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Abstract— Trajectory generation for active physical assis-
tance to humans in cooperative haptic tasks gains increasing
interest in recent literature. Planning-based approaches repre-
sent one class of trajectory synthesis methods for active robotic
partners. To overcome the limitations of kinematic planning
algorithms in dynamic tasks, we propose a three-step approach
to the synthesis of trajectories under the principle of least
action. This is motivated by neuroscientific findings on human
effort minimization in motor tasks. A trajectory is generated by
optimized sequencing of optimal motion primitives. The benefits
of the proposed method for physical human-robot cooperation
are demonstrated in human user studies in a 2D cooperative
transport task in a virtual maze.

I. INTRODUCTION

Physical assistance to humans is of high relevance for

many future industrial and domestic application scenarios

of intelligent robotic systems. Whether fast and precise

motion under direct human guidance is required in an

assembly/construction setting or safe and intuitive strength

assistance for elderly is the challenge, goal-directed assis-

tance beyond pure force magnification is desirable. First

works on physical robotic assistance consider passive support

without an active urge towards task completion [1], [2].

More recent works including our own employ either learning-

based [3]–[5] or planning-based [6]–[10] methods to im-

plement a goal-directed assistive behavior. Alternatively,

a common desired trajectory is given by an expert [11].

Planning-based approaches thus far operate purely on kine-

matic constraints neglecting task dynamics and require full

explicit scene knowledge. Learning-based approaches require

a training phase but generate implicit knowledge of the scene

and the task dynamics. To the best of the authors’ knowledge,

no state-of-the art method is able to generate a goal-directed

assistive robot behavior in a complex environment utilizing

explicit knowledge of the task dynamics.

In this work, we target the problem of trajectory generation

for goal-directed physical assistance considering the dynam-

ics of a commonly manipulated object. We propose a novel

three-step scheme for the computation of start-to-goal motion

trajectories. The resulting trajectory serves as prediction

of the human’s desired trajectory during cooperation. Our

approach aims to minimize the required human effort under

kinodynamic constraints for complex scenarios beyond point-

to-point primitive motions. Note, that mechanical effort in

cooperation relates to interaction efficiency [12].

Different methods and paradigms for the estimation of

human desired motion trajectories are found in the literature.

The most widely used principle of jerk minimization is

validated for free-space arm motion of humans [13]. A

successful transfer of this principle to cooperative manipu-

lation [14] is outperformed by a polynomial model targeting

simple cooperative point-to-point movement [15].

In object transport tasks, the least-action principle be-

comes a more relevant aspect. The computation of an energy

optimal trajectory even for a point mass subject to viscous

friction in 2D is generally computationally intractable for the

general case including non-convex constraints [16]. Biolog-

ical findings inspire the deployment of motion primitives to

synthesize more complex actions [17]. This is successfully

applied also for the planning of a manipulator motion,

where linear-quadratic (LQ) optimal motion primitives are

combined with a heuristic planning approach in [18] leading

to fast suboptimal results. A more general method for the

derivation of motion primitives (maneuvers) is proposed

in [19]. The authors propose an exploitation of inherent

system symmetries to determine optimal maneuvers, both

approaches [18], [19] are limited to kinematic constraints.

Especially in the context of physical human-robot cooper-

ation, however, constraints on acceleration and velocity are

safety-relevant and must be incorporated in the trajectory-

generation procedure.

In this paper, we propose a three-step optimization ap-

proach tailored towards the requirements in human-robot co-

operative manipulation: Energy-optimal trajectory segments

within given acceleration and velocity limits are sequenced

based on an initial solution produced by a feedback motion

plan. The sequence is further iteratively optimized towards

a minimized overall energy consumption. The individual

segments render straight lines or single curves, a reasonable

optimization horizon, traceable for the human partner. Under

these conditions, a scheme for trajectory generation under

the least-action principle provides a desirable trajectory that

obeys not only the environmental constraints but also veloc-

ity and acceleration limits that allow comfortable interaction

with the human partner. We evaluate our proposed approach

in an experimental human user study in a 2D cooperative

transport task in a virtual environment. While the goal is

known to the human and the robotic partner, no information

on the robot’s desired trajectory is provided to the human



other than through haptic interaction. The results show

significant benefits for cooperation efficiency over kinematic

feedback plans investigated in our earlier works [10].

The remainder of this work is organized as follows: Sec-

tion II describes our overall approach using an implementa-

tion of optimized motion primitives described in Section III.

Our experimental evaluation is presented in Section IV.

Notation: By convention, in this paper bold symbols

denote vectors. The Q-weighted norm of vector x is de-

noted ‖x‖Q such that ‖x‖2Q = x⊤Qx.

II. TRAJECTORY GENERATION SCHEME

In this work, we confine our problem to the following con-

ditions: A virtual circular object with point-mass dynamics

exposed to viscous friction is cooperatively moved through a

cluttered environment. The sum of forces of human and the

virtual robotic partner acts on the object. The common goal

in terms of final configuration is known to both cooperation

partners. A path from starting position to the goal exists.

In this section, an iterative method is derived, to derive

a point mass trajectory from an admissible initial to a final

state under given constraints aiming to minimize the required

cost. We consider the dynamics of a 2D point mass m motion

with isotropic viscous friction d described by

mẍ+ dẋ = u+ uh, x,u,uh ∈ R
2, (1)

where x denotes the object position, ẋ its velocity, and u

and uh the robot’s and human’s interaction force; ξ =
[x⊤ ẋ⊤]⊤ ∈ R

4 denotes the object’s full state on the map

such that x ∈ Cfree, the accessible configuration space Cfree =
C \ Cobs. The determined trajectory should adhere to kin-

odynamic constraints given by an environment map and

constraints on the object’s velocity and the acceleration.

A constraint-admissible trajectory can be calculated by

concatenating a sequence of constraint-admissible trajecto-

ries. Therefore, a set of intermediate states between initial

and final state have to be determined which are then con-

nected by optimal and admissible trajectories. The method

used to calculate optimal motion primitives and the resulting

optimal trajectories, which connect two given states, will be

introduced in Section III.

The optimal trajectory with N intermediate states and

therefore N+1 sub-trajectories under the constraints g(ξ,u)
on position, velocity and force is determined by

min
ξ,u,N

Jtraj(ξ,u, N) s.t. g(ξ,u) ≤ 0 (2)

with cumulative cost Jtraj of the entire trajectory

Jtraj(ξ,u, N) =

N
∑

k=0

Jsubtraj,k(ξ,u).

Therefore, the subtrajectories, the number of subtrajectories

and the connection states between the subtrajectories are

varied in the following to minimize the overall cost Jtraj

A. Derivation of initial trajectory segments

In order to derive a set of initial valid trajectory segments,

the feedback-planning scheme described in [9] is deployed.

The method provides an estimate of the shortest direction

to the goal for all points contained in the admissible set of

Fig. 1. Map of the environment with hue-encoded feedback plan

positions. Constructing a valid sequence of straight line seg-

ments from start to goal considering the computed direction

as input provides an initial estimate for intermediate states.

We propose the following algorithm:

1) Consider a point at the admissible state ξk at time k,

the point moves at constant velocity ẋact during the time

interval ∆t in the direction determined using the feedback

plan at position xk to determine the next position xk+1 and

next direction ẋk+1/‖ẋk+1‖.

2) The motion primitive between the current state ξk and the

new state ξk+1 is computed.

• If the resulting trajectory does not fulfill the environ-

mental constraints, the computation is executed for half

of the velocity ẋact.

• If a feasible trajectory can be computed, but the differ-

ence between the angle between ẋk and ẋk+1 is below

a given ∆φmin which means that the two connected seg-

ments are approximately aligned, the time interval ∆t
is doubled and the computation is repeated.

• Otherwise, the new state ξk+1 is added to the list of

intermediate states and the computation is started with

the maximum values of the constant speed and the time

interval using this state as the current state.

3) The computation terminates as soon as a feasible trajectory

from the current state to the final state exists. The distribution

of the initial subtrajectories is influenced by the choice of

the maximum constant velocity ẋmax, the maximum time

interval ∆tmax and the minimum angular difference ∆φmin.

Depending on these values, the cost of the initial path varies.

For the illustration of the approach we will use an example

of a cooperative transport task in a 2D maze throughout

the paper, which is also considered as scenario later in the

experimental human user study. In Fig. 1 the maze is pre-

sented together with the feedback plan, where the direction

towards the goal is hue-encoded. The influence of parameter

variation is illustrated in Fig. 2.1 However, depending on the

choice of the parameters and the given map, the calculation

can produce more than necessary intermediate states which

1In the exemplary figures shown in this paper, the velocity and
acceleration constraints are chosen to be ẋmax |min = ±0.15m/s

and ẍmax |min = ±0.12m/s2.



 

 

 

 

initial position

final position

ẋact = 0.06m
s
; ∆φmin = 0◦; ∆t = 0.3s; Jtraj,init = 0.15531

ẋact = 0.108m
s
; ∆φmin = 0◦; ∆t = 0.3s; Jtraj,init = 0.1436

ẋact = 0.06m
s
; ∆φmin = 5◦; ∆t = 0.3s; Jtraj,init = 0.15613

Fig. 2. Influence of parameter variation on the initial state distribution

results in higher cost than necessary and a higher effort

for the local optimization. Therefore it is reasonable to

reduce the number of subtrajectories. This can be done by

consecutively replacing two connected subtrajectories by a

single subtrajectory if the constraints remain satisfied. Note,

that the cost of the replacing optimal subtrajectory is always

lower than the sum of the cost of the replaced subtrajectories.

It is apparent that the cost of the reduced path is significantly

lower than the cost of the non-reduced path.

B. Optimization of segment sequencing

Since the initial set of subtrajectories is determined with-

out the consideration of optimality principles, this set is

optimized to reduce the cost of the resulting path. Therefore,

the connecting states are altered. A simplex search method

is used on the connecting states between the subtrajecto-

ries, which requires the computation of the numeric gradi-

 

 

initial position

final position

ẋmax = 0.06m
s
; ∆φmin = 0◦; ∆tmin = 0.5s

before reduction of states: Jtraj = 0.2822

after reduction of states: Jtraj = 0.12809

Fig. 3. Comparison of the path created by a reduced number of
intermediate states with the non-reduced path

 

 

 

initial position

final position

ẋmax = 0.06m
s
; ∆φmin = 0◦; ∆tmin = 0.3s

Jtraj = 0.15464

Jtraj = 0.13769

Fig. 4. Result of local optimization procedure

ent ∇ξ,kJsubtraj in each connecting state ξk.

A reduction of the cost can be achieved by a local

optimization of the connecting states, e.g. using a simplex

search method. The cost function from (2) has to be slightly

modified such that the cost is increased if a constraint is

violated due to a change caused by the optimization process.

This ensures that the states and the trajectories are not moved

onto obstacles during optimization. This results in the new

cost function

Jtraj =

N
∑

k=0

(1 + γk) · Jsubtraj,k, (3)

where γk = 0 if all kinodynamic constraints are fulfilled

and γk ≫ 1 otherwise. The result of such a local optimiza-

tion for our example is depicted in Fig. 4. It can be observed

that the optimized path passes close to the obstacles. In the

follow section, a method for the computation of optimal

motion primitives used for sequencing is introduced.

III. GENERATION OF OPTIMAL MOTION PRIMITIVES

The previous section introduced a solution to the kinody-

namic motion planning problem based on the combination of

optimal trajectory segments, henceforth referred to as motion

primitives. In this section we propose a method for derivation

of such motion primitives in an energy optimal manner.

The motion primitive planning is based on decoupled one-

dimensional optimal control. Therefore the planning process

is performed separately for one-dimensional subproblems

along each dimension of the overall planning problem.

Considering relationship (1), two optimal-control problems

remain: One along each axis of x = [x1 x2]
⊤ in the plane.

The key steps for computing the motion primitives are

the calculation of the energy optimal control of the one-

dimensional subproblems and the synchronization of these

independently planned motions. For that reason we divide

the planning process into four steps.
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1) Minimum-duration computation through solving time

optimal control problem along each axis

2) Synchronization of 1-D motions via common final

time tbase

3) Calculation of the energy optimal control

4) Calculation of the system trajectory

A. Time optimal control

The first step of our approach acts as preparation to the

synchronization of the 1-D motions, which is based on the

shortest possible time topt needed to reach the desired final

values. To calculate topt we apply the minimum principle

of Pontryagin to the one-dimensional subsystems of (1)

considering

J(xi, ẋi, ui) =

topt
∫

0

1 dt i ∈ {1, 2} (4)

as cost function and

umin,i ≤ ui ≤ umax,i i ∈ {1, 2} (5)

as control constraints. This yields, due to the special structure

of system (1), a switching law in state space variables of the

system. For this control law an enhancement is possible such

that velocity constraints

ẋmin,i ≤ ẋi ≤ ẋmax,i i ∈ {1, 2} (6)

can be considered. The enhanced switching law, expressed

in state space variables, is given by:

• For x(0) ∈ GA

u(t) =











umax

d · ẋmax

umin

0 < t < tẋ,max

tẋ,max < t < tswitch

tswitch < t < tf

• For x(0) ∈ GB

u(t) =











umin

d · ẋmin

umax

0 < t < tẋ,min

tẋ,min < t < tswitch

tswitch < t < tf

• For x(0) ∈ Ga

u(t) =

{

umax

umin

0 < t < tswitch

tswitch < t < tf

• For x(0) ∈ Gb

u(t) =

{

umin

umax

0 < t < tswitch

tswitch < t < tf

With GA, GB , Ga and Gb subsets of the state space bounded

by system trajectories as shown in Fig. 5, tẋ,min and tẋ,max

as points in time when the velocity is equal to ẋmin and ẋmax,

respectively; tswitch denotes the time when the trajectory

reaches the switching curves γa or γb.

B. Synchronization of 1-D motions

Since the calculation of motion primitives incorporates

only the one-dimensional case we need to ensure that both

planned motions reach the desired final values at the same

time tbase. Furthermore it is necessary to ensure that tbase

is large enough such that motions are realizable considering

acceleration and velocity constraints. In order to fulfill these

requirements we define

tbase = kslowdown ·max(topt,x, topt,y). (7)

where topt,x and topt,y denote the amount of time which is

needed by time optimal control to reach the desired final

state. The user-defined parameter kslowdown > 1 determines

the degree of slowdown relative to the time optimal case.

Using this definition assures that the planned motions are

feasible with velocity and acceleration within the constraints.

Moreover it is possible to influence the completion time of

the planned motion via kslowdown.

C. Energy optimal control

In order to generate motion primitives, an energy-optimal

control problem is solved. The cost function given by

J(ξ(t),u(t)) =

tbase
∫

0

‖ξ‖2Q(t) + ‖u‖2R(t)dt

s.t. g(ξ,u) ≤ 0

(8)

where Q can be interpreted as mechanical friction

Q =

(

02 02
02 q · I2

)

and R as electro-mechanic resistance R = r · I2 of a drive

train. In our optimal control problem we consider the cost

function (8) and furthermore (5) and (6) as constraints. Due

to computational complexity of this optimal control problem

and its non-convex nature, we approximate the solution. For

this purpose we divide the planning problem into 1-D sub-

problems, sample the continuous dynamics of the subsystem

of (1) and solve the resulting discrete approximations of

the problems. These approximated optimal control problems

can be formulated as quadratic programs such that efficient

computation of reliable solutions is feasible.

The optimized sequence of the resulting optimized subtra-

jectories is forms the suboptimal overall solution u applied

to the targeted cooperative transport scenario.



IV. EXPERIMENTAL EVALUATION

The proposed optimization scheme is evaluated in a

human-robot cooperative setup in virtual reality. Therefore,

quantitative measures are used to rate the performance of

the approach in comparison to a feedback planning scheme

proposed in [10]. A virtual circular object with point-mass

dynamics and isotropic viscous friction described by (1) is

cooperatively moved to a virtual maze, visually and hapti-

cally rendered to the human user, see Fig. 6. The effective

force on the virtual object is composed by the robot’s input u

and the human input uh.

The trajectory generation approach provides a reference

trajectory X = [xd(τ = 0) . . .xd(τ = τf )] and its first

and second time derivatives. The robot’s feedforward force

contribution u is generated by

u = mẍd(τ(xm)) + dẋd(τ(xm))

where τ(x) denotes the reference-adaptation parameter,

given by the closest xd(τ) to the current position xm

xm = argmin
xd∈X

‖xd − xm‖.

This accommodates the expected deviations from the com-

putated trajectory due to the human interaction force uh.

A. Quantitative performance measures

We evaluate the following criteria in order to rate the

performance of the proposed approaches:

• Mean disagreement uD:

uD =







−uh

‖uh‖
· ur, if uh · ur < 0 ∧ uh 6= 0

0, otherwise.

Larger values of disagreement uD indicate that the

human and the robotic partner produce a higher amount

of counteracting inefficient forces.

• Mean energy contributed by the human as measure of

effort E =
∫ T

0
u⊤

h ẋ dt indicates what share of the task

effort is taken over by the robotic assistant.

• The mean completion time T is a measure for the

speed-up gained through interaction. Completion time

Start

Goal

Fig. 6. Example task: Moving a point mass object from start to goal
position through a maze

Constant Equation Value

Simulated object mass m (1) 100 kg

Simulated viscous friction d (1) 400
Ns
m

Maximum force umin |max (5) ±12N

Maximum velocity ẋmin |max (6) ±0.15m/s

Slowdown factor kslowdown (7) 2

TABLE I

CONTROL PARAMETERS USED IN 2-DOF EXPERIMENT

indicates the average velocity of the object, necessary

for the interpretation of the energy contribution.

B. Experimental evaluation setup

The virtual-reality interface consists of a two degrees-of-

freedom (anteroposterior and mediolateral plane of the user

standing in front) linear-actuated device (ThrustTube) with

a free-spinning handle (superoinferior direction of the user)

at the grasp point. The control algorithm is implemented in

Matlab’s Simulink Coder and executed on Linux Preempt/RT

at a sampling rate of 1 kHz. Attached to the handle, a force

sensor (JR3) measures the human interaction force. The

virtual scene is visualized on a display placed on top of

the interface. The displayed task to transport a virtual object

is visually represented by a filled red circle and the target

position in the upper left corner of the maze (blue dot).

Collisions with the virtual walls should be avoided. Table I

exhibits the constants used to parameterize the experiment.

We conducted a small pilot study in a VR scenario to

evaluate the performance of our proposed approach. Six non-

paid participants (age mean: 28.0, std: 2.36) were asked to

move a virtual object through the maze. Each participant

repeated the task without assistance for five times. Consec-

utively, five trials with kinematic feedback-planning-based

assistance (see [10]) were performed. Finally, five trials with

our proposed novel approach followed.

C. Quantitative performance results

The quantitative results of our pilot study are presented in

Fig. 7. Figure 7(a) shows, that the mean energy induced to

the point mass by the human subjects was significantly lower

with optimized assistance considering the object dynamics

than in the trials with assistance by the feedback-planning

scheme. However, the participants chose a higher execution

speed as depicted in Figure 7(b). The completion time in

the feedback-planning assisted case decreased over trials.

Figure 7(c) shows the occurrence of disagreement, hence

counteracting, forces between the subject and the robotic

assistant. Note, that the disagreement decreased significantly

over the first trials in the optimized-trajectory assistance case,

outperforming the feedback-planning assistance for all trials

other than the first.

Given the target of human effort minimization, our novel

proposed approach greatly outperforms our previous method

for goal-directed assistance. Our hypothesis is, that the

subjects decided to maintain a slower execution time in the

optimized-trajectory case due to the fact that the optimized

trajectory runs as close as possible to walls and corners.
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Fig. 7. Evolution of quantitative measures over trials

The human subject avoiding collisions is therefore more cau-

tious, hence accepts higher execution times. Furthermore, the

subjects gained practise over trials, visible in the feedback-

planning assisted case. The execution velocity is increased

from trial to trial, an indication of confidence. A learning

curve of the subjects is observed in the disagreement forces

over trials. Counteracting forces decrease significantly over

the first three trials as the human participants gain trust in

the optimized trajectory of the robotic assistant.

D. Computational tractability

In our prototypical implementation, the proposed op-

timization procedure requires the following computation

times: The generation of the feedback plan for the given

map example requires an approximate 100 s to compute.

The initial solution for a trajectory in the given example

with non-optimized Matlab code requires 25.7 s on an Intel

Core i7 at 2.3GHz on OS X. The optimization of the

primitive sequencing (35 initial segments, 14 segments after

state reduction) requires an approximate 2,700 iterations of

which each takes an average of 2 s, resulting in an overall

computation time of 1.5 h. Note, that our proposed approach

is suitable for a parallel implementation for significantly

increased computation speeds.

V. CONCLUSION

In this work, we propose a novel approach for trajectory

generation under the least-action principle for active robotic

assistance to humans. The three-step optimization scheme

generates an iteratively optimized sequence of energy-

optimal motion primitives also derived in this paper. The

overall scheme obeys not only environmental constraints on

the object position but also on its velocity and acceleration.

It greatly outperforms our previously proposed feedback-

planning approach as it considers inertia and friction effects

in trajectory generation. Results show that the human effort

is significantly reduced by the novel scheme. However, our

findings also show that human caution/trust influences the

result which is subject to future research.
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