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Abstract— Manipulation tasks are a great challenge for
robots due to the uncertainty arising from unstructured envi-
ronments. In this paper we propose a novel control scheme for
contact tasks based on risk-sensitive optimal feedback control.
It provides a systematic approach to adjust the trade-off
between motion and force control under uncertainty. Following
a previously acquired task model, the proposed approach
provides both a variable stiffness solution and a motion
reference adaptation. This control scheme achieves increased
adaptability under previously unseen environmental variability.
An implementation on a robotic manipulator validates the
applicability and adaptability of the proposed control approach
in two different manipulation tasks.

I. INTRODUCTION

The field of robotic manipulation in unstructured environ-

ments imposes interesting challenges on several levels. The

acquisition of a task plan for complex manipulation task

is difficult. Furthermore, the execution of such task plans,

which typically imply both, position/velocity and force goals,

require online adaptability due to potential variability of real

environments. The adjustment of such motion and force goals

depending on the environment situation as well as the adapta-

tion of the manipulator compliance to unexpected situations

are crucial for the successful execution of manipulation tasks

in changing environments and is the focus of this paper.

Robotic manipulation covers a wide field of applications,

such as grasping or door opening tasks [1]. Due to the com-

plexity of analytical task representation, a recurrent choice

in recent literature for this topic is the extraction of a task

plan based on exemplary human demonstrations. The pro-

gramming by demonstration paradigm [2] provides efficient

method for rapid skill transfer to robots, applicable to ma-

nipulation tasks through teleoperation [3] or physical coach-

ing [4]. Manipulators can be easily programmed following

this principle extracting motion-based generalized plans [5].

Motion-based approaches successfully execute manipulation

tasks if reproduced in the same environment [6], but fail in

uncertain environments. The inclusion of contact forces into

the control scheme facilitates a desired compliant interaction

of the manipulator and thereby improves its behavior in

contact [7]. Task plans based on demonstrations including

contact forces provide better generalization capabilities than

pure position models [8]. However, such an approach implies

the challenge of controlling two different references at the

same time, i.e. position and force. Due to environmental

variability, additional adaptation of the controlled behavior
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is required during the reproduction phase. One option is

the adaptation of the position reference depending on the

observed force error using force feedback [9], while other

methods follow hybrid control [10] or parallel force and

position control [11]. A valid alternative relies on varying

the stiffness of the robot depending on the observed position

error during kinesthetic teaching [12]. However, a systematic

approach to adapt both, the compliance and the reference of

the robotic manipulator based on observed force errors does

not exist to the best of the authors knowledge.

In this paper we will explicitly address the problem of

environment uncertainty during the reproduction of a manip-

ulation task, i.e. we assume a mismatch between the planned

position and force trajectories and the current environment

condition. We propose a novel adaptive motion control

scheme based on risk-sensitive optimal feedback control to

adapt the trade-off between motion and force control based

on the uncertainty during task reproduction. Risk-sensitive

control [13] is successfully applied in our earlier works

on physical human-robot interaction [14], [15], where the

robot control needs to adapt to unmodeled and unexpected

human behavior. In this paper we show that this concept

can be similarly applied to adapt the trade-off between

motion and force control based on the uncertainty during

task reproduction. We model the manipulation tasks as a

cooperation problem for two cooperating agents given by

a motion and a force controller. Modeling the unexpected

behavior of the force controller as a process noise input

for the motion control and following a Model Predictive

Control Scheme (MPC), an online variable stiffness as well

as a reference adaptation is achieved by performing a risk-

sensitive optimization. The proposed control scheme pro-

vides high adaptability in different environmental situations

as validated in experiments for an implementation on a

KUKA lightweight robot performing two different tasks.

The remainder of this paper is structured as follows.

Section II describes formally the problem considered in this

work. The proposed controller is presented in Section III.

Notation: Bold symbols denote vectors. A multivariate

normal distribution centered at u with covariance matrix Σ is

denoted N (u,Σ). A trajectory of length T of normal distri-

butions, i.e. {N (u0,Σ0),N (u1,Σ1), ...,N (uT−1,ΣT−1)}
is abbreviated as {u,Σ}.

II. PROBLEM FORMULATION

The task considered in this paper consist of a robotic ma-

nipulator moving from an initial configuration to a final goal

following a trajectory of desired position/velocity and desired

force. This desired trajectory describes a manipulation task



including contact with the environment. We assume that

the manipulator measures contact forces at its end-effector.

Its movement can be represented directly in joint or task

space. For simplicity we consider that the robot’s motion is

represented in task space and is governed by an admittance-

type control law given by

M rẍ+Drẋ = up + uf , (1)

where x is the position of the end-effector and the admit-

tance parameters are given by the rendered mass M r and

friction Dr; up represents the motion control input which

corrects the error in position and velocity space and uf the

force control input that accounts for errors in force space.

We denote the robot’s motion state by ξ = (x ẋ)T . The

right side of (1) reflects the coupling between two controllers,

which can be interpreted as a cooperation only if a common

final goal is assumed , i.e. both, the desired force and the

desired motion trajectory can be tracked without the motion

and force control counteracting each other. This is achievable

only if the task is executed in the same environment as during

demonstrations. Otherwise, and this is the more general case

that includes environment variability from demonstration to

reproduction, it is interpreted as a competition.

We assume that the desired motion/force trajectories are

encoded in a a task model λ, which is extracted from

previous human demonstrations and is represented as a tra-

jectory of normal distributions of position/velocity {µ̂ξ, Σ̂ξ}
and force {µ̂f , Σ̂f}. We also consider the possibility of

environmental variability during the reproduction of the task,

which might not be reflected in the task plan.

A control scheme that reproduces a learned task given by λ

would minimize the tracking error with respect to the ex-

pected trajectories of both position/velocity ξd = (xd ẋd)
T ,

and force, fd. From (1) we can write

M rẍ+Drẋ = (D(ẋd− ẋ)+K(xd−x))+Kf (fd−f) ,
(2)

where f is the measured force at the end-effector and xd

and ẋd are the desired position and velocity respectively;

K, D are the stiffness and damping constituting the motion

control and Kf is the proportional gain for the force control.

In order to reproduce the expected forces at the end-

effector, the force control scheme tracks the means of the

expected force trajectory, i.e., fd = µ̂f . Note that when Kf

differs from the identity matrix, its effect is equivalent to

modifying the rest of the admittance parameters as

M ′

r = M rK
−1

f D′

r = DrK
−1

f

D′ = DK−1

f K ′ = KK−1

f .

For simplicity, we assume Kf as the identity matrix.

Given this problem setting, the focus of this paper lies on

the design of the motion control scheme that generates up,

i.e. on the design of the possibly time-varying matrices K

and D and the position/velocity reference ξd.
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Fig. 1. General control scheme

III. RISK-SENSITIVE POSITION CONTROL

Manipulation tasks usually have different phases depend-

ing on the existence of contact with the environment. During

pure unconstrained motion phases no contact forces are

present and tracking the desired motion trajectory is the

only control goal. However, when forces must be exerted in

contact with the environment, their role is typically critical

for the task success and need to be prioritized over the motion

trajectory following. Let us consider the grasping of an object

as an exemplary task: during the grasping phase forces are

crucial and tracking the desired motion becomes a secondary

goal. If the object to be grasped is placed in a slightly

different position than the expected one (assuming no visual

feedback is available), the only way to successfully perform

the grasping task is to rely on force feedback, making sure

that the motion tracking does not disturb.

From a control point of view, a model-based motion

control scheme can interpret the activity of the force control

as an error in its task model. If the motion-based model

was ideal, i.e. the contact location and the environment

impedance exactly the same as during the recording of the

task, there would be no need for a force controller (except

for contact with rigid environments). However, force tracking

is necessary when such an exact model is not available.

The correction coming from the desired force tracking is

potentially produced by environmental variability/uncertainty

in contact location and/or changed environment impedance

during the reproduction of the task. Within the field of learn-

ing the proper reproduction of the manipulation task despite

uncertainty relates to the desired generalization property, i.e.

executing a learned task in environmental situations differing

from the learned ones. In such cases, the force controller

corrections can not be computed in advance. In consequence,

from (1), we model the corresponding force input as process

noise uf = ǫ in the plant dynamics of the motion controller

M rẍ+Drẋ = up + ǫ . (3)

We assume that the process noise ǫ is normally distributed,

i.e. ǫ = N (u0,Σu). It represents the model error of the

motion task model. An schematic overview of the control

scheme is depicted in Fig. 1.

Due to the discrete time nature of the implementation,

we discretize the system from (3) with a sampling time



interval ∆t yielding a discretized plant dynamics in the

form ξk+1 = Aξk +Bupk
given by

(

xk+1

vk+1

)

=
(

1 ∆t

0 1−M−1
r Dr∆t

)(

xk

vk

)

+
(

0 0

0 M−1
r ∆t

)

(upk+ǫk)

(4)

where xk, vk and upk
∈ R

3 are the discrete time position,

velocity and motion control input at time k in Cartesian

space. The model error or process noise ǫk is constantly

updated, depending on the observed force input uf from (1).

The process noise characteristics are calculated online as

the first and second order moments of uf over the past W

observed samples, leading to the normal distribution given

by ǫ̂k = N (u0k,Σuk).
1

Given the plant dynamics from (4) and a desired trajectory

to follow {µ̂ξ, Σ̂ξ}, the aim of the controller is to generate

the corresponding control input that tracks the given trajec-

tory considering the observed model error.

A. Reference Adaptation

The motion controller tracks the trajectory given

by {µ̂ξ, Σ̂ξ}. The desired reference ξd is then given by the

mean of the demonstrated trajectories

ξdk = µ̂ξk
. (5)

However, depending on the process noise model, the desired

motion reference can be adapted in order to accommodate

for diverging forces.

Depending on the interpretation of the influence of the

force control on the motion control, the process noise is mod-

eled as biased or unbiased. If we assume that observed devi-

ations produced by the force control do not lead to a hypo-

thetical goal divergence, we can optimistically consider co-

operation and therefore an unbiased noise model N (0,Σu).
In contrast, if the possibility of divergence is assumed, the

noise model becomes biased, i.e. N (u0,Σu). For the latter

case, the dynamics from (4) are expressed as

ξk+1 = Aξk +B(upk + u0k + ǫk) . (6)

with unbiased process noise ǫk = N (0,Σuk). An additive

reference adaptation ξa is calculated as the motion difference

produced by the bias u0 applying the system dynamics

ξak+1 = Aξak +Bu0k

If we then add it to the desired tracking reference from (5),

the resulting desired trajectory is adapted to the observed

force controller divergence as

ξdk = µ̂ξk
+ ξak . (7)

With this modeling, the dynamics from (6) take again the

same form as in (4) with unbiased process noise, as the bias’s

effect is already modeled adapting the reference.

1Note that the process noise can also be modeled accounting for the
expected model error captured by the task model λ and given by a zero

mean normal distribution with covariance Σ̂f [15].

B. Risk-Sensitive Optimization

With the dynamics from (4) and the desired reference (7)

the computation of the motion control input up can be

formulated from an optimality point of view as the mini-

mization of the distance to the desired trajectory. Due to

the continuous reestimation of the process noise present

in the plant dynamics, an MPC scheme must be adopted

and the optimization must be constantly recalculated as the

problem parameters change. A quadratic cost function at

sample time k for this problem takes the form

Jk =

k+T
∑

i=k

‖(ξdi − ξi)‖
2
Q + ‖upi

‖2R , (8)

where T is the time horizon, ‖x‖2Q stands for the quadratic

form xTQx and Q and R are weighting factors that allow a

trade-off between control cost and tracking error minimiza-

tion. Note that the weighting factor Q can be also chosen

proportional to the inverse of the expected motion covari-

ance Σ̂ξ in order to account for potential task constraints

encoded into the variability between the learned trials [15].

The minimization of the expectation E [Jk] of the cost

function for the dynamics (4) leads to a feedback solution

that provides optimal tracking. However, the influence of the

process noise ǫ is ignored, i.e. the variability of the force

error does not influence the motion control. In contrast, a

risk-sensitive controller directly considers the process noise

in the dynamics, adapting the manipulator compliance K,

D depending on a risk-sensitivity parameter θ. In this case

the cost function takes the form

γ(θ) = −2θ−1 lnE[exp
−

1

2
θJk ] .

The exponential form of this cost function makes the op-

timization sensitive not only to the expected cost E[Jk] but

also to higher order moments of it, which are directly related

to the process noise. If θ = 0 the controller is risk-neutral

and the process noise has no influence on the resulting gain.

For θ < 0 and θ > 0 the controller becomes risk-averse and

risk-seeking, respectively.

Solving this optimization problem with linear dynamics

leads to a an optimal feedback control law in the form

upk
= −Vi(ξdi − ξi) , (9)

where Vi is the feedback matrix given by a modified form

of the Ricatti recursion [16]

Vi = −R−1B′(BR−1B′ + θΣuk +Π−1

i+1
)−1A ,

and

Πi = Qi +A′(BR−1B′ + θΣuk +Π−1

i+1
)−1A ,

with ΠT = QT . The resulting feedback gain Vi represents

both the damping D and stiffness K parameters from (2) as

Vi =

(

0 0
Ki Di

)

.

Note that, due to the MPC scheme, while the recursion

for the optimization is calculated for a time horizon T , the



only feedback matrix applied in the motion control from (9)

is the one for the simulated step i = k.

As a result, in the risk-averse case, θ < 0, the feedback

gain becomes higher interpreting the noise in a pessimist

manner as it if was directing the state in the wrong direction.

For the risk-seeking case, θ > 0, the feedback gain becomes

lower adopting an optimist attitude as it assumes that the

noise is already doing part of the job and therefore directing

the state in the right direction. Applied to our scenario,

a risk-seeking policy arises as the most intuitive solution.

In this case, the stiffness decreases when the force control

needs to correct the desired force trajectory in order to avoid

disturbances. The risk-averse case is a suitable option for

pure motion tasks as the stiffness rises under force control

corrections, increasing the tracking precision. Note that while

the presented solution only considers linear dynamics, the ap-

proach is straightforwardly extendable to nonlinear dynamics

using iterative optimization methods [17].

IV. EXPERIMENTS

In order to evaluate the performance and demonstrate the

applicability of the proposed control scheme, a full-scale

experiment is conducted in our laboratory. Using a robotic

manipulator two different tasks involving contact with the

environment are performed for four different motion control

strategies. The presented results show the advantages of

the proposed approach testing the adaptation capabilities to

different environmental variations.

A. Experimental Setup

The robotic platform employed for this experiment is

shown in Fig. 2; it consists of a four-wheeled omni-

directional mobile platform (here only used for repositioning

the robot) and two identical commercially available KUKA

LWR (light-weight robot) 4+ manipulators. Only one of the

two manipulators is used in all the experiments driven in the

Cartesian impedance control mode. For measuring resultant

forces independent of the configuration and of the human

guiding force during kinesthetic teaching of the manipulation

task, a force/torque sensor (JR3) is attached to the wrist. As

end-effector, a Schunk PG70 two-finger parallel gripper is

used for simple grasping and object pushing with the fingers.

A detailed description of this robot can be found in [18].

In order to operate the KUKA LWRs, Fast Research Inter-

face (FRI), which allows user control and status monitoring

of the manipulators based on UDP protocol is used. This

software package is integrated in our real-time robot control

framework [19]. The robot control loop runs at a frequency

of 1 kHz. For evaluating the proposed controllers, rotational

motions are ignored so that the system dynamics remain

decoupled linear dynamics for each Cartesian DoF.

In order to acquire a generalized model of a task given a

set of exemplary demonstrations, a probabilistic task model λ

given by a time-based HMM is trained using the EM

algorithm. In a similar way as trajectory HMMs, time-based

HMMs can generalize the given observations as a trajectory

of expected normal distributions. However, in contrast to

Fig. 2. Task consisting of pushing a
button followed by pointing out text
written on a whiteboard.

Fig. 3. Task consisting of cleaning
a whiteboard with an eraser grasped
with a two-finger gripper.

Task
model λ

Pushing Button and Pointing Erasing Whiteboard

Controller Initial Button Pointing Initial Whiteboard
Distance Distance Distance

0 cm ◦ 0 cm -5 cm ◦

(a) 5 cm × 0 cm 0 cm •

10 cm × 0 cm +5 cm •

0 cm ◦ 0 cm -5 cm •

(b) 5 cm ◦ 0 cm 0 cm •

10 cm ◦ 0 cm +5 cm •

0 cm • 8.5 cm -5 cm ◦

(c) 5 cm • 9.5 cm 0 cm ◦

10 cm • 7.8 cm +5 cm ◦

0 cm • 8.5 cm -5 cm ◦

(d) 5 cm • 9.5 cm 0 cm ◦

10 cm • 7.8 cm +5 cm ◦

TABLE I

EXPERIMENTAL RESULTS FOR PUSHING BUTTON AND POINTING TASK

AND FOR WHITEBOARD ERASING TASK.

• SUCCESS, ◦ PARTIAL SUCCESS, × FAILURE

trajectory HMMs, time-based HMMs preserve the standard

HMMs flexibility of representing sequences with different

lengths due to their discretized state space. This property

avoids the necessity of aligning observations due to their

different lengths using time warping methods like dynamic

time warping. The generalized expected Gaussians trajectory

of both position/velocity {µ̂ξ, Σ̂ξ} and forces {µ̂f , Σ̂f} is

calculated using Gaussian Mixture Regression over the time

domain. See [4] for a detailed description of the method.

For evaluating combinations of risk-sensitivity and motion

reference, we tested four different motion controllers:

(a) Unbiased process noise ǫ = N (0,Σu)) with risk-

neutral optimization, i.e. θ = 0 and motion reference

given by (5).

(b) Unbiased process noise ǫ = N (0,Σu)) with risk-

seeking optimization, i.e. θ = 10−5 and motion ref-

erence given by (5).

(c) Biased process noise ǫ = N (u0,Σu)) with risk-neutral

optimization, i.e. θ = 0 and motion reference given

by (7).



(d) Biased process noise ǫ = N (u0,Σu)) with risk-

seeking optimization, i.e. θ = 10−5 and motion ref-

erence given by (7).

Note that controllers a) and c) are not influenced by the

variability of the force control Σu in contrast to b) and d),

that adopt a risk-seeking optimization. Similarly, controllers

b) and d) adapt their motion reference depending on the

bias u0 while a) and c) do not modify the learned references.

For our experiments, the parameters of Eq. (1) are

Mr = diag (10 kg, 10 kg, 10 kg )

Dr = diag (80 Ns/m, 80 Ns/m, 80 Ns/m )

and the window size W for the process noise calculation is

chosen in order to capture the last 0.3s. For simplicity of

presentation, the tracking error precision Q in (8) is chosen

such as errors with respect to the expected velocity trajectory

are ignored and therefore only position errors are considered

resulting in a stiffness adaptation, i.e. D = 0 in (2).

B. Experimental Design

Two tasks are considered for the reproduction performance

evaluation. A model of each task is acquired after teaching 12
different demonstrations of each task keeping the same

environmental conditions.

The first task, shown in Fig. 2, consists of pushing a

button followed by pointing out text written on a whiteboard.

Three different environmental conditions are tested. The

button height is decreased with respect to the teaching

environmental conditions for 0, 5 and 10 cm respectively.

A task execution is considered successful when the button

is correctly pushed and the predefined place at the board

is exactly pointed out. The button pressing procedure is

considered a success when the button is correctly pushed

and clicked, a half success when contact is partially pushed

but did not clicked and other cases are considered as failure.

The second task, shown in Fig. 3, consist of cleaning a

whiteboard with an eraser which is assumed to be already

grasped. Three different environmental conditions are tested,

including an initial end-effector position differing in −5, 0
and 5 cm to the teaching environmental conditions. The task

is considered successfully executed when the text written on

the whiteboard is erased. A half success is considered when

the text is only partially erased.

C. Results: Pushing and pointing out

As shown in Fig. 4 for the task reproduction placed 10
cm lower with respect to the initial conditions, the resulting

stiffness depicted by the solid blue line is adapted depending

on the force control input represented by the black dashed

line for the risk-seeking controllers, i.e. (b). The variable

stiffness profile from (a) is only a result from the optimiza-

tion and are not affected by the force controller activity. As

no reference adaptation is considered in controller (b), the

stiffness decreases more with respect to (a) as it needs a

stronger correction from the force control. As a result of the

adaptive stiffness with respect to force errors produced by

the risk-seeking optimization, the force controller receives

less disturbances from the motion controller and can achieve

a better force tracking performance which translates in a

better task performance: as shown in Table I, the risk-seeking

controller (b) performs better than the risk-neutral one (a)

when pushing the button.

The reference adaptation for controller (c) and (d) for

the 5 cm case is shown in Fig. 5. The adapted reference

depicted by the dashed-dotted red line deviates from the

task model’s desired trajectory represented by the solid green

line accommodating for the force controller input represented

by the black dashed line. As a consequence, a better task

performance for the button pressing phase is achieved as

shown in Table I for controllers (c) and (d). However, a drift

from the original reference is present at the end of the task

execution producing an undesired tracking error effect for the

pointing out motion. This effect is not present in the other

two controllers that do not adapt their references.

D. Results: Erasing

The results for the erasing task are shown in Table I. For

the two controllers not adapting their motion reference, the

risk-seeking controller (b) arises again as a better alternative

as it correctly erases the whiteboard in all conditions, in

contrast to the risk-neutral case (a) that ignores the force

control input. While this task suggests that an adaptation

of the reference of the motion controller is beneficial if

an environmental offset is present, the results show worse

performance for the controllers adapting their reference,

i.e. (c) and (d). As shown by Fig. 5, the adapted refer-

ence for controller (c) depicted by the dashed-dotted red

line overcompensates the force controller contribution. This

undesired effect may be caused by a too fast accommodation

of the observed bias, suggesting that an increased window

size for process noise estimation could improve the controller

performance by capturing only very clear bias trends.

In summary, the risk-seeking optimization arises a suitable

option as it provides variable stiffness that adapts to force

corrections providing better task reproduction generalization

for unknown environmental variability. Similarly, the refer-

ence adaptation also improves the task success performance

accommodating diverging forces by adapting the motion

reference. Depending on the task, the resulting drift of the

reference trajectory w.r.t the desired one increases or de-

creases the generalization capabilities of the control scheme.

V. CONCLUSIONS

In this paper we propose a novel control approach for

manipulation tasks based on risk-sensitive optimal feedback

control. A variable compliance is achieved by modeling

force corrections as process noise in the plant dynamics

for the adaptive motion controller and minimizing a risk-

sensitive cost function. An additional motion adaptation

from the initial planned reference results from the force

controller divergence. The benefits of the approach in terms

of high adaptability to uncertain and variable environments

are convincingly validated in experiments with a robotic ma-

nipulator, where position reference adaptation and stiffness

adaptation are performed.
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A 6-dimensional solution, studying the trade-off between

variable stiffness and reference adaptation and correcting the

adapted reference are the matter of our future work.
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