have been taken over the past two decades in 

identifying genes responsible for monogenic forms of PD, the currently identified genes only 

explain about 5 to 10 % of familial cases of PD.345 

 

 



 
Locus Gene Chr Inheritance Begin Clinical Phenotype Reference 
PARK1/PARK4 SNCA 4q21 auto dom early onset similar to sporadic PD, often cognitive impairment 371,372 
PARK2 PRKN 6q25 auto rec early onset early accompanying dystonia, slow progression 374  
PARK3 unknown 2p13 auto dom late onset similar to sporadic PD 429,430 
PARK5 UCHL1/unknown 4p14 auto dom late onset similar to sporadic PD 382

 

PARK6 PINK1 1p35 auto rec early onset early accompanying dystonia, slow progression 373
 

PARK7 DJ-1 1p36 auto rec early onset slow progression 376
 

PARK8 LRRK2 12q12 auto dom late onset similar to sporadic PD 346,391 
PARK9 ATP13A2 1p36 auto rec early onset atypical (Kufor-Rakeb syndrome) 377

 

PARK10 unknown 1p32 auto dom late onset similar to sporadic PD, to date only in Islandics  431,432 
PARK11 GIGYF2/unknown 2q36 auto dom late onset similar to sporadic PD 411,412 
PARK12 unknown Xq Unknown late onset unknown 433

 

PARK13 OMI/HTRA2 2p13 auto dom late onset similar to sporadic PD  413
 

PARK14 PLA2G6 22q13 auto rec early onset atypical (dystonia-parkinsonism, NBIA) 434
 

PARK15 FBXO7 22q12 auto rec early onset atypical  435
 

PARK17 VPS35 16q11 auto dom late onset similar to sporadic PD VIII,378,379 

PARK18 EIF4G1  3q27 auto dom late onset similar to sporadic PD, slow progression 409
 

 Table 1.4: Genomic loci identified in family studies of PD.
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1.7.2.3  Susceptibility Alleles of Intermediate Frequency in PD 

The clinical observation that relatives of individuals with Gaucher`s disease, a lysosomal 

storage disorder where the dysfunction of glucocerebrosidase (GBA) leads to the 

accumulation of glucosylceramide, frequently suffer from PD led to the identification of 

heterozygous missense variants in GBA as a risk factor for PD. Initially, this was believed to 

be specific to the Ashkenazi Jewish population where the two most common variants, GBA 

p.N370S and p.L444P, are found in approximately 15 % of individuals with PD compared to 

3 % of controls, resulting in an approximately sevenfold risk increase436. However, in a 

seminal study comprising a total of 5691 PD cases and 4898 controls from 16 centers across 

North America, Europe, Israel and Asia, the same two GBA variants were found in 3 % of PD 

patients but in less than 1 % of ethnically matched controls, accounting for a five-fold risk 

increase and establishing GBA variants as important, population-independent susceptibility 

factors for PD375. Overall, GBA is the quantitatively most significant genetic factor 

contributing to PD that has been identified to date. Clinically, symmetric onset and cognitive 

changes seem more frequent in GBA variant positive patients than in individuals with 

“idiopathic” PD375.  

Notably, low-frequency missense variants in LRRK2 have also been reported as susceptibility 

factors for PD. In a large multi-center analysis of exonic variants in LRRK2 in Caucasian 

(6995 PD cases/5595 controls) and Asian (1376 PD cases/962 controls) populations, LRRK2 

p.M1646T  and p.A419V as well as p.G2385R were identified as low-frequency (MAF 1.6% 

to 3.3 %) risk alleles in Caucasians and Asians, respectively437. Additionally, a protective 

low-frequency haplotype (MAF 6.6 %) comprising p.N551K-p.R1398H-p.K1423K was 

identified437.  These data along with the GWAS results depicted below argue for the existence 

of a full spectrum of risk and protective, rare and common genetic variants modulating the 

expression of the PD phenotype.  

 

1.7.2.4      Genome-Wide Association Studies in PD 

To date, a total of four large GWAS and at least four meta-analyses of GWAS have been 

performed for idiopathic PD438-445 (Table 1.6). In these, a total of 21 loci surpassing 

thresholds for genome-wide significance in the joint analysis of discovery and replication 

samples were detected (Table 1.7, Figure 1.4). Among these are common variants in high LD 

with the already established PD genes SNCA and LRRK2 but also with microtubule-

associated protein tau (MAPT), a gene with a well-recognized role in other related 

neurodegenerative conditions such as progressive supranuclear palsy446 or frontotemporal 
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lobar degeneration (FTLD)447. However, most of the genes implicated hold no easily 

discernible role in PD pathogenesis. Particularly intriguing, in this context, is the 

identification of an intronic variant (rs3129882) in HLA-DRA with known expression 

modulatory effects on HLA-DR and HLA-DQ identified in a GWAS of 2000 individuals with 

PD and 1986 unaffected controls442. The identification of this association signal has driven the 

afore-little-studied immune response and the major histocompatibility complex into the 

context of PD research448.  

In general, sample sizes are larger than for the RLS GWAS depicted above. The to date most 

extensive study combined genotype information on a total of 15,812 cases and 50,650 

controls ascertained by academic institutions across North America and Europe as well as 

commercially through the California-based, direct-to-consumer genetic testing company 

23andMe, Inc., and either newly identified or replicated a total of 16 loci of genome-wide 

significance443. This GWAS is also noteworthy because it represents one of the first ever 

performed using an internet-based study design for recruitment of both cases and controls. As 

such, it serves as a proof-of-principle that, at least with regard to PD, an individual`s self-

reported phenotype is sufficiently accurate to both replicate known associations and to 

uncover new ones that can later be replicated in neurologist-ascertained case/control samples. 

This finding is important because it opens an avenue to multifold increases in the number of 

samples that can be analyzed and, thus, to the detection of variant alleles of even smaller 

effect sizes or of very low frequency. 

The fact that one of the GWAS was conducted in an entirely Japanese sample (2,011 PD 

cases and 18,381 controls in genome-wide and replication phases combined)439 appears 

important in light of the commonly reported differences in the genetic architecture of PD in 

different ethnic groups449. Here, interestingly, the MAPT locus, which is repeatedly one of the 

loci of most significant association in European populations, does not show any association 

with the PD phenotype439. This finding argues for the importance of carrying out both GWAS 

in samples of different ethnic background and of multi-ethnic GWAS in order to address the 

full spectrum of genetic factors important to PD pathogenesis. 

Overall, these GWAS detected loci that account for a population attributable risk of more than 

60 %441, although this represents a likely overestimation due to inherent biases381 and is in 

stark contrast to the low heritability estimates derived from twin studies (4 to 11 %)60,380.  

Still, as is the case for the vast majority of association signals identified across all phenotypes, 

for the largest number of association signals described in the PD GWAS—apart from those 

located in or close to genes already known to be involved in PD pathogenesis—, both the 
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truly causal genetic factor (or factors) generating the association signal as well as the 

functional relevance to the phenotype studied remain completely obscure.   

 

 
 
Figure 1.14: Manhattan plot showing PD GWAS loci as derived from the PDGene 
Database. (taken from ref. 445) 
 
 
 
 
 
 
 
 



Genome-wide 
sample 

Origin SNP Array Replication sample(s) 
(cases/controls) 

Origin Lead SNPs Candidate gene  
(newly identified) 

Replication 
status 

Reference 

(cases/controls)               
1,713/3,978 USA &  HumanHap 550 1,528/2,044 USA rs2736990 SNCA + 438 

  Germany beadchip, Illumina 1,100/2,168 Germany rs393152   MAPT +  
   824/544 UK     

1,078/2,628 Japan HumanHap 550 612/14,139 Japan rs947211 PARK16 + 439 
   beadchip, Illumina 321/1,614 Japan rs1994090 LRRK2 +  
         rs4538475 BST1 +  

2,000/1,986 USA HumanOmni1-Quad, none  rs3129882 HLA-DRA + 442 
   beadchip, Illlumina   rs11248051 GAK +  
             

3,426/29,624 mostly HumanHap 550plus  6,584/15,470 worldwide rs1053789 MCCC1/LAMP3 + 440 
  USA custom beadchip,    rs6812193 SCARB2 +   
   (23andMe, Inc.) Illumina   rs11868035 SREBF1/RAI1 +   
        rs823156 SLC41A1 +   

Table 1.5: Summary of seminal GWAS performed for PD. In addition to these, four large meta-analyses jointly assessing the above studies or 
parts thereof have been conducted and any additionally associated loci are listed in Table 1.6 below.
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Locus Chr Genomic position  Lead SNP Risk allele Risk allele freq Pjoint Odds ratio Reference 
   (hg19)   cases/controls  (95% CI)  
SNCA 4 90678291 rs2736990 T 0.51/0.46 2.24x10-16 1.23 438 
MAPT 17 43718893 rs393152 G 0.18/0.22 1.95x10-16 0.77 438 
PARK16/RAB7L1 1 205752415 rs947211 A 0.43/0.48 1.75x10-12 1.30 (1.16-1.63) 439 
BST1 4 15737687 rs4538475 A 0.41/0.36 3.94x10-9 1.24 (1.16-1.34) 439 
LRRK2 12 40428311 rs1994090 T 0.11/0.08 2.72x10-8 1.39 (1.24-1.56) 439 
HLA-DRA 6 32517508 rs3129882 G 0.45/0.40 1.9x10-10 1.26 (1.17-1.35) 442 
GAK 4 848332 rs11248051 T 0.12/0.09 3.2x10-9 1.46 (1.29-1.65) 442, 450 
SYT11 1 154105678 not named T not given 1.02x10-8 1.67 441 
ACMSD 2 135308851 rs6710823 A not given 1.35x10-9 1.38 441 
STK39 2 168825271 rs2102808 T not given 3.31x10-11 1.28 441 
MCCC1/LAMP3 3 184303969 rs11711441 G not given 2.10x10-8 0.82 441 
CCDC62/HIP1R 12 121862247 rs12817488 A not given 4.43x10-9 1.16 441 
SCARB2 4 77418010 rs6812193 T not given 7.55x10-10 0.84 (0.79-0.89) 440 
SREBF/RAI 17 17655826 rs11868035 A not given 5.61x10-8 0.85 (0.80-0.90) 440 
STBD1 4 77198736 rs6812193 T not given 1.17x10-17 0.88 (0.84-0.93) 443 
GPNMB 7 23305770 rs156429 G not given 3.05x10-13 0.89 (0.85-0.94) 443 
FGF20 8 16696841 rs591323 A not given 1.92x10-11 0.88 (0.84-0.94) 443 
STX1B 16 30981975 rs4889603 A not given 6.98x10-13 1.12 (1.06-1.18) 443 
RIT2 18 38927378 rs12456492 G 0.34 2.0x10-10 1.19 (1.16-1.22) 444 
ITGA8 10 15691549 rs7077361 T 0.12 1.51x10-8 0.88 (0.84-0.92) 445 
DGKQ 4 954359 rs11248060 T 0.12 3.04x10-12 1.21 (1.15-1.27) 445 

Table 1.6: Summary of the currently known PD GWAS loci of genome-wide significance. Associated loci are arranged in 
chronological publication order.  
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1.8 Aims 

 

GWAS have been successful in identifying common variants associated with increased 

susceptibility to both RLS and PD. Moreover, for PD, linkage analyses have also identified 

rare variants of strong effect underlying familial forms, whereas for RLS, linkage analyses 

have not been equally successful—possibly due to the less intense research efforts in the field 

or a different underlying genetic architecture or variable phenotypic expressivity—and no 

variant of strong effect has been discovered to date. In both diseases, however, currently 

known genetic factors only explain a small percentage of the heritability and many more 

factors remain to be discovered. Some of this “missing heritability” could lie in a collection of 

many more common variants of relatively small effect such as those identified in GWAS but, 

in line with the “common disease, rare variant” hypothesis, rare variants are also likely to 

contribute to the genetic make-up of both diseases to a yet-unknown extent.  

The aim of this thesis was the identification of genetic factors, which contribute to the genetic 

architecture of RLS and PD, two—for the most part—complex genetic neurologic diseases. 

Primarily, this was pursued via the study of rare genetic variants. To this end, with regard to 

PD, both a hypothesis-free family-based design employing whole exome sequencingVIII-X as 

well as candidate gene approaches analyzing genes known or projected to play a role in 

PDV,VI or other neurodegenerative conditionsVII was applied. For RLS, on the other hand, the 

associated GWAS lociI were analyzed in depth for the existence of functionally relevant rare 

and low frequency variantsIII,IV in search of an allelic series of variants of the entire frequency 

spectrum in the same gene contributing to complex genetic diseases. The contribution of 

common variants to especially the RLS phenotype was assessed as part of on-going efforts in 

the host laboratory by GWASI and GWAS follow-up studies using intermediate RNA 

expression phenotypes (eQTLs)II with the goal of identifying novel common variants as 

susceptibility factors for RLS. 
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2 Publications 
 
2.1 Winkelmann et al., Genome-Wide Association Study Identifies Novel Restless Legs 
Syndrome Susceptibility Loci on 2p14 and 16q12.1, PLoS Genetics, 2011I 
 
Personal contributions: I participated in the Sequenom®-based genotyping and data analysis 
performed during the replication phase of the study as well as in the analysis of cis- and trans-
eQTLs dependent on the lead SNPs at the newly identified loci. I also contributed to the 
writing and critique of the manuscript.  
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2.2 Schulte et al., Blood cis-eQTLs in Prioritizing Sub-Threshold Association Signals 
from Genome-Wide Association Studies in Restless Legs Syndrome for Follow-Up 
Analysis, submitted to PLoS ONE, 2013II 
 
Personal contributions: I designed the study, selected the subthreshold SNPs to be analyzed, 
analyzed cis- and trans-eQTLs derived from existing genotyping and expression data in 
KORA and SHIP-TREND, designed the multiplex PCR for Sequenom®-based genotyping and 
analyzed genotyping data. I wrote the manuscript and designed all figures and tables.  
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2.3 Schulte et al., Variant screening of the coding regions of MEIS1 in patients with 
restless legs syndrome, Neurology, 2011III 
 
Personal contributions: I performed LightScanner® high-resolution melting curve analysis 
and follow-up Sanger sequencing of the coding regions of MEIS1, analyzed the 
LightScanner® data, participated in Sequenom®-based genotyping and data analysis and 
recruited part of the family described. I wrote the manuscript and designed all figures and 
tables. 
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2.4 Schulte et al., An excess of rare loss-of-function alleles substantiates MEIS1 as a 
genetic factor in restless legs syndrome, in preparationIV 
 
Personal contributions: I designed the study and performed LightScanner® high-resolution 
melting curve analysis of the coding regions of all seven genes as well as of MEIS1 in the 
large case/control sample, follow-up Sanger sequencing and all data analyses. I designed the 
multiplex PCRs for Sequenom®-based genotyping and analyzed all genotyping data. I carried 
out part of the statistical analyses used in burden testing. Moreover, at the laboratory of Prof. 
Nicholas Katsanis at the Center for Human Disease Modeling, Department of Cell Biology, 
Duke University, Durham, NC, USA, I cloned all mutagenized constructs used in the in vivo 
complementation assay in zebrafish, made all mRNA for injections, participated in the 
injections of morpholino and mRNA into zebrafish embryos and performed most of the 
staining, imaging and image analysis as well as the statistics. I wrote the manuscript and 
designed all figues and tables except for Supplementary Figure 2 and Figure 3 B.  
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2.5 Hopfner et al., The Role of SCARB2 as Susceptibility Factor in Parkinson`s Disease, 
Movement Disorders, 2013V 
 
Personal contributions: I participated in LightScanner® high-resolution melting curve 
analysis and follow-up Sanger sequencing as well as Sequenom®-based genotyping. Further, I 
also contributed to the writing of the manuscript and the design of the table.  
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2.6 Schulte et al., Variants in eukaryotic translation initiation factor 4G1 in sporadic 
Parkinson`s disease, Neurogenetics, 2012VI 
 
Personal contributions: I participated in designing the study, performed LightScanner® high-
resolution melting curve analysis and follow-up Sanger sequencing of the coding regions of 
EIF4G1 and analyzed the LightScanner® data. I designed the multiplex PCR for Sequenom®-
based genotyping, analyzed genotyping data and participated in the fragment analysis used for 
haplotype determination and performed in silico predictions of variant pathogenicity. I wrote 
the manuscript and designed all figures and tables. 
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2.7 Schulte et al., Rare Variants in β-Amyloid Precursor Protein (APP) and Parkinson`s 
Disease, in preparationVII 
 
Personal contributions: I participated in designing the study, performed the LightScanner® 
high-resolution melting curve analysis of APP, PSEN1, PSEN2, FUS, GRN, TARDBP and 
MAPT as well as follow-up Sanger sequencing and analyzed the LightScanner® data. I 
designed the multiplex PCRs for Sequenom®-based genotyping, analyzed genotyping data, 
performed in silico predictions of variant pathogenicity and participated in fragment analysis 
used for frequency assessment of small deletions in APP. Moreover, I analyzed the CSF data 
and performed genotype-phenotype correlations. I wrote the manuscript and designed all 
tables and figures except for Figures 1B and 2B. 
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2.8 Zimprich et al., A Mutation in VPS35, Encoding a Subunit of the Retromer Complex, 
Causes Late-Onset Parkinson Disease, American Journal of Human Genetics, 2011VIII 
 
Personal contributions: I performed half of the LightScanner® high-resolution melting curve 
analysis and follow-up Sanger sequencing of the coding regions of VPS35 in the Parkinson’s 
disease case/control sample and analyzed the LightScanner® data. I contributed to the design 
of Tables 1 and 3. 
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2.9 Schulte et al., Rare variants in LRRK1 and Parkinson`s disease, Neurogenetics, 
2013IX 
 
Personal contributions: I recruited part of the family and participated in designing the study. 
I also analyzed the exome sequencing data and participated in the CNV analysis. I designed 
the multiplex PCRs for Sequenom®-based genotyping and analyzed genotyping data for both 
the segregation analysis in the family and the frequency assessment in the Parkinson’s disease 
case/control sample. I performed in silico predictions of variant pathogenicity. Further, I 
performed the LightScanner® high-resolution melting curve analysis and follow-up Sanger 
sequencing of the coding regions of both LRRK1 and EEF1D in the Parkinson’s disease 
case/control sample and analyzed the LightScanner® data and calculated the burden tests. I 
wrote the manuscript and designed all tables and figures except for Figure 3 and 4.  
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2.10 Schulte et al., Rare variants in PLXNA4 and Parkinson`s disease, PLoS One, 2013X 
 
Personal contributions: I recruited part of the family and participated in designing the study. 
I also analyzed the exome sequencing data. I designed the multiplex PCRs for Sequenom®-
based genotyping and analyzed genotyping data for the frequency assessment in the 
Parkinson’s disease case/control sample. I carried out the segregation analysis in the family 
by Sanger sequencing. I participated in genome-wide genotyping and linkage analysis. 
Furthemore, I supervised and helped in the LightScanner® high-resolution melting curve 
analysis and follow-up Sanger sequencing of the coding regions of PLXNA4 in the 
Parkinson’s disease case/control sample and the analysis of the LightScanner® data and 
calculated the burden tests. I generated the patient-specific fibroblast cell line, performed the 
cell viability assay and the immunocytochemistry. Lastly, I wrote the manuscript and 
designed all tables and figures except for Supplementary Table 2 and Figures 2 and 4. 
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3 Discussion 

 
3.1 Roles of Common, Low Frequency and Rare Variants in Disease Development  

(cf. ref. I-X) 

One way in which genetic variation that affects the nucleotide make-up of genomic DNA can 

be characterized is by its frequency in the (general) population. As outlined in the 

introduction, the MAF represents a means to group variants into different frequency 

categories. This, however, only represents a tool for stratification and simplification whereas 

in reality frequencies range on a full continuous spectrum between a MAF of 50% and 

approximately 1.43 x10-8 % (i.e. a variant found in only one out of seven billion people).   

As highlighted by Teri Manolio and colleagues in an influential review article in 200926, 

generally, rarer variants confer larger effects on a given phenotype than more common ones.  

An exception to this rule arises when rare alleles come about independently again and again in 

a mutational hotspot and, thus, statically mimic a common allele of large effect. One example 

for such a situation is the CONNEXIN26 c.35delG variant in Europeans with inherited non-

syndromic hearing loss which has a relatively high carrier frequency of 2 to 4% in the general 

population451,452 but instead of being a common ancestral allele it occurred multiple times 

independently in a mutational hotspot.142,453 Conversely, the number of rare variants of 

relatively small effect sizes may actually be larger than expected. With regard to rare variants 

in the breast cancer genes BRCA1 and BRCA2, for example, it has been postulated that the 

high proportion of rare variants currently classed as variants of unknown significance (VUS) 

because they do not show clear familial segregation and are not fully penetrant could actually 

harbor a significant and clinically relevant breast cancer risk both at the individual and at 

population level.77  

In recent years, the realization has hit that human disease, in general, is characterized by far 

greater genetic heterogeneity than previously assumed.142 And the more biologically complex 

the phenotype, the more heterogeneous its genetic framework.142 

In line with these observations, in the work portrayed herein, it also becomes clear, that it is 

likely that a full spectrum of genetic variants of differing frequencies contribute to the genetic 

make-up of both RLS and PDI-X, as exemplified by the identified allelic series in MEIS1I,III,IV 

that could be shown to contribute to the genetic framework of RLS.  
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3.1.1 Susceptibility and Causality (cf. ref. I-X) 

In the most simplistic of conceptions, susceptibility to a disease is conferred by a common 

variant of small effect while causal alleles are rare but effect sizes so large that they 

themselves are sufficient to cause disease (cf. Figure 1.1). While surely too simplistic, the 

general trend also exists in our data: Common variants such as intronic rs9920066 located in 

de-etiolated homolog 1 (Arabidopsis), DET1, is a common variant with a MAF 30.3% in the 

1000 genomes124. If it truly were an RLS-related genetic factors, which we are unable to 

conclude from the data obtained in our study, the OR would be low (1.11)II and even if this 

SNP were the “causal” variant underlying the observed association signal, it would only 

marginally increase the risk of a given individual to actually develop RLS. Susceptibility as 

such, is a very statistical measure. And the GWAS used to identify susceptibility alleles have 

often times been criticized for loosing touch with biology and producing statistically 

meaningful but clinically meaningless results. For example, in a 12-year follow-up study for 

cardiovascular disease in more than 19,000 women, 101 SNPs identified as susceptibility 

alleles by GWAS did not predict cardiovascular outcome454. Similar studies have not been 

performed with regard to RLS or PD.  

On the other end of the spectrum, rare non-synonymous variants with MAF < 5% in the “RLS 

gene” MEIS1 carry combined projected ORs of up to 30IV, suggesting that these variants 

could fall into a category with effect sizes large enough to cause “Mendelian” forms of RLS26.  

Yet, whether singular rare variants in MEIS1 can indeed be the single cause of familial RLS 

remains to be investigated. In both RLS and PD, the investigation of families is hampered by 

several factors. For one, over the past decades, research efforts with regard to both diseases 

have shown, that genetic heterogeneity underlying the phenotypes is likely to be large 

(reviewed in ref. 270,280,345). This also seems apparent from our work. Rare variants identified 

in both large-scale candidate gene screens as well as whole-exome sequencing have yielded a 

larger number of singletons than most people in the field initially expected. For example, the 

candidate variant (PLXNA4 p.S657N) identified by whole exome sequencing in a German 

family with suspected autosomal dominant PD, was only identified in this family and not seen 

again in more than 9,000 individuals examinedX. Accordingly, although this variant is very 

rare with a MAF < 0.0055 % and could hold a large OR, with the datasets currently available 

to the statistical analysis of rare variants (NHLBI-ESP exomes, 1000 genomes, in house 

exomes), it will never be possible to demonstrate causality of such variants. In fact, some 

argue, that even in the context of common diseases direct causality is very difficult to resolve 

by large-scale association or case-control studies142. 
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A second conundrum facing the establishment of variant causality in familial PD—and likely 

also RLS—is that of incomplete penetrance. In most of the PD families analyzed as part of 

this work378,455-457, the candidate variants do not show complete penetrance. However, we 

cannot determine whether this is due to the fact that individuals carrying the candidate variant 

have just not yet developed full PD (maybe because they are not old enough yet), do not 

possess the additional genetic factors necessary to “unmask” the “causal” variant, have not 

been exposed to additional external factors that might influence variant penetrance or because 

the candidate variant is not the causal variant at all. Also, although several of the so-called 

“Mendelian” forms of PD were initially identified via family-based linkage analyses or, more 

recently, whole exome sequencing in families in whom the variants were highly penetrant and 

variants were established as “causal”, later studies showed that in some individuals and 

families harboring the “causal” variant, penetrance is far from complete. For example, of 

individuals who harbor the LRRK2 p.G2019S variant, the single most common “Mendelian” 

genetic factor known for PD, only 28% will develop PD by the age of 59330.  

In the vast majority of human diseases, especially those with an onset relatively late in life 

such as those considered in this work, it is difficult to find support for an all-or-nothing model 

of only one truly causal variant. Rather, it is likely that variants of varying effect sizes (and 

frequencies) exist and the question is whether there is a single variant that holds more than an 

equal share of the genetic contribution to a phenotype.  

 

3.1.2 Allelic Series (cf. ref. I,III,IV,V) 

In broad terms, an “allelic series” designates a set of allelic variants within a given genomic 

locus (i.e. most commonly a gene). It can be used to describe alleles differing in their position 

within a gene, their class (e.g. SNV, indel, CNV or synonymous, non-synonymous, intronic, 

etc), frequency and phenotypic expressivity. In the context of the genetics of common 

complex disease phenotypes, the possible contribution of allelic series consisting of genetic 

variants of various frequencies is particularly interesting and represents a central aspect of the 

work depicted herein. In connection with RLS, we evaluated seven candidate genes at five 

genomic loci believed to harbor common risk variants for the diseaseI,III,IV,249-252 for the 

existence of allelic series comprising variants of different MAF (and, consequently, different 

effect sizes). Especially with regard to MEIS1, which also entails the most significant 

genome-wide association signals249,250, variants of the full frequency spectrum ranging from 

MAF = 24 % (for rs2300478)I to singletons identified only in one out of 14,383 individuals 

(case/control sample used in ref. IV plus 1,739 in house exomes, 1,092 genomes belonging to 



 
_____________________________________________________________________________________________________ 

167 

the 1000 genomes project124 and exomes from approximately 4,250 individuals sequenced as 

part of the NHLBI-ESP125), corresponding to a MAF of approximately 0.0035 %, were 

identified in individuals with RLSIII,IV. In aggregate, both low-frequency and rare non-

synonymous variants in the coding regions and the 5`UTR of MEIS1 were significantly more 

common in the individuals with RLS than in the general populationIV. When analyzed 

individually, a low frequency variant (rs11693221) in the 3` UTR region of the canonical 

transcript of MEIS1 also showed statistically significant association with the RLS phenotype 

(MAFcases=13.55%, MAFcontrols=3.58%; p=8.79x10-99, χ2 test; OR=4.16 (95% CI: 3.61-4.80)). 

Accordingly, at least with regard to the MEIS1 locus, a complete allelic series of common to 

low frequency to (very) rare variants appears to contribute to the genetic framework of RLS 

(Figure 3.1). Moreover, by in vivo complementation in zebrafish, an excess of rare loss-of-

function alleles seems to exist among the non-synonymous alleles found in cases when 

compared to controlsIV, suggesting that this finding is not merely statistically but also 

functionally relevant. However, as the exact function of MEIS1 in the pathogenesis of RLS 

remains to be elucidated, it needs to be established whether these rare variants also disrupt 

RLS-relevant functions of MEIS1.  

With regard to PD, the existence of allelic series in the form of both common and rare alleles 

co-existing at the same locus is already firmly established. Rare SNVs and structural variants 

in SNCA371,372 and LRRK2346 were among the first genetic factors identified in family studies 

of PD. Subsequently, GWAS have also highlighted independent common variants 

contributing to PD risk in sporadic cases in both European and Asian populations in both 

SNCA438,439,441 and LRRK2438,439,441. At least at the LRRK2 locus, low-frequency variants also 

appear to harbor both predisposing and protective effects437 (Figure 3.1). Still, not all GWAS 

loci for PD harbor full allelic frequency series. At least in our case/control sample, rare 

variants in MAPT, which holds common variants strongly associated with sporadic PD438 and 

other PD-like phenotypes446, were not overrepresented among PD cases in comparison to 

controlsVII.  
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Figure 3.1: Rare, low-frequency and common genetic variants known to be involved in 
RLS (dark blue) and PD (light blue). In addition to common variants, low-frequency and 
rare variants in MEIS1 also contribute to the genetic framework of RLS. For PD, on the other 
hand, strong genetic contributors are known in all frequency categories. The relative dearth of 
established genetic variants in the low-frequency category (1 % < MAF > 5 %) is likely due to 
the fact that these are difficult to identify by either family-based studies or GWAS and 
currently their evaluation is still largely dependent upon candidate gene approaches, although 
this will change as genotyping and imputation techniques improve and NGS becomes more 
affordable. As part of the work depicted in this dissertation, several new genes (bold) could be 
added to the pictogram aboveI,III,IV,VIII, thus further elucidating the genetic architecture of both 
RLS and PD. 
 
 
Yet, allelic series can also transverse diagnostic boundaries. To examine this possibility with 

regard to PD, we screened several genes known to harbor strong genetic factors involved in 

dementias (APP, PSEN1 and PSEN2 known to cause familial AD as well as TARDBP, FUS, 

GRN and MAPT known to bring about FTD) in a case/control sample comprising, next to 

controls, both PD patients with and without dementia in search for rare variants in established 

“dementia genes” involved in the genetics of PDVII. Our data suggest, that, at least with regard 

to APP, an allelic series crossing diagnostic boundaries, as has been previously described for, 

for example, psychiatric disorders458,459, might exist. If so, APP variants contributing to the 

genetic burden in PD or the modification of the PD phenotype are different from those 

involved in AD. The fact that APP could be a common “neurodegeneration” rather than an 

AD gene is further supported by the fact that the variants identified in individuals with PD do 

not perturb APP function in the same way as known AD-linked variantsVII.   

In the larger context of the genetics of complex diseases, these results are also of interest. 

They lend support to the assumption that in some complex diseases rare, low-frequency and 
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common variants within the same gene contribute to the genetic architecture—thus supporting 

both the “common disease, common variant” and the “common disease, rare variant” 

hypothesis. This is important for three reasons. For one, it underscores the notion that at least 

with respect to certain phenotypes such as, for example, RLS, some of the missing 

heritability33 will lie in a collection of rare and very rare variants. Secondly, the identification 

of rare variants at a known GWAS locus argues for the value of GWAS in general, in that this 

approach can be used to identify genes of interest, which should then be scrutinized for the 

exact underlying genetic factors. Lastly, while some have criticized that candidate gene 

screens, whole exome sequencing and the use of SNP arrays on which coding variants are 

relatively overrepresented have introduced a bias towards the discovery of coding disease-

linked variation26,36, the benefit of discovering such—for the most part rare—coding variants 

is that they lend themselves to follow-up studies assessing biological function.  This 

represents a large benefit especially with regard to the study of complex genetic diseases, 

where, in many instances such as in RLS, no strong genetic factors had been identified 

previously and the follow-up of GWAS association signals has proven notoriously difficult31.    

To date, at least 12 studies have been published which evaluate the role of rare and low-

frequency variants at genomic loci known to harbor common variant disease associations 

identified in GWAS (Table 3.1). What becomes apparent is that in most traits and diseases 

evaluated so far, rare or low-frequency variants contribute to the genetic spectrum at at least 

some of the loci which also hold common variants. Yet, these loci represent the minority. This 

observation probably reflects both the differences in the variant framework that each 

individual locus contributes to the genetic architecture of a disease but also the fact that very 

large samples will be needed to adequately address this question especially with regard to 

very rare variation. Our data also illustrate these differences among the known RLS-

associated GWAS loci: At some loci, such as MEIS1, rare variants appear to play a relatively 

large role, while at others, such as TOX3 or PTPRD, this role may be present but does not 

reach statistical significance with the analyzed replication sample size (n = 3,265 cases/2,944 

controls) or does not seem to exist at allIV.  

Several recent large-scale population genetics studies have described an excess of very rare 

functional alleles in the human genome16,27,54. Accordingly, one would assume that variants of 

lower frequency, which impact disease development, should also be very rare. In line with 

this assumption, very rare non-synonymous variants with MAF < 0.1 % within MTNR1B, the 

gene encoding the melatonin receptor 1B, but not with 0.1 % < MAF < 5% contribute to type 

2 diabetes70. Our data regarding low-frequency and rare variation at the RLS-GWAS loci 
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illustrate that this conception holds true even when all candidate genes at the published 

GWAS loci are jointly analyzed. Only if solely variants with MAF < 1 % or < 0.1 % are 

considered, is there a significant excess of coding alleles in individuals with RLS.IV This 

would be interesting to keep in mind for future studies examining the contribution of rare 

variants at genomic loci known to be home to common susceptibility alleles.  



complex disease/ GWAS loci evaluated method discovery replication indep. rare/low-freq variant aggregate rare variant ref 
trait   (cases/controls) (cases/controls) association (MAF/OR) association  
type 2 diabetes six loci targeted reseq/ 

genotyping 480/480 8,379/10,575 4 variants in IFIH1 (0.5% to 2.2%) not evaluated 460 

hypertriglyceridemia APOA5, GCKR, LPL, 
APOB GWAS/Sanger 463/1,197 438/327 none all variants and missense/indel only 

across all four genes 
69

 

fetal hemoglobin levels BCL11A, HBS1L/MYB, β-
globin 

targeted 
reseq/genotyping 190 1,032 none 3 missense variants in MYB together 461

 

sick sinus syndrome chr 14q11 GWAS/whole 
genome 792/37,592 7/80 MYH6 p.Arg721Trp (0.4%/12.53) not evaluated 72

 

LDL cholesterol level APOE, APOC1/2, SORT1, 
LDLR, APOB, PCSK9 

targeted reseq/ 
metabochip& 
1000genomes 

previously 
published 256/5,524 

PCSK9 p.Arg46Leu (3.7%/na) 
LDLR p.Val578Asp (0.5%/na) 
APOE p.Arg176Cys (3.7%/na) 

not evaluated 462
 

age-related macular 
degeneration CFH/CFHR1/CFHR3 

haplotype analysis & 
targeted reseq/ 
genotyping 

711/1,041 & 
33/27 2,424/1,120 CFH p.Arg1210Cys (0.09%/na) not evaluated 73

 

IBD 56 loci 

targeted reseq/ 
Sequenom 
genotyping & 
immunochip 

350/350 (pooled) 28,207/17,575 

9 splice site or missense variants in 
5 genes (NOD2, IL18RAP, CARD9, 
IL23R, CUL2) (around 
0.2%/between 0.29 and 4.02) 
 

not evaluated 74
 

type 2 diabetes MTNR1B targeted reseq/ 
genotyping 2,186/5,446 8,153/10,100 none 

40 missense variants with MAF<0.1% 
together (OR=3.31),13 loss-of-function 
variants together (OR=5.67) 

70
 

asthma 
ADRB2, AGT, DPP10, 
CFTR, CHIA, IKBKAP, 
IL12RB1, PLA2G7, TGFB1 

Sanger previously 
published 510/515 none 

non-synonymous variants in DPP1 or 
IL12RB1 together, non-coding variants 
±100bp around AGT, DPP10, IKBKAP 
and IL12RB1 and overall 

75
 

celiac disease 183 non-HLA immune 
disease loci on immunochip Immunochip 12,041/12,228 none none but independent rare variants 

at 4 loci with p<5x10-4 not evaluated 463
 

fasting proinsulin 
concentration 

whole exome genotyping 
(59,029 markers) exome chip 8229 none SGSM2 p.Val996Ile (1.4%, na) 

MADD p.Arg766X (3.7%, na) not evaluated 53
 

rheumatoid arthritis 25 loci 
targeted 
reseq/GWAS & 
immunochip 

500/650 (pooled) 10,609/35,605 none 
all coding variants across the 25 loci 
and marginally for non-syn variants in 
IL2RA and IL2RB 

71
 

RLS MEIS1, PTPRD, TOX3, 
BTBD9, SKOR1, MAP2K5 

high resolution 
melting curve 
analysis 

188/188 (all) 
3,760/3,542 
(MEIS1 only) 

3,265/2,944 
none 

MEIS1 post-3`UTR (rs11693221) 
(3.6%/4.16) 

all non-synonymous coding MEIS1 
variants of functional effect in zebrafish 
in vivo complementation, all 5`UTR 
variants in MEIS1 

IV 

Table 3.1: Summary of studies published to date and our present studyIV, which assess low-frequency and rare genetic variants at known GWAS loci in 
the context of frequency-based allelic series. LDL = low density lipoprotein, IBD = inflammatory bowel disease, reseq = resequencing, ref = reference, na = not 
available. Due to space considerations, only the gene symbols are given. Long versions can be found in the original publications or obtained from the internet (e.g. 
www.genenames.org464). 



When putting these studies into perspective, it is also important to realize that in most cases, 

no single low-frequency or rare variants surpassed genome-wide thresholds for significant 

association. Rare variants that were significantly associated were either found in population 

isolates72, in genes directly related to the trait of interest (low-density lipoprotein (LDL) 

receptor variants and LDL cholesterol levels)462 or in complex diseases of a unique genetic 

architecture with few alleles of large effect sizes such as age-related macular degeneration73.  

If none of these situations were present, very large numbers of samples (i.e. more than 

45,000) were needed to demonstrate significant association with the phenotype at genome-

wide levels74. Hence, it is not surprising that we did not identify a single rare variant of 

genome-wide significance associated with RLS or PD at the examined lociIII-X.  

Studies addressing the role of rare variants as part of allelic series at loci identified by GWAS 

have largely focused on rare coding variants. Yet, it seems not unreasonable to hypothesize 

that rare functionally relevant variants might also exist within promoter or enhancer regions, 

microRNA (miRNA) or transcription factor binding sites or other regulatory elements located 

within the non-coding regions within or around a gene. In view of this, we included both the 

5` and the 3` UTR in our analysis of rare variation at the MEIS1 locus and found that rare 

variants located in the 3`UTR, on the whole, showed a slightly protective effect (p < 0.05; OR 

= 0.83) whereas rare variants within the 5`UTR constituted the strongest risk factor, overall (p 

< 1x10-4; OR = 7.62).  Moreover, we identified a low frequency variant (rs11693221) located 

in the 3`UTR of the canonical MEIS1 transcript, which represents the largest genetic risk 

factor for RLS identified to date. The excess of rare non-coding variants in the 100 bp 

surrounding the exons of nine genes associated with asthma75 and the fact that fine-mapping 

studies located about 22 % of 36 GWAS association signals for celiac disease to either the 5` 

or the 3` non-coding regions (UTRs and several kb up- or downstream)463 indicates that these 

regions could indeed be important to the study of complex genetic diseases. Generally, this is 

an interesting but little explored concept that merits further attention in the future, especially 

in light of the fact that rare variants in the UTRs do not seem to contribute much to the genetic 

structure of rare Mendelian diseases.  

In summary, to our knowledge, MEIS1 represents one of very few genetic loci associated with 

a complex genetic disease for which such an extensive allelic series comprising common, 

low-frequency and rare variants, located in both coding and non-coding regions in and around 

the gene, which all seem to contribute to the genetic architecture of the disease, has been 

shownI,III,IV. 
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3.1.3 Mutational Load (cf. ref. IV,VII) 

While allelic series traditionally consider a collection of variants on a population level, the 

concept of mutational load seeks to characterize the mutational spectrum of one individual not 

restricted to only one locus but rather across the entire genome. Especially with regard to 

complex genetic diseases, it seems likely that the sum of genetic alterations in a given 

individual will be instrumental in determining the phenotype.  

Along these lines, we sought to assess the contribution of rare and low-frequency coding 

variants in seven genes known to play a role in familial dementias to sporadic PD under the 

hypothesis that variants in other neurodegeneration genes might add to the mutational load or 

the “neurodegenerative burden” eliciting the PD phenotype.  We observed an excess of low-

frequency variants in 188 individuals who had been diagnosed with PD plus dementia 

(PD+D) compared to 188 individuals with PD (10.11% vs. 4.26% with a variant with MAF < 

5 % in any of the seven genes). Also, identified rare and low-frequency variants in APP were 

found more frequently in individuals with sporadic PD than in the general population (27 out 

of 975 individuals with PD with a variant vs. 13 out of 1014 controls, p < 0.02, χ2 test)VII. 

This study is hampered by the fact that clinical information regarding the dementia phenotype 

in the individuals with PD+D is very limited, that—by our current knowledge of the vast 

spectrum of rare and very rare genetic variation in humans16,27,54,59—the sample sizes are too 

small and the fact that common and non-coding variants were excluded from the study. Still, 

even if viewed as solely preliminary, the results provide an impetus to consider the possibility 

that the bulk of neurodegenerative diseases are genetically much more similar than previously 

assumed. The “dementia gene” variants could contribute to the overall “neurodegenerative 

burden” that an individual carries and which reflects susceptibility across all 

neurodegenerative conditions. In this scenario, an excess of genetic alterations in a specific 

pathway could then tip the balance towards one neurodegenerative phenotype or the other or 

create phenotypes in which features of multiple neurodegenerative diseases coexist. Growing 

evidence for intersecting pathways in, for example, PD and AD465-467 also lends support to the 

concept that neurodegenerative diseases might genetically arise on the background of diverse 

amalgamations of different or shared genetic variants (i.e. the mutational load) in a mutual set 

of “neurodegenerative genes”. Clinically and neuropathologically, such an overlap between, 

for example, AD and PD, has been described many times345,468. 

In non-human organisms such as viruses and butterflies, the significance of the concept of 

mutational load regardless of a specific phenotype has been illustrated by the observation that 

augmented genome-wide mutational burden decreases fitness and may even lead to extinction 
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of a species469,470. In humans, many instances have been reported where genetic variants in 

different genes were shown to be necessary to cause a given phenotypee.g.471-475. For instance, 

for Bardet-Biedl Syndrome (BBS), which is inherited in an autosomal recessive fashion, it 

could be illustrated that in some pedigrees three variant alleles in both BBS2 and BBS6 were 

necessary to cause disease in a triallelic fashion473.  The examples reported thus far, however, 

were usually rare diseases with—at most—oligogenic patterns of inheritance. Also, in the 

field of ciliopathies it is known that genes known to cause certain ciliopathies also have the 

capacity to contribute pathogenic or modifying alleles to other ciliopathies475-478. To date no 

studies have been performed which have jointly analyzed mutational load across the full 

frequency spectrum of genomic (or exonic) variation for any somatic disease. However, large-

scale whole genome sequencing efforts currently under way along with the development of 

appropriate statistical analysis tools will certainly provide new insights in the near future. 

Most recently, evidence from cancer genomes has surfaced which suggests, that here, too, the 

number and deleteriousness of auxiliary genetic variants influences tumor progression479 thus 

highlighting the relevance of the mutational load to cancer genetics. 

 

3.1.4 A Complex Interplay (cf. ref. I,II,IV,VII,IX) 

Examples from the ciliopathy spectrum also demonstrate that even under a mutational load 

model, it is unlikely that variants can simply be added up to yield the observed phenotype475. 

Variants can appear functionally benign in one context but pathogenic in another475. For 

instance, null alleles in NPHP6 are found across the entire ciliopathy severity spectrum from 

very mild to lethal and it seems probable that either the stochastic situation (as in the 

mutational load model) or functionally related trans alleles modulate phenotypic 

expressivity475,480. The existence of many genes or genetic variants with pleiotropic 

effects26,290,481-484 further underscores that genetic variation is context specific and is 

dependent upon gene-gene and gene-environment interactions. The genotype at a single or 

few loci is unlikely to predict the phenotype accurately, especially with regard to diseases 

with a complex genetic framework475. This is not surprising since it has been suggested that 

the larger the biological complexity underlying a given phenotype the larger its locus 

heterogeneity142. When trying to piece together interdependent effects of heterogeneous 

variants, the situation soon becomes intransparent. 

In this day, when variant discovery no longer presents a limiting factor to the identification of 

disease genes, it is becoming all the more important to properly catalogue the vast amount of 

data generated. The generation of locus-specific databases475,485 seems vital in this context. 
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For PD, an undesirably large number of at least six such databases exist, while with regard to 

RLS, it is a work in progress. Although the most complete catalogization of human genetic 

variation currently remains a vision of the future, it is still a prerequisite to our ability to 

dissect out any of the existing interactions.  

Next to our lack of knowledge of the exact variants involved in genetic interactions in a 

particular disease, currently, the statistical evaluation of possible interactions poses an 

important problem due to the immense burden of multiple testing for which one needs to 

correct. This is also the reason for the lack of evaluation of epistasis—the statistical 

dependence of expression of one genetic variant upon another—in most GWAS33,45. When 

using a SNP array containing one million markers, one would have to correct the analysis of 

genome-wide epistatic interactions for one trillion multiple tests, making it extremely difficult 

to obtain statistically significant results. 

In one of the projects depicted in this work, blood trans-eQTLs of RLS-associated SNPs were 

analyzedII. The transcriptome-wide second most significantly regulated RNA expression by 

the lead SNP at the TOX3 locus was that of one of six other “RLS genes”, MAP2K5 

(p=5.21x10-5, n=760 KORA general population controls). Although one would like to believe 

that this finding is true, it was far away from transcriptome-wide significance (defined at p < 

8.5x10-8) and also did not replicate in a second sample of 976 SHIP-TREND general 

population controls. This example demonstrates the statistical difficulties encountered in the 

analysis of the complex interplay of genes and genetic variants and suggests that sample sizes 

of magnitudes larger will be needed to statistically substantiate gene-gene interactive effects. 

As a consequence, it could potentially be easier to functionally evaluate suspected individual 

interactions in animal486,487 or cell models488. Such approaches have already been successfully 

employed for rare mono- or oligogenic diseases471-473 but are, for the most part, lacking for 

complex genetic phenotypes. A murine model harboring a whole allelic series of rare to 

common variation in MEIS1 or the entire common mutational burden encountered across all 

RLS susceptibility alleles in individuals of extreme phenotypic presentation would be 

extremely interesting in this context. On a more cautionary note, it will be extremely difficult 

to model whole interaction networks and the interaction will always be removed from its 

genomic context. Also, as demonstrated by a large CNV unmasking a low-frequency 

regulatory SNP to cause thrombocyotopenia with absent radius syndrome489, beyond the non-

structural genetic variation addressed here, structural and non-structural changes may also 

interact in bringing about a phenotype. This adds yet another level of complexity to be 

accounted for in interaction studies. Nonetheless, the trans-eQTL analysis performed as part 
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of this workII, represents the first systematic evaluation of any form of genetic interaction in 

the context of RLS and could provide a starting point for future studies. 

 

3.1.5 Differences in Genetic Architecture between RLS and PD (adapted from ref. XI,XII) 

In all likelihood, all of the above constructs contribute to the genetic composition of both RLS 

and PD—some to a lesser and some to a greater extent. These effects are the result of 

selective forces, environmental impact, population history, migration and mutation rates 

which have shaped and continue to shape the genetic architecture of each phenotype.26,36,45 

Consequently, it is clear that genetic architecture differs across the group of genetically 

complex phenotypes. Table 3.2 outlines the characteristics of this genetic framework in PD 

and RLS. 

While many similarities are shared between the genetic features of the two diseases, some 

differences become apparent. Overall, genetic factors appear to play a slightly more 

influential role in bringing about RLS as epitomized by the higher heritability estimates. 

Interestingly, it also looks as if fewer variants of larger (but still very moderate) effect sizes 

might construct the genetic scaffolding of RLS, although dependable conclusions cannot be 

drawn from the currently available studies. In PD, variants are found at both extremes of the 

frequency/effect size spectrum (and some in between). In the past, however, it has been 

debated, whether the rare familial forms of PD brought about by highly penetrant rare alleles 

of large effect size and sporadic PD might not actually represent distinct phenotypes345. So 

that, derived from what is currently known, it could be speculated that PD could either be 

founded upon a more heterogeneous spectrum of genetic variation than RLS—at least 

frequency-wise—or could be a collection of different forms of the same disease. 

Conversely, in the most extreme scenario which is supported by the lack of successful linkage 

studies in RLS270, this could also mean that there is no single genetic variant that on its own is 

able to precipitate the RLS phenotype, rendering RLS a true complex genetic disease in all its 

facets. In how far these conjectures truly reflect the nature of the underlying genetic 

architecture of disease and not solely ascertainment differences impacted upon by sample 

number, general research intensity and focus in the field or methodological differences, 

cannot be fully established at the moment. However, although many of the specifics remain to 

be elucidated it does become clear that important differences do exist in the genetic 

frameworks of both diseases. The further the genetic and non-genetic factors underlying both 

diseases are revealed, the more apparent it will become that the missing pieces of the genetics 
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puzzle (i.e. the “missing heritability”) could also be missing for different reasons in the two 

phenotypes26 and that different strategies will be needed to address this.    

An intriguing but little discussed genetic phenomenon in RLS is the fact that offspring 

generations with a higher percentage of affected individuals than in the parent generation are 

frequently encountered in RLS families. In most families and for six of the seven RLS linkage 

loci described so far, the projected pattern of inheritance is autosomal dominant. However, 

often times, one encounters more than 50% of a generation of offspring showing the RLS 

phenotype. This is also reflected by the fact that the sibling relative risk (3.6) is much larger 

than the offspring relative risk (1.8)255. In PD, on the other hand, families with projected 

autosomal dominant patterns of inheritance usually show less than 50% affected individuals 

in the offspring generation, which is attributed to reduced penetrance. A number of possible 

explanations ranging from ascertainment bias in the offspring generations to selective mating 

and environmental contributions in a setting of genetic predisposition have been suggested but 

none have been investigated systematically.  
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    PD RLS 
features shaping genetic architecture  

  
selective force/fitness none for late onset,  

maybe for early-onset 
none 
selective mating has been discussed 

  population history similar similar 

  migration  slightly less slightly more 

  
mutation rates unknown  

overall high in known genes 
unknown  
overall low in known genes 

  environmental impact likely, mechanism unknown likely, mechanism unknown 

  epigenetics ? ? 

  endophenotypes many ? some ? 

       
known characteristics of variant architecture  

  
common variants few with average ORs few with relatively large ORs 

(currently 6.8% of heritability) 

  

low-frequency variants GBA most important risk factor known 
LRRK2 

collectively and individually in 
MEIS1 
collectively across all GWAS loci 

  

rare variants several known single variants in 
familial PD with variable penetrance 

seven linkage regions 
collectively in MEIS1 
unclear if a single such variant 
exists in RLS 

  de novo ? ? 

  CNVs ? ? 

  translocation/inversion ? ? 

  heterogeneity  large large 

      
factors in genetic epidemiology   

  predominant sex ♂ ♀ 

  ethnicity Caucasian>Asian>African Caucasian>Asian>African 

  prevalence 1% 5 to 10% 

  age distribution bimodal bimodal 

  inheritance pattern AD (AR, X-linked also described) AD (AR also described) 

 positive family history approx. 15% approx. 50% 

  heritability approx. 30% approx. 50% 

  
penetrance overall relatively low, age-dependent unknown, likely incomplete and 

age-dependent but to a lesser extent 

  

expressivity variable even within a family 
modifiers 

extremely variable even within a 
family  
polygenic/modifiers 

  
additional features  more than 50% affected offspring 

in some families 
 
Table 3.2: Central features of the genetic architecture of PD and RLS. OR = odds ratio, 
AD = autosomal dominant, AR = autosomal recessive. 
 
 
It is also possible that this phenomenon could lie in the genetic architecture of RLS itself. 

RLS is a complex genetic disease and locus heterogeneity appears firmly established. 

Accordingly, it is possible that a given mutational burden of causal, modifying and 
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predisposing alleles in any number of combinations could—in some cases—be responsible for 

the observed deviation from expected Mendelian ratios. The possibility of epistatic 

interactions between any of these genetic factors only adds another layer of complexity. 

Furthermore, at age-dependent prevalences of up to 10% in adult populations of European 

descent, RLS is much more common than PD. Accordingly, bilinearity with genetic 

susceptibility factors contributed by both parents (including an unaffected one) could play a 

role in explaining the observation.  Lastly, evidence also exists that acquired epigenetic 

footprints can be passed on from generation to generation490, a phenomenon which could also 

account for the increased number of affected offspring seen in RLS491. Yet, at present, any of 

these explanations are hypothetical and are not supported by any scientific evidence. 

 

 

3.2 Challenges in Analyzing Common, Low Frequency and Rare Variants and Ways to 

address these Challenges 

The analysis of the contribution of genetic variants of different frequency—and effect sizes—

to the genetic make-up of a complex genetic disease such as RLS or PD faces a number of 

challenges. These shall be discussed in the following. Especially with regard to the analysis of 

rare and very rare variants statistical considerations present the largest hurdle to overcome.  

 
3.2.1 Statistics (cf. ref. I-IV,VII, IX,X) 

As outlined in the introduction, association tests are usually employed to demonstrate 

statistically significant association of a common variant with a phenotype. Yet, these 

associations only explain a very small portion of the estimated total heritability of a 

phenotype in most cases33,41,45. Variants with very small effect sizes and the need for 

extremely large sample sizes4,  the large burden of multiple testing, the uncertain causality of 

the identified variants26 and statistical pitfalls such as undiscovered independent associations 

at a given locus463, “phantom heritability”9 or the concept of synthetic associations43 all 

hamper the statistical analysis of common variant-disease associations. The need for multiple 

testing is inherent in the make-up of the human genome and is, therefore, difficult to address, 

as is the estimation of the exact heritability of a trait as long as there is no way to account for 

environmental effects throughout an individual`s lifetime and across multiple generations. 

Finding the causal variant underlying common variant association signals is sometimes 

possible but the process is usually slow and tedious4,26. Consortia and the ongoing efforts to 

continuously enlarge samples sizes41 will ameliorate the ever present lack of power to detect 

small-effect variants. Still, it is questionable whether large enough numbers will be reached to 
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detect all common variants contributing to a phenotype. This is exemplified by the study of 

common variation contributing to human height where it is projected that 697 associated loci 

of genome-wide significance would be identified in 500,000 individuals but would only 

explain about 19.6 % of the heritability.40 Fine-mapping and higher-resolution SNP arrays 

will also be able to detect additional independent common variant associations that can be 

found at many identified GWAS loci and which may contribute to dissecting the “missing 

heritability”, as has recently been illustrated with regard to celiac disease.463 

Synthetic associations43, i.e. associations created not by the associated common variants but 

by other underlying factors such as a collection of individual rare variants in the proximity, 

represent another statistical challenge. Both the fact that in many cases GWAS yield 

consistent results even across ethnic groups492 and the fact that allele frequencies of the 

GWAS signals are too high to be explained by rare variants493 argue against the fact that 

synthetic associations play a large role in bringing about GWAS signals in complex diseases. 

Albeit, in a proof of principle study, it was recently demonstrated that rare variants in the low-

density lipoprotein receptor known to cause familial hypercholesterolemia are able to create 

synthetic associations with common polymorphisms at the locus and as far as 2.4 Mb away 

from the causal variant.494 In summary, it seems likely that, at least in some cases, rare 

variants may actually underlie associations observed in GWAS. The graduation to performing 

association studies by whole genome sequencing (compare Figure 1.7) could resolve this 

issue.  

With regard to the statistical analysis of rare variants, the situation becomes even more 

precarious. Here more so than in the analysis of common variants, financial constraints, 

workload and computational capacities limit the scale of the projects that can currently be 

performed even under the umbrella of large consortia. Accordingly, these conundra also 

reflect the largest limitation of the rare variant studies depicted in this work—sample number.   

It is only very recently, that the field has come to truly understand how rare most variants are 

in the human population. In mid-2008, it was still postulated that there would be around ten 

rare variants per personal exome77. Today, estimates are about 1000x higher3,IX,X and it has 

become clear that there is a vast excess of rare and very rare variation in the human 

genome16,27,54,57,59,61.  As evident from the work presented in this thesis, sample sizes of 1000 

cases and 1000 controls are much too small to draw any meaningful conclusions regarding the 

role of rare or very rare variants (MAF < 1%) with regard to either known or suspected 

disease genesIX,X. The addition of frequency data from the in-house exomes (n = 1739), the 

1000 genomes (n = 1092) or the NHLBI-ESP exomes (n = approx. 4300) also did not help to 
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solve this dilemma as the vast majority of variants were singletons. Only in datasets of more 

than 3000 cases plus 3000 controls did we start to see statistically meaningful differences 

between the number of rare variants but only when collapsed over one or several lociIV.  

Moreover, we observed that analyzing rare variants by collapsing using fixed MAF thresholds 

is highly prone to confounding effects from comparatively “common” single variants around 

MAF = 1 %, for example, that can easily abolish any statistically significant association the 

other variants with an aggregate MAF around 1 % might have. Similarly, it has been argued 

that the existence of variants of bidirectional effects within a set of rare variants will always 

render rare variant statistics imperfect141. Use of a variable-threshold model might alleviate 

this problem. 

These findings are in line with what has been reported for large sets of exomes (n = 2440) 

from which it was projected that in individuals of European ancestry only 1.67% of 12,000 

genes analyzed would have 80% power to detect a rare disease-linked variant at OR = 5 if 

screened in a sample consisting of 400 cases and 400 controls (Figure 3.3)27. In no gene 

would a variant of OR = 1.5 be detected under the same scenario.  

However, next to the effect sizes and number of disease-relevant rare variants found in a gene, 

the success is also very dependent upon (1) the overall variance found in the gene of interest, 

(2) the variants` distribution across the frequency spectrum and (3) the variants` direction of 

effect. Although the overall variance and thus the number of identified variants in a gene 

cannot be altered, increasing the number of samples naturally also increases the number of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Power calculations for 12,000 genes harboring at least three SNVs and 
sequenced in 2440 individuals rare causal disease variants at OR = 5 in a sample of 400 
cases and 400 controls. EA = European American, AA = African American. (taken from ref. 
27)



identified variants and, thus, study power. To date, all studies have shown a linear increase in 

the number of identified variants in relation to the number of samples16,27,54,61. Current sample 

sizes are far away from reaching the point where every possible non-lethal variant has been 

detected although some argue that it is fair to assume that all non-lethal variation exists in at 

least one individual in today´s human population142. At present, large-scale exome sequencing 

studies estimate that tens of thousands of case and control samples will be needed to perform 

rare variant association studies27,61. In some extreme instances, the entire human population or 

a specific subpopulation (see 3.2.2 below) many not be large enough to generate statistical 

evidence for or against some very rare or small effect variants. It seems that only some 

consortia studying well-researched and well-funded phenotypes, such as, for example, human 

height, currently have access to the sample numbers and resources to carry out these studies. 

Next to the formation of cross-diagnostic consortia such as the Immunochip Consortium495 

and general large-scale sequencing endeavors such as the Beijing Genomics Institute`s 

“Million Human Genomes Project”496, commercial sequencing providers might have an 

answer. California-based 23andMe, Inc., offers direct-to-consumer personal genome-wide 

genotyping and risk assessment for over 240 phenotypes497. Successful internet-based GWAS 

utilizing self-reported phenotypes have already been performed for PD440, among others. By 

the end of 2013, a projected number of one million genome-wide genotyped individuals will 

be available for research purposes and could potentially be used in association studies of 

complex genetic phenotypes. Although not yet available, whole-genome and whole-exome 

sequencing services are sure to follow. Alternatively, a priori selection of individuals at the 

extremes of a phenotype could also lower the sample number requirements especially in the 

analysis of rare variants, since rare deleterious loss-of-function alleles are expected to be 

enriched in individuals at the extremes of a phenotypic spectrum26,498.  This approach has 

already been effective in the exome-based identification of genetic variants predisposing 

individuals with cystic fibrosis to pseudomonal infection6.  

Another statistical dilemma is the identification of rare alleles of incomplete penetrance that 

either modify a phenotype474 or are causal under an oligogenic model77. Such variants are 

near impossible to identify via family-based approaches because the variants do not show 

clear Mendelian segregation. However, it has been predicted that mildly deleterious low-

frequency and rare variants harboring effect sizes of ORs between 2 and 3 could actually be 

responsible for a large portion of the genetic risk in common complex genetic diseases65 and 

that a substantial portion of the “missing heritability” might be attributable to just this type of 

variation26. According to some estimates, about 20 variants with MAF = 1 % and OR = 3 
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could explain most of familial type II diabetes26,56. Others have suggested that the bulk of rare 

VUSs in breast cancer genes BRCA1 and BRCA2, that are largely classified as such because 

they do not show clear familial segregation in the data currently in the public domain, may 

contribute 400x as much to the population attributable risk of breast cancer than the variants 

known to be pathogenic in these genes and would merit clinical intervention77. Here, too, very 

large numbers of samples will need to be analyzed to statistically link low-frequency variants 

of low penetrance to a phenotype. Myriad Genetics (Salt Lake City, UT, USA), the patent 

holder for the only available BRCA diagnostic test available in the US, already possess data 

on more than 1 million individuals screed and was able to use this information to reduce the 

percentage of VUS reported from 20% seen across European laboratories to 3%499. 

Unfortunately, the wealth of data available to Myriad Genetics is proprietary499. However, 

even when very large sample number are available, showing statistical association of rare 

variants of ORs < 2 with a phenotype will, even in the future, be extremely difficult (Figure 

1.6). 

Simpson`s paradox describes the phenomenon that trends seen in different groups of data 

disappear when the two groups are combined500. As is biologically plausible, both protective 

and predisposing alleles can exist at the same locus. For common susceptibility alleles, it has 

already been illustrated that multiple independently associated signals of different directions 

of effect at a given locus may exist but are only revealed after conditioning on the 

others463,501. With regard to rare variants, this was recently shown for APP in the context of 

AD68. Accordingly, Simpson`s paradox presents an important predicament in (rare) variant 

statistics where the common collapsing strategy is prone to the loss of statistical evidence due 

to such effects. Rare variant association tests specifically incorporating the analysis of effect 

direction (e.g. adaptive sums test139 and KBAC140) can alleviate but not resolve this situation. 

Finally, the possibility that trans variants across the entire frequency spectrum could interact 

and unmask or disguise associations also exists502. Concealed rare variant associations 

between BCL11A and fetal hemoglobin levels in individuals with sickle cell anemia attributed 

to additional common variants on the same haplotype background have already been 

described461. The analysis of such interdependencies in the context of solely rare variants, 

however, will be very difficult to examine from a statistics perspective largely due to 

potentially insurmountable power impediments. 

Overall, it seems likely that the “missing heritability” left in complex genetic diseases after 

the surge of GWAS will not likely be explained in its entirety in the near future, partly due to 

statistical culprits. And from a statistics perspective, the contribution of rare variants will 
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always be underestimated141. Nonetheless, it may still be possible to consider that, for all 

practical (and diagnostic or clinical) purposes, all heritability has been explained if the trait-

associated genetic make-up of new individuals can be used to predict the actual phenotype503. 

Maybe this embodies the attainable maximum, at least in the next decade. 

 

3.2.2 Population Specificity (cf. ref. I,II,IV,VI,VII,IX,X) 

Common variation in the human genome is very old compared to rare variants16. As a 

consequence it is also much more similar across different human populations. This represents 

the basis for the realization that common susceptibility factors for a given complex genetic 

trait are often shared between human populations of European and Asian descent (only a 

minority of GWAS have actually been performed solely in individuals of African or Hispanic 

ancestry)492. In PD, all of the top associated loci found in Europeans have been replicated in 

Asians, unless associated SNPs were revealed to be monomorphic438,439. In some instances, 

different haplotype structure in different populations has also been used to finemap GWAS 

loci as in the case of the 16q12.2 locus associated with body mass index measurements504. 

While for five out of 18 GWAS loci for different blood lipid parameters, trans-ethic 

finemapping in 6,832 African Americans, 9,449 East Asians and 10,829 Europeans reduced 

the number of associated common variants, at two loci, distinct, ethnicity-specific signals 

were uncovered505. Accordingly, GWAS performed in different populations can be very 

valuable in refining GWAS association signals both by narrowing the associated LD block 

harboring a presumed single association signal as well as by highlighting genes or regions of 

genes through multiple ethnicity-specific association signals. 

Although common variant associations are relatively stable across populations, for several 

reasons, this does not seem to be the case for rare variants. For one, rare variants are 

comparatively young and have neither been removed from the population by purifying 

selection nor have they become so frequent that they are fixed within a given population. 

Accordingly, any variant that developed within the last several thousand years is both likely 

to be rare but also to only occur in individuals who are offspring of the original founder—and, 

across the last millennia, these offspring are likely to belong to only one ethnic group—unless 

it developed independently on multiple occasions.  

This represents a curse and a chance at the same time. In one of the projects depicted in this 

work, a rare coding variant in APP (p.E599K) was identified as a potential contributor to PD 

by candidate gene screening in a German and Austrian case/control sampleVII. The variant 

was present in 14 out of 1068 individuals with PD (MAF = 0.66%) but only in 3 out of 1014 
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individuals belonging to the control sample (MAF = 0.15%) (pnominal=0.01, χ2 test)VII. In the 

NHLBI-ESP exomes, it was found in 9 out of 8591 sequenced alleles (MAF = 0.11%), a 

similar frequency to that seen in our controls. If one analyzes both control samples jointly (14 

out of 1068 cases vs. 12 out of 5310 controls), the result becomes highly significant 

(pnominal=3.8x10-7, χ2 test), once again demonstrating the power of sample numbers in rare 

variant statistics. Yet, any true association needs a replication. We genotyped the variant in an 

independent Spanish case/control sample consisting of 715 PD cases and 948 controls but did 

not find the APP p.E599K variant again in any of the 1663 individualsVII. Consequently, from 

a frequency-based perspective, the result remains inconclusive possibly due to a restriction of 

this rare variant to individuals of central European descent. In this context, it was illustrated 

employing the sequencing data of 14,002 individuals of different ancestry sequenced for 202 

drug-target genes, that the number of variants observed differed not only across ethnic groups, 

as had been shown previously506,507, but also within the European populations. On average, a 

German individual would possesses twice as many variants per kb compared as a 

Scandinavian individual. Also, whereas common variants appeared panmictic in the European 

populations, rare variants were much more dissimilar.54   

 

 
Figure 3.3: The number of variants per kb of sequence differs between individuals of 
different populations and subpopulations. Even within the European population, there is a 
stark north-to-south difference with Northern European individuals exhibiting only a third of 
the genetic variance of a Southern European individual. Most of this differential variance 
comprises rare variants. (taken from ref. 54) 
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This means that rare variant analysis will be most successful if performed in the most 

homogeneous sample possible and that it is vital to evaluate cases and controls from the same 

(sub-) population. On the downside, this may also mean that samples available from some 

subpopulations could be too few to statistically show rare variant associations in some 

instances.  

Yet, the specificity of many rare variants to specific populations also has positive aspects. 

GWAS and NGS studies have largely been carried out in populations of European ancestry, 

although genetic variation is known to largest in populations of recent African ancestry506,508. 

The few studies performed in non-Europeans have already yielded intriguing new 

variants509,510 that are just as useful in informing the biology of a disease as those identified 

but may be more easily ascertained than additional variants in Europeans. Similarly, 

population isolates may be enriched for single or a few rare variants of strong effect on a 

given complex genetic phenotype511,512 and hold decreased variant and locus heterogeneity, 

thus facilitating variant (or association) discovery. Using the Icelandic population isolate, 

deCODE genetics513 has been able to identify many low-frequency or rare variants involved 

in bringing about complex genetic diseases. One prominent example is the identification of a 

rare (MAF = 0.38%) missense variant in MYH6 (p.Arg721Trp) predisposing to sick sinus 

syndrome with an OR of 12.53 that, so far, has exclusively been found in the Icelandic 

population72. 

In summary, the augmented population specificity of rare variants has the ability to both ease 

and hinder variant discovery at the same time. The analysis of the largest and most 

homogeneous samples possible will put this characteristic of rare variants to good use. 

Overall, the fact that, in theory, so many low-frequency and rare variants of moderate to high 

effect likely contribute to disease development across populations also holds the promise to 

generate better informed hypothesis regarding a disease`s underlying biology as that, in the 

end, is the vested interest. Analysis of low frequency and rare variants in MEIS1 in a 

German/Austrian case/control sample have yielded, for the first time, variants of moderate to 

strong effect which can be used for functional follow-up studies inquiring into RLS 

pathophysiologyIII,IV. Still, whether these or other rare or low frequency variants also play a 

role in the genetic architecture of RLS in other European populations and especially in other 

Non-European populations remains to be established. 
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3.2.3 (High-Throughput) Functional Assessment of Identified Variants  

GWAS have focused almost exclusively on statistical evidence and have de-emphasized 

considerations of biological relevance26 and, with regard to rare variants, analysis—in many 

instances—is so underpowered that frequency assessment on its own cannot provide enough 

support to substantiate the involvement of single variants in disease pathogenesis (cf. Table 

3.1). As a consequence, functional assessment of identified variants is needed to (1) identify 

that they harbor functional effects and are not benign and (2) to show that they are relevant to 

disease pathogenesis. With regard to (1), medium- or high-throughput methods that are, 

ideally, not gene-specific are needed to address the vast amount of genetic variation yielded 

by NGS studies. For (2), more refined disease- or gene-centered strategies commonly 

employed in molecular biology can be use. Accordingly, these will not be the focus of 

discussion below. 

 

3.2.3.1 Cellular Assays (cf. ref. II,VII,IX,X) 

Cellular phenotyping describes the quantification of the output of processes that occur at the 

cellular levels such as gene expression or metabolite production488. It can be used to evaluate 

intermediate phenotypes that are known to be more directly influenced by a disease-

associated genetic variant than the disease phenotype itself. This is due to the fact that with 

increasing complexity from single cells to entire human beings, genetic effects are diluted by 

many layers of biological complexity. Cellular phenotypes can be quantified in primary 

tissues (often times as part of large-scale publicly accessible endeavors such as the Roadmap 

Genotype-Tissue Expression (GTEx) project514,515), primary or immortalized cell lines or in 

cells derived from patient-specific induced pluripotent stem cells (iPSCs). The different cell 

systems can be utilized to screen nuclear (e.g. eQTLs, methylation, chromatin and 

transcription factor QTLs) and cytoplasmic phenotypes (e.g. metabolite concentrations or 

enzyme activity) under steady-state or challenged conditions488. For the study of neurogenetic 

phenotypes, iPSCs are of particular interest as they represent the only means of obtaining 

living disease-relevant cells that—theoretically516—possess the patient`s genotype in all its 

complexity. In the context of PD, iPSCs have already been employed on a number of 

occasions to investigate the functional impact of recognized PD mutations particularly on 

mitochondrial biology355,517,518. With regard to RLS, no patient-specific iPSCs have been 

generated yet and the lack of a clear disease-relevant cellular phenotype further complicates 

the application of cellular phenotyping.  
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While for many decades the use of cell models to analyze genetic variants was hampered by 

being hypothesis-based, today, unbiased tissue studies are possible. These can be used to, for 

example, identify phenotype-relevant cell types if large collections of cell lines and tissues are 

utilized to screen for genotype-dependent functional profiles488. Such an approach could 

prove very valuable with regard to RLS, where the underlying causal cells are, at present, not 

known. In the work depicted herein, we sought to take advantage of blood-based eQTLs from 

two general population cohorts to prioritize sub-threshold association signals from a GWAS 

on RLSII. Our inability to establish new susceptibility alleles based on this approach could 

well be indicative of the fact that it is vital to study the cells or tissues most relevant to the 

phenotypeII. 

Proponents of cellular phenotyping argue that genetic interactions that occur on one 

phenotypic level can be separated into individual linear effects in different layers and can, 

therefore, be examined independently488,519. Consequently, modern cellular phenotyping 

could be used to tackle the difficult task of integrating multilayered information in the 

functional analysis of genotype-phenotype correlations in complex genetic diseases. 

 

3.2.3.2 Zebrafish Models (cf. ref. IV) 

Another way to screen coding variants for their functional effects at medium- to high-

throughput is by in vivo complementation assay in zebrafish embryos, as portrayed in the 

introduction520-522 (cf. section 1.5.6). This assay was used to assess rare non-synonymous 

coding variants in MEIS1 identified in the screening of 3760 individuals with RLS and 3542 

control individuals. Although optic tectum size, the phenotypic read-out selected, is likely not 

directly involved in RLS pathogenesis, three interesting aspects emerged: (1) although RLS 

represents a comparatively mild, genetically complex phenotype, some individuals carry 

complete loss-of-function (i.e. null) alleles in MEIS1 (the homozygous knock-out of which is 

known to be lethal in mice293), (2) the mechanism by which rare variants in MEIS1 contribute 

to the RLS phenotype is likely a loss-of-function and (3) null but not hypomorphic alleles of 

MEIS1 are enriched among individuals with RLSIV. Overall, this study depicts the first 

analysis of variants identified in the context of a complex genetic trait by in vivo 

complementation in zebrafish and one of very few functional evaluations of comprehensive 

sets of rare variants derived by sequencing large case/control samples of complex genetic 

disorders reported to dateIV,70. Other potential applications of the complementation assay 

include the use in delineating causal genes from pools of candidate genes in the follow-up of 
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NGS experiments both in research523 and clinical diagnostics (Prof Nicholas Katsanis & Prof 

Erica Davis, personal communication). 

One major drawback of the in vivo complementation assay is that it is largely limited to 

coding variation. As many variants of regulatory effect are not located within the exonic 

regions of genes underlie the majority of GWAS association signals, the in vivo 

complementation assay in zebrafish is best suited to the study of coding variants such as those 

identified by targeted or whole exome sequencing. Yet, other tactics are currently in use to 

evaluate regulatory elements such as, for example, enhancer screens524-529. An additional 

disadvantage is the assays` limitation to the evaluation of embryonic phenotypes due to the 

transience of the morpholino-based knock-down. In the future, the combination of several 

techniques presently used to analyze different classes of variants in zebrafish could be used to 

construct complex genetic models of human diseases comprising both common and rare, 

coding and non-coding variation.  

 

3.2.3.3 Mouse Models 

Recent years have seen the emergence of more efficient techniques to generate transgenic 

mice than ever before. These new technologies utilize artificial restriction enzymes to induce 

and a cell`s endogenous machinery to repair DNA double strand breaks for in situ genome 

editing.  Artificial restriction enzymes such as zinc finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs) or microbe-derived meganucleases can be 

engineered to specifically target nearly any DNA sequence and via repair mechanisms such as 

imperfect non-homologous end-joining and precise homology directed repair generate desired 

mutations. In many cases, synthetic oligonucleotides are used to further guide strand break 

repair. TALENs and ZFNs can be used to generate both murine knock-out530 but also disease 

variant-specific knock-in models531. Lately, TALENs were used to generate a murine disease 

model of Hermansky-Pudlak syndrome harboring a specific missense mutation of Rab38531, 

providing a foretaste of the great potential these technical advances hold for the follow-up of 

NGS candidate variants. ZFNs and TALENs have also been applied to create knock-out and 

knock-in transgenes in zebrafish532-535 and a number of other traditional model but also non-

model organisms536.  

Very recently, a novel method of nuclease-mediated genome editing using clustered regularly 

interspaced short palindromic repeats (CRISPRs)/CRISPR-associated (Cas) protein mRNA, 

usually active in the immune system of bacteria, plus single guide RNAs487,537,538 was used to 

generate mice carrying multiple-allele substitutions in two genes belonging to the same family 
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in a single experiment487. This accomplishment is of vivid interest to the study of complex 

genetics as it signifies that the generation of complex genetic mouse models could, in the 

future, be a matter of weeks not years. 

Although these techniques allow the generation of animal models harboring specific variants 

within four487 to 18 weeks531, this is still too labor– and time-consuming to test tens to 

hundreds of NGS-identified candidate variants but could prove very valuable in cases with 

only a handful of candidate variants and also in the creation of complex genetic animal 

models, for example, as models of entire allelic series such as the different frequency variants 

in MEIS1 or mutational load models combining multiple GWAS-identified, potentially causal 

SNPs to model RLS.  

At the moment, there is still an urgent need for more truly high-throughput ways to use 

experimentally determined functional effects in prioritizing the mass of candidate variants 

generated by NGS studies.  

 

3.2.4 Regulation and Interaction (cf. ref. I,II) 

Yet, being able to model single or several genetic alterations that are known to occur more 

frequently in individuals with a given disease hardly captures the entire picture of the disease. 

At the moment, it is still difficult to even fathom the enormous number of regulatory levels 

encoded by the human genome, let alone disentangle them. The encyclopedia of DNA 

elements (ENCODE) consortium539 has spent the past decade cataloguing regulatory elements 

in the human genome with the result that regulation is far more complex than had been 

expected539,540. Despite the fact that the exome only makes up approximately 1.5 % of the 

human genome, in total, about 75 % of the genome are transcribed539. Accordingly the vast 

majority of DNA appears to serve a regulatory or yet unknown function539 as exemplified by 

the 8.4 million short recognition sequences for DNA binding proteins541 and the 3 million 

DNase 1 hypersensitivity sites marking regulatory DNA542 as well as the added levels of 

complexity introduced by epigenetic modifications, miRNAs, feedback loops, functional 

redundancy and parent-of-origin specific effects543, to name only a few. Accordingly, despite 

these large-scale efforts to map the human regulome in its entirety, it will take some time until 

we will be able to parse out how exactly the common and rare, coding and non-coding genetic 

variants that have been linked to a genetically complex phenotype by statistical means interact 

with each other and with the remainder of the genome to generate the full phenotype. Whole 

genome sequencing studies will provide the prerequisite for beginning to explore these levels 

of regulation in individuals or in a disease context. 
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One of the projects pursued as part of this work gives a notion of just how daunting this task 

may prove to be. Our study regarding cis-eQTLs in RLS assessed only a single level of 

single-order regulationII. However, we were unable to identify novel susceptibility factors for 

RLS. This may be owed to a number of factors: (1) the tissue of investigation is not the most 

relevant to the RLS phenotype and expression and expression regulation are likely to be tissue 

and cell-type specific539,543, (2) the time point during an organism`s lifespan (development vs. 

adulthood) or during the circadian cycle that is most relevant to RLS is unknown and 

expression and expression regulation are likely to be different at different points in time, (3) 

we did identify many cis- and trans-eQTLs, however, due to the immense burden of multiple 

testing, very many of these did not reach statistical significance which is by no means 

synonymous with a lack of biological relevance, (4) the size of the replication sample is too 

small to yield statistically significant associations for variants of small effect sizes, (5) we did 

not attempt to analyze more than single-order interactions although it is very possible that 

single- or multiple-order epistatic effects exist45, (6) array-based analyses such as GWAS and 

the expression studies part of this project do not render a bias-free depiction of the regulome 

and at best only analyze 1.5% of the transcriptionally regulated regions of the human 

genome539 and (7) a last possibility could also be that it is inherent in the genetic architecture 

underlying RLS that there are no other genetic loci, other than those already known, of 

frequency and effect sizes which can be detected in the available case/control samples or that 

gene expression is not the most pertinent QTL.   

Regulatory mechanisms involving direct DNA transcription such as those investigated by 

ENCODE or in the above study with regard to RLS, however, also only represent one of 

several layers of regulation. Protein expression, protein-protein interactions and protein 

phosphorylation states543, the possibility of RNA editing24,25 and environmental influences45 

illustrate additional levels at which regulation of pertinence to phenotypic expression may 

take place.  

The magnitude of influence of regulation and interaction on the study of genetics was recently 

demonstrated in a yeast cross, where genetic interactions where found to contribute from zero 

to 54% to broad-sense heritability estimates in 24 of 46 traits examined544. The number of 

pairwise interactions ranged from 1 to 16 per trait544.  In the most extreme case, a single 

strong interaction explained 14% of the genetic variance and 71% of the difference between 

broad-sense and narrow-sense heritability544. However, in the large majority of traits, pairwise 

gene-gene interactions only explained a minute fraction of the missing heritability or were not 

present at all544. Although the genetic architecture in the yeast model is infinitely less 



 
_____________________________________________________________________________________________________ 

192 

complex than in humans, this study provides a first quantification of the possible magnitude 

of the role interaction effects have on complex genetic phenotypes and the “missing” 

heritability in humans. 

 

3.2.5 The Great Beyond 

When the concept of “missing heritability” was first described in 2008, it was already 

postulated that some of it could lie hidden in genetic and biological concepts that simply have 

not been discovered or thought of, to date33. In line with this, the ENCODE data revealed that 

approximately 75 % of the human genome is transcribed but the function of at least 60 % of 

these transcripts is completely unclear539. In light of the complexity of the human regulome, it 

could be possible that levels connecting genetic variation to a phenotype that have not yet 

been appreciated sufficiently exist. The fact that the master regulators in the non-coding RNA 

category—miRNAs and long intergenic non-coding RNAs (lincRNAs)—were only described 

in the last two decades545,546 supports this notion. Possible examples for such levels could 

include transgenerational epigenetic and epistatic effects45,547,548 where the grandparents` 

environmental exposure determines gene expression as has been shown with regard to murine 

coat color549 or where the effect of modifier alleles increasing penetrance of Dnd1 mutations 

in murine models of testicular germ cell tumors are passed on without the modifying allele 

itself33,550. One explanation for the latter could be the passing on of RNA molecules to the 

offspring33 as has already been depiced in both plants551,552 and Caenorhabditis elegans553. 

None of these mechanisms have been described in humans. An opposite mechanism has also 

been proposed which envisions that some of the “missing heritability” could lie in post-

zygotic variation acquired by different non-cancerous cells throughout an organism`s 

lifetime554-557 and is, therefore, not inherited. Lastly, it has also become clear that, in some 

cases, it is important from which parent a genetic variant was inherited45,543. An intronic 

variant in HCCA2 on chromosome 11, for example, can either increase or reduce 

susceptibility to type 2 diabetes depending on the parent of origin47. Whichever the 

mechanisms may be, it is likely that our current understanding is only fragmentary but that the 

discovery of additional mechanisms of inheritance, interaction and regulation, which are sure 

to exist, will help tease apart complex genetic phenotypes.  

 

3.3  Perspectives 

The identification of common and rare variants underlying complex genetic diseases will in 

most cases not be able to explain the mechanism of how exactly a variant leads to a given 
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phenotype. The study of common and rare genetic variants in the context of common 

genetically complex diseases entails specific challenges depending on the method used to 

identify them, their frequency as well as effect sizes and penetrance. With regard to common 

susceptibility alleles, functional follow-up is often difficult and, if ascertained in a GWAS-

approach, the identified SNP may not even be the causal one. The biggest challenge in the 

analysis of rare variants is the fact that very large sample numbers ranging in the hundred 

thousands and millions will be needed to begin to statistically judge the degree to which a 

given rare variant contributes to a phenotype. Still, in very many instances, this will never be 

possible from a statistical stand point as the involved variants are simply to rare in humans in 

general. Once rare variant analyses will be expanded to whole-genome sequencing as the 

main methodological approach and more and more rare, non-coding variants will be 

discovered, similar challenges in establishing the biological function of theses variants as 

those encountered with regard to common susceptibility alleles may emerge. A number of 

strategies have been devised to address the need for functional follow-up of both the common 

and the rare disease-linked variants and everything in between. Of these, in vivo 

complementation in zebrafish was chosen in the work depicted herein because it provides a 

relatively facile means to evaluate the functional effect of many coding variants within a 

given gene. Unfortunately, this approach is difficult to amend to non-coding variants. Novel 

nuclease-driven technologies using CRISPR/Cas or TALENs will hopefully provide the 

unique opportunity to study combinations of rare and common, coding and non-coding 

variants at the same or several loci in the future in the setting of complex genetics models in 

mice and zebrafish. 

While much attention has been devoted to the study of both common and rare variants, the 

middle ground inhabited by the low-frequency variants has been neglected, partly due to 

technical challenges. Yet, as shown in the analysis of low-frequency variation in MEIS1 

depicted in this work, this may be unjust and at least with regard to the situation in RLS, truly 

a full spectrum of genetic variation of all different frequencies appears to contribute to disease 

development. Also, not only variants of different frequency but also different location with 

respect to the gene seem to be involved in RLS—coding variants, variants located in the 

5`UTR, intronic variants and variants located in the intergenic regions very close to the 

annotated gene but also as far as 1.3 Mb downstream. To our knowledge, there are very few 

examples of loci contributing genetic variation to a phenotype in such a holistic fashion.  Still, 

as opposed to PD, to date, no single genetic variant has been shown to be sufficient to induce 

the development of the RLS phenotype and the most common finding in RLS genetics has 
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been that of genetic heterogeneity. In the most extreme case, this could mean that there are no 

“causal” alleles for RLS and that the RLS phenotype is always the result of several genetic 

factors (possibly at a limited number of loci) acting in concert although the large pedigrees at 

first glance might suggest otherwise.  

As in PD, many questions remain with regard to the genetic architecture of RLS (cf. Table 

3.2). The answers to these questions will also tell us where—in each case—the missing 

heritability is likely to be found. Maybe the ultimate question is not whether a disease is 

monogenic or complex but rather what is the precise genetic architecture of the phenotype—

or even more accurately—the individual genes with regard to a specific phenotype.  

In the end, this also means that at least with regard to genetically complex neurologic diseases 

such as PD and RLS, where GWAS have identified a few susceptibility factors and rare 

variant identification by whole-exome sequencing has—in the majority of cases—proven 

more difficult than expected, we are still far away from an ultimate goal of individualized risk 

prediction and personalized medicine. And in view of the emerging multitude of regulatory 

layers, nobody knows if we will ever get there.  
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4 Summary 

 
Genome-wide association studies (GWAS) have successfully identified common variants 

associated with increased susceptibility to both restless legs syndrome (RLS) and Parkinson`s 

diseases (PD), two common and—for the most part—genetically complex neurologic 

diseases. Moreover, for PD, linkage analyses have also identified rare variants of strong effect 

underlying familial forms, whereas for RLS, linkage analyses have not been equally 

successful—possibly due to the less intense research efforts in the field or a different 

underlying genetic architecture or variable phenotypic expressivity—and no variant of strong 

effect has been discovered to date. In both diseases, however, currently known genetic factors 

only explain a small portion of the heritability and many more factors remain to be 

discovered. Some of this so-called “missing heritability” could lie in a collection of additional 

common variants of relatively small effect such as those identified in GWAS but, in line with 

the “common disease, rare variant” hypothesis, rare variants are also likely to contribute to the 

genetic architecture of both diseases to a yet-unknown extent. In this work, a number of 

different strategies from exome sequencing to candidate gene screenings and GWAS were 

used to identify common, low-frequency and rare genetic factors, which contribute to the 

genetic architecture of RLS and PD. 

For PD, exome sequencing studies in families identified VPS35 as a novel causal genetic 

factor and LRRK1 and PLXNA4 as potential candidate genes in late-onset autosomal dominant 

PD. In PLXNA4, an excess of rare variants was identified in PD cases when compared to 

controls but awaits replication in an independent case/control sample. To explore the role of 

the “neurodegenerative mutational load”, we assessed low frequency and rare variants in 

seven genes known to be involved in familial forms of Alzheimer`s disease (AD) or 

frontotemoral dementia in individuals with Parkinson`s disease. Here, low-frequency and rare 

variants in these genes were more frequently encountered in individuals who had developed 

dementia during the course of PD. Also, in aggregate, variants in APP, which had not been 

previously described, were more common in individuals with PD (either with additional 

dementia or without) than in either controls or individuals with AD.  

In the context of RLS, on-going work in the host laboratory used GWAS to identify common 

variants in TOX3/BC034767 and an intergenic region on chromosome 2 as novel RLS 

susceptibility factors. Sub-threshold association signals from this GWAS were further 

analyzed by integrating expression quantitative trait loci (eQTLs). This yielded additional 

possible susceptibility factors that mandate further evaluation in much larger data sets. To test 
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whether rare and low frequency variants at the RLS-associated GWAS loci also contribute to 

the genetic architecture of the disease, the seven genes located at these loci were screened in a 

large-scale sequencing project. At the MEIS1 locus, a low frequency variant located 

approximately 70 bp downstream of the 3` untranslated region (UTR) was identified as the, to 

date, largest genetic risk factor for RLS. Moreover, an excess of rare variants in the 5` UTR 

and of non-synonymous variants in the coding regions was present in individuals with RLS. 

In vivo complementation in zebrafish embryos suggested that the excess of rare non-

synonymous variants is largely dependent on loss-of-function alleles.  

In conclusion, the work depicted in this thesis supports the conception that rare and low 

frequency variants as well as common variants contribute to the genetic framework of 

complex diseases such as RLS and PD. It also shows that this contribution is different for 

different genes and that it might involve “cross-disorder” genes contributing to the total 

“neurodegenerative burden” across the entire genome such as in PD. As has only rarely been 

reported and as epitomized by the results in MEIS1 in RLS illustrated here, in the most 

extensive form, a complete allelic series of variants of different frequencies and effects sizes, 

located within different regions in and around the gene can contribute to the genetic 

framework of a genetically complex phenotype. 
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