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1 Introduction

The concept of R-Vine modeling has proven itself as very flexible way to model the
pairwise dependence especially in high dimensions. There are many investigations
that have been conducted such in (Brechmann and Czado 2011)) and (Brechmann
and Czado 2011). We base on the pair-copula constructions (PCC) from (Aas,
Czado, Frigessi, and Bakken 2009) with different copula families and a very con-
venient graphical representation of an R-Vine model developed by (Bedford and
Cooke 2002). An important issue however is that when selecting an R-Vine struc-
ture the number of possible R-Vines is growing rapidly with the dimension. For n
variables there are 2 - (";2) . %' possible R-Vines. Since, it is important to capture
the most dependence in the early trees which can allow later truncation of the
R-Vine (see (Brechmann 2010) for the concept of truncation and simplification)
and significantly reduce computational effort.

So far, Kendall’s 7 has been widely used as a measure of dependence for the con-
struction of the first tree. This method has proven itself a good way to select high
dependent variables among all possible pairs of variables. In this thesis we want to
explore the possibility of constructing the trees using another measure of depen-
dence. Now, we want to examine three alternative choices to Kendall's 7 namely
tail cumulation, Hu dependence and exceedance dependence, proposed and ana-
lyzed by (Brechmann 2010). While Kendall’s 7 models overall dependence, those
alternative measures aim to model symmetrical or asymmetrical tail dependence.
This can be a very desirable property in modeling financial data, since those show
distinct joint behavior. After, the first tree is constructed by MST algorithm of
Prim that maximizes the resulting sum of all weights. The construction of the
R-Vine model is conducted sequentially, i.e. with estimating parameters and se-
lection of an appropriate pair copula in each step (for more details see (Dissmann
2010))). For the selection of an appropriate pair-copula variable pair we chose
smallest AIC, proposed by (Genest and Rémillard 2008)) As a possible choice of a
bivariate copula family we pick Gaussian, Student t, Gumbel copulas, as well as
Gumbel rotated by 90°,180° and 270° to model positive and negative asymmetri-
cal dependence.

An extensive simulation study using different underlying scenarios was conducted
to observe what properties of data would consider using a certain weight as a bet-
ter fit.

Next we apply our methods on exchange rates ((Schepsmeier 2010)) to the US Dol-
lar to evaluate the difference in the resulting models. Since this particular data
set is rather of a small size (it contains 9 variables) we also investigate how close
each of the five considered pairwise dependence measures is reflected in every of the
resulting R-Vines. We evaluate each variable pair with respect to dependence mea-
sure coefficient and the tree of the R-Vine specification it occurs. Furthermore, we



analyze the dependence structure of the 16-dimensional data set of international
financial indices ((Dissmann 2010))) with respect to different asset classes and a
30-dimensional data set of German DAX to observe the different tree structures
resulting from different methods.

We investigated the resulting R-Vine models for each of those weights by compar-
ing such criteria as the log likelihoods, Akaike and Bayesian Information Criteria
((Akaike 1973), (Schwarz 1978))). We also concentrate on the Vuong test compar-
ison ((Vuong 1989),(Clarke 2003|). This particular test helps us decide if one of
the competing models can fit the data better than the other or if two models are
considered to perform equally well.

This thesis is organized as follows. In Chapter 2 we summarize the mathemati-
cal background that will be needed, such as theory of copulas, where we mainly
concentrate on the previously chosen copula families. We also replicate the basic
graph theory that is necessary in later R-Vine construction in Chapter 3. Next we
concentrate on the dependence measures especially we investigate the alternative
dependence measures in more detail in Chapter 4. Chapter 5 and 6 are dedicated
to sequential model selection principal and model comparison criteria. In following
Chapter 7 the results of the simulation study are summarized. In Chapter 8 we
finally apply methods on different data sets. We examine the data set of exchange
rates and international financial indices. After, we have a look at 30-dimensional
data set of German DAX ((Brechmann 2012) returns . In Section 8.4, we also
investigate a slightly modified Hu dependence coefficient as a weight. Conclusions
are provided in Chapter 9.



2 Mathematical Background

To be able to conduct the extensive simulation study and establish the best strat-
egy for choosing the weights, we will provide the necessary mathematical back-
ground. We introduce the main concept of copulas and their properties and also
look at the few certain families more closely. We also define measures of depen-
dence with will be needed for the construction of the R-Vine tree and have a first
impression of possible selection of weights. Finally, we see how bivariate copulas
are used for constructing multivariate copula models and enable high-dimensional
constructing.

First, we remind of a few facts about multivariate distributions, before going over
to the copula definition. Since this subject is widely discussed in the respective
literature (see for example (Embrechts, Lindskog, and McNeil.A 2003), (Nelsen
20006), (Sklar 1959), (Genest and Favre 2007) and others) we do not go into much
detail. For all proofs we refer to the corresponding papers.

2.1 Multivariate Distributions

Definition 2.1. Multidimensional distribution

Let X = (X, ..., X,) be a random vector. The cumulative distribution function

(cdf) of X is defined by
Fle_.,Xn(w) = P(X S a:) = P(Xl S Zy, ,Xn S $n)

For continuous X and F' p-times differentiable, there exists a non-negative proba-
bility density function fx, . x, , which results from using the joint distribution for
two random variables :

fX17~~~7Xn('T17 xn) = le ('rl) : fX2\X1 (1}2 | 1}1) Teeet an|X17-~-Xn71(1'n‘$17-~-71'n71) (2'1)

Hence, the joint cumulative distribution function is

Tn 1
FXh...,Xn(w) = / e / le,,..,Xn(ub e Un)dul e duyg,
—00 —00

where it holds [*°_ f(u)du = 1.
Accordingly, the expectation of a vector of random elements has to be understood
component by component.



Definition 2.2. (Elliptical distribution)

An n-dimensional vector of random variables X = (X, ..., X,,) is said to have an
elliptical distribution with parameters p, > and ¢, where p € R™, ¥ a non-negative
definite symmetric n X n matriz and some function ¢ : [0,00) — R, when it holds:

ox—u(y) = o(y"Sy)

for the characteristic function ox_, of X — . The density function is given by

fx(@ =2 12]7% 0 ((@—p0)"S 3(z-p)) (2.2)

with a constant A and some suitable function ¢, called generator function.

As it is known, if X ~ Ep(u, ¥, ¢) and E(X) exists, then E(X) = u. Moreover,
if the second order moments exist X is up to a constant the covariance matrix
of X, i.e., Cov(X) = X. In that case the constant A equals to -2-¢/(0) = —1,
where ¢ stands for the derivative of ¢. By setting A\ = (27)”2, and the func-
tion ¢(y) = exp(—%y) for some y > 0, (2.2) yields the multivariate normal
density function. Since it is known that the characteristic function is given by
ox(y) = exp(iy”pn — 3y"Sy), so that setting the generator ¢(y) = exp(—3y) au-
tomatically gives ¢'(0) = —1.

Another famous example of elliptical distribution which we are also will be using in
later simulations is the multivariate Student t distribution. Let v denote the corre-

v

r L —(v+n
i and o) = (1+2) "
for some positive y , the corresponding density function is defined as follows:

r (=)

2
(mv)™/2T (%)
Note that the components of X; are uncorrelated, but not independent, and their
marginal distribution is a univariate t distribution with parameter v. The smaller
v is, the heavier are the tails of the distribution. The very heavy-tailed distribution
with v = 1 is called the multivariate Cauchy distribution. The multivariate normal
distribution is obtained as a limit case as v — 1. Let ¢y, denote the cdf of
multivariate Student ¢ distribution.

sponding degrees of freedom. Using A = (7v/)72 -

fx(x) = (1+x"x/v)

(NI

2.2 Copulas

A copula is a special distribution function, which characterizes the dependence
between random variables. The crucial advantage of this particular function ap-
proach is that it enables one to investigate the dependence structure independent
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from marginal distributions, hence, it is a more convenient and elegant way to cou-
ple the margins of the variables to their joint distribution. This basically means
the margins do not have to be selected from the same (parametrical) distribution
family as the joint distribution. To generate a multivariate joint distribution we
can select different marginal distributions for each margin and different copulas.
We provide now details about this approach.

Let us consider a vector of random variables X = (X7, ...X,,) with Fy(xy), ..., Fy,(z,)
the corresponding continuous marginal distribution functions. Let f(z1, ..., z,) de-
note their joint density function and F'(x1, ..., z,,) the cumulative distribution func-

tion. Next convert those to random variables having a uniform distribution:(Uy, ..., U,,) =
(F1(X1), ..., F (X))

Definition 2.3. (Copula)
An n-dimensional copula C : [0,1]" — [0,1] is a multivariate cumulative distribu-
tion function of (Uy,...,U,) :

C(Ul, ,un) = P(Ul S Upy eeny Un S U,n) (23)

and contains all information on the dependence structure between the components
of X = (X, ..., X,). The corresponding survival copula is defined as:

C(uyy ..oy upn) = P(Uy > uq, ..., Uy > uy,) (2.4)

There are two very important properties of copula function we will discuss.
The first important property is so called Sklar's theorem(see (Nelsen 2006))), that
reveals the suitability of the copula functions for dependency modeling and also
provides the existence of the unique copula under relatively weak assumptions.

Theorem 2.1. Sklarts Theorem:
Consider the n-dimensional random variables mentioned earlier with the margins
Fy, .. F}, being continuous. there exist a unique copula

C:[0,1]" — [0, 1]
that satisfies:
F(x1,...,x,) = C(Fi(x1), ..., Fru(z2)) (2.5)

and conversely

C(uy, ..up) = F(FT wy), ..., F M (un)), (2.6)

n



where F; ' (u;), fori=1,..n are the quantile functions.
To obtain this result Sklar mainly uses the two following properties:

o for U ~ U(0,1) and G an univariate cumulative distribution function with

G~ its inverse cdf holds : GY(U) ~ G

e is G continuous and X ~ G, so is G(X) ~ U(0,1), i.e. if X ~ F with
continuous joint cdf so is (Fi(X1),.., Fn(Xn)) ~ C.In case U ~ C holds
F-Y(U) ~ F.

In this way a copula describes a certain unique unit of stochastic (in-)dependence
among a set of random variables.
Another property mentioned by (Nelsen 2006)) is that a copula function can be
estimated by the Fréchet-Hoef fding upper and lower bounds.

Theorem 2.2. For uy,us € [0,1] define:
C™ (uy, uz) := max{u; +us — 1,0} and C*(ug, uz) =: min{uy, us}

For bivariate copulas we have C~ (uy, us) < C(ug,ug) < CF(ug, ug).
In the n-variate case is C*(uy, ..., un) = min{us, ..., u, } but no longer a copula.

As the next step we are looking at the copula density, which can be obtained
by a partially differentiation of the copula, when all derivatives exist.
Let C(uy, .., u,) be a copula cdf, then copula density is defined as:

L 0°Cug, oy up)

2.
ouq - -+ Ouy, (2.7)

c1on(Ur, ooy Up)

Now if we know F(z1,...x,) = C(Fi(z1),..., F,(x,)) has continuous univariate

margins I, ..., F}, with respective marginal densities f; for ¢ = 1,...n. If C has all
derivatives of order n, the density corresponding to F' is given:

F(@1,x) = c1n(Fi(21), ..., Fo(xn)) X Hfl-(xi) (2.8)

For example, if we look at the independence copula IT"(uy, ..., u,) = uy « - - up. Its
joint distributions computes:

F(21, oy @n) = I(Fy (@), ooy o)) = Fi(21) - - - Fy(2) (2.9)

8



and the density :

_ OMI"(Fa(21), -y Fa(n))

T (F(), o Falan) = =g S =1

(see (Brechmann 2010)). For our further analysis we would need to introduce and
discuss two important groups of copula families used for the modeling the most.
That is the elliptical and Archimedean copulas.

2.3 Elliptical Copulas

The elliptical copula family includes all copulas that result from the multivariate el-
liptical distribution (see 2.1). Examples are the Normal or Student ¢ distributions.
The most famous example of this class of copula families is the Gauss-Copula.
This copula corresponds to the multivariate Normal distribution.

Gaussian copula

For the Gaussian copula with the distribution function of the multivariate nor-
mal distribution ®y; with zero means, unit variances and positive definite and
symmetric correlation matrix ¥ following holds.

Derived from the Sklar’s theorem the multivariate Gaussian copula is given as:

CS(uy, ..., un) = Ox(PH(wy), ..., 7 (un))

With # — i = & (u;) for i = 1,...,n. Using the definition of elliptical copula it
leads to another more implied definition:

1 1 =1 (u1) Ot (un) 1
Cy = g| by |2/ X / exp (—émTE_la:) dzy...dx,

o0 [e.9]

which leads to the corresponding density

c(uy, ooy un) =| 2|77 eap (1/2 - &/(I,, — £ Y))



Student t copula

Another elliptical copula is derived from the multivariate Student t distribution.
Analogously to the normal distributed copula this copula type is derived from
univariate t-distributed margins and under Sklar’s theorem. Let us denote the
correlation matrix Y as before and the v stand for the number of degrees of freedom.
With 5, the cdf of multivariate Student ¢ distribution and ¢, being the univariate
standard Student ¢ distribution’ cdf, define:

CH g, ooy tty) =ty (8 (ug), oyt (un))

Analog to the Gauss normal distributed copula, the t-copula is derived as:

v+n

T (2 t ! (u1) i (un) 1 -7
O;J v = ( 2 ) T / te / (1 + —mTZ_la:) d.flfld.’lfn
’ v

(mv): T (4) 2] Jowo —o0

Note that for ¥ — oo the defined t-copula converges to the Gaussian copula.
The corresponding density((Joe 1997)) is given by:
r(22)

2

gy (el ) T
2

02,V7(.’,C) =

However, the elliptical copulas class is mainly described by the property to model
the symmetrical tail dependence (see in the section Dependence measures). Due
to the famous asymmetries in upper in lower dependence in the financial data it
is very useful to be able to capture the extreme events while working with real
financial data.

While the two copulas of the elliptical family we have discuss are only able to
measure the symmetric dependence (Normal copula independence and t-copula
the symmetric dependence) of the joint distribution, the next copula class, the
Archimedean copulas, serve the purpose to model the asymmetric behavior in the
tails.

2.4 Archimedean Copulas:

To introduce Archimedean copulas we refer to (Joe 1997)) and (Nelsen 2006)).
Let ¢ : [0,1] — [0,00] define a strict decreasing generator function with the
following properties:

10



e ¢ convex
e »(0) =00 and ¢(1) =0

e ¢! completely monotonic inverse of the generator ¢

Archimedean copula in dimension n is defined:
Cy(ty, .oy tty) = ¢ <Z (ﬁ(ui))
i=1

To derive the corresponding density of Archimedean copulas first we define the
Laplace transform(see (Joe 1997))) of Laplace-Stieltjes transform for a non-negative
random variable. Is Y a non-negative random variable, then

Yy (t) = Ele™] = [T e ™dFy(y) , for some ¢ > 0

is the Laplace transform of Y.
Using this tool the definition of the Archimedean copula can be rewritten as:

C(u,...,un) = ¢~ (Z ¢(U1)> = (Z ¢_1(uz)>

To be able to derive a density of an Archimedean copula there is one more con-

dition that is needed to be fulfilled. In order for all the mixed derivatives till
order n to be non-negative the derivatives of 1) need to change sign till order n as
(=174 >0, for j = 1,...,n and (')’ < 0. Now finally the density is :

n

o111, s t) = a”;fl(?ﬁ 'é';:”) oy (Z wl(u1)> T (w)

i=1

The best examples for this copula class are the Gumbel-, Clayton- and the Frank-
copulas. Gumbel copula function is especially convenient due to the ability of the
bivariate copulas of that family to be nested in each other for modeling in higher
dimensions. Table 2.1 offers an overview with the respective generator and copula
functions of these examples.

Note that Gumbel copula operates only in the upper tail dependence aria (pos-
itive dependence, when large (or small for lower) values occur together) for the
parameter 0 € [1,00). For the # = 1 the Gumbel copula models the stochastic in-
dependence of the univariate distributions. Clayton copula is defined for all 6 > 0,

11



Generator Function Copula

Gumbel o(t) = (—logt)? CF Uy, .oy ty) = (6952? (2?21 —(l”)g)a

Clayton | ¢(t) =1/0- (0 = 1) | CS(uy,...;upn) = (up® +- - uzf —n+1)"s

e—t0 _ oy (exp(—Ou;)—
Frank | ¢(t) = —log <6f9_11> Cl(uy, .oy up) = —%ln (1 + H(ezl;(_zg_l)n),ll)>

Table 2.1: Generator function and copula function of Gumbel, Clayton and Frank
copula families.

for & — 0 however one gets C' = II. For the Frank copula it holds 6 # 0 and n > 2
For our further simulation studies we however are going to concentrate on three
copula families, namely Gaussian, Student t and Gumbel.

2.5 Dependence Measures

In this section we want to investigate the bivariate dependence of random vari-
ables which would allow us to explain and measure the dependencies between large
number of random variables. It is important to measure these dependence ade-
quately for the future purpose of the model construction (extensively discussed in
(Dissmann 2010))). We first discuss the most common measure of dependence that
is Spearmann’ p and Pearsons correlation. We are going to have a little closer
look at the Kendall s T as it is related to the simulation study. In this Chapter we
mainly follow (Kurowicka and Cooke 2006]) and (Nelsen 2006)).

Pearson correlation

Pearson correlation also product moment correlation is the most common mea-
sure of the linear correlation of two random variables. For two variables X,Y we
consider E(X), E(Y) expectations and Var(X),Var(Y) variances to be finite.
The Pearson correlation coefficient is given by

E(XY)-EX)-E(Y
p(x.y) = PO U0 P
VVar(X)y/Var(Y)
This measure is able to fully specify the dependence between the normal dis-

tributed random variables, whenever the requirement of finite means and vari-
ances is met. (Kurowicka and Cooke 2006|) prove that the Pearson correlation is

12



not invariant under non-linear strictly increasing transformations. The possible
values also depend on marginal distributions of X and Y. Another measures of
dependence, such as Kendall’'s 7 and estimated Spearman s p, avoid the above
disadvantages, so-called measures of association, depend on ranks.

To derive the appropriate estimate of pearson correlation we consider a sample of
given pairs of observations (x;,y;),7 = 1,..., N. Then the estimated p is given by:

val(x ~X)(y: - Y)

\/Zz (i — \/Zzl

where X = % Zi:l z; and Y = % Zi:l y;- The values of Pearson correlation lie
n [—1,1]. In case X and Y are independent, p(X,Y) = 0. The reversal however
does not hold.

Spearman’s p

Spearman’s p or the rank correlation for two random variables X and Y with
cdf ’s Fx and Fy is defined as:

Pl (X,Y) = p(Fx(X), Fy (X)).

Based on that notification (Kurowicka and Cooke 2006) define the population
version of rank correlation as:

pI(X,Y) =3(P((X1 — X3)(Y1 = ¥2) > 0) — P((Xq — X2) (Y1 — Y2) <0)),

for two independent vectors (X1, Ys) and (X, Ys). Let the distribution function of
(X1,Y1) be denoted by Fxy with the marginal distributions Fy , Fy . X, Y, are
independent with distributions Flxy and Fy. The Spearman rank correlation can
also be expressed in terms of copula. Because the Xs,Y; are independent their
joint distribution function equals Fx - Fy and their copula is the independence
copula II. Let © = Fx and v = Fy be observations from the uniform random
variables U = F(X) and V = F(Y'). If the copula of (X3, Y1) is denoted by C then
the Spearman’s p modifies to

pr(X,Y) = 12// C(u,v)dudv — 3
[0,1]2

As U and V both in fact have mean 1/2 and variance 1/12 the previous formula
yields:
EUV)—-EU)E(V)

VVar(U)y/Var(Y)

p(X,Y)=12E(UV) -3 =

13



and the Spearman’s p is the identical to Pearson correlation of ranks, i.e. is a
correlation of random variables transformed into uniform random variables with
values in [—1,1] (see (Nelsen 2006)).

Let (z;,y;) be the N given pairs of observations of the vector (X,Y). Let R?
denote the rank of the corresponding x; and RY the rank of the corresponding y;
for each i = 1, ..., N. The empirical version of Spearman’s p is given by:

[)T(X, Y) _ NEz:l(Rf;ﬁ)«F]ij - m) —
VI (R~ RN (R - Ry

where R* = % Zf\il R? and RY = % Zz]il Ry

Y

Kendall's 7

The most common measure of association is the Kendall's T (Kendall 1938))).
Let (X1,Y)) and (X5,Y3) be independent and identically distributed copies of
(X,Y). Then Kendall's T is defined as:

7(X,Y) = P((X1 — X2)(Y1 = Y2) > 0) — P((X1 — Xp)(Y1 — Y3) <0)

In case X, Y are independent, 7(X,Y) = 0. In terms of copulas the Kendall’s 7 is
expressed as follows:

7(X,Y) =4 / /[O p C(u, v)dC (u, v) — 1

for continuous X, Y with u = F'x and v = Fy. This measure is always well defined,
invariant under continuous increasing transformations. It is also independent of
the margins which makes it a good choice for later modeling. Figures 2.1 to 2.4
present pair and contour plots of the mainly discussed copula families for different
values of 7.

For the empirical version of Kendall's 7 (Nelsen 2006)) defines concordant and
discordant pair of variables. Two continuous random variables X and Y are said
to form a concordant pair if large values of one are associated with large values
of the other one. By the discordance are the large values of one random variable
associated with small values of the other respectively. For (X,Y’) and their pairs
of observation (z;,v;) and (z;,y;) this means

14



e 1; <z and y; < y; for concordant pairs

e z; > x; and y; < y; for discordant pairs
or alternatively

o (z; —z;)(y; —y;) > 0 for concordant
o (z; —z;)(yi —y;) <0 for discordant

Suppose, we have a sample of N pairs of observations. Let CP denote the
number of concordant pairs, DP the number of discordant pairs and 7,(7}) the
number of tied pairs among all pairs, respectively. Kendall’s Tau can be estimated
from an underlying data set by:

B CP - DP
JVCP+ DP+T,\/CP + DP +T,

7(X,Y)

For continuous random variables (X,Y’) the estimated Kendall’'s 7(X,Y’) can be
expressed as:

CP-DP

(3)
Note that asymmetric behavior in the tails will not be detected through this mea-
sure of dependence.

FX,Y) =

Tail Dependence

Like the dependence measures discussed earlier the measure of Tail Depen-
dence reflects the dependence between the random variables. The difference lies
in the fact that measures of association operate on the whole space [0,1]* . Tail
dependence measures the dependencies in the upper-right or/and the lower-upper
quadrant of that space, so that large values of one variable leads to large values
of the other, and small values occur with small values of the two variables respec-
tively. To define upper and lower tail dependence of two random variables X and
Y we denote F'x, Fy to be marginal distribution functions of the variables. The
concept of tail dependence is used for the purpose of measuring dependence that
arises from random variables in the presence of extreme events, i.e. how likely it
is for one risk variable to take an extreme value, given that another risk variable

15



takes an extreme value. The tail dependence measures in this way co-movements
in the lower and the upper tail dependence of bivariate distribution respectively.
The most common definition for upper tail dependence coefficient is presented by
(Joe 1997)).

Definition 2.4. (Tail dependence) The upper tail dependence parameter Ay of two
random variables X and 'Y with marginal distributions Fx and Fy respectively is
defined as

= }Li/rqp (Y > Fyl(u) | X > Fy'(u)

presumed the limit exists.
In the similar way the lower tail dependence can be defined as

A=l P (Y < Pyl ) | X < ' (u)
with the same assumption that the limit exists.
Expressed in terms of copula of X,Y these measures are given as

. 1—=2u—C(u,u)
Av =1
v ul}'r% 1—u

for upper and
)\L = lim O(U7 ’LL)
u\ 0 u

(2.10)

for lower tail dependence.(Proof can be found in (Nelsen 2006)).

Note that the parameter Ay is only defined in (0, 1] and copula C is said to have no
upper tail dependence if A\;y = 0. Similar expressions hold for lower tail dependence
parameter Az. In following there are a two examples to represent tail dependence
of different copula families: Student ¢ and rotated Gumbel. For the the first
example of elliptical copula family of ¢ copulas with v degrees of freedom and the
correlation matrix 3, proposed by (Demarta and McNeil 2005) the A is calculated
as follows. For the Ay defined as in (2.10) applying the I'Hospital rule and using
the property of copula function yields

Mg = lim €01

=1 < = i < —
lin = "= = T P(U> < w | Uy =) + lim P(Uy < w | Uy = )
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with random variables (Uy, Us) and C being their distribution function. For a
pair of continuous variables X,Y such as X = ¢;1(U;) and Y = ¢, }(U,) with
(X,Y) ~ t3(v,0,%). Next we benefit from the property of exchangeability of the
two variables X, Y (for properties see (Nelsen 2006)) the equation sums up to

t: : < —
X, =2 lim P(Y <t|X=1)

The conditional probability leads to

v+2\ 2y - pt
—— | ~t1(r+1,0,1
() (=4 L)~ )
with p being a non-diagonal element of the P matrix. Going to the limit it finally
yields out the tail dependence coefficient of the ¢ copula

VIt
Vit

The lower tail dependence of rotated Gumbel copula is fairly easy to calculate.

)\tL = 2tu+1 (_

)

— (Gu 1—
A =l S g v O (wl—w) _
w\,0 U u\,0 U

—1— lim exp (_((— logu)~? + (= log(1 — u))fe)—l/a) _
u\,0 U

=1- li{% exp (—((—logu)™? + (= log(1 — u)?)"/? —logu)

Since, the limit

exp (—((—logu) = + (—log(1 — u)?) /% — logu) 0 0
it follows Ay, = 0. See also (Brechmann 2010) for the example of Ay .
Table 2.2 offers an overview for these two measures of dependence in terms of
the defining parameter for the bivariate copula families discussed in the previous
section and a few others.
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Copula Parameter Kendall’ s Tau upper tail lower tail
family dependence | dependence
Gaussian | —1<p<1 ‘ 2 arcsin(p) ‘ 0 ‘ 0
t -1<p<l, 2 arcsin(p) 2t,,+1(—\/y+1,/1—;§)
div>1 ‘
Clayton >0 | 2 o0 | 2
Gumbel 6>1 | 1-1 | 2-277 | 0
Frank | 0<0,0>0] 1-34+420 | 0 | 0
Joe-Clayton 0>1 1~ 5o T a55) | 2-2Y° 271/
§>0 B(E2 +1,6+2)

Table 2.2: Kendall’'s 7's, upper and lower tail dependence parameters of bivari-
ate copula families. D; denotes the Debey function D (0) = foe mx—/gdx and

p(x)—1
B(z,y) = fol t1+(t — 1)¥~1dt the Beta function.
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The classical estimator of upper/lower tail dependence coefficient is the one
proposed by (Huang 1992):

Suppose we have i.i.d. observations (x;,y;),i = 1,...,n for two random variables
X and Y with copula C. The corresponding marginal order of statistics we denote
by min{wzy,...,xn} = ) < ... < 2y = max{zy, ..., 2} and min{y,, ..., y,} =:
Yy < oo S Ym) = max{y, ..., yn } respectively.

We substitute the theoretical copula C' by its empirical equivalent C,

L0 1 &
Co(—,=)=— L <ziy), ue <y 2.11
() n;(%_l’())yt Y(i)) (2.11)
For i =0 and 5 = 0 we set: o
N VA ]
Cn_a_ =0
()

Next we determine a sequence k, of natural numbers such as

kn 2= 00 and k/n == 0.

Inserting (5) into (3) and (4) the estimators of the upper/lower tail dependence
parameter are defined as:

A = m == — (@ > Tn—tn)s Yt > Yn—
v 1—(1— k) kn;(t (n—hn)s Yt > Y(n—ky))

An,kn kn kn
At = Cn(ga g)/g =7

= DM@ < 2, v < Yk,

k., 1 —
=1

t

where 1 stands for the indicator function.

The choice of k, is however not random. The empirical results of later studies
have led to so called * square root of n rule ‘ : k, =~ /n . If k, is asymptotically
equal to y/n and assuming that partial derivatives of C exist and are continuous,
then )\Z’k" is weakly consistent and asymptotically unbiased estimator of \;;. For
the purpose of precision k is often set equal to |y/n]. The disadvantage of this
rule is that it makes the estimation of tail dependence quite difficult, as it cuts
down the number of observations being used.

(Brechmann 2010) suggests further investigation of upper/lower tail dependence.
In conclusion the estimators we defined are found to be well suitable for our further
applications. A generalization of the notion of lower tail dependence was proposed
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by (Schmid and Schmidt 2007) and offers a tail dependence measure for the mul-
tivariate case.

2.6 Bivariate copula families

Referring to the last Chapter we will here investigate the copula families on that we
later base our simulation studies, namely the Gauss- , Gumbel- and the t copulas.
It is important to know the properties of the bivariate copulas used for later
construction of the pair copulas. Those will be extracted to the high-dimensional
copulas by pair copula construction. In this section the copulas used will be briefly
discussed but first we refer to work of (Joe 1997) and (Bedford and Cooke 2001},
to see the extension in the n dimensions.

Now let us go back to the bivariate copula families and have a quick overview for
three copula families we said we will consider relevant for our investigations and
modeling. We concentrate this time on the bivariate case. It has been pointed out
earlier that the Gumbel copula can only measure the positive dependence between
random variables. We however need to capture both, positive as well as negative
dependence for proper modeling. For that purpose there is a rotated version of
the Gumbel copula. This idea is applicable on asymmetric copulas (Gumbel or
Clayton) which is the case in our simulation studies, and provides certain flexibility.
Recall the definition of the survival copula (2.3) where instead of u; and uy we
consider 1 — u; and 1 — ugy respectively. Similarly, 90° we set the rotation of the
(1 — uy,u2) and the third possible rotation, the Gumbel copula rotated by 270°
with (u1,1 —ug) . In this way we will be able to cover both possible asymmetrical
dependencies, positive and negative, while using the Gumbel copula families.

All the convergence patterns of multivariate copulas also hold for the bivari-
ate ones, i.e. depending on the parameter p Gauss copula as well as Student t
copula exhibit complete positive (when p — 1) or complete negative (p — —1)
dependence.

For Gumbel copula it holds : for # — 1 the Gumbel copula stands for indepen-
dence, when 6 — oo it exhibits complete positive dependence.

The behavior of main copula families is illustrated in Figures 2.1 - 2.4.
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Copula Density function Parameter
2 :E2 $2 — 1T
e | - e (Bm)  |pecty
_ r(43*) 4ad-2p) T
t Ct(UMUQ) - Vﬂ\/lpr-dty(wl)dty(CEQ) (1 + 11’(1—2P2) ) P € (_1’ 1)
Gumbel | ¢§%(uy,up) = % -exp((—logup)f + (—logug)e)@_l/e)- 0 € [1,00)
(= logun)+(~loguz)?) /" +0-1
((f 10gu1)0+(flogu2)€)1/9
rotated 180° : ¢80y, ug) = ¢5*(1 — uy, 1 — ug)
Gumbel 90° : coo(ur, up) = c“4(1 — uy, ug)
270° : CQ7Q(U1, UQ) = ng(ul, 1— Ug)
Clayton | ¢, us) = (1+6)(ur - us)~(ur? + w3 — 1)219 | g (0,00)
e—0_1).e—0(u1+uz)
Frank cF(uy, up) = (e*ef(1+(e*19)u1_1)(169u§_1))2 0 € R/{0}

Table 2.3: Copula density functions of different copula families and corresponding
parameter range.
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(a) 7=-0.45 (b) 7=0.15 (¢c) =045 (d) 7=0.75

(e) 7=-0.45 (f) 7=0.15 (g) 7=0.45 (h) 7=10.75

Figure 2.1: Pair- and contour-plots of Gaussian copula for different values of
Kendall’s 7

2.7 Pair Copulas Construction

The idea of constructing multivariate distributions using two-dimensional copulas
was originally proposed by (Bedford and Cooke 2002)) and explicitly discussed in
(Aas, Czado, Frigessi, and Bakken 2009). Specifying bivariate copulas of selected
pairs of random variables and extending to conditional dependence for all marginal
distribution functions. Decomposition is constructed as follows. Due to Sklar's
theorem, every multivariate distribution F' with the marginals F(z1), ..., F,(x,)
can be rewritten as

F(zy,....,x,) = C(Fi(x1), ..., Fy(zy)

for some appropriate n-dimensional copula C. To derive the density function f,
we use the chain rule and get

[y, oy xn) = 1 n(Fi(z1), .o, Fn(xn)) - fi(zy) - oo folzn),

where ¢;._,(+)is a n-variate copula density .
Now, the pair-copula decomposition we get for bivariate case is:

frz(x1, x2) = cra(Fi(x1), Fa(xa)) - fi(zr) - fa(za),
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Tau=0.15 Tau=0.45 Tau=0.75

(a) 7=0.15 (b) 7=0.45 (¢) 7=0.75

Tau=0.15 Tau=0.45 Tau=0.75

(d) 7=0.15 (e) 7=0.45 (f) 7=0.75

Tau=0.15 Tau=045 Tau=0.75

(g) 7 =0.15 (h) 7 =0.45 (i) = 0.75

Tau=0.15 Tau=0.45 Tau=0.75

(Gj) 7=0.15 (k) 7 =0.45 (1) 7=10.75

Figure 2.2: Pair- and contour-plots of Gumbel (a to f) und Gumbel survival (g to
1) copulas for different values of Kendall’s 7
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(a) T=—0.45 (b) 7=0.15

(e) 7=-0.45 (f) 7=0.15 (g) 7=0.45 (h) 7=10.75

Figure 2.3: Pair- and contour-plots of Student ¢ copula with degree of freedom 2
for different values of Kendall's 7.

with ¢12(X7, X3) being an appropriate pair-copula density of X; and X5. Using
the last equation we derive the conditional densities of this factorization under
definition of conditional density. It is given as:

= —f12($1,x2) =c x x9)) - folx
f2|1(9132 ’ 1’1) = f1<m1) 12(F1( 1)7F2( 2)) f2( 2)

Since the f(x2,21)/f(x1) defines the conditional density we can extend the 3-
dimensional case to

3]12{+3 1,42 f2|1(l‘2 | l‘l)

= cizp(Frp(@1 | @2), Fap(ws | 22)) - caa(F3(3), Fo(22)) - fo(z2) (2.12)

for an appropriate pair-copula 32|1 and transformed variables Fyjo(z:1]|z2) and
F35(w3|xs). Now recall the definition of the joint density function:

flxy,mn) = flx) f(zo | x1) f(zs | 21, m0) - -+ fan | 21, ..., 221). (2.13)

Using the decomposition (2.8), the joint density of X, X5 and X3 is given by

fras(@1, 20, 23) = f2\13($2 | $1,$3)f3|1(133 | 1) fr(m1) =
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Tau=-0.15 Tau=-0.45 Tau=-0.75

(a) 7=-0.15 (b) 7= —-0.45 (¢c) 7=-0.75

Tau=-0.15 Tau=-0.45 Tau=-0.75

Tau=-0.15 Tau=-0.45 Tau=-0.75

(g) 7=-0.15 (h) 7= —-0.45 (i) 7= -0.75

Tau=-0.15 Tau=-0.45 Tau=-0.75

(j) == -0.15 (k) 7= —-0.45 (1) =-0.75

Figure 2.4: Pair- and contour-plots of rotated Gumbel by 90°(a to f) und by 270°(g
to 1) for different values of Kendall’s 7.
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= coap (Fopu (w2 | 21), Fap (s | 21)) - cra(F1(21), Fa(z2)) f2(22)-
e3(Fi(zn), Fs(xs)) f3(ws) - fa(w2) - fi(21) (2.14)

Note, this formula derived is only defined trough bivariate copulas.

To generalize this results to the n-dimensional random vector X = (Xj,..., X,)
and using the join density we need to define to sets of arbitrary components ~;,
and a matching vector ~, containing the v; as components. Let us denote v\, as
7—;. The factorization from above is then for ¢,7 =1,...,n:

F@i|v) = cijn_, (F(zi | v—5), Fxy | v—5)) f(zi | v-5)

Going one step back we apply the pair copulas with the bivariate copula distri-
bution function Cy,_,. Applying the marginal conditional distribution functions
F(z;) and marginal densities (Joe 1996) we obtain

acz‘jh_j(F(xi | Y—3) F(Ij | Y—5))
OF(x; | v—5)

Fai | ~v) = (2.15)

where Cj; | y—; denotes a bivariate copula distribution function and ~y_; is a vec-
tor with out the j—th component. Recall that the decomposition was however
not unique. This also holds for the above formula. To define an n-dimensional
vine copula there are (;) bivariate copula needed. More over all of them can be
specified completely independent of each other. This leaves us with a very large
amount of possible construction especially for large dimensions. This makes the
question of optimal modeling a priority. For this purpose we will introduce the
concept of reqular vines or R-Vines in next chapter.
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3 Regular Vines

In this section we introduce the theoretical background of regular vines or short
R-Vines. Based on the results of (Bedford and Cooke 2001), (Bedford and Cooke
2002) and (Dissmann 2010) we will see how the R-Vine is stored in terms of a
matrix, which makes the further investigation more tractable, and the section also
contains an overview of the graphical representation of an R-Vine model to mirror
the pair copula construction discussed in the previous section.

3.1 Graph theory

Constructing an R-Vine model we first need to introduce definitions from basic
graph theory that we refer to later. In this section we only list the “tools“explicitly
used for model construction. For further references see for example graph the-
ory/optimization literature, such as (Diestel 2006), (Harris, Hirst, and Mossinghoff
2008)).

Definition 3.1. A pair G = (N, E), where N is an arbitrary finite set and F €
{{ni,n;} : n;,n; € N} is called a graph. Elements of N are called nodes, and
elements of E edges of the graph. A graph G' = (N, E’) with N’ C N and
E' C E is called subgraph. If there exist a function w : E — R* the graph G is
called weighted.

Two nodes are connected if and only if there is an edge linked to both of the
nodes. The degree d(n;) of node n; is the number of edges attached to it. Since
the order of n;,n; is arbitrary, the graph G is called wundirected. Next definition
is important and helps to define R-Vine trees later.

Definition 3.2. A path in the G graph is a sequence of nodes such that for every
one of them there is an edge connecting to the next node, i.e.

for N = {nqy,....,ni},k > 2, it holds {n;,n; 1} € E, fori =1,....k — 1.

If the start node n; and the end node n; are linked by an edge, the path is
called a cycle.

Is the graph G undirected and acyclic, it is called a tree T' = (N, E). For a tree
T it is equivalent:

e T is a tree

e T is connected by (N-1) edges
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e any path connecting two nodes in T is unique

Algorithm of Prim and maximum spanning tree

Algorithm of Prim can be found in various literature(see for example (Cor-
men, Leiserson, and Stein 2001)),(Grama, Gupta, and Karypus 2003) ) and is a
sequential method used to find the minimum spanning tree. This algorithm deliv-
ers a solution if the graph is connected, since there will always be a path to every
node (see (Dissmann 2010))). However, it also can be applied to find a maximum
spanning tree in analog way. It operates on weighted graphs and searches for a
subgraph that connects all nodes of the graph and maximizes the resulting sum of
weights.

Algorithm 1. Prim/s algorithm

Input A non-empty connected weighted graph G = (N, E)

Output Mazimum spanning tree T,,, = (Ny,, Ep)

1. InitializeN,, = {n,,} with node n,, € E as a starting point and E,, = {}
2.while N,, # N do

e select an edge el in E such that it connects a node in N,, with a new node n/
in N with el ¢ E, i.e. the new node is not already connected with selected
edges, and the weight | w | is mazximal

e add the new node to N,, and the new edge el to E,, respectively

3.end while

This algorithm repeatedly adds the shortest edge incident to N, and delivers a
tree connecting all nodes with the maximum possible value on weights w;; (positive
or negative) for edges e;; connecting the two nodes 7 and j(for proof see (Dissmann
2010))).In case of C-Vine one needs to look for a spanning star instead of the tree,

and- in case of D-Vine -a Hamiltonian path (see (Dissmann 2010), (Brechmann
2010) for details).
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3.2 Regular Vines

The R-Vine is a graphical model widely discussed in (Bedford and Cooke 2001,
Bedford and Cooke 2002)) and by (Kurowicka 2009, Kurowicka and Cooke 2006) to
organize different pair copula constructions. They define a regular vine or R-Vine
as a nested set of n — 1 trees such that nodes of a tree are built of the edges of
the previous tree and the edges are joint only if they share a common node in the
previous tree. More formal definition is:

Definition 3.3. A sequence of linked trees T1,...,T,_1 is a vine on n elements if
(1) T1 = (Nl,El) with N1 = {1, ,n}

(ii) for i =2,..,n — 1 T} is a connected tree with nodes N; = E;_;
It is called regular vine if additionally holds the

(i) proximity condition: for i = 2,...n — 1 and {e;, e} € E; with ¢ =
{ei,, e, },er ={er, €r,} then exactly one of the ¢, equals one of the e,,.
This condition guarantees that there is only edge {e;, e, } in the tree T; when
e; and e, share a common node in the tree T;_;.

The vine is called a D-Vine, if additionally each node in the first tree 77 has
a degree not higher then 2.
If each tree T; has an unique node of degree n—1 it is called canonical or C-Vine
and the node with the maximal degree in T} is called the root node .
To be able to define the pair copula constructions based on R-Vines we follow
(Kurowicka and Cooke 2006)) and define constraint, conditioned and conditioning
sets.

Definition 3.4. For an edge e € E;

(i) For two nodes n;,n; if n; is an element of n; it is said to be m-child of n;.
Node n; is called m-descendent of n; if through the relation n; € n;; €
... € nj one can reach the node 7 from the node j. The complete union U{
of an e € Ej is the subset of all nodes in N; consisting of m-descendants of
e.
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(ii) The constraint set associated with an edge e € E;,7 < n—1 is the complete
union U¢ i.e. all the variables that can be reached from the edge e.

(iii) Fore € Ej,i =1,...,n—1and e, e, € E;_y,if e = {e}, e, } then D, = U NUS,
is the conditioning set associated with e,i.e. the intersection of the com-
plete unions of ¢; and e,. For e € F; this set is empty.

(iv) First, the symmetric difference of two sets of elements A and B is commonly
defined by AAB = (A\ B)U(B\ A). Then, the conditioned set associated
with e is given by the symmetric difference of the complete unions of e; and e,

{Ce,em Ce,er} = UGZAUST = {Uecl \D67 UeCT \ De}-

Finally we note a few properties of an R-Vine (see (Kurowicka and Cooke
2006|, Dissmann 2010)) for further references). For a regular vine with the set of
trees (T, ..., T,,—1)it holds:

e the number of edges is n(n — 1)/2

e cach conditioned set is a doubleton, each pair of variables occurs exactly
once as a conditioned set

e it two edges have the same conditioning set, it is same edge.

3.3 R-Vine copula

As mentioned earlier the R-Vine model is very useful for the specification of the
bivariate copulas in a pair copula construction. In the first tree there are n — 1
bivariate copulas to be selected, which represent the dependencies between vari-
ables. They are given by the conditioned sets of the edges. For the next tree we
have conditional copulas between these variables given by conditioned sets and
also conditional on the values of the variables that are given by the condition-
ing sets of the first tree edges. We are however mostly interested how to define
the vine copula density to express the distribution of an R-Vine. First recall the
construction of the bivariate copulas from the previous section.

_ 8Cij|,y_j (F($z | '7—j)> F(JJJ ‘ 7—.7'))

o) OF (1 | 7—)

(3.1)

30



Figure 3.1: An example of 8-dimensional R-Vine
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where Cj; | v—; denotes a bivariate copula distribution function and ~_; is a
vector without the j-th component. Now let V = (7,...7\_«) be an R-Vine
on n elements with margins Fi,..., F,,. (Kurowicka and Cooke 2006) define a
multivariate distribution based on an R-Vine as follows:

Definition 3.5. For an R-Vine V on n elements:

e Let F = ([, .., F,) be a vector of invertible continuous marginal distribution
functions and V an R-Vine on n elements. Further for set E; of edges of the
tree T; let B={B. | i =1,..,n— 1;e € E;} denote a copula set with pair
copula B.. Then (F,V, B) is called a copula vine specification.

e The joint distribution F of a vector (Xi,..X,,) of random variables with
margins F; is said to realize the R-Vine copula specification, when for each
edge e € FE; with e = {e,e,.} B is the bivariate copula of conditional
distributions (Xj, X,) conditioned on Xp,, where Xp, := {z;,i € D.}. In
this case it is called an R-Vine distribution.

For an edge e € E with conditioned elements ¢;, e, and the conditioning set
by D, denote the conditional copula by Cg, . p. and its density by c, . p.. For
1 =1,...,n let the density functions f; correspond to margins F; , respectively. For
an R-Vine copula specification on n elements the uniquely specified vine-dependent
distribution that realizes this copula specification has the density:

frontwrs o) = TG0 TLTT aneon (FGoe | X0, Flae, | X0)) - (32)

i=1 c€E;

This formula can be simplified for a D-Vine or C-Vine. We however only present
the general case of the R-Vine in this thesis. (see (Bedford and Cooke 2001)) and
(Kurowicka and Cooke 2006)), (Aas, Czado, Frigessi, and Bakken 2009)) for proof
and further references).

3.4 Matrix representation

This advantageous way of presenting and storing an R-Vine matrix was used by
(Kurowicka 2009)) and explored in detail by (Dissmann 2010). Due to this method
it is possible to store all the information from the nested trees in one n-dimensional
matrix. As mentioned earlier we identify an R-Vine by the constraint set. Hence,
we first define a constraint set of a lower triangular matrix.
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Definition 3.6. The i-th constraint set of a lower triangular matrix M = (m; ;) j=1,..n
is given by

Cu (i) = {({mii,mi}, D) [k =i+ 1,...n; D = {muy14, ... ni} (3.3)
fori=1,...n—1.

Note that conditioning set D is empty for k = n.
Then the constraint set of M is simply defined as the union of the constraint sets
of the elements, i.e.

To give an impression on how this specification allows to read its entries we give
an H-dimensional example.

mii
mo1 Ma2
M= |ms1 m3s ms3

Mg Mg Myg3 MNMyy

Mms1 M2 Ms53 M54 M55
All the diagonal entries (mq 1, m22 and so on) stand for elements of the constraint
set. We pick an element in the same column such as ms; for example and all
the elements after in the same column (my4;,ms1) generate an element of Cy/(1)
namely ({my1,m31}, {ma1, ms1}) that corresponds to an edge of T3 in the R-Vine.
Using this notation we follow (Dissmann, Czado, Brechmann, and Kurowicka 2012))
to define the R-Vine matrix.

Definition 3.7. A lower triangular matrix M = (m;;); =1, is called R-
Vine matrix if it holds that

(1) {miﬂ-, ...,mm} - {ij, ...,mn’j} for 1 <7< <n,
(11) mi’i ¢ {mi+17i+1, ...,mnﬂqu} fOI' Z = 1, = 1,

(iii) fori=1,..,n—1land forallk =i+ 1,...,n—1:
BM(TL— 1),
where By (i) :={(m;;, D) :k=1i+1,...n;D = {mgs, ... mni}}
and BM(Z) ={(mg;, D) k=i+1,...,nD={m;;} U{mer14,...,mn;}}
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Parts (7) and (ii) explore how the combination of, the process whereby the

entries of a column are reflected in the column to the left and the fact that there
is a new entry on the diagonal in every column, results in the sequential addition
of new variables to the R-Vine matrix from right to left, as previously described
by both (Kurowicka 2009) and (Dissmann 2010). The third definition part serves
as a better understanding of the way the matrix works and this is necessary for
definition. However it agrees to the proximity condition of Definition 3.
The way we have defined the R-Vine matrix allows deriving a few useful properties.
First, it can be shown that all elements of a column are in fact different and for
a given n-dimensional R-Vine matrix deleting the first row and the first column
leaves an (n — 1)-dimensional R-Vine matrix. This n property can be expended.
(Dissmann 2010) has a very detailed discussion of the construction and storing
all the information of an R-Vine model by the matrix system. Based on those
considerations we will illustrate an R-Vine matrix for a 5-dimensional example.
Recall the matrix of the previous example

my 1
ma1 M22
M= |ms1 m3z2 ms3

Mg My My3 MNMyy
ms1 Ms2 Ms53 M54 My
or in more convenient representation let it have the entries:

Il
DN = Ot W
=N Ot
[N

2

5 5

Given the conditions 1. and 2. of Definition 3.7 are satisfied and hence, we have a
R-Vine matrix. It is defined by 4 trees T}, ... Ty each of them specified by 5 — 7+ 1
nodes and 4 —7+1 edges,i = 1, ...,4. The nodes of the first tree T} are 1,2, 3,4 and
5 ; and the edges of T} and nodes of T3 are given by {{m;;,m,;} :i=1,...,n—1:
here {{ml 1, M5, 1} {{m2 2, M5 2} {{m3 3, M5 3} {{m4 4, M5 4}

In this example this corresponds to {1,4},{1,2},{2,3},{3,5}. In similar way the
edges of T3 and nodes of T5 are given by {{m;;, m,—1; | mu;} i =1,...,n —
2},which are

Hmag,man | msat, {mag, mas | msat, {mas,mas | msst} or {1,5 | 2},{1,3 |
2},{2,4 | 3}, respectively.

In trees T3 and Ty we have: {{my1,m31 | ma1,ms1}, {ma2,ms2 | Mao, ms2}}
specified as {3,5 | 1,2},{4,5 | 1,2}. The last tree 75 is given by {mj1,ma; |
Mg, M1, Ms1}},0.e.{3,4|1,2,5}.

In general for every tree T; the edges are specified by diagonal element combined
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with the element in row n — j + 1 and conditioned on last elements of columns
1=1,....,n—11ie.

{mi,ia My —j4+1,i | Mp—j+2,i5 7mnz}

It is important to notice that the R-Vine matrix representation is not unique and
there are 27! different possible matrices for a given R-Vine.

Besides the matrix M (Dissmann 2010) shows a way to store the chosen bivariate
copula families as well as corresponding parameters of an R-Vine in two addi-
tional matrices. We denote them F = (f;;) and P = (p;;) for i,5 = 1,...,n,
respectively. As previously seen, the entry m;, j of M describes the copula of the
variables {m;;, m;; | mji14,...,my;} for i < j, the corresponding entry of ma-
trix F', f;; describes the type and the corresponding entry of P, p;; describes
the parameter of this copula. For the copula families that require two param-
eters a third matrix P2 = (p2;,) is defined in a similar manner. For example
for the 5-dimensional matrix M defined earlier the entries of F' and P given by

f1,1 P11
f2,1 f2,2 P21 P22
F = f3,1 f3,2 f3,3 P = P31 P32 P33
f4,1 f4,2 f4,3 f4,4 Pa1 Pa2 P43 P44
f5,1 f5,2 f5,3 f5,4 f5,5 Ps1 Ps2 D53 DPsa Pss

where fg’l stands for the Copula type of {ml,l, ms1 ‘ My, m571},i.e. 03’5‘172 and P31
is the parameter of this copula.
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4 Dependence weights and their estimates

In this section we investigate different choices of weights used for the selection
of R-Vine. First, we want to discover and examine the best choices of building the
first tree in the R-Vine models, as we know the selection of the first tree T} plays
most important role in the following selection of the best copulas and fitting of
copula parameters. Due to the very large number of R-Vines in high dimensions
this approach enables us to obtain the good fitting model without calculation of
all possible R-Vines. This saves a significant amount of time and computational
effort. Once determined, the first tree as one that allows us to capture the most
significant dependencies between the variables, often in the financial data leads
to later trees that contain weakly or even independent pairs. We use heuristic
methods to sequentially specify the next tree and then continue with this process
until tree T,,_; is constructed. In each step once we have to select the structure of
the tree and, for each pair the bivariate copula family has to be chosen. Finally
for each chosen copula family the corresponding parameters need to be estimated.

Our first choice of the weight would be Kendall’s 7, since it has proven itself as
adequate dependence measure and is widely used for sequential R-Vine selection.
To remind the empirical Kendall’s 7 is given by

C-D

HX,Y) =
i ) VC+D+T,,/C+D+T,

(4.1)

(see section 2.5). Starting with the selection of R-Vine structure using alternative
weights we mainly follow (Brechmann 2010) and choose weights proposed in his
thesis. We concentrate on those who allow us to capture the most tail dependence
which is a useful property for financial data.

For calculation define a pair of random variables (X,Y’) with marginal distribu-
tions Fx(z) and Fy(y). The joint distribution function is given as Fxy(x,y). So
do (U, V') denote the transformed versions of (X,Y) as U := Fx(X), V := Fy(Y).

4.1 Tail Cumulation

An alternative to Kendall’s 7 that we are going to use for the choice of weights
is the tail cumulation. This measure of dependence is based on a graphical ob-
servation. We want to investigate those pairs of observations that show strong
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Figure 4.1: An example of distribution without tail dependence (a) while the
plot on the right shows very strong tail dependence (b). Note, that upper tail
dependence is larger than the lower tail dependence.

dependence in the tails. For that purpose we look at the upper-right and lower-
left quadrants of [0, 1]2.

The idea behind this is simply to compare our dependent data observations to
those of independent data. To be more specific, the boundaries that are calcu-
lated from independent observations are applied to dependent observations. For
example, for two random variables U; and U, that are independent and uniformly
distributed on [0, 1] the upper boundary u"?P*" is derived from:

P(Uy > u"™" Uy > u"PP") = o,

given that o € [0, 1]. If we say for example o = 15%, this would mean we marked
15% of all observations that are placed in the upper right corner of the scatter
plot. Figure 4.1 shows an example of independent (left) observations and those
who show certain dependence in the tails (right).

Similarly, the lower boundary is defined as:

P(Ul S ulower7 U'2 S ulower) =0
Calculation of the boundaries is also fairly easy. It holds:
o = P(Uy > u"PP" Uy > u"PPe")
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Due to independence of the variables U; and U; we have:
P(Ul > uupper7 U2 > uuppe'r) — P<U1 > uupper)P(U2 > uuppe'r)'

Since P(U; > u"PP") P(Uy > u"PPeT) = (u"PP°")? the result is u"PP" = /o for upper
boundaries and in a similar way u!°**" = 1 — /o for lower boundaries.

In the case that variables X and Y are dependent one can observe that the bound-
aries of the scatter plot in upper right and lower left corner contain more than
15% of all observations each.

Now let (U}, Uf),i = 1,...,n denote independent copies of (Uy,Us). Define

n
upper .__ E ) .
N — I{UiL>uupper,Ué>uupper} (42)

=1

for the upper boundary quadrant, i.e. for [u“?P*" 1]? and similarly

n
lower ,__ § :
N . I{Uiiguupper’Ugguuppcr}

=1

for the lower quadrant corner, i.e. [0,u!°**"]2. In the next step we can define the
upper and lower tail cumulation as:

lower
— o and ~lewer .= N o

upper .__ NUPPeT
Y = .

n
nupper

Using data (ui,uj), v*P**" is estimated by Yypper = “—— — 0, where n"?*" =
S I (ul >un sl >us}- Similarly 4lower is derived. For the case of observations
(zi,9:) € R? we transform first to [0,1]* by using the empirical cdf's Fx(z) :=
L3 Tgi<ay for X and Fy(y) := 2 3" T, <y for Y respectively. Then we can
define the corresponding estimated upper and lower tail cumulation as:

IR :
e = =y W(Fx(ws) > u™, Fy(ys) > u") — o (4.3)
i=1

~ lower 1 - n lower T, lower

¥ = n;I(FX(%) < u By (y) < u) —o.
If we look at this definition more closely we obtain that positive values of upper
and lower tail dependence show movement in the tails, as it means there are more
dependent observations than set by independent o boundaries. In our simulation
study we are going to use the boundaries u“P" = y!°v*" = ().1 as this is the best
choice according to a Monte Carlo simulation on study contained in (Brechmann
2010).
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4.2 Hu Dependence

The idea of this dependence measure is proposed by Hu (2006). In order to
investigate both degree and structure of dependence between random variables we
are going to use a copula family that consist of three different copulas, Gaussian
copula, Gumbel- as well as Gumbel survival copula. According to the investi-
gations by (Hu 2006) and (Brechmann 2010) this copula mixture will allow us
to capture different dependence structures, that often occur while using financial
data. We refer to notation of (Brechmann 2010) since it is a little more convenient.
First recall that the bivariate Gaussian copula with parameter p € [—1,1] given
by

€%, v) = B, (@ (u), 8 (0))

has symmetrical dependence structure. Further

Lt (—log(v)) )™

cb‘,_.

Co, " (u, v) = exp(—((~log(u))

is a Gumbel copula with association parameter 6; € (0,1]. Here, dependence
becomes weaker with increasing ¢;. This copula is asymmetric about (0.5,0.5) and
has positive right tail dependence, while A\; = 0.(see also Table 2.1.) The third
copula function that has been applied in the work of (Hu 2006) is the Gumbel
survival copula, i.e. Gumbel copula rotated by 180°. According to section 2.6 it
is defined as:

Co, " (u,v) == u+v — 14 Cp, (1 —u, 1 —v),

With parameter 6, € (0,1]. This copula captures the lower tail dependence. We
are particularly interested in this property since recent events in the financial mar-
kets have shown, that large losses for different risks tend to occur more often at
the same time compared to large gains.

Let wy,ws € [0, 1] be weights such that w;+wy < 1 and consider the mixture copula

Cmixture<u7 U) _ (1 —w — WQ)CPGG('LL, U) + wlcglGu<u7v) + WQCHQSG(U, ’U) (44)

Now suppose we have a series of observations from C™®%¢(qy, v) and we are in-
terested in the calculation of weights. Basically we want to know ‘how much‘ our
mixed model that is unknown to us, should contain of each copula it consist of,
i.e. Gaussian, Gumbel and Gumbel survival. In order to determine the weights a
solution of the following optimization problem :
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My wp Y 10g((1—wi —wa)e; (i, o) +wicg, ™ (i, ys) +wacy, " (i, 9)) (4.5)
i=1

subject to wy,wy non-negative with w; + wy < 1, needs to be provided.

We follow the approach suggested in (Brechmann 2010)).

Empirical Kendall’ s 7 as well as inversion formulas (see Table 1) are used to
estimate the parameters of dependence p,0; and 6, keeping in mind that due
to same inversion formulas of Gumbel and Gumbel survival copulas it holds that
6, = 6,. To maximize the log likelihood of C™tre copula density with respect
to wy and wy from (3.4.) (Brechmann 2010) suggests the adaptive barrier method
of (Lange 1999)). This yields the estimates w; and w,. We call @& the upper
Hu dependence coefficient and @y the lower Hu dependence coefficient. To the
value (1 — @ — @) (Brechmann 2010) refers as “normality “of the data. He also
shows that including this measure in the mixture model is important as it allows
certain flexibility in case that tail dependence of the data does not exhibit strong
asymmetry. According to Monte Carlo simulation study provided in (Brechmann
2010) for different copula families different choice of Kendall’s 7 based on R = 1000
repetitions and n = 1000 observations, Hu dependence performs quite well for
our selection of copula families. For the Gaussian and Gumbel copulas it is well
estimated with increasing accuracy. Due to the properties of Student ¢ copula to
display lower as well as upper tail dependence it is best estimated by mixture of
Gumbel and Gumbel survival copula each to 50%.

4.3 Exceedance Dependence

The further tool to investigate the asymmetric dependence is the so-called
exceedance correlation. The definition of this dependence measure proposed by
(Longin and Solnic 2001)) and (Ang and Chen 2002) is:

Bacorr(X,1) = {oorr(X,Y\X <61,Y <6y), ford, <0,6,<0
Corr(X,Y|X > 0,,Y > 83), for 6; > 0,9, > 0.

As one can see this measure is based on Pearson’s product-moment correlation
coefficient.

The discussion from (Ang and Chen 2002) has shown that there exists asymme-
try in the exceedance correlation: large positive returns are much less correlated
than large negative returns. It is also rather difficult to calculate due to it being
affected by marginal characteristics. Since we want a measure that is independent
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of marginal distributions we consider the idea of (Brechmann 2010)) to use the
Kendallls T

instead, as this measure does not change under strictly increasing transforma-
tions and is independent of the marginal distributions of the variables X and Y.
So in order to measure the joint tail behavior of two random variables we define
the upper and lower exceedance Kendall's T as:

TuppeT(X7 Y) = T(X,Y\X <d,Y < (52)
(X,Y) = (X VX > 1= 6L > 1 )

According to (Nelsen 2006)) these can be expressed in terms of the copula function

as:
4

(1—u—v—|—C’(1—51,1—52))2x

TP (X,Y) =

X /1;2 /1;2(1 —u—v+C(u,v))dC(u,v) —1

and
fower : [ e
TMNXY) = m/o ; (u,v)dC(u,v) — 1,

respectively.

Out of all discussed copula families only the lower exceedance 7 of the Clayton
copula is relatively easy to calculate and equals 2%, others are rather difficult due
to the computation of the integrals (see also (Brechmann 2010))).

The empirical versions 777" and 7/°“¢" of these measure are derived using the cor-
responding empirical Kendall’s 7 under given conditions. During the estimations
it is important to choose the thresholds d; and dy correctly as they determine the
number of observations used in the estimation and play a crucial role when mea-
suring exceedance dependence. Empirical studies show that the theoretical value
of exceedance 7 are consistent with the empirical values when using 6} = 05 = 0.8

for upper and &} = 0 = 0.2 for lower measures.

4.4 Rotated Measures

In this section we will briefly discuss the rotated measures discussed in (Brechmann
2010)). These measures are needed for capturing the negative dependence between
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Dependency measure ‘ Estimates of rotated dependence measures

tail dependence %jfppe" =+ 5 M > Teny, v < yw)
Nower: — %Z:‘Zl I(z: < 2wy, Y > Ynr))

tail cumulation jupper — LS8 L(F(x;) > u™?Per F(y;) < u") — o
pyiower — %Z?:l I(F(l'l) S ulower7 F<yl> > ulower) -0
exceedance dependence 7P (X Y) = 7(X, Y| X <61,Y > 69)
Flover(X,Y) = #(X,Y[X >1-6,Y <1-108y)
Hu dependence use rotated Gumbel copula

and rotated Gumbel copula (270°)

Table 4.1: Overview of the weight measures corresponding to a 90° rotation of
(Brechmann 2010).

observations, since through the measures discussed in the previous sections one
can only investigate the positive tail behavior. Hence, to describe the dependence
of variables with underlying rotated copulas, such as rotated Gumbel for example,
the dependency measures given in previous section are slightly modified. Table
4.1 gives an overview for dependency measures rotated by 90° . Note that due
to rotations not being unique (clockwise or counterclockwise) rotated measures
cannot be simply added to non-rotated(see (Brechmann 2010)).

4.5 Discussion of dependence weights

In this thesis we are searching for the most appropriate weight when selecting an
R-Vine tree structure sequentially. The appropriate weight measure will be de-
termined by an extensive simulation study. To capture the behavior in the tails,
especially asymmetric tail behavior we use measures of tail dependence instead of
Kendall’s 7 and Spearman’s p. Due to their symmetry, elliptical copulas obtain the
same values of upper and lower tail dependence, i.e. Ay = A, . The asymptotic
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tail dependence parameter is zero for the Gaussian copula and positive for the t
copula. This means if we suspect tail dependence in the data we should discard
the Gaussian copula as a model. The symmetric tail dependence of the observa-
tions generated by the Student t copula is however well estimated. The Gumbel
copula allows for good upper tail dependence while the lower one is zero. In case
of exceedance dependence, i.e. exceedance Kendall’s 7, the variable pairs display
strong correlation in lower left and upper right quadrant. Note, that theoretical
and empirical values of estimates of exceedance dependence are consistent. The
measure of tail cumulation used under same settings delivers much poorer results
(see (Brechmann 2010))). It fails to discriminate the pairs with strong dependence
from those without, with the exception of tail asymmetry of Gumbel with certain
parameter values. The results of estimates of the Student ¢ copula are indistin-
guishable from those of Gaussian copula.

For the Hu dependence (Brechmann 2010)) obtained good estimates for Gumbel,t
and also Gaussian copulas. It also provides more accurate results if the depen-
dence in the pair of variables increases.

For our studies and simulations we are going to use absolute values of Kendall’s 7
and Spearman’s p as absolute values as we require positive weight. The thresholds
for exceedance dependence are set as d; = 0, = 0.2 due to the best estimation
results (see (Brechmann 2010)). Using the tail cumulation we set the boundaries
by 0.1. Later on we concentrate on the maz measure which is the maximum of
the two weights to capture the maximal asymmetric tail dependence.

Perhaps, one word about the computation of the discussed weight measures. Ex-
cept for the Hu dependence every weight we considered took approximately the
same computational effort. The calculation of the Hu dependence however was sig-
nificantly slower due to the underlying optimization problem being more complex
than the calculation for the other weight measures.

5 Sequential R-Vine Model Selection

Based on the fact that the main idea of R-Vine is to capture the most significant
dependencies in the first tree, we now have a look at the selecting the appropriate
model. It is an important step as we know there is a large number of possible R-
Vine representations and it grows when dimension becomes larger. The approach
of (Dissmann, Czado, Brechmann, and Kurowicka 2012)) centers on choosing the
R-Vine tree structure sequentially starting from the first tree 7} until the last tree
T,_1. To keep the model parsimonious we like to capture the strongest dependen-
cies as measured by the weights introduced in the last section in the first tree. For
this we compute the positive weight );; for all possible pair of variables. Out of
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all possible edges (ij) we select the first tree as the tree which maximizes the sum
of weights contained in the tree, i.e. we maximize:

max E )\i,j7 (51)
T tree
on n nodes e=(i,j)

edge in T

This maximization is facilitated using the maximum spanning tree (MST) algo-
rithm of Prim. For all pairs of T} select an appropriate copula and fit the corre-
sponding parameters. For the construction of next tree we use this copulas and
corresponding parameters to transform the observations using (3.1). They will
be used as input values to compute the empirical weight of all pairs of variables,
considered to built the next tree, i.e. all pairs that satisfy the proximity condition
of Definition 3.3.

This procedure is repeated until all trees are specified. Algorithm 5.1 summarizes
this procedure for our selection of the edge weights. It can also be found in (Diss-
mann, Czado, Brechmann, and Kurowicka 2012). There the Kendall’s 7 is used as
the edge weight, but it can be extended to any other of the weights presented in
Section 4.

Algorithm 2. Sequential method to select an R-vine model

Input: Data (xp,...x), =1,...,N (realizations of i.i.d. random vectors).
Output: R-vine copula specification, i.e., V,B.

1. Calculate the weight X\;; corresponding to the chosen method for all possible
variable pairs {i,j}, where 1 <i < j < n.

2. Select the spanning tree that maximizes the sum of absolute edge weights, as in
Algorithm (5.1)

3. For each edge (i,7) in the selected spanning tree, select a copula and estimate
the corresponding parameter(s). Then transform Fj;(xy | xi;) and Fj;(zy | 24),
l=1,...,N, using the fitted copula C;;

4. Iteration over the trees:
fork=2 ..n—-1do

d. Calculate the corresponding weight X; jp for all conditional variable pairs
(1,7 | D) that can be part of tree T;, i.e., all edges fulfilling the proximity
condition
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6. Among these edges, select the spanning tree that mazimizes the sum of absolute
selected edge weights, i.e.,

max E AijID;

e=(i,j|D)
edge in T

7. For each edge (i,j | D) in the selected spanning tree, select a conditional cop-
ula and estimate the corresponding parameter(s). Then transform Fy;up(xy |

Ty, Tp) and FjﬁuD(xlj | xu, ®p), 1=1,..., N, using the fitted copula Cyjjp

8. end for

5.1 Fitting the copula and its parameters

Once the first tree is defined we then select pair copulas from the families discussed
previously (Gaussian, Student t, Gumbel and Gumbel survival), that are believed
to indicate well performing properties (see (Brechmann, Czado, and Aas 2012))
to model positive and negative dependence as well as asymmetrical behavior and
investigate whether the variables are independent. Suppose we have a parametric

copula family
C={Cy|0€0,0cR} t>1 (5.2)

which is assumed to model the dependance between two random variables X and
Y and C denotes unknown distribution function of (X,Y’), i.e. the null hypothesis
is given as

H()iCEC. (53)

This requires estimation of the parameters 6. Let (z;,y;) denote a given random
sample from (X,Y) for i = 1,...,n. To estimate the parameters of these observa-
tions a certain maximum likelihood method is used ((Genest, Choudi, and Riverst
1995)) and (Genest and Favre 2007, Pedreira Collazo and Canela 2007). The em-
pirical versions Fy(z) = 23" Ii,<,y and Fy(y) = 37 Iy, are used to
replace the unknown margins F'x, Fy. Then the observations can be transformed
into a set of points (u;, v;) such as

ui:Fy(xi) and v; :Fy(yi), i=1,...,n

and the likelihood is defined as:
N
Mt (e) = ZZOQ@O(W,W))-
j=1
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Maximizing with respect to @ delivers the desired estimate 6. The approach for
copula selection we use is based on the AIC= —2log(max.likelihood) + 2k. (see
section 6.2.) and has been discussed in (Manner 2007)) and investigated in (Brech-
mann 2010) and is considered to be a reasonable selection criterion. This method
compares two competing models according to their AIC value. The AIC for each
possible family is computed and we choose the copula with smallest AIC.

5.2 Choosing the independence copula

We want to perform the test of independence in our simulations since it would
enable us to evaluate the pairs of variables that do not exhibit dependence. Also
an independence test conducted in advance may significantly simplify the model
construction. For this we test for the null hypothesis

(Genest and Favre 2007) investigate the bivariate independence test based on

Kendall’s 7, since we know from Section 2.5 it holds 7(X,Y’) = 0 in case variables

X and Y are independent. To test the hypothesis the empirical version of Kendall’s

7 from (4.1) is used. In fact, under Hy the statistic 7 is asymptotically normal
: : 2(2N+5)

with mean zero and variance equal to g NV

of significance, the Hy should be rejected when

If we set a as an appropriate level

IN(N —1)

2@N 15 | #(X,Y) |> @711 —«a/2),

where ®~1(1 — «/2) is the (1 — a/2) quantile of the standard normal distribution.
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6 Model comparison of R-Vines

Once R-Vine models have been selected, we would need to compare them to
each other in order to choose the “better“one. To perform this task we need a pro-
cedure of model selection, a test that would be appropriate for non-nested model
selection. We choose the Vuong test. This test is a relative discrimination test,
which means it would not reject both of the competing models. It also specifies
the significance level to which the decision has been made. Before we investigate
the Vuong test we will look at the underlying approaches: Kullback-Leibler infor-
mation criterion and Akaike and Bayesian information criteria. For this section
we refer to the papers of (Clarke 2003 Clarke 2007) and (Vuong 1989)).

6.1 Kullback-Leibler information criterion (KLIC)

This criteria proposed by (Kullback and Leibler 1951)) is a measure of closeness.

It is widely used in developing model discrimination tests. Consider a statistical
model class F' = {f(X [;0),0 € ©}. KLIC measures the distance between the
unknown true density hy and the approximate model based on estimate 0 of the
pseudo-true value of 6, defined as:

KLIC = Ey(log ho(X)) — Eo(log f(X | 6)) (6.1)

Where Ej stands for the expectation with respect to the true model.

To find the model contained in F' that is nearest to the true one, KLIC is mini-
mized. However, due to the fact that the true model specification is unknown, the
KLIC can not be directly estimated, then the closest model must be the one which
maximizes Eo(log f(X | 6)). In other words we are looking for a model whose ex-
pected log-likelihood is larger in comparison to a rival model of F'. The expectation
is estimated by the average over the log likelihood contribution of each observation.

6.2 Akaike information criterion (AIC)

The AIC , introduced by (Akaike 1973) combines the principal of measuring the
distance between two models using KLIC and a measure for model complexity.
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Definition 6.1. Let é denote the maximum likelihood estimate of 8 for a given

parameter vector Ox = (01, ...,0;). The Akaike information criterion is defined by

AIC = =2 "log f(x; | §) + 2k (6.2)
=1

A

= —2log L(0) + 2k

for i.i.d. observations X: z;,i = 1,...,n of X.

The first term of the equation measures the inaccuracy of the model while the

second penalizes the log-likelihood when there are additional free parameters in-
cluded in the model. So if there are several competing models, the parameters will
be estimated by the maximum likelihood method and then the values of AIC need
to be computed and compared in order to find the one with the minimum value
of AIC - the chosen best model.
Note that if the sample size gets significantly large the first term of AIC increases
with it, but the second penalty term does not since it is fixed. Hence, the term
2k has only a small effect on the AIC for large n, which displays the need for a
stronger penalty term. An alternative method that satisfies this requirement is
the Bayesian information criterion.

6.3 Bayesian information criterion (BIC)

The (Schwarz 1978) Bayesian information criterion is the most popular extension
of the AIC to compare nested models. It is defined as

BIC = —2210g fzi | 6) + Eklogn (6.3)
i=1
— —2log L(#) + klogn

with k the number of free parameters to be estimated and L(#) denotes the max-

imized log likelihood of the model considered. Given two different models to be
compared the one with the lower BIC value is the one to be preferred.
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6.4 The Vuong test

In this section the discrimination test of Vuong ((Vuong 1989)) is presented. This
test offers an improvement to the presented model selection criteria such as AIC
or BIC. It operates on relative and not absolute terms. This means if the test
passes a certain pre-specified level it will choose a model that is closer to the
true model specification even if both model are in the far distance from that true
specification.

The Vuong test is based on the Kullback-Leibler criterion. Consider two given
models with corresponding densities

f(-165) and g(- | G,)

Then the corresponding maximum likelihood estimates 0 I3 ég need to be compared.
Using KLIC (Vuong 1989) defines the null hypothesis of the test as

, FX 6 _
or equivalently R R
Ey(log f(X [ 0)) = Eo(log g(X | b)) (6.5)

that the two models are considered to be equally close to the true model. Is one
of the expected values larger than the other, so is the corresponding model to be
preferred. The expected value of the null hypothesis is however unknown. To
consistently estimate the expected value and to be able to directly compare the
two models in terms of closeness to the true specification, Vuong demonstrates
that under fair general assumptions it holds

1 A A a.s. X é
—LR,(0¢n,0,,) — Eo <log f(—|Af)> ,where (6.6)
n Q(X | 09)

LRy (01, 05.0) = Ln(01.0) = Lyn(0g,0) (6.7)

and

:_Z<log9%|egn)> < Zlog9§:| jii) 09

=1

denote the estimated standard deviation. According to (Vuong 1989)) under the
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null hypothesis Hy:

LR, (01,0,.)
On - /1
i.e. the likelihood ratio statistic is asymptotically normally distributed. This

means that the null hypothesis Hy will be rejected at level a when the resulting
likelihood

2, N(0,1) as n — oo (6.9)

LR, (0f,0,.,)
On - /1

and model Fy is preferred over model Gy if the value of likelihood is larger ®~1(1 —
a/2) and model Gy over model Fy if this value is smaller ®~1(1 — «/2).

In a further investigation (Vuong 1989) shows that the above test is sensitive to
the possibility that the models may have a different number of parameters. He
proposes a corrected or adjusted Vuong test which takes the dimensions of the
models into account. Vuong suggests to use either AIC or BIC for the correction
of the test. The adjusted statistic is then defined as

> o711 —a/2) (6.10)

LR, (010, 04) = LR, (O1,0,0) — Py — P, (6.11)
where Py, P, denote the number of estimated parameters of the corresponding

models. In similar way the Schwarz correction of the Vuong test is defined as

LR, (0f0,0,0) = LRy (05,0,,) — (Ps/2)logn — (P,/2) logn (6.12)
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7 Simulation Study

In this Chapter we apply the strategies we discussed in the previous Chapters on
different scenarios. We simulate 1000 times from a given R-Vine considered as
the “true “model for each of twenty different scenarios with different set of pair
copula families and parameters. For each of these scenarios an R-Vine is sequen-
tially specified using one of considered strategies, i.e. different weights in selection
of trees. For this purpose we notify the strategies by numbers according to the
weight used:

e Strategy 1 : Kendall/s 7

e Strategy 2 : Tail Cumulation. We chose maximum of lower and upper
coefficient using boundaries=0.1, i.e.

maX{,?upper’,?lower - qupper — ulower — 01} (see (43))

e Strategy 3 : Hu Dependence. Maximum of lower and upper coefficient to
capture max asymmetrical tail dependence, i.e.

max{wi,ws} (see (4.4)).

e Strategy 4 : Exceedance Dependence. Maximum of lower coefficient with
thresholds=0.2 and upper coefficient with thresholds=0.8, i.e.

maxc{7uper plower . i — §u = (.8, 6} = §, = 0.2} (see Section 4.3).

We repeat this 100 times and then compare the resulting R-Vine models by
Vuong test . We hope to specify a “better “Strategy or perhaps an alternative
to the widely used method based on Kendall/s 7. Pairwise independence tests are
made to reduce number of parameters.

7.1 Scenarios and Methods

We consider the 8-dimensional R-Vine model given in Chapter 3 Figure 3.1. to be
our “true “model, so that the original tree structure, copula families and parame-
ters are known to us for each scenario we choose. In terms of matrix representation
as described earlier the R-Vine matrix is given by:

WK - U
N = WO ot
DW= O
DW=

W N =]

N W=

w N
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We summarize for each scenario:
e 8-dimensional R-Vine

e 1000 sample size

e 100 data sets

We apply the strategies mentioned earlier. Our goal is to see which of this models
will enable us to get the “closest fit “to the original R-Vine model.

As mentioned earlier we will use 20 different scenarios. Figure 7.1 provides an
overview. Clearly, they are based on different copula types and strength of depen-
dence. To summarize:

e Copula type:

(i) all mixed pair copulas (non-elliptical)

(ii) T1-T3 Student t , T4-T7 Gauss (elliptical)
e Dependence structure

(i) all trees allow for dependent pair copulas (dependent)
(ii) T4-T7 contain only independence copulas (independent)
(iii) T4-T7 contain only Gaussian copulas (simplified)

e Dependence strength:

(i) monotonically increasing

(ii

) monotonically decreasing
(iii) constant strong
)

(iv) constant weak

From the Figure 7.1 we can see that the Scenarios 21-24 correspond to the
Scenarios 17-20 with respect to the higher order trees and that leaves us with
20 scenarios in total. The precise specifications with corresponding family and
parameter matrices can be found in Appendix A.

At last we recall the copula families we choose for modeling in this simulation
study. Those are:

e Gauss copula with no tail dependence
e Student t copula, exhibits tail dependence

e Gumbel copula, to capture upper tail dependence
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e rotated Gumbel copula

(i) 90° : no tail dependence
(i) 180° : lower tail dependence

(iii) 270° : no tail dependence

Note also, t and Gaussian copulas belong to symmetrical copulas while Gumbel

and rotated Gumbel are asymmetric. From the previously conducted studies it
is know that this list of copulas is able to model positive as well as negative
dependence.
We will use maximum likelihood method to estimate the parameters and the AIC
method for the pair-copula selection. We decide in favor of the model with smallest
AIC. In addition, we want to see which of the “changed “factors in a R-Vine model
specification would have a greater influence on the resulting fitted model. For this
purpose we simulated from the “true “model under same conditions two further
models. In the first one we estimated the parameters leaving the tree structure
and the pair-copulas identical to the “true “ones. In the second we estimated
parameters as well as the pair-copulas. Later in this Chapter we will discuss the
results of the log likelihood comparison for all models.

7.2 Results of the non-nested model comparison using the
Vuong Test.

In this section we summarize the results of the model comparison based on the
Vuong test, discussed in Chapter 6. We compare our strategies pairwise. Let the
Hy of the test be that our two models to be compared perform equally well, i.e.
we can not choose the Strategy providing a “better fitted “model. The decision
is made at level a = 0.05. Figure 7.2 displays the results of the test. Every
“~“sign means that the null hypothesis Hy could not be rejected the test could
not prefer one model over the other. We add the number of times out of 100 when
we could not reject Hy and in case it is larger then 50 will say the models can not
be distinguished in terms of Vuong test. If it is not the case, we count how often
one of two compared models performed better. However, we need to keep in mind
that while giving additional information on the statistical significance (see Chapter
6), the Vuong test does not deliver any information on the general goodness-of-fit.
To check the reliability of the performed test we have a look at the normal QQ
plots for each Scenario. It will give us an impression on whether the normality
assumption is met and the statistics are normally distributed. These are found
in Appendix A. However, due to the simulation size of 100 data sets being rather
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Figure 7.1: Overview of scenarios for the simulation study. Precise specifications
can be found in Appendix A.1.

. Dependence Correlation
Copula families
structure strength
Scenariol mixed T4-T7 indep mon. decreasing
Scenario2 mixed T4-T7 indep const. weak
Scenario3 mixed T4-T7 indep const. strong
Scenario4 mixed T4-T7 indep mon. increasing
Scenario5 mixed T4-T7 Gauss mon. decreasing
Scenariob mixed T4-T7 Gauss const. weak
Scenario?7 mixed T4-T7 Gauss const. strong
Scenario8 mixed T4-T7 Gauss mon. increasing
Scenario9 mixed all dependent mon. decreasing
Scenariol0 mixed all dependent const. weak
Scenarioll mixed all dependent const. strong
Scenariol2 mixed all dependent mon. increasing
Scenariol3 T1-3:t; T4-7: Gauss T4-T7 indep mon. decreasing
Scenariol4 T1-3:t; T4-7: Gauss T4-T7 indep const. weak
Scenariol5 T1-3:t; T4-7: Gauss T4-T7 indep const. strong
Scenariol6 T1-3:t; T4-7: Gauss T4-T7 indep mon. increasing
Scenariol?7 T1-3:t; T4-7: Gauss T4-T7 Gauss mon. decreasing
Scenariol8 T1-3:t; T4-7: Gauss T4-T7 Gauss const. weak
Scenariol9 T1-3:t; T4-7: Gauss T4-T7 Gauss const. strong
Scenario20 T1-3:t; T4-7: Gauss T4-T7 Gauss mon. increasing
Scenario21 T1-3:t; T4-7: Gauss all dependent mon. decreasing
Scenario22 T1-3:t; T4-7: Gauss all dependent const. weak
Scenario23 T1-3:t; T4-7: Gauss all dependent const. strong
Scenario24 T1-3:t; T4-7: Gauss all dependent mon. increasing

o4



small, we expect skewness in the QQ plots. Hence, in the most cases we would
relax the assumption in order to validate the test.

7.3 Ranking of strategies Performance

Once the test results are summarized, we provide an overview in Table 7.1 using
ranking for validation. This would give us a better impression on the results of
the Vuong test.

Scenarios with mixed copulas Kendall TailCum HuDep FExceedDep

Scenariol 2 1 0 1
Scenario2 3 0 0 2
Scenario3 2 0 2 1
Scenario4 2 0 3 1
Scenariob 2 0 3 1
Scenario6 0 1 3 2
Scenario7 2 0 3 1
Scenario8 0 1 3 2
Scenario9 2 0 3 1
Scenariol0 1 0 2 3
Scenarioll 3 0 2 1
Scenariol2 1 0 3 2
Scenarios with elliptical copulas | Kendall TailCum HuDep ExceedDep
Scenariol3 2 0 0 2
Scenariol4 2 0 0 2
Scenariolb 1 0 3 1
Scenariol6 2 0 3 1
Scenariol7 2 0 1 2
Scenariol8 2 0 3 1
Scenariol9 2 0 3 1
Scenario20 2 0 3 1

Table 7.1: Ranking on the Vuong test results. Each number represents the
“score“of the corresponding Strategy.

In Table 7.1 each number denotes the points each Strategy receives for perform-
ing better than the others. For example, in Scenario 11 the Strategy 1 performed
better than other three strategies, i.e. gained 3 points. Analogously, 2 points are
given when a Strategy performs better than two others. Whenever the test could
not decide between two strategies, we will give them equal number of points. For
convinience, we denote each Strategy with appropriate abbreviation.
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Figure 7.2: Results of the Vuong test. Here M stands for “Model chosen by
Strategy “and the number for the number of times certain Strategy was preferred
over other, respectively.

| MI>M2 M1 =M2  Mi<M2 MI>M3 M1=M3 MI<M3 | | MI>M4  M1=M4  Mi<M4

Scenariot 46 4 - 0
Scenario2 24 1 21
Scenario3 1 0 3 38
Scenario4 19 5 4 4
Scenario 7 8 16 21
Scenario6 38 0 4
Scenario7 6 18 16
Scenario8 1 2
Scenario9 3 0 35
Scenario10 42 5 36
Scenario11 7 1 23
Scenario12 35 2 15
Scenario13 33 2 34
Scenario14 7 0 16
Scenario15 5 0 30
Scenario16 24 15 11 12
Scenario17 5 12 11 5
Scenario18 17 2 38
Scenario19 1 0 15
Scenario20 6 1 30

TOTAL 358 166 657 395

M2>M3  M2= M3 M2<M3 M2>M4 M2 = M4 M2<M4 M4>M3  M4= M3 M4<M3

Scenariot 1 0 0 ind
Scenario2 26 36 49 17 ind
Scenario3 1 7 16 1 1 ind
Scenario4 1 5 25 32 3 ind
Scenario5 3 8 13 21 18 sim
Scenario 1 9 18 38 20 sim
Scenario7 1 2 22 24 3 sim
Scenario8 1 3 31 33 6 sim
Scenario9 3 9 10 12 17 dep
Scenario10 24 23 22 31 32 dep
Scenario11 4 10 16 18 15 dep
Scenario12 5 18 23 18 dep
Scenario13 30 12 43 39 ind
Scenario14 20 4 34 32 ind
Scenario15 8 2 1 25 ind
Scenario16 12 36 17 11 ind
Scenario17 4 30 18 5 sim
Scenario18 28 6 27 30 sim
Scenario19 3 4 5 14 sim
Scenario20 6 8 1 22 sim

TOTAL 269 330 503 370




Figure 7.3: Results on the normality assumption for every scenario. If the assump-
tion is not fulfilled it is denoted with “© “.Note, that mostly it is the case when

Strategy 3 is preferred over one of the other strategies.

Scenario 1 M1>M2 /| M1>M3 v | Mi1>M4 V| M2>M3 v | M2xM3 /| M4>M3 V|
Scenario 2 M1>M2 /| M1>M3 v | Mi1>M4 V| M2~ M3 v | M2<M4 /| M4>M3 V|
Scenario 3 M1>M2 V| Ml=M3 v | M1>M4 V| M2<M3 ©| M2<M4 V| M4< M3 V|
Scenario 4 M1>M2 V| Ml<M3 o] Ml1>M4 V| M2<M3 ©| M2<M4 V| Mi< M3  ©|
Scenario 5 M1>M2 o Ml<M3 v | M1>M4 V| M2<M3 v | M2<M4 V| Mi<M3 V|
Scenario 6 M1<M2 V| M1<M3 v | MI<M4i V| M2<M3 v | M2<M4 V| M4i<M3 V|
Scenario 7 M1>M2 V| M1<M3 v | Mi>Mi V| M2<M3 v | M2<M4 V| Ma<M3 |
Scenario 8 Ml<M2 /| Ml<M3 v | Mi<M4 V| M2<M3 v | M2<M4 /| M4< M3 V|
Scenario 9 M1>M2 © M1<M3 v | Mi>M4 V| M2<M3 | M2<M4 /| M4a<M3 |
Scenario 10 M1>M2 V| Ml<M3 v | MI<M4 V| M2<M3 v | M2<M4 V| M4>M3 V|
Scenario 11 M1>M2 V| M1>M3 v | M1>M4 V| M2<M3 v | M2<M4 V| M4< M3 V|
Scenario 12 M1>M2 V| M1<M3 v | MiI<M4i V| M2<M3 v | M2<M4 V| M4i<M3 V|
Scenario 13 M1>M2 /| M1>M3 v | MixM4 V| M2~ M3 v | M2<M4 /| M4< M3 V|
Scenario 14 M1>M2 /| M1>M3 v | MixM4 V| M2~ M3 v | M2<M4i V| M4>M3 V|
Scenario 15 M1>M2 /| M1<M3 v | MlxM4 V| M2<M3 v | M2<M4 V| M4< M3 V|
Scenario 16 M1>M2 V| Ml<M3 v | M1>M4 V| M2<M3 v | M2<M4 V| M4< M3 V|
Scenario 17 M1>M2 © M1<M3 o Mi>M4 o M2<M3 ©| M2<M4 V| Mi< M3 ©|
Scenario 18 M1>M2 V| M1>M3 v | MixM4 V| M2<M3 v | M2<M4 V| M4>M3 |
Scenario 19 M1>M2 V| M1<M3 v | Ml>Mi V| M2<M3 o M2<M4 /| M4i<M3 V|
Scenario 20 M1>M2 © M1<M3 | Mi>Mi V| M2<M3 v | M2<M4 V| Ma<M3 /|
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To have a better impression on the ranking of strategies we analyze them by
counting their overall performance. This means we see how often each of them
“earned“a certain place. We also analyze the performance of each individual Strat-
egy according to the properties of the scenarios. From Figure 7.4 we can see that
Strategy 2 preforms very poorly for both of the copula family choices. Strategy 3
tends to compete for the first place. Strategy 1 performs well for both of the choices
and seems to be rather consistent with its ranking. Strategy 4 tends to perform
well and take 2nd and 3rd places. Note also that it is never “outperformed“by
any other Strategy. However, it is easier to rank the strategies when applied on
scenarios with elliptical copula families. Here, first place is reserved for Strategy
3, followed by the Strategy 1. Strategy 4 takes third place. Finally, the least
preferable is the Strategy 2.

For an overview with a different perspective Figure 7.5 shows the total number
of each Strategy fitting best, i.e. taking first place, when we separate scenarios
according to their dependence and correlation features. With color yellow we mark
the Strategy outcome that scores best and with green we mark the second place
winner. Since this Figure only reflects the number of times each Strategy per-
formed best, it does not contain all outcome numbers. Those are summarized in
Appendix A.

We can see that for Scenarios with independent trees we would choose the Strat-
egy 1 while 3 takes place 2 followed by Strategy 4. For dependent and simplified
scenarios,i.e. Scenarios using Gaussian copulas in trees T, — T%, Strategy 3 takes
first place while 1 and 4 would be equal next choice. Strategy 2 would be least
preferable. This pattern is partly repeated if we have a look at the ranking ac-
cording to the correlation properties. Strategy 3 is winner when the correlation
monotonically decreases and offers second best choice for other types of correlation.
It is also preferred in case of constant strong correlation as well as monotonically
non-decreasing. Strategy 4 would be the preferred in case of constant weak cor-
relation. All in one we could say that the Strategy 3 seems to offer the best fit
tightly followed by Strategy 1 and Strategy 4 as second choice. The model fitted
using the Strategy 2 approach seems to be rather to decline.
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mixed copulas Kendall TailCum HuDep ExceedDep
Rank 1 4 0 8 1
Rank 2 4 1 2 5
Rank 3 2 2 0 6
Rank 4 2 9 2 0

t/Gauss copulas Kendall TailCum HuDep ExceedDep
Rank 1 3 0 5 3
Rank 2 4 0 1 0
Rank 3 1 0 0 5
Rank 4 0 8 2 0

Figure 7.4: Ranking of the individual strategies denoted corresponding to the
weight used according to their place.

T4-T7 Kendall TailCum HuDep ExceedDep
independent 5 0 4 2
dependent 1 0 2 1

simplified 1 0 7 1
dependence .
Kendall TailCum HuDep ExceedDep
structure
mon.decreasing 2 0 3 1
const.weak 3 0 1 3
const.strong 2 0 4 0
mon.increasing 0 0 5 0

Figure 7.5: Ranking of the individual strategies according to the number of times
they took first place.
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7.4 Discussion of the Log Likelihood Values

In following we introduce and analyze the log likelihood values of the performed
simulation. We denote the introduced model as follows:

o TTT : “true “model

e TTE : parameters estimated

e TEE : parameters and pair-copulas estimated

e M1 to M4: model choosing weights by Strategy 1 to 4, respectively.

For each Strategy and each scenario the corresponding 100 log likelihood points

are summarized in a boxplot. For a better comparison the Figures 7.8 to 7.9 show
the log likelihoods relative to the “true “model,i.e. in percentage to the value of
the TTT as median.
At the first look one can immediately observe the crucial role that the choice of
the tree structure plays. In compare to the TTE and TEE model, where the tree
structure was maintained, all of the four strategies we use show a large differ-
ence in the likelihood values. In some of them one can see that while we “lose
points“through estimation of the parameters and/or pair-copulas, the impact is
still relatively small in compare to the jumps when the tree structure is fitted.
Since we use the same selection procedure for each of our strategies (maximum
likelihood for parameter estimation and smallest AIC for selection of the copula
families),we can analyze the results by corresponding groups and not individually.
The selected tree structure becomes the most important factor for the evaluation
of the strategies performance. In following we investigate the performance of the
strategies according to the underlying scenario.

Scenarios with mixed copulas vs. scenarios with elliptical copulas

To compare the differences in the performance of scenarios using mixed copula
families (Scenarios 1-12) to those who use t-copula in trees 1 to 3 and Gaussian
copulas in trees 4 to 7 (Scenarios 13-20) we have a look at Figures 7.6 and 7.7 and
observe the differences. At first, we want to see how the TTE and TEE models
behave in compare to the TTT model in each of this Figures. Both of them show
rather small differences in the likelihood values and seem to have a similar pat-
tern. The main difference lies in the likelihood values of the model chosen by our
strategies. In scenarios with mixed copulas M1-M4 show much larger “loss“till up
to 30-35% while in those with t/Gauss copulas this difference is visual but not that
major. By elliptical scenarios we can also observe that the “loss“range is rather
undeviating and held around 10%, while the scenarios with mixed copulas exhibit
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Figure 7.6: Log likelihoods values corresponding to 12 non-elliptical scenarios.
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Figure 7.7: Log likelihoods values corresponding to 8 elliptical scenarios.
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Figure 7.8: Log likelihoods values in % of the models corresponding to 12 non-
elliptical scenarios .
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Figure 7.9: Log likelihoods values in % of the models corresponding to 8 elliptical
scenarios.
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various numbers from relatively small (Scenario 1,2) to rather large (4,7,8,11,12).
Now, if we have a look at the log likelihood values of the M1 to M4, we can observe
that similar to Vuong test results, Strategy 4 seems to perform medium well, while
Strategy 2 delivers rather poor results due to its inflexibility. The most interesting
strategies appear to be 1 and 3. The Strategy 3 seems to be either best or worst
choice, due to the extreme behavior of the underlying weight. Nevertheless, it
seems to offer a good solution in both of the scenario types. Note also that Strat-
egy 1 and Strategy 3 often deliver almost equally good results. This was also the
case in the Vuong test performance. At last , we note that all four strategies seem
to perform in very similar patterns for mixed and elliptical scenarios according
to their correlation properties and the dependence properties. The exception are
Scenarios 6 and 18 with constant weak correlation and simplified higher trees.

(i) Scenarios with monotonically increasing correlation

When looking at the performance of the monotonically increasing correlation
scenarios we notice the drop of the likelihood values between TTT, TTE and TEE
and models and those chosen by the Strategies 1 to 4. While by Scenarios 4 and 16
with independent higher order trees TTE and TEE model seems to still perform
quite well, Scenarios(4,12,20) with dependent trees exhibit “loss“within this com-
parisons. The overall likelihood values also drop rapidly for all strategies. This
means that the dependence in higher trees is rather problematic. In the case of
increasing dependence the Strategy 3 is clearly preferred.

(ii) Scenarios with monotonically decreasing correlation

When comparing scenarios with monotonically decreasing correlation to other
correlation types scenarios the first notice is that the likelihood value of these
scenarios are the highest. Hence, those correlation features are more realistic.
Scenarios with assumed independence in higher order trees (1 and 13) show rela-
tively small drop in likelihood value between strategies but out rule the Strategy
3 in their choice. However, the likelihood value itself is smaller than those of
the Scenarios 5,9 and 17. This indicates that the independence in higher trees is
rather difficult to capture. On the other hand if the we are given dependent or
even simplified trees in the scenarios, the likelihood of the models increases and
delivers ordered Strategy choices.

(iii) Scenarios with constant strong correlation
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If we look at the Scenarios 3,7,11,15 and 19 which assume constant strong cor-
relation we observe that the overall likelihood values are rather large, yet slightly
smaller than those of the scenarios with monotonically decreasing correlation.
Again, the dependence in higher trees provides a little larger values of likelihood.
Next thing we notice is that the Scenarios 7,11, and 19 lose value in the estimation
TTE and TEE already which can be considered to occur due to the dependence in
the higher trees property, while scenarios 3 and 15 with independent trees keep the
values of TTT, TTE and TEE almost equal. However, all strategies show similar
pattern in their performance.

(iv) Scenarios with constant weak correlation

In the Scenarios with constant weak correlation (2,6,10,14 and 18) the likeli-
hood values are very small in compare to any other correlation type. Hence, it is
easier to underestimate the difference in the performance of strategies and make a
wrong choice. We also notice that analog to scenarios with monotonically decreas-
ing correlation and independent higher trees the loss in likelihood by strategies in
compare to T'TT, TTE and TEE models is very small and the Strategy 1 is the one
with highest value of likelihood in compare to others. Due to the low correlation
value we expect the weights be rather centered and this is the case in Strategy 1.
Strategies 2,3 and 4 looking for the most tail dependence are clearly lower.

7.5 Conclusions

We want to summarize the results from the Vuong test comparison as well as the
results we were able to derive from the likelihoods.

First of all, the major role in goodness-of- fit is played by the tree structure,i.e. it
has the biggest impact on the likelihood value. The estimation of parameters and
pair-copulas are rather unimportant. This however is different for monotonically
increasing and constant strong correlations and dependent higher order trees. If
we compare mixed copulas scenarios to the one using only elliptical copulas, all
t/Gauss copula scenarios have a smaller “loss“in the likelihood values. In mixed
scenarios the best choice is Strategy 3 followed by Strategy 1. Strategy 1 and 3 also
perform almost equally well if we have all dependent trees. In case of independent
higher trees we need to look at the correlation. If the correlation is increasing or
constant strong, we favor the Strategy 3. When the correlation is constant weak
or decreasing Strategy 1 is clearly best choice. The weak correlation causes very
low likelihood values and rather bad goodness-of-fit. Strategy 4 seems to perform
consistently well in every environment, but is hardly the best choice. Strategy 2
loses to all others Strategies in mixed as well as elliptical copula scenario types,
except just a few.
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8 Applications

In this section we will apply the strategies discussed in previous chapters on three
different data sets. The first data set we look at is the exchange rates from (Schep-
smeier 2010) and (Dissmann 2010). Due to the relatively small size of nine variables
we will be able to have a better chance to analyze the outcome. We compare the
different choices of first tree made by each strategy using the maximum spanning
tree algorithm and also to see which of them shows the biggest change in the
likelihood values. We also investigate the performance of our strategies applied
on the (Dissmann 2010) financial indices data set and the German DAX data set
which due to the large size we have summarized the results in a brief overview. In
our applications we will use the sequential method from Chapter 5 to select the
appropriate R-Vine. Individual copula parameters are estimated via maximum
likelihood. For the selection of copula family we use the smallest AIC approach.
For each of variable pair we apply independence test with level 0.05.We use the
same copula families selection as in the simulation study (Gaussian,Student t,
Gumbel and rotated Gumbel). Also, for t-copulas with degree of freedom larger
than 30 instead the Gaussian copula will be used.

8.1 Exchange Rates Data Set

The exchange rates data set contains 9 variables, each with respect to the US-
Dollar from 7,/22/2005 to 7/17/2009. The notation is given below in Table 8.1.

notation H currency

EUR Euro

UK British Pound

CAN Canadian Dollar

Kendall AUS | Australian Dollar

BRA Brazilian Real
CH Chinese Yuan
JPN Japanese Yen
S7Z Swiss Frank
IN Indian Rupee

Table 8.1: Short names and corresponding currency of exchange rates.

Figure 8.1. shows ARMA(1, 1) and GARCH(1, 1) models fitted to individual
time series. For detailed information on parameters see (Dissmann 2010). Resid-
uals were transformed using their empirical distribution function. According to
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dependence structure based on Kendall’ tau ( pairs-plots are given in Figure B.1,
we can observe those pairs of variables that display stronger dependencies in com-
parison to others. For example, pairs using EUR, UK or SZ. We apply our four

strategies and compare the different R-Vines that every strategy chooses as ap-
propriate.

Figure 8.1: Time series development of exchange rates with respect to the US-
Dollar from 7,/22/2005 to 7/17/2009.
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Comparison of the resulting first tree

Since we are using different weight measures in our strategies we are interested
in whether and how significantly the selected R-Vine models differ from each other.
For this purpose we first look at the first tree 77 of each of the models. Since the
weights were different we are mainly interested if our strategies select different
pairs of variables among all possible pairs to maximize the resulting sum. Figure
8.2 shows the T for three of our strategies, without the Strategy 2 which uses tail
cumulation as weight. The reason is that the first tree of Strategy 1 and Strategy
2 coincide, i.e. Strategy 2 chooses same pairs of variables as most important. This
can also be obtained in the overview of R-Vine matrices and family matrices in
Appendix B.1. The width of the edge in the trees is denoted with the copula
family that was selected as appropriate and the corresponding value of theoretical
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Figure 8.2: First trees of the full R-vine copula model based on Strategies 1,3 and
4 for the exchange rates data set . The edge labels indicate empirical Kendall’s 7
and the bivariate copula families between the respective variables.

Tree 1
JPN
1,037
1,0.1
1,0.69
EUR
1,0:19 1,047
1,0:52
t,0:36
CAN
1,032
BRA

(a) Ty of R-Vine using Kendall’s 7 or tail cumula-
tion as weight

Tree 1
BRA
,025
1,0:36 1,0.69
AUS EUR
1,0.24
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JPN
[wg '°
1,0.1

Tree 1

EUR
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0:43 G.o.os se,o.o

1,0

B3

1,0.07

(b) Ty of R-Vine using Hu dependence as weight

(¢) Th of R-Vine using exceedance dependence as weight
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Kendall’s 7. The larger this value the thicker the edge line is .

At first we can immediately observe that selected pairs of variables differ corre-
sponding to the applied strategy. Since, Strategy 1(S1) and Strategy 2(S52) select
same pairs of variables out of all passible pairs, we compare Strategies 3(S3) and
4(S4) to the first tree chosen by the Strategy 1. We can see that there is a strong
connection between EUR,UK,SZ and AUS, CAN as well few others which were
selected by the Strategy 4, while IN and JPN are connected by independence cop-
ula. Strategy 4 prefers mostly different pairs in the first tree to maximize the sum
of absolute values of underlying weight. However, it chooses AUS,BRA like in the
Strategy 1 and IN,JPN as in Strategy 4. Remarkable is also the choice if appro-
priate copula families. While Strategies 1,2,4 are almost exclusively occupied by
t copula to model symmetrical tail dependence, Strategy 3 chooses many Gumbel
survival to mirror the lower tail dependence.

Figure 8.3 gives an overview of all selected pairs of the exchange rates data set
according to the applied strategy. It allows us to compare whether and which vari-
able pairs were selected multiple time. Since we know that S1 and S2 choice of the
first tree coincide (see Figure 8.2 (a) and (b)) we want to have a look at the other
two models in comparison to S1. The Strategy 4 using exceedance dependence as
weight show 5 variable pairs that coincide with the S1 and so it is more that 50% of
the T7 respectively. While Strategy 3 selects only 1 pair namely BRA /AUS similar
to S1, hence displays a totally different perspective on the dependence features of
the underlying data set. We summarize the selection of the variable pairs in the
matrix below. Here, each number mirrors the number of times the corresponding
pair was selected applying different strategies. Note, that all the pairs chosen one
time correspond to the Strategy 3 choice with the exception of pairs EUR,JPN
and CAN,BRA, witch were found appropriate by Strategy 4.In total, 47% of all
selected pairs were chosen only once.

EUR UK CAN AUS BRA CH JPN SZ 1IN
EUR — 3 2 1 1 3
UK — 1 1
CAN — 3 1 1
AUS — 3 1 3
BRA —
CH — 1 3
JPN — 2 2
SZ —
IN —
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1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9

1 — x X 1 — x X
2 — 2 —
3 - X 3 - X
4 — X X 4 — X X
> — d —
6 — X 6 — X
7 - 7 —
8 - 8 -
9 - 9 -
(a) Kendall Tau (b) Tail cumulation
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 - X 1 — x X X
2 — X X 2 —
3 — X 3 - X X
4 - X X 4 — X
) — D —
6 - X 0 — X
7 - 7 -
8 - 8 -
9 — 9 —
(¢) Hu dependence (d) Exceedance dependence

Figure 8.3: Individual selection of pairs for each strategy. Black mark indicates the
pairs selected once, green for pairs selected twice and red for three time selected
pairs. Numbers represent the exchange rates data set variables according to their
order in Table 8.1

Maximum Log Likelihood Estimation

Next, we want to estimate the log likelihood for each individual strategy, since
we want to find out whether any of our strategies are likely to fit the data better
than Strategy 1. Table 8.2 gives and overview of the likelihood values for each
selected R-Vine corresponding to each strategy and the respective AIC values.
Additionally, it gives number of parameters and BIC values. We can observe
that the biggest difference is the Hu dependence strategy S3. Opposite to the
other strategies it does not truncate till the last tree, since the Hu dependence
weight shows quite extreme behavior. Respectively, it needs much larger number
of parameters to specify the dependence. Strategy 4 truncates later than the 1st
and 2nd and accordingly has larger number of parameters and a slightly better

71



AIC and log likelihood value. Table 8.2(bottom) offers an overview of values for
truncated R-Vines with respect to the strategy. Those values corresponding to
tree wise analysis for all strategies selection can be found in Tables 8.3 and 8.4.

Weight Number of | Log Likelihood AIC BIC
parameters
Kendall's 7 33 2219.28 -4372.56 | -4210.38
Tail cumulation 33 2212.52 -4359.49 | -4196.86
Hu dependence 47 2202.59 -4309.18 | -4073.27
Exceedance dependence 37 2204.18 -4334.36 | -4152.51
Weight Truncation | Number of Log AIC BIC
parameters | Likelihood
Kendall’s 7 T2 25 2158.61 | -4267.21 | -4144.35
Tail cumulation T3 26 2156.96 | -4261.93 | -4134.14
Hu dependence none 47 2202.59 | -4309.18 | -4073.27
Exceedance dependence T4 34 2192.41 | -4316.81 | -4155.31

Table 8.2: Log Likelihoods, AIC, BIC and number of parameters for non- truncated
(top) and truncated R-Vines (bottom) according to the strategy used for exchange
rates. Truncation based on Vuong test. Second column in the bottom Table gives
the tree number after which the R-Vine was truncated.

However, Strategy 1 seems to be the best fit according to the values of AIC and
likelihoods if we compare the overall differences. The number of parameters varies
the most. We see that using different weights increases the number of parameters
needed for specification. The differences in values of AIC and BIC as well as
likelihoods appear to be rather small of less then 2 %. In this way the choice of
different weights instead of Kendall's 7 does not improve the results significantly.

Comparison via Vuong test

Next, we want to compare the R-Vine model chosen according to different
Strategies by the Vuong test (see Chapter 6 for more detail on Vuong test), simi-
larly to the simulation study. In order to do so we use the R-Vine based on Kendall
7 as our “true“model and simulate from this R-Vine the same way we did in the
simulation study with 1000 data points and 100 repetitions.

All four R-Vines are sequentially specified by using four weights according to
the four strategies. We compare the results of the Vuong test to see if any of
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Table 8.3: Tree wise log likelihoods using Kendall’s 7 (top) and tail cumulation
(bottom) as weight for exchange rates data set

Tree Number of Log likelihood AIC BIC
parameters
T1 16 1973.42 -3914.84 -3836.21
T2 9 185.19 -352.37 -308.14
truncation > =25 > =2158.61 > =-4267.21 > =-4144.38
T3 3 16.10 -26.19 -11.45
T4 2 33.82 -63.64 -53.81
T5 2 8.93 -13.85 -4.03
T6 1 1.83 -1.66 3.26
TOTAL 33 2219.28 -4372.56 -4210.38
Tree Number of Log likelihood AIC BIC
parameters
T1 16 1973.42 -3914.84 -3836.21
T2 8 150.59 -285.18 -245.86
T3 2 32.95 -61.90 -52.07
truncation > =26 > =2156.96 > =-4261.93 > =-4134.14
T4 2 12.10 -20.194 -10.365
T5 2 32.65 -61.30 -51.47
T6 2 8.83 -13.67 -3.84
T7 1 1.98 -1.96 2.95
TOTAL 33 2212.52 -4359.49 -4196.86

73



Table 8.4: Tree wise log loglikelihoodslikelihoods using Hu dependence (top) and
exceedance dependence (bottom) as weight for exchange rates data set

Tree Number of Log likelihood AIC BIC
parameters
T1 9 451.51 -885.02 -840.78
T2 12 318.18 -612.36 -553.38
T3 10 563.95 -1107.90 -1058.75
T4 5 676.79 -1343.58 -1319.01
T5 5 50.32 -90.65 -66.08
T6 3 73.98 -141.96 -127.21
T7 2 57.28 -108.56 -93.81
T8 1 10.57 -19.15 -14.24
TOTAL 47 2202.59 -4309.18 -4073.27
Tree Number of Log likelihood AIC BIC
parameters
T1 14 1561.71 -3095.41 -3026.60
T2 9 290.61 -563.22 -518.99
T3 6 254.05 -496.09 -466.60
T4 5 86.00 -162.09 -137.51

truncation | Y =34 31 =1219241 3 = 431681 Y =- 4155.31

TS 2 2.62 -1.25 8.58

T6 - - - -

T7 1 9.15 -16.29 -11.38
TOTAL 37 2204.18 - 4334.36 - 4152.51
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the strategies are considered better fit or fit the data equally good according to
the test. Results of the comparison are summarized in the Table 8.5. First of
all, Strategy 3 is clearly outperformed by the three other strategies. According
to Vuong test this particular choice is not a better fit than Strategy 1 and 2,
since they perform so similarly. While comparing the Strategy 3 and 4 we can
see the test considers those two models equally a few more times that others but
it still prefers S4 over S3. Between Strategy 1 and Strategy 4 as well as between
the 2nd and 4th the test could not decide. Clearly, the specific measures of tail
dependence especially Hu dependence measuring the asymmetrical tail dependence
are not the best choice according to the Vuong test. We could expect this result if
we have a look at the pair-plots of the transformed copula data of exchange rates
of (Dissmann 2010) . The respective tail dependence is mostly not present or not
very strong. The exception is the pair EUR,SZ. An overview is to find in Figure
B.1. Let us summarize. Based on likelihoods and on Vuong test the model could
be ordered in terms of better performance as follows:

Comparison \ Exchange Rates \ \ Comparison \ Exchange Rates
S1 > 52 3 S2 > 53 90
S1~ 52 97 S2 ~ S3 10
S1 < 52 0 S2 < S3 0
S1> 53 93 S2> 54 34
S1~S3 7 S2 ~ S4 66
S1 < S3 0 S2 < 54 0
S1> 54 46 S3 > 54 1
Sl =~ 5S4 54 S3 ~ 5S4 32
S1 <54 0 S3 <54 67

Table 8.5: Results of the Vuong test comparison for R-Vines fitted according to four
strategies using the selected model by Kendall's Tau as underlying “true“model.
Notation: S1: Kendall’'s 7; S2: Tail cumulation; S3: Hu dependence; S4: Ex-
ceedance dependence.

Strategy 1 =~ Strategy 2 =~ Strategy 4 > Strategy 3

Comparison of different pairs of variables of simulated R-Vines
The exchange rates data set we investigate contains 9 variables and there-

fore 36 possible pairs of variables. We want to investigate how good the depen-
dence of those pairs is measured with each of our chosen dependence measures, i.e.
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Kendall’s 7, upper and lower tail cumulation, upper and lower Hu dependence as
well as upper and lower exceedance dependence. First we estimate each of these
dependence measures for all pairs of variables from copula data. Next, for each of
our four fitted R-Vines we summarize the 100 values for every dependence estimate
in a boxplot. We want to compare the values of “true“estimate and the median
value of each boxplot. The nearer those two lines are to each other, the smaller the
difference in the estimates and simulated values. For better impression the results
are listed in the Figures 8.4 to 8.10. The red line in every boxplot stands for the
“true“estimate value of every pair according to the coefficient chosen (Kendall’s 7,
upper/lower tail cumulation etc.). Especially, since we cannot estimate all pairs
chosen for the first tree of each R-Vine model to maximize the sum of edge weights,
it is visibly reflected in the boxplots figures also given the additional information
on the tree in which this particular pair occurs. Advantageously, each table con-
tains results on all four strategies for each of the seven measures, which provides
easier comparison of their fit.

At first if we look at the boxplots of Kendall’s 7 for each of the fitted R-Vine we see
that they deliver very similar results. Almost all of the variable pairs red lines stay
in the corresponding boxplots. Since strategies do not always choose same pair of
variables in the same order trees the estimation varies and shows slightly different
results. An example is the CAN-JPN dependence. It is clearly better measured in
the R-Vine models fitted using Hu dependence and exceedance dependence. While
Kendall Tau and Tail Cumulation methods’ “true“estimate lies far outside the cor-
responding boxplots. On the other hand we observe that this pair of variables was
selected in T3 in better estimating models while the model based on tail cumulation
chooses this pair in 77 and Kendall’'s 7 model in Ty, which clearly leads to under-
estimation, but also would not be as important as using wrong measurements in
the first trees. We can also see this in boxplots of upper and lower tail cumulation
with the variable pairs CAN-JPN and BRA-JPN. In the estimates of upper tail
cumulation the pair BRA-SZ displays deviation in higher order trees when using
Kendall’s 7 and tail cumulation as weights. The models using Hu dependence
and exceedance dependence as weights are more accurate according to the boxplot
display of empirical values of 7 and upper and lower tail cumulation. For the
estimation of upper and lower exceedance dependence we indicate more pairs that
display deviance. The change in distance of empirical values of simulated data
and the one from the underlying data among the different R-Vine models becomes
not so obvious. If we compare upper and lower Hu dependence to other measures
the first thing that occurs is that estimator takes the whole span from 0 to 1 for
each selected model, since the Hu dependence coefficient tends to display rather
extreme values. Note that it also has more outliers then other strategies and is
only partially able to capture the estimated values of the “true“model.
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Figure 8.4: Boxplots of pairwise empirical Kendall’s 7 based on 100 simulations
using the selected model by Kendall's 7(top left), tail cumulation(top right), Hu
dependence(bottom left) and exceedance dependence(bottom right).
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Figure 8.5: Boxplots of pairwise empirical upper tail cumulation based on 100
simulations using the selected model by Kendall's 7(top left), tail cumulation(top
right), Hu dependence(bottom left) and exceedance dependence(bottom right).
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Figure 8.6: Boxplots of pairwise empirical lower tail cumulation based on 100
simulations using the selected model by Kendall's 7(top left), tail cumulation(top
Hu dependence(bottom left) and exceedance dependence(bottom right).
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Figure 8.7:

Boxplots of pairwise empirical upper Hu dependence based on 100

simulations using the selected model by Kendall’s 7(top left), tail cumulation(top
right), Hu dependence(bottom left) and exceedance dependence(bottom right).
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Figure 8.8: Boxplots of pairwise empirical lower Hu dependence based on 100
simulations using the selected model by Kendall’s 7(top left), tail cumulation(top
right), Hu dependence(bottom left) and exceedance dependence(bottom right)
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Figure 8.9: Boxplots of pairwise empirical upper exceedance dependence based
on 100 simulations using the selected model by Kendall’s 7(top left), tail cumula-
tion(top right), Hu dependence(bottom left) and exceedance dependence(bottom

right).
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Figure 8.10: Boxplots of pairwise empirical lower exceedance dependence based
on 100 simulations using the selected model by Kendall’s 7(top left), tail cumula-
tion(top right), Hu dependence(bottom left) and exceedance dependence(bottom
right).
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Strategy T upper tail lower tail upper hu lower hu upper exceedance lower exceedance

cumulation cumulation dependence dependence dependence dependence
Kendall’s 0.056 0.003 0.018 2.088 3.193 0.269 0.275
T
Tail cu- 0.057 0.003 0.018 1.987 3.201 0.256 0.289
mulation
Hu 0.005 0.002 0.015 1.387 2.395 0.308 0.292
dependence
Exceedance 0.010 0.001 0.016 1.391 2.880 0.237 0.276
dependence
Strategy T upper tail lower tail upper hu lower hu upper exceedance lower exceedance
cumulation cumulation dependence dependence dependence dependence
Kendall’s 0.047 0.005 0.017 3.107 6.809 0.490 0.576
T
Tail cu- 0.049 0.005 0.018 2.594 7.053 0.483 0.496
mulation
Hu 0.011 0.004 0.019 2.379 4.574 0.459 0.697
dependence
Exceedance 0.018 0.003 0.018 4.795 6.000 0.265 0.587
dependence

Table 8.6: Top Table: Exchange rates, sum over all pairs of variables

Zi’j(wfj — @;;)?, where w® stands for the {(i,j),i < j} parameter esti-

mated of underlying data and dz_” represents the mean of the simulated values.
Bottom Table : Exchange rates, over all pairs of variables and all 100 simulated

2
. 100 =k
observations >, ;> =) (wfj — Wy > ;where wf; stands for the observed parameter,

—~—k .
and w;; represents the Ath simulated value.
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Figures 8.4 to 8.10 reflect the individual differences quite well. They also give
the tree number in which the corresponding pair of variables occurs. It can be
observed in the legend and corresponds to the given color. Now, we want to com-
pute the overall difference for each dependence measure and each selected model
and display in one value. First, for each measure we compute squared difference
between the median value and the value computed from underlying data for each
pair of variables. We sum over all pairs of variables. The resulting values are
easier to compare with each other and are summarized in Table 8.6 (top). Ac-
cording to this values upper and lower tail dependence as well as Kendall's 7 are
best captured with the corresponding R-Vine using Hu dependence as weight. It
also has best results when measuring lower tail cumulation, while for upper tail
cumulation the best model is the one based on exceedance dependence. However,
we can also observe that both measures upper as well as lower tail cumulation
have almost the same value which can be due to the definition of this measure as
less accurate. The upper exceedance dependence is clearly better captured with
the exceedance dependence R-Vine when lower exceedance dependence has almost
same value for models using Kendall’'s 7 and exceedance dependence as weights.
We want to have a more exact value and take every simulated estimate into ac-
count. For that we change the measure a little. This time we sum over squared
differences between estimated values and each simulated observation for all 100
simulations over all 36 pairs. However, with most of our earlier observations ver-
ified, we can determine that the model using Hu dependence is the best measure
for both Hu dependencies. Kendall’s 7 is also best captured with Hu dependence
tightly followed by exceedance dependence. Upper and lower tail cumulation dis-
play very similar values for all models and upper exceedance dependence is best
captured with exceedance dependence R-Vine. While in the Table 8.6 (top) the
lower exceedance dependence prefers R-Vine fitted using Kendall’s 7 but also only
by little difference in all values, the corresponding value in Table 8.6 (bottom)
clearly displays the value of tail cumulation model as smallest due to this measure
being similar in the definition but with slightly different choices of the tail aria
considered.
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8.2 International Financial Indices

So far, we have investigated the exchange rates data set with 9 variables, which
is relatively small. The data set we want to investigate next has 16 variables and
therefore larger size which is more applicable in real financial data. Daily returns
of financial indices data set was introduced in (Dissmann 2010). It is based on

three different asset classes and different regions.

The 2336 data points result

from a series of log returns and time series from 01,/01/2001 until 12/14/2009 and
12/29/2000 till 12/14/2009 respectively. We summarize according to asset class:

e Equity
Short Name Long Name ‘ Region
Dax DAX30 PERFORMANCE Germany
STOXX50 DJ STOXX 50 Europe
S&P500 S&P 500 COMPOSITE USA
MSCI-WORLD MSCI WORLD U$ Global
MSCI-EE MSCI EM EASTERN EUROPE U$ | Eastern Europe

o Fixed Income

Short Name Long Name ‘ Region
IBOXX-G-3-5 IBOXX EURO SOV.GERMANY 3-5 YRS Germany
IBOXX-G-7-10 IBOXX EURO SOV.GERMANY 7-10 YRS Germany
IBOXX-E-1-3 IBOXX EURO SOV.EZONE 1-3 YRS Eurozone
IBOXX-E-5-7 IBOXX EURO SOV.EZONE 5-7 YRS Eurozone
IBOXX-E-10+ IBOXX EURO SOV.EZONE 10+ YRS Eurozone

BOXX-E-A IBOXX EURO CORP.A RATED ALL MATS. Eurozone
BOXX-E-AA IBOXX EURO CORP.AA RATED ALL MATS. | Eurozone
BOXX-E-AAA | IBOXX EURO CORP.AAA RATED ALL MATS. | Eurozone
BOXX-E-BBB | IBOXX EURO CORP.BBB RATED ALL MATS. | Eurozone

¢ Commodity

Short Name ‘ Long Name ‘ Region

Comm DJ UBS-Spot Commodity Index | Global

Gold

MLCX Gold Total Return Global

All of the indices are stated in the respective home currency and global indices in
USD. All named indices also divide in term of dividends into following groups:

e total return, to catch the effect of dividend reinvestment: for all fixed income
indices plus Gold and S&P500;
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e net total return, to capture this effect after deduction of withholding tax:

STOXX50 and MSCI-WORLD;

e price return group for the purpose to capture the change in the prices of the
index components: Dax, MSCI-EE and Comm.

Additionally, the maturity of the selected German and Euro government bonds are
disjointed. For each time series (Dissmann 2010) uses ARMA(1,1) and GARCH(1,1)
models and standardizes transformed residuals to obtain pseudo-observations. For
information on data set and time series analysis see (Dissmann 2010)). Appendix
B.2 Figure B.2 shows the within group dependence of the financial indices vari-
ables.

Figure 8.11: Time series developing of international equity indices from 12/29/2000
to 12/14/2009.
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Comparison of the selected models
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Since the financial indices data set is based on qualitative relation of 16 vari-
ables and 120 possible pairs, we want to compare the choice of R-Vine that each
strategy makes. In particular, we have a look at the first tree since it is not de-
pendent on the choice of copula and only sums the selected edge values. Using
different weights clearly effects the selected R-Vine model, since we can observe
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Figure 8.12: Time series developing of international equity indices from 12/29/2000
to 12/14,/20009.
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Figure 8.13: Time series developing of international bond indices from 12/29/2000
to 12/14,/20009.
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partly different variable pairs. The connecting pair of variable varies according to
the strategy applied. However, the strongest dependence between the government
and corporate bond are chosen in most of possible pairs. Every model chooses the
pair Gold-Comm, hence it has strong economical value. The strong dependence
among equity variables is reflected in every model except S3 using Hu depen-
dence. The most asymmetric dependence is captured between those variables and
commodities. Hence, if we need to model explicitly tail dependence especially
asymmetrical, the better choice would be exceedance or even Hu dependence, de-
spite the fact that it requires more resources. Information on choice of variable
pair, copula families and corresponding parameters are to find in Appendix. B.2.
Remarkably, for all pairs the dependence is given with t copula indicating sym-
metric tail dependence.

From Figure 8.14 we can see that Strategy 3 again selected pairs differ most from
the rest of the strategies. Here already 60 % of pairs were selected only once. S1
and S2 again deliver similar choice although do differ in a few selected pairs such
as 2-6 or 1-5. Strategy 4 choses 4 pairs of total 15 witch do not repeat in any
other strategy but keeps the rest of the selection similar to S1 and S2. Below a
summarized overview.

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
1] - 3 2 1 1

2 —~ 1 1

3| - 3 1
4 -1 1 11
5 — 11
6 — 3 3 11

7 — 3 3 1

8 — 1 1 2
9 — 3 1

10 - 1

11 - 3 3 1
12 - 2 1
13 — 1
14 —

15 - 4
16 —

For convinience here we use numbers from 1 to 16 to represent every variable.

The numbers correspond to previous notation in Section 8.2 starting with Dax=1,
STOXX50=2 and so on till Gold=16.
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Log likelihoods comparison for four selected R-Vines

Analogous to the exchange rates data set we want to analyze the log likelihoods

for every selected R-Vine in order to see if there is a significant difference in the
values to indicate a better fit. Tables 8.9-8.12 give tree wise log likelihoods, AIC
and BIC values, which we summarize and reflect in the Table 8.7.
Hu dependence again needs the largest number of parameters for specification
since it uses 65 t copulas (in comparison exceedance dependence only needs 121
parameters with 46 t copulas in its specification). The values of log likelihoods
and AIC/BIC do not display large differences not larger than 2 %, but do indicate
the order of the better data fit. Strategy 1 is again the better choice. Followed
by Strategy 4 which seems to perform better then in exchange rates comparison
of likelihoods. However, it is tightly followed by S2 and the difference is rather
insignificant. Strategy 3 is last in this comparison. Now we want to see the
behavior of strategies when truncating R-Vines. In the Table 8.7 below we have an
overview of likelihoods, AIC/BIC values for selected R-Vines truncated according
to the Vuong test. Additionally, the tree number before truncation is given in
column 2.

Weight Number of | Log Likelihood AIC BIC
parameters
Kendall's 7 113 36334.43 -72442.85 | -71792.35
Tail cumulation 148 35973.99 -71691.97 | -70955.13
Hu dependence 157 35580.86 -70859.71 | -69960.46
Exceedance dependence 121 36082.32 -71920.63 | -71218.33
Weight Truncation| Number of Log AIC BIC
parameters|Likelihood
Kendall’'s 7 T9 111 36329.62 | -72437.23 | -71792.35
Tail cumulation T6 91 34858.43 | -69530.86 | -68995.50
Hu dependence T11 154 35570.69 | -70845.37 | -69963.46
Exceedance dependence T9 111 35938.89 | -71657.77 | -71024.55

Table 8.7: Log Likelihoods, AIC, BIC and number of parameters for non-truncated
(top) and truncated (bottom) R-Vines selected according to different weights for
international financial indices.
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Figure 8.14: Variable pair selected in T} for every Strategy. Numbering of the
variables according to the list of Section 8.2. Pairs marked by x - selected by all
strategies, x - three strategies, x - twice, X - only once.
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Figure 8.15: First tree of R-Vine model fitted using Strategies 1 and 2 for the
international financial indices data set.
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Figure 8.16: First tree of R-Vine model fitted using Strategies 3 and 4 for the
international financial indices data set (continued).
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We observe the that R-Vine selected based on Strategy 2 using tail cumulation
as weight truncates earlier in compare to other strategies and so looses the addi-
tional information. As result the likelihood as well as AIC and BIC values are the
smallest of all four. Hu dependence Strategy 3 truncates very late as expected and
need more parameters. Kendall's 7 based model seems to be the better fit again.
However, if we take in the consideration the size of the data set we might as well
say that all strategies are reasonably close to the optimal values of Strategy 1.

Result of the Vuong test comparison

So far we conclude that according to the log likelihoods and the AIC/BIC
values all of our strategies offer quite a good fit. Similarly to the exchange rates
data set, also here Strategy 1 shows best results and Strategy 3 performs as least
preferable. Now we want to see if those conclusions can be supported and perform
a Vuong test. The results of the test are given in Table 8.8. We observe that
Strategy 3 clearly “loses“to all other strategies in 100 % of cases. Combined with
the results of likelihoods its an indicator against the Hu dependence weight in this
data set. According to the test, Strategies 2 and 4 fit the data equally well and the
test could not prefer one over another when comparing Strategies 1 and 4. When
comparing S1 and S2 the test shows that Hy could be rejected 60 times in favor
of S1.

Comparison ‘ Financial Indices ‘ ‘ Comparison ‘ Financial Indices
S1> 52 60 S2 > 53 100
S1~ 52 40 S2 =~ 53 0
S1 < .S2 0 S2 <53 0
S1> 53 100 S2> 54 6
S1~ 853 0 S2 =~ 54 87
S1 < S3 0 S2 < 54 7
S1> 54 48 S3 > 54 0
Sl =~ 54 52 S3~ S4 0
S1 < 54 0 S3 < 54 100

Table 8.8: Results of Vuong test comparison for R-Vines fitted according to four
strategies using the selected model by Kendall’s Tau as underlying “true“model.
Notation: S1: Kendall’'s 7; S2: Tail cumulation; S3: Hu dependence; S4: Ex-
ceedance dependence.

So, to summarize the results:

Strategy 1 > Strategy 2 ~ Strategy 4 > Strategy 3.
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Table 8.9: Financial Indices, tree wise log likelihoods and AIC/BIC values of R-
Vine model selected using Kendall’s 7 as weight

Tree Number of  Log likelihood AIC BIC
parameters
T1 30 32358.57 -64657.13 -64484.43
T2 27 2291.50 -4592.00 -4373.57
T3 17 877.77 -1721.55 -1623.69
T4 15 .416.28 -802.56 -716.21
T5 13 156.82 -287.65 -212.21
T6 5 154.20 -298.41 -269.62
T7 2 20.29 -36.86 -25.07
T8 1 27.05 -52.10 -46.34
T9 1 27.13 -52.25 -46.50
truncation | > =111 Y =36329.62 > =-72437.23 > =-71798.25
T10 1 1.92 -1.84 3.91
T11 - - - _
T12 1 2.89 -3.77 1.98
TOTAL 113 36334.43 -72442.85 -71792.35
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Table 8.10: Financial Indices, tree wise log likelihoods and AIC/BIC values of
R-~Vine model selected using tail cumulation as weight

Tree Number of Log likelihood AIC BIC
parameters
T1 30 32139.62 -64219.25 -64046.55
T2 16 1546.38 -3060.77 -2968.66
T3 16 652.36 -1268.71 -1165.09
T4 14 300.05 -572.10 -491.51
T5 8 89.70 -163.393 -117.34
T6 7 130.32 -246.63 -206.34

truncation > =091 > =34858.43 > =-69530.86 > = -68995.50

T7 7 44.14 -74.28 -33.99
T8 5 18.66 -29.32 -6.29
T9 7 133.92 -253.84 -213.54
T10 4 34.63 -61.25 -38.23
T11 2 25.43 -46.86 -35.35
T12 3 13.23 -22.46 -10.95
T13 3 404.35 -802.69 -785.42
T14 4 421.89 -835.79 -812.76
T15 2 19.30 -34.61 -23.10
TOTAL 148 35973.99 -71691.97 -70955.13
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Table 8.11: Financial Indices, tree wise log likelihoods and AIC/BIC values of
R-Vine model selected using Hu dependence as weight

Tree Number of  Log likelihood AIC BIC
parameters
T1 30 9936.70 -19813.40 -19640.70
T2 27 9195.45 -18338.90 -18187.23
T3 22 11215.12 -22386.24 -22259.6 0
T4 19 2293.37 -4550.75 -4447.13
T5 17 870.74 -1713.75 -1632.89
T6 11 572.48 -1122.95 -1059.63
T7 10 229.04 -438.08 -380.52
T8 6 126.91 -241.82 -207.28
T9 6 73.10 -136.20 -107.41
T10 4 119.20 -230.40 -207.37
T11 2 938.57 -1873.13 -1861.62
truncation | > =154 > =35570.69 > =-70845.37 > =-69963.39
T12 1 5.38 -8.77 -3.01
T13 2 4.79 -5.57 5.94
TOTAL 157 35580.86 -70859.71 -69960.46
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Table 8.12: Financial Indices; tree wise log likelihoods and AIC/BIC values of

R-Vine model selected using exceedance dependence“as weight

Tree

Number of

Log likelihood AlC BIC
parameters
T1 30 31710.78 -63361.57 -63188.87
T2 20 2169.15 -4298.30 -4183.16
T3 16 1126.40 -2220.79 -2128.69
T4 14 455.60 -883.21 -802.62
Tb 12 207.25 -392.51 -329.19
T6 4 68.29 -122.57 -82.28
T7 8 16.86 -25.73 -2.70
T8 5 32.76 -59.525 -42.25
T9 2 151.78 -293.57 -264.78
truncation > =111 > =135938.80 > =-71657.77 Y =-71024.55
T10 1 36.53 -63.06 -34.28
T11 2 68.77 -133.55 -122.03
T12 4 13.31 -22.63 -11.11
T13 2 16.77 -29.54 -18.02
T14 1 8.04 -14.09 -8.33
TOTAL 121 36082.32 -71920.63 -71218.33
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8.3 German DAX Indices

ID.DE ‘ Company Name ‘ ‘ ID.DE ‘ Company Name
ADS Adidas HEI HeidelbergCement
ALV Allianz HEN3 Henkel
BAS BASF IFX | Infineon Technologies

BAYN Bayer LHA Lufthansa
BEI Beiersdorf LIN Linde
BMW BMW MAN MAN
CBK Commerzbank MEO Metro
DAI Daimler MRK Merk
DB1 Deutsche Borse MUV2 Munich Re
DBK Deutsche Bank RWE RWE
DPW Deutsche Post SAP SAP
DTE Deutsche Telekom SDF K4S

EOAN E-ON SIE Siemens
FME | Fresenius Medical Care TKA ThyssenKrupp
FRE Fresenius SE VOW3 Volkswagen

Table 8.13: Variables of German DAX data set.

So far we have investigated how good four strategies we chose can fit the data
and observed that the strategy using Kendall’s 7 as its weight can not be outper-
formed by other choice of weight selection. However, the exchange rates data set
with 9 variables is rather small. The data set of daily returned of financial indices
has more variables, which is also preferred for modeling since it is rather the case
for the real financial world. Now we want to apply the strategies to a bigger size of
data in order to see if that might influence the decision to chose one strategy over
another. The German DAX data set of (Brechmann 2012) contains 30 variables
which correspond to the 30 most important German stocks. The log returns and
time series observations from 01/2005 till 07/2011 are summarized in 1158 data
points.

Similarly to financial indices data set, (Brechmann 2012) organizes German DAX
in 10 groups according to their “field“. Those are:

financials: ALV, CBK, DBK, DB1, MUV2 industrials : MAN, SIE, TKA
chemicals : BASF, BAYN, K+S, LIN healthcare : FME, FRE, MRK
consumer goods : ADS, BEI, MEO, HEN3  auto industry: BMW, DAI, VOW3
IT and communication : DTE, IFX, SAP utilities : EOAN, RWE

logistic and transportation : DPW, LHA building materials : HEI
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The big size of that particular data set makes it difficult to simulate and per-

form the Vuong test for comparison. But we are still able to see if different choices
the strategies make when selecting first tree and the following estimation lead to a
significant changes in likelihood values and the performance of AIC and BIC tests.
Obviously, in this particular case based on results in Table 8.24 we would prefer
S2 since it shows largest values and reasonable number of parameters. However,
the overall differences in values of S1 and S2 are very small it indicates that both
could be considered as optimal fit.
In Figures 8.18-19 the first tree selection for each model are given. The tree struc-
tures look almost “C-Vine like“with the DBK.DE in the role of root node. This is
self explicable considering the economic value of the Deutsche Bank on the Ger-
man stock market with hight dependence on others. The model resulting from
Strategy 3 again shows different perspective according to the preferable asym-
metrical distinctions, by selecting different pairs of variables as well as different
pair-copulas.

Figure 8.17 summarizes the variable pairs selected in every strategy. Overview
of individually selected pairs are given in Appendix B.3.
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Figure 8.17: An overview matrix of selected variable pairs applying S1-S4 for
German DAX data set. The number represent each variable of Table 8.13 alpha-
betically, i.e. starting with ADS=1, ALV=2 and so on till VOW3=30.
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Figure 8.18: First tree 17 of R-Vine model fitted using weights Kendall’s 7 (top)
and Tail cumulation (bottom) for German DAX.
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Figure 8.19: First tree of R-Vine model fitted using weights Hu dependence (top)
and Exceedance dependence (bottom) for German DAX (continued).
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Weight Number of | Log Likelihood AIC BIC
parameters

Kendall’s 7 336 9041.55 -17411.10 | -15712.81

Tail Cumulation 331 9043.56 -17425.13 | -15752.10

Hu Dependence 393 8952.17 -17118.34 | -15131.94

Exceedance Dependence 370 8905.32 -17070.64 | -15200.49
Weight Truncation| Number of Log AIC BIC

parameters|Likelihood

Kendall’'s 7 T5 214 8553.40 | -16678.80 | -15597.14

Tail Cumulation TH 202 8445.05 | -16486.09 | -15465.10

Hu Dependence T12 334 8246.13 | -16264.03 | -14575.84

Exceedance Dependence T10 277 8271.12 | -15988.25 | -14588.17

Table 8.14: Log Likelihoods, AIC, BIC and number of parameters for non-
truncated (top) and truncated (bottom) R-Vines selected according to different
weights for DAX data set.

8.4 Expanding the Hu Dependence Weight

So far, we have observed that the Strategy 3 using maximum of the upper and lower
hu dependence coefficient has not performed very well against other strategies.
First, it is of cause due to the specifics of the underlying data. For example, when
using exchange rates data set which did not show heavy tails, also did not prefer
this Strategy over the other in the comparison of log likelihoods or using the Vuong
test. Recall the definition of the mixture copula according to (Brechmann 2010):

omiture (y v) = (1 — wy — wy)C, % (u, v) + w1 Cy, “ (u, v) + waCy, % (u,v)  (8.1)

where wq,wy € [0, 1] are called Hu dependence coefficients such that wy + wy < 1.
This coefficients show the corresponding “closeness“of the underlying data set to
Gumbel, Gumbel survival copulas. The coefficient (1 — w; — wy) indicates the
closeness to the Gaussian copula, i.e. the normality of the data.

Before when we chose the weight of the edge in the MST for S3 we took the
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Table 8.15: Tree wise log likelihoods and AIC/BIC values of R-Vine selected using
Kendall’s 7 as weight for German DAX.

Tree ‘ Number of Log likelihood AIC BIC
parameters
T1 55 6734.67 -13359.34 -13081.35
T2 51 1049.49 -1996.98 -1739.21
T3 41 393.66 -705.33 -498.10
T4 35 216.71 -363.54 -186.64
T5 32 158.80 -253.59 -91.85
truncation S =214 > = 8553.40 > = -16678.80 > =-15597.14
T6 17 63.78 -93.56 -7.63
T7 15 59.97 -89.95 -14.13
T8 13 44.62 -63.23 2.48
T9 8 42.51 -69.03 -28.59
T10 6 20.18 -28.36 1.97
T11 8 26.59 -37.18 3.25
T12 12 40.75 -57.51 3.15
T13 6 28.67 -45.51 -15.00
T14 6 28.10 -44.19 -13.87
T15 6 23.07 -34.15 -0.38
T16 8 45.68 -75.36 -34.92
T17 2 4.53 -5.06 5.05
T18 3 14.10 -22.21 -7.05
T19 3 6.43 -6.86 8.30
T20 3 15.96 -25.92 -1.76
T21 3 11.41 -16.82 -1.65
T22 1 8.16 -14.32 -9.27
T23 - - - -
T24 1 0.18 1.64 6.95
T25 - - - -
T26 1 3.45 -4.90 0.15

TOTAL 336 9041.55 -17411.10 -15712.81



Table 8.16: Tree wise log likelihoods and AIC/BIC values
tail cumulation as weight for German DAX

of R-Vine selected using

Tree Number of Log likelihood AIC BIC
parameters
T1 56 6591.49 -13070.98 -12787.93
T2 49 1111.95 -2125.21 -1878.24
T3 45 448.37 -806.75 -579.30
T4 33 166.59 -267.19 -100.39
T5 19 126.64 -215.27 -119.24
truncation > =202 > =8445.05 > = -16486.09 > = -15465.10
T6 15 70.15 -110.31 -34.49
T7 17 80.50 -127.01 -41.08
T8 16 75.64 -119.29 -38.41
T9 10 70.64 -120.41 -69.87
T10 10 72.06 -124.13 -73.57
T11 15 72.19 -114.37 -38.55
T12 6 17.47 -22.94 7.38
T13 9 26.43 -34.86 10.63
T14 3 6.55 -7.10 8.06
T15 6 19.48 -26.97 3.36
T16 3 17.70 -29.40 -14.24
T17 5 15.61 -21.22 4.05
T18 5 14.51 -19.01 6.26
T19 2 4.55 -5.09 5.02
T20 2 10.49 -16.98 -6.87
T21 - - - Z
T22 1 5.19 -8.37 -3.32
T23 1 4.54 -7.09 -2.03
T24 1 3.87 -5.75 -0.69
T25 2 11.36 -18.73 -8.62
TOTAL 331 9043.56 -17425.13 -15752.10



Table 8.17: Tree wise log likelihoods and AIC/BIC values of R-Vine selected using
Hu dependence as weight for German DAX

Tree Number of Log likelihood AIC BIC
parameters
T1 31 2207.71 -4353.41 -4196.73
T2 49 2335.71 -4573.41 -4325.74
T3 42 1182.69 -2281.39 -2069.10
T4 42 853.52 -1623.39 -1410.75
T5 37 426.74 -779.48 -592.47
T6 33 423.52 -781.04 -614.24
T7 23 334.17 -622.34 -506.09
T8 18 137.56 -239.12 -148.14
T9 23 281.13 -516.27 -400.01
T10 10 63.38 -106.76 -56.21
T11 17 158.02 -282.05 -196.12
T12 9 61.86 -105.72 -60.23
truncation > =334 > =8246.13 > = -16264.03 > = -14575.84
T13 5 18.21 -26.42 -1.14
T14 9 56.15 -94.30 -48.81
T15 6 16.20 -94.30 9.92
T16 4 17.41 -26.81 -6.59
T17 5 109.70 -209.41 -184.13
T18 7 26.62 -39.25 -3.87
T19 4 46.02 -84.04 -63.83
T20 3 10.81 -15.62 -0.46
T21 5 135.51 -261.03 -235.75
T22 7 22.11 -30.21 5.17
T23 1 5.64 -9.27 -4.22
T24 - - - Z
T25 1 2.44 -2.89 2.16
T26 - - - z
T27 2 19.33 -34.66 -24.55

TOTAL 393 8952.17 -17118.34 -15131.94



Table 8.18: Tree wise log likelihoods and AIC/BIC results of R-Vine selected using
exceedance dependence as weight for German DAX

Tree Number of Log likelihood AIC BIC
parameters
T1 45 4700.39 -9310.78 -9083.33
T2 47 1438.30 -2782.60 -2545.04
T3 42 741.59 -1399.19 -1186.90
T4 33 510.65 -955.31 -788.51
T5 21 169.23 -296.55 -190.31
T6 23 269.45 -492.90 -376.65
T7 19 136.98 -235.97 -139.93
T8 18 116.24 -196.48 -105.50
T9 17 95.99 -157.99 -72.07
T10 12 92.28 -160.57 -99.91
truncation S =277 > =8271.12 > = - 15988.25 >° = -14588.17
T11 8 47.23 -78.46 -38.02
T12 14 83.17 -138.33 -67.57
T13 9 91.81 -165.63 -120.14
T14 9 42.59 -67.18 -21.69
T15 9 126.57 -235.13 -189.64
T16 6 35.12 -58.24 -27.92
T17 7 43.32 -72.65 -37.27
T18 3 14.27 -22.55 -7.38
T19 2 7.99 -11.98 -1.87
T20 5 43.65 -77.29 -52.02
T21 5 29.44 -48.97 -23.60
T22 1 3.14 -4.28 0.77
T23 6 21.13 -30.26 0.07
T24 2 6.49 -8.98 1.13
T25 4 26.05 -44.11 -23.89
T26 - - - -
T27 1 6.35 -10.69 -5.64
T28 - - - z
T29 2 5.87 -7.75 2.36
TOTAL 370 8905.32 -17070.64 -15200.05



Table 8.19: Exchange rates, tree wise log likelihoods and AIC/BIC results of R-
Vine model selected using adjusted Hu dependence as weight

Tree Number of Log likelihood AIC BIC
parameters
T1 11 348.35 -674.87 -620.80
T2 11 463.67 -905.35 -851.28
T3 9 661.890 -1305.78 -1261.55

truncation > =31 > =1437.99 > =-2885.99 > =-2733.64

T4 7 36.44 -20.194 -24.47
T5 7 680.71 -61.30 -1313.01
T6 3 30.62 -13.67 -40.49
T7 2 2.76 -1.96 8.31
T8 1 0.46 -1.96 5.99
TOTAL 33 2224.98 -4347.96 -4097.31

max{wy,ws}, i.e. the maximum of the two coefficient indicating either strong up-
per or lower tail dependence to model the maximum asymmetrical dependence.
Now we want to expend this measure by adding the third coefficient namely the
coefficient of the closeness to Gaussian copula with no tail dependence. This means
we define the new weight: Hu dependence adjusted = max{wi,ws, 1 —w; — ws}.
Since this new weight theoretically does not show such extreme behavior it is likely
to display different results in comparison of the fitted models. Although it is rather
not predictable, since it might simplify the model when using Gaussian copulas
only. Despite this, we want to investigate the R-Vine model fitted using this weight
and whether it would be able to offer a better fit. We proceed the same way as be-
fore so that we can compare the outcome of the models by the same criteria. Due to
the size of the data we did not perform this comparison for German DAX data set.

Log Likelihood Values

After the R-Vine was fully specified using the Hu dependence adjusted for the
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Table 8.20: Financial Indices, tree wise log likelihoods and AIC/BIC results of
R-Vine model selected using “Adjusted Hu dependence“as weight

Tree Number of  Log likelihood AlIC BIC
parameters
T1 30 9936.70 -19813.40 -19640.70
T2 28 9200.09 -18344.18 -18183.00
T3 25 11330.15 -22610.30 -22466.39
T4 19 23224.95 -4611.91 -4502.53
Tb 18 886.91 -1737.83 -1634.21
T6 14 o87.47 -1146.95 -1066.35
T7 13 221.16 -416.33 -341.49
T8 10 132.48 -244.95 -187.39
T9 8 89.66 -163.32 -117.27
T10 7 122.10 -230.18 -189.89
T11 6 955.35 -1899.70 -1864.16
truncation > =178 > =35787.03 > =-71218.06 > =-70154.10
T12 4 10.54 -9.54 -3.01
T13 3 5.86 -6.09 5.94
T14 2 1.32 -8.77 -3.01
T15 1 1.41 -5.57 5.94
TOTAL 198 35806.17 -71236.35 -70154.10
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Weight Number of | Log Likelihood AIC BIC
parameters
Kendall’s 7 33 2219.28 -4372.56 | -4210.38
Tail cumulation 33 2212.52 -4359.49 | -4196.86
Hu dependence 47 2202.59 -4309.18 | -4073.27
Exceedance dependence 37 2204.18 -4334.36 | -4152.51
Hu Dep adjusted 51 2224.98 -4347.96 | -4097.31
Weight Truncation| Number of Log AIC BIC
parameters|Likelihood
Kendall's 7 T2 25 2158.61 | -4267.21 | -4144.35
Tail cumulation T3 26 2156.96 | -4261.93 | -4134.14
Hu dependence none 47 2202.59 | -4309.18 | -4073.27
Exceedance dependence T4 34 2192.41 | -4316.81 | -4155.31
Hu Dep adjusted T3 31 1473.98 | -2885.99 | -2733.64

Table 8.21: Log Likelihoods, AIC, BIC and number of parameters for non-
truncated (top) and truncated (bottom) R-Vines according to four previous strate-
gies plus adjusted Hu dependence weight for Exchange rates data set.

specification of the trees, we compute the tree wise likelihoods for the new model.
Like the rest of the R-Vine model fitted using strategies proposed earlier we mainly
want to compare the possible improvement in the log likelihoods , which would be
an indicator to one model fit the data better than others. Below Tables give the
likelihood values as well as AIC/BIC and the number of parameters as we had in
the previous sections for S1 to S4. Additionally, the values of the adjusted model
are displayed.

Note, that the values vary strongly in compare to the original Hu dependence
weight, since the adjusted weight is a combination of strong asymmetrical depen-
dence versus no tail dependence quality of the variable pair. If we have a look at
the results for exchange rates, the new model truncates very soon and loses in the
respective values due to less explicit specification. For non- truncated models we
see large improvement in the log likelihood value. However if we take into account
the number of parameters needed, the improvement is not significant in compar-
ison to the respective values of our previous models. The same result indicated
also the values of the AIC/BIC.(see Table 8.21)
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Weight Number of | Log Likelihood AIC BIC
parameters
Kendall's 7 113 36334.43 -72442.85 | -71792.35
Tail Cumulation 148 35973.99 -71691.97 | -70955.13
Hu dependence 157 35580.86 -70859.71 | -69960.46
Exceedance Dependence 121 36082.32 -71920.63 | -71218.33
Hu Dep adjusted 198 35806.17 -71236.35 | -70154.10
Weight Truncation| Number of Log AIC BIC
parameters|Likelihood
Kendall's 7 T9 111 36329.62 | -72437.23 | -71792.35
Tail Cumulation T6 91 34858.43 | -69530.86 | -68995.50
Hu dependence T11 154 35570.69 | -70845.37 | -69963.46
Exceedance Dependence T9 111 35938.89 | -71657.77 | -71024.55
Hu Dep adjusted T11 178 35787.03 | -71218.06 | -70193.38

Table 8.22: Log Likelihoods, AIC, BIC and number of parameters for non-
truncated (top) and truncated (bottom) R-Vines according to four strategies plus
adjusted Hu dependence weight for International financial indices data set.

Since the international financial indices show stronger dependence between
variables, especially among variables in the same asset group, the new adjusted
measure seems to not be suitable for this data set. When looking at the values in
Table 8.22 we observe that the adjusted model delivers the smallest likelihood as
well as smallest AIC/BIC values while the number of parameters used is enormous.
Although the displayed values are slightly higher than the corresponding values
for not adjusted Hu dependence weight, it still smaller than the other strategies
based on different weights. However, since the values are so large the differences
can be taken as not very significant. Note also that while this method applied
on exchange rates delivers a different tree structure than using non-adjusted Hu
dependence, the first tree of International financial indices with adjusted and non-
adjusted weights coincide. The choice of the appropriate copula families in later
selection differ. Corresponding matrix representations of the R-Vine specifications
based on adjusted weight for both models can be found in Appendix B.3.
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Figure 8.20: T} of R-Vine using Hu dependence adjusted as weight applied of:
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Comparison \ Exchange Data \ Financial Indices

S1 > S3ed 98 100
S1 ~ S39di 2 0
S1 < S3edi 0 0
52 > §30d 96 100
S2 ~ §30di 4 0
S2 < S3edi 0 0
S4 > S3edi 76 100
S4 ~ §30di 24 0
S4 < §394 0 0

Table 8.23: The results of Vuong test comparison for Strategies S1, S2, S4 against
S3%4 using the corresponding weights.

Vuong Test Statistics

We want to have a look at the Vuong test comparison in order to decide if the
adjusted model could be a better fit to the data set. For the data sets of exchange
rates and financial indices the adjusted Hu dependence model was simulated from
the model based on Kendalls tau as before. For those 100 fitted R-Vines we perform
Vuong test to compare if it is closer to the original model than fitted R-Vines using
Strategies 1 to 4, i.e. tail cumulation. Kendalls tau or exceedance dependence.
The results are found in Table 8.23. Clearly, the Strategy S3°% does not offer a
better fit according to the Vuong test statistics. Hence, based on the Vuong test
comparison and the values of AIC/BIC plus log likelihoods we do not consider the
adjusted weight and corresponding resulting R-Vine model to be efficient.
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9 Conclusions

In this thesis, we analyzed four different approaches to build the first tree of an
R-Vine model. We wanted to capture the most dependence in the first tree since it
has the most impact in an R-Vine and might allow further simplifications or even
truncation. It is also known that the more dependence is captured in early trees the
more likely it is for further trees to use independence copulas and reduce the esti-
mation errors. We based our research on the sequential model selection. However,
alongside Kendall’s 7 as the edge weight we explored three more weights, namely
tail cumulation and exceedance dependence based on Kendalls tau to model the
joint tail dependence as well as the Hu dependence coefficient which allows us to
model the asymmetrical tail dependence. Since we concentrated on alternative
weight to measure tail dependence, we use the 5 copula families that seem best
suiTable for that purpose. The MST algorithm of Prim is applied for the selection
of the first tree for each of those approaches. An extensive simulation study was
conducted in order to see how each Strategy using corresponding weight is able to
fit the data. Mainly we wanted to see if there is a reasonable alternative to the
commonly used Kendalls tau weight for the construction of the maximum valued
first tree as we have seen that it has the biggest influence on the likelihood values of
an R-Vine specification. In the simulation study we used 20 various scenarios each
of them with certain properties, such as different dependence structures, strength
of correlation and copula family types. The resulting R-Vines were compared by
the Vuong test. We could observe that all strategies performance results differ
conditionally on the scenario. Hence, if the properties of the underlying data are
know it can be advantageous to use an alternative weight instead of Kendalls tau
to offer a different perspective. This could be especially useful for large data sets.
However, if the underlying original model specification is not fully known, it is
better to stick to the Kendalls tau approach, since this has shown good results
and was less computationally expensive as for example the approach of Hu depen-
dence.

To evaluate the strategies we apply our four methods on three different data sets.
Different weights resulted in different tree structure as well as the copula types
selection. We compared the models by analyzing the log likelihood estimation and
AIC/BIC tests. We also used the Vuong test to see if any model is considered as
a better fit.

The first data set used was exchange rates to the US Dollar of nine variables. We
analyzed the log likelihoods and AIC/BIC values for the resulted R-Vine speci-
fications. The differences were not extreme except of the Hu dependence model
did need greater parameter estimation. This result was confirmed by the Vuong
test performance. The next data set, the international financial indices with 16
variables showed that independent from the Strategy applied, the strongest de-
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pendencies were still kept. The results of the comparison approach support the
conclusions we have made on the exchange rates application. Hence, for an un-
known underlying specification the Hu dependence as weight is not a good choice.
Finally, for the 30-dimensional data set of German DAX development with the
same observations we now can tell that Kendall’s 7 can not be completely outper-
formed. This might be a starting point for further analysis with more asymmetrical
dependence in application data.

In order to improve the Hu dependence weight to make it more adjustable to data
that might not exhibit strong asymmetry in the tail we slightly changed the weight
and repeated the investigation on data sets of exchange rates and financial indices.
The resulting specifications differed from the R-Vines based on the original Hu de-
pendence Strategy either in the choice of the variable pairs as in exchange rates or
in choice of pair-copula specification as in the financial indices data set. However,
it could not show better results in the comparison methods.

In conclusion, the three alternative approaches we investigated, i.e. tail cumula-
tion, Hu dependence and exceedance dependence offer a quite good alternative to
the commonly used Kendall’/s 7. Using one of those weight could be especially
useful if the underlying data is known to exhibit certain properties that coincide
with the ones we have seen in our simulation study. For unknown data it might be
better to stick to the approach based on Kendalls tau as it performs well in high
dimensions and also requires less resources compare to the alternatives, especially
the Hu dependence weight.
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Appendix

A Additional Information on Simulation Study

The R-Vine Matrix of the underlying “true “model is given by:

N — 00 O O 0 =~

N = W Oy Ot g 0o
N W= O = Ot
DD W N~

W N = O

N W

2

3 3
the copula family matrices for the non-elliptical and for the elliptical scenarios are
given by:

1 1
24 14 11
4 1 2 111
Fmi:]ced — 34 1 14 34 Felliptical — 111 1
1 24 24 2 1 2 2 2 2 2
2 14 2 34 14 1 2 22 2 2 2
24 2 4 1 34 4 2 2 22 2 2 2 2
A detailed overview given in Figures A.1-A.8. The list of used copula families:

0 = independence copula

e 1 = Gaussian copula

2 = Student t copula (t-copula)

e 4 = Gumbel copula

e 14 = rotated Gumbel copula (180 degrees; i.e. survival Gumbel)
e 24 = rotated Gumbel copula (90 degrees)

e 34 = rotated Gumbel copula (270 degrees)

Further, we denote the parameter matrix with P and with P2 matrix which con-
tains information on degreed of freedom.
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Figure A.1: The structure of the underlying R-Vine

2,8

3,8/1,2

4611238 Hol1.23.68
4,5|11,2,3,6,8 o255
4,711,2,3,5,6,8

4,7]11,2,3,5,6,8

(™)

(T2)

(T3)

(T4)

(T5)

(T6)

(T7)

(T8)



F, Kendall's 7 and degrees of freedom values (P2)

ices
corresponding to Scenarios 1 to 5.

The family matr
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F, Kendall's 7 and degrees of freedom values (P2)

ices
corresponding to Scenarios 6 to 10.

The family matr

Figure A.3
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F, Kendall's 7 and degrees of freedom values (P2)

corresponding to Scenarios 11 to 16.
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The family matr
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F, Kendall's 7 and degrees of freedom values (P2)

ices
corresponding to Scenarios 17 to 20.

The family matr

Figure A.5
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Figure A.6: The normal QQ-plots and statistics of Scenario 1.
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Figure A.7: The normal QQ-plots and statistics of Scenario 2.
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Figure A.8: The normal QQ-plots and statistics of Scenario 3.
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Figure A.9: The normal QQ-plots and statistics of Scenario 4.
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Figure A.10: The normal QQ-plots
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and statistics of Scenario 5.
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Figure A.11: The normal QQ-plots
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and statistics of Scenario 6.
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Figure A.12: The normal QQ-plots
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Figure A.13: The normal QQ-plots and statistics of Scenario 8.
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Figure A.14: The normal QQ-plots
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Figure A.15: The normal QQ-plots and statistics of Scenario 10.
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Figure A.16: The normal QQ-plots and statistics of Scenario 11.
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Figure A.17: The normal QQ-plots and statistics of Scenario 12.
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Figure A.18: The normal QQ-plots and statistics of Scenario 13.
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Figure A.19: The normal QQ-plots and statistics of Scenario 14.
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Figure A.20: The normal QQ-plots and statistics of Scenario 15.
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Figure A.21: The normal QQ-plots and statistics of Scenario 16.
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Figure A.22: The normal QQ-plots and statistics of Scenario 17.
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Figure A.23: The normal QQ-plots and statistics of Scenario 18.
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Figure A.24: The normal QQ-plots and statistics of Scenario 19.
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Figure A.25: The normal QQ-plots and statistics of Scenario 20.
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Figure A.26: Ranking for R-Vines corresponding to four strategies applied on
Scenarios with respective features:

independent Kendall TailCum HuDep ExceedDep
Rank 1 5 0 4 2
Rank 2 2 1 0 3
Rank 3 1 0 0 3
Rank 4 0 7 4 0

simplified Kendall TailCum HuDep ExceedDep
Rank 1 1 0 7 1
Rank 2 5 0 1 2
Rank 3 0 2 0 5
Rank 4 2 6 0 0

dependent Kendall TailCum HuDep ExceedDep
Rank 1 1 0 2 1
Rank 2 1 0 2 1
Rank 3 2 0 0 2
Rank 4 0 4 0 0

(a) Scenarios with dependence structure in trees T4 — T'7. Best ranking of the
model is marked yellow.

mon.decreasing Kendall TailCum HuDep ExceedDep
Rank 1 2 0 3 1
Rank 2 3 1 0 1
Rank 3 0 0 0 3
Rank 4 0 4 2 0
mon.increasing Kendall TailCum HuDep ExceedDep

Rank 1 0 0 5 0
Rank 2 3 0 0 2
Rank 3 1 1 0 3
Rank 4 1 4 0 0
const.weak Kendall TailCum HuDep ExceedDep

Rank 1 3 0 1 3

Rank 2 0 0 2 2

Rank 3 1 1 0 0

Rank 4 1 4 2 0
const.strong Kendall TailCum HuDep ExceedDep

Rank 1 2 0 4 0

Rank 2 2 0 1 1

Rank 3 1 0 0 4

Rank 4 0 5 0 0

(b) Ranking for R-Vines corresponding to four strategies applied on Scenarios
with respective correlation strength. Best ranking of the model is marked
yellow.



B Additional Information on Applications

B.1 Exchange Rates

Figure B.1: Pairs-plots for the transformed copula data and the empirical values
of Kendall’s 7 of Dissmann (2010) for the Exchange rates data set.
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Matrices corresponding to R-Vine selected using Kendall's 7 as weight:

7 0
6 2 0 O
2 6 8 0 0 O
99 6 1 0 0 1 0
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8 1 1 4449 6 6 2 2 2 222 2 20
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-015 0 024 O 0 0
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037 051 069 044 036 032 0.19 0.10 0O
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Matrices corresponding to R-Vine selected using Tail cumulation as weight:

7 0
6 8 0 0
9 6 2 0 1 0
5 9 6 1 34 1 00
M=|3 5 9 6 3 F=]1 1 1 0 0
4 35 9 6 5 34 1 00 0 0
243596 4 0 3 1.0 0 0 O
124359 69 34 0 2 4 2 1 14 0
8 11 44 49 6 6 2 2 2222 2 20
0
0 0
0 0.08 0
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P=|-014 -024 0 0 0
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0
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7.55 4.02 855 10.28 8.45 6.06 14.78 14.68
0
0 0
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0 —-0.14 0.04 O 0 0 0
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037 069 051 044 0.36 032 0.19 0.10 O

146



Matrices corresponding to R-Vine selected using Hu dependence as weight:

= © O N 0o~ W Ot
Y= I N 00 O =W

P2=

1
4 8
9 4 2 F=
8 9 4 4
279 6 6
76 79 99
6 2 6 7777
0
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0 1.05 035 O
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0 014 079 O
0.11 —-0.23 0.70 0.52
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Matrices corresponding to R-Vine selected using Exceedance dependence

as weight:
8 0
6 2 0 0
5 6 6 1 0 0
3 5 15 0 0 0 O
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Matrices corresponding to R-Vine selected using adjusted Hu dependence

as weight:
2 0
8 8 14 0
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Figure B.2: T1 — T} corresponding to R-Vine selected using Kendall’s 7 as weight.
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Figure B.3: Ty — Ty corresponding to R-Vine selected using Kendall’s 7 as weight.

Tree 5 Tree 6
CANCHIAUSTBRAN BRA,JPNIEUR,CAN,AUS,S2

1,0
1,0

EUR,INICAN,AUS BRA

N,-0.05 SZ,INIEUR,CAN,AUS,BRA]
N,0.05
ERAYSZI EURICANIALS EUR,CHICAN,AUS,BRA,I
10 G270,-0.06 10
UK.SZIEUR,CAN,AUS [UKBRAIEUR,CANAUS 57
CANJPNEURAUS SZ UK,BRAIEUR,CAN,AUS,SZ
Tree 7 Tree 8
1,0
[_JPN.INIEUR.CAN.AUS BRA.SZ |
1,0
UK,INIEUR,CAN,AUS BRA,SZ [ UK,CHIEUR,CAN,AUS,BRA,SZ,IN ]
1,0
€H,SZIEUR,CAN,AUS,BRA,IN

151



Figure B.4: T1 — T} corresponding to R-Vine selected using Kendall’s 7 as weight.
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Figure B.5: Ty — Ty corresponding to R-Vine selected using Tail cumulation as
weight.

Tree 5 Tree 6

EUR,IN|CAN,AUS BRA m‘
0

I AN,JPN|EUR,UK,AUS,SZ
1,0 G270,-0.06
N,-0.15
CAN,CHI|AUS BRA,IN
CAN,SZ|EUR,UK,AUS
BRA,SZ|EUR,UK,CAN,AUS
N,-0.05
N,-0.09 EUR,CH|CAN,AUS,BRA.I
1,0
AUS,JPN|EUR,UK,SZ UK,INJEUR,CAN,AUS BRA
Tree 7 Tree 8
[ UK.CHIEUR.CAN.AUS.BRA.IN ]
N,0.05
[JPN.INJEUR.UK.CAN.AUS BRASZ ]
[SZINJEUR UK. CANAUS.BRA ] 10
1,0

153



Figure B.6: T} — T, corresponding to R-Vine selected using Hu dependence as
weight.
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Figure B.7: T5 — Ty corresponding to R-Vine selected using Hu dependence as
weight.
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Figure B.8: T} —T), corresponding to R-Vine selected using Exceedance dependence
as weight.
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Figure B.9: T5—Ty corresponding to R-Vine selected using Exceedance dependence

as weight.
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Figure B.10: T7 — T}, corresponding to R-Vine selected using adjusted Hu depen-

dence as weight.
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Figure B.11: T5 — Ty corresponding to R-Vine
dence as weight.

Tree 5

AUS,CHIEUR,JPN,IN |

£0.2
G270,0.01
EUR,BRAJAUS,JPN,IN
CAN,JPN[EUR CH,IN
10,64
£-0.02
BRA,SZ|AUS,JPN,IN |
UK,INJEUR CAN,CH

Tree 7

[ CH,SZ|EUR,AUS BRA,JPN,IN |

G270,-0.01

[ CAN,BRAJEUR,AUS,CH,JPN,IN |

N,-0.04

[ UKAUSIEUR.CAN.CHJPN.IN |

159

selected using adjusted Hu depen-

Tree 6

CAN,AUS|EUR,CH,JPN,IN |

G,0.08
[ BRA.CHIEUR,AUS,JPN,IN
N,0.13
UK,JPN|EUR,CAN,CH,IN |
N,0.04
EUR,SZ|AUS,BRA,JPN,IN
Tree 8

[ CAN,SZIEUR,AUS,BRA,CH,JPN,IN]

S$G,0.02

[ UK,BRAJEUR,CAN,AUS,CH,JPN,IN ]




B.2

International Financial Indices

Below an overview of international financial indices with corresponding number from 1

to 16.

‘ Short Name Long Name Region
1 Dax DAX30 PERFORMANCE Germany
2 STOXX50 DJ STOXX 50 Europe
3 S&P500 S&P 500 COMPOSITE USA
4 | MSCI-WORLD MSCI WORLD U$ Global
5 MSCI-EE MSCI EM EASTERN EUROPE U$ Eastern Europe
6 | IBOXX-G-3-5 IBOXX EURO SOV.GERMANY 3-5 YRS Germany
7 | IBOXX-G-7-10 IBOXX EURO SOV.GERMANY 7-10 YRS Germany
8 | IBOXX-E-1-3 IBOXX EURO SOV.EZONE 1-3 YRS Eurozone
9 | IBOXX-E-5-7 IBOXX EURO SOV.EZONE 5-7 YRS Eurozone
10 | IBOXX-E-10+ IBOXX EURO SOV.EZONE 10+ YRS Eurozone
11 BOXX-E-A IBOXX EURO CORP.A RATED ALL MATS. Eurozone
12 | BOXX-E-AA IBOXX EURO CORP.AA RATED ALL MATS. Eurozone
13 | BOXX-E-AAA | IBOXX EURO CORP.AAA RATED ALL MATS. Eurozone
14 | BOXX-E-BBB | IBOXX EURO CORP.BBB RATED ALL MATS. Eurozone
15 Comm DJ UBS-Spot Commodity Index Global
16 Gold MLCX Gold Total Return Global
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Figure B.12: Pairs-plots for the transformed copula data and the empirical values
of Kendall’s 7 of Schepsmeier (2010) for the Equity financial indices (top left),
Fixed Income (top right) and Commodities (bottom).
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B.3 German DAX

Below we summarize the variables of the German DAX data set. Each corresponding
to a respective number.

ID.DE \ Company Name \ \ ID.DE \ Company Name \
1 ADS Adidas 16 HEI HeidelbergCement
2 ALV Allianz 17 HEN3 Henkel
3 BAS BASF 18 IFX Infineon Technologies
4 BAYN Bayer 19 LHA Lufthansa
5 BEI Beiersdorf 20 LIN Linde
6 BMW BWM 21 MAN MAN
7 CBK Commerzbank 22 MEO Metro
8 DAI Daimler 23 MRK Merk
9 DBI1 Deutsche Borse 24 MUV2 Munich Re
10 DBK Deutsche Bank 25 RWE RWE
11 DPW Deutsche Post 26 SAP SAP
12 DTE Deutsche Telekom 27 SDF K+S
13 EOAN E-ON 28 SIE Siemens
14 FME Fresenius Medical Care 29 TKA ThyssenKrupp
15 FRE Fresenius SE 30 VOW3 Volkswagen

Table B.1: Variables of German DAX data set.
Figures B.13 and B.14 offer an overview of variable pair selected according to strategy.

Red color represent a pair that has been selected by three strategies out of four, green
for two strategies and black for one.
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Figure B.13: Overview of selected variable pairs for German DAX data set for
each strategy according to the used weight
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Figure B.14: Overview of selected variable pairs for German DAX data set for
each strategy according to the used weight (continued)
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Method Hu Dependence
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Method Exceedance Dependence
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Method Kendalls Tau
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