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“Everything should be made as simple
as possible, but not simpler.”

- Albert Einstein





Abstract

Quantification methods for time-resolved metabolic magnetic
resonance imaging using hyperpolarized [1-13C]pyruvate.

Dissolution dynamic nuclear polarization enables real-time non-invasive mea-
surement of metabolic fluxes using magnetic resonance spectroscopy. Quantitative
kinetic information of in vivo metabolism is of great interest for medicine as a key
characteristic of some diseases. In this work, comprehensive methods for the data
acquisition, quantification, interpretation and visualization of dynamic 13Cmetabo-
lite signals in vitro and in vivo were developed using the example of hyperpolarized
[1-13C]pyruvate.





Zusammenfassung

Quantifizierungsmethoden für zeitaufgelöste metabolische
Magnetresonanz-Bildgebung mit hyperpolarisiertem [1-13C]Pyruvat.

Dynamische Kernpolarisation in Flüssigkeiten ermöglicht nicht-invasive Echtzeit-
Messung der metabolischen Flüsse mit Magnetresonanz-Spektroskopie. Quantita-
tive kinetische Information über in-vivo Stoffwechsel ist von großem Interesse für
die Medizin als wesentliches Merkmal von einigen Krankheiten. In dieser Arbeit
wurden umfassende Methoden zur Datenerfassung, Quantifizierung, Interpretation
und Visualisierung der dynamischen Signale von 13C-Metaboliten in vitro und in
vivo entwickelt am Beispiel von hyperpolarisiertem [1-13C]Pyruvat.
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1 Summary

The phenomenon of nuclear magnetic resonance (NMR) was first introduced in
1945 independently by Felix Bloch [1] and Edward Purcell [2], who were awarded
for their achievements with the Nobel Prize in 1952. The fundamental principle of
NMR is based on the interaction of atomic nuclei with an external magnetic field.
Since the first applications in physics research, NMR spectroscopy has quickly
become an important tool in chemistry and biochemistry. In the 70’s Paul C.
Lauterbur and Sir Peter Mansfield (both received Nobel Prize for Medicine 2003)
showed the key ideas for the reconstruction of spatially resolved images using NMR
([3],[4]), which led to wide variety of applications in magnetic resonance imaging
(MRI) and spectroscopy (MRS).

In medicine, today’s MRI and MRS methods are mainly used for diagnostic pur-
poses and allow the representation and differentiation of various tissues, such as the
distinction between healthy and malignant structures. MRI is not limited only to
morphology, but can also perform functional studies. For example, measurements
of blood flow in a vessel, diffusion, perfusion or tissue activity can be quantified.
Indeed, various atomic nuclei with a magnetic moment can be studied using NMR,
the clinical use of MRI is still mainly limited to protons (1H). Due to its high gy-
romagnetic ratio and high concentration in biological tissues, proton is the nucleus
with the highest MR sensitivity and provides sufficient signal for fast imaging. The
NMR signal, and thus, the signal-to-noise ratio (SNR) at a given magnetic field is
dependent on the thermal equilibrium polarization of nuclear spins, which increases
with the strength of the magnetic field. Another possibility for increasing the NMR
signal provides so-called “hyperpolarization”, i.e. an artificial non-equilibrium pop-
ulation of spin energy levels. This condition can be obtained using dynamic nuclear
polarization (DNP) method based on the Overhauser effect [5]. Using hyperpolar-
ization, MRI can be extended to other than 1H atomic nuclei, e.g. 13C. Based
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on the low natural abundance, hyperpolarized MRI with 13C-labeled compounds
has an advantage in suppressing the background signal. Molecules containing car-
bon atoms play also a major role in metabolism and are therefore interesting for
metabolic investigation. The main limitation of the method is the finite lifetime of
the hyperpolarized state, determined by the spin-lattice relaxation time T1.

The time evolution of the hyperpolarized signal differs substantially from the
thermally polarized samples due to the non-recoverable magnetization. Addition-
ally to the T1 relaxation, hyperpolarized signal is depleted by radio frequency (RF)
excitations required for MR imaging. The fast signal decay demands rapid execu-
tion of the experiments and careful choice of the acquisition strategies. The stan-
dard MR pulse sequences are suboptimal or even useless for the hyperpolarized
imaging. Therefore, it is necessary to search for new acquisition strategies and to
design appropriate pulse sequences for hyperpolarized MRI ([6],[7],[8],[9],[10],[11]).

The recent development of dissolution DNP enables NMR signal enhancement of
13C-labeled compounds in liquid state by up to five orders of magnitude compared
to thermal equilibrium ([12],[13]). Such drastically increased sensitivity allows in
vivo measurement of metabolic fluxes in real time [14]. The T1 relaxation time
of hyperpolarized 13C nuclei is a crucial limitation for the estimation of metabolic
parameters and has to be in the order of metabolic conversion time or longer for
meaningful signal acquisition. In case of significantly slower conversion and up-
take, the non-recoverable, hyperpolarized 13C signal disappears before downstream
metabolite signals can be observed. High polarization levels (up to 50 %), long T1

relaxation time (about 30 s in vivo and 60 s in vitro) together with rapid uptake
and intracellular conversion make pyruvate a promising hyperpolarized agent to in-
vestigate metabolism ([15],[16]). Furthermore, the chemical shifts (CS) of pyruvate
and its downstream metabolites are well separated as required for fast CS imaging
(CSI).

In metabolically active tissues hyperpolarized [1-13C]pyruvate rapidly exchanges
with endogenous [1-13C]lactate, [1-13C]alanine, and 13C-bicarbonate. Particularly,
metabolic conversion of pyruvate to lactate is of great interest and is determined by
lactate dehydrogenase (LDH) activity. Increases in LDH activity, changes in glu-
taminolysis, and decreases in pyruvate kinase activity have been associated with
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cancer ([17],[18]). Recent studies have demonstrated feasibility of detecting these
effect using hyperpolarized pyruvate ([19],[20],[21],[22],[23],[24],[25],[26]).

Similar to standard MRI, absolute quantification of 13C metabolite signals is
typically difficult due to uncertainties in experimental factors, such as polarization
level, B1 homogeneity, transmitter and receiver gain settings, T1 relaxation, etc.
The quantification of hyperpolarized 13C spectra is commonly performed by either
simple manual integration over the peaks or more advanced fitting algorithms such
as AMARES or LCModel ([27],[28]). Except for LCModel, the methods require a
manual user interaction, which can make the quantification user dependent. The
LCModel algorithm works fully automatically, but was primarily designed for brain
proton MRS. It needs first to be carefully adapted for hyperpolarized 13C spectra
[29], which typically have broad linewidths and only a few well separated peaks.
Hence, it is useful to develop a user independent fully automatic spectral fitting
method for hyperpolarized 13C MRS, which utilize the specific properties of the
13C spectra.

Different methods to quantify the hyperpolarized 13C pyruvate metabolism are
used in order to distinguish cancerous from healthy tissue or to detect treatment
response and monitor cancer progression. Most commonly two-site kinetic model-
ing is applied on time-resolved spectral data ([20],[30]). The estimated exchange
rate constants represent quantitatively metabolic flux of pyruvate. It has been
shown that, in addition to any enzyme mediated net flux, exchange of the 13C
label has significant contribution to the lactate signal ([20],[31]). The two-site
exchange approach has been demonstrated for in vitro experiments with cell cul-
tures ([20],[32],[33],[34]) and in vivo experiments with signal acquisition from sin-
gle slices or defined regions of interest ([20],[25],[35]). However, kinetic model-
ing of dynamic CS images is challenging due to the low SNR, which is based on
smaller voxel sizes and fast decay of the hyperpolarized signals. For this rea-
son, dynamic CS images are often represented as either time-averaged metabo-
lite maps ([19],[21],[24],[36],[37],[38]) or metabolite ratios of certain time inter-
vals ([20],[26],[29]). Furthermore, differences in pyruvate bolus arrival and manual
choice of the starting point or the time interval cause difficulties on the standard-
ization of imaging results.
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The aim of this work was to develop new comprehensive methods for acquisition
and quantification of dynamic hyperpolarized 13C signals. The theoretically possi-
ble improvements of acquisition strategies are found by modifying and optimizing
known imaging pulse sequences using optimal control theory. For the quantifica-
tion purpose, first a simple time-domain spectral fitting is described based on CS
inversion. The method is specifically adapted to the sparsity of hyperpolarized
13C spectra typically consisting of only a few well-separated singlet peaks and the
absence of a macromolecular baseline. The CS frequencies required for the CS
inversion are obtained from iterative matching pursuit fitting. Secondly, apparent
build-up and effective decay rates of downstream metabolites are estimated using
a two-site exchange kinetic model. In the differential form the equations can be
solved both in time and frequency domains without estimating an arterial input
function. With temporally resolved CSI data, the method allows the extraction of
spatially-resolved apparent build-up rate constant maps.

The main content of the thesis is divided into several chapters. Chapter two
provides first a brief introduction to NMR and MRI, showing how the MR signal is
produced, acquired and modeled. Further, in order to provide a foundation for most
of the experimental part, the mechanism of DNP and basics of tumor metabolism
are described. Finally, state-of-the-art of the hyperpolarized metabolic MRI is
briefly discussed. Chapter three explores the theoretical aspects of the developed
optimization and quantification algorithms together with utilized fast MR spectro-
scopic imaging. The experimental parameters and details are described in chapter
four. Chapter five presents some theoretical results of the pulse sequence optimiza-
tion. It also shows quantitative results of the developed quantification method for
various types of experiments and the achieved significant improvements compared
to other commonly used metrics. Chapter six concludes this work, summarizing
the advantages and disadvantages of the proposed quantification method together
with outlook on future development in this research area.



2 Introduction

Like other diagnostic medical imaging modalities, MRI is based on the interaction
of the human body or rather particular organs or tissues with an outer radiation
field. In addition to the X-rays, the human body is also transparent to radiation in
the short and ultra short wavelength range. Unlike the classical X-ray imaging or
computed tomography (CT), MRI uses the frequency window in the VHF range.
Using pulsed radio frequency fields (RF pulses) in the MHz range, high magnetic
field and superimposed in three dimensions magnetic field gradients, the sharp
resonance absorption by atomic nuclei in the human body can be spatially encoded
and thus the distribution of atomic nuclei can be visualized. The dependence of the
NMR signal on tissue-specific parameters (proton density, relaxation time, chemical
shift, etc.) as well as motion, flow, and diffusion, allows not only to reproduce
morphological details with high resolution, but also to present functional processes
in the human body.

2.1 Nuclear magnetic resonance

MRI relies on the phenomenon of nuclear magnetic resonance of atomic nuclei
in a static external magnetic field. The interaction of the spins with an alternating
magnetic field generates a dynamic change of the magnetization state of the whole
system, which can be detected by proper instrumentation and further the signal-
generating object can be reconstructed. MRI technology is generally based on
the detection of MR signals from atomic nuclei in an external magnetic field after
irradiation of RF pulse and subsequent post-processing.

2.1.1 Magnetic moment

The NMR phenomenon is based on the fundamental characteristic of the atomic
nuclei to possess an angular momentum or so called spin. This spin is a result of
rotation of subatomic particles, such as protons, neutrons, and electrons, about a
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fixed axis, so that some atomic nuclei with unpaired spins (e.g. 1H or 13C) obtain
an overall angular momentum J . Due to the fact that nucleus partially consists of
charged particles, their rotation results in a total magnetic moment

~µ = γ ~J (2.1)

The proportionality constant γ denotes the isotope-specific gyromagnetic ratio. Ac-
cording to quantum mechanics, the spin is quantized and therefore ~µ can take only
discrete values. These values are eigenvalues of the angular momentum operator.
The possible values for the angular momentum along the z-axis are

Jz = ~m (2.2)

with ~ = h/2π = 1,05459 ·10−34 J·s and h Planck constant. The magnetic quantum
number m indicates the degenerate spin energy levels. m can take the following
values

m = I, I − 1, . . . ,− I + 1,−I

with I the nuclear spin quantum number, which can be full or half integer de-
pending on the considered nuclei. The total number of all possible eigenvalues
(stationary states) of the nucleus is then 2I+1. The atomic nuclei of the isotopes
1H and 13C which will be considered in this work, have both magnetic quantum
number I = 1/2. Due to this fact, there are only two possible eigenvalues for them
m = ±1/2. The z-component of their magnetic moment is therefore

µz = γ~m = ±1
2γ~ (2.3)

In the absence of an external magnetic field, these two degenerate energy levels
of atomic nuclei with eigenvalues m = +1/2 and m = −1/2 are energetically
identical. However, bringing a nucleus into an external magnetic field B0 (the
coordinate system is chosen so that B0 lies along the z-axis), the magnetic moment
µ aligns parallel or anti-parallel to the magnetic field. The state with µ oriented
parallel to the field direction is energetically more favorable. The potential energy
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(normalized to Em = 0 at B0 = 0) is

Em = −µzB0 = −γ ~B0m (2.4)

With a positive γ (e.g. 1H and 13C) it raises linearly with the field strength B0 at
m = −1/2 (E↑ = −1

2 γ ~B0) and sinks at m = +1/2 (E↓ = 1
2 γ ~B0) (Fig. 2.1).

Figure 2.1: The splitting of the degenerate nuclear energy levels of the nucleus with
the magnetic quantum number I = 1/2 by the applied magnetic field B0.

In thermal equilibrium at the given temperature of the spin system T , the two
energy levels are not equally populated. The difference between the two levels is
described by the Boltzmann distribution

N↑
N↓

= e
∆E
kBT (2.5)

with N↑ and N↓ the number of spins oriented parallel or anti-parallel to the field,
respectively, ∆E the energy difference ∆E = E↑ − E↓ = γ ~B0, and kB = 1,38 ·
10−23 J/K the Boltzmann constant.
In practice, a spin system is always measured with a macroscopic magnetization

M , which represents the sum of all N magnetic moments

M =
N∑
i

µi (2.6)
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which, along with Eq. (2.3) and (2.5), results in

M = (N↑ −N↓)µz ≈
Nγ ~B0

2kBT
µz = Nγ2 ~2

4kBT
B0 = χ(T )B0 (2.7)

with χ magnetic susceptibility.

2.1.2 Bloch equations

The dynamics of the macroscopic magnetization vector ~M in magnetic field ~B is
described by the Bloch equation

d ~M

dt
= γ( ~M × ~B) (2.8)

In addition to the static magnetic field ~B0, there are three other magnetic fields
in the MR system: magnetic field inhomogeneity ~δB, gradient field ~k(~G~r) for the
slice selection or signal readout (which is ideally linearly dependent on ~r with ~G

the proportionality constant and ~k unit vector) and ~B1 field caused by RF pulse.
Accordingly, Eq. (2.8) can be rewritten as

d ~M

dt
= γ

[
~M ×

{
~B0 + ~δB + ~k(~G~r) + ~B1

}]
(2.9)

Neglecting the magnetic field inhomogeneity ~δB and setting the slice selection
gradient and RF pulse to zero, Eq. (2.9) has a simple analytical solution. In this
case the temporal behavior of the magnetization is a precession of the magnetization
vector ~M about the direction of main magnetic field ~B0 with the Larmor frequency
ωL = γB0.

2.1.3 Relaxation phenomena

Owing to motion, the molecules are influenced magnetically by their environ-
ment, e.g. by the dipole-dipole interaction (dipolar coupling), chemical shift aniso-
tropy or electric quadrupole moment. These effects cause fluctuations of the local
magnetic field, that all the individual magnetic moments in a sample experience.
In a highly simplified model, the longitudinal relaxation can be illustrated as

follows: due to the field fluctuations, the magnetic field, about which the mag-
netic moment precesses, is slightly temporally variable in magnitude and direction.
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The magnetic moments of a sample point in slightly different directions. Hence,
the magnetic moment is moving between different precession cones and changes
its orientation slowly over time. Over a longer time period, the magnetic moment
may take any possible orientation in space. The distribution of the magnetic mo-
ments is however not isotropic. According to the Boltzmann distribution the move-
ment towards lower energy alignment is more probable than the movement towards
alignment with higher energy. Therefore the resulting macroscopic magnetization
dissolves over time and undergoes a longitudinal relaxation towards the thermal
equilibrium. The longitudinal relaxation is also called spin-lattice relaxation, since
the energy is dissipated to the environment by the transition between the Zeeman
eigenstates. The velocity of this process is tissue specific and is described by a
characteristic time constant, the longitudinal relaxation time T1. The relaxation
process above is represented by the following phenomenological differential equation

dMz

dt
= M0 −Mz

T1
(2.10)

with Mz longitudinal and M0 thermal equilibrium magnetization.

Figure 2.2: Time course of the longitudinal magnetization after complete inversion
of the magnetization by 180° pulse. T1 is approximately 1000 ms, a typical value e.g.
for brain tissue.

The second relaxation process causes a faster than expected by the spin-lattice
relaxation decrease of the transverse component of the magnetization. This is due
to small inhomogeneities of the magnetic field caused by the interaction between
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spins (spin-spin interaction). Because of these field fluctuations, the Larmor fre-
quencies of the spins differ slightly, with the result that they lose their phase relation
to each other, the coherence, which is the basis of the transverse magnetization.
Due to this dephasing process, which is called spin-spin relaxation, the transverse
magnetization in the excited volume decreases. The characteristic time constant,
the transverse relaxation time T2, determines the velocity of this process. Hence,
the time dynamics of the transverse magnetization Mxy is described by

dMxy

dt
= −Mxy

T2
(2.11)

Further faster compared to T2 dephasing effects, that are triggered by temporally
constant magnetic field inhomogeneities, can be characterized by the T ′2 decay time.
Here the imperfections of the main magnetic fieldB0 as well as different diamagnetic
or paramagnetic properties of the local environment (susceptibility) lead to field
fluctuations. The experimentally observed decay of the transverse magnetization
can thus be understood as the sum of the two effects and described by the overall
T ∗2 relaxation time whereby

dMxy

dt
= −Mxy

T ∗2
, with 1

T ∗2
= 1
T2

+ 1
T ′2

(2.12)

In contrast to the spin-spin relaxation, the fluctuations of the main magnetic field
caused by such inhomogeneities are constant in time. Through appropriate manip-
ulation, the dephasing caused by this effect is reversible and forms the basis of the
spin echo.
Taking into account the relaxation processes described above, the Bloch equation

(2.8) transforms to

d ~M

dt
= γ( ~M × ~B)−


Mx
T2
My

T2
Mz−M0

T1

 (2.13)

In the coordinate system rotating at the Larmor frequency, the cross product is
zero and once excited on-resonant magnetization vector undergoes only relaxation.
The analytic solution of the Bloch equation is given then by

Mxy(t) = Mxy(0)e−
t
T2 (2.14)
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Figure 2.3: Time course of the transverse magnetization with a T2 relaxation time of
300 ms. The fanning out of the spins causes the decay of the induction signal, which
is also called free induction decay (FID).

and

Mz(t) = M0(1− e−
t
T1 ) +Mz(0)e−

t
T1 (2.15)

The transverse magnetization Mxy decays exponentially, the longitudinal magneti-
zation Mz also moves exponentially to the equilibrium value (Fig. 2.2 and 2.3).

2.1.4 RF pulse

For the detection of MR signal, first a high frequency alternating magnetic field
(RF pulse) has to be irradiated. It deflects the magnetization from the equilibrium.
The duration of the RF pulse is considered to be very short compared with T1

and T2, in order to neglect the relaxation terms in Eq. (2.13). A typical pulse in
MRI takes about 200µs to 5ms and is implemented by a high frequency alternating
magnetic field ~B1 perpendicular to ~B0 (that means Bx(t) = B1 cos(ωt) and By(t) =
B1 sin(ωt)). According to Eq. (2.8) this results in

Ṁx

Ṁy

Ṁz

 = γ


0 B0 B1 sin(ωt)
−B0 0 B1 cos(ωt)

−B1 sin(ωt) −B1 cos(ωt) 0



Mx

My

Mz

 (2.16)
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In the resonant case, i.e. ω = ωL, along with the initial condition ~M(0) =
(0, 0,M0), the following analytical solution can be found

Mx

My

Mz

 = M0


− sin(α) cos(ωLt)
sin(α) sin(ωLt)

cos(α)

 (2.17)

This corresponds to a precession of the magnetization vector ~M about the direc-
tion of the main magnetic field with ωL = γB0. Additionally, this movement is
superimposed with a helical rotation towards the xy plane (Fig. 2.4 left).

Figure 2.4: Temporal evolution of the macroscopic magnetization ~M and ~M ′ in
static (left) and rotating (right) reference system upon irradiation of an alternating
magnetic field with ω = ωL.

The dependence of the flip angle α on the rotating at the Larmor frequency ωL
magnetic field B1 is given by

α =
τ∫

0

γ
∣∣∣ ~B1(t)

∣∣∣ dt (2.18)

with τ the duration of the applied RF pulse. One speaks, for instance, about π/2
pulse, if the entire magnetization is flipped into the transverse plane perpendicular
to the static magnetic field. The measured MR signal is generated by the precessing
transverse magnetization that induces a voltage in the high frequency receiver coil
(Fig. 2.5).
Considering Eq. (2.8) in a rotating with ωL reference system, the high frequency

magnetic field ~B1(t) turns into the time independent field B′1 = (B1, 0, 0). In this
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Figure 2.5: MR signal detection after RF pulse.

system, the following solution of Eq. (2.17) is obtained
M ′x

M ′y

M ′z

 = M0


0

sin(α)
cos(α)

 (2.19)

Thus, the transverse magnetization is produced by simple rotation of ~M ′ about the
direction of the alternating magnetic field ~B′1 (Fig. 2.4 right).

2.1.5 Chemical shift

The environment of the spins influences not only the relaxation times, but also
the resonance frequency ω0. The electron shell of the atoms in the molecule shields
diamagnetically the external magnetic field B0, hence the nuclear spin sees only an
effective magnetic field

Beff = B0(1− σ) (2.20)

with σ the “shielding” constant. Spins in differing chemical environments or struc-
tures have therefore distinct resonance frequencies

ωi = γB0(1− σi) (2.21)

The difference between the resonance frequencies is dependent on the type of
bond and the binding partners of the considered spins. The chemical shifts are
typically expressed as parts per million (ppm) with reference to a stable compound,
in order not to be dependent on the strength of the magnetic field. The reference
compound most often used is tetramethylsilane (TMS), all twelve hydrogen atoms
of which are equivalent and result therefore in a strong singlet signal. Fig. 2.6
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shows, as example, the 1H MR spectrum of major metabolites in a normal brain.

Figure 2.6: 1H spectrum of major metabolites in a normal brain. NAA: N-
acetylaspartate, Glx: Glutamine and glutamate, Cr: Creatine, Cho: Choline, mI:
Myo-Inositol. The figure is reprinted with permission of the Department of Radiology
at the University of Missouri-Kansas City, MO.

2.2 Magnetic resonance imaging

In 1973 Paul Lauterbur [3] and Peter Mansfield [4] independently published pa-
pers outlining the rudiments of MR imaging using spatially dependent magnetic
fields. This allowed for determining the origin of the radio waves emitted from the
nuclei of the object of study and thereby for the desired localization of the various
signal contributions. By applying an additional constant magnetic field with gra-
dient ~G to the static magnetic field, the Larmor frequency becomes a function of
location

ω0(r) = γ(B0 + ~G~r) = γ(B0 +Gxx+Gyy +Gzz) (2.22)

Using gradients in all three spatial directions allows extraction of the entire spatial
information of the sample. The principle of the encoding is explained below.
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2.2.1 Slice selection

By applying a gradient ~G during the frequency selective RF pulse in, for instance,
z direction, only the spins within particular slice will be excited (so-called “slice
selective excitation”). The thickness of the slice (Fig. 2.7) is given by

∆z = ∆ω

γGz
(2.23)

with ∆ω the frequency bandwidth of the pulse and Gz the slice selection gradient.
In this case the term “selective excitation” is used. The frequency bandwidth
depends on the shape of the RF pulse. Within the excited slice the spins precess
with differing Larmor frequencies due to the finite bandwidth of the pulse. By
adjusting the frequency band of the RF pulse, the selected slice can be moved
along the z direction. Depending on the direction of the slice selection gradient,
the slice can take any desired orientation in the magnetic field.

Figure 2.7: Slice selective excitation by an RF pulse. The resonance condition is
satisfied only for the spins with the Larmor frequency in the ∆ω range (the frequency
bandwidth of the RF excitation pulse) along the z direction.
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2.2.2 Spatial encoding and k-space

The basic idea of spatial encoding in the excited slice is based on the decompo-
sition of the spin density distribution in individual spatially dependent frequency
components. Also for this decomposition linear magnetic field gradients are used.
The desired slice is described in the spatial domain by the spin density ρ(x, y). The
signal intensity is obtained by integrating the sum of the transverse magnetization
over the entire slice and is given by

S(kx,ky) = C

∫ ∫
ρ(x, y)ei(kxx+kyy)dxdy (2.24)

Here, the so-called k-space is introduced with the coordinates

ki = γ

t∫
0

Gi(τ)dτ (2.25)

Figure 2.8: The principle of the 2D spatial encoding: differing precession frequencies
are assigned to the spins along the reading direction (x), while differing signal phases
are generated line by line in the phase encoding direction (y). The local signal com-
ponents are thus assigned to their spatial localization. The acquired raw data matrix
(k-space) is transformed by the 2D Fourier transform into the spatial domain.

The signal intensity in Eq. (2.24) represents the Fourier transform (FT) of the
spin density distribution. Hence, using the inverse FT results in

ρ(x, y) = C

∫ ∫
S(kx,ky)e−i(kxx+kyy)dkxdky (2.26)
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According to that, the spin density of the object in the position-space (x, y) and
the measured MR signal in the k-space (kx, ky) are connected by a FT. The spatial
encoding of the MR signals corresponds by now to the filling of the components
(kx, ky) of the k-space. For this purpose, the induced in the receiver coil continuous
MR signal is sampled in discrete steps. By doing this, a two-dimensional data set is
incrementally recorded by a successive acquisition of the MR signal, which obtained
the spatial information in form of phase distribution by encoding gradients.
For basic MRI, typically Cartesian readout trajectories are used, i.e. the k-space

is filled line by line. In order to reduce a scan time, so-called non-Cartesian sampling
is utilized for specific applications. Typical trajectories in this case are radial and
spiral, but there exists a multitude of other possibilities. In the case of spiral k-space
filling, phase encoding and readout gradients have a sinusoidal growing envelope.
In all cases, the continuous readout signal imposes k-space regularisation before
the image can be reconstructed. The Fourier plane matrix values are calculated by
mathematical interpolations that are more or less complex depending on the filling
trajectory used. The spatial distribution of tissue-specific spin density can then
be determined by simple inverse FT of the total signal S(kx,ky) and provides the
desired image information about the examined object. The two-dimensional FT is
a standard method for image reconstruction in MRI. A schematic representation
of the principle of the two-dimensional spatial encoding by linear magnetic field
gradients is shown in Fig. 2.8.

2.2.3 Signal-to-noise ratio

An important parameter for the evaluation of image quality in MRI is the signal-
to-noise ratio (SNR). The noise has two primary independent sources. First source
is the measuring object itself and the noise is caused by the Brownian molecular
motion of charged ions in biological tissues. The other noise component is caused by
the thermal motion of electrons in the receiver coil and the downstream electronic
circuit. The relationship between the SNR and the image and system parameters
is given by

SNR ∝
S
√
V NavTaq

4kBTR
(2.27)

with S signal amplitude, V the voxel volume, Nav the number of averages, Taq the
acquisition time, kB the Boltzmann constant, T the effective temperature of the
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measured object and receiver circuit and R the specific resistance, which includes
the resistance of the receiver circuit and of the measured object. The acquisition
time Taq includes receiver bandwidth BW ∝ 1/Taq, which is represented by the
sampling rate. Higher sampling rate at the constant number of acquisition points
causes shorter acquisition time Taq and therefore lower SNR. On the other hand,
low receiver bandwidth means high SNR, but longer measurement time.

2.2.4 Contrast-to-noise ratio and contrast resolution

The contrast-to-noise ratio (CNR) is an object size-independent measure of the
signal level in the presence of noise. In MRI, CNR is the relationship of the absolute
difference in intensities between two regions to the level of fluctuations in intensity
due to the noise. Improving CNR increases perception of the distinct differences
between two clinical areas of interest. CNR is a summary of both SNR and contrast.
The strict definition is the difference in SNR between two relevant tissue types, A
and B:

CNR = SA − SB
σ

= SNRA − SNRB (2.28)

The CNR is a good metrics for describing the signal amplitude relative to the
ambient noise in an image, and it is particularly useful for simple objects. Because
the CNR is computed using the difference in mean values between the signal region
and the background, this metrics is most applicable when test objects that generate
a homogeneous signal level are used. That is the case, where the mean gray scale
in the signal ROI is representative of the entire object [43]. The CNR is useful
for optimizing image acquisition parameters of generic objects of variable sizes and
shapes.
Contrast resolution (CR) or contrast-detail is an approach to describing the

image quality in terms of both the image contrast and resolution. CR is the ability
to distinguish between differences in intensity in an image. The measure is used in
medical imaging to quantify the quality of acquired images. It is a difficult quantity
to define, because it depends on the human observer as much as the quality of the
actual image. For example, the size of a feature affects how easily it is detected by
the observer. One definition of image contrast is:

CR = SA − SB
SA + SB

(2.29)



2.2 Magnetic resonance imaging 19

2.2.5 Pulse sequences

In practice, the filling of the k-space is performed by so-called pulse sequences.
Pulse sequence denotes a particular manner of MR signal acquisition and is prede-
fined by designated amplitude, duration and timing of magnetic field gradients and
RF pulses. Various pulse sequences differ in measurement time, the resulting con-
trast behavior and SNR of MR image, as well as in specific imaging artifacts. The
choice of the pulse sequence is therefore very important for appropriate imaging
and is highly dependent on desired application.
One of the most common MR pulse sequences is spin-echo pulse sequence (Fig.

2.9). The basic principle is based on the generation of Hahn’s spin echo by refocus-
ing the T ∗2 signal decay. For this purpose, some time TE/2 after the first excitation
pulse with a flip angle α, the second refocusing pulse αR is applied. The excitation
pulse generates the transverse magnetization, which dephases afterwards with T ∗2 .
The dephased magnetization is partially (only the inhomogeneous part) rephased
by the following in TE/2 refocusing pulse, with the result that a spin echo signal
is observed at time point TE. Any RF pulse pairs (α,αR) can be used for spin
echo creation, whereby the signal intensity at time point TE strongly depends on
the choice of these flip angles. Typically the spin echo pulse sequence consists of a
slice-selective 90° pulse followed by a slice-selective 180° refocusing pulse.

Figure 2.9: Spin echo pulse sequence

The gradient echo is another common signal rephasing mechanism, which pro-
vides the basis of many imaging techniques for fast data acquisition. In contrast to
the spin echo, here the echo signal is obtained not due to the refocusing pulse αR,
but by a suitable time delayed switching of inverse magnetic field gradient (Fig.
2.10). In comparison to the spin-echo sequence, significantly shorter echo times
can be achieved due to the lack of refocusing pulse. However, dephasing of the
transverse magnetization, caused by the static magnetic field inhomogeneities, will
not be refocused, so that in addition to T1 the signal intensity is dependent on T ∗2
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and not on T2. The influence of the field inhomogeneities becomes greater with
increasing echo time and thus the amplitude of the echo decreases.

Figure 2.10: Gradient echo pulse sequence

Using small flip angle, the gradient echo sequence is also known as FLASH (fast
low angle shot) sequence. The smaller flip angle allows not to consume the complete
longitudinal magnetization by one excitation. Thus, there is still available residual
magnetization after the excitation RF pulse, which can be used immediately. This
allows shorter repetition times TR between the excitation pulses.
Other pulse sequences, which have been widely used for fast imaging in MRI,

are CPMG (Carr-Purcell-Meiboom-Gill) and bSSFP (balanced steady state free
precession) pulse sequences. For the CPMG pulse sequence [44], after a 90° exci-
tation pulse a train of repeating 180° refocusing pulses is used (Fig. 2.11). The
refocusing pulses are shifted in phase by 90° relative to the excitation pulse. It can
be shown that in this way the error of the non-ideal flip angle can be averaged.
Each refocusing pulse produces an echo. Its amplitude decays with T2 that limits
the number of refocusing pulses used after the excitation pulse.

Figure 2.11: CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence

The bSSFP pulse sequence ([45], [46]), also known as trueFISP (true fast imaging
with steady state precession) or FIESTA (fast imaging employing steady state) is
shown in Fig. 2.12. It uses alternating excitation pulses ±α and generates an echo
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signal at time TR. However, it takes some sequence cycles at the beginning to reach
the steady state, which is usually performed by simple−α/2 pulse. Starting directly
with the bSSFP pulse sequence results in strong signal oscillations. An important
property of bSSFP sequence, is the complete compensation of all gradient moments
(
∫
Gdt = 0). Another feature of the bSSFP sequence is a strong sensitivity to off-

resonance [47].

Figure 2.12: bSSFP (balanced steady state free precession) pulse sequence

Another relatively new pulse sequence, designed to be insensitive to the off-
resonance effects and inaccuracies of the refocusing pulses, is so-called non-CPMG
pulse sequence ([48],[49],[50]). Its main difference to the CPMG sequence is a
quadratic phase modulation (ϕn = ∆n2 + bn + c) of the refocusing pulses, which
allows the use of low excitation flip angles and non-ideal refocusing pulses. Using
quadratic phase modulation, a particular off-resonance independent eigenstate of
the magnetization can be obtained. Further advantage of this pulse sequence is a
longer exponential decay of the total magnetization (between T1 and T2 relaxation
times) compared to other pulse sequences. These properties make the non-CPMG
pulse sequence very suitable for spectroscopic imaging of hyperpolarized nuclei.
However, it is not trivial to obtain the mentioned before eigenstate in a short time,
that raises the necessity and importance of the preparation pulses for non-CPMG
sequence. Using the optimal control theory, which will be described in chapter 3.1.,
the preparation pulses can be found numerically.

Figure 2.13: Non-CPMG pulse sequence.
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2.2.6 MR scanner

Figure 2.14: A cross-sectional illustration of a clinical MRI scanner showing the
superconductive main magnet coils, the gradient coils, the RF coil, and a patient
laying on a patient table. The figure is reprinted with permission of the National High
Magnetic Field Laboratory, Tallahassee, FL.

An illustration of a clinical MRI scanner is shown in Fig. 2.14. The device con-
sists of coaxial elements where the outermost one is the superconductive magnet
generating the strong magnetic field for spin polarization. For clinical use, polar-
izing field strengths typically correspond to magnetic flux densities between 0.5 T
and 3.0 T. For research use, the current highest field strength is 9.4 T for human
scanner and 16.4 T for small animal system. A set of three gradient coils is placed
inside the superconductive coil to generate gradient fields for image encoding. The
most common way to generate xy-gradients is to utilize a set of interleaved saddle
coils, where the z-gradient is generated with a Helmholtz coil.
The innermost part of the scanner is the whole body RF coil for excitation and

detection of magnetization. When studying a defined anatomical region (e.g. knee,
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neck) or for animal experiments, local transmit-receive and receive-only coils are
typically used for higher signal to noise ratio.

2.3 Hyperpolarization

Assuming that the sample noise dominates over the coil noise [51], the SNR
depends linearly on the product of the gyromagnetic constant of the nucleus γ, the
polarization level P and the number of nuclei N

SNR ∝ γPN (2.30)

In chapter 2.1 it was shown that the polarization level at thermal equilibrium is
determined by the Boltzmann distribution and can be expressed as

P = γ ~B0
2kBT

(2.31)

According to Eq. (2.30) and (2.31), the SNR obtained for nuclei at thermal equilib-
rium increases linearly with B0 and quadratically with the gyromagnetic constant.
At magnetic field strength of 1.5 T and room temperature, the polarization of

proton nuclei is ≈ 5 · 10−5 and for 13C nuclei ≈ 1 · 10−5, based on the almost
four times greater gyromagnetic ratio of 1H nucleus (γ1H = 2π · 42,576 MHz/T
γ13C = 2π · 10,705 MHz/T). The high concentration of protons in the human body
and almost 100 % natural abundance of 1H isotope are also a big advantage for
imaging in comparison to 13C molecules (natural abundance of 13C is ≈ 1,1%).
Consequently, the SNR of the 13C nuclei is significantly lower than the one of
protons in the human body.
If the polarization level is not determined by the thermal equilibrium, Eq. (2.30)

is still valid and a linear dependence of the SNR on γ is expected instead, while the
SNR dependence on the field strength, as shown in Eq. (2.31), is lost. One way to
increase polarization and therefore the SNR offers the hyperpolarization, i.e. the
polarization that is not caused by thermal Boltzmann distribution but by another
external polarization method (Fig. 2.15). Following methods have been developed
to generate the hyperpolarized state:

• brute force: thermal polarization at extremely low temperatures in very
strong magnetic fields
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Figure 2.15: Schematic comparison of the thermal equilibrium polarization and
hyperpolarized state

• spin exchange optical pumping: hyperpolarization of noble gases, e.g.
3He and 129Xe, based on the transmission of the electron spin of the alkali
metals by stimulating their unpaired electrons with circularly polarized light
in the presence of a quenching gas

• para-hydrogen-induced hyperpolarization: chemical method, which makes
use of the correlation between nuclear spins in parahydrogen to create hyper-
polarized molecules

• dynamic nuclear polarization: polarization based on transferring spin
polarization from electrons to nuclei using suitable radicals

The “dynamic nuclear polarization” (DNP) method is best suited for the hyperpo-
larization of 13C molecules.

2.3.1 Dynamic nuclear polarization

The DNP method [52] is based on the transfer of polarization from the electron
spins of paramagnetic centers embedded in a glassy frozen solution to neighboring
nuclear spins through dipolar interactions. It utilizes the property of electron spin,
to possess at the same magnetic field and temperature a much higher polarization
level than atomic nuclei due to the much higher magnetic moment of the electron
spin (Fig. 2.16). This difference in polarization is given by the ratio of the electron
to nuclei gyromagnetic ratio. For the purpose of DNP, the material containing the
nuclei to be hyperpolarized is doped with a free radical. When exposed to a high
magnetic field (≈ 3T) and low temperature (≈ 1K), the unpaired electrons of the
free radical are highly polarized (> 90 %), whereas the 13C nuclei are polarized
to only < 0.1%. Due to weak interactions between electrons and nuclei (based
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on Overhauser effect [5], solid-effect, thermal-mixing or the cross-effect [53],[54]),
polarization is transferred from the unpaired electrons to the nuclei by the use of
sufficiently long microwave irradiation near the electron paramagnetic resonance
frequency.

Figure 2.16: Temperature dependence of the electron and nuclear spin reservoir
polarization of 1H and 13C at a given external field strength of 3.35 T

By rapid melting and dissolving, the solid can be transformed into an injectable
liquid, with small to negligible polarization losses [12]. Using this method, the
polarization of 13C nuclei can be increased up to ≈ 3,7 · 10−1, that is more than
10,000 times higher than the thermal equilibrium polarization. However, due to the
deviation from the equilibrium state, the lifetime of the formed hyperpolarization
is limited, the polarized spin system relaxes with T1 relaxation time towards the
thermal equilibrium. Therefore, for further experiments substances with long T1

are preferred.

2.4 Tumor metabolism

Tumor metabolism can be viewed as the sum of a large but finite number of
interdependent biochemical pathways, each of which provides a specific function for
the cell [55]. Many of these pathways, particularly glycolysis and the tricarboxylic
acid (TCA) cycle are subject to alternative regulation in cancer. A prominent
feature of tumor metabolism is that it differs from that of the surrounding tissue.
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Figure 2.17: Schematic representation of glycolysis. The figure is reprinted with
permission of the Department of Biology at the Indiana University, IN.

In the 1920s, Otto Warburg demonstrated that tumors have high rates of glu-
cose consumption and lactate production compared with the normal tissue [56].
This observation created the research field of tumor metabolism, which has been
dominated largely by the study of glycolysis (Fig. 2.17) and has been exploited in
the clinics by metabolic imaging techniques, namely positron emission tomography
(PET) with [18F]-fluoro-2-deoxyglucose (FDG). Because of high levels of glucose
transporters and hexokinase activity, cancer cells demonstrate high FDG uptake
and phosphorylation compared with the normal tissue. Enhanced fluxes in other
pathways including lipid synthesis, amino acid transport, and nucleotide trans-
port have also been observed in aggressive tumors and are being investigated for
diagnostic purposes or as therapeutic targets. Most tumors have also an acidic
extracellular pH compared with normal tissue.

2.4.1 Pyruvate metabolism

The metabolism of pyruvate (Fig. 2.17) belongs to the fingerprint of a cell’s
metabolism. Being the end product of glycolysis, its production depends highly
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on the rate of glycolysis. Mainly pyruvate is reduced by the coenzyme nicoti-
namide adenine dinucleotide (NADH) produced in the pathway to generate lactate,
in the reaction catalyzed by the enzyme LDH. Alternatively, pyruvate undergoes
transamination with glutamate to form alanine, in the reaction catalyzed by alanine
transaminase (ALT). The reactions catalyzed by both LDH and ALT are readily
reversible in the cell. A third reaction involves the irreversible decarboxylation of
pyruvate by the pyruvate dehydrogenase (PDH) complex to carbon dioxide and
acetyl CoA, which can enter the TCA cycle. The carbon dioxide released is sub-
sequently interconverted with bicarbonate in the reaction catalyzed by carbonic
anhydrase (CA). The structural formulas of the main metabolites considered in
this work are shown in Fig. 2.18.

Figure 2.18: Structural formula of pyruvate, lactate, alanine and bicarbonate. The
arrows show the location of the 13C isotope for [1-13C]pyruvate, [1-13C]lactate, [1-
13C]alanine and 13C-bicarbonate.

Simplified, the main metabolic reactions of pyruvate can be represented as

1. pyruvate + NADH + H+ LDH↔ lactate + NAD+

2. pyruvate + glutamate ALT↔ alanine + α-ketoglutarate

3. pyruvate + CoA PDH→ CO2 + acetyl-CoA , and the following reaction
CO2 + H2O CA↔ bicarbonate + H+

2.5 Hyperpolarized metabolic MRI

The metabolic imaging enables not only to determine the position of the atomic
nucleus, but also provides information about the molecule, to which the detected
nucleus belongs. This allows to track the metabolic pathway of a substance or to
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observe metabolic processes in specific organs. Since the metabolism in the diseased
organs typically differs from the metabolism in healthy organs, metabolic imaging
is of great interest for medicine. A good example of the metabolic imaging is PET.
After injection of [18F]-FDG, it is possible to detect the regions of high glucose
uptake and metabolism. On the other hand, it is known that the metabolism
and uptake of glucose in some tumor types is more intense, what therefore allows
efficient tumor localization.
Successful molecular imaging is primarily based on two key factors: high SNR,

which makes possible to detect molecules at extremely low concentrations, and a
good spatial resolution. No metabolic imaging technique can currently fulfill both
criteria. Indeed, PET can achieve high SNR and even the molar concentrations
lower than 10−11 M can be detected, the spatial resolution is poor (≈ 5 − 10
mm). MRI provides superior spatial resolution, but is not able to detect molar
concentrations below 10−11 M. Hyperpolarized MRI method promises not only to
fulfill the two criteria mentioned before, but also to make the dynamic metabolic
imaging possible. For this purpose, an appropriate hyperpolarized contrast agent
is required.

2.5.1 13C-labeled compounds for hyperpolarized MRI

The pharmacokinetic and pharmacological behavior of the hyperpolarized con-
trast agent depends only on the selected molecule, as the hyperpolarization does not
change the chemical or physical properties of the substance. 13C-labeled molecules
are mostly suitable for reasonable metabolic MRI due to the following properties:

• 13C is a stable isotope

• 13C is magnetically active (γ13C = 1/4 · γ1H)

• some 13C-labeled molecules have long T1 relaxation time ≈ 20− 60 s

• 13C-labeled molecules have relatively high polarization level (up to 50 %)

• 13C has negligible in vivo signal (≈ 1,1% natural abundance)

• carbon-based molecules play a major role in metabolism

A combination of these properties together with

• non-toxicity
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• fast uptake and metabolic conversion

• suitable for imaging CS of downstream metabolites

• correlation with disease progression and response to therapy

makes some hyperpolarized agent, described below, feasible for clinical application.

2.5.2 [1-13C]pyruvate

Figure 2.19: Diagram of metabolic pathways investigated with DNP hyperpolarized
[1-13C]-pyruvate. Pyruvate/lactate conversion is catalyzed by lactate dehydrogenase
(LDH), and pyruvate/alanine conversion is catalyzed by alanine transaminase (ALT).
Pyruvate is irreversibly converted to acetyl-CoA and CO2 by pyruvate dehydrogenase
(PDH), and CO2 is in a pH-dependent equilibrium with bicarbonate [39].

A particularly interesting and promising substance for hyperpolarization and
further investigation is [1-13C]-pyruvate. It has been the most widely studied sub-
strate to date, reflecting its central role in cellular metabolism (see chapter 2.4.1),
the ease with which it can be hyperpolarized, its relatively long T1 relaxation time,
and its very rapid transport across the cell membrane and subsequent metabolism.
In metabolically active tissues, following injection, hyperpolarized [1-13C]pyruvate
is absorbed by tissues and metabolized to [1-13C]lactate, [1-13C]alanine, and 13C-
bicarbonate (Fig. 2.19).
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Figure 2.20: In vivo 13C NMR spectrum (in Hz) after injection of [1-13C]pyruvate.

Due to the differing CSs of downstream metabolites (Fig. 2.20), it is possible
to distinguish the metabolite signals spectrally. Hyperpolarized pyruvate can be
used for tumor localization, identification of tumor grade or assessment of tumor
response to therapy.

Following alternative substrates have been successfully hyperpolarized and used
in preclinical models (together with their clinical potential):

• 13C bicarbonate: rapid interconversion with 13CO2, catalyzed by carbonic
anhydrase, can be used for in vivo pH measurement

• [1,4-13C]fumarate: conversion via enzyme fumarase to [1,4-13C]malate as
a marker of cellular necrosis

• [1-13C]lactate: similar to pyruvate metabolism, measurement of backward
conversion of lactate to pyruvate, i.e. LDH activity measurement

• [1-13C]urea: metabolically inactive agent for perfusion measurement
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• [5-13C]glutamine: conversion to [5-13C]glutamate, catalyzed by intramito-
chondrial glutaminase, as a marker of tumor growth and cell proliferation

• [1-13C]acetate: conversion to acetyl CoA and acetyl carnitine enables prob-
ing fatty acid metabolism

• [2-13C]fructose: its uptake enables probing glucose transporter GLUT5 dis-
tribution and hexokinase activity

• [1-13C]-α-ketoisocaproate: metabolism to leucine by the enzyme branched
chain amino acid transferase (BCAT), which is found to be upregulated in
some tumors

One of the possible strengths of DNP is the ability of co-polarization of more
than one substrate for probing several metabolic processes simultaneously [57].
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In order to acquire time-resolved metabolic MR images of sufficiently high qual-
ity, an appropriate pulse sequence for hyperpolarized MRI needs to be designed,
that provides a predictable high MR signal during the acquisition time. The first
part of this chapter is focused on the development and optimization of such pulse
sequences for hyperpolarized 13C MRI. The developed spectral and kinetic fitting
methods for hyperpolarized 13C signal quantification are explained in the second
part of this chapter. Quantitative kinetic information about pyruvate metabolism
in tissue is of great interest as a key characteristic of some diseases and requires
direct measurement of the metabolic conversion rates. Kinetic determination of
metabolic conversion was performed by simple and robust spectral fitting of time-
resolved FID signal of 13C-labeled metabolites and subsequent kinetic modeling
using a two compartment model between pyruvate and each downstream metabo-
lite independently. Combining the developed quantification method with IDEAL
spiral chemical shift imaging (CSI) enables spatially-resolved metabolic conversion
rate mapping. Optimization, offline reconstruction and quantification algorithms
were implemented in MATLAB (The MathWorks, Natick, MA, USA) in a semi-
automatic fashion.

3.1 Optimal control design of pulse sequences

The optimal control theory (OCT) is a modern numerical approach to the dy-
namic optimization problem for nonlinear systems, based on the minimization of
the determined cost function by searching optimal values of the selected control
variables or so-called optimal path [63]. Applying OCT to the Bloch equations
(which are represented by a system of bilinear equations) allows to control the
dynamics of the magnetization by RF pulses and thus to design a pulse sequence,
which satisfies particular predefined conditions ([64],[65],[66],[67]). In the following,
the application of OCT to a system of the magnetization vectors within particular
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CS offset and B1 field inhomogeneity is presented, in order to obtain long stable
echo train with a high total signal for data acquisition.

3.1.1 Optimal control theory

OCT can be applied to dynamic systems under particular conditions that can be
summarized in following three criteria:

• dynamic equation: The system should be described by the dynamic equa-
tion, which is generally represented by a time-dependent differential equation

~̇x = ~f(~x(t), . . .) (3.1)

with vec ~x(t) denoting the time-dependent system states. By controlling the
system in a time interval t0 to t1, the system moves from the initial state
~x(t0) to the target state ~x(t1).

• control variables: There should be a possibility to influence and thus to
control the path ~x(t) from the initial to the target state of the system. This
can be realized through the introduction of the control variables ~u(t) to the
system. Thus, Eq. (3.1) transforms to

~̇x = ~f(~x(t),~u(t),t) (3.2)

• control path: Multiple possible control paths must exist, which can be
influenced by the control variables.

The objective of OCT is finding an optimal path. It has to be previously defined,
which requirements the optimal path should meet and how to compare different
paths with each other. Therefore, a so-called cost function is introduced, which
obtains the minimal value in case of an optimal path. The cost function can be
defined by two independent components:

• running cost: The requirements that the path has to meet during the system
movement (e.g. minimizing the distance between two points). The running
cost can be described by

Jrun = +
t1∫
t0

L(~x(t),~u(t),t)dt (3.3)
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with function L(~x(t),~u(t),t) dependent on the goal of optimization.

• final cost: The requirements that the system has to meet at the end of the
movement (e.g. reaching particular final state). The final cost depends only
on the final time t1 and can be represented as

Jfin = Φ(~x(t1)) (3.4)

The sum of these two functions forms a total cost function. The optimal control
path should then satisfy the following condition

min
u(t)

Jtotal = min
u(t)

Φ(~x(t1)) +
t1∫
t0

L(~x(t),~u(t),t)dt

 (3.5)

Introducing the so-called Hamiltonian function,

H(~x(t),~u(t),t) = L(~x(t),~u(t),t) + ~λ(t) · ~f(~x(t),~u(t),t) (3.6)

with ~λ(t) so-called Lagrange multiplier function, allows to derive the variation of
the total cost function

δJ = ∂J

∂x
δx+ ∂J

∂u
δu =

(
∂Φ(~x(t1))

∂~x
− ~λ(t1)

)
δx

+
t1∫
t0

{(
∂H(~x(t),~u(t),t)

∂~x
+ ~̇λ(t)

)
δx+ ∂H(~x(t),~u(t),t)

∂~u
δu

}
dt (3.7)

The necessary condition for optimality is that the variation δJ of the modified
cost function with respect to all feasible variations δx and δu should vanish

δJ = 0 (3.8)

Since δx and δu are independent, this condition can be achieved only in the case
when all terms of the Eq. (3.7) are zero. Thus, the following equations are derived

~λ(t1) = ∂Φ(~x(t1))
∂~x

(3.9)

~̇λ(t) = −∂H(~x(t),~u(t),t)
∂~x

= −
(
∂L(~x(t),~u(t),t)

∂~x
+ ~λ(t) · ∂f(~x(t),~u(t),t)

∂~x

)
(3.10)
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which describe the dynamics of Lagrange multiplier, and the condition

∂H(~x(t),~u(t),t)
∂~u

= ∂L(~x(t),~u(t),t)
∂~u

+ ~λ(t) · ∂f(~x(t),~u(t),t)
∂~u

= 0 (3.11)

which should be fulfilled for the optimal path.
In case of the non-optimal path

∂H(~x(t),~u(t),t)
∂~u

6= 0 (3.12)

the following variation of the cost function is obtained

δJ =
t1∫
t0

(
∂H(~x(t),~u(t),t)

∂~u
δu

)
dt

=
t1∫
t0

(
∂L(~x(t),~u(t),t)

∂~u
+ ~λ(t) · ∂f(~x(t),~u(t),t)

∂~u

)
δudt (3.13)

By the following modification of the control variable ~u(t) to ~u′(t)

~u′(t) = ~u(t)− ε
(
∂L(~x(t),~u(t),t)

∂~u
+ ~λ(t) · ∂f(~x(t),~u(t),t)

∂~u

)
(3.14)

and sufficiently small ε

δu = ~u′(t)− ~u(t) = −ε
(
∂L(~x(t),~u(t),t)

∂~u
+ ~λ(t) · ∂f(~x(t),~u(t),t)

∂~u

)
(3.15)

the cost function is minimized

δJ = −ε
t1∫
t0

(
∂L(~x(t),~u(t),t)

∂~u
+ ~λ(t) · ∂f(~x(t),~u(t),t)

∂~u

)2
dt ≤ 0 (3.16)

and thus the condition (3.5) is fulfilled.

Based on the obtained in Eq. (3.5) - (3.14) relations, an iterative approach for
the cost function minimization can be defined. Therefore, the following algorithm
for the finding of the optimal path is developed:
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• Initialization

1. definition of the dynamic equation ~̇x = ~f(~x(t),~u(t),t) and control vari-
able ~u(t)

2. definition of the time interval t0 to t1
3. design of the cost function J

4. generating of the initial control variable ~uinit(t)

• Iteration

1. determination of Lagrange multiplier from the dynamic equations (3.9)
and (3.10)

2. adjustment of the control variable according to Eq. (3.14)

Once the condition (3.11) is satisfied, also the condition δJ = 0 will be fulfilled.
The optimal values ~u∗(t) are thus generated from the initial control variable ~uinit(t).
Since the condition δJ = 0 does not guarantee the global minimum of the cost
function J , the algorithm may lead to the non-optimal result of a local minimum.
Therefore, it is recommended to start the optimization algorithm several times with
different initial control variables ~uinit(t) and to compare the cost functions of the
obtained optimal paths ~u∗(t).

3.1.2 Optimal control theory for Bloch equations

OCT can be well applied on the dynamics of the MR signal. Considering the
magnetization vector

~M(t) = (Mx,My,Mz) (3.17)

in an external magnetic field ~B, the x and y components of the magnetic field ~B can
be controlled by the RF pulse using alternating field B1 (see chapter 2.1.4). The
z component remains constant B0. As it was previously shown, the magnetization
vector rotates about the external magnetic field with the angular frequency

~ω(t) = γ ~B(t) , ~ω(t) = (ωx,ωy,ωz) (3.18)

Suppose therefore that it is possible to control ωx and ωy by an RF pulse and
ωz = γB0 remains constant.
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Thus, according to Eq. (2.8), the magnetization dynamics can be described by

dMx

dt
=
[
~M(t)× ~ω(t)

]
x
− Mx

T2
dMy

dt
=
[
~M(t)× ~ω(t)

]
y
− My

T2
dMz

dt
=
[
~M(t)× ~ω(t)

]
z
− Mz −M0

T1

(3.19)

The control variables are then ωx and ωy, as the parameters that can be influenced.
For the further optimization, an appropriate cost function needs to be defined in a
particular time interval t0 to t1. The final cost can be defined as

Jfin = −
(
~M(t1) · ~MTarget

)
(3.20)

with ~MTarget predefined target magnetization, which the algorithm will try to reach
at time point t1. For the running cost, it would be important not to generate high
energy pulses, since these are difficult to implement. The following term

Jrun = α

2

t1∫
t0

(
ω2
x(t) + ω2

y(t)
)
dt (3.21)

is proportional to the energy of the pulse (E ∝ ω2) and should be therefore mini-
mized.
For imaging pulse sequences, the total acquired MR signal, which is caused by

the transverse magnetization, needs to be maximized. The sum of all the acquired
signals can be described by

S = 1
n

t1∫
t0

n∑
l

δ(t− tl) · |MT (t)| dt (3.22)

Here MT (t) denotes the transverse magnetization (MT (t) = Mx(t) + jMy(t)), δ(t)

the delta function, n (n =
t1∫
t0

∑
l δ(t − tl)dt) and tl number of acquisitions and

acquisition times, respectively.
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The variations of MR signal can be defined as

δS = 1
n

t1∫
t0

∑
l

δ(t− tl) ·
∣∣∣MT (t)− ejϕl · M̄T

∣∣∣ dt (3.23)

with M̄T mean of acquiredMT at time points tl (M̄T = 1
n

t1∫
t0

∑
l δ(t− tl) · |MT (t)| dt)

and ϕl desired phase of the acquired signal. The total cost function is formed by
the sum of all costs

J =−
(
~M(t1) · ~MTarget

)
+ α

2

t1∫
t0

(
ω2
x(t) + ω2

y(t)
)
dt

− β1
n

t1∫
t0

∑
l

δ(t− tl) · |MT (t)| dt

+ β2
n

t1∫
t0

∑
l

δ(t− tl) ·
∣∣∣MT (t)− ejϕl · M̄T

∣∣∣ dt
(3.24)

with α, β1 and β2 the proportionality coefficients. By proper choice of these coef-
ficients, the priority of the optimization between the terms of the total cost can be
set. Higher coefficient means better results of minimization of the corresponding
term, but results also usually in worse result for the other terms. The minus sign
before some terms means that the corresponding cost should be maximized.
With the designed cost function, the dynamic equations of ~λ(t) can be derived

according to Eq. (3.9)

~λ(t1) = − ~MTarget (3.25)
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and according to Eq. (3.10)

dλx
dt

=β1
n

∑
l
δ(t− tl) ·Mx(t)

|MT (t)| − β2
n

∑
l
δ(t− tl) ·Real(MT (t)− ejϕl · M̄T )∣∣∣MT (t)− ejϕl · M̄T

∣∣∣
+
[
~λ(t)× ~ω(t)

]
x

+ λx
T2

dλy
dt

=β1
n

∑
l
δ(t− tl) ·My(t)

|MT (t)| − β2
n

∑
l
δ(t− tl) · Imag(MT (t)− ejϕl · M̄T )∣∣∣MT (t)− ejϕl · M̄T

∣∣∣
+
[
~λ(t)× ~ω(t)

]
y

+ λy
T2

dλz
dt

=
[
~λ(t)× ~ω(t)

]
z

+ λz
T1

(3.26)

as well as the modification of the control variables, that leads to the minimization
of the cost function

ω′x(t) = ωx(t)− ε
(
αωx(t) +

[
~λ(t)× ~M(t)

]
x

)
ω′y(t) = ωy(t)− ε

(
αωy(t) +

[
~λ(t)× ~M(t)

]
y

) (3.27)

If the system is expanded to include additional magnetization vectors with partic-
ular CS offset and B1 field inhomogeneity, the total magnetization can be expressed
as

~M =
∑
k

∑
i

~M i,k(t) (3.28)

with ~M i,k the magnetization vector with ith CS-index kth B1-index (Fig. 3.1).

~M i,k(t) =
(
M i,k
x (t),M i,k

y (t),M i,k
z (t)

)
(3.29)

Similar to the one magnetization vector system, the angular frequencies of the
magnetization vectors in the rotating about the axis z with ωL = γB0 coordinate
system are given by

~ωi,k(t) = γ ~Bi,k(t) =
(
ωkx(t),ωky (t),ωiz(t)

)
(3.30)
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Figure 3.1: Discretization of the off-resonance ωi
z and B1 (ωx(t), ωy(t)) field area.

Each magnetization vector ~M i,k(t) has its own Bloch equation according to ~ωi,k(t).
The algorithm minimizes the cost function for all the magnetization vectors form the
defined area.

with ωkx(t) and ωky (t) control variables (∝ B1,x(t) and B1,y(t), respectively), and
ωiz off-resonance of the ith magnetization vector. And corresponding Lagrange
multipliers are

~λi,k(t) =
(
λi,kx (t),λi,ky (t),λi,kz (t)

)
(3.31)

that means each Lagrange multiplier ~λi,k(t) corresponds to its individual magneti-
zation vector ~M i,k(t).
The dynamic equations are thus represented as

dM i,k
x

dt
=
[
~M i,k(t)× ~ωi,k(t)

]
x
− M i,k

x

T2
dM i,k

y

dt
=
[
~M i,k(t)× ~ωi,k(t)

]
y
−
M i,k
y

T2
dM i,k

z

dt
=
[
~M i,k(t)× ~ωi,k(t)

]
z
− M i,k

z −M0
T1

(3.32)
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and the total cost function is designed similar to Eq. (3.24)

J =−
∑
k

∑
i

(
~M i,k(t1) · ~MTarget

)
+
∑
k

α

2

t1∫
t0

(
(ωkx(t))2 + (ωky (t))2

)
dt

−
∑
k

∑
i

βi,k1
n

t1∫
t0

∑
l

δ(t− tl) ·
∣∣∣M i,k

T (t)
∣∣∣ dt

+
∑
k

∑
i

βi,k2
n

t1∫
t0

∑
l

δ(t− tl) ·
∣∣∣M i,k

T (t)− ejϕ
i,k
l · M̄ i,k

T

∣∣∣ dt
(3.33)

Thus, according to Eq. (3.9) and (3.10), following dynamic equations for ~λi,k(t)
are derived

~λi,k(t1) = − ~MTarget (3.34)

dλi,kx
dt

=βi,k1
n

∑
l
δ(t− tl) ·M i,k

x (t)∣∣∣M i,k
T (t)

∣∣∣ − βi,k2
n

∑
l
δ(t− tl) ·Real(M i,k

T (t)− ejϕ
i,k
l · M̄ i,k

T )∣∣∣M i,k
T (t)− ejϕ

i,k
l · M̄ i,k

T

∣∣∣
+
[
~λi,k(t)× ~ωi,k(t)

]
x

+ λi,kx
T2

dλi,ky
dt

=βi,k1
n

∑
l
δ(t− tl) ·M i,k

y (t)∣∣∣M i,k
T (t)

∣∣∣ − βi,k2
n

∑
l
δ(t− tl) · Imag(M i,k

T (t)− ejϕ
i,k
l · M̄ i,k

T )∣∣∣M i,k
T (t)− ejϕ

i,k
l · M̄ i,k

T

∣∣∣
+
[
~λi,k(t)× ~ωi,k(t)

]
y

+
λi,ky
T2

dλi,kz
dt

=
[
~λi,k(t)× ~ωi,k(t)

]
z

+ λi,kz
T1

(3.35)

and the required modification of the control variables for the minimization of the
total cost function
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ω′kx (t) = ωkx(t)− ε

αωkx(t) +
[∑
k

∑
i

(
~λi,k(t)× ~M i,k(t)

)]
x


ω′ky (t) = ωky (t)− ε

αωky (t) +
[∑
k

∑
i

(
~λi,k(t)× ~M i,k(t)

)]
y

 (3.36)

With the method described above the time evolution of the ~B1(t) field, i.e. RF
pulses, can be controlled and optimized. It is important to note, that the control
variables ωx and ωy are allowed to be non-continuous, that is the typical case for RF
pulses in practical MRI applications. Using the proposed optimization algorithm:
i) the total magnetization ~M will be moved to the desired target state ~MTarget,
ii) the total energy required for the ~B1(t) field excitation will be minimized, iii)
the sum of the signals at specific time points tl will be maximized, and iv) the
variations of the amplitude and phase of the signal minimized. In other words,
the result can be defined as an energetically favorable RF pulse sequence which
generates stable echo train with a high total signal and brings the magnetization
to the desired state.

3.1.3 Implementation

The described above optimization algorithm was implemented in MATLAB (ac-
cording to Eq. (3.28) - (3.36)) and required following major programming steps:

• Initialization

1. definition of the initial conditions ~M i,k(t0) =
(
M i,k
x (t0),M i,k

y (t0),M i,k
z (t0)

)
,

ωiz, ~MTarget, ε

2. discretization of the time interval t0 to t1: tp = t0 + t1−t0
N p

3. generating an initial control variables ωkx(tp) and ωky (tp)

• Iteration

1. Computation of the total magnetization evolution ~M(tp) according to
Eq. (3.28) and (3.32) (propagation ~M i,k(t0)→ ~M i,k(t1))

2. Computation of the Lagrange multipliers dynamics ~λi,k(tp) according to
Eq. (3.34) and (3.35) (propagation ~λi,k(t1)→ ~λi,k(t0))

3. Modification of the control variables ωkx(tp) and ωky (tp) according to Eq.
(3.36)
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Figure 3.2: Optimization scheme: Propagation ~M(t0) → ~M(t1) and ~λ(t1) → ~λ(t0)
for a given pulse sequence in order to achieve a particular target state ~MT arget [71].

For the computation, all differential equations were substituted by rotation matri-
ces, which are more favorable in MATLAB programming environment. Neglecting
the relaxation effects and assuming the control variables to be constant over a short
time interval ∆t (so-called hard pulse case) following analytical solution of Bloch
equation d ~M

dt =
[
~M × ~ω

]
can be derived [72]

~M(t+∆t) = R(∆t) ~M(t) (3.37)

with rotation matrix R=
cosα+ n2

1(1− cosα) n1n2(1− cosα)− n3sinα n1n3(1− cosα) + n2sinα

n2n1(1− cosα) + n3sinα cosα+ n2
2(1− cosα) n2n3(1− cosα)− n1sinα

n3n1(1− cosα)− n2sinα n3n2(1− cosα) + n1sinα cosα+ n2
2(1− cosα)


where α = ∆t ·

√
ω2
x + ω2

y + ω2
z and ~n = (n1,n2,n3) = ∆t

α (ωx,ωy,ωz)
In order to use the rotation matrix solution for the dynamic equation of Lagrange

multipliers, which in our case has following simplified form d~λ
dt = ~S +

[
~λ× ~ω

]
,

following substitution was made

~λ∗ = ~λ− ~s with [~s× ~ω] = ~S (3.38)
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which results in the mathematically identical to the Bloch equation form

d~λ∗

dt
=
[
~λ∗ × ~ω

]
(3.39)

Figure 3.3: Schematic representation of the control variables ωx(t) and ωy(t) con-
sisting of N steps with a discretization time of ∆t = t1−t0

N . At each step p the control
variable is constant. The vertical arrows show how each amplitude should be changed
according to the Eq. (3.36) [73].

The use of rotation matrices reduced the computational time by a factor of about
15 compared to the commonly used MATLAB differential equation solver ode45.
The optimization algorithm is schematically illustrated in Fig. 3.2 and 3.3. The
iteration is repeated until the change in the total cost function ∆J after one iter-
ation step is less than a pre-determined limit ∆Jlimit. The choice of the constant
ε depends on the system parameters. Using small ε results in more iteration steps
and thus the computation time is longer. The larger values of ε can lead to insta-
bility and non-convergence of the algorithm. It is also possible to define differing
ε, which decreases with the number of iterations till particular minimal value, in
order to find first a rough solution and to refine it at the later iteration steps.
Also the algorithm can be further improved by using conjugation of ε or by using
quasi-Newton methods.
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3.2 Spectral fitting

Estimation of metabolic conversion rates requires beforehand accurate spectral fit-
ting of the acquired signal. For this purpose, a user independent fully automatic
spectral fitting method for hyperpolarized 13C MRS was developed, which utilizes
the specific properties of the 13C spectra.

3.2.1 Hyperpolarized FID signal model

In comparison to standard thermal-equilibrium-based spectroscopy, spectral fit-
ting of hyperpolarized 13C signals is simplified by i) a missing macromolecular
baseline background and ii) a sparse signal spectrum of typically well-separated
singlet peaks. Accordingly, measured time-discretized FID signals sn = s(tn) were
expressed as a summation over the metabolic basis spectra Fnm:

sn =
∑
m

amFnm (3.40)

with

Fnm = exp(−αmtrmn + iωmtn) (3.41)

Here, tn denotes the sampling time, am the individual metabolite signal amplitude,
ωm CS frequency, αm and rm line shape parameters of the metabolite basis spectra
(αm mainly dependent on the effective transverse relaxation time of metabolite
T ∗2,m and rm =1 or 2 corresponding to Lorentzian or Gaussian line shapes, respec-
tively). For the typical case of more samples than unknown metabolites Eq. (3.41)
describes an over-determined system that can be efficiently solved using algebraic
methods ([74],[75]). The construction of the F matrix requires prior knowledge of
the {ωm, αm, rm} parameters, which were estimated in a preprocessing step from
the spectra corresponding to the measured FIDs, as explained in the next section.

3.2.2 Matching pursuit spectral decomposition

Matching pursuit is an iterative method to decompose a signal into the main
constituents of a given complete set of basis functions (so-called dictionary). It is
known to provide sparse approximations of input signals in terms of the provided
dictionary ([76],[77]). Here the method was used to automatically extract the
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Figure 3.4: Exemplary schematic
representation of spectral fitting
using the matching pursuit algo-
rithm (a-d). e) Sparse represen-
tation of initial spectrum (red cir-
cles show obtained amplitudes and
frequencies {ai, ωi}) together with
expected metabolite CS frequen-
cies (blue lines) and predefined fre-
quency intervals (green lines).
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{ωm, αm, rm} parameters required for the construction of the F matrix (3.41). The
used dictionary was formed by an overcomplete set of basis spectra with variable
parameters {ωi, αi, ri} defining the search space. In each iteration k, the basis
spectra were tested and the spectrum resulting in the lowest residuum

min
ai,ωi,αi,ri

‖sk(tn)− aiexp(−αitrin + iωitn)‖ (3.42)

was retained and subtracted to form the input for the next iteration

sk+1(tn) = sk(tn)− aiexp(−αitrin + iωitn) (3.43)

Hence, the obtained decomposition represented a sparse approximation of the
spectrum with {ai, ωi, αi, ri} the amplitudes, CS frequencies and line shape param-
eters of the found basis spectra (Fig. 3.4). For the considered case of dynamic
measurements, the procedure was repeated for all individual FIDs to improve sen-
sitivity.
In the implemented processing, the CS spectrum was first centered at the dom-

inant peak, which was assigned to be pyruvate. Prior knowledge of the approx-
imate relative CS frequencies of the pyruvate downstream metabolites was then
used to assign each metabolite a particular frequency band within the spectrum.
For each metabolite, the parameters {ωm, αm, rm} were calculated based on an
amplitude-weighted average of the basis spectra parameters {ωi, αi, ri} contained
in the respective frequency band. The line shape parameters rm were rounded to
describe either Lorentzian (rm = 1) or Gaussian (rm = 2) distributions. The fre-
quency bands of lactate, alanine, pyruvate hydrate, and bicarbonate were defined
at −390±30, −180±20, −265±20 and +325±40 Hz relative to pyruvate at 0±60
Hz.

3.2.3 Linear least-squares, time-domain spectral fitting

Spectral fitting of metabolite amplitudes am can be considered as the solution of
the inverse problem defined by the matrix equation (3.41). For the typical case of
more FID samples than unknown metabolite constituents, this describes an over-
determined system that can be solved in a weighted linear least squares sense using
the Moore-Penrose pseudo-inverse according to

a = (FHWF)−1FHWs (3.44)
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with the superscript H the complex conjugate operator, and W an optional, di-
agonal weighting matrix. In order to increase the detectability of low amplitude
signals next to a dominant pyruvate peak (i.e. to reduce CS aliasing), the pyruvate
resonance can also be approximated by more than a single spectral component.

3.3 Kinetic modelling

For widespread use in medicine, standardization of the analysis of [1-13C]pyruvate
kinetics and its downstream metabolites will be required. Initially, the metabolite
ratios were used as metrics for the comparison of various effects ([26],[29]). An
alternative to the lactate to pyruvate ratio, which is critically dependent on the
timing of injection and subsequent data acquisition, is to measure the lactate and
pyruvate signals over time and fit these to a kinetic model ([20],[23],[25]).

3.3.1 Two-site exchange kinetic modeling

The spectrally fitted metabolite time signals am (see chapters 3.2.1.-3.2.2.) were
used to derive apparent rate constants characterizing metabolite exchange and
signal decay. In case of hyperpolarized pyruvate the signal dynamics was described
by a two-site exchange model including the pyruvate substrate pyr and a single
metabolic product m (Fig. 3.5).

Figure 3.5: Schematic of a two-site exchange model of pyruvate metabolism.

According to this model the time evolution of metabolite m concentration cm is
dependent on pyruvate concentration cpyr

dcm
dt

= +kpyr→mcpyr − km→pyrcm (3.45)
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with kpyr→m and km→pyr denoting the apparent build-up and depletion rates of
metabolite m, respectively, including enzymatically driven conversion as well as
transport effects. The apparent rates were assumed to be constant during the ex-
periment time period. The estimated metabolite time signals am represent the
transverse component of the metabolite signal intensities and are therefore propor-
tional to the metabolite concentration cm with a factor, which depends on local
flip angle and polarization at the acquisition time and is constant for all metabo-
lites during one time step. Thus, the proposed kinetic model accounts for forward
(kpyr→m) and backward (km→pyr) conversion and needs to be corrected by signal de-
cay mechanisms due to T1 relaxation and repetitive excitation. In a time-discretized
formulation this led to the following rate equation:

∆am,k
Tk

= +kpyr→mapyr,k −
am,k
T1,m

− 1− cos(βk)
Tk

am,k − km→pyram,k (3.46)

with Tk and βk as the time increment and the effective flip angle of the kth mea-
surement point, respectively. Summarizing the contributions proportional to am,k
and apyr,k and considering a constant repetition time (Tk = ∆t) and flip angle, the
above equation was simplified to

∆am,k
∆t

= +kpyr→mapyr,k −Reff,mam,k (3.47)

with the effective decay rate, Reff,m = 1/T1,m + [1− cos(βk)] /∆t + km→pyr, ac-
counting for the signal decay effects due to T1 relaxation, repetitive excitation, and
backward conversion. This equation was solved for the unknown apparent build
up rate kpyr→m and the effective decay rate Reff,m using either time or frequency
domain analysis.

3.3.2 Time-domain fitting of kinetic model

Given time-resolved metabolite signals, Eq. (3.47) results in an over-determined
system of linear equations for kpyr→m and Reff,m:

∆am,1
∆t
...

∆am,K
∆t

=

−am,1 −apyr,1

...
...

−am,K −apyr,K


(

Reff,m

kpyr→m

)
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which can be solved using the Moore-Penrose pseudo-inverse similar to as discussed
in the context of Eq. (3.44).

3.3.3 Frequency-domain fitting of kinetic model

Transforming Eq. (3.47) from time to frequency domain results in the following
equation

iΩnãm,n = +kpyr→mãpyr,n −Reff,mãm,n (3.48)

with ãm,n = ∑K
k=1 am,kexp(iΩnk·∆t)·∆t and ãpyr,n = ∑K

k=1 apyr,kexp(iΩnk·∆t)·∆t
the discrete-time Fourier transforms of am,k and apyr,k, respectively. Equation
(3.48) describes an over-determined system of linear equations similar to the time-
domain one described above. Interestingly, for Ωn = 0, Eq. (3.48) provides a clear
physical interpretation of the often used ratio of time-integrated metabolite signals:

∑K
k=1 am,k∑K
k=1 apyr,k

= ãm(Ωn = 0)
ãpyr(Ωn = 0) = kpyr→m

Reff,m
(3.49)

Furthermore, this identity of DC (zero frequency component) signal ratios can
be used to derive analytical expressions for kpyr→m and Reff,m according to:

kpyr→m = iΩn
ãm(Ωn = 0) · ãm,n(Ωn)

ãm(Ωn = 0) · ãpyr,n(Ωn)− ãpyr(Ωn = 0) · ãm,n(Ωn) (3.50)

and

Reff,m = iΩn
ãm(Ωn = 0) · ãpyr,n(Ωn)

ãm(Ωn = 0) · ãpyr,n(Ωn)− ãpyr(Ωn = 0) · ãm,n(Ωn) (3.51)

Both time and frequency domain methods have advantages and disadvantages.
The time-domain fitting can be applied to any time window of the signal, while
for the frequency domain fitting, the entire signal acquisition is required, from the
pyruvate arrival until the hyperpolarized signal is completely decayed. The main
advantage of the frequency domain description is the avoidance of an explicit time
differentiation, which generally results in noise amplification. Conceptually, the
proposed kinetic model accounts for variable inflow and outflow of pyruvate but
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assumes them to be the same (or negligible) for the metabolic product m. In
comparison to previously presented methods, this formulation decouples the kinet-
ics between pyruvate and its metabolic products into single differential equations.
As a consequence, in the presented description, no explicit arterial input function
is required, as it is implicitly contained in the pyruvate signals. Note that this
formulation does not allow resolving the effective decay rate into its individual
contributions as listed in the context of Eq. (3.47).

3.4 Chemical shift imaging

Fast spectroscopic imaging techniques (or chemical shift imaging (CSI)) enable
spatially resolved dynamic data acquisition of variable uptake and metabolism
of hyperpolarized compounds. Therefore, it allows for further spatially resolved
quantification of metabolic fluxes. The majority of CSI techniques, e.g. the in-
version recovery method, chemical shift selective imaging sequence and the sat-
uration method, were developed for proton imaging and do not account for the
non-reversible polarization as in case of hyperpolarization. Hence, an efficient and
robust imaging method needed to be developed.

3.4.1 IDEAL spiral CSI

The spectral-spatial IDEAL spiral CSI ([37],[78]) enables information encoding
from five dimensions including CS, three spatial dimensions and time. This imaging
method is implemented by single-shot spiral image acquisition and echo time shift-
ing combined with spectrally-preconditioned, minimum-norm CS inversion (Fig.
3.6). Starting with FID and followed by P single shot spiral acquisitions with dif-
ferent echo times (TEp), the acquired data for the pth echo time and nth time point
can be expressed in k-space as

dn =
M∑
m=1

Ap,ma
′
m(kn) (3.52)

with dn =


d1(tn)

...
dP (tn)

 signal vector, kn k-space location at time point tn, a′m(kn)

metabolite signals in k-space domain and A chemical shift matrix with elements
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Figure 3.6: Illustration of IDEAL spiral CSI. Each excitation is followed by a single-
shot imaging module (gray boxes) and the spectral encoding is achieved via echo time
shifting from excitation to excitation. Additionally, a FID acquisition is performed at
the beginning which provides spectral prior knowledge for the reconstruction.

Ap,m = exp(iωmTEp) . The initial FID is used in the reconstruction as spectral
prior knowledge to precondition the further chemical shift inversion using matching
pursuit algorithm. For the image reconstruction of IDEAL spiral CSI acquired data
the metabolite signals in k-space domain can be initially estimated with Moore-
Penrose pseudo-inverse a′m(kn) = AHdn Afterwards spatially resolved metabolite
signals are obtained using fast Fourier transform and gridding reconstruction along
the spiral trajectory am(r) = FFT {Gridding(a′m(kn))} .





4 Experiments

4.1 Hyperpolarization

The sample mixture for polarization contained 14 M [1-13C]pyruvic acid (Cam-
bridge Isotope Laboratories, Andover, MA, USA) doped with 15 mM OXO63
trityl radical (Oxford Instruments, Abingdon, UK) and 10 mM Dotarem (Guer-
bet, Villeprinte, France). The sample was polarized in the solid state at 1.4 K
and 3.35 T for approximately 45 min using a HyperSense DNP polarizer (Oxford
Instruments, Abingdon, UK) (Fig. 4.1). The dissolution agent, containing 20 mM
NaOH, 20 mM TRIS buffer, and 0.025 g/L Na2-EDTA or containing 80 mM NaOH,
80 mM TRIS buffer, and 0.1 g/L Na2-EDTA dissolved in water for in vitro or in
vivo experiments, respectively, was heated to 185 °C and flushed the polarized sam-
ple at 10 bar. The final injectable solution contained 20 mM (for in vitro) or 80
mM (for in vivo) hyperpolarized [1-13C]pyruvate with a pH value of 7.6. The liq-
uid state polarization was measured immediately following the dissolution using a
Minispec mq40 NMR analyzer (Bruker Optik, Ettlingen, Germany) and was found
to be between 20 % and 30 %. The time delay between dissolution and injection
was 15 - 20 s.

4.2 Experimental setup

All experiments were performed on a 3 T GE Signa HDx MRI scanner (GE
Healthcare, Milwaukee, WI, USA). For in vitro experiments, an optimized exper-
imental setup was developed allowing measurement of pyruvate metabolism in a
clinical MRI scanner. It retained stable conditions of the probe and provided higher
SNR compared to the standard MR equipment. A schematic of this experimental
setup is shown in Fig. 4.2. The NMR tube (8 mm diameter) containing a probe
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Figure 4.1: HyperSense DNP polarizer lab for preparation of hyperpolarized com-
pounds.

of e.g. enzyme mixture or tumor cells suspension was inserted into a custom-
built solenoid coil surrounded by a heating module containing circulating warm
water (adapted from animal warming system, Gaymar Industries, Orchard Park,
NY, USA). The temperature of the probe was adjustable and remained stable (37
°C) during the experiment. In order to improve the T ∗2 linewidth, susceptibility-
matched plugs and NMR tubes (Doty Scientific, Columbia, SC, USA) were used.
The solenoid transmit-receive 13C coil was designed and optimized for 2mL sam-

ple volume. The coil had 11 mm in diameter and 50 mm in length and was made
of 9 turns of copper wire (diameter = 1.5 mm) divided in three equal parts. The
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Figure 4.2: Schematic construction of the experimental setup for in vitro experi-
ments.

electrical circuit of the coil is shown in Fig. 4.4. The whole experimental setup was
placed into an MRI scanner.

Figure 4.3: Spectrum of
2 mL 13C-acetate acquired
by 13C volume coil (red)
and optimized experimental
setup (blue).

In order to compare the proposed setup with measurements using a dual-tuned
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1H-13C volume coil [79], a phantom with highly concentrated thermally polarized
13C-acetate was used. The spectrum of 2 mL acetate in round-bottom flask was ac-
quired by the volume coil and is illustrated in Fig. 4.3 together with the spectrum
of the same amount of acetate in NMR tube measured by the proposed solenoid
coil. With the new optimized experimental setup, the SNR was improved approx.
tenfold while susceptibility artifacts were significantly reduced compared to mea-
surements using a dual-tuned 1H-13C volume coil. The increased sensitivity of the
custom built solenoid coil allowed even spectral resolution of J-coupling of pyru-
vate (≈ 4 Hz at 3 T) or detection of radiation damping effects (by injecting larger
volume of hyperpolarized substance) in the clinical MR scanner.

Figure 4.4: Schematic diagram of the electrical circuit of the solenoid transmit-receive
13C coil.

4.3 In vitro LDH enzyme mixture experiments

Pyruvate was dissolved to a concentration of 20 mM and injected into the pre-
pared in vitro sample, which was either an LDH enzyme mixture or tumor cell
suspension. The LDH enzyme mixture consisted of coenzyme NADH and LDH en-
zyme (Sigma-Aldrich Corp, Saint Louis, MO, USA) dissolved in TRIS buffer (pH
7.6). Different combinations of final concentrations of pyruvate, NADH and LDH
were tested in order to validate the proposed spectral and kinetic fitting methods.
Data were acquired for about 3 min after the injection, with a custom-built (de-
scribed above), solenoid transmit-receive 13C coil using dynamic FID measurements
(flip angle α = 5°, repetition time TR = 1 s, 5 kHz acquisition bandwidth).
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4.4 In vitro MCF-7 tumor cells experiments

Figure 4.5: Experimental setup for in
vitro experiments.

For the tumor cell experiments (Fig. 4.5), 100 µl of 20 mM hyperpolarized
pyruvate were injected into the spheroid suspension, representing 108 cells of the
breast cancer cell line MCF-7 maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM), supplemented with 25 mM glucose, 4 mM glutamine and 5 % fetal calf
serum (pH 7.4). Dynamic FID (α = 20°, TR = 2 s, 5 kHz acquisition bandwidth)
were measured using the same solenoid transmit-receive 13C coil. The final concen-
tration of pyruvate in the tumor cell spheroid suspension was chosen to be similar
to the pyruvate concentration in blood during in vivo experiments (about 0.2-0.4
mM).
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4.5 In vivo experiments with surface coil

Figure 4.6: Example of the positioning of the rat for imaging experiment.

For the animal experiments, 80 mM pyruvate solution at a dosage of 0.2 mmol/kg
body mass was injected inside the MRI scanner at a rate of approximately 0.2 mL/s
into the tail vein of four adult female Fischer 344 rats (Charles River, Sulzfeld, Ger-
many; 165 ± 6 g body weight) bearing subcutaneous mammary adenocarcinomas
(Fig. 4.6). Tumors were induced by implanting 106 MAT B III cells (syngenic
breast cancer cell line), and were imaged 12-16 days after cell implantation. The
animal’s anesthesia was maintained with 1-3 % isofluorane in oxygen starting about
1 h before the first injection. During the experiment, the heart rate, temperature
and breathing signal were monitored using an animal monitoring system (SA In-
struments, Stony Brook, NY, USA). All animal experiments were approved by the
regional governmental commission for animal protection (Regierung von Oberbay-
ern, Munich, Germany).
Slice-selective FID measurements were performed for 2 min following the injec-

tion of hyperpolarized pyruvate (α = 10°, TR = 1 s, 5 kHz acquisition bandwidth).
A single, 10 mm thick axial slice was carefully aligned to cover the subcutaneous tu-
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mor. Spin excitation and signal reception were performed using a transmit-receive
13C loop coil (diameter = 20 mm) placed around the subcutaneous tumor. The
selective coil placement together with its localized sensitivity provided a 13C signal
primarily from the tumor region.

4.6 In vivo IDEAL spiral CSI experiments

Figure 4.7: Exemplary planning of the imaging geometry for multislice IDEAL spiral
CSI experiments. The central slice (e.g. slice #3) was placed to cross the tumor.

For spatially and temporally resolved spectroscopy, IDEAL spiral CSI was used
as described in chapter 3.4.1. consisting of 7 echo time shifted (TE = 1.12 ms)
singe-shot spirals (α = 10°, TR = 500 ms, FOV = 80 mm, nominal matrix resolu-
tion of 32×32, 62.5 kHz acquisition bandwidth, 45 ms readout) plus one additional
FID acquisition. This allowed dynamic, multislice (4 slices, 10 mm thickness) CS
imaging at a temporal resolution of 4 s. The exemplary planning of the imaging
geometry is shown in Fig. 4.7. A syringe containing [1-13C]lactate was used as
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a reference for both 13C and proton images. Image reconstruction was performed
based on CS inversion followed by gridding reconstruction as described in [37].
The required CS frequencies were extracted from the FID measurements using the
matching pursuit algorithm. In the post-processing, Gaussian k-space filtering was
applied, resulting in an effective image resolution of 5×5 mm2. For anatomical ref-
erencing of the 13C metabolic images, standard gradient echo images were acquired
from the same slice geometry.



5 Results

5.1 Pulse sequence optimization

Theoretically, the developed optimization algorithm allows to control the magne-
tization by any active RF pulse in the pulse sequence. In this work, the main focus
was laid on the preparation of the magnetization for further data acquisition with
fast imaging pulse sequences, such as SSFP, CPMG and non-CPMG (see chapter
2.2.5), in the presence of B1 field inhomogeneity and for a predefined off-resonance
offset. In the following, results of pulse sequence optimization are shown for the
off-resonance offset of -200 to 200 Hz and the range of B1 field inhomogeneity of
≈ ± 16 %, that results in a ± 30◦ error of 180◦ refocusing pulse. The discretization
steps of 20 Hz and 3◦ were applied, which resulted in 20×20 resolution matrix.
The pulses were assumed to be hard pulses with pulse width of 100 µs and the
repetition time TR for signal acquisition was 10 ms. These values correspond well
to the real parameters for fast MRI. The optimization was performed for the case
of hyperpolarized signal, which means high initial magnetization (was normalized
to 1 for the simplicity) and neglectable relaxation processes (these were neglected
only during the active RF pulse allowing the use of rotation matrices instead of
solving differential equations; for the magnetization evolution between the pulses
typical values of pyruvate relaxation times T1 and T2 of 30 s and 2 s, respectively,
were used).
Figure 5.1 shows an exemplary result of the optimization of 7 equidistant prepa-

ration pulses for the following echo train with 48 180◦ refocusing pulses of SSFP
pulse sequence. The cost function was designed to maximize the total acquisition
signal and reduce the variation of signals during the echo train as described in
chapter 3.1.2, which were also used as visualization metrics of the results. The en-
ergy minimization and target magnetization terms from Eq. (3.24) were neglected.
Starting with arbitrary initial 7 preparation pulses, the algorithm provided appro-
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priate optimization result for the given offset. The schematic diagram of the pulse
sequence and the evolution of the total cost function are shown in Fig. 5.2. The
components of the RF pulse amplitude are expressed in degrees of the flip angle
according to Eq. (2.18), which means RF amplitude for the 180◦ pulse of 5 kHz.

Figure 5.1: Result of the optimization (right) of 7 preparation pulses (PW = 100
µs) for the SSFP pulse sequence with 180◦ refocusing pulses (TR = 10 ms) compared
to the initial arbitrary preparation pulses (left). Data are shown as mean of the signal
(top) and its standard deviation (bottom) over 48 acquisitions after preparation period
for the off-resonance offset of -200 to 200 Hz and B1 inhomogeneity resulting in ±30◦
error of refocusing pulses.

Similar result was obtained by optimization of the non-CPMG pulse sequence
(with quadratic phase modulation of refocusing pulses) with the same parameters
(Fig. 5.3). These results confirm that non-CPMG and SSFP pulse sequences could
be well applicable for the hyperpolarized MRI.
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Figure 5.2: Pulse sequence diagram (left) of the SSFP pulse sequence with 7 opti-
mized preparation (some pulses have near zero amplitude) and 48 refocusing pulses
(cf. Fig. 5.1). Blue and red lines in the left figure show the x and y components
of the RF pulse amplitude expressed in degrees of the flip angle. The evolution and
convergence of the total cost function are shown on the right.

Figure 5.3: Exemplary result of the optimization of 7 preparation pulses for non-
CPMG pulse sequence.



66 5 Results

Instead of using 7 discrete preparation pulses, the algorithm allows also to im-
plement and to optimize one shaped preparation pulse. Such a shaped pulse has
more flexibility and leads to better optimization results, though it is difficult to
implement for a slice-selective excitation. Figures 5.4 and 5.5 show the results of

Figure 5.4: Exemplary result of the optimization of shaped preparation pulse (5 ms
pulse width) for CPMG pulse sequence.

the optimization of the shaped preparation pulse with 5 ms pulse width for CPMG
and non-CPMG pulse sequences with 24 180◦ refocusing pulses, respectively. Here,
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another quality metrics for the visualization of the results was chosen: the mean
variation of the total transverse MT (top), Mx (middle) and My (bottom) compo-
nents to the mean acquired signal M̄T , M̄x and M̄y (cf. Eq. (3.23)). This metrics
represents more detailed the stability of the amplitude and phase of the MR signal.

Figure 5.5: Exemplary result of the optimization of shaped preparation pulse (5 ms
pulse width) for non-CPMG pulse sequence.

Figure 5.6 shows the preparation pulse profile, the pulse sequence scheme and
the evolution of the total cost function for the non-CPMG pulse sequence example.
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Each refocusing pulse was shifted in phase quadratically.

Figure 5.6: Pulse sequence diagram and the optimized preparation pulse profile (left)
of the non-CPMG pulse sequence with shaped preparation pulse, together with the
evolution of the total cost function (right).

In some cases, instead of maximization of the total signal, it is required to keep
the magnetization at the certain constant level for further acquisition time steps.
Such an application is especially useful for the non-recoverable hyperpolarized sig-
nal. For this purpose, the optimization algorithm was changed by setting the signal
maximization term of the cost function to zero (by β1=0 in Eq. (3.24)) and re-
placing the mean signal M̄T in Eq. (3.23) by the desired transverse magnetization
Mdesir
T . Fig. 5.7 shows an example of such optimization for 7 preparation pulses of

the non-CPMG pulse sequence with 24 180◦ refocusing pulses, where the desired
transverse magnetization was chosen to be equivalent to the 60◦ excitation of the
initial z magnetization.
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Figure 5.7: Exemplary result of the optimization of 7 preparation pulses for the
non-CPMG pulse sequence keeping the total magnetization at 60◦ and 120◦ excitation
planes.
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5.2 Spectral fitting

Figure 5.8 illustrates spectral fitting results of FID spectra acquired 30 s post
injection for in vitro (LDH enzyme mixture (a) and tumor cell suspension (b))
and in vivo tumor rat (c) experiments. First the CS frequencies and line shape
parameters were estimated using matching pursuit spectral decomposition. Table
5.1 summarizes obtained CS frequencies, which are in good agreement with values
reported in the literature [80].

Experiment lactate pyruvate
hydrate alanine pyruvate bicarbonate

LDH enzyme
mixture −392± 5 −267± 6 - 0 -

tumor cell
suspension −396± 5 −270± 3 - 0 -

in vivo surface
coil −393± 4 −263± 4 −181± 3 0 +326± 3

in vivo IDEAL
spiral CSI −395± 9 −268± 8 −182± 7 0 +320± 8

Table 5.1: Estimated CS frequencies of 13C metabolites (in Hz, mean ± SD) relative
to [1-13C]pyruvate for different types of experiments. The spectra were acquired at B0
= 3 T and fitted using the matching pursuit algorithm.

In a second step, the relative metabolite concentrations were estimated using lin-
ear least-squares time domain spectral fitting according to Eq. (3.41) and (3.44).
The fitted spectra closely follow the measured FID spectra, indicating the validity
of the underlying CS model. Using a phantom containing several compounds at ac-
curately adjusted concentrations, the quantification error of metabolite amplitudes
was estimated to be about 11 %, i.e., similar to that for other fitting methods such
as AMARES and LCModel ([27],[28],[29]).
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Figure 5.8: Exemplary spectra
acquired 30 s after pyruvate injec-
tion (blue lines) and correspond-
ing fitting results (red lines) for
LDH enzyme mixture (a), tumor
cell suspension (b) and in vivo rat
tumor (c) experiments. The rela-
tive CS frequencies and line shape
parameters were calculated using
the matching pursuit algorithm.
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5.3 Kinetic modelling

In both in vitro and in vivo experiments, a significant lactate signal was observed.
Alanine and bicarbonate signals were noticed only in vivo and at comparatively
lower amplitude. In the following, the kinetic fitting of the lactate signal will be
considered.

Figure 5.9: Example of LDH enzyme experiments with insufficient amount of coen-
zyme NADH. The proposed kinetic model was not able to fit over the entire time
(left), but for shorter time intervals appropriate fitting results were found (middle and
right).

The LDH enzyme experiments with insufficient amount of substrates were pro-
vided and showed that under this conditions the metabolic conversion rate changes
significantly during the experiment (based on Michaelis-Menten kinetics). In this
case the proposed kinetic model was still able to fit the time courses of metabolites
but only over the smaller time intervals (assuming the smaller changes of substrate
concentration) and not for the whole experiment time (Fig. 5.9).
Figure 5.10 displays results of the two-site exchange kinetic fitting in terms of

the apparent build up rate kpyr→lac and the effective relaxation rate Reff,lac for
the same experimental conditions as those used in Fig. 5.8. Fitting was applied
to the time intervals containing a significant pyruvate signal. The solid lines show
metabolite signal curves, obtained from the spectral fitting of the measured FIDs.
The dashed lines show the corresponding kinetic fitting results. A comparison of
the typical metabolite signals in time and frequency domain is demonstrated in Fig.
5.11. It indicates a sparse, DC-centered representation of the metabolite signals in
the frequency domain.
The experiments with the tumor cells showed that the apparent build-up rate
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Figure 5.10: Exemplary time
courses of metabolite signals and
corresponding kinetic fitting re-
sults with apparent rate con-
stants for LDH enzyme mixture
(a), tumor cell suspension (b)
and in vivo rat tumor (c) exper-
iments. For the enzyme exper-
iment, 2 ml of 20 mM hyper-
polarized pyruvate were injected
into the enzyme mixture contain-
ing NADH and 20 activity units
of LDH.
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Figure 5.11: Typical in vivo metabolite signals (cf. Fig. 5.10 c) in time (left) and
frequency (right) domain (absolute values). The similar signal intensity of pyruvate
and lactate at Ωn = 0 in the frequency domain can be explained by the estimated
ratio kpyr→lac/Reff,lac = ãlac(0)/ãpyr(0) ≈ 1.

constant kpyr→lac depends not only on the LDH enzyme activity. For this purpose,
the build up of [1-13C]lactate in intact cells was compared with the one from the
same amount of lysed cells (breaking down the membrane), holding all other ex-
perimental settings unchanged. The apparent build-up rate was approx. 10-fold
higher in homogenates than in intact cells, suggesting that the cellular uptake of
[1-13C]pyruvate may be a rate-limiting factor. Preliminary experiments showed
also sensitivity of tumor cells metabolism to extracellular pH and temperature. In
further experiments with altering extracellular pH in range 6.6 - 7.8 no statistically
significant correlation was found. However, for a better understanding of the cellu-
lar metabolism, the dependency of apparent rate constants on microenvironmental
changes needs to be investigated in future studies. The results might be partic-
ularly useful for interpretation of eventual variations in in vivo tumors caused by
differing physiological conditions.
Excellent fit quality was achieved in vitro and in vivo using both time and fre-

quency domain fitting. It validated two-site exchange with only two fitting pa-
rameters, kpyr→lac and Reff,lac, as an effective kinetic model to accurately describe
hyperpolarized 13C pyruvate signal dynamics.

5.3.1 Time vs. frequency domain fitting

Further analysis of kinetic fitting in time and frequency domains showed signif-
icant differences between two methods. Table 5.2 compares the performance of
time and frequency domain fitting as a function of SNR using Monte Carlo simula-
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SNR 2.5 5 10 25 50 100

time kpyr→lac
0.038±
0.070

0.062±
0.037

0.088±
0.014

0.099±
0.004

0.100±
0.002

0.100±
0.001

domain Reff,lac
0.019±
0.277

0.030±
0.103

0.056±
0.009

0.065±
0.003

0.066±
0.001

0.067±
0.001

freq. kpyr→lac
0.088±
0.023

0.096±
0.014

0.100±
0.007

0.100±
0.003

0.100±
0.001

0.100±
0.001

domain Reff,lac
0.053±
0.020

0.062±
0.011

0.066±
0.006

0.067±
0.002

0.067±
0.001

0.067±
0.001

Table 5.2: Comparison of estimated apparent build-up and effective decay rate con-
stants (in s−1, mean ± SD) for different SNR of metabolite time signals using time and
frequency domain methods. Metabolite time courses were generated by Monte Carlo
simulations using representative in vivo values kpyr→lac=0.01 s−1 and Reff,lac=0.067
s−1. The SNR was defined at the maximum of pyruvate signal.

tions based on representative in-vivo tumor signal time courses and rate constants.
At low SNR the frequency-domain fitting outperforms the time-domain method,
whereas at higher SNR the two methods converge.

Figure 5.12: Comparison of fitting in time vs. frequency domain as a function
of SNR (based on Monte Carlo simulations for assumed values). Mean (top) and
standard deviation (bottom) of estimated kpyr→lac (left), 1/Reff,lac (middle) and ratio
kpyr→lac/Reff,lac (right) are shown. The time domain fitting was performed with
(green) and without (blue) Gaussian filter of 10 Hz.
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Generally, higher SNR or sampling rate increased the accuracy of the fitting
results for both methods. For the fitting in frequency domain, various frequency
intervals around DC (cf. Fig. 5.11 rights) were tested, but no significant advantage
of using wide frequency range was found. This result confirmed the sparsity of
the signal information in frequency domain. Interestingly, applying the Gaussian
filter on the data prior to fitting in time domain, provided similar results as using
frequency domain fitting (Fig. 5.12).

5.4 Animal imaging

IDEAL spiral CS imaging was used to acquire dynamic, multislice metabolite
maps at an effective time resolution of 4 s (Fig. 5.13). The data are displayed in
form of image overlays of metabolite images with a high-resolution gradient echo
image of identical scan geometry used as anatomical reference. The metabolite
images (nominal matrix resolution of 32×32) were interpolated to the resolution of
proton images (256×256). The images contain a wealth of information including
substrate perfusion, uptake, and metabolic conversion and provided the input for
spatially resolved, apparent build-up rate constant mapping. For this purpose,
kinetic fitting according to Eq. (3.47) and (3.48) was applied on a pixel-by-pixel
basis.
Figure 5.14 exemplary displays four different slices of the tumor bearing rat in

the form of time-integrated metabolite images for lactate and pyruvate (top two
rows), the ratio of time-integrated metabolite signals (middle row) and the apparent
build-up rate constant maps of lactate estimated in time and frequency domain
(bottom two rows). In both of the tumor containing slices (slices #3 and #4), the
subcutaneous tumor clearly displays increased metabolic activity. In comparison to
the time-integrated metabolite images, the apparent build-up rate constant maps
and the ratio of time-integrated metabolite images show increased contrast for
metabolically active tissues such as the tumor (Table 5.3). In contrast, well-supplied
regions of low metabolic activity, such as the blood vessels, gastrointestinal tract
(GIT) and the kidneys, appear suppressed.
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Figure 5.13: Example
of dynamic IDEAL spi-
ral CSI experiment in
the tumor slice. Three
metabolite images
(pyruvate, lactate and
alanine) are illustrated
for the first six time
points with temporal
resolution of 8 s. The
timing is relative to the
start of data acquisition.
The signals are shown
in [a.u.], the relative
scales of pyruvate and
alanine are increased by
four times or decreased
by twice, respectively,
compared to lactate.
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Figure 5.14: Time-integrated metabolite maps of pyruvate and lactate (top two
rows, in a. u.), ratio of time-integrated metabolite signals (middle row) and apparent
build-up rates of lactate estimated in time and frequency domain (bottom two rows,
in s−1) for 4 different slices. Based on reference proton images, slices #3 and #4
contain parts of the tumor. A syringe containing [1-13C]lactate (at the top-left corner
of each image) was used as a reference for both 13C and proton images. The arrows
are pointing to tumor (green), GIT (white) and kidneys (blue).

The consistency of the proposed kinetic model and results of the kinetic fitting
in time and frequency domains is shown in Fig. 5.15. The analytical expression
between apparent rates and metabolite time signals, which was found in Eq. (3.49),
provided a good metrics for the comparison of the kinetic fitting results with the
acquired raw data. The results of fitting in frequency domain were very similar
to the raw data results even in the regions with low SNR, whereas the results of
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time SNR in tumor to kidneys tumor to GIT
tumor area CNR CR CNR CR

mean lactate
signal 25.4 2.61 0.05 8.72 0.21

kpyr→lac time
domain 7.0 4.28 0.44 4.36 0.46

kpyr→lac freq.
domain 7.8 5.20 0.50 4.17 0.48

Table 5.3: SNR in tumor area, CNR and contrast resolution (CR) of mean lactate
signal and apparent rate constant. The contrast was compared between tumor, GIT
and kidneys, which areas are shown in Fig. 5.14.

fitting in time domain showed some differences in the noise regions. In the regions
of the sufficient SNR (almost the whole area containing the proton signal of the
rat) all three methods showed nearly identical results.

Figure 5.15: Comparison of the ratio of apparent build-up rate constant kpyr→lac to
apparent decay rate Reff,lac, estimated in time and frequency domains, with a ratio of
time-integrated metabolite signals

∑
alac/

∑
apyr. The bottom row shows the same

data with a mask based on the SNR of the data.
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Figure 5.16: Comparison of apparent build-up rate constant maps with a ratio of
time-integrated metabolite signals normalized by average decay rate R̃eff,lac = 0.1 s−1

(cf. Fig. 5.14 slice #4). High apparent build-up rate constant in the tumor (green
arrow) indicates its high metabolic activity.

Figure 5.16 compares apparent build-up rate constant maps for lactate obtained
from time (left) and frequency (middle) domain fitting to an approximate one
derived from the ratio of the time-integrated signals of lactate to those of pyruvate,
normalized by the average decay rate R̃eff,lac = 0.1 s−1 (right). Equation (3.49)
shows the linear relationship between the apparent build-up rate constant and the
ratio of time-integrated metabolite signals with the apparent decay rate Reff,m as
a proportional coefficient. Owing to the fact that the major contribution to Reff,m
is caused by the repetitive excitation, and assuming relatively small differences
between T1 relaxation times in organs and a negligible backward conversion, the
apparent decay rate was substituted by an averaged decay rate R̃eff,lac. The later
was estimated from the IDEAL spiral CS imaging protocol (α = 10° with eight
excitations per 4 s time step) and assuming an average lactate T1 relaxation time
of 15 s according to Eq. (3.47). A total of four tumor rats were measured. Images
of the tumor slices of the remaining three animals and the corresponding kinetic
fitting results are shown in Fig. 5.17. The quantitative values of the apparent
build-up rate of lactate kpyr→lac in tumor were consistent with the values found in
Fig. 5.10 (c).
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Figure 5.17: Metabolic images of the tumor slices in three tumor rats and cor-
responding apparent build-up rate constant maps of lactate together with ratio of
time-integrated metabolite signals normalized by average decay rate R̃eff,lac = 0.1
s−1.





6 Discussion and Conclusions

The first aim of this work was the development of new acquisition strategies for
hyperpolarized metabolic MRI. The non-recoverable magnetization of the hyper-
polarized nuclei required to design carefully appropriate pulse sequences without
unnecessary signal depletion based on experimental inhomogeneities. For this pur-
pose, the known imaging pulse sequences were modified and optimized using opti-
mal control theory. The main focus was laid on the optimization of the preparation
pulses fur further data acquisition with fast imaging pulse sequences. The obtained
results indicate significant theoretical improvements using the developed optimiza-
tion algorithm for different pulse sequences. In further studies, the feasibility of
the method needs to be confirmed by experimental results.

The second aim of this work was to develop automatic and robust methods for
the quantification and interpretation of dynamic hyperpolarized 13C signals, with
an emphasis on spatially-resolved apparent build-up rate constant mapping. For
this purpose, dynamic FID measurements were first spectrally fitted into individual
metabolite time signals, which were then kinetically fitted to obtain the apparent
rate constants, kpyr→m and Reff,m. The signal formation was described based on
physically motivated, linear forward models.

For spectral fitting, advantage is taken of the observation that hyperpolarized
13C spectra are formed by well-separated singlet peaks without a macromolecular
baseline. Accordingly, measured time-domain signals are conveniently described
as a summation over individual metabolite basis spectra (cf. Eq. (3.41)). The
metabolite’s CS frequencies and line shape parameters, required for the construc-
tion of the FID matrix, are extracted from the same FID measurements using a
matching pursuit algorithm.
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For kinetic fitting, a two-site exchange model was adapted with two variable
fitting parameters in the form of i) an apparent build-up rate kpyr→m and ii) an
effective decay rate Reff,m. Both rate constants are of quantitative nature with
units of inverse seconds. It is important to note that kpyr→m accounts for not only
enzymatically driven forward conversion but also transport effects ([31],[34]). In
order to individually resolve these two effects, the metabolite signals would need
to be compartmentalized into intracellular and extracellular spaces, but currently
clear distinction is not possible. The second parameter summarizes the signal decay
mechanisms due to repetitive excitation, T1 relaxation, and backward conversion
into an effective decay rate Reff,m. Addressing the kinetic equation in differential
form eliminates the need for an explicit arterial input function, which is generally
difficult to measure directly [81] and is, hence, often modeled based on simpli-
fied assumptions [25]. Instead, the arterial input function is implicitly contained
in the measured pyruvate signals. A time-discretized formulation of the kinetic
model allows apparent rate constants fitting in either the time or frequency do-
main. The later description is applicable only if the entire hyperpolarized signal
time course is available but offers essential advantages. Firstly, it provides a natural
and effective way of compressing the dynamic of metabolite signals into a few dom-
inant Fourier coefficients around DC in the frequency space. Furthermore, in the
frequency domain, the noise enhancing time differentiation is avoided, which is cru-
cial in case of low SNR. Mathematically, the spectral and the kinetic signal model
(both time- and frequency domain representations) describe over-determined, lin-
ear fitting problems, which in the matrix notation can be robustly solved using
well-known algebraic methods.

The excellent spectral and kinetic fit quality demonstrated both for in vitro and
in vivo experiments (cf. Fig. 5.8 and 5.10) validates the underlying signal mod-
els including the assumption of time constant apparent rate constants and also
demonstrates the robustness of the method. For in vitro experiments, relatively
simple modification of the experimental setup was performed in order to achieve
high SNR and reduced spectral linewidth, which are required for a precise estima-
tion of the apparent rates, and therefore to allow accurate measurement of changes
in pyruvate metabolic flux. In vivo, the temporal invariability of the apparent rate
constants can be explained by the underlying Michaelis-Menten kinetics of enzyme
reaction considering fast bolus arrival, relatively high concentration of pyruvate
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and subsequent minor changes of pyruvate and lactate concentrations in the blood
during the experiment [82]. For the performed experiments, the apparent build-up
rate in the tumor was found to be comparable with the effective decay rate, an
important prerequisite for SNR efficient detection of downstream metabolites. Sig-
nal decay due to repetitive excitation is typically significant and can, to a certain
extent, be minimized via experimental optimization. For instance, spectral-spatial
multi-band excitation schemes can be used with smaller flip angles for pyruvate
and higher ones for its metabolic products ([10],[38],[78]). This increases the detec-
tion efficiency for the downstream metabolites and, at the same time, retains the
hyperpolarized substrate pool for longer detection times.

Dynamic CS imaging additionally resolves the hyperpolarized signals spatially,
resulting in up to five-dimensional detailed information of 13C metabolism. In this
work, IDEAL spiral CSI [37] was used for dynamic CS image encoding at an effec-
tive time resolution of 4 s. However, in principle, other fast CS imaging methods
like fast spiral CSI [83] and EPSI [8] can also be used. Displaying and analyz-
ing such multi-dimensional data in a comprehensive manner is challenging. Here,
spatially resolved kinetic fitting was used to compress the temporal dynamics into
two apparent rate constants. In particular, kpyr→m comprehensively visualizes the
metabolic activity of underlying tissues and organs in a quantitative and spatially
resolved manner. Because pyruvate is typically injected at partially saturation
concentration ([29],[84]), the obtained rate constants are dependent on the amount
and speed of the injected substrate as well as its distribution within the body.
Conversely, Reff,m is generally more difficult to interpret because of its cumulative
nature, which includes three distinct decay mechanisms. In comparison to a single
time point or time-averaged metabolite images, the apparent build-up rate empha-
sizes metabolically active tissue (i.e. tumor or heart) and suppresses regions of high
perfusion but low conversion (i.e. kidneys or gastrointestinal tract), which results
in improved contrast resolution. Figure 5.14 and Table 5.3 illustrate the improved
contrast provided by the apparent build-up rate, which clearly identifies the tumor
location as the region of enhanced metabolism with kpyr→lac ≈ 0.1 s−1. Very simi-
lar contrast behavior was also obtained from the DC ratio of the metabolite maps
normalized by the averaged decay rate as shown in Fig. 5.16. This method is more
advantageous for data with low SNR, but may cause less precise quantitative re-
sults, due to the underlying assumption of an average, spatially-constant apparent
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decay rate.

The developed quantification algorithm is not only limited to hyperpolarized [1-
13C]pyruvate, but can be also applied on other metabolically active hyperpolarized
compounds, e.g. [5-13C]glutamine, or improved by the co-polarization techniques.
The utility of apparent build-up rate constant mapping for the non-invasive local-
ization and characterization of tumors and their response to therapy needs to be
further investigated in dedicated studies. In particular, it needs to be investigated
whether its quantitative nature can be used in a similar manner as, for instance, the
standardized uptake value (SUV) commonly used in positron-emission tomography
(PET) [85].
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