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Abstract

Software quality plays an important role for companies today, as it is in a direct relation to the costs
arising in the lifecycle of software. However, the notion of quality is diverse. A software mainte-
nance organization, for instance, defines high quality of software as enabling effective maintenance
of it. For operators of computing centers, high quality means that the available computing and
memory resources are efficiently used. An end user experiences software as high quality when it
supports his tasks in an effective and efficient manner and thus reduces effort for him.

In software engineering research, a lot of work has already been dedicated to the topic of software
quality and quality assurance. However, we claim that there is no generally accepted definition of
quality. The quality models providing taxonomical definitions face several problems, such as being
ambiguous, overlapping, and incomplete. This prevents the quality models from supporting the
definition of useful quality requirements. Moreover, these quality models remain on a high level
of abstraction and hence are not suitable for conducting quality assessments. As a consequence
of these shortcomings, today, quality assessment techniques are applied independently from the
definition of quality by quality models. This results in barely comprehensible assessment results,
because overall quality statements are either not provided, are missing explanation and rationale,
and are not grounded in previously defined quality requirements.

This thesis presents a quality modeling approach for defining quality in a precise and assessable
way. We propose an explicit quality meta-model describing the structure of quality models. It de-
fines a product model of software systems, which provides a well-structured backbone for defining
a clear and unambiguous hierarchy of quality-influencing properties. The impact of these properties
on general quality attributes is explicitly captured and justified. For establishing general quality at-
tributes of software, we rely on the activity-based paradigm, which describes quality as the capabil-
ity of software to support activities conducted with it. The usage of activities has the advantage that
there are clear decomposition criteria for them, resulting in a clear structure of quality attributes.

We further provide an approach for quality assessments based on the quality meta-model. It uses
existing measures and analysis tools for quantifying the satisfaction of properties defined in a given
quality model. For this purpose, the approach defines utility functions for evaluating the measure-
ment values regarding the satisfaction of a property and aggregation specifications for getting an
overall quality statement. The aggregation is carried out alongside the hierarchical structure of the
properties and quality attributes. This way, the aggregation follows the well-defined and justified
hierarchies of the quality model. Furthermore, the quality assessment approach accounts for several
challenges experienced in practice, such as incomplete measurement data.

We build tool support for creating and editing quality models as well as for conducting automated
quality assessments. Using this tool support we evaluate our approach: We build a quality model
for Java source code and apply it to a large number of open source software systems.
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1 Introduction

The quality of software plays an important economic role today [19]. It is critical for the com-
petitiveness and survival of companies [46, p. 4]. This is because quality is strongly connected
to the costs arising during development, maintenance, and use of software. Research in software
engineering has shown that preventing defects early in the development is less expensive than cor-
recting them later [46, p. 5]. Maintenance of software amounts for about 70% of total lifecycle
costs [49, p. 6]. Thus, the quality of being maintainable has a major influence on the costs in-
curred by software. Finally, the quality of the software has a major influence on the costs of using
the software. During usage, software failures may occur, causing failures of physical systems, fi-
nancial losses, or even loss of human life [121, p. 4]. Besides failures, inefficient software may
also cause high costs due to unnecessarily high computing times or high memory usage. Indirect
costs incurred by low software quality may be attributed to unsatisfied customers, damage to the
companies’ reputation, and loss of market opportunities.

Definition of Quality Notwithstanding the prime importance of software quality, there is no
generally accepted definition of quality. Often different views on quality are taken, each with a
different line of argument [43]. Common standards such as IEEE 610 [61], ISO 9000:2005 [68],
and ISO 25010 [65] define quality as the degree to which a product satisfies requirements, implied
needs, customer and user needs, and/or expectations. In this thesis, we understand quality as the
satisfaction of requirements, whereby we interpret requirements in a broad sense. They do not have
to be explicitly documented and they may originate from diverse stakeholders. The interpretation
of quality as conformity to requirements leads to a sharp definition, which nonetheless underlines
the relativeness of quality. It depends on the stakeholders of the product and their requirements,
both of which may change over time. Based on this insight, defining software quality in a concrete
way means capturing common stakeholders and their usual requirements. For instance, in the case
of business information systems a common stakeholder for a software system is the end user, who
expects the software system to support his business processes best. Another stakeholder is the
operator, who is concerned with installation and configuration of the software and with the operation
of the computing center. He expects the software to support his tasks during operation and to
efficiently use the resources of his computing center. A third common stakeholder is the maintainer,
who is concerned with modifying the system. For types of software other than business information
systems, there is a similar variety of stakeholders. For each of these stakeholders, high quality
means that the software satisfies the stakeholders’ specific requirements.

Quality Assurance In the area of software engineering, a lot of work has already been dedicated
to the topic of software quality and quality assurance. Software quality assurance is defined as “all
actions necessary to provide adequate confidence that an item or product conforms to established
technical requirements” [61]. According to IEEE 12207 [64], quality assurance is concerned with
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1 Introduction

both the software product and the development process. In this thesis, we focus exclusively on
product quality and not on process quality. The tasks of software quality assurance are usually
divided into constructive and analytical tasks [164]. Constructive quality assurance has the task of
applying technical and organizational means during development to ensure that the requirements
are satisfied. Analytical quality assurance has the task of evaluating and verifying the conformity of
the software product to the requirements.

There are two main challenges regarding quality definition and assessment: First, to specify the
requirements in a clear and unambiguous way and second, to ensure the requirements are precise
enough to be measurable, i.e., a quality assessment of a product must be conductible based on
the requirements. These two challenges are also reflected in the title of this thesis: Defining quality
refers to the challenge of specifying the requirements, while assessing quality refers to the challenge
of measuring the satisfaction of the requirements.

1.1 Problem Statement

In literature, quality models have been proposed for specifying the requirements regarding software
quality. The first quality models, dating back to the 1970’s, follow a taxonomical approach: They
use a decomposition of the concept quality into quality attributes such as maintainability and reli-
ability. Based on these hierarchical quality models, the international standards ISO 9126 [70] and
ISO 25010 [65] have been developed. The quality attributes defined by such quality models are
often criticized for being ambiguous, overlapping, and incomplete [1, 26]. Later work selectively
addresses these shortcomings. For instance, Deissenboeck et al. [33] introduce a clear principle
of decomposition for the quality attribute maintainability, relying on activities. In general, current
quality models lack a clear definition of all relevant quality attributes. Furthermore, these quality
models define quality attributes at a high level of abstraction. Some approaches [39, 129, 133, 155]
attach measures directly to the quality attributes, in order to operationalize them. Due to the large
difference in the level of abstraction between the quality attributes and the measures, these ap-
proaches face severe problems in practice. Thus, to date there is no feasible approach to conducting
quality assessments with such quality models.

Irrespective of the research done on quality models, the discipline of software measurement
emerged [36]. It takes more of a bottom-up approach by defining measures for characteristics
of software. These measures mostly refer to source code and tools have been implemented to au-
tomatically calculate and visualize them. However, due to the bottom-up approach, it is usually
easily determinable characteristics that are measured, instead of relevant characteristics [26, p. 50].
Thus, the relation of the measures to software quality is unclear, which hinders the interpretation of
the measurement values. Based on the measures, dashboard tools for visualizing the measurement
values have emerged (e.g. [28, 149]). These tools present the single measurement values and some
aggregations, while leaving the interpretation of the data to the user [158, 159]. Thus, there is no
systematic way of getting to an overall quality assessment of a software product.

Summing up, the definition of quality and the measurement of quality are rather separate topics
today. Quality models define high-level requirements in the form of quality attributes, which are
not measurable. On the other hand, a large number of measures and tools for implementing them
are available without the link to the quality models.

12



1.2 Contribution

1.2 Contribution

In this thesis, we propose a quality modeling and assessment approach addressing the shortcomings
of existing approaches in the following ways.

Quality Meta-Model

Quality models have the task of defining quality-properties of software products on different levels
of abstraction and to clarify the interrelations between these quality-properties. For developing clear
quality models, an explicit definition of the concepts they consist of is necessary. To this end, we
introduce a quality meta-model describing the structure and meaning of quality models. The quality
meta-model is defined in a formal way to assure an unambiguous definition of its concepts.

An important concept in our quality models is to use a product model for structuring purposes. The
product model defines the artifacts of which a software product consists. The definition of quality-
properties in the quality model relies on the artifacts of the product model. Moreover, the decompo-
sition of abstract quality-properties into more concrete ones is aligned with the product model. This
way, a structuring mechanism is offered, which gives guidance for decomposing abstract quality-
properties and offers a way of organizing the large number of quality-properties defined in realistic
quality models.

Quality Assessment Approach

Based on the quality meta-model, we introduce a quality assessment approach. It defines how mea-
sures and the tools for implementing them are connected to the quality model and how measurement
results are aggregated for an overall quality statement. For this purpose, the assessment approach
defines how measurement results are evaluated and how specifications for aggregating evaluation
results are defined. By integrating measures into the quality model, the relation of the measures to
the quality-properties is made explicit and justified by a prose description.

The quality assessment approach accounts for three challenges experienced in practice: First, it
provides an approach for defining parameters for utility functions, i.e., threshold values for mea-
surement values. Second, it defines how incomplete measurement data can be handled. Third, it
addresses the problems encountered when integrating existing tools by enabling a bottom-up quality
assessment and by supporting the use of rule-based static code analysis tools.

Quality Model Instances

First, based on the quality meta-model, an instance of a quality model is constructed. It provides a
general definition of quality attributes being applicable to a wide range of software products. These
quality attributes are structured according to the activity-based paradigm known from literature.
Thereby, overlappings and ambiguities in the definition of the quality attributes by ISO 25010 are
identified and resolved.

Second, the quality model defining the quality attributes is expanded to a quality model for Java
source code. It defines properties of source code and measures for quantifying them by existing
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1 Introduction

tools. Furthermore, it contains all needed aggregation specifications and parameters of the utility
functions for automated quality assessments.

Tool Support

We provide a quality model editor for creating and editing quality models conforming to the meta-
model. It provides a graphical user interface supporting different views on quality models and it
automatically checks constraints to support the quality modeler. For conducting quality assessments
based on the quality model a quality assessment tool is provided. It executes external analysis tools
for obtaining measurement data and aggregates the data according to the specifications in a given
quality model.

Evaluation

Using the quality model for Java source code, we demonstrate the applicability of our quality mod-
eling and assessment approach:

We show that the meta-model and the corresponding tools enable the creation of realistic qual-
ity models with several hundred model elements. The resulting quality model is well manage-
able with our tool support.

The automatic quality assessment of software systems leads to a satisfactory differentiation
of systems. This means software systems of different quality levels generate different quality
assessment results.

The quality assessment results using the quality model are in concordance with an expert
assessment for five systems. Thus, we conclude that our approach is able to produce valid
quality assessment results.

We show by example that the quality assessment based on the quality model enables tracing
of quality changes between different versions of a software system. This allows developers to
identify the origin of a change in the quality assessment.

1.3 Outline

Chapter 2 introduces the terminology used in this thesis. It focuses on the definition of the term
quality and related terms. Furthermore, the role of quality models in quality assurance tasks is
discussed in detail. In Chapter 3, we summarize and discuss the state-of-the-art regarding quality
models and software measurement and highlight the shortcomings of current approaches. Further-
more, we report on a survey conducted in industry to assess the current state of practice regarding
the aforementioned topics. Chapter 4 introduces the formal definition of the quality meta-model.
Based on that, Chapter 5 presents the quality assessment approach. In Chapter 6 we present both the
general quality model describing the quality attributes and the quality model for Java source code.
Chapter 7 describes the tool support we developed. It introduces both the quality model editor and
the quality assessment tool. Chapter 8 reports on the case study conducted with the quality model
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1.3 Outline

for Java source code. Chapter 9 summarizes the main contributions of this thesis and Chapter 10
shows further research directions.

Previously Published Material

The material covered in this thesis is based, in part, on our contributions in [27, 32, 47, 88, 89, 99–
104, 158–163].
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2 Preliminaries

The quality of software plays an outstanding economic role today [19]. It is critical for the compet-
itiveness and survival of companies [46, p. 4]. The consequences of software quality problems are
exemplified by spectacular failures of software with dire consequences [121, p. 4], for instance the
failure of the Ariane 5 rocket. Beside failures, software quality is also related to the costs arising
in the lifecycle of software. It is generally known that preventing defects early in the develop-
ment is less expensive than correcting them later [46, p. 5]. The growing economic importance
of software quality can also be seen by the constant increase of efforts spent for software mainte-
nance [26, p. 15], reaching about 70% of total lifecycle costs [49, p. 6].

Despite the basic insight from literature that software quality is related to failures of the software
but also to the lifecycle costs of it, a universal definition of quality is still missing. In the first section
of this chapter, we introduce a comprehensive discussion of the term quality and of related terms.
In the second section, we will discuss the topic of software quality assurance and discuss our focus
on product quality. We also explain the need for quality models and measurement procedures. A
detailed coverage of the state-of-the-art can be found in Chapter 3.

2.1 Terminology

In literature, different definitions of software quality are proposed. Still, no generally accepted
definition has emerged. Garvin [43] discusses different views on quality and concludes that quality
is a “complex and multifaceted concept”. In this section, we discuss the definition of quality and
related terms as they are used in this thesis.

2.1.1 Properties & Quality

A basic concept for talking about quality is that of a property. In philosophy, there is consensus that
“properties include the attributes or qualities or features or characteristics of things” [145]. While
property is often used as the root term, attribute, quality, feature, and characteristic are used as
synonyms for it, depending on the context.

A typical example for a property is redness of an apple. We say that the apple exemplifies the prop-
erty redness. The main difference between things and properties “is that properties can be [. . . ] ex-
emplified”, whereas things cannot [145]. Thus, a property is always referring to an object.

Besides the use of the term quality as a synonym for property, in its common usage it is employed
in a judgmental way, referring to the property of being useful for a certain purpose (fitness for
purpose) [57]. In business, the purpose is usually to satisfy a customer, leading to the statement that
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2 Preliminaries

“quality means those features of products which meet customer needs and thereby provide customer
satisfaction” [79].

According to this definition, quality is a relative concept, which depends on the circumstances
in which it is invoked [57]. The purpose of a system depends on a stakeholder who pursues the
purpose, whereby the purpose is different for each stakeholder. For instance, for the end user, the
system has the purpose of supporting his tasks, while for a maintainer the purpose is maintenance.

This definition remains in opposition to defining quality as an absolute “innate excellence”, as in
the transcendent view on quality found in Garvin [43]. It mostly coincides with the user-based view
of Garvin, which says quality “lies in the eyes of the beholder”. Thus, it equates quality with the
satisfaction of the stakeholder.

Since our definition of quality relies on the purpose of the system for certain stakeholders, describing
that purpose is essential. Because software systems usually provide a benefit by interacting with
their environment, describing usage processes – i.e., tasks supported by the software – is a suitable
form for describing a large number of purposes. This is reflected by the common use of use cases
for describing how a business information system supports the tasks of its end users [13]. However,
it can also be applied to maintainers, who conduct maintenance tasks with the system and see the
purpose of the system as enabling effective maintenance [33].

However, there are also qualities going beyond what are describable by tasks. For instance, the
satisfaction of a stakeholder by the product may go beyond the support of tasks: Being attractive to
an end user is a typical example of such a property.

Since properties can be defined regarding different types of objects, we distinguish between three
types of properties. First, a property can describe a stakeholder. Since stakeholders are usually
people or organizations, typical properties for characterizing stakeholders are satisfaction, trust,
and pleasure. For instance, with satisfaction of the end user we describe whether the end user of
the software system is satisfied with the experience of using it. Second, a property can be used
to describe a process of the life-cycle of software, which especially includes the development and
usage of the software. Such properties are, for instance, efficiency of conducting a certain use case
with support of the software, or effectiveness of conducting maintenance tasks on the software.
Third, a property can describe the software product or parts of it. Typical properties describing
the product are the quality attributes of ISO 25010, like usability, maintainability, or reliability.
Properties referring to parts of the product may also be of a more technical nature, describing, for
instance, the adequateness of the size of fonts in a graphical user interface, or the nesting depth of
source code.

We in general assume that these types of properties influence each other as depicted by Figure 2.1.
The software product is used in different processes to fulfill its tasks. Thus, the product properties
influence the process properties. The process is conducted by a stakeholder to fulfill a certain
purpose. Thus, the process properties influence the stakeholder properties. Additionally, the product
properties can influence the stakeholder properties directly.

An example for such a chain of properties could be: The usability of the software (product prop-
erty) influences the efficiency of a specific usage process (process property), which influences the
satisfaction of the end user (stakeholder property). A direct influence of a product property on a
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2.1 Terminology

Product
Properties

Stakeholder
Properties

Process
Properties

Figure 2.1: Influences between the Types of Properties

stakeholder property could be: The attractiveness of the software product directly influences the
satisfaction of the user.

It is important to note that in practice it is usually not possible to specify the influencing properties
in this chain to such an extent that they can be used to fully express the influenced properties.

2.1.2 Requirements & Quality

In our discussion of the notion of properties and quality in the previous section, we came to the
understanding that quality of a product is the property of being useful for a certain purpose. Be-
ing useful for a purpose means that the product possesses properties the stakeholders require for
pursuing their purposes.

A property that is required by a stakeholder is called a requirement. Since a requirement refers
to a property, the three types of properties can be transferred to different types of requirements:
A stakeholder requirement refers to a stakeholder property; for instance, “The end user must be
satisfied with the software”. A process requirement refers to a process property; for instance, “The
execution of the use case ‘book flight’ must be executed in less than 10 minutes on average”. A
product requirement refers to a product property; for instance, “The font size in the graphical user
interface must be at least 12 points”.

Analogously to the chain of influence between product, process and stakeholder properties, the
requirements of these three types are based on each other. In general, in software engineering,
the primary stakeholder is the business developing the software product. This business usually
has the requirement of achieving satisfaction of the customers (stakeholder requirement). Since
the customer uses the software for supporting his tasks and customer satisfaction is required, the
new requirement of efficiently supporting the users’ tasks is derived. This clearly is a process
requirement. From such process properties, product properties are derived by stating, for instance,
the functional requirements of the software system.

The formulation of requirements as such a chain is also common in requirements engineering ap-
proaches. For instance, the approach of Mendez et al. [110] starts with a business specification,
which states the mission and objectives of the business. Based thereon, the processes conducted in
the business are defined. The requirements in this business specification correspond to the stake-
holder and process requirements in our terminology. Based on the business specification, the ap-
proach of Mendez et al. defines the scope of the software system, the use cases of the software, and
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2 Preliminaries

the detailed technical requirements; all these are part of the software requirements specification.
This specification consists of product requirements, in our terminology.

Our definition of requirement is very general and does not define whether requirements are implic-
itly present at a stakeholder, whether they are explicitly documented, or whether they are docu-
mented in a system specification accepted by all stakeholders. Thus, our definition of requirement
is in line with the IEEE Glossary [61], defining a requirement as “(1) A condition or capability
needed by a user to solve a problem or achieve an objective. (2) A condition or capability that must
be met or possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed documents. (3) A documented representation of a condition or capability
as in (1) or (2)”. Furthermore, the definition of ISO-9000:2005 [68] is in line with our definition,
defining a requirement as a “need or expectation that is stated, generally implied or obligatory”.

The requirements of a stakeholder are present, regardless of whether they are documented or not.
However, for developing software it is necessary to document them explicitly, which is done in the
requirements elicitation. Requirements elicitation is the process of discovering the requirements of
a stakeholder and explicitly documenting them. This definition conforms to usual definitions found
in the requirements engineering literature [90, 131, 139]. However, the literature usually considers
the identification of all stakeholders as a part of elicitation, while we define the elicitation as a
process applied individually to each previously defined stakeholder. Since each stakeholder has his
own purposes regarding the system, the elicitation takes place individually for each stakeholder and
the requirements are individual to each stakeholder.

In system development, however, all stakeholders have to agree on a common set of requirements.
The process of deciding which requirements of individual stakeholders are accepted for the system
development is called requirements negotiation. The negotiation also includes the assignation of
priorities to the requirements according to their importance for different stakeholders. The result
of the requirements negotiation is a requirements document, which is an artifact containing all the
requirements accepted for the system development.

According to the above definitions, we distinguish between three categories of requirements, as
summarized in Figure 2.2. First, the implicit requirements are all the requirements a stakeholder
has, even if not explicitly stated. Second, the explicit requirements are the explicitly documented
requirements of a stakeholder. The explicit requirements result from the requirements elicitation.
The requirements elicitation may not necessarily be able to explicitly document all implicit require-
ments. Third, the accepted requirements, which are documented in the requirements specification,
are the requirements of all stakeholders, resulting from the requirements negotiation. Due to neces-
sary compromises and trade-offs, not all requirements of all stakeholders may be part of the accepted
requirements. Nonetheless, the accepted requirements are the basis for the software development.

Note that each of these categories of requirements can refer to the three types of properties (stake-
holder, process, product). An implicit requirement, for instance, can refer to a stakeholder, process,
or product property.
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Figure 2.2: Overview of Categories of Requirements

2.1.3 Different Views on Quality

Our considerations so far lead to the deduction that quality means satisfaction of the requirements
of a stakeholder. This is because we understand quality as being fit for purpose and being fit for
purpose means satisfying requirements. This deduction is in line with our interpretation of quality
as a relative concept. The requirements are dependent on a certain stakeholder, just like the fitness
for purpose depends on the stakeholder pursuing the purpose.

As we have seen in the previous section, there are different categories of requirements. According
to them, we define two different views on quality:

1. stakeholder’s view on quality, based on the implicit requirements
2. producer’s view on quality, based on the accepted requirements

The stakeholder’s view on quality takes the implicit requirements of a certain stakeholder into
consideration. It represents the view on quality of that stakeholder, regardless of whether his re-
quirements have been explicitly documented or not. It resembles the “user-based approach” of
Garvin [43] to define quality: “[T]hose goods that best satisfy their [the users’] preferences are
those that they regard as having the highest quality”.

The producer’s view on quality takes the accepted requirements into consideration. Thus, it repre-
sents the view on quality of the producer of the software, which relies on the specification as the ba-
sis for developing the software. This view resembles the “manufacturing approach” of Garvin [43],
which has been common in the manufacturing industry and gave the definition that “quality was
‘conformance to specification’ ” [79]. This definition assumes that the specification represents the
actual customer needs, so that conforming to the specification means satisfying customer needs.
Accordingly, “any deviation [from the specification] implies a reduction in quality” [43].

2.1.4 Functional vs. Non-functional Requirements

In software engineering, different types of requirements are often defined. A common distinction is
between functional and non-functional requirements [131, 151]. This distinction is often criticized
for being inaccurate and not clearly definable [45]. Nonetheless, in practice, requirements refer-
ring to the input-output behavior of the system are often called functional requirements. This type
of requirement is usually found in textual requirements specifications in the form of use cases or
scenarios. All other types of requirements are then called non-functional requirements.
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Figure 2.3: Generality/Specificity of Requirements

An important facet of the distinction between functional and non-functional requirements is that
it largely corresponds to the specificity of requirements. Figure 2.3 shows the relation of the two
requirement types to specificity/generality of requirements. Functional requirements are usually
specific to a certain system, while non-functional requirements are applicable to a large range of
systems. For instance, the functional requirement expressed by the scenario “booking a flight” is
unique to a flight-booking system, while the maintainability-related non-functional requirement of
having consistently named identifiers in the source code applies to virtually all software systems.

Evaluating whether requirements are satisfied is an important task in software engineering and is
called quality assessment. A quality assessment is defined as an evaluation of whether a software
system possesses certain properties; i.e., it is an evaluation of whether a software system satisfies
certain requirements.

According to the discussion on different types of properties and different categories of requirements,
a quality assessment can be done using different methods. For covering implicit requirements, a
questioning of the stakeholder is the only viable way. Since those requirements are not documented
and the stakeholder may not explicitly be aware of them, questioning the stakeholder about his sat-
isfaction is the only feasible possibility. For both the documented requirements of one stakeholder
and the accepted requirements of all stakeholders the same methods can be applied. Yet for each
type of property, a different method has to be chosen: On the level of stakeholder properties, only
questioning the stakeholder can directly measure the property. On the level of process properties,
where qualities are defined via tasks conducted with the software, process measures can be used to
assess the effectiveness of the software in supporting the tasks. On the level of product properties,
the product itself is evaluated using product measures.

2.2 Software Quality Assurance

In our discussions up to this point, we have been talking about product quality, i.e., the quality of the
delivered software products. However, the IEEE-12207 [64] states that the purpose of the software
quality assurance process “is to provide assurance that work products and processes comply with
predefined provisions and plans.” Also the IEEE-610 [61] defines software quality assurance as
“(1) A planned and systematic pattern of all actions necessary to provide adequate confidence that
an item or product conforms to established technical requirements. (2) A set of activities designed to
evaluate the process by which products are developed or manufactured.” Both definitions mention
that quality assurance must guarantee both product and process quality.
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Process quality describes characteristics of the process of software development. Since the pro-
cess of developing the software product has an obvious influence on the quality of the resulting
product, many approaches aim at increasing the process quality. Process models such as the V-
Model XT [150] and the rational unified process (RUP) [91] prescribe a detailed process for devel-
oping software. Process maturity models such as CMMI [138] and SPICE [71] provide approaches
for assessing and improving the processes of organizations. The reason for focusing on the qual-
ity of processes is the assumption that better development processes will lead to better products.
However, in software engineering there is little evidence for this assumption [86]. A study of the
correlation of the CMMI level of a company and the number of shipped defects in its software
showed that, in general, the number of defects decreases when the CMM level rose. Nonetheless,
the best companies at CMM level 1 produced software with fewer defects than the worst companies
at level 5 [26, p. 23] [76]. In our view, improving process quality is one technique for improving
the product quality. Since the product is delivered to the customer, ultimately the product quality is
of relevance. Thus, the ultimate goal is to be able to define and measure the quality of a software
product independently from the process. This way, a quality seal enabling comparison of different
software products would also become feasible.

As we have discussed earlier, we interpret quality as conformance to requirements. An obvious
precondition for an effective quality assurance is therefore comprehensively specified requirements.
The elicitation of requirements is a classical task of requirements engineering and the elicitation of
quality requirements can, in particular, be seen as being part of quality assurance. Particularly, the
form of documentation of the requirements is relevant for this thesis, because the documentation
serves as a basis for all other quality assurance activities. The activities taken to provide confi-
dence that the requirements are satisfied are split into two types according to Wallmüller [164]:
constructive and analytical quality assurance.

The constructive quality assurance has the task of applying technical and organizational means
to ensure the target quality during development [164]. According to Galin [41], a quality plan
is developed that defines all the means that are applied in order to achieve quality. Thereby, the
definition of the quality plan relies on the quality requirements.

The analytical quality assurance has the task of evaluating and verifying the conformance of the
software product to the requirements [164]. The analytical measures are not only applied at the end
of the development, but throughout the development process. Thereby, deviations from the targeted
quality can be detected early and corrective measures can be taken.

2.2.1 Quality Requirements Definition

As discussed above, a precondition for conducting constructive and analytic quality assurance is to
specify the quality requirements. More generally, Wallmüller [164, p.6ff] states that a prerequisite
for all quality assurance activities is to define a quality plan, which comprises quality requirements
for both the development process and the product. Regarding the development process, typical qual-
ity requirements may comprise the use of a certain development process, the definition of quality
gates, the prescription of inspections and a release process.

The quality requirements regarding the software product are usually specified during the require-
ments engineering phase of a software project. A major demand regarding the quality requirements
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for the product is to define testing and measurement procedures in order to be able to test the satis-
faction of the requirements. Being able to test the satisfaction of requirements is a prerequisite for
planning and conducting the quality assurance in software development.

2.2.2 Constructive Quality Assurance

Constructive quality assurance is seen as a wide field according to Wallmüller [164, p.73ff]. It
comprises all organizational the means of the software development project, such as, for instance,
the chosen development process, the software configuration management, and the organizational
culture. Furthermore, it comprises technical means, such as the technical infrastructure, including
development tools, or testing tools.

We take a narrower look at constructive quality assurance and focus on techniques for communi-
cating the requirements to the developers. For requirements of a more functional type (according
to Section 2.1.4), classical documentation and communication means of requirements engineering
are used, for instance describing input-output behavior by use cases or message sequence charts.
Whereas, for a large number of requirements being more of a non-functional type (according to
Section 2.1.4), guidelines are a usual means of communicating. At the technical level of program-
ming languages, guidelines and style guides are the prime way of communicating requirements
to developers [59, p. 65ff]. Guidelines describe conventions for using the programming language
constructs in order to achieve different goals. The most common goal is to achieve readability and
understandability of the source code. However, specialized guidelines such as MISRA-C [114] have
a particular focus on enhancing reliability by forbidding certain failure-prone language constructs.
The Web Content Accessibility Guideline (WCAG) [168] describes requirements for Web pages in
order to make them accessible by people with disabilities. Additionally, international standards are
often sources of detailed instructions on how to build a system. For instance, the ISO 26262 [72]
describes safety relevant characteristics of systems for electrical passenger vehicles, the satisfaction
of which is even required by law.

2.2.3 Analytic Quality Assurance

Analytic quality assurance, according to Wallmüller [164, p. 141], has the task of analyzing the
quality of the software product and the development process. For assessing the development pro-
cess, a large variety of process improvement and auditing techniques are available. Since this thesis
focuses on product quality, we will take a detailed look at analysis techniques for product quality.

Product-based analytic quality assurance means verifying the satisfaction of the requirements by the
software product. For this purpose, a large range of different techniques can be applied. Some of
the techniques are only applicable to the end product, i.e., the delivered software; others, however,
are also applicable to intermediary artifacts, such as design documents. Here we will give a brief
overview of the different techniques and their characteristics.

A way of verifying the satisfaction of predominantly functional requirements by the software prod-
uct is dynamic testing. Dynamic software testing means that the software is executed with specified
inputs and the outputs are observed and evaluated [61]. The combination of inputs and expected
outputs are called test cases. They are derived based on the requirements. The question of how to
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derive test cases from requirements and how many test cases are needed for adequate test coverage
has been extensively investigated. There are, for instance, two principally different strategies for
generating test cases: white-box testing and black-box testing [164, p. 173]. The white-box testing
takes the inner structure of the software under consideration to define test cases, while the black-box
testing does not consider the inner structure. Dynamic testing has the limitation that it can only be
applied when the implementation of the tested component has been finished. On the other hand, it
is possible to automate dynamic tests so that they can be repeated with little effort.

In contrast to dynamically testing the software, statical tests are also possible [164, p. 144]. Stat-
ical analysis can be done manually or automatically by tools. For manual tests there are different
degrees of formality. Usually, an informal test is called a review or a walkthrough [46, p. 155]. A
walkthrough is a rather informal technique without a fixed structure. Its objective is to find errors in
development artifacts of all kinds, from requirements documents to source code. An inspection is a
formal and more comprehensive type of manual test. It defines different roles, such as moderator,
producer, reviewer, and recorder and prescribes a formally defined process. Though the effort re-
quired for conducting inspections is higher than for walkthroughs, empirical results show their cost
effectiveness [44, p. 17ff] and suitability for finding faults [9]. Moreover, inspections are useful on
early development artifacts [40].

In tool-based static analysis, the source code is usually analyzed. In the area of software measure-
ment a lot of work has been dedicated to code measures [46, p. 110]. Automated analysis of code
ranges from size and complexity measures, e.g., McCabe-Complexity [108], to rule-based analysis
tools, e.g., FindBugs [37]. Other types of static analysis, such as clone detection [78], can also
be extended to artifacts other than source code, for instance, to requirements documents [77]. As
automated measurement is in focus of this thesis, a detailed review of existing work in this area can
be found in Chapter 3.

2.2.4 Quality Control Cycle

The quality assurance tasks in software development are not conducted as one-time undertakings’
rather they are conducted continuously. According to Deissenboeck [26, p. 87], a continuous qual-
ity control cycle is best described as a feedback loop, of the type familiar from control systems.
The object under control is the software system and the output is the quality of the software prod-
uct, i.e., the degree of conformance of the software product to the requirements. The control loop
measures the degree of conformance to requirements (analytic quality assurance). Based on the de-
viations (i.e., quality deficits) corrective action is taken, which requires communicating the desired
requirements (constructive quality assurance) and the deviations.

It is desirable to have as brief a cycle time as possible in the control loop. This way, quality deficits
are detected and corrected early, when the effort to correct them is still low. However, the quality
analysis requires effort itself and restricts how often it can be conducted.
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2.2.5 The Role of Quality Models

Quality models have been developed to support the main activities of quality assurance. The main
activities have been introduced in the above sections:

1. Quality Requirements Definition
2. Constructive Quality Assurance
3. Analytic Quality Assurance

Quality models in literature are often fitted to support one or more of these activities. In [32] we
developed a classification scheme for quality models according to their purposes, which is similar
to the categorization used here.

An important group of quality models are the quality definition models. They have the purpose
of defining what constitutes software quality by defining the quality characteristics relevant for
software products. The simplest of these models are given in the form of taxonomies, defining a
hierarchy of quality characteristics. By specifying predefined terms, they support all three activ-
ities by giving a simple mechanism for structuring topics. However, they are especially used in
requirements engineering, because the taxonomies provided by them can be used as a checklist in
requirements elicitation. This way, they help to ensure that no relevant quality-related topic is omit-
ted. More concrete quality models go beyond defining a taxonomy and provide a large collection
of properties that are related to quality. Hence, they can be used as a collection of potential require-
ments in requirements elicitation. Such quality models have been used, for instance, for eliciting
security requirements in our publication in [163].

Depending on the type of quality model, it can constitute a rough guideline for quality-related top-
ics, but also a concrete collection of potential requirements. Accordingly, the boundary between a
quality model as a sheer supporting artifact and a quality model as a central container of require-
ments is blurred. In the latter case, the requirements engineering has the task of tailoring an existing
quality model and extending it by requirements for a specific software product. Our vision is to use
a quality model as a central artifact, which specifies the quality-related requirements and provides
the measurement specifications for testing the satisfaction of these requirements.

Another task of quality models is to support constructive quality assurance. This means that a qual-
ity model should be the central repository of knowledge and information about software quality.
Furthermore, the quality model should be suited to communicating that knowledge and information
in a way that effectively supports the project participants in software development. More specifi-
cally, this means that the quality requirements expressed by a quality model must be communicated
to the developers and other participants in development in a way that they can work constructively
with. For this task, specific quality models have already been developed, being present in the form
of guidelines and checklists, which are targeted at developers. They often constitute a collection
of best practices and rules, but lack clear rationales and relations to affected quality characteris-
tics [33]. In our vision, such specific quality models should be integrated into one comprehensive
quality model so that the definition of quality characteristics and the communication of knowledge
are realized by the same quality model.

The third main task of quality models is to support analytic quality assurance. This means that
a quality model defining quality characteristics or more detailed quality requirements must also
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define how the satisfaction of them can be tested. Typical quality definition models do not achieve
this purpose, because they are too abstract. Thus, specific quality assessment models have been
developed which address the topic of measurement. They mostly constitute collections of measures
and tools for measurement. However, they lack a definition of the relation of the measures to quality
characteristics. In our vision, the measurement specifications also have to be integrated into one
comprehensive quality model. This way, for all quality characteristics and the associated quality
requirements of a quality model, a concrete way of testing them would be achieved.

Using one quality model for requirements definition, communication, and analytic quality assurance
would overcome shortcomings in all three areas: The quality requirements would be testable by the
analytic quality assurance method; the measures of the quality assurance method would be justified
by requirements; and the knowledge communicated to project participants would conform to both
requirements and actually measured quality characteristics.
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In the first three sections of this chapter, we discuss related work regarding existing quality models,
software measurement approaches, and quality requirements approaches. In the fourth section, we
report on a survey we conducted to assess the state of practice regarding quality models and quality
measurement. The fifth section explains the relation of this thesis to the project Quamoco, in which
the author of this thesis was involved. In the last section, we summarize our findings and insights.

3.1 Quality Models

In literature a large number of quality models have been proposed. These quality models can be
categorized according to the different purposes they pursue and according to the objects they are
focusing on (e.g., product, process, resource) [32, 87]. Due to our general limitation to product
quality, we focus on quality models describing the software product. We structure our discussion
of quality models as in our publications [158, 159] and discuss them roughly according to their
chronological appearance: First, we discuss hierarchical quality models and then we focus on richer
quality models.

3.1.1 Hierarchical Quality Models

At the end of the 1970’s, the first hierarchical quality models were published by McCall [109]
and Boehm et al. [14]. Their objective was to define what quality is all about, by decomposing it
into more concrete and tangible quality characteristics. Figure 3.1 shows the decomposition pro-
vided by Boehm et al. [14]. The general utility of a software product is decomposed to portability,
as-is utility, and maintainability. These quality characteristics are further decomposed to low-level
quality characteristics, such as consistency, structuredness, and conciseness. Boehm highlights the
importance of measuring the low-level characteristics. He introduces several measures to this end,
which are conductible through expert judgments. For instance, for quantifying completeness, some
measures are:

1. Is input data checked for range errors?
2. Are loop and multiple transfer index parameters range tested before they are used?
3. Does the program allow for recovery in case of non-fatal errors?

McCall’s model follows a similar approach, although with a different terminology: At the top level
of the hierarchy he talks about factors, which are refined to criteria. The criteria are then quantified
by metrics. Another similar model is FURPS [48]. FURPS is an acronym for the main quality
characteristics of the model: functionality, usability, reliability, performance, and supportability.
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Figure 3.1: Quality Characteristics Tree of Boehm et al. [14]

Based on these works, the ISO 9126 [70] standard for software quality was published in 1991. In
2011, the successor to this standard, ISO 25010 [65] was published. The principal structure of both
standards is the same. First, the ISO 25010 differentiates between quality in use and product quality.
Figure 3.2 shows the quality in use model, defining “the impact that the product (system or software
product) has on stakeholders” [65]. Figure 3.2 shows the product quality model. This essentially
resembles the earlier hierarchical models by defining a tree of quality attributes. This model itself
does not define a method for quantifying (or measuring) of the quality attributes. The additional
standards ISO 25020 [66] and ISO 25021 [67] define a process for deriving measures for quality
attributes. However, those descriptions are very general and no concrete measures are given.

After the publication of the ISO 9126, various adaptions and amendments have been proposed to it.
Some publications (Franch and Carvallo [39], Van Zeist and Hendriks [155], Samoladas et al. [133])
adapt the quality attributes of ISO 9126 and add measures for quantifying them. Ortega et al. [117]
proposes a different structuring mechanism for the quality attributes, based on two root characteris-
tics, called product effectiveness and product efficiency.

Critique

Deissenboeck [26, p. 36] gives a summary of various critiques found in literature (see [1,22,58,84–
86]) of the hierarchical models. Briefly, the following shortcomings of hierarchical models have
been identified:

Ambiguity, Incompleteness, and Overlapping: The quality attributes of these models are “am-
biguously defined, incomplete with respect to quality characteristics and overlapping with re-
spect to measured properties” [1]. A similar problem with the definition of the quality attributes
is the lack of rationale for their selection and their hierarchical composition [86]. For instance,
it is unclear why in the ISO 25010 adaptability is a sub-characteristic of portability, which is a
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Figure 3.2: ISO 25010 Quality Model [65]
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top level quality attribute. Moreover, the difference between adaptability and maintainability
is unclear, because both refer to the modification of the product to satisfy certain needs.

Unclear Semantics: The hierarchical models do not clearly define a semantic of their
model [26, p. 37]. They even miss a meta-model defining the modeling elements used. This is
one underlying problem leading to increased ambiguity.

Structuredness: Deissenboeck [33] identified a fundamental structuring problem in the quality
attribute hierarchies. They mix characteristics of the system’s interactions with intrinsic prod-
uct characteristics. For instance, structuredness and analyzability are both sub-characteristics
of maintainability, even though structuredness is a characteristic of the product itself, while
analyzability is defined as the “ease with which the impact of an intended change on the rest
of the product can be assessed” [65], which is actually a characteristic of the activity of as-
sessing the product. A consequent differentiation between activities and characteristics is the
foundation of activity-based quality models [33].

Measurability: The additions to the standard ISO 9126 (and also the measurement addition
ISO 25021 [67] to the ISO 25010) propose indirect measures, relying “on observations of the
interaction between the product and its environment” [58]. For example for measuring change-
ability, the “change implementation elapse time” is suggested as a measure. This is actually a
process measure of the development process, not a product measure. Other measures are de-
fined in a vague manner, such as the measures of “activity recording” for analyzability, which
is defined as the ratio between the number of data items for which logging is implemented
versus the number of data items for which logging is required. If there are no measures for
a quality attribute available, the ISO 9126 suggests using some other related attributes and
to predict the required characteristics. However, no approach for establishing the surrogate
measures and the prediction system are provided [86].

Aggregation: Even though unsatisfactory measures are proposed by the ISO 9126, no means
for aggregating measurement results are provided [86]. Thus, there is no way of assessing
higher-level quality attributes and thereby providing overall quality statements of software
products. These problems have not been resolved in the newer ISO 25021.

3.1.2 Richer Models

After the publication of ISO 9126 researchers proposed more elaborate quality models, to over-
come known shortcomings of the previous quality models. Dromey [34] introduced a distinction
between product components, their properties, and externally visible quality attributes. As product
components he uses the artifacts of the software or rather constructs of a programming language,
such as expressions, variables, and modules. These components are attributed with properties, such
as computable, precise, and structured. For each component property, such as computability of ex-
pressions, its influence on a quality attribute (taken from ISO 9126) is defined and explained by a
rationale. Figure 3.3 shows an excerpt of the quality model for the product component expression.
For this product component various component properties are defined. Each component property
influences several quality attributes.
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The structure of Dromey’s model has been used by other authors to build their own quality models
(compare discussion in [158]). Bansiya and Davis [6] built a quality model for object-oriented
designs. They chose product components for object-oriented programming languages and described
several measures for them. They developed tool support for automatic measurement and aggregation
of measurement results.

A different approach for building useful quality models takes the SQUID approach of Kitchen-
ham et al. [85]. They define an explicit meta-model for their quality models. Their meta-model
defines hierarchical quality models and constructs in order to add measures and threshold values for
measurement results. Based on the meta-model they define a “build your own” method for devel-
oping individual quality models for one’s needs [158]. As a basis for defining quality models the
quality attributes of ISO 9126 are used. To the low-level quality attributes measures are attached by
the model developer. Furthermore, a target value for each measurement value must be defined to
allow an actual quality assessment.

The EMISQ [122,123,129] method for building operationalized quality models focuses on assessing
the source code by static code analysis. As a quality model they use a hierarchical quality model
based on the ISO 9126. The measures are defined by rule-based static code analysis tools (e.g.,
PCLint, FindBugs), whereby each measure can be attached to one or more quality attributes. The
quality assessment approach relies on both automatic aggregation and manual evaluation. For all
rule-violations an expert has to provide a rating; the ratings are then automatically aggregated using
the median. Tool support for building the quality model, defining measures, and for the automated
quality assessments is provided. In [124] a concept for building a continuous quality monitoring
and control approach and introducing it into organizations is provided.

The activity-based quality models of Deissenboeck et al. [26, 33] address the shortcomings of the
hierarchical models regarding ambiguity, structuredness, overlapping and unclear semantics by in-
troducing a new concept for describing quality. Instead of defining arbitrary quality attributes, they
describe quality in terms of activities conducted with or on the system. For instance, instead of talk-
ing about maintainability, analyzability, and modifiability, they define the activities maintenance,
analysis, and implementation. Activities provide a clear semantics and a clear decomposition cri-
teria. For instance, it is clear that maintaining a software means analyzing a change request in the
given system, implementing the requested modifications, testing, etc. In addition to the activities,

33



3 State-of-the-Art

understand, that we do not limit this dimension to properties
of the software system, e. g. structuredness, but try to cap-
ture all factors that affect one or more activities. An excerpt
of a facts tree is shown in Fig. 4.
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Figure 4. Example Facts

Obviously, the granularity of the facts shown in the dia-
grams are too coarse to be actually evaluated. We follow the
FCM approach in the situation tree by breaking down high
level facts into detailed, tangible ones which we call atomic
facts. An atomic fact is a fact that can or must be assessed
without further decomposition either because its assessment
is obvious or there is no known decomposition.

To achieve or measure maintainability in a given project
setting we now need to establish the interrelation between
facts and activities. Because of the tree-like structures of
activities and facts it is sufficient to link atomic facts with
atomic activities. This relationship is best expressed by a
matrix as depicted in the simplified Fig. 5.
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Figure 5. Maintainability Matrix

The matrix points out what activities are affected by
which facts and allows to aggregate results from the atomic
level onto higher levels in both trees because of the unam-
biguous semantics of the edges. So, one can determine that
concept location is affected by the names of identifiers and
the presence of a debugger. Vice versa, cloned code has
an impact on two maintenance activities. The example de-
picted here uses a Boolean relation between facts and ac-
tivities and therefore merely expresses the existence of a

relation between a fact and an activity. To express differ-
ent directions and strengths of the relations, more elaborate
scales can be used here. Below, we show the application
of a three-valued scale that proved to be sufficient for our
current work.

The aggregation within the two trees provides a simple
means to cross-check the integrity of the model. For exam-
ple, the sample model in Fig. 5 states, that tools do not have
an impact on coding, which is clearly nonsense. The prob-
lem lies in the incompleteness of the depicted model, that
does not include tools like integrated development environ-
ments.

3.3. Attributes & Impacts

We found that a fine-granular decomposition of the sit-
uation (the facts tree) inevitably leads to a high number of
repetitions as the same properties apply to different kind of
artifacts. For example, consistency is obviously required for
identifier names as well as for the layout of the documenta-
tion.

Therefore our model further decomposes facts into enti-
ties and attributes where entities “are the objects we observe
in the real world” and attributes are “the properties that an
entity possesses” [15]. Hence, entities describe a plain de-
composition of the situation. Examples are documentation,
classes, variables or the available infrastructure. Entities
are associated with one or more attributes like consistency,
redundancy, completeness or superfluousness.

So, the facts defined in the facts tree are actually tu-
ples of entities and attributes: [Entity e | ATTRIBUTE A]. They
describe properties of the situation that are desired or un-
desired in the context of maintainability. Examples are
[Identifiers | CONSISTENCY], [Documentation | COMPLETENESS]
or [Debugger | EXISTENCE] that simply describes the presence
or absence of a debugging tool.

Note that the separation of entities and attributes does
not only reduce redundancy but allows for a clean decom-
position of the situation. This can be illustrated by an
example of the quality taxonomy defined in [21]: System
Complexity. As System Complexity appears too coarse-
grained to be assessed directly, is desirable to further de-
compose this element. However, the decomposition is dif-
ficult as the decomposition criterion is not clearly defined,
i. e. it is not clear what a subelement of System Complex-
ity is. A separation of the entity and the attribute as in
[System | COMPLEXITY] allows for a cleaner decomposition as
entities themselves are not valued and can be broken up in
a straightforward manner, e. g. in [Subsystem | COMPLEXITY]
or [Class | COMPLEXITY].

Impacts Using the notation introduced for facts we can
elegantly express the impact a fact has on an activity with

5

Figure 3.4: Activity-based Quality Model [33]

inherent characteristics of the product are described in this model. Then, the model describes the
influence of product characteristics on the activities and gives a rationale for each influence in prose.
Figure 3.4 shows an example for the activity maintenance. We can see that the cloning has an in-
fluence on the activities impact analysis and modification. Further activity-based quality models,
describing the quality attributes usability [166] and security [105, 163], have been proposed.

Squale [112, 113, 142] acknowledged the problem of directly connecting measures of quality at-
tributes of ISO 9126. Therefore, they introduced an additional layer, called practices. Practices
describe technical principles that should be followed by developers. Examples of practices are that
the class cohesion should be high, the number of methods in each class should not be too high,
and that the encapsulation of members of classes should be high. For developing the Squale qual-
ity model, a bottom-up approach was chosen. The practices have been derived from existing (and
mostly automatically calculable) measures. For each practice an aggregation function is specified,
so that the entire model is operationalized and automatic quality assessments are possible. For the
aggregation they use expert-based threshold values. For classical size and complexity measures
(e.g., size of methods, number of methods per class, nesting depth of methods) an expert defines a
function mapping to the interval [0,3], zero meaning a bad result and three a good result. As ag-
gregation functions they adapted econometric inequality indices. For instance, the size of methods
is mapped to this scale by the function 2

70−SLOC
21 . Obviously, the values 70 and 21 are based on

expert knowledge of the sizes of methods. For rule-based static code analysis measures a similar
transformation is used, essentially being based on a defect density measure: a

w×numberofdefects
SLOC . The

constant a and the weight w are chosen by the expert. Based on the quality model, they provide tool
support for evaluating software products. The measurements and the quality model are fixed within
the tools.

Critique

The richer models mostly focus on single problems of the hierarchical models and improve them.
The model given by Dromey first introduces product components in order to discuss separately
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the components of the product and their characteristics. However, he does not address the issue
of measurement and aggregation. The SQUID model of Kitchenham et al. first introduces an
explicit meta-model for quality models. This way, they address the problem of unclear semantics
of the model elements. The overall structure of the resulting quality models is nonetheless equal
to ISO 9126, with all the problems known there. Besides directly assigning measures to quality
attributes and defining thresholds, the challenge of conducting quality assessments is not addressed.
EMISQ takes a bottom-up approach and focuses on building quality models for automated quality
assessments based on rule-based static code analysis. As quality attributes, the ISO 9126 is used and
no advances regarding the structure of quality characteristics are made. The activity-based quality
models focus on the challenge of structuring and unambiguously defining quality characteristics.
However, they do not address the problem of measurement and aggregation. Squale focuses on
the challenge of quantifying quality attributes by measures. Although aggregation of measurement
results is improved by this model, the problem of structuring quality attributes is not addressed.

Despite the quality models discussed here address single issues of the hierarchical models, a com-
prehensive model solving all issues is still missing. Both the main challenges, the definition of
quality attributes and the operationalization of a quality model, are still unsolved. For instance, the
activity-based quality models provide a clear way of defining quality attributes, however, they have
so far only been applied to maintainability, usability, and security. Another example is the EMISQ
model, which focuses on quality assessments, but has a narrow focus on static code analysis and
expert ratings.

3.2 Software Measurement

In science and engineering it is essential to measure attributes of things. Measuring is the base for
formulating hypotheses and testing them, and it is the foundation for setting goals and measuring
their achievement [36, p. 9]. The discipline of software measurement (often called software metrics)
is about rigorously applying measurement to software engineering.

In this discipline, a large number of measures for quantifying several attributes of software emerged.
We discuss the most prevalent ones in the first subsection. Then, we discuss the well-known mea-
surement framework, GQM. At last, we take a look at common tools for calculating software mea-
sures and reporting them.

3.2.1 Software Measures

One of the first measures that emerged in software engineering were measures for the size of soft-
ware. A possible measure for the size is the length of the source code in lines (LOC). Over time,
different variants of this measure emerged, taking into account that code also contains blank lines
and comment lines. Thus, a measure counting non-commented lines of code (NCLOC) emerged
and is widely used [36, p. 247]. Other similar measures are “number of statements”, “number of
functions”, “number of classes”, etc.

Often the size of the code is considered a misleading measure for the size of the system. Rather,
a measure for the amount of functionality is proposed. The first such measure is function
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points [36, p. 259]. They are calculated on a specification by counting external inputs, external out-
puts, external files, and internal files. Each of these counts is weighted by a complexity factor and
its sum constitutes the function point measure. This measure has been fiercely criticized [36, p. 263]
chiefly for subjectivity and technology dependence. One fundamental problem of measuring func-
tionality is that for a given problem there may be several solutions of different complexity. It cannot
be guaranteed that a solution chosen in a program is the least complex one. Thus, measuring the
complexity of the problem with function points may not represent the complexity of the given pro-
gram [36, p. 267].

To measure the complexity of a piece of source code, complexity measures have been introduced,
which actually measure structural attributes of the source code. They refer to either the control
flow, data flow, or the data structure itself. One of the best known measures of this type is the cy-
clomatic complexity measure of McCabe [108]. It measures the linearly independent paths through
the flow graph of a given program. Other measures of a similar type are, for instance, “Halstead
Volume” [55], or simpler ones such as nesting depth.

An objective often pursued with measures is to predict faulty components of software systems.
A large number of studies experiment with different measures and prediction algorithms [52, 82,
97, 115]. Hall et al. [54] give a comprehensive overview of the state-of-the-art in fault prediction.
In general, predictors build for one software system (or for similar systems) are not transferable
between different systems. For fault prediction based on product measures the results are mixed.
In some studies, code complexity measures perform well, while in others they do not. Generally,
a combination of process measures and product measures performs best. Lincke et al. [97] apply
different quality prediction models to one set of software systems and come to the conclusion that
the different prediction models yield inconsistent results for the systems under evaluation.

Critique

Regarding the usage of software measures for quality assessments there are three major critiques:

1. Despite the large number of software measures, it is still unclear how they relate to quality in
general or to specific quality attributes. Hence, their gainful application in quality assurance is
still unclear.

2. Additionally, measures are often defined based on available data, instead of actual measure-
ment goals [26]. Thus, most measures are defined on source code, because source code is
usually available and easy accessible.

3. A third topic is the validity of software measures. Generally, the validity depends on the
objective pursued with the measure. As we have seen, for the prediction of faults, software
measures are of limited use. Though fault prediction is just one single topic in the wide area
of quality assessments. In general, for assessing the quality of software, it must be assured
that the measures conform to the measurement goal. To achieve conformance, measurement
frameworks have been introduced. The most prominent of them, the Goal-Question-Metric, is
discussed in the following subsection.
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3.2.2 Measurement Frameworks

A widely known and used measurement framework is the Goal-Question-Metric (GQM). It was first
published in 1984 by Basili et al. [10] and then further developed by Basili and Rombach [8]. The
authors observed that often measurement in software development was applied without a clear goal.
Measurement projects often failed because only easily available measures were collected, instead
of useful measures with regard to a specific project goal. To alleviate this problem, they proposed a
top-down approach for defining measures:

1. Define company-wide goals (or department specific goals).
2. Derive from each goal the questions that must be asked to assess whether the goal was

achieved.
3. Define metrics for each question to quantify it.

By this strict top-down approach, GQM is able to select meaningful measures. Furthermore, it
avoids a too large number of measures, which would then be hardly manageable if selected. GQM
has often been applied in an industrial context [12,153,154]. However, it is mostly used for process
assessments using process measures, and not for product assessments.

Critique

The measurement frameworks clearly address the narrow scope of measures, by defining a top-down
approach. Hence, they ensure that actually important and/or interesting characteristics are measured
and not just easily available ones. However, their guidance is at a very high level of abstraction,
leading to a “do-it-yourself” quality model approach [26, p. 54].

Regarding the product assessment with GQM, it is criticized that constructing the tree of goals,
questions, and measures leads to a similar structure such as that of hierarchical quality models [26,
p. 53]. Thus, it faces the same problems as the hierarchical models and the SQUID quality model
approach discussed in Section 3.1.2.

3.2.3 Tools

A large number of tools for automated quality analysis of software systems have been developed. In
the literature, different categorizations and collections of such tools have been published (see [31,
158, 159]). We use the categorization into analysis tools and dashboard tools and summarize and
complement existing discussions of the literature in the following.

Analysis tools have the objective of executing measures and reporting the measurement results.
One group of such tools are rule-based static code analysis tools. They search for certain patterns
in the source code, by analyzing, for instance, the data and control flow. They report locations
in the source code, where a rule is violated, which indicates a possible error. Examples for such
tools are FindBugs [37] and PMD [125] for Java, PCLint [120] for C/C++, and Gendarme [111] for
C#. A similar type of tools are the coding convention checkers. They check the visual alignment
of the source code and report anomalies or reformat the code automatically. Examples for such
tools are Checkstyle [20] and astyle [3] for C/C++, C#, and Java. Many development environments
and editors, such as Eclipse [146] support the formatting of source code. A third group of tools
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also operating on source code conduct measurements of classical software measures, such as size
and complexity measures. The execution of such measurements is often integrated in dashboard
tools or in tools providing visualization support, for instance, Understand [149]. Besides classical
software measures, tools for specialized analyses of source code are also available, for instance, the
CloneDetective [78] for identifying duplicated code. More specialized tasks include architecture
conformance analyses. These rely on a predefined target-architecture and assess a software system
for violations of this architecture. Examples of such tools are the architecture analysis part of
ConQAT [28] and JavaDepend [75].

Dashboard tools have the objective of providing an overview of the quality of a software system to
developers, quality assurance staff, and managers [31]. Thus, the visualization of the measurement
results is a primary objective of them. For the different target audiences they provide especially
adapted views. Managers are first and foremost interested in a broad overview of the quality data
and on trends in order to judge whether the quality is improving or deteriorating. Developers need
additional views to trace high-level results to single components and locations in the source code,
in order to correct quality deficits. The dashboard tools often rely on the analysis tools described
in the previous paragraph. An example of a tool which focuses primarily on integrating existing
analysis tools and providing visualizations and trend data is ConQAT [30]. Other examples of such
tools are QALab [169], Sonar [140], and XRadar [93].

In addition to the tools mentioned above, there are some experimental research tools. Mari-
nescu et al. [106] and Schackmann et al. [134] take a first step to integrating an explicit quality
model and an assessment toolkit.

Critique

The analysis tools are generally an implementation of the measures discussed in Section 3.2.1.
Thus, they do not advance on the state-of-the-art discussed in that section.

The dashboard tools have the broader objective of providing an integrated view on software quality.
To do so, they provide trends of measurement values over time and aggregate measurement values
to quality indicators. As a backbone for the aggregation, they usually use the hierarchical quality
models. Hence, the resulting aggregations face the same problems as the quality models themselves
do. Due to the unclear decomposition of quality characteristics, the aggregated values are hardly
comprehensible and hard to explain to practitioners.

3.3 Definition of Quality Requirements

A precondition for all constructive and analytic quality assurance activities is to define the target
quality for the product. Defining the target quality means that specific quality requirements have to
be defined. This is a classical task of requirements engineering. In requirements engineering two
techniques for elicitation are typically used: (1) scenario-oriented techniques and (2) goal-oriented
techniques.
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Scenario-oriented techniques focus on capturing the interaction between end users and other stake-
holders with the system. They have been proven a suitable technique for interaction with stakehold-
ers, because thinking of exemplary interaction sequences is a natural form of communication for
people [74]. Furthermore, by using scenarios, the interaction between user and developer is focused
on the use of the future system by describing what people can do with the system and what the con-
sequences are for the people and their organization. By describing the tasks the user is conducting
with the system, they explain why a system is needed. In software engineering scenarios are widely
used in the form of use cases [73] for specifying primarily functional requirements. Yet, there are
different extensions to use cases for capturing non-functional requirements with them too [137].

Another set of techniques for capturing quality requirements found in literature are goal-oriented
approaches (see, e.g., [151]). Those techniques start from goals of stakeholders and refine the goals
till they get to concrete requirements. Due to the general nature of a goal, they are also suited to
formulating and reasoning about the required quality characteristics of a product. There exist many
variations of this goal-oriented paradigm, ranging from informal approaches (see, e.g., [80,118]) to
formal approaches (see, e.g., [24, 25, 95, 152]).

Both the scenario- and goal-oriented approaches offer a methodology for eliciting quality require-
ments, but they give no advice on the structuring and specification of quality requirements. More-
over, they give no advice for the different quality-related topics that have to be captured in re-
quirements elicitation. Another problem is that these approaches do not guarantee that the derived
requirements are concrete enough for being useful in constructive and analytic quality assurance.

A third type of approaches addresses these problems by providing more guidance in form of a
quality model (see, e.g., Kitchenham et al. [85]). However, they only use a taxonomic quality model
like ISO 9126 [70] and are thus not able to tackle the major shortcomings discussed above.

3.4 Quality Models in Practice

In this section, we present an analysis of the use of quality models in the software industry that is
based on a broad Web survey conducted in the context of the Quamoco project. These results have
been published in [161, 162]. The main objectives of the study are to identify the main classes of
quality models that are used at present, to identify the quality assurance techniques that are applied
with these quality models, and to identify problems that are related to these models. The study
covers different company sizes and several domains to allow a broad view of software product
quality.

3.4.1 Study Definition

We concretize the study using the Goal-Question-Metric goal template as proposed by
Wohlin et al. [167]: Analyze product quality models for the purpose of characterization with re-
spect to their usage (where and for what) and possible improvement potentials from the viewpoint
of quality managers and quality model users in the context of the software developing industry.
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3.4.2 Study Design

Before conducting the actual study, an extensive pre-study has been done. In the pre-study, face-
to-face interviews with employees of industrial participants of the Quamoco project were carried
out. The interview guidelines and questionnaire were developed in a series of workshops. The
final version of the questionnaire contained 15 open questions and 12 closed questions. Detailed
information about the pre-study was published separately in [161].

The actual study comprises a survey using a Web-based questionnaire. The questionnaire was devel-
oped based on the closed questions of the pre-study and the data and experience gained in the pre-
study. The Web-based questionnaire was initially tested internally with employees of the Quamoco
industrial partners to detect potential weaknesses and to estimate the time required for completing it.
Afterwards, the questionnaire was further refined to eliminate the problems detected in the internal
tests.

The final version of the Internet-based questionnaire consists of 23 questions that are divided into
the four groups:

1. The role of quality models in the company

2. Quality requirements and evaluation of quality

3. Improvement of quality models

4. General information about the company

The last question of each group was an optional open question, which allowed the respondents to
state additional comments of any kind. Based on the experience of the pre-test, we estimated a time
of at most 25 minutes for completing the questionnaire. For the final survey, the questionnaire was
implemented in LimeSurvey [96], a free Web survey tool.

3.4.3 Study Subjects

The population of this study consists of quality managers and quality model users employed at
software development organizations distributed over the whole world. The recipients of the Internet-
based questionnaire were selected using convenience sampling. Based on data from the project
partners, a list of recipients was compiled. This selection resulted in a sample of 515 persons.
We contacted the persons from the sample, out of which 125 completed the questionnaire. This
corresponds to a response rate of 24.3%. Although we used personalized contacts and sent one
follow-up e-mail to those who had not answered, we did not establish pre-contacts.

Figure 3.5a shows the countries the respondents came from. The majority (82%) of the respondents
work in Germany and Austria. Hence, we have an emphasis on German-speaking countries. This is
complemented by 18% participants from other European countries, Asia, Africa, and North Amer-
ica. Forty-four percent of the respondents work as project managers. Twenty-eight percent of the
respondents are normal employees or line managers.

The experience of the respondents is important to ensure that the respondents are able to answer the
questionnaire meaningfully. Twenty-nine percent of the respondents have between 11 and 15 years
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Figure 3.5: General Information about the Companies

of professional experience in the area of software engineering; only 15% of the respondents have
less than five years professional experience.

The majority of the respondents see development as the primary task of their department. More
than a third consider their department mainly in quality assurance. Figure 3.5b shows the size of the
organizations in terms of the number of employees. Though the participating organizations cover
all sizes, the emphasis lies clearly on larger companies.

Figure 3.5d shows the types of software developed by the participants of the study. It covers all ma-
jor types of software (business information systems, software for embedded systems, development
tools, and platforms). This software is used in all major domains ranging from telecommunication
to finance (see Figure 3.5c).
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3.4.4 Study Results – The Role of Quality Models

Which quality models/standards do you use for assuring the quality of your
products?

The participants were asked to answer one or more of the options “ISO 9126”, “ISO 25000”,
“domain-specific”, “company-specific”, “laws”, “quality gates”, “defect classification”, “reliabil-
ity growth models”, “none”, or “other”. In case of domain-specific or other models, the participants
could give the name of the model as free text. Figure 3.6 shows the results as the number of answers
per option.
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Figure 3.6: Quality Models Used in Practice

The predominant kind of
quality models that are
used in practice are company-
specific models. Almost
three quarters of the re-
spondents use this type
of quality model. Well-
established practices also
include quality gates and
defect classifications, with
about half of the par-
ticipants employing them.
As these terms are rather
vague, the actually used
models can, however, differ
to a high degree. In the first
study phase, we found that defect classifications are often only a prioritization of defects.

The data also suggests that the standard ISO models are not highly accepted. ISO 9126 is adopted
by less than a third of the participants and ISO 25000 by only 4%. For the latter, a reason might be
the recent and incomplete publication of the standard at the time the survey was conducted.

From the pre-study, we found that the ISO models are mostly used in combination with company-
specific models. Hence, we expect this to be the case in the larger sample as well. To test this, we
state the following hypothesis:

Hypothesis H1: In addition to the ISO 9126 model, company-specific models are used.

The contingency table in Table 3.1 shows the co-occurrences of using and not using company-
specific models as well as the ISO 9126 model. It shows that the ISO 9126 is used 2.5 times more
often in conjunction with company-specific models than without. Hence, we accept the hypothe-
sis H1.

Domain-specific quality models and laws were also mentioned frequently. The mentioned domain-
specific models originated from the area of pharmaceutics and medicine (ISO 13485, IEC 60601,
IEC 62304, MDD, CFR) with 11 occurrences in total, testing (4), safety (4), security (3), public or
military (3), and accessibility (2). Five respondents answered that they use the new ISO 25000 and
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Company-Specific Quality Model
Not used Used

ISO 9126
Not used 26 64
Used 10 25

Table 3.1: Contingency table for ISO 9126 and company-specific models

only four employ reliability growth models. Five respondents (4%) answered that they do not use
quality models.

For this question a sanity check was performed, i.e., “none” was not supposed to appear together
with any other field. The check was successful for all 125 responses. In addition, the answers for
“other” led us to corrections in four cases where it was obvious that the mentioned models belong
to one of the predefined categories. The remaining models in “other” were mainly “CMMI” and
“ISO 9001”, with nine occurrences each. This is why we introduced them as separate categories
and removed them from the “other” category.

Do you adapt the quality models that you use for your products?

Don't 
know
9% No

12%

Yes, for each 
product
37%

Yes, for 
classes of 
products
42%

Figure 3.7: Adaptation of Quality Models

The participants had three options for answer-
ing this question: They do not adapt the used
quality models (“no”); they adapt them “for
classes of products”; or they adapt them “for
each product” separately. Furthermore, a “don’t
know” answer was possible. Figure 3.7 shows
the relative distribution of the answers includ-
ing the “don’t know” answers. Quality mod-
els are commonly adapted. Ignoring the “don’t
know” answers, 13.2% do not adapt their qual-
ity models. The difference between the adap-
tation for classes of products and single prod-
ucts is only four percentage points; thus, both
kinds of adaptation are likely to happen in prac-
tice. We conclude from this that adaptation is
a necessary task in using quality models inde-
pendently of whether it is employed for a single
product or for classes of products. It might even
be an indicator that the existing standards are not sufficient for practical needs.

In detail, of the 125 responses, 11 checked “don’t know”. Therefore, only 12.0% do not adapt their
quality models. The quality models of 79.2% of the participants are adapted, of which 41.6% are
adapted for classes of products and 37.6% for each product.
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How satisfied are you with the quality models you use for your products?

The respondents could answer on a 10-point ordinal scale from “very satisfied” to “very
dissatisfied”. Alternatively, a “don’t know” answer was possible. Figure 3.8 shows
the distribution of the answers on this scale including the absolute number of answers.
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Figure 3.8: Satisfaction with Quality Models

The average satisfaction with the quality
models used tends to an undecided opinion
with a slight shift in the direction of satis-
faction. The quality model users seem not
be completely unsatisfied with their mod-
els. However, a clear satisfaction is not
observable either. This suggests that the
concept of quality models seems to deliver
a basic level of satisfaction but it has still
room for improvement.

Eight of the values are missing; thus,
117 values remained for further analysis.
The answers are coded by means of a variable with a scale from 1-10, where one codes “very
satisfied” and 10 “very dissatisfied”. The whole range of values from one to 10 was used by the
respondents. The median is four, the mean is 4.21 with a variance of 3.480.

In which development activities do you use quality models?
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Figure 3.9: Quality Assurance Techniques that
Use Quality Models

These activities were asked for: re-
quirements engineering, architecture
and design, development of cod-
ing guidelines, informal reviews, for-
mal reviews, tool-based code analy-
sis, data collection and measurement,
testing, and evaluation of customer
feedback.

For each of these activities the re-
spondents could give one of the fol-
lowing answers: the activity is not
part of the development process (“ac-
tivity does not exist”); quality models
are used in this activity (“yes”); qual-
ity models are only partially applied
(“partly”); or quality models are not
used (“no”). Otherwise, the respon-
dent could state a “don’t know” an-
swer. In addition, a free text question,
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gives the respondents the opportunity to state, for instance, the motivation why they use a quality
model in a development activity. Figure 3.9 depicts the relative number of “yes” and “partly” an-
swers for each activity.

Quality models are frequently used in all development activities. In particular, the testing activity
is supported by quality models and, additionally, quality models are used in a thorough manner.
This is reflected by the low number of participants who answered “partly” (7%). This is in contrast
to architecture and design, in which quality models are often used partially (37%). The slight
dominance of testing may be explained by the important role testing plays in quality assurance in
general (see next question).

For each activity, the respondents who answered “does not exist” or “don’t know” were excluded.
The three activities in which quality models are used most are testing (73% of the respondents an-
swered “yes”), formal reviews (57%), and coding guidelines (56%). The three activities in which
quality models are used least are informal reviews (22% of the respondents answered “no”), cus-
tomer feedback (16%) and data collection (14%).

How important are the following quality attributes for your products?

For each quality attribute a 10-point scale from “very important” to “very unimportant” is given.
Alternatively, for each quality attribute, a “don’t know” answer was possible. Figure 3.10 visualizes
the central tendency and range for each quality attribute. The boxes represent the values from the
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Figure 3.10: Importance of Quality Attributes
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lower to the upper quartile and the horizontal line marks the median. The upper and the lower
whisker represent the minimum and the maximum; the circles and asterisks visualize outliers.

The analysis shows that the individual ranking of quality attributes varies and that the importance
of quality attributes does not differ strongly. The former can be seen in the ranges of the quality
attributes that use the whole spectrum of possible answers for all of the quality attributes. The
latter is derived from the small distribution of medians, of which most are seven or eight. As
medians, the ranking “very important” (10) and “medium important” (6) only appear once. Hence,
the distinction of importance between the attributes is not clear. However, functional suitability
tends to be the most important quality attribute whereas portability seems to be the least important
one. We conclude that all quality attributes are important. Depending on the context, each attribute
can be of most importance. Nevertheless, foremost in participants’ minds is the functional suitability
of their software together with its reliability and performance. Portability and installability are only
of high relevance in specific contexts, probably standard software. The “don’t know” answers are
counted as missing. The numbers of missing values range from three to nine; thus, 116 to 122
answers are available for each quality attribute.

3.4.5 Study Results – Quality Requirements and Evaluation

How important do you rate the following techniques for evaluating quality
requirements?

measurement

code analysis

informal reviews

formal reviews

customer feedback

testing

very unimportant

very important

Figure 3.11: Importance of Quality Assurance Techniques

The following techniques
were considered: infor-
mal reviews, formal re-
views, tool-based analyses,
data collection and mea-
surement, testing, and eval-
uation of customer feed-
back. Each of these
techniques could be rated
from “very important” to
“very unimportant”. If
the respondents could not
give an answer, they could
check the “don’t know” op-
tion. Figure 3.11 shows the
distributions of the impor-
tance ratings. For each of
the techniques the median
is marked by a black line.
The whiskers give the quartiles and circles and asterisks denote outliers.

From the data, we conclude that testing is considered the most important technique for evaluating
quality requirements. The techniques that were rated as most important after testing are formal
reviews and customer feedback. The importance of a technique does not necessarily mean that
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quality models are used accompanying. This is shown by the technique customer feedback: The
use of quality models for this activity is in the minority (36%), although the activity is considered
important.

Looking at the distribution of the medians, similarly to the quality attributes, the importance does
not differ strongly. The range of the medians contains only three of 10 scale points. Hence, overall,
all the mentioned techniques are considered important.

The “don’t know” responses were not considered further. However, the number of these responses
was very low for most techniques (0-2), except for the technique ”measurement” (11).

How often do you use the following quality evaluation techniques?
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13
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16

9

29

13
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Daily

Weekly

Monthly

At Milestones

Figure 3.12: Frequency of Quality Assurance Tech-
niques

The same techniques as in the
previous question were used.
For each of these techniques
the following answers could
be given: “daily”; “weekly”;
“monthly”; “at specic mile-
stones”; and “never”. It was
also possible to answer “don’t
know”. For this question, multi-
ple answers were allowed. That
means it was possible to answer
that an activity is performed
once a month and also at certain
milestones. Figure 3.12 shows
the relative values in a stacked
bar chart.

Techniques that can be carried
out fully automatically, such as testing, are in favor when it comes to evaluation on a daily ba-
sis. Other techniques that are more time consuming yet important, such as formal reviews, are
used predominantly at milestones. Monthly is not a very common interval for quality assurance.
Likewise “weekly” is only popular for informal reviews.

The two techniques that obtained the most answers of “never” were formal review (27%) and code
analysis (26%). The two techniques that are used most often at milestones are customer feed-
back (23%) and formal review (23%). The two techniques that are used most often in a monthly
interval are formal reviews (22%) and customer feedback (20%). The two techniques that are used
most often on a weekly basis are informal review (29%) and data measurement (19%). The two
techniques that are used most often on a daily basis are testing (41%) and code analysis (19%).

For this question, a sanity check was performed to make sure that “never” as well as “don’t know”
did not occur together with any other option. In two cases this test failed. The corresponding
inconsistent answers were considered missing as well as the “don’t know” answers. These answers
were not taken into consideration for the further analysis.
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How do you evaluate the specific quality attributes?
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Figure 3.13: Quality Assurance Techniques Per Attribute

The answers are
designed as a ma-
trix with the spe-
cific quality attri-
butes on the ver-
tical and the eval-
uation alternatives
on the horizontal
level. For this
question, multiple
answers are possi-
ble. Besides the
usage of a tech-
nique for a quality
attribute, the par-
ticipants could also
state “don’t eval-
uate” and “don’t
know”. The results of this question are shown in Figure 3.13. The larger the bubble, the more
often the corresponding combination of quality attribute and technique was checked.

For this question, two main results are relevant: Functional suitability is the quality attribute evalu-
ated most intensively and testing is a very important evaluation technique for all quality attributes
except portability and maintainability. In addition, the results show that customer feedback is rele-
vant for functional suitability, reliability, performance, and operability. Furthermore, measurement
as well as tool-based code analysis are rarely used for any quality attribute with the exception of
reliability and performance.

The combination of performance and testing was mentioned most often. Of the respondents, 79%
use testing to analyze the performance of their software systems. The second and third highest fre-
quencies are testing for functional suitability (74%) and testing for reliability (73%). The lowest fre-
quency is the combination tool-based code analysis and installability with 2%. Portability analyzed
by tool-based code analysis (6%) and operability and tool-based code analysis (6%) are mentioned
similarly infrequently. In general tool-based code analysis (193 answers in total, 14%) and data
collection & measurement (187, 14%) are mentioned least frequently. Informal review (317, 23%),
customer feedback (334, 24%), and formal review (355, 26%) are mentioned similarly overall. Test-
ing is mentioned by far the most often with 784 (57%).

Do you aggregate the quality evaluation results into an overall quality statement
using a quality model?

A description of the “overall quality statement” is provided in the questionnaire to ensure that all
respondents have a common understanding of this term. The possible answer categories for this
question are “yes”, “no” and “don’t know”.
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Yes
43%

No
49%

Don't know
8%

Figure 3.14: Overall Quality
Statement

For the analysis, all mentions of “don’t know” are con-
sidered as missing values. The results of this question are
shown in Figure 3.14.

According to the findings, there is no tendency in favor of
or against the aggregation into an overall quality state-
ment. For the interpretation of this question, we take
questions allowing additional textual comments into ac-
count. One respondent who aggregates the quality evalu-
ation results states that the aggregation is made for the un-
derstanding of the management. Other respondents note
that the aggregation is used for visualization. Opinions
against the aggregation are that the data for the aggrega-
tion is not available. Suitability for daily use is another
reason against aggregation, as a respondent commented.
We cannot clarify completely which reasons are respon-
sible for or against an aggregation. For further analyses it
may be expedient to ask explicitly for that.

Ten respondents were not able to answer this question within the two categories “yes” or “no”. For
this reason, the number of valid values is reduced to 115. The frequencies reveal that there is no
major difference between “yes” and “no”.

3.4.6 Study Results – Improvement of Quality Models

Which improvement potentials do you see in the following fields?

certification

standardization

adapting specific contexts

quantifying

economical

definition

integration into lifecycle

practically usable QMs

evaluation criteria

very low 
potential

very high
potential

quality statements

Figure 3.15: Improvement Potentials for Quality Models

On a 10-point scale from
“very low potential” to
“very high potential”, the
respondents had to spec-
ify how they estimate the
prospects of improvement
suggestions. The respon-
dents who did not require a
certain improvement could
choose a separate category.
The fields for improve-
ment given were: “defining
practically usable quality
models”; “adapting qual-
ity models to specific appli-
cation contexts”; “integrat-
ing quality models into life-
cycle processes”; “trans-
parent definition of qual-

49



3 State-of-the-Art

ity”; “quantifying quality”; “defining evaluation criteria”; “economical analyses of quality improve-
ments”; “standardization of quality models”; “aggregation to quality statements”; and “product
quality certification”. Figure 3.15 shows the distribution of the answers for each improvement
field.

The findings show that for all fields a high improvement potential exists. More advanced topics,
such as quality statements, standardization, and certification, may be rated with lower potential due
to issues besides the use of quality models. For instance, standardization has the likely problem
that it takes a long time to complete the standard and that many different interests have to be incor-
porated. Looking at the fields with the most ratings of the two highest ranks, defining evaluation
criteria, quantifying quality, and transparent definition of quality are the top three.

For most of the improvement potentials a few outliers exist. For this descriptive analysis, they are
not excluded. For further hypotheses it may be reasonable to exclude them. The boxplot demon-
strates that three mentioned fields are not evaluated with a high potential, but all of the others show
nearly a high potential. In these three fields the dispersion is also the highest. In the analyses, “don’t
know” answers were not considered.

If you were in a position to decide on a quality improvement strategy, which three
attributes would you address first?
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Figure 3.16: Quality Attributes to be Improved

Respondents could choose
three quality attributes from
a list with pre-defined
quality attributes and rank
them. As answers, a re-
duced set of quality at-
tributes was given, con-
sisting of: “functional
suitability”; “reliability”;
“performance”; “operab-
ility”; “security”; “compat-
ibility”; “interoperability”;
“maintainability”; “port-
ability”; “installability”;
and “safety”. Figure 3.16
shows the relative number
of answers of attributes on
the first, second, and third
rank.

As a result, we conclude that functional suitability, reliability, and performance are the three quality
attributes ranked most often. They should be part of most quality improvement strategies. On the
other hand, installability was not chosen; portability and compatibility were rarely chosen. They do
not seem to be in need of urgent improvement.

50



3.4 Quality Models in Practice

3.4.7 Discussion

In general, the data shows that a wide variety of quality models are used, ranging from standards
and laws to domain- and company-specific quality models. Company specific models are the most
frequently applied models, being used by more than 70% of the companies. This is in line with the
observation that most companies (more than 80%) adapt their quality models to their needs. We
have two possible interpretations: (1) the existing quality models are unsatisfactory and thus need
to be adapted (2) the adaptation of quality models is unavoidable.

The satisfaction with quality models in general is moderate. The ISO 9126 standard especially is not
well accepted. It is used onyl by 28% of the respondents and three quarters of its users additionally
adapted it to their needs. Thus, we conclude that existing quality models do not satisfy the needs
of practice. This conclusion is highlighted by a respondent’s statement in the pre-study that “the
-ilities are good for management talk only” [161].

All quality attributes have been rated as important; the average importance rating is in the upper
half for all quality attributes. The highest ranking were given to functional suitability, reliability,
and performance; the lowest to portability. However, for almost all quality attributes there were
outliers. This indicates that the importance varies for different application domains or types of
software.

In line with the observation that functional suitability is considered most important, it is the qual-
ity attribute evaluated using most techniques. Testing is the predominant technique to evaluate it,
followed by customer feedback and formal reviews.

Classical software testing takes a predominant role in quality assurance, as it is applied to test
almost all quality attributes, except maintainability and portability which are ensured by reviews.
Furthermore, testing is usually applied daily, while customer feedback and formal reviews are only
applied at milestones. Code analysis and measurement are also applied daily. One explanation for
the frequent use of them is their high potential for automation.

In general, the respondents saw a high potential for improvements in the field of quality models.
All predefined answers were rated in the upper half of the scale. The three most important fields
of improvements were the transparent definition of quality, the definition of evaluation criteria, and
the quantification of quality. Both the latter hint at the importance of the development of quality
models enabling the actual measurement of quality. The missing operationalization of current qual-
ity models was also highlighted by the following statement in the pre-study: “Operationalization
(break down to technical attributes) is difficult” [161]

3.4.8 Threats to Validity

To ensure the validity of the constructs used in the study, we only interpreted what the question
directly asked for and set it in relation to the information that we have gained from conducting the
interviews of the pre-study. Moreover, we carried out a pre-test of the questionnaire, which gave
additional insights for improving the design of the questions. All completed questionnaires were
carefully inspected and checked for consistency where appropriate, because a Web survey is not
administered and hence no additional help can be given to the participants. Respondents may have
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tried to manipulate the results because they have some interest in the outcome. For instance, experts
in a specific quality assurance technique may have a stake in having this technique rated as very
important in this study.

We assured the recipients that the responses were kept separately from the authentication tokens,
so that tokens and survey responses cannot be matched. This supports that respondents report all
quality-related problems located in their companies. The survey was conducted as a broad study
with many different companies and individuals involved. Hence, the results should be generaliz-
able to other companies and countries because in total the 125 participants came from 12 different
countries. Most participants have long experience in software development, but experts with less
experience were also among the respondents. Likewise, we cover different company sizes, different
domains, and different types of systems.

3.5 The Quamoco Project

In the research project Quamoco1 a similar research objective to that in this thesis has been pur-
sued. It developed a quality model for software products and accompanying methods for apply-
ing the quality model in practice. The author of this thesis was deeply involved in the Quamoco
project and the main contributions of both the Quamoco project and this thesis emerged during the
same time-frame. Thus, there has been a back-and-forth flow of ideas between this thesis and the
Quamoco project. In the following the major commonalities and differences between the results of
the Quamoco project and this thesis are summarized.

Quamoco defines an explicit meta-model for quality models [88, 158–160], which is more
general and allows more degrees of freedom. The general concepts of the Quamoco model
are also part of the quality model of this thesis. In this thesis, however, a more specialized
meta-model is defined. In particular, it defines stricter decomposition criteria for component
properties (see Section 4.4). Moreover, the meta-model in this thesis is defined formally, while
in Quamoco only a prose description is given. The quality assessment approach in this thesis
profoundly differs from the Quamoco approach; in Quamoco, all measurement values are
weighted first and then aggregated, whereas in this thesis the aggregation and weighting steps
are strictly aligned with the structure of the software product model (see Chapter 5).

In Quamoco a “base model” [126] has been developed according to the meta-model of
Quamoco. This base model is the basis for the quality model for Java in Section 6.2. The
Quamoco base model was transferred to the stricter meta-model of this thesis and expanded
by several additional measures. Moreover, the quality assessment part of the model was com-
pletely reworked based on the approach of this thesis. A detailed explanation of the model and
its differences to the Quamoco model can be found in Section 6.2.

The tool support built for this thesis is based on ConQAT2 and on the tooling developed for
Quamoco [27]. Due to the different meta-model and the completely different quality assess-
ment approach the tools for this thesis are a substantial modification of the Quamoco tools.

1http://www.quamoco.de/, supported by the German Federal Ministry of Education and Research under grant number
01IS08023.

2http://www.conqat.org/
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3.6 Summary

For the case study in Chapter 8, Research Questions 2 and 3 are analogous to the case study
conducted in Quamoco [89, 102, 158, 159]. Research Questions 4 and 5 are not part of the
Quamoco case studies and unique to this thesis. The collection of study objects (Java systems)
was initially performed for this thesis and was then partially reused for the case studies in
Quamoco.

3.6 Summary

We briefly summarize the findings and insights regarding the state-of-the-art of quality models and
software measurement.

The quality models with the main objective of defining quality face several problems. Their defi-
nition of quality by a taxonomical approach is criticized for several reasons: (a) the defined terms
are ambiguous, incomplete, and overlapping and (b) the semantic of the tree of terms is unclear.
Thus, they do not provide an applicable and concise definition of quality. Furthermore, they do not
address the topic of assessing and measuring quality.

The richer successors of the hierarchical quality models address one of their shortcomings each. The
Dromey’s model introduced a clearer structure by the differentiation between product components
and quality attributes. The activity-based quality model of Deissenboeck enhances the structure and
conciseness through the modeling of activities. The SQUID model of Kitchenham introduces an ex-
plicit meta-model to achieve a clear semantic of quality models. The EMISQ model of Ploesch et al.
addresses the measurement and aggregation for source code using static analysis. Even though each
of these models addresses one specific topic, an integrated overall model is still missing. Fur-
thermore, these models have limitations themselves, e.g., the activity-based model discusses only
maintenance and the EMISQ model discusses only static analysis of source code.

The area of software measurement has a different focus than quality models. It focuses on the defi-
nition of software measures in general, and for source code in particular. Over time, a large number
of measures have emerged. However, the meanings of the single measures for software quality are
unclear. Whether and to what degree a measurement value can be used to derive a statement on
the quality of a system is often unclear. Summing up, measures and their implementations in anal-
ysis tools are available today; however their meaningful application in software quality assurance
remains a challenge.

The primary goal of dashboard tools is to visualize measurement values and trends. Often they also
give a high-level overview of the quality of the analyzed system. Thus, they incorporate aggregation
of measurement values. Since they use the hierarchical quality models as foundation for a aggregat-
ing, the dashboard tools are susceptible to the same critique as the quality models. Moreover, due
to the unclear structure, the aggregated results are hardly explainable to practitioners.

The survey on quality models in practice led to the same conclusions as our review of related litera-
ture. Although quality models are widely used in practice, there is major potential for improvement.
The practitioners concluded that the two major topics for improvement are the comprehensive defi-
nition of quality and operationalization.
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We conclude that the three major unsolved topics with regard to quality models are the following:
Challenge 1: Providing a clear definition of high-level quality attributes and clear decomposi-
tion criteria.
Challenge 2: Relating the high-level quality attributes to concrete product characteristics that
are measurable.
Challenge 3: Providing an aggregation approach for measurement values producing compre-
hensible results.
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In this chapter, we introduce a meta-model for quality models. In Section 4.1 we give a motivation
for introducing a formal meta-model and describe the objectives we pursue with it. In Section 4.2,
we provide an overview of the main concepts of our quality meta-model and describe them infor-
mally. Section 4.3 and Section 4.4 introduce the formal meta-model, subdivided into a first part
defining a product model and a second part defining quality-properties and their relations. In Sec-
tion 4.5 we summarize the concepts of our quality model.

4.1 Motivation & Objectives

Why a quality model?

In software engineering, quality models have been introduced to support the tasks of quality as-
surance (cf. Section 2.2.5). A fundamental prerequisite for supporting quality assurance is to de-
fine what quality means and to define concepts and terms being related to software quality. For
defining abstract quality characteristics, as for instance maintainability and usability, taxonomical
quality models have been introduced. To provide practical guidance in constructive quality assur-
ance, extensive collections of guidelines and best practices have been created. For analytic quality
assurance, checklists and static analysis tools are commonly used.

As we elaborated in Chapter 3, each of these approaches has its shortcomings. For instance, tax-
onomical quality models remain on a very abstract level, while guidelines usually miss rationales
for their concrete rules. The rationales should state which quality characteristic is meant to be im-
proved by following a concrete rule. To overcome these shortcomings, richer quality models have
been proposed which integrate abstract quality characteristics and concrete properties of product
components. Their objective is to capture the knowledge on quality present in taxonomical quality
models, guidelines, and measurement tools in one comprehensive quality model.

Our approach for quality modeling continues this concept and seeks to describe abstract quality
characteristics, concrete properties and the relations between them by one comprehensive formal-
ism.

Why a formal quality meta-model?

According to their objective, richer quality models integrate a large variety of different information
in one quality model. Hence, their primary challenge is to find an adequate mechanism for struc-
turing information. The structuring mechanism must enable an unambiguous, non-overlapping,
contradiction-free definition of terms and concepts. Furthermore, the mechanism must be able to
set into relation abstract quality characteristics with concrete properties of components and with
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measures to quantify them. As we discussed in Chapter 3, these objectives are usually not met by
these quality models. One of the prime reasons is that the semantics of these models are ambiguous
and not defined precisely enough. Recent approaches for quality modeling (cf. [33, 85]) introduce
informal meta-models, which improve on previous quality models, but do not solve the issue of
unclear semantics sufficiently.

Our approach to overcoming this problem is to define a formal quality meta-model. We expect a
formally defined meta-model to be less ambiguous than an informally defined one. This way, the
interpretation of a given quality model adhering to the formal meta-model should be also clear and
unambiguous. Moreover, a formal meta-model enables us to build tool support for creating quality
models. The precisely-defined relations and constraints enable automatic checks for consistency
and support for the quality modeler when creating and changing quality models (cf. Chapter 7 and
Chapter 8).

Why include a product model?

While a formal meta-model allows us to precisely describe a structuring mechanism for quality
models, defining an adequate structuring mechanism is a challenge itself. Hence, we take up and
extend the idea of using a product model (cf. [33, 34]) of software as a means for structuring. The
product model describes the constitution of a software product by defining the artifacts it consists
of. The definition of quality characteristics and concrete properties of components then relies on the
product model. Defining a product model for software is an easier task than directly defining quality
characteristics and thus leads to less ambiguous results. Hence, grounding the definition of quality
characteristics and properties in the product model leads to a reduction of the degrees of freedom of
the quality modeler for mapping quality-related information to the quality model. We expect this to
lead to a more precise and reproducible representation of quality-related information in the quality
model.

The alignment of the quality characteristics and concrete properties of components with the hier-
archical structure of a software product described by the product model is moreover essential for
defining a quality assessment approach (cf. Chapter 5). It attaches measures to concrete properties
and defines a method for aggregating measurement results. The aggregation makes use of the hier-
archical structure of properties, which is in line with the hierarchical structure of the product model.
This means that the strict structure of the quality model enables us to define a quality assessment
approach, which fully relies on the quality model.

4.2 Overview

In Section 2.1, we discussed how reasoning about quality essentially means defining the properties
of things. Typical properties we are reasoning about in quality models are, for instance, maintain-
ability of software products, complexity of source code, or conciseness of identifiers in source code.
Thus, the central task of a quality meta-model is to provide concepts for defining and organizing
properties.
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Class Quality‐Property
refers to

Restriction

Division

Generalization

Composition Impact

Figure 4.1: Main Concepts of the Meta-Model Represented as Ontology

For organizing properties in a structured way, we use a product model of software as the backbone,
as proposed by several quality models in literature [33, 34]. In contrast to these quality models,
we use the object-oriented paradigm as realized in UML class diagrams [116, 132] for defining the
product model.

Figure 4.1 shows the main concepts and relations of our quality meta-model as an ontology. The
product model is defined via the concept Class and the relations Generalization and Composition.
The prime element for describing quality-related concepts is Quality-Property, whereby the def-
inition of a quality-property is always based on a class of the product model. Between quality-
properties there are three relations, Restriction, Division, and Impact. In the following, the concepts
and relations are defined and illustrated by examples.

Class

Definition. We define a class as a collection of objects exhibiting some common characteristics, so
that they are distinctly identifiable (cf. [132, p. 42]). Since our quality model targets product quality,
the classes of the quality model represent artifacts and ideas of software products.

Purpose. The main purpose of classes is to provide a basis for defining properties. It is much easier
to first define a product model in the form of classes and then to derive a property model, than to
directly define a property model. Furthermore, the hierarchical constitution of the software product
represented in the product model is needed for aggregating measurement results when conducting
quality assessments.

Example. Figure 4.2 shows an excerpt of the quality model for Java source code presented in de-
tail in Section 6.2. The classes in this example describe parts of source code in the programming
language Java. The class Product is the root and represents the software product. The product con-
sists of Source code constructs, which include Java Class, Method, Field, and Expression. Entirely
different concepts can also be described by classes; for instance, in a quality model describing user
interfaces, the classes could be windows, buttons, text fields, and lists.

Generalization

Definition. We define a generalization relationship between a more general and a more specific
class (cf. [132, p. 51]). The more specific class comprises objects with some special characteristics
distinguishing them from the objects of the more general class. Nonetheless, the special class is

57



4 Quality Meta-Model

Java Class

Field Method

Expression

Product

Abstract method Concrete method

Source code construct

Legend:
classabc

generalization
composition

Figure 4.2: Example of Classes and their Relations
(Excerpt from the quality model for Java source code presented in Chapter 8)

fully consistent with the general class, i.e., all objects of the specific class are also contained in
the general class. The general class is called a generalization of the specific class. Conversely, the
specific class is called a specialization of the general class.

Purpose. The purpose of the generalization relationship is to abstract from specific classes to more
general ones. This way, common quality-properties of several specific classes can be defined once
for the more abstract class, and they are inherited by the more specific classes. This prevents the
redundant definition of quality-properties for different classes. Nonetheless, differences between
the special classes can be explicitly modeled. Hence, the generalization relation “permits the incre-
mental description of an element” [132, p. 52] by starting with a general class and continuing with
more special classes.

Example. In the example in Figure 4.2, the generalization relation is used to describe that the
classes Field, Java Class, Method, and Expression are a specialization of Source code construct.
Furthermore, Abstract method and Concrete method are a specialization of Method.

Composition

Definition. A composition represents a container-part relationship between two classes. It describes
how a class, called a container, consists of other classes, called parts (cf. [132, p. 49]).

Purpose. The purpose of this relationship is to describe the hierarchical constitution of a software
product. This view onto classes is a natural one for people thinking about software products. Thus,
this relation is convenient for presenting the product model to the quality modeler. When conducting
quality assessments, such a description of the hierarchical constitution of a software product is
important too. It is used for aggregating measurement results in order to get to a quality statement
for the entire software product.

Example. In the example in Figure 4.2, the composition relation is used to describe that a Java
Class contains Fields and Methods. It is also used to describe that a Concrete method contains
Expressions.
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Quality-Property

In Section 2.1.1, we thoroughly discussed the notion of properties and concluded that in general
properties describe attributes, qualities, features, or characteristics of a thing. In our quality model,
we use a narrower definition of properties, called quality-properties.

Definition. Since in the quality model the software product is modeled in the form of classes,
a quality-property always refers to a class it characterizes. Moreover, all quality-properties are
defined in a quantitative manner. This means that a quality-property assigns to each object of its
class a value expressing the degree to which the object manifests the quality-property. This degree
is expressed on a continuous scale between 0 and 1. The value of 0 means that the object does not
manifest the quality-property; we can also say the quality-property is not satisfied by the object.
The value of 1 means the object fully manifests the quality-property, in which case we say that the
quality-property is satisfied by the object.

Purpose. Quality-properties are the main construct in our quality model for describing quality-
related concepts. They are used for both abstract concepts like quality attributes and concrete tech-
nical concepts like source code-based measures. In this way, the concept of quality-properties in
the quality model fulfills the purpose of describing diverse quality-related concepts in a consistent
manner.

Example. An example of a rather abstract quality-property is Maintainability of a Product, describ-
ing whether the software product can be effectively and efficiently maintained. In this case, Product
is the class to which the quality-property refers. An example of a concrete technical quality-property
is the Detail complexity of a Method, stating that a method in source code “is complex because it
consists of many parts” [126].

Restriction

Definition. A restriction is a relationship between a general and a specific quality-property. It is
the analogy of the specialization (inverse of generalization) relationship on classes. Hence, the
class of the specific quality-property must be in a generalization relation to the class of the gen-
eral quality-property. Moreover, the specific quality-property must be consistent with the general
quality-property, i.e., it must yield the same degrees of satisfaction.

Purpose. The purpose of this relationship is to enable the definition of general quality-properties that
are based on general classes and to inherit these general quality-properties to more special classes.
This way, a general quality-property is broken down to more specific quality-properties, which can
be described more precisely. At the same time, the commonalities between several more specific
quality-properties are explicitly captured by their relation to the more general quality-property.
When creating a quality model, this relationship enables a top-down procedure. First, general
quality-properties are defined for general classes. Then, step by step, the general quality-properties
are restricted by more specific quality-properties, whereby the generalization relationship of classes
prescribes which restrictions are possible. This way, guidance for choosing restrictions is given to
the quality modeler.

Example. Figure 4.3 shows an excerpt of the quality model for Java source code presented in Chap-
ter 8. The quality-property Detail complexity of Source code construct describes that there is a
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Detail complexity of Source code construct

Detail complexity ofMethod

Detail complexity of Abstract method Detail complexity of Concrete method

Many parameters ofMethod

Many parameters of Abstract method Many parameters of Concrete method

Long of Concrete method

Deeply nested of Concrete method

Legend:
quality‐propertyA of B

restriction

division
abstr. division

Figure 4.3: Example of Quality-Properties, Restriction, and Division Relations
(Excerpt from the quality model for Java source code presented in Chapter 8)

general notion of detail complexity for source code constructs. According to the specialization of
the class Source code construct to Method, which is specialized to Abstract and Concrete method,
the restriction takes place. This results, e.g., in the quality-property Detail complexity of Concrete
method, which can be defined more precisely. This model also captures the commonality between
the Detail complexity of Abstract methods and the Detail complexity of Concrete methods, by ex-
plicitly modeling that both are restrictions of the Detail complexity of Methods.

Division

Definition. A division is a breakdown relationship between two quality-properties. A quality-
property that is divided into several other quality-properties can be expressed as a combination
of those quality-properties. Hence, two quality-properties being in a division relation always refer
to the same class.

Purpose. The purpose of this relationship is to break down a complex quality-property into more
concrete, tangible ones. While the restriction relationship approaches to more concrete quality-
properties by specializing the class they refer to, this relationship stays on the same granularity of
classes. This way, it represents an orthogonal way of breaking down more general quality-properties
into more concrete ones.

Example. In Figure 4.3, the division relation was used to describe that the quality-property Detail
complexity of Concrete method can be broken down into Many parameters, Long, and Deeply-
nested.
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Abstract Division and Inheritance

Definition. An abstract division is a variant of the division relationship, where the quality-property
which is divided is not expressible by the combination of the other quality-properties. Thus, this
relation is called abstract and its only purpose is to be inherited alongside the restriction relation.
This means, an abstract division defined for a more general quality-property is inherited by the more
specific quality-properties that are in a restriction relation to the more general quality-property.

Purpose. The inheritance of the abstract division relation enables us to define an abstract divi-
sion once for the general quality-property and for it to be inherited by the more specific quality-
properties. Hence, this construct prevents the redundant definition of divisions for specific quality-
properties, by transferring it to the more general quality-property and then it being inherited.
The inheritance also serves the purpose of extending the top-down approach for constructing a
quality model to the division relation. First, a quality modeler adds an abstract division to a general
quality-property. Then, he adds more specific quality-properties to the general quality-properties by
a restriction relation; the dividing quality-properties of the general quality-property are inherited by
the newly defined specific quality-properties, for which they can be defined more precisely.

Example. Figure 4.3 shows an example for an abstract division and its inheritance. By an abstract
division we define that Detail complexity of Methods can be broken down into Many parameters of
Methods, which describes that a method has a large number of parameters.
Since Detail complexity of Method is restricted by two quality-properties for the classes Abstract
method and Concrete method, the inheritance of abstract divisions comes into effect: The quality-
property Many parameters is inherited by these quality-properties.
For Concrete methods the quality-property Detail complexity can be further divided into the quality-
property Long, meaning that a method consists of a large number of statements and Deeply nested
meaning that the nesting depth of the method is high.

Impact

Definition. An impact is a relationship between a source and target quality-property, whose classes
are in a composition relation and where there is a certain type of dependency between the two
quality-properties. We distinguish between two types of dependency: A positive dependency which
means that the value of the target quality-property increases if the value of the source quality-
property increases; a negative dependency which means that the value of the target quality-property
decreases if the value of the source quality-property increases.

Purpose. The purpose of this relationship is to describe how specific (often technical) quality-
properties influence general quality-properties, as, for instance, quality attributes. This way, it is
possible to describe the relation of detailed technical quality-properties and general quality attributes
in a consistent manner.
Describing this kind of influence between different quality-properties is essential for concretizing
abstract quality characteristics. Abstract quality characteristics usually describe attributes of the
entire product and thus refer to the class Product, as, for instance, Maintainability of Product.
The main goal of quality models, which is to break down such quality characteristics to tangible
properties, cannot be achieved exclusively by restriction or division. Doing so would just resemble
the taxonomical/hierarchical quality models described in Section 3.1, which do not achieve this goal.
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Thus, explicitly capturing the dependencies between concrete quality-properties and abstract quality
attributes is the only way to get a connection between abstract and concrete quality-properties.

Example. For instance, we define that the quality-property Detail complexity of Method has a neg-
ative impact on the quality-property Maintainability of Product, because from empirical investiga-
tions (e.g., [23, 92]) we know that complex methods demand more effort to be understood and thus
decrease the maintainability of the software product.
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4.3 Objects and Classes

In Section 4.2, we informally described a data model in the style of UML class diagrams and object-
oriented programming languages. In this section, we introduce a formal definition of this model.
In literature, several approaches for formalizing the UML are known. Early approaches describe
how a UML model can be transformed into a formal specification, for instance Z [38]. Later ap-
proaches discuss the meaning of syntax and semantics in the context of UML and provide formal
models for UML [16, 17, 56, 98, 128]. These approaches formalize large parts of the UML, includ-
ing behavioral characteristics represented by state machines or message sequence charts. Regarding
class diagrams, they formalize classes including attributes, associations, and multiplicities of asso-
ciations. In this thesis, just a fraction of these constructs is needed. Therefore, we provide our own
formalization of the constructs class, object, generalization, and composition. Our formalization
approach is, however, based on the main considerations of those in the literature. For instance, we
define classes as sets of objects, as do all other approaches in the literature. By introducing our
own formalization, we achieve tailored definitions for our purpose and a consistent terminology and
style throughout this entire chapter.

Definition 4.1 Universe of Discourse. The set of all objects that are relevant when talking about
software products is the universe of discourse:

U

As defined in Section 4.2, a class denotes a set of objects with some common characteristics so that
they are distinctly identifiable. The set of all possible classes is ℘(U). We define a subset of it as
all classes we are talking about in the quality model.

Definition 4.2 Set of all Classes. The set of classes C in the quality model is a finite subset of all
possible classes ℘(U):

C ⊆ ℘(U)

Furthermore, we exclude the existence of an empty class.

Axiom 4.1 No Empty Class.
∅ ∉ C

In a quality model, we want to ensure all objects are described by classes. Thus, we require that
each object is a member of a class. All objects contained in a class are called instances of it.

Axiom 4.2 Members of Classes. Each object of the universe of discourse is a member of a class:

∀o ∈ U ∶ ∃c ∈ C ∶ o ∈ c
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4.3.1 Generalization

The generalization relation (see Section 4.2), describes a relationship between a more general and
a more specific class. The more specific class contains a subset of the objects of the more general
class. The objects of the more specific class have some special characteristic distinguishing them
from the objects of the more general class.

We define a class as a generalization of another class, if and only if it is a superset of it. Accordingly,
a class is a specialization of another class, if it is a subset of it.

Definition 4.3 Generalization Relation. A class c1 ∈ C is a generalization of a class c2 ∈ C if and
only if c2 ⊂ c1.

If c1 ⊂ c2 then c1 is called a subclass of c2 and c2 is called a superclass of c1. Since the generalization
relation directly resembles the subset relation of sets it is acyclic and transitive, as expressed in the
following theorem.

Theorem 4.1 Generalization Relation is Acyclic and Transitive.

Proof. This directly follows from Definition 4.3.

As explained in Section 4.2, in our quality model we want to use the class model for structuring
quality-properties, which will be defined on classes. Thus, the graph spanned by the generalization
relation should be tree-like. To achieve this, we decide that there must be no overlapping between
classes, meaning that no object is a member of more than one class, unless the classes are in a
generalization relation.

Axiom 4.3 No Overlapping Classes. Two classes are either in a generalization relation or they
have no joint elements:

∀c1, c2 ∈ C ∶ (c1 ≠ c2) ⇒ ((c1 ⊂ c2) ∨ (c2 ⊂ c1) ∨ (c1 ∩ c2 = ∅))

This axiom constrains the structure of the classes in a way that two typical characteristics of object-
oriented data models are achieved. These two characteristics are formulated as two theorems in the
following: First, there is no multiple instantiation, meaning that each object is instance of exactly
one class, not considering its transitive superclasses. Second, there is no multiple inheritance,
meaning that each class has exactly one superclass, not considering the transitive superclasses.

Theorem 4.2 No Multiple Instantiation. For an object o, there do not exist two distinct classes c1
and c2 so that o is instance of both of them and they are not in a generalization relation.

∀o ∈ U ∶ /∃ c1, c2 ∈ C ∶ (c1 ≠ c2) ∧ (c1 /⊂ c2) ∧ (c2 /⊂ c1) ∧ (o ∈ c1) ∧ (o ∈ c2)

Proof. This directly follows from Axiom 4.2 and Axiom 4.3.
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Theorem 4.3 No Multiple Inheritance. For a class c, there do not exist two classes c1 and c2 so
that they are not in a generalization relation and c is a subclass of both of them.

∀c ∈ C ∶ /∃ c1, c2 ∈ C ∶ (c1 ≠ c2) ∧ (c1 /⊂ c2) ∧ (c2 /⊂ c1) ∧ (c ⊂ c1) ∧ (c ⊂ c2)

Proof. This directly follows from Axiom 4.2 and Axiom 4.3.

Since the set of classes is finite (Definition 4.2) and there is no multiple instantiation (Theorem 4.2),
for each object we can define a unique class, called the class of the object, which is the smallest
class of which the object is an instance.

Definition 4.4 Class of an Object. The class of an object is a function class ∶ U→ C, mapping
each object to the smallest class it is an instance of:

class(o) ↦ min⊂ ({c ∈ C ∶ o ∈ c})

From Axiom 4.2, it follows that at least one such class exists. From the finiteness of C and Axiom 4.3,
it follows that there is at most one such class. Hence, there is always exactly one such class.

4.3.2 Composition

According to the definition in Section 4.2, the composition relation is used to describe the hierar-
chical constitution of a software product. Thus, it describes which objects consist of other objects.

Definition 4.5 Composition Relation on Objects. The composition relation COMPU describes a
composition of objects.

COMPU ⊆ U×U

For predefining how a software product is represented in the form of objects, we define a composi-
tion relation of classes. This relation describes which classes are composed of other classes; i.e., it
describes that objects of a class may be composed of objects of another class.

Definition 4.6 Composition Relation on Classes. The composition relation describes which classes
are composed of other classes:

COMP ⊆ C×C

As stated before, the composition of objects must adhere to the constraints defined by the composi-
tion on classes. Thus, we introduce the following axiom.

Axiom 4.4 Consistency of Composition on Objects and Classes. If two objects are in a composition
relation, then their classes are in a composition relation too.

COMPU(o1, o2) ⇒ (class(o1), class(o2)) ∈ COMP
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This means that two objects may only be in a composition relation if their classes are in a compo-
sition relation. This way, the composition relation of classes describes which compositions on the
object level are allowed. On the other hand, if two classes are in a composition relation, it does not
mean that all their objects have to be in a composition relation.

For two classes (c1, c2) ∈ COMP we call c1 the container of c2 and c2 a part of c1.

The composition relation between classes is an essential part of the class model. Since the class
model is used as a main structuring mechanism in the quality model, it should be easily understand-
able and manageable. On the other side, the hierarchical structure of the software product will be
used in quality assessments for aggregating measurement values. Because the goal is to come to
an overall quality assessment for an entire software product, we require the class hierarchy to be a
tree with a unique root class. A tree also satisfies the requirement of being easily understandable
and manageable. Since the tree of classes represents the software product, the root-class is called
product ∈ C.

Axiom 4.5 Composition Relation COMP is a Tree.

Definition 4.7 Root Class product. The root class of the composition relation is called
product ∈ C.

In the following considerations, we will often reason about the transitive closure of the composition
relation. Thus, we explicitly introduce it as COMP∗.

Definition 4.8 Transitive Closure of the Composition Relation. The transitive closure of the com-
position relation is denoted as COMP∗.

COMP∗ = ⋃
i∈N>0

COMPi

whereby COMPi denotes the i-times applied composition of relations.

4.3.3 Inheritance of the Composition Relation

When creating a product model of software products using the generalization and composition re-
lation on classes, both these relations are used together. For achieving an acyclic and contradiction-
free structure of the combined graph spanned on classes, we define a constraint on the usage of the
composition relation: We call it the inheritance of the composition relation alongside the general-
ization relation. It means that a subclass of a superclass gets the same container as the superclass
by default. The default container can then be overwritten by parts of it. The thought behind this
definition is that a subclass cannot have a more general container then a superclass. For instance, if
identifiers are contained within methods, then more special types of identifiers can only be contained
within methods or parts of methods.

By enforcing an acyclic and contradiction-free class model, the inheritance of the composition re-
lation leads to an easily understandable class model. Furthermore, this constraint enables active
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Figure 4.4: Inheritance of the Composition Relation

support of the quality modeler by tools, because when introducing a new sub-class, a tool can pro-
pose to use the inherited container by default.

Figure 4.4a visualizes the concept of inheritance. In the simple case, a class csub has the superclass
csuper, which has the container ccontainer. According to the inheritance, ccontainer is also the default
container of csub. In Figure 4.4b we show the case with overwriting. Instead of using ccontainer as
container of csub, a part of ccontainer is used as container of csub.

Axiom 4.6 Inheritance of Composition. Given a class csub, which is a subclass of csuper, a class
ccontainer which is the container of csuper, then csub is a part of ccontainer.

∀csub, csuper, ccontainer ∈ C ∶
(csub ⊂ csuper) ∧ ((ccontainer, csuper) ∈ COMP) ⇒ (ccontainer, csub) ∈ COMP∗

67



4 Quality Meta-Model

4.4 Quality-Properties

According to our discussion in Section 2.1, properties in general are interpreted as predicates, which
hold for all objects manifesting a certain property [145]. As we discussed in Section 4.2, in our
quality model, we are modeling a more specific type of property, called quality-property. Quality-
properties are a portion of all general properties, having two special characteristics: (1) they have
a class of the class model as domain and (2) they are quantitative properties, meaning that they
describe a gradual possession of a property by an object. For expressing the gradual possession
we use the Łukasiewicz fuzzy propositional calculus (according to Hajek et al. [53, p. 63] and
Bohme et al. [15, p. 209]). Summarized in brief, instead of a two-valued logic with truth values true
and false, the truth value in fuzzy logic is between 0 and 1. In the quality model 1 means the object
fully satisfies the quality-property and 0 means the object does not satisfy the quality-property. All
values in between are degrees of possession.

Definition 4.9 Quality-Property. P is the set of all quality-properties that are defined in the quality
model. A quality-property p ∈ P is a function mapping objects of a certain class c ∈ C to a logical
value:

p ∶ c→ [0,1]

As we have seen in Section 4.2, in the quality model it is important to have an informal description of
quality-properties that is easily understandable. Often we want to use the same name for different
quality-properties and distinguish them only by their domain. Thus, we introduce the following
notation:

Definition 4.10 Notation for Quality-Properties. For a quality-property p ∈ P we use the following
notation:

[p∣dom(p)], pronounced as “p of dom(p)”.

4.4.1 Restriction

As explained in Section 4.2, a restriction describes a relationship between a more general and a
more specific quality-property. Since it is analogous to the specialization relationship (inverse of
generalization) on classes, the domain of the more specific quality-property must be a subset of the
domain of the more general quality-property.

Definition 4.11 Restriction of Quality-Properties. The relation RES ⊆ P×P describes which
quality-properties are restricted by other quality-properties. A quality-property p is restricted by
a quality-property pi, if and only if pi is a projection of p.

(p1, p2) ∈ RES ⇔ (dom(p2) ⊂ dom(p1)) ∧ (∀o ∈ dom(p2) ∶ p1(o) = p2(o))

(p1, p2) ∈ RES means that p1 is restricted by p2. It is obvious that the restriction relation is closely
aligned with the generalization relation between classes, leading to the following theorem.

68



4.4 Quality-Properties

Theorem 4.4 Restriction Relation is Transitive and Acyclic.

Proof. This follows from the definition of the restriction relation (Definition 4.11) and the transi-
tivity and acyclicity of the generalization relation (Theorem 4.1).

The purpose of this relationship is to enable the definition of general quality-properties based on
general classes, which are then restricted to more special classes. The resulting, more specialized
quality-properties can be described more precisely. The informal usage of this relationship in the
quality model is to create a taxonomy of quality-properties. Thus, we require this relation to be
tree-like.

Axiom 4.7 Restriction is Tree-Like. In the graph spanned on quality-properties by the restriction
relation, each connected component is a tree, not considering transitive restrictions.

If a quality-property p is restricted by quality-properties p1, p2, . . . , pn, then the restricting quality-
properties cover distinct parts of the domain of the quality-property p (if the transitive restrictions
are not considered). It is, however, not assured that all the domain of the restricted quality-property
is covered by the restricting quality-properties. If the domain is fully covered by the restricting
quality-properties, we call the restricted quality-property complete regarding restriction.

Definition 4.12 Completeness of Restriction. A quality-property p ∈ P is called complete regarding
restriction if it is restricted by quality-properties p1, . . . , pn and if its domain is fully covered by its
restricting quality-properties:

completeRES(p) ⇔ dom(p) = ⋃
{pi∶ (p, pi)∈RES}

dom(pi)

The characteristic of being complete is important for the quality assessment approach (cf. Chap-
ter 5), because the hierarchy of quality-properties created by the restriction relation is used to aggre-
gate measurement values. The aggregation is only meaningful if all the domain of a quality-property
is covered by the restricting properties, i.e., an aggregation is only meaningful for complete restric-
tions.

4.4.2 Division

In Section 4.2, we explained that the division relationship describes a breakdown between quality-
properties. If a quality-property is divided into several other quality-properties, then it is expressible
by a combination of the dividing quality-properties. As a consequence, the domain of a quality-
property and its dividing quality-properties is always the same.

Usually, there are multiple ways of dividing a quality-property into other quality-properties. Thus,
we explicitly introduce a semantical division relation, DIVall to capture all possibilities for dividing
a quality-property. Based on this semantical relation, we define a syntactical relation, DIV, describ-
ing the actual divisions used in one quality model. The divisions used in this relation are selected
out of the DIVall relation by the quality modeler during the process of developing the quality model.
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Definition 4.13 Possibilities for Dividing a Quality-Property. The relation DIVall ⊆ P×℘(P)
describes for each quality-property p, the set of quality-properties D into which it is dividable. A
quality-property p is dividable into a set of quality-properties D, written as (p,D) ∈ DIVall, if and
only if:

1. The quality-property p is not divided into the empty set:

D ≠ ∅

2. The quality-property p is not divided into itself:

p ∉D

3. The quality-property p has the same domain as all quality-properties of D:

∀pi ∈D ∶ dom(p) = dom(pi)

4. The quality-property p is calculable by a function f ∶ [0,1]n → [0,1] using the values of the
dividing quality-properties:

∃f ∶ ∀o ∈ dom(p) ∶ p(o) = f(p1(o), . . . , pn(o)) , whereby D = {p1, . . . , pn}

5. The set D is minimal, i.e., if an element of D is removed, then at least one of the conditions
1–4 is no longer satisfied.

Definition 4.14 Division Relation. The relation DIV ⊆ P×P describes for each quality-property
p, the set of quality-properties into which it is divided. This relation is consistent with the DIVall

relation, i.e., the set of dividing quality-properties is contained in the DIVall relation:

∀p ∈ P ∶ ∀D ⊆ P ∶ ( ∀pi ∈D ∶ (p, pi) ∈ DIV
∧ ∀pi ∈ P /D ∶ (p, pi) ∉ DIV

) ⇒ (p,D) ∈ DIVall

The DIVall relation describes all possibilities for breaking down a quality-property p into a set of
other quality-properties. This includes two common cases: (1) a quality-property p can be broken
down in multiple different ways. For instance, p can be broken down into {p1, p2} or into {p3, p4}.
(2) The breakdown of quality-properties can be cyclic. For example p1 is broken down into {p2, p3}
and p2 can be broken down into {p1, p3}. In a quality model, however, we want to use the division
relation in a taxonomical way for a hierarchical breakdown of quality-properties. Thus, regarding
the first case, the quality modeler has to choose one possibility of breakdown for the actual quality
model. This is guaranteed by the definition of the relation DIV. Regarding the second case of
cyclicity, we require the division relation to be tree-like. We state this explicitly in the following
axiom.

Axiom 4.8 Division Relation DIV is Tree-like. In the graph spanned on quality-properties by the
division relation DIV, each connected component is a tree.

Summing up, the division relation DIV represents a taxonomical breakdown of quality-properties.
A quality-property which is broken down into other quality-properties by a division is always cal-
culable using the dividing quality-properties.
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4.4.3 Abstract Division Relation and its Inheritance

In Section 4.2, we explained that we introduce an abstract division relation and an inheritance
of this relation alongside the restriction relation. This serves the purpose of explicitly modeling
commonalities between two different divisions.

Figure 4.5, shows an example. For instance, the quality-property [Detail complexity∣Concrete
method] is divided into [Many parameters∣Concrete method]. The quality-property [Detail com-
plexity∣Abstract method] is also divided into [Many parameters∣Abstract method]. Both the quality-
attributes called Many parameters are restrictions of a general quality-attribute [Many parame-
ters∣Method] (the figure does not show this restriction relation for the sake of a clear visualization).
In this case, an abstract division of [Detail complexity∣Method] into [Many parameters∣Method]
is introduced. This way, it is explicitly captured that a division into Many parameters is possible
for Methods. For [Detail complexity∣Method], this relation is an abstract division and not a di-
vision according to Definition 4.14, because its value cannot be calculated based on its dividing
quality-properties. For the more concrete quality-properties referring to Abstract method and Con-
crete method, however, it is a division according to Definition 4.14, because their values can be
calculated based on the dividing quality-properties.

This relation serves two purposes: First, the clarity and understandability of the model is increased,
because the commonalities between two different divisions are explicitly modeled in the quality
model. Second, in a top-down approach for creating the quality model, the quality modeler can first
define the abstract division and then it is guaranteed that the modeler does not forget to introduce
the corresponding dividing quality-properties.

Detail complexity
Method

Many parameters
Method

Detail complexity
Abstract method

Detail complexity
Concrete method

Many parameters
Abstract method

Many parameters
Concrete method

Long
Concrete method

Deeply nested
Concrete method

Legend:
restriction

abstr. division
division

For the clarity of the visualization, we omitted the restriction relations between [Many parameters∣Method]
and both [Many parameters∣Abstract method] and [Many parameters∣Concrete Method]. They are marked
by rounded rectangles.

Figure 4.5: Example: Inheritance of Divided Quality-Properties
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We define the abstract division relation DIVabs formally as follows.

Definition 4.15 Abstract Division Relation. The abstract division relation
DIVabs ⊆ P×P defines which quality properties are in an abstract division re-
lation. A quality-property pa is an abstract division of a quality-property p, iff
there is at least one restricting quality-property of p and iff for each restricting
quality-property pr of p there is a quality-property pd, which is in a division rela-
tion to pr and which is a restriction of pa.

p

pr

pa

pd

(p, pa) ∈ DIVabs ⇔ ∃pr ∈ P ∶ (p, pr) ∈ RES ∧
∀(p, pr) ∈ RES ∶ ∃pd ∈ P ∶ (pr, pd) ∈ DIV ∧ (pa, pd) ∈ RES

In the following, we explain the top-down approach to creating a quality model using the ab-
stract division relation. In the quality model, the quality-property [Detail complexity∣Method] is
defined. The quality modeler knows that the detail complexity of methods has in general to do
with its number of parameters. Thus, the modeler captures this relation by modeling that [Detail
complexity∣Method] is abstractly divided into [Many parameters∣Method]. Since [Detail complex-
ity∣Method] cannot be calculated based on [Many parameters∣Method], it cannot be modeled as a
division relation according to Definition 4.14.
Next, the quality modeler restricts the quality-property [Detail complexity∣Method] to a more spe-
cific quality-property [Detail complexity∣Concrete method]. The inheritance of the abstract division
by the concrete quality-property prescribes that [Detail complexity∣Concrete method] is divided
into [Many parameters∣Concrete method]. Together with other dividing properties, like Long and
Deeply nested, the divided quality-property is calculable based on the dividing quality-properties
and thus in the division relation according to Definition 4.14.
If the quality modeler then introduces a second quality-property which restricts [Detail complex-
ity∣Method], as, for instance, [Detail complexity∣Abstract method], then the inheritance assures that
a dividing quality-property [Many parameters∣Abstract method] is also created.

4.4.4 Impact

In Section 4.2, we defined that an impact is a relationship between a source and target quality-
property, whose classes are in a composition relation and where there is a dependency between
the two quality-properties. A positive dependency means that the value of the impacted quality-
property increases if the value of an impacting quality-property increases, while a negative depen-
dency means that the value of the impacted quality-property decreases if the value of an impacting
quality-property increases. We call an impact with a positive dependency a positive impact and an
impact with a negative dependency a negative impact.

A semantical definition of an impact according to this informal description usually leads to multiple
possibilities for defining impacting quality-properties for one quality-property. If, for instance, a
quality-property has a positive impact on another quality-property, then its negation has a negative
impact. Thus, we define a semantical relation, IMPall describing all possibilities for defining im-
pacts for one quality-property. Based on this semantical relation, we define a syntactical relation
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IMP, describing the actual impacts in one quality model. The impacts used in this relation are se-
lected out of the IMPall relation by the quality modeler during the process of developing the quality
model.

Definition 4.16 Possibilities for Impacts of a Quality-Property. The relation IMPall ⊆ P×℘(P)
describes for each quality-property p the set of quality-properties I by which it can be impacted. A
quality-property p is impactable by a set of quality-properties I , written as (p, I) ∈ IMPall, if and
only if:

1. The quality-property p is not impacted by the empty set:

I ≠ ∅

2. The domain of the quality-property p is a container of the domains of all quality-properties
of I:

∀pi ∈ I ∶ (dom(p), dom(pi)) ∈ COMP∗

3. There is a function f ∶ [0,1]n → [0,1] which calculates an estimate of the impacted quality-
property, using the values of the impacting quality-properties. For each impacting quality-
property pi ∈ I , this function describes either a positive or a negative dependency. A positive
dependency means that if the impacting quality-property increases, then also the impacted
quality-property increases, given that all other impacting quality-properties remain the same.
A negative dependency is defined in analogy.

∃f ∶ ∀pi ∈ I ∶
⎛
⎜⎜⎜⎜
⎝

∀(o, o1, . . . , on) ∈ suitables(p, I) ∶
∀(o′, o1, . . . , oi−1, o′i, oi+1, . . . , on) ∈ suitables(p, I) ∶

p(o) > p(o′) ⇐ f(p1(o1), . . . , pi(oi), . . . , pn(on)) >
f(p1(o1), . . . , pi−1(oi−1), pi(o′i), pi+1(oi+1), . . . , pn(on))

⎞
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∀(o, o1, . . . , on) ∈ suitables(p, I) ∶
∀(o′, o1, . . . , oi−1, o′i, oi+1, . . . , on) ∈ suitables(p, I) ∶

p(o) < p(o′) ⇐ f(p1(o1), . . . , pi(oi), . . . , pn(on)) >
f(p1(o1), . . . , pi−1(oi−1), pi(o′i), pi+1(oi+1), . . . , pn(on))
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whereby suitables(p, I) = {(o, o1, . . . , on) ∶ o ∈ dom(p) ∧ oi ∈ dom(pi) ∧ (o, oi) ∈ COMP∗
U}

and {p1, . . . , pn} = I

Definition 4.17 Impact Relation. The impact relation IMP ⊆ P×P syntactically defines the im-
pacts that are considered in the quality model. It is consistent with the IMPall relation:

∀p ∈ P ∶ ∀I ⊆ P ∶ ( ∀pi ∈ I ∶ (p, pi) ∈ IMP
∧ ∀pi ∈ P /I ∶ (p, pi) ∉ IMP

) ⇒ (p, I) ∈ IMPall

Because the impact relation is closely aligned with the composition relation on classes, the char-
acteristic of acyclicity is transferred from the composition to the impact relation, as stated in the
following theorem.
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Theorem 4.5 Impact Relation is Acyclic.

Proof. This follows from Definition 4.16, Definition 4.17 and from the acyclicity of the composition
relation (Axiom 4.5).

In the definition of IMPall, we see that there is either a positive or negative dependency between
each impacting and impacted quality-property. If there is a positive dependency, then we say the
impact has a positive effect, if there is a negative dependency, we say the impact has a negative effect.
A positive effect means that the degree of satisfaction of the target quality-property increases if the
degree of satisfaction of the source quality-property increases. For a negative effect, the satisfaction
of the target quality-property decreases if the satisfaction of the source quality-property increases.

Definition 4.18 Effect of an Impact. The effect of an impact is a function effect ∶ IMP→ {⊕,⊖},
assigning a ⊕ if there is a positive dependency and assigning a ⊖ if there is a negative dependency,
according to the definition of dependencies in Definition 4.16.

For writing an impact (ps, pt) ∈ IMP we use the following notation: We write ps
⊕ÐÐ→ pt for an

impact with a positive effect and ps
⊖ÐÐ→ pt for an impact with a negative effect.

In the quality model, we describe an impact and its effect usually by informal means; i.e., we give
a description in prose to provide a rationale for an impact and its effect. This way of describing
impacts is adequate for the information that is usually modeled by impacts. Ideally, empirical in-
formation will confirm that a quality-property has an impact on another quality-property. In this
case, a statistical correlation has usually been discovered. A statistical correlation is a special case
of the dependency relation defined in Definition 4.16, whereby a correlation describes a linear de-
pendency. A correlation with a positive correlation coefficient maps to an impact with a positive
effect, while a negative correlation coefficient maps to an impact with a negative effect. If no statis-
tical evidence for an impact is available, then a rationale in prose is given, which explains why we
assume a dependency to be present.

The impact relationship describes a dependency between quality-properties without quantifying it.
For conducting actual quality assessments in Chapter 5, however, a quantitative specification of
the relation between impacting quality-properties is needed. Hence, in that chapter we introduce a
method for estimating the satisfaction of a target quality-property based on the impacting quality-
properties. In other words, we define a method for specifying a concrete implementation of the
function f of Definition 4.16.

4.4.5 Types of Quality-Properties

For achieving a clearer structure of the quality-property hierarchy, we split the quality-properties
into two types. First, all quality-properties describing characteristics of the entire software product
are called quality attributes. All other quality-properties, which refer to parts of the software product
are called component properties.

74



4.5 Summary

Definition 4.19 Types of Properties. The set of all quality-properties P is split into two sets:
(1) quality attributes Pqa and (2) component properties Pcomponent. The quality attributes have
product as defined in Definition 4.7 as domain, while component properties do not have product
as domain:

P = Pqa ⊎Pcomponent

Pqa = {p ∈ P ∶ dom(p) = product}
Pcomponent = {p ∈ P ∶ dom(p) ≠ product}

Quality attributes always have product as domain, because they describe quality-properties of the
entire product. Because they all have the same domain, it is not possible that they are restricted
by other quality attributes. The only possible relation between two quality attributes is the division
relation, as stated in the following theorem.

Theorem 4.6 Quality Attributes are only in a Division Relation. Between two distinct quality-
properties p1, p2 ∈ Pqa no restriction and no impact relations exist; the only possible relation be-
tween them is the division relation.

Proof. Two quality-properties in Pqa always have product as domain. Thus, their domains
cannot be in a generalization or composition relation. Since the restriction relation (Definition 4.11)
requires the domains to be in a generalization relation, the two quality-properties cannot be in a
restriction relation. Since the impact relation (Definition 4.17) requires the domains to be in a
composition relation, the two quality-properties cannot be in an impact relation.

Figure 4.6 shows the structure of the quality-property hierarchy. The hierarchy is split into two parts,
the quality attribute hierarchy and the component property hierarchy. Within the quality attribute hi-
erarchy only division relations are present. Within the component property hierarchy restriction and
division relations are present. Formally, impact relations within the component property hierarchy
are not excluded, but usually the component properties are chosen in a way that no such relations
are there. Hence, the impact relations usually originate from the component property hierarchy and
target the quality attribute hierarchy.

[qa1 | Product]

[qa2 | Product] [qa3 | Product]

division

[p1 | Cx]

[p1 | Cy] [p2 | Cx]

restriction division
impact

Figure 4.6: Structure of the Quality-Property Hierarchy

4.5 Summary

In this chapter, we introduced a quality meta-model for quality models of software. A quality
model has the purpose of describing information on software quality in a way that it is usable
for the different tasks of quality assurance. Thus, it must be able to integrate a large variety of
information coming from different sources. This information must be organized in a way that it is
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understandable and manageable by people who use the quality model. Moreover, it should allow
the integration of measurements in order to conduct quality assessments.

Hence, the main challenge in constructing a quality model is to find an adequate way of structuring
all quality-related information. Our approach integrates a product model of software, which serves
as a basis for defining quality-properties. It is easier for people to develop and understand a product
model than to directly work on quality-properties. Furthermore, the product model defines the
hierarchical structure of software, which is needed for quality assessments.

Based on the product model, our quality meta-model is built around one main concept for describing
quality-related information, called quality-property. While in general a property is an arbitrary
attribute of an object, a quality-property in our quality model is of quantitative nature, i.e., a quality-
property quantifies the degree to which an object exhibits the quality-property on a continuous scale
between 0 and 1. We use quality-properties to model quality characteristics on all levels of detail,
starting from general quality attributes like maintainability, ranging to technical characteristics like
nesting depth of methods.

Summing up, a quality model, according to our meta-model is essentially a collection of a large
number of quality-properties. In order to structure these quality-properties and thereby make them
manageable, we introduce several relations between quality-properties. The restriction relation de-
scribes a taxonomical arrangement of the quality-properties that is strongly aligned with the product
model of software. The division relation is a taxonomical relation describing how quality-properties
on one level of detail can be broken down into several sub-properties. The impact relation describes
a causal influence of the quality-properties of components of a software system on general quality
attributes.

Our quality meta-model defines all its concepts and relations in a formal way. Thereby, the seman-
tics are well-defined and the problem of having unclear, ambiguous, and overlapping definitions in
quality models (cf. Chapter 3) is avoided. The taxonomical structures introduced by the restriction
and division relation are mainly used for presenting the quality model to people, by offering dif-
ferent views in tools (cf. Chapter 7). By providing structured views, the information captured in a
quality model is made accessible and understandable to users. The impact relation captures informa-
tion of prime importance: It describes how detailed technical quality-attributes relate to high-level
quality attributes. This information is important for the informal usage by explaining why low level
quality-properties are important for quality. Moreover, the aggregation of low-level measurement
results is also done alongside the impact relations, leading to understandable and traceable quality
assessment results (c.f. Chapter 5).
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In Section 2.2 we discussed that the goal of analytic quality assurance is analyzing a product or
process to test its conformance to requirements. In this chapter, we take an even narrower view
and focus on a product quality assessment, which has the task of testing the software product for
conformance to specified requirements.

In the literature, a wide range of quality assessment approaches is proposed, ranging from dynamic
tests to manual inspections and automatic analysis of artifacts. The quality assessment approach
presented in this chapter was developed with the usage scenario of static code analysis in mind.
Thus, it is fitted for statically analyzing artifacts, with a strong focus on automated analysis and
assessment. In the case study of Chapter 8 it is applied to static code analysis of Java source code.
However, its principles may also be applied to other artifacts that can be statically analyzed.

Motivation
As outlined in Section 2.2.5, a quality model plays a substantial role for capturing requirements
to a software system. It is used as a repository of requirements which are communicated to the
development. According to the quality control cycle, the developed product must be tested for the
satisfaction of requirements. The identified deviations from the specification are then communicated
to the developers for correction.

For effectively establishing such a quality control, the frequency of the quality assessments must be
high enough to enable a continuous feedback to the developers. A prime way of achieving a high
frequency of quality assessments is to minimize the effort they require, which can best be achieved
by automating them. The artifacts best suited for automated analysis are formalized, machine-
readable ones, such as the source code of software.

Another motivation for using quality models as the basis for quality assessments is to achieve com-
parability between different assessments. A quality model precisely defines the properties relevant
for high quality. By augmenting such a quality model with a precise specification of how the sat-
isfaction of the properties can be tested, repeatability and comparability between different quality
assessments can be achieved.

Problem
The quality meta-model, as described in Chapter 4, defines quality-properties of software artifacts
and their relations. The quality-properties are formalized as functions for precisely specifying what
the restriction and division of them means. The impact relation is specified by defining that two
quality-properties are positively or negatively correlated, which does not give quantitative informa-
tion regarding the influence of one quality-property on another. Furthermore, in concrete instances
of the quality model, the quality-properties are only specified informally. Such an informal spec-
ification is sufficient for a precise definition of requirements, which are informally communicated
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to developers. However, it is not precise enough for testing whether a concrete software product
satisfies these quality-properties.

For conducting a quality assessment, more precise information is needed. For instance, if the sat-
isfaction of the quality-properties of the quality model should be checked by a manual review of
the software, a detailed instruction is needed explaining how the satisfaction of quality-properties is
being tested and on which scale the assessment has to be done. Furthermore, a detailed method for
accumulating the single values to an overall quality statement is needed.

A fully automated quality assessment needs an even more formalized approach. It needs a machine-
interpretable specification for evaluating the quality-properties and for aggregating the values to an
overall quality statement.

Our Solution

Conducting a quality assessment with the quality model means determining whether a software
product exhibits a quality-property defined by the quality model. Ultimately, the quality attributes
like [Maintainability∣Product] are of interest for a quality assessment. However, these high-level
quality-properties are not directly determinable. Thus, our approach is to estimate their satisfac-
tion by other quality-properties. As discussed in Section 2.1, there are principally different ways of
estimating these quality-properties. One way, although one not pursued in this work, would be to es-
timate them by measuring related processes. For instance, the maintainability could be assessed by
measuring maintenance efforts during the maintenance process or the reliability could be measured
by the frequency of failures in the field.

We pursue the approach of estimating high-level quality attributes exclusively by component prop-
erties. Using only the components of the product has several advantages: First, product artifacts can
also be assessed before the product is finished and delivered to the customer. This way, an assess-
ment based only on the product can be applied in earlier development stages. Second, measuring the
product itself reduces the influence factors that could distort the quality assessment. For instance,
maintenance efforts do not depend only on the product but also on organizational factors and on the
people conducting the maintenance.

A quality model defines which component properties can be used to estimate a quality attribute: The
impacts informally define the influence of detailed component properties on the high-level quality
attributes. These impacts are usually informally justified or at best empirically confirmed. For an
automated assessment of the quality attributes by its impacting quality-properties additional infor-
mation has to be augmented. For instance, while the quality model defines that cloning of source
code has a negative impact on maintainability, the aggregation specification has to define exact
thresholds for acceptable cloning. Such definitions are generally less objective and less justifiable
than the informal definitions of the impact. The definitions of thresholds often depend on technical
issues, such as the technology or programming language under consideration.

Since we focus on using static analysis as the basis for quality assessments, we have to rely on
existing methods and tools for statically analyzing software products. Thus, we have to define
how static code analysis rules can be used for evaluating the satisfaction of quality-properties and
how the data gathered thereby is used for evaluating an impacted quality attribute. Regarding this
challenge, we developed a new method that specifically focuses on source code quality-properties.
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Additionally, for actually applying an automated quality assessment relying on source code, some
practical and partially technically-motivated challenges have to be overcome. We explain these
challenges in detail and provide a solution for them.

Outline

The first section clarifies the basic concepts regarding the measurement of quality-properties. It also
introduces a basic terminology on measurement and connects it to the terminology of the quality
model. Then, the second section shows how measures and quality analysis tools are integrated into
the quality model to operationalize quality-properties. Furthermore, it shows how the aggregation
of measurement values, based on the structure of the quality model, takes place. The third section
explains the specifics and limitations of real-world quality analysis tools. Moreover, it introduces a
way for using these tools nonetheless.

The fourth section addresses three problems encountered when applying a quality assessment ap-
proach in practice. First, a common problem when using measures for quality assessments is to
define utility functions, i.e., threshold values for measurement values. This problem is addressed
by introducing a benchmarking approach for determining threshold values. Second, we introduce a
method for supporting incomplete measurement data, i.e., conducting the quality assessment even
though not all measurements are conducted. Usually, measurements are not conducted because the
tools realizing them are not available in a specific setting. This is especially important to apply the
approach in real-world industrial settings. Third, we take a closer look at rule-based static code
analysis tools and how they can be integrated into the quality assessment approach.

5.1 Basic Concept

According to the quality model, the actually interesting concepts are quality-properties. In general,
quality attributes are expressed as quality-properties of the class product. So, conducting a quality
assessment means evaluating the satisfaction of a quality-property.

A quality-property p with domain dom(p) can be evaluated for each object o ∈ dom(p). However,
the quality model, does not give a specification as to how the function p is actually calculated. It
only uses the notion of functions to specify how different quality-properties relate to each other.

The actual calculation of a quality-property is carried out by measures which are implemented by
measurement tools. A measure is a more general function than a quality-property, but defined on
the same domain.

Definition 5.1 Measure. A measure for a quality-property p ∈ P is a function assigning values to
the objects of the domain of the quality-property.

measure ∶ dom(p)→M

whereby M is a set of values, typically having some specific characteristics (see the definition of
scales and different types of scales in the following paragraphs).
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In software engineering, metric is often used as a synonym for both measure and measurement
value. We do not use this term in this thesis.

The set M can have different characteristics, which determine the interpretation and the operations
that can be performed on it. These characteristics are called scale.

Definition 5.2 Scale. A scale describes the characteristics of the set M used in measurement.

Usually, there are four types of scales used [143]:

Nominal Scale (operations: equality)
A scale which only defines equality of values of M. The elements of M are arbitrary values,
like numbers, words or letters [143]. An example for this scale is “the ‘numbering’ of football
players for the identification of the individuals” [143].

Ordinal Scale (operations: rank-order)
A nominal scale which defines a rank-ordering of the values of M. It describes a linear order
on the values, but not the relative size of degree of difference between the values. An example
is the scale of mineral hardness, which characterizes the hardness of minerals by the ability
of a harder material to scratch a softer one, without defining the actual hardness in absolute
terms.

Interval Scale (operations: equality of intervals)
An ordinal scale which defines the size of the intervals between the symbols. Typical exam-
ples are the temperature scales Fahrenheit and Celsius. Equal intervals of temperature denote
equal volumes of expansion. However, the zero in an interval scale is arbitrary. Hence, ratios
between numerals are meaningless on this scale. For instance, it is meaningless to say that
40°C is twice as hot as 20°C.

Ratio Scale (operations: equality of ratios)
An interval scale which defines a true zero point. Thus, ratios on this scale are equal. Exam-
ples of this scale are scales for measuring length: inches or meters. On this scale ratios are
meaningful; for instance, 6 m is twice as much as 3 m. Another example is the temperature
scale of Kelvin, which defines an absolute zero.

In order to use a measure in the quality model for calculating a quality-property a mapping function
from M to [0,1] has to be specified for each quality-property and measure. This mapping is called
fuzzification [147], because it maps a value of an arbitrary scale to a truth value of fuzzy logic. A
common example for fuzzification is to convert the measure “age in years” into a logical value of
the property “young”.

Definition 5.3 Fuzzification. Fuzzification means transforming a measurement on an arbitrary
scale to a truth value of fuzzy logic. A fuzzification function is used for this task:

map ∶ M→ [0,1]
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For examples of measures and a suitable fuzzification function for them, we refer to Section 5.2.2,
where a comprehensive description of both these topics is given.

Measures in the quality model are concrete functions for which, unlike for quality-properties, a con-
crete implementation exists. Thus, by assigning measures to quality-properties and by providing a
fuzzification function, the quality-properties can be calculated for actual objects. Providing exe-
cutable specifications for quality-properties in form of measures is called operationalizing a quality
model.

Definition 5.4 Operationalization. Operationalizing a quality model means providing executable
measures and fuzzification functions for quality-properties.

The process of actually applying a measure to an object is called measurement and defined as
follows.

Definition 5.5 Measurement. Measurement is the process of assigning elements of a scale to an
object according to the specification of the measure.

Definition 5.6 Measurement Data/Values/Results. Measurement Data/Values/Results are the ele-
ments obtained by conducting a measurement.

Definition 5.7 Measurement Tool. A measurement tool is a technical implementation of a measure
in the form of a software program.

Thus, executing a measurement tool means conducting a measurement.

5.2 Top-Down Specification

In order to conduct quality assessments based on the quality model, the model must provide ag-
gregation specifications, describing how measurement values are normalized and aggregated to an
overall quality statement about a software product. The aggregation specifications are defined in
a top-down manner: For a quality-property they specify how its value can be calculated using the
values of its child quality-properties. These top-down specifications do not consider the restric-
tions of real-world measurement tools; the handling of these restrictions will be the subject of the
subsequent sections.
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[Maintainability | Product]

[Unneededly Intricate | Arithmetic Expression]

[Detail complexity| Method]

FindBugs: Rule XYZ Tool: McCabe‐Complexity

[Unneededly Intricate | Expression]

Legend:
impact
restriction

measurement

(a) Example Quality Model

[Maintainability∣Product] (MyProduct) =
aggr1(

aggr11(
[Unneededly Intricate|Expression](MyArithExpr1),
[Unneededly Intricate|Expression](MyArithExpr2)

),
aggr12(

[Detail Complexity|Method](MyMethod)
)

)

(b) Example Aggregation

Figure 5.1: Example of an Aggregation of Measurement Values in a Quality Model

5.2.1 Example of a Top-Down Quality Assessment

In this section, by means of an example, we describe how a quality assessment is conducted
based on our quality model. As an example, the quality model illustrated in Figure 5.1a is used.
The quality-property hierarchy describes that [Maintainability∣Product] is negatively influenced
by [Unneededly Intricate∣Arithmetical Expression], which is measured by a FindBugs-rule. The
maintainability is also negatively influenced by [Detail complexity∣Method], measured by the Mc-
Cabe-complexity.

An assessment in the ideal world takes a top-down approach. This means, the “root” quality-
property [Maintainability∣Product] is evaluated for a concrete object, in our example MyProduct.
As a quality-property is a function mapping objects to the degree of satisfaction, the quality-property
is applied to the object:

[Maintainability∣Product] (MyProduct) (5.1)

This quality-property is calculated using the impacting quality-properties. According to Sec-
tion 4.4.4 all parts of MyProduct need to be determined; in the example all expressions and all
methods of MyProduct need to be determined. In this example, we assume MyProduct consists of
two arithmetical expressions and one method. Then the calculation is composed as shown in Fig-
ure 5.1: The quality-property [Unneededly Intricate∣Expression] is determined for both arithmetic
expressions and the quality-property [Detail Complexity∣Method] is determined for the method. For
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each of these quality-properties, this results in a value for each object. These values are aggregated
by the aggregation functions aggrij , resulting in one value per quality-property. These values are
then aggregated by aggr1 to one value for the impacted quality-property.

According to the definition of the restriction relation in Section 4.4.1 the two evaluations
of [Unneededly Intricate∣Expression] follow the restriction relation to the quality-property
[Unneededly Intricate∣Arithmetical Expression] and result in the following evaluations:

[Unneededly Intricate|Arithmetical Expression](MyArithExpr1)
[Unneededly Intricate|Arithmetical Expression](MyArithExpr2) (5.2)

Both evaluations are determined using a measure realized by an external tool. The tool is invoked
on MyArithExpr1 and MyArithExpr2 and returns the measurement values for the respective ob-
jects. These measurement values are then mapped to logical values of fuzzy logic. Additionally,
the quality-property [Detail complexity∣Method] is determined using a measure. The external tool
calculates the McCabe complexity for the method, which is also mapped to a logical value.

5.2.2 Specifying Measures

A value of a quality-property can be determined by a measure. Usually the leaf-quality-properties
of the quality-property hierarchy are determined by measures. Measures can be realized either by
measurement tools or manual inspections. In our quality model, we distinguish explicitly between
three different types of measures:

1. Classical Measures
A classical measure determines a numerical value for each object of the product. For instance,
a classical measure could be “Complexity of Methods”; it determines a value for the complex-
ity of each method. The measurement scale of such measures is arbitrary. Classical measures
are implemented by measurement tools.

2. Rule-based Measures
Rule-based measures describe rules for static code analysis. Such a measure applies rules
to objects of the product, with the result of the rule being either violated or not. Thus, the
measurement scale of such measures is nominal. Rule-based measures are implemented by
static code analysis tools, which are a special type of measurement tools.

3. Manual Measures
Instead of using automated tools for measurement, manual inspections by experts are also a
way of measurement. The scale of a manual measure can be arbitrary. An expert can, for
instance, assess the percentage of faulty constructs in a program, or rate objects on a scale
“high”, “medium”, and “low”.

Fuzzification

If a measure is used to determine the value of a quality-property, the measurement values (on an
arbitrary scale) must be translated to a logical value of fuzzy logic. In the following, we discuss how
the fuzzification is done for the measurement values in the quality model. We principally distinguish
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between two ways of fuzzifying measurement values: (a) automatically using a mapping function
and (b) manual.

Automated Fuzzification of Classical and Manual Measures

As explained in Definition 5.1, measures provide a value on an arbitrary measurement scale, rep-
resented by a set M. According to Definition 5.3, the fuzzification of such a value means that a
mapping function from M to [0,1] has to be defined. For nominal, ordinal, and interval scales a
specialized mapping function for each measure is required.

For ratio scales, usually a combination of two linear functions, as illustrated in Figure 5.2, is suffi-
cient to express such a mapping function. For this function the quality model must define the three
threshold values t1, t2, and t3.

0.0

1.0

0

0.5

t1 t2 t3

Figure 5.2: Mapping function with two linear segments

We illustrate the usage of this mapping function for the quality-property [Many parameters∣Con-
crete method]. For measuring this quality-property a tool is used, calculating the number of parame-
ters for each method of a software product, meaning M = N0. For instance, the following thresholds
are then used: t1 = 3, t2 = 7, and t3 = 9. This means: Methods with less than or equal to three
parameters evaluated to a degree of satisfaction of 0.0; methods from 3 to 7 parameters evaluated
to values between 0.0 and 0.5; methods with 7 to 9 parameters evaluated to values between 0.5
and 1.0; methods with more than 9 parameters evaluated to the degree of satisfaction of 1.0 for the
quality-property Many parameters.

Other mapping functions are also imaginable. In principle, for each measure an arbitrary mapping
function may be defined. For instance, the complexity of concrete methods could be measured using
the cyclomatic complexity according to McCabe [108]. It calculates a value for each method in the
domain N+. A mapping function for mapping this scale to [0,1] could be map(x) = 1− 1

x . A method
with the lowest cyclomatic complexity of 1 would be evaluated to the degree of satisfaction of 0.0;
for increasing values of the cyclomatic complexity the degree of satisfaction converges to 1.0.
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Automated Fuzzification of Rule-based Measures

As described earlier, rule-based static code analysis tools provide measurement data on a nominal
scale: M = {violated, not-violated}. For this scale, usually the following mapping function is
used:

map(x)↦
⎧⎪⎪⎨⎪⎪⎩

1 if x = violated
0 if x = not-violated

(5.3)

According to this mapping, objects for which a rule was violated are evaluated to a value of 1,
while objects without rule violations are evaluated to 0.

An example for a measure providing findings is the tool JavaDocAnalysis of ConQAT, which checks
for methods without Java-Doc comments in Java source code. This tool reports all methods without
a Java-Doc comment and is modeled as a quality-property [Missing Java-Doc comment∣Method].
All methods without a Java-doc comment are evaluated to 1, meaning that the quality-property is
fully satisfied; all methods with a comment are evaluated to 0.

Manual Fuzzification

When manually fuzzifying measurement data, the measurement data is presented to a human expert
who assesses it and manually assigns the logical value. Manual fuzzifications are especially impor-
tant to evaluate measurement data with a high fraction of false positives. In this case, the results
provided by a measure are presented to an expert, who manually checks the results for validity.
Depending on his judgment, the expert assigns a value to the quality-property.

An example for a measure where a semi-manual evaluation is advisable is the FindBugs-rule
“DLS_DEAD_LOCAL_STORE”, which is used to measure the quality-property [Dead store to
local variable∣Assignment statement]. According to the description of this rule, it very often pro-
duces false positives due to technical constraints of the analysis of the byte-code.

5.2.3 Specifying Restrictions

A value of a quality-property that is restricted by other quality-properties can be calculated using
their values, given that the restriction is complete according to Definition 4.12. According to the
definition of the restriction in Definition 4.11, no additional specification is needed in the quality
model. Let p be a quality-property that is restricted by p1, p2, . . . , pn, then the quality-property pi
is chosen, whose domain contains the object o and whose domain is most specific:

(1) ppossible = {pi ∈ {p1, . . . , pn} ∶ o ∈ dom(pi)}
(2) pspecific = min⊆(ppossible)
(3) p(o) = pspecific(o)

(5.4)

This calculation is always possible because the following holds:

1. ppossible contains at least one element, if completeRES(p) is satisfied.
2. That pspecific is unique, follows from Definition 4.11 and Axiom 4.3.
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The value of the quality-property pspecific must be determinable either by being divided into sub-
properties or by being measured.

5.2.4 Specifying Divisions

A value of a quality-property that is divided into other quality-properties can be calculated using
their values (see Definition 4.14). For each division relation, a function f ∶ [0,1]n → [0,1] ex-
ists that calculates the value of a quality-property based on the dividing quality-properties. The
aggregation specification in the quality model must specify this function explicitly.

Principally, arbitrary functions can be used as aggregation functions. However, in practical quality
models the following functions are typically used.

Logical Operators

Logical operators and especially all fuzzy logical operators (see Section A.2) can be used as aggre-
gation functions. Mostly, four standard aggregation functions based on logical operators are used:

1. f(v1, . . . , vn) = v1 ∧ ⋅ ⋅ ⋅ ∧ vn
2. f(v1, . . . , vn) = v1 ∨ ⋅ ⋅ ⋅ ∨ vn
3. f(v1, . . . , vn) = ¬v1 ∧ ⋅ ⋅ ⋅ ∧ ¬vn
4. f(v1, . . . , vn) = ¬v1 ∨ ⋅ ⋅ ⋅ ∨ ¬vn

Statistical Operators

Other commonly used aggregation functions are statistical functions such as minimum, maximum,
mean, median, and quantiles.

Weighted Sum

Beside the statistical functions, a weighted sum can also be used:

f(v1, . . . , vn) = w1 × v1 + . . . + wn × vn with ∑i=1..nwi = 1 (5.5)

The weights wi for the sub-quality-properties have to be set by the quality modeler.

Ranking-based Weighted Sum

When using the weighted sum for aggregation, the quality modeler must set the weights of the
sub-quality-properties. However, setting weights in an expert-based way is a challenging task. In
decision theory much work on expert-based weighting of attributes has been done [7,135,165,170].
Multi-attribute decision models describe the influence of a set of attributes on a decision. The goal
of such models is capturing the influence of the single attributes on the decision. A key component
of such models is therefore the selection of weights for the single attributes. Eliciting the weights
directly from experts leads to unsatisfactory results [135,165]. The weights elicited directly strongly
depend on the elicitation method and particularly on the chosen range of weights [165].
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Quality-Property Rank Weight
[Too long∣Concrete method] 1 0.6111
[Too deeply nested∣Concrete method] 2 0.2778
[Too many parameters∣Concrete method] 3 0.1111

Table 5.1: Weights Determined Based on Ranks

Therefore, indirect methods of determining weights for attributes have been developed. A common
method is that an expert ranks the attributes according to their importance. Then, the weights are
calculated based on the given ranking. Again, for calculating the weights based on the ranks, differ-
ent algorithms are available [7, 60, 144]. Different studies show that the rank order centroid (ROC)
method of Barron [60] works best [7, 130]. They performed various case studies and concluded
that it is the most reliable one and that results based on it reflect the intuitive estimation better than
other approaches. Beside the fact that it is hardly possible to elicit direct weights, eliciting rankings
has further advantages. Eckenrode [35] (cited in [7]) discovered that eliciting weights is easiest
and produced repeatable outcomes. Furthermore, ranks can be elicited with less effort and in group
discussions it is easier to agree on ranks than on exact weights [83].

Therefore, we use the ROC method for deriving weights from ranks. In the quality model ranks for
all sub-quality-properties are defined. Then, a weighted sum based on the weights derived from the
ranks is calculated.

Using the example of Section 4.2 (Figure 4.3), we show in Table 5.1 how ranks and weights for the
sub-quality-properties of [Complexity∣Concrete method] are defined.

5.2.5 Specifying Impacts

A value of a quality-property that is impacted by other quality-properties can be calculated using
their values. Figure 5.3 shows the structure of such a calculation: In the quality model, a quality-
property p may be impacted by several quality-properties p1, . . . , pn. Unlike in the case of re-
strictions and divisions, each impacting quality-property pi is evaluated regarding multiple objects
oi1, . . . , oim.

Hence, the evaluation function for impacts can be expressed as a calculation in two stages. First, for
each impact all objects are evaluated regarding the impacting quality-property. The resulting values
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Figure 5.3: Evaluation of an Impact

of all these objects are then aggregated to one value. Second, all aggregated values (one value per
impact) are aggregated to get the result value:

p(o) = aggrimpacts(
aggrimpact1 (

p1(o11),
p1(o12),
. . .
p1(o1m)

),
. . .
aggrimpactn (

pn(on1),
pn(on2),
. . .
pn(onk)

)
)

(5.6)

An additional challenge in this aggregation is that all values of aggrimpacti must be of the same
kind in order to be meaningfully aggregated by aggrimpacts . The following example illustrates the
problem: The quality-property [Analyzability∣Product] is impacted by both [Unnecessarily compli-
cated∣Comparison expression] and [Detail complexity∣Java Class]. Despite both quality-properties
being evaluated on fuzzy logical values, it does not make sense to just aggregate them to a value for
the analyzability of the product, because they are each concerned with different classes. It is, for
instance, not clear if a complex Java class is as bad for analyzability as a complicated comparison
expression. Before aggregating these two values, they have to be converted to be of the same kind.
Hence, the functions aggrimpacti must all yield results of the same kind.
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Specifying aggrimpacts

Given that all functions aggrimpacti provide values of the same kind, for realizing the function
aggrimpacts ∶ [0,1]n → [0,1] the same aggregations as for divided quality-properties can be
used (see Section 5.2.4).

While, for divisions, weighted sums are often sufficient, for impacts they are not, because even a
small proportion of unsatisfied impacting quality-properties may impair the target quality-property.
For instance, the quality-property [Maintainability∣Product] may be influenced by 19 quality-
properties which are satisfied and one quality-property which is not satisfied. This may lead to the
dissatisfaction of [Maintainability∣Product]. An example of quality-properties with such an influ-
ence are [Cloning∣Source code] and [Conciseness∣Identifiers]. If a system contains a large number
of clones, its maintainability is bad, independent of other characteristics. The same applies for the
conciseness of identifiers: Inconcise identifiers render a program hard to understand, independent
of other characteristics.

In fuzzy logic (see Section A.2), operators and modifiers suited for expressing this type of relation
between variables are known. Usually one of the following operators is applied: (a) compensatory
lambda operator, (b) compensatory gamma operator, or (c) weighted sum transformed by gamma
modifier.

Specifying aggrimpacti

The functions aggrimpacti must provide values of the same kind. The simplest form to obtain values
of the same kind is to express the differences by weights. Hence, to each object a weight is assigned
and a weighted sum is calculated:

aggrimpacti ∶ (U×[0,1])n → [0,1]
aggrimpacti (o1, v1, o2, v2, . . . , on, vn) ↦ ∑i = 1, ..., n vi∗weight(oi)

∑i = 1, ..., n weight(oi)
(5.7)

The determination of a weight for each object is realized by a function weight ∶ U → R. For
each class of objects a dedicated weight-function must be defined. However, for source code we
can define a general weight function that can be applied to various source code constructs. This
weighting is called weighting by ranges and is explained in the following.

Specifying aggrimpacti – Weighting by Ranges

As explained in Section 5.2.2, quality-properties measured by rule-based static-code measures have
a range of {0, 1}. If such quality-properties are restricted or divided and aggregated by logical
functions their parent quality-properties also have a range of {0, 1}. For such quality-properties a
special type of weighting is often reasonable, which takes into consideration which proportion of
the source code is concerned with the respective quality-property.

For such quality-properties, an object may get either a 1 (we call the object not affected by the
quality-property), or the object may get a 0 for a quality-property (we call the object affected by the
quality-property). The idea of determining a value for the impact is then to calculate the proportion
of the size of affected parts of the source code in comparison to unaffected parts.

89



5 Quality Assessments based on a Quality Model

1: class Class1 {
2:
…

869:
870: }

1: class Class2 {

88: }

1: class Class3 {
…
45: }

af
fe

ct
ed

no
t a

ffe
ct

ed

%87
1003
870

classes) (all
classes) affected(


size

size

Figure 5.4: Example: Weighting ASccording to the Size of Java Classes

Example 1

Figure 5.4 illustrates an example, where the impact [Appropriateness∣Java class] ⊕ÐÐ→ [Analyz-
ability∣Product] is evaluated. First, for all objects of type “Java class”, the quality-property is
calculated. This way, each Java class is either “affected” or “not affected”. Next, the size of each
Java class is calculated and the evaluation of the impact is the proportion of the sizes of affected
Java classes versus unaffected Java classes: Size (affected java classes) /Size (all java classes).

This principle of calculating the size of affected vs. unaffected parts of the system works, if mean-
ingful measures for the size of the objects under consideration can be found. For Java classes and
methods, we use the lines of code as a measure of their size. We cannot apply this principle to other
classes directly. For instance, it does not make sense to calculate the size in lines of code of the
class Arithmetical expression.

Therefore, we extend our principle to so called ranges. If we want to calculate the impact of a
quality-property, whose class has no meaningful size, we define one of its parent classes (regarding
the composition relation) as its range. The class we choose as range must have a meaningful size.
Therefore, we define that an object of the range-class is affected if it contains at least one object
that is affected. This way, for each range-object it is defined whether it is affected or not and the
principle of the weighting can be applied to the range object.

Example 2

The impact [Correctness∣Arithmetical expression] ⊕ÐÐ→[Functional correctness∣Product] is calcu-
lated. Arithmetical expression is part of Method, which is part of Java class. We choose Java class
as range of this impact. This means a Java class is affected if it contains at least one arithmetical ex-
pression that is not correct; and it is not affected if it contains no such arithmetical expression. Then,
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Figure 5.5: Example: Ranges

the principle of normalization is applied and the size of affected Java classes is set in proportion to
the size of all Java classes. Figure 5.5 illustrates this.

Formal Definition of the Weighting by Ranges

In the following, we more formally define how an impact of a quality-property [pi∣ci] on [p∣c] is
calculated by weighting with the range cr ∈ C.

Weighting by a range cr ∈ C is possible for the given impact, if cr is a part of c and a container
of ci:

(c, cr) ∈ COMP∗ ∧ (cr, ci) ∈ COMP∗ (5.8)

Furthermore, there must be a meaningful way of determining the size of objects of class cr. This
means there must be a function size for these objects:

size ∶ cr → R (5.9)

Accordingly, the size of a set of objects is defined as the sum of the sizes of the sets’ elements:

Size ∶ ℘(U) → R
Size(objs) ↦ ∑obj ∈objs(size(obj )) (5.10)
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Now, we can formally define how the ratio of affected vs. unaffected parts of the product is calcu-
lated:

ratio =
Size ({oi ∈ cr ∶ (o, oi) ∈ COMPU ∧ ∃oj ∈ ci ∶ (oi, oj) ∈ COMPU ∧ pi(oj) = 1})

Size ({oi ∈ cr ∶ (o, oi) ∈ COMPU})
(5.11)

Although the ratio is in the interval [0; 1], it does not adequately represent a degree of satisfaction
of the quality-property. Imagine a quality-property describing some kind of security vulnerability,
having an impact on [Security∣Product]. If the impact of such a quality-property gets a ratio of 0.05
this means, that 5% of the system is affected by a security problem. In this case, it is unreasonable to
just take the inverse as degree of satisfaction for the impacted quality-property, because this would
mean that [Security∣Product] is satisfied with a degree of 0.95. Obviously, a system where 5% of the
source code has security vulnerabilities should not get a rating that security is satisfied by 95%.

In order to map the ratios to degrees, we use a three-point linear distribution as depicted in Fig-
ure 5.6. The function maps a normalized measurement value to a degree of satisfaction of a quality-
property. Such functions are usually called utility-functions.
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Figure 5.6: Three-point Linear Distribution Function

In order to obtain an identity function, the values t1, t2, t3 are chosen as t1 = 0, t2 = 0.5, t3 = 1. In
realistic quality models these values will be chosen by either expert appraisal, or by a benchmarking
approach (see Section 5.4.1 for details).

For the security-related example above, the values ti could be chosen as follows:

t1 = 0.05 t2 = 0.1 t3 = 0.2 (5.12)

The resulting distribution expresses the fact that all systems that are affected more than 20% get
a rating of 0.0. To achieve a rating better then 0.5, less than 10% must be affected, while to get a
rating of 1.0, less than 5% must be affected.

5.3 Bottom-Up Assessment

In Section 5.2 we generally describe which specifications are necessary for arriving at an opera-
tionalized quality model. The weighting by ranges is inspired by the assessment of source code,
but not explicitly restricted to it. In this section, however, we explicitly describe how an automatic
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Figure 5.7: Steps of a Bottom-Up Assessment

tool-based assessment of source code can be done. Thus, we explain how typical tools for source
code analysis work and how they can be integrated with the top-down specification approach for
quality assessments. This approach takes a bottom-up form, for two reasons:

1. One reason is that existing tools are applied to whole products, not parts of products. They
determine the relevant parts of the product and report the measurement results for them. Thus,
the bottom-up approach runs the measurement tools first and then aggregates the resulting
measurement data.

2. Another reason is that, for a top-down approach, the parts of the product must be determined,
which is a challenging task. It strongly depends on the technology used, e.g., the program-
ming language. Since the existing tools already implement this step, it is not necessary to
re-implement it by the assessment approach. For real-world systems and quality models, it is
unfeasible to implement a function for determining all objects of a certain type for all classes
modeled in the quality model. For some general and commonly used classes, these functions
are necessary for weighting by ranges; e.g., when analyzing source code it is necessary to
determine the files, classes, and methods of which the source code consists. However, deter-
mining more special classes such as expressions, fields, constructors, or even Java-classes of
certain super-types (e.g., all Java-classes implementing java.util.Iterator) is expensive. Fur-
thermore, this would mean that each time a class is added to the quality model it would be
necessary to adapt the assessment toolkit. Hence, the bottom-up approach uses the data on the
objects of the product provided by the existing analysis tools.

In the following, we describe the bottom-up assessment approach. Figure 5.7 shows the steps of the
bottom-up quality assessment:

1. Measurement: The first step in a quality assessment is to conduct the measurement. For that
purpose the measurement tools are executed and manual inspections are conducted. There are
two types of measurement tools for source code:
Classical Measures are defined for single objects of a product. The measurement is executed
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on the whole product and for each part of the product that is of a certain type a measurement
value is returned. For instance, such a measure could be “Complexity of Methods”; when
applied on the source code of a product, it determines a value for the complexity of each
method.
Rule-based static code analysis tools have the objective of finding defects in source code. They
analyze the entire source code of a product and report objects of the product that are faulty.
This means they calculate a quality-property of all parts of the product and report those objects
where the quality-property does not hold. The initial intention of these tools was to report
these faulty objects, called findings, to the developer so that he can correct them.

2. Fuzzification: The measurement result of step 1 is fuzzified, i.e., converted to logical values of
fuzzy logic.

3. Aggregation: In this step the values of component properties are aggregated along the restric-
tion and division relations.

4. Normalization: At the transition from component properties to quality attributes via the im-
pacts in the quality model it is specified how the weighting takes place.

5. Aggregation: In this step the values of the quality attributes are aggregated along the division
relations.

The main difference from the procedure of the top-down approach is that the measurement tools
are run on the entire product. Hence, they generate as a result a list of all objects with their corre-
sponding values. The fact that a quality-property is evaluated on the entire product is formalized by
a function eval.

Definition 5.8 Bottom-up Evaluation. The bottom-up evaluation of an entire product regarding a
quality-property p ∈ P is defined as a function eval resulting in a list of objects with their respective
values:

eval ∶ product×P → ℘(U×[0,1])

whereby product denotes the set of all products according to Definition 4.7 and P denotes the set
of all quality-properties according to Definition 4.9.

The bottom-up quality assessment approach must guarantee that the results generated by it are the
same as if the top-down approach had been applied.

Definition 5.9 Correctness of Bottom-up Evaluation. A bottom-up evaluation of a quality-property
p ∈ P conducted by the function eval is correct if its result contains all objects oi ∈ dom(p) which
are part-of the product under consideration:

∀p ∈ P ∶ ∀producti ∈ product ∶
eval(producti , p) = {(o, p(o)) ∶ o ∈ dom(p) ∧ (producti , o) ∈ COMP∗

U}

In the following, we will show that the aggregations specified in a top-down manner can be calcu-
lated on the lists of objects and their values.

94



5.3 Bottom-Up Assessment

Measures

As explained above, common measurement tools already implement the function eval for certain
quality-properties. Thus, these tools can be used directly to calculate this function.

Restriction

Let p be a quality-property that is restricted by p1, . . . , pn and eval(producti , pi) the results of the
evaluation of pi regarding producti ∈ product satisfying Definition 5.9. Then, eval(producti , p)
can be calculated as follows:

eval(producti , p) = ⋃
j=1..n

eval(producti , pj) (5.13)

Obviously, eval(producti , p) satisfies Definition 5.9.

Division

Let p be a quality-property that is divided into p1, . . . , pn. The definition of the division relation
(Definition 4.14) states the existence of an aggregation function f . Further, let producti ∈ product
be a product and resj = eval(producti , pj) be the results of the evaluation of pj satisfying Defini-
tion 5.9. Then, we define

objects(res1, . . . , resn) =
⎧⎪⎪⎨⎪⎪⎩
o ∶ (o, v) ∈ ⋃

j=1..n
resj

⎫⎪⎪⎬⎪⎪⎭
value(resj , o) = v ∶ (o, v) ∈ resj

(5.14)

Then we calculate eval(producti , p) as follows:

eval(producti , p) = { (o, v) ∶ o ∈ objects(res1, . . . , resn) ∧
v = f(value(res1, o), . . . , value(resn, o))

} (5.15)

Obviously, eval(producti , p) calculated this way also satisfies Definition 5.9.

Impact

Let p be a quality-property impacted by the quality-property pi and eval(productj , pi) =
{(o1, v1), . . . , (on, vn)} the results of the evaluation of pi regarding productj ∈ product. Then,
all values required for the aggregation function aggrimpacti as specified in Formula 5.6 are available
and the function can be calculated.
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5.4 Addressing Challenges in Practice

5.4.1 Determining Parameters for Utility Functions

At two points in the quality model, based on a measurement value, a degree of satisfaction of
a quality-property must be calculated: (1) for fuzzifying a measurement value (Section 5.2.2)
(2) when applying the range-based weighting (Section 5.2.5).

As explained in the respective sections, a 3-point linear function is used for the mappings. Whether
the function is falling or increasing is determined by expert appraisal. For the determination of the
three threshold values t1, t2, and t3, a benchmarking approach is used [50, 51, 94, 100]. The basic
principle of benchmarking is to collect a measure for a (large) number of systems (called bench-
marking base) and compare the measurement value of the system under assessment to these values.
This allows us to decide if the system is better, equally good, or worse regarding the benchmarking
base. Our approach uses the benchmarking base to statistically determine threshold values for the
utility functions. In essence, as a lower bound for the utility function, the minimum value of all
benchmarking systems is used and as an upper bound, the maximum of all benchmarking systems
is used.

For each system of the benchmarking base, the measurement value is calculated, resulting in values
x1, . . . , xn. The values of the thresholds are then calculated as follows:

t1 = min({x ∶ x ≥ Q25%(x1, . . . , xn) − 1.5 ⋅ IQR(x1, . . . , xn)})
t2 = median(x1, . . . , xn)
t3 = max({x ∶ x ≤ Q75%(x1, . . . , xn) + 1.5 ⋅ IQR(x1, . . . , xn)})

(5.16)

Whereby IQR(x1, . . . , xn) denotes the inter-quartile-rangeQ75%(x1, . . . , xn)−Q25%(x1, . . . , xn).
This function assures that outlier values are ignored; for t1 the minimum non-outliner value is taken;
for t3 the maximum non-outlier value. For t2 the median of all values is taken.

Alves et al. [2] discuss essential characteristics of a method for deriving threshold values for mea-
sures. Our method satisfies these requirements: (a) our method does not make an assumption about
the distribution of the measure; (b) when combining the measurement values of different systems,
the size of the system does not matter, i.e., large systems do not have a larger influence than smaller
systems; and (c) our method is resilient against outliers by using the maximum and minimum non-
outliner values.

In the publication [100], we thoroughly evaluated this approach. We used benchmarking bases with
different characteristics for setting the parameters of utility functions of a quality model and com-
pared the quality assessment results using the quality models. We found evidence that the single
most important factor for a satisfactory benchmarking base is its size. For a randomly generated
benchmarking base of sufficient size, neither the actually selected systems, nor the size of the sys-
tems contained in it, has a major influence on the quality assessment results generated by the quality
model. Thus, we concluded that defining parameters for utility functions based on a benchmarking
approach is feasible.
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5.4.2 Handling Incomplete Measurement Data

When quality assessments are conducted in practice, incomplete measurement data are a common
phenomenon. There are different reasons why measurement data can be incomplete:

1. A common reason for incomplete data is that an analysis tool incorporated into the quality
assessment did not run successfully. If a large number of tools are used, this occurs frequently.
Producing a valid assessment result is nonetheless essential. Especially in quality dashboards
built continuously, the failures of one tool must not invalidate the overall result.

2. Besides the arbitrary failing of tools in continuous builds, another reason may be that a certain
tool is unavailable. If the quality model and assessment toolkit is delivered to different cus-
tomers, certain tools may not be available to a specific customer. For instance, license costs
may prohibit the usage of a certain tool. In this case, the assessment approach must be able to
deliver valid results without the information of the missing tool.

3. Another reason for incomplete data may be results of manual inspections that have not been
carried out. Manual inspections are usually associated with significant efforts to conduct them.
Therefore, it is often desirable to conduct a quality assessment relying solely on automatically
determinable measures. Also in this case, the assessment approach must provide valid results.

In order to handle incomplete data, an approach similar to interval arithmetic is taken. In interval
arithmetic, uncertainties are expressed by performing calculations on intervals of possible values.
Each interval expresses that a calculation with complete data could result in one value of the respec-
tive interval. Instead of intervals, we use arbitrary sets of values.

All calculations will be performed on ℘([0,1]) instead of [0,1]. A function f ∶ [0,1]n → [0,1] is
converted to f○ ∶ ℘([0,1])n → ℘([0,1]), as follows:

f○(x1, . . . , xn) ↦ {f(z1, . . . , zn) ∶ z1 ∈ x1, . . . , zn ∈ xn} (5.17)

This way of handling incomplete data satisfies an essential requirement: If the approach capable of
handling incomplete data is applied to complete input data, it must produce the same result. This
can easily be proven: Let f(x1, . . . , xn) = y be an application of f to x1, . . . , xn with the result
y. Then, f○ applied to sets containing the values xi each must result in a set containing exactly the
value y:

f○ ({x1}, . . . , {xn})
= {f(z1, . . . , zn) ∶ z1 ∈ {x1}, . . . , zn ∈ {xn}}
= {f(x1, . . . , xn)}
= {y}

(5.18)

Example: If-Else-Expression

The approach of handling unknown values is applicable to sophisticated expressions, especially for
non-continuous functions. For instance, a typical if-then-else-expression known from functional
programming can be evaluated this way.

We want to realize the following function for transforming a value of [0,1]:
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1.0

1.0

0.0 x

y

We implement it as a simple if-then-else-expression:

i f ( x > 0 . 5 ) t h e n
r e t u r n (1 − x ) * 2 ;

e l s e
r e t u r n x * 2 ;

The condition a > b is a function

cond ∶ [0,1] × [0,1]→ B

cond(x, y) ↦
⎧⎪⎪⎨⎪⎪⎩

1 if x > y
0 if x ≤ y

(5.19)

The if-then-else construct is a function

ifthenelse ∶ B × [0,1] × [0,1]→ [0,1]

ifthenelse(cond , thenres, elseres)↦
⎧⎪⎪⎨⎪⎪⎩

thenres if cond = 1

elseres if cond = 0

(5.20)

We now evaluate this if-then-else construct with the value a = {0.4, . . . ,0.7}, expressing that the
value of a may be in the range between 0.4 and 0.7.

1.0

1.0

0.0

0.70.4

0.6
0.8

x

y

ifthenelse○(cond(a), (1 − a) ∗ 2, a ∗ 2)
= {ifthenelse(cond(ai), (1 − ai) ∗ 2, ai ∗ 2) ∶ ai ∈ {0.4, . . . ,0.7}}
= {ifthenelse(1, (1 − ai) ∗ 2, ai ∗ 2) ∶ ai ∈ {0.5, . . . ,0.7}}∪

{ifthenelse(0, (1 − ai) ∗ 2, ai ∗ 2) ∶ ai ∈ {0.4, . . . ,0.5}}
= {1 − ai) ∗ 2 ∶ ai ∈ {0.5, . . . ,0.7}} ∪ {ai ∗ 2 ∶ ai ∈ {0.4, . . . ,0.5}}
= {0.6, . . . ,1.0} ∪ {0.8, . . . ,1.0}
= {0.6, . . . ,1.0}

(5.21)
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Here we can see that the result is as expected. For input values between 0.4 and 0.7, the function
results in values between 0.6 and 1.0.

5.4.3 Handling Finding-Based Measurement Data

As indicated in the introduction of the bottom-up assessment approach in Section 5.3, rule-based
static code analysis tools are a special challenge, for two reasons:

1. They are applied to the entire product and return a list of results.

2. They only report those objects violating a rule, not those satisfying a rule. Thus, the measure-
ment data provided by them lack a list of all objects of the class under consideration.

In Section 5.3, we introduced a function eval evaluating all objects of a product regarding a certain
quality-property. First, we apply the approach of handling incomplete measurement data on it,
resulting in the following function:

eval○ ∶ product × P Ð→ ℘(U ×℘([0,1])) (5.22)

Second, we extend the eval○ function, to return a list, explicitly declaring that all objects that
would have a certain value are not present in it. Such a list is called result set and is represented as
follows:

RESSET = ℘(U ×℘([0,1])) × ℘([0,1])
eval⊚ ∶ product × P Ð→ RESSET

(5.23)

Note, that if all objects are present for a quality-property p, then

eval⊚(pr , p) = (eval○(pr , p), {}) (5.24)

Example: Result Set

An example for a result set may be:

ressetexample = ({(a, {1}), (d, {0.5}), (f, {0.7})}, {0}) (5.25)

This means that a has the value {1}, d has the value {0.5}, and f has the value {0.7}. All other
objects than a, d, and f that exist in the product, but are not present in ressetexample , have the value
{0}.

To conveniently access the value of an object in such a result set, we define the val-function:

val ∶ RESSET×U → ℘([0,1])

val ({(o1, v1), . . . , (on, vn)}, vmissing , object) ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v1 if object = o1
. . .

vn if object = on
vmissing if object ∉ {o1, . . . , on}

(5.26)
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To access the set of all present objects we define:

objects ∶ RESSET → ℘(U)
objects ({(o1, v1), . . . , (on, vn)}, vmissing) ↦ {o1, . . . , on}

(5.27)

In the example of Formula 5.25, the following queries can be run:

val(ressetexample , a) = {1}
val(ressetexample , b) = {0}
val(ressetexample , c) = {0}
val(ressetexample , d) = {0.5}
val(ressetexample , e) = {0}
val(ressetexample , f) = {0.7}

(5.28)

Calculations on Incomplete Lists

In analogy to the ○-operator defined to convert a function on [0,1] to a function handling incomplete
data, we now define the operator ⊚ converting a function on [0,1] to a function handling result sets.
A function f ∶ [0,1]n → [0,1] is converted to f⊚ ∶ RESSETn → RESSET, as follows:

f⊚(resset1, . . . , ressetn) ↦

({(or, vr) ∶
or ∈ objects(resset1 )⋃ ⋅ ⋅ ⋅⋃objects(ressetn) ∧
vr = f○ (val(resset1 , or), . . . , val(ressetn , or))

} , f○(v1missing , . . . , vnmissing ))

(5.29)

Example

As an example we illustrate how a simple addition of real numbers takes place on result sets. The
addition function is defined as follows:

add ∶ R → R
add(x, y) ↦ x + y (5.30)

As input data, we have two result sets.

set1 =
⎛
⎜
⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(o1, {0}),
(o2, {3}),
(o4, {2})

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, {1}

⎞
⎟
⎠

set2 =
⎛
⎜
⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(o2, {1}),
(o3, {1}),
(o4, {2})

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, {0}

⎞
⎟
⎠

(5.31)
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We then apply add⊚:

add⊚(set1, set2)

=
⎛
⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(o1, add○({0}, {0})),
(o2, add○({3}, {1})),
(o3, add○({1}, {1})),
(o4, add○({2}, {2})),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, add○({1}, {0})
⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(o1, {0}),
(o2, {4}),
(o3, {2}),
(o4, {4})

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, {1}
⎞
⎟⎟⎟
⎠

(5.32)

Here we can see that the addition of two result sets yields a result set containing all objects of the
input sets. For each object its two input values have been added.

Using this approach, measurement data of rule-based static code analysis tools can be aggregated
like other measurement results. This works as described for divisions and restrictions. A special
treatment is only necessary for impacts. The impact aggregation function Formula 5.6 is generally
not calculable if there are unknown objects. However, the aggregation using ranges is calculable
nonetheless: In the result set, either the objects with value 0 or with value 1 are present; conse-
quently it is possible to either calculate the size of affected or of unaffected objects and since the
overall size of the product is known, the ratio can be calculated.

5.4.4 Summary

First, we introduced the basic concept of conducting quality assessments with quality models and
defined basic terms regarding measurement theory. Second, we introduced a general approach for
operationalizing a quality model by defining concrete specifications how quality-properties can be
measured and how measurement data can be aggregated for generating an overall quality statement.
This approach is inspired by conducting automated quality assessments for source code, but it is
generally applicable nonetheless.

From the third section onward, our focus is on automated tool-based quality assessments applied to
source code. We explain typical constraints when applying real-world analysis tools and introduce
a bottom-up assessment approach coping with these constraints. Subsequently, we address needs
of practice by introducing approaches for handling incomplete measurement data and finding-based
measurement data.
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Building a quality model conforming to the meta-model of Chapter 4 consists of three main steps:
First, quality attributes are defined. Second, the classes, i.e., the product model, is defined. Third,
based on the classes, concrete component properties and their impacts on the quality attributes
are defined. The three types of elements created thereby are of different specificity: The quality
attributes are mostly identical for all types of software products, while the component properties are
always specific to a certain technology.

In Section 6.1, we introduce the parts of a quality model that can be defined generally for all types
of software products. These are a high-level definition of artifacts of software products that are
created for most software products and quality attributes. We define a hierarchy of quality attributes,
which is created using the concept of activity-based quality models. This way, we achieve a clear
decomposition of the quality attributes. Component properties are not defined in this section.

In Section 6.2, we present an operationalized quality model for Java source code. This model
extends the general model of Section 6.1 by defining component properties referring to constructs
of Java source code and by operationalizing them according to the quality assessment approach of
Chapter 5.

6.1 General Classes and Quality Attributes

In Section 6.1.1, we define a general class model that is applicable to most software products. The
defined classes are on a high level of abstraction and have to be extended for quality models referring
to specific technologies. In the next subsections, we define a hierarchy of quality attributes. In
literature a series of quality models defining quality attributes are proposed. However, as discussed
in Section 3.1.1, the quality attributes defined by these models are criticized for being ambiguous,
incomplete, and overlapping. Our approach to defining a quality attribute hierarchy overcoming this
problem relies on the concept of activity-based quality models: Most qualities being important for
stakeholders can be best expressed by activities conducted by these stakeholders with the software
product. Thus, in Section 6.1.2, we first define a hierarchy of typical activities conducted with
software products. For activities, clear decomposition criteria are available, which leads to a clear
and unambiguous definition of the activities. Then, based on the hierarchy of activities, a hierarchy
of quality attributes is derived in Section 6.1.3.

6.1.1 General Classes

The artifacts a software product consists of are defined as classes according to the meta-
model introduced in Chapter 4. For the definition of the classes we partly rely on the V-
Model XT (VMXT) [150] and IEEE-1074 [63]. The VMXT defines a comprehensive artifact model,
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describing all artifacts that are produced by the defined activities of their process model. However,
all these artifacts have the character of documents created in the development process, e.g., the
activity “preparing system architecture” creates a document “system architecture” describing the
architecture of the system. This view on artifacts is not suitable for our quality model. If we were
to define a quality-property of the class “system architecture”, we would define characteristics of
the document, instead of the architecture itself. Rather, we want to model that the system itself
consists of an “architecture”, interpreted as a certain view on the system. Therefore as a major con-
cept in the class model, we define a class system, which has different views as parts. As one source
for views, we used the architecture model for embedded systems of Broy et al. [18]. This defines
three abstraction levels with differing views on the system. Additionally, we defined other views,
based on the artifacts derived from IEEE-1074 and the VMXT. Figure 6.1 gives an overview of the
hierarchical structure of the defined classes, which are defined in the following:

(Software) Product is the software artifact cre-
ated by the development process.

(Software) System is a written program for a
computer system.

Functional Usage View is a view on a soft-
ware system, describing the behavior of
the system at its interface to the environ-
ment [18].

Service Model is a way of describing the func-
tionality of a software system by services.
A service according to [18] is a set of pos-
sible interactions between the system and
its environment.

Service Structure is a description of the sys-
tem’s functionality through a set of ser-
vices which are hierarchically organized
and may have cross-relations [18].

Service Interface is the description of the
syntactic interface of the services [18] by
defining their input and output ports and
their data types.

Service Behavior is the description of the
semantical interface of the services [18],
e.g., by assumption/guarantee specifica-
tions or message-sequence-charts.

Use Case Model is a way of describing the
functionality of a software system by use
cases. A use case according to [21] is an
informal description of possible interac-
tions between the system and actors in the
environment.

Actor is either a person or a system of the envi-
ronment interacting with the system by its
interface [21].

Scenario is an exemplary interaction between
actors and the system, describing one pos-
sible set of exchanges messages [21].

Technical Usage View is a view on a soft-
ware system describing the user interface
that “enables information to be passed be-
tween a human user and [. . . ] a computer
system” [61].

Input-Output Model is a description of the de-
vices and techniques used to transmit in-
formation between the system and its en-
vironment [42, 69].

GUI model is an example for an input output
model usable for systems with a graphical
user interface. It describes the graphical
elements a graphical user interface con-
sists of [42, 69].

Command model is an example of an input-
output model for systems with a textual
interface. It describes the syntax of a lan-
guage for a textual command line inter-
face [42, 69].

Dialogue Model is a description of the neces-
sary interaction steps the user must carry
out to achieve certain goals with the sys-
tem [42, 69].

Logical Architecture View is a view on a
software system describing the system by
means of communicating logical compo-
nents [18]. The focus of this view is not
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Figure 6.1: General Classes
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the behavior of the system at its interface,
but the decomposition of the system into
logical components.

Component Structure is a description of all
components, their syntactical interfaces
and channels that interconnect the compo-
nents [18].

Component Interface is the description of the
syntactic interface of the components [18]
by defining their input and output ports
and their data types.

Component Behavior is the description of the
behavior of the components by an opera-
tional description technique [18].

Source Code View is a view on a software
system describing it by means of program
code.

Grammar of Java is an example of a way of
describing the constructs of the source
code.

Grammar of C is an example of a way of
describing the constructs of the source
code.

Deployment View is a view on the soft-
ware system on an abstraction level that
is able to express time-constraints of the
target platform the software will be run-
ning on [18], i.e., this view is able to ex-
press timing-constraints introduced by the
operating system, buses, etc.

Runtime Model is a description of the behav-
ior of the combined hardware/software,
i.e., the behavioral characteristics of the
hardware are combined with the behav-
ioral characteristics of the logical archi-
tecture [18].

Hardware Model is a description of the hard-
ware components on which the software

will be running [18]. Behavioral prop-
erties of the hardware that have an influ-
ence on the software behavior are visible
here.

Documentation is the entirety of all documents
describing the software system.

Requirements Documentation is the docu-
ment describing all “requirements posed
on the system to be developed” [150].

System Documentation is the document de-
scribing the software system, i.e., it de-
scribes all views on the software systems
defined above.

Operations Documentation is the document
describing how typical actions are per-
formed with/on the system by certain au-
diences.

Maintenance Documentation is the document
describing “measures required in order to
ensure and maintain the functional capa-
bility of the system” [150].

Training Documentation are all documents
that are used in the training of personnel,
such as “training manual, [. . . ], outlines,
text, exercises, case studies, visuals, and
models” [63] (see also, “instructor docu-
mentation” in VMXT).

Operating Documentation , also called “user
documentation” or “in-service documen-
tation” (in VMXT), is “all data required
by a user in order to operate the sys-
tem properly and to respond adequately to
problems” [150].

Installation Documentation is the document
describing all actions to be taken to install
the software system, e.g., “hardware and
software configuration, [. . . ], packaging,
transport and storage” [150].

6.1.2 Activities

For the definition of activities that are conducted with or on a software system it is interesting to
discuss the generality of the activities. One extreme case is those activities that are the quite similar
for all software systems, for instance, maintenance. Maintenance can be defined as the sub-activities
of analyzing the change-request, planning the change, modifying the product, etc. Another extreme
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is the activities that are individual to each software system, such as the activity of conducting a cash
transfer in an online-banking system. For the description of quality, both extremes are relevant.
For instance, think of the quality attribute functional suitability of ISO 25010. To assess it for
the online-banking system, you have to know that cash transfers are an activity the system must
support.

For deriving quality attributes, we should consider all activities that are general enough to be of
interest, e.g., from a typical quality model for software quality it is expected that it defines main-
tainability as a quality attribute.

In this section, we present a collection of general activities being relevant for most software systems.
As a source for such activities we use lifecycle models of software that are available in the literature.
As sources for defining these activities, we mostly use the IEEE-1074 [63] (Standard for Develop-
ing a Software Project Life Cycle Process) and the process model V-Modell XT(VMXT) [150].
Furthermore, we distill additional activities from the definition of the quality attributes of the
ISO 25010 [65]. The IEEE-1074 is kind of a meta-standard defining a process to create a software
lifecycle process. However, besides that meta-process, in its annex it gives a collection of norma-
tive activities covering software lifecycle processes in general. Thus, these normative activities are
a comprehensive collection suited to being used in our activity model. The VMXT is a process
model for planning and executing projects. It is mandatory for all software development projects
initiated by the Federal Republic of Germany. Its scope is wider than that of IEEE-1074, focusing
to a large amount on project management, contracting, and contractor/supplier relationships. Thus,
it is a good complement to IEEE-1074 for defining activities in software development.

The two standards mentioned above are especially useful in defining “high-level” activities of the
software lifecycle. When going into more detail, e.g., for defining fine-grained sub-activities of
software-maintenance, we refer to more specialized standards, such as IEEE-1219 [62] (Standard
for Software Maintenance).

Figure 6.2 gives an overview of the hierarchical structure of the defined activities. The order of the
activities does not imply the sequence of their execution. However, we ordered them into a typical
sequence, as given by a general v-model, so, for example, all testing and evaluation activities come
after the design and implementation activities, although they may be performed in an interleaving
manner. In the following, the activities of Figure 6.2 are defined:

Lifecycle is the entirety of all activities con-
ducted in software development from the
first idea to the realization and disposal of
a software product.

Project Management is the entirety of
all accompanying activities “that initiate,
monitor, and control a software project
throughout its life cycle.” [63]

Project Initiation is an example of a project
management activity. It is usually the
first activity of a software development
project “that creates and updates the in-

frastructure of a software development
[. . . ] project.” [63]

Managing Risks is an example of a project man-
agement activity. It is the entirety of
all activities that “iteratively analyze and
mitigate business, technical, managerial,
economic, safety, schedule, and security
risks.” [63]

Train New Developer on Maintenance is an ex-
ample of a project management activity.
It is the activity of training a new em-
ployee in conducting maintenance activ-
ities. This activity is an example of de-
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Figure 6.2: Activities
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scribing a non-classical quality attribute.
Easily training new developers on main-
tenance lately became important because
maintenance tasks are often outsourced
to suppliers and subject to fluctuations in
employees.

Pre-Development is the entirety of all activities
that are conducted before the development
of the software can begin. It includes the
definition of the project goal and the con-
tracting [63].

Contracting and Concept Exploration are all
activities concerned with the formal setup
of the project and the definition of high-
level project goals.

System Allocation, according to IEEE-1074,
describes the decision about the scope of
the software, in terms of taking the de-
cision which parts of the defined project
goals may be realized by hardware, soft-
ware or people.

Software Importation, according to IEEE-
1074, is the entirety of all activities to de-
fine the software that can be reused, to de-
termine the method of importation and to
“import the software including documen-
tation” [63].

Development is the entirety of all activities
conducted to actually construct the soft-
ware product.

Requirements and Analysis, according to
the VMXT, are the activities to define
“user requirements based on a project pro-
posal (prestudy) and the contract.” The
IEEE-1074 defines a corresponding activ-
ity “software requirements”.

Design, according to IEEE-1074, is the entirety
of all activities used for developing an ar-
chitectural design, constituted of compo-
nents defining their structure and inter-
faces. At a detailed design level, data
structures and algorithms are selected.

Implementation is defined by the IEEE-1074
as a transformation of the design represen-
tation of the software product into a pro-
gramming language realization.

Integration is the activity of collecting all ar-
tifacts created in the implementation and
connecting them to the actual software
product.

Evaluate, according to IEEE-1074, is the en-
tirety of all activities “that are designed
to uncover defects in the product or pro-
cesses that are used to develop the prod-
uct”.

Review is the entirety of all activities that man-
ually inspect an artifact with the goal of
finding deficiencies. They can be applied
to all artifacts created in the development
activity, like requirements documents, de-
sign specifications, and the implementa-
tion [63].

Software Test is the entirety of all activi-
ties to prepare and conduct a test of the
software. According to IEEE-1074, tests
can be conducted at various levels, such
as unit/component/system tests and us-
ing various techniques, such as static/dy-
namic.

Release is the entirety of all activities for
“building, naming, packaging, and release
of a particular version of a software prod-
uct, including its associated release notes,
user documentation” [63].

Post-Development is the entirety of all activi-
ties that are performed after the actual de-
velopment of the software.

Installation is the entirety of all activities “con-
sisting of transportation and installation
of a software system from the develop-
ment environment to the target environ-
ment” [63].

Configure is the activity of adapting the soft-
ware product to certain circumstances by
means of using built-in functionality of
the software product.

Training is the entirety of all activities to im-
plement the actual training of personnel
that install, operate, and maintain the soft-
ware, such as the “provision of all neces-
sary materials, the arrangement of the lo-
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cations and facilities for training, and the
delivery of the training” [63].

System-Supported Task is an activity the
user conducts by using the software prod-
uct. In business information systems, such
system-supported tasks are the business
processes that are system-supported. Usu-
ally they are described by use cases in re-
quirements specifications.

Use is the activity of using the product. Using
the product includes interacting with the
system and reading the documentation.

Use by End User (Operate) is a special type of
usage where the actor is an end user. Thus,
this activity is also called “operate”.

Use by Disabled is a special type of usage
where the actor is a disabled person.

Use with Error is a special type of usage
where the user performs the interaction
accidently or with an error.

Misuse is a special type of usage, where the
user is not authorized to interact with the
system. Unauthorized users deliberately
interacting with the system usually have a
hostile intent and are called attackers; this
activity is also called “attack”.

Unauthorized Disclosure of Information is
the activity of disclosing data without au-
thorization.

Unauthorized Access to Information is the
activity of accessing (including modify-
ing) information without authorization.

Unauthorized Denial of Access is the activ-
ity of denying access to authorized users
without authorization.

Use Case 1, 2, . . . are use cases that are indi-
vidual to each software system. Use cases
define how the system is used by the user
in order to conduct a business task.

Support is the entirety of all activities “pro-
viding technical assistance, consulting
with the user, recording user support re-
quests” [63] and triggering maintenance
activities.

Provide Technical Assistance and Consulting
is the entirety of all activities “responding

to the user’s technical questions or prob-
lems” [63].

Initiate Maintenance, according to IEEE-1074
and IEEE-1219, is the entirety of all activ-
ities to collect change requests from users,
to formulate modification requests, and to
trigger the maintenance process.

Maintenance is the “modification of a software
product after delivery to correct faults, to
improve performance or other attributes,
or to adapt the product to a modified envi-
ronment” [62].

Analysis is the entirety of all activities to “study
the feasibility and scope of the modifica-
tion and to devise a preliminary plan for
design, implementation, test, and deliv-
ery” [62].

Design is the entirety of all activities to design
the modification of the system using “all
current system and project documenta-
tion, existing software and databases, and
the output of the analysis phase” [62]

Implementation is the entirety of all activi-
ties to perform the modifications on the
system by using “the results of the design
phase, the current source code, and project
and system documentation” [62].

Integration is the analogy to the activity “inte-
gration” in the development.

Modify Documentation is the analogy to the
activity “create documentation” in the de-
velopment.

Evaluate is the analogy to the activity “eval-
uate” in the development, however eval-
uation in maintenance especially includes
“regression testing [. . . ] to validate that
the modified code does not introduce
faults that did not exist prior to the main-
tenance activity” [62].

Release is the analogy to “release” in develop-
ment. Additionally, it includes archiving
the replaced system [62].

Perfective Maintenance is a special type of
maintenance, where the goal of the activ-
ity is to enhance the product [62].
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Corrective Maintenance is a special type of
maintenance, where the goal of the activ-
ity is to correct faults [62].

Adaptive Maintenance is a special type of
maintenance, where the goal of the activ-
ity is to adapt the product to a new envi-
ronment [62]. This is also called “to port”
the product or “to adapt” the product.

Retirement is the entirety of all activities for
the “removal of an existing system from
its active support or use either by ceasing
its operation or support or by replacing it

with a new system or an upgraded version
of the existing system” [63].

Replace is the activity of replacing an existing
product with the newly developed one.

Reuse is the activity of using the product as part
of another software.

Evaluate Appropriateness is the activity of
evaluating whether the product is suited
for the needs of a certain user.

Execute is the activity of executing the software
on the given hardware.

Learn to Use is the activity of learning how to
use the product.

6.1.3 Quality Attributes

The definition of the quality attributes is based on the concept of activity-based quality models. Such
quality models define quality attributes by referring to activities that are conducted with or on the
system. For instance, the classical quality attribute maintainability is described as the efficiency and
effectiveness of conducting the maintenance activity. This definition of maintainability is also in
concordance with the definition in ISO 25010 [65], stating the degree of effectiveness and efficiency
with which the product can be modified. The ISO 25010 refers to the activity of modifying the
product, while we explicitly talk about the maintenance activity.

The benefit of reasoning about activities is that they provide a clear decomposition criterion: Activ-
ities may be decomposed into sub-activities. For instance, maintaining a system means conducting
the following sub-activities: analyzing the change request and the existing system, modifying the
system, and verifying the modified system. This leads to the introduction of analyzability, modifia-
bility, and verifiability as sub-quality attributes of maintainability.

As a starting point for the development of our quality model, we use the quality attributes of
ISO 25010 [65]. We redefine them according to the activities defined in Section 6.1.2, by removing
and adding new quality attributes where necessary.

The main part of the developed quality model consists of a tree of quality attributes. This tree
contains all quality attributes constituting the quality of a system. They were defined so as to be as
non-overlapping as possible. Figure 6.3 shows the hierarchy of these quality attributes.

Besides the main tree of quality attributes, there is a list of auxiliary quality attributes, which are
overlapping with the main quality attributes. Each of these quality attributes includes multiples of
the main quality attributes or of parts of them. For instance, the auxiliary quality attribute porta-
bility is a combination of adaptability and releasability, whereby adaptability is a special type of
maintainability.

A third kind of quality attributes are orthogonal to other kinds of quality attributes. They are pro-
vided as a separate list.

Figure 6.3 shows the quality attribute hierarchy. The quality attributes are defined thereafter.
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Figure 6.3: Quality Attribute Hierarchy
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Main Quality Attributes

Quality. The degree to which the system sat-
isfies the requirements of all stakehold-
ers.

Quality in End-Use. The degree to which the
system satisfies the requirements of the
end user.

Usability. The degree to which the system en-
ables effective use by the end user. Using
the system includes operating (i.e., inter-
acting with it) and reading/understanding
the documentation.

Operability. The degree to which the system en-
ables effective operation by the end user.
Operation by the end user includes provid-
ing input to the system and perceiving and
understanding the output of the system.

Error protection. The degree to which the
system prevents the end user from wrong
and/or accidental input to the system.

Accessibility. The degree to which the sys-
tem enables end users with disabilities op-
erating the system efficiently and effec-
tively.

Learnability. The degree to which the docu-
mentation of the system is suited to effi-
ciently and effectively instructing the end
user in operating the system.

Functional Suitability. The degree to which
the system provides functionality that sup-
ports the tasks of the end user.

Functional Correctness. The degree to which
the system provides the correct results
with the required degree of precision.

Functional Appropriateness. The degree to
which the functionality of the system sup-
ports the tasks of the end user.

Functional Completeness. The degree to which
the tasks of the end user are covered by the
functionality of the system.

Time Behavior. The degree to which the sys-
tem satisfies required response times and
throughput rates.

Response Time. The degree to which the sys-
tem satisfies required response times.

Throughput. The degree to which the system
satisfies required throughput rates.

Reliability. The probability of the system to be
functionally correct (see functional cor-
rectness) at any time.

Security. The degree to which the system pre-
vents unauthorized actors from: (1) read-
ing or modifying data of the system and
(2) preventing authorized actors from us-
ing the system.

Confidentiality. The degree to which informa-
tion and data are protected from unautho-
rized disclosure.

Integrity. The degree to which the system pre-
vents unauthorized reading or modifying
of data.

Safety. “[T]he degree to which a product or
system does not, under specified condi-
tions, lead to a state in which human life,
health, property, or the environment is en-
dangered” [65].

Economic Damage Risk. “[T]he degree of
expected impact of harm to commercial
property, operations or reputation in the
intended contexts of use” [65].

Health and Safety Risk. “[T]he degree of ex-
pected impact of harm to people in the in-
tended contexts of use” [65].

Environmental Harm Risk. “[T]he degree of
expected impact of harm to property or
the environment in the intended contexts
of use” [65].

Quality in Development and Evolution. The
degree to which the system satisfies the re-
quirements of the stakeholders concerned
with tasks regarding the development and
evolution of the system. The evolution of
a system includes maintaining and releas-
ing it.

Maintainability. The degree to which the sys-
tem can be maintained efficiently and ef-
fectively. Maintaining the system means
the modification of the system to cor-
rect faults, to improve it to prevent future
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faults, or to adapt the product to satisfy
changed requirements.

Analyzability. The degree to which the sys-
tems enables: (1) the study of the feasi-
bility and scope of a requested modifica-
tion and (2) the devising of a preliminary
plan for design, implementation, test, and
delivery.

Modifiability. The degree to which the systems
can be modified by using the results of the
design phase, the current source code, and
project and system documentation.

Verifiability. The degree to which the sys-
tem enables the test for satisfaction of the
changed requirements.

Testability. The degree to which the system en-
ables to conduct software tests to assess
the satisfaction of requirements.

Reviewability. The degree to which the system
enables to conduct reviews of it.

Releasability. The degree to which the system
can be efficiently and effectively released
to customers. Releasing means building,
naming, packaging, releasing a particular
version of the system, installing, and mak-
ing it operational for the customers.

Configurability. The degree to which the
system can be efficiently and effec-
tively adapted to certain circumstances by
means of using the built-in functionality
of the system; i.e., without changing the
system itself.

Installability. The degree to which the system
can be efficiently and effectively installed
and/or uninstalled in a specified environ-
ment.

Reusability. The degree to which the system can
be efficiently and effectively used as part
of another software.

Quality in Operation. The degree to which
the system satisfies the requirements of
the stakeholders concerned with operating
the system. Operating includes operation
of the hardware, and providing support to
end users.

Executability. The efficiency with which the
system can be executed on the target hard-
ware.

CPU Consumption. The efficiency with which
the system uses the computing resources
of the CPU.

Memory Consumption. The efficiency with
which the system uses the memory of the
hardware.

Co-existence. The degree to which the system
can co-exist with other independent sys-
tems in a common environment, sharing
common resources without any detrimen-
tal impacts.

Supportability. The degree to which the sys-
tem enables providing technical assis-
tance, consulting with the user, record-
ing user support requests, and triggering
maintenance activities.

Quality in Business. The degree to which
the system satisfies the requirements of
the stakeholders concerned with acquiring
software.

Appraisability. The degree to which acquisi-
tioners can efficiently and effectively as-
sess whether the system satisfies their re-
quirements.
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Auxiliary Quality Attributes

Performance

Portability

Adaptability

Adaptability. A special type of maintenance,
with the goal of adapting the system to
satisfy changed requirements. Two other
special types of maintenance are correc-
tive and preventive maintenance.

Portability. The degree to which the system
can be efficiently and effectively trans-
ferred from one hardware, software or

other operational or usage environment to
another. Transferring the system means
adapting it, and releasing it. Thus, porta-
bility is a combination of adaptability and
releasability.

Performance. Subsumes the time behavior,
CPU consumption, and memory consump-
tion.

Orthogonal Quality Attributes

Pleasure

Comfort

Satisfaction

Trust

Purposefullness

Attractiveness

Satisfaction. The degree to which the system
makes the end user feel satisfied by using
it.

Purposefulness. The degree to which the
end user “is satisfied with their perceived
achievement of pragmatic goals, includ-
ing acceptable perceived results of use and
consequences of use” [65].

Trust. The degree to which the end user “is sat-
isfied that the product will behave as in-
tended” [65].

Pleasure. The degree to which the “end user
obtains pleasure from fulfilling their per-
sonal needs” [65].

Attractiveness. The degree to which the end
user considers the product to be attrac-
tive.
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6.2 A Quality Model for Java Source Code

In this section, we describe a quality model for Java source code. First, we describe how it was
developed based on the “base model” of the Quamoco project. Second, we explain its structure in
detail.

6.2.1 Transformation of the Quamoco Model

The quality model for the Java source code is an adaptation of the Quamoco base model [126].
The Quamoco project developed a meta-model for quality models that has more degrees of freedom
than our model. In the following, we introduce the main elements of it and our approach to con-
verting it. Figure 6.4 shows the meta-model as an UML class diagram. The main concept of this
meta-model is a Factor. A factor is the equivalent of a quality-property in our model. The concept
of an Entity is the equivalent of our concept of a class. Quamoco differentiates between Product
Factors, being equivalent to our component properties and Quality Aspects, being equivalent to our
quality attributes. The main difference to our model is that in Quamoco there is only one relation
between factors, called Refinement. This relation can be used arbitrarily by the modeler, i.e., it is
not constrained by the entities and their relations. Furthermore, in Quamoco the normalizations/e-
valuations/aggregations are arbitrarily specified by the modeler by Evaluations, which allow the use
of a functional programming language.

The Quamoco model was automatically transformed to a model (partially) conforming to our meta-
model. The transformation of elements and relations was performed as shown in Table 6.5. For
deciding whether a Refinement must be converted to a restriction or division, a heuristic was used:
If the entity of two refining factors is the same, then a division is used; in all other cases a restriction
is used.

After the automatic transformation, the resulting quality model did not fully conform to our meta-
model. Hence, in the second step the entire model was manually reviewed and adapted to the con-
cepts of our meta-model. In particular, all evaluation/aggregation specifications had to be redone,
because our concept of operationalization is profoundly different to that of Quamoco. In Quamoco
all measurement values are aggregated to the product level first and then aggregated alongside the

Entity
Product
Factor

Quality
Aspect

Impact

part-of re�nes

is-a Measure

Factor

re�nes

Evaluation

Instrument

uses

Figure 6.4: Quamoco Meta-Model
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Quamoco Model Our Model
Entity → Class
Factor → Quality-Property
Refinement → Restriction OR Division
Impact → Impact
Measure AND Instrument → Measure

Figure 6.5: Transformation of Model Elements

structure of the factor hierarchy, whereas in our model the aggregation steps take place individually
for each object and the aggregation to product level is done at the impacts.

The definition of the evaluation and aggregation specifications in particular includes defining thresh-
old values for fuzzification functions, defining threshold values for distribution functions at impacts,
and defining ranks/weights for weighted-sum aggregations in the quality attribute hierarchy. In the
following, for all model elements we describe how they were filled-in by either expert opinion or
benchmarking data.

Fuzzification of Measurement Values (see Section 5.2.2)
The threshold values for the mapping functions for measurement values are derived from experts.
First, the answers of the different experts are collected. Then, the agreement of the different experts
is determined by calculating the variance of the values. As a threshold in the quality model, the
mean of the values is used.

Weighting of Impacts (see Section 5.2.5)
For each impact in the quality model, a way of weighting has to be chosen. For all impacts having
complete data available, we use the mean function, calculating the mean of the values of all objects.
For impacts relying on data based on findings, ranges are used. Thus, for each impact an appropriate
range class has to be chosen. As a predefined range-class we automatically choose the smallest
class, i.e., the deepest possible class in the composition hierarchy. For instance, if a range-class
for expression has to be chosen, there are three possibilities: file, class, and method. In this case
method is chosen, because it is part-of the others. These automatically-determined range-classes
are reviewed manually and changed if necessary.

Ranking of Aggregations of Impact Values (see Section 5.2.5)
Quality attributes impacted by component properties use ranking aggregations to aggregate the val-
ues of multiple impacts. The ranks of the single impacts are chosen by expert opinion. As a result
of the high number of impacts (370) in the Java quality model, the ranks were not chosen indepen-
dently by multiple experts and then checked for correspondents, but instead were set by an experts’
discussion. As mentioned in Section 5.2.5, rankings are well suited to being discussed and set in
group discussions. As a support, the following guideline for assigning a rank to an impact was de-
fined: Consider a component property has an impact on a quality attribute; then the following ranks
are given:

1. Rank 1: The impact receives the rank of 1 if the quality-property has an outstanding influence
on the quality attribute. For instance, [Cloning∣Source code] is known as having a major
impact on modifying the source code, because each modified part of the source code must be
checked for clones that may have to be changed too.
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[Attribute | Product part]

[Attribute | Source code]
[Attribute | Source code part]

[Ambiguous Reference vs Value Type Usage | Source code part]
[Behavioural Integrity | Source code part]

[Centrality | Source code part]
[Conformity to naming convention | Source code part]
[Conformity to naming convention regarding capitalization | Source code part]
[Definition and Usage Consistency | Source code part]
[Definition and Usage Consistency Regarding Scope | Source code part]
[Detail Complexity | Source code part]
[Development Environment Independence | Source code part]
[Documentation degree | Source code part]
[Encapsulation Strength | Source code part]
[General Expression Applicability | Source code part]
[Interface and Implementation Consistency | Source code part]
[Interface Permission Consistency | Source code part]
[Literal Validity | Source code part]
[Method‐Pair Consistency | Source code part]

[Modifier Consistency | Source code part]
[Overseen Side‐Effect | Source code part]

[Behavioural Integrity | Clone method]

[Behavioural Integrity | Comparison method]

[Behavioural Integrity | Finalizer]

[Finalizer does not call superclass finalizer | Finalizer]

[Finalizer nullifies superclass finalizer | Finalizer]

[Behavioural Integrity | Iterator]
[Behavioural Integrity | Loop]
[Behavioural Integrity | ToString Method]

…

FindBugs (FI_MISSING_SUPER_CALL)

FindBugs (FI_NULLIFY_SUPER)

Legend:
restriction

division

measurement

Figure 6.6: Structure of the Quality-Property Hierarchy in the Java Model
(Excerpt of the full model)
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2. Rank 2: The impact receives the rank of 2 if there is a clear and direct connection from
the quality-property to the quality attribute. For instance, the impact of [Synchronization
integrity∣Class] on reliability got a rank of 2, because wrong synchronization may lead to
deadlocks. Obviously, a deadlock results in a crash, which is clearly related to reliability.

3. Rank 3: The impact receives the rank of 3 if there is only an indirect connection from the
quality-property to the quality attribute. The same quality-property as in the example above –
[Synchronization integrity∣Class] – receives the rank 3 for its impact on analyzability, because
classes handling synchronization in a rigorous manner are usually easier to understand. Here,
the influence is considered only indirect and minor, because bad synchronization is not as
directly related to analyzability as, for instance, meaningful identifiers.

4. Rank 4: An impact receives the rank of 4 if the influence if considered minimal, although
worth modeling. For instance, the impact of [Synchronization overhead∣Class], describing
that a method is synchronized unnecessarily, on time behavior got rank of 4, because entering
and exiting a synchronized block only consumes very little time in comparison to entering and
exiting non-synchronized methods.

6.2.2 Structure of the Java Model

The model contains 10 quality attributes, which are impacted by component properties. The impacts
in the quality model always target leaf quality attributes. The model contains 370 impacts, 566
component properties, of which 378 are leaves. Figure 6.6 shows the structure of the component
property hierarchy. The root quality-property is [Attribute∣Product part], which is restricted by
two quality-properties which are specific for source code. The quality-property [Attribute∣Source
code part] serves as a root quality-property for all quality-properties referring to constructs of the
source code. It is divided into several quality-properties that describe general attributes of source
code, e.g., Behavioral integrity, defined as follows: “An object’s behavioral integrity is present if
it behaves according to the semantic assumptions associated with it”. Each quality-property on
this level of the hierarchy is restricted by quality-properties with specific classes, such as Clone
method, Comparison method, or Finalizer. These quality-properties are already concrete enough
to be measured by their direct children. The quality-property [Behavioral integrity∣Finalizer], for
instance, has two sub-quality-properties [Finalizer does not call superclass finalzer∣Finalizer] and
[Finalzer nullifies superclass finalizer∣Finalizer], which are directly measured by FindBugs rules.
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7 Tool Support

In this chapter, we describe the two parts of the tool support. First, the quality model editor is
introduced, which is used to create and edit quality models conforming to the given meta-model.
Second, we introduce the quality assessment framework, which conducts quality assessments based
on a given quality model.

7.1 Quality Model Editor

Real quality models usually grow very large and consist of several hundred model elements. Thus,
tool support is needed to build quality models conforming to the given meta-model. The quality
model editor developed for this thesis is based on the editor developed in the Quamoco project [27].
Due to the different meta-model and the completely different aggregation specifications, the editor
is a substantial modification of the Quamoco editor. Figure 7.1 shows the main user interface of it.
It consists of the following elements:

1. Hierarchical Views: The content of the quality model is represented in the form of several
views onto it:

a) Property Hierarchy View shows all quality-properties in the hierarchy induced by the re-
lations restriction and division.

b) Class Hierarchy View shows all classes in the hierarchy induced by the relations general-
ization and composition.

c) Tool View allows the tools used for measuring quality-properties to be modeled. They are
needed for the connection to the assessment toolkit.

2. Content Editor: If an element is selected in a hierarchy view then its attributes can be edited
in this view.

3. Problems View: The editor continuously checks conformity of the built model to the meta-
model. All violations are shown in this view.

In the property hierarchy, the directed acyclic graph formed by the restriction/division relations is
represented as a tree. Obviously, there are multiple ways of transforming this graph into a tree. In
order to ensure an unambiguous representation of the quality-property tree, we do not allow two
children of a node to be in a restriction relation. Figure 7.4 shows how a restriction-hierarchy is
represented in the editor. Figure 7.4a shows the restriction relation of the actual quality model.
Figure 7.4b shows the most straightforward representation of the model as a tree; only transitively
induced restriction relations are omitted. Figure 7.4c shows that, for instance, the quality-property
[a∣c3] can be omitted, so that [a∣c4] directly restricts [a∣c1]. Not allowed is the tree of Figure 7.4d,
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Figure 7.1: Screenshot: Main View of the Quality Model Editor

Figure 7.2: Screenshot: Editing a Quality-Property that is Divided into Other Proper-
ties

Figure 7.3: Screenshot: Editing an Impact
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[a | c1]

[a | c2] [a | c3]

[a | c4]

Model Representation

[a | c1]

[a | c2]

[a | c3]

[a | c4]

[a | c1]

[a | c2]

[a | c4]

[a | c1]

[a | c2]

[a | c3]

[a | c4]

[a | c3][a | c1]

[a | c4]

(a)
(b) (c)

(d) (e)

Figure 7.4: Representation of Restrictions in the Editor

where both [a∣c3] and [a∣c4] are direct children of [a∣c1]. Obviously the construct in Figure 7.4e is
also not allowed, because it contradicts the definition of the restriction relation.

User Support by the Editor

In order to facilitate the creation of valid quality models, the editor supports the user in the fol-
lowing ways. When a new quality-property is added to this hierarchy, the user has to decide if it
is restricting or dividing its parent-property. The editor automatically sets the name or the class
of the quality-property correctly, i.e., a restricting quality-property must have the same name as its
parent-property (Section 4.4.1) and a dividing quality-property must have the same class as its par-
ent property (Section 4.4.2). Furthermore, when changing the name or class of a quality-property,
the editor only allows the creation of valid models:

1. That means if a quality-property is restricted by another quality-property, its name cannot
be changed (in the screenshot in Figure 7.2 the field name is disabled) and if the name of a
quality-property is changed, then the names of all restricting quality-properties are changed
automatically.

2. If the class of a restricting quality-property is changed, only subclasses of the class of its
parent quality-property are shown for selection (Section 4.4.1). Furthermore, the editor checks
the constraint for inheritance (Section 4.4.3) and shows a warning if a quality-property is not
correctly inherited alongside the restriction hierarchy.

For the automated quality assessment, aggregation functions must be specified in the quality model.
For instance, if a quality-property is divided into other quality-properties, it is necessary to specify
an aggregation function, as explained in Section 5.2.4. The four aggregation functions that were
identified as commonly used are integrated into the editor. They can be specified using sentence
patterns as shown in the screenshot in Figure 7.2.
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For each impact in the model, it must be specified how it is weighted. The concept of
ranges (see Section 5.2.5) is fully integrated into the editor. Depending on the domain of
the quality-property under consideration, a list of all possible ranges is determined. This
takes the composition relation of the class and the available measures of the tooling into
consideration. Furthermore, the linear distribution function and its thresholds can be edited
in a table. Figure 7.3 shows a screenshot of the respective form, whereby the impact
[Correctness∣Arithmetical expression] ⊕ÐÐ→[Functional correctness∣Product] is being edited. The
user can choose between three ranges: method, class, and source file. For the linear distribution
function, the user can enter the threshold values. In the example, the following mapping was en-
tered: 75% affected↦ 0.0, 90% affected↦ 0.5, and 100% affected↦ 1.0.

Checking of Constraints in the Editor

The editor checks meta-model constraints and reports its violations. Subsequently, we describe the
checks firing most frequently.

All constraints mentioned in the scenarios above are also checked as constraints. Although the
wizards of the editor prevent the creation of invalid models in a straightforward manner (e.g. it
prevents the selection of an invalid range-class), there are other ways to invalidate the model. For
instance, instead of selecting an invalid range-class, the user can change the container of a class
already used as range-class, so that the class is no longer valid as class-range. To detect invalid
models constructed this way, all constraints used by the various wizards are checked independently
and violations are reported.

In addition to the constraints mentioned above, the editor checks some basic constraints, such as
circularity. When modifying a large quality model, circular references are sometimes introduced
inadvertently. The immediate reporting of such errors helps in keeping a model valid.

A constraint of the meta-model, not used by a wizard, is that of inheriting abstract divisions along-
side restrictions. In the quality-property tree in the editor, the inherited quality-properties must be
manually created. If such a quality-property is missing, the editor shows a warning.

Another important constraint, not emerging from the meta-model, but from the representation of the
property hierarchy as a tree (see Figure 7.4) is the following: A quality-property must not have two
children being in a restriction relation. This constraint is also checked by the editor and reported.

7.2 Quality Assessment Tool

Like the quality model editor, the tool support for conducting quality assessments is also based on
the Quamoco tooling, which itself is built on the quality analysis framework ConQAT1.

Figure 7.5 illustrates the tool-chain used for quality assessments. The quality model is created
with the quality model editor. It serves as input to the quality assessment tool. Depending on
the measures and tools specified in the quality model, ConQAT executes external tools such as
Findbugs and PMD, or uses its built-in analysis components, such as the Clone Detective. The

1http://www.conqat.org/
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7.2 Quality Assessment Tool

QM‐Editor

Quality Model

FindBugsPMD

Clone Detective

Quality Assessment Result

Result Log

External Tool Results

Quality Assessment Tool

Figure 7.5: Tool-Chain for Quality Assessment

obtained measurement data is then aggregated according to the specifications of the quality model.
The results are saved in a file that can be loaded in the editor for visualization. At the same time,
the quality assessment tool itself produces an output with logs and visualizations of the quality
assessment results.

The quality assessment tool provides the following features:

Complete implementation of the quality assessment approach of Chapter 5.
One technical challenge was to realize the concept for handling incomplete measurement data.
In order to represent the potentially infinite set of possible values as a finite data structure,
we chose a list of intervals. For the realization of the approach for handling findings-based
measurement data of Section 5.4.3, the data structure of a map was used.

Flexible integration of analysis tools.
In the quality model editor, the measures and tools are modeled as references to ConQAT block
names. This way, new tools can be integrated without changing the source code.

Visualization of Assessment Results in the Editor.
The result files produced by the quality assessment tool can be loaded to the quality model ed-
itor. The quality model editor provides several visualization possibilities: Figure 7.6a shows a
histogram of the degree of satisfaction for all objects of a certain quality-property. Figure 7.6b
shows a tree-map view of the property hierarchy. In the tree-map for a given quality-property,
the rectangles denote sub-properties, whereby the area of the rectangles reflect their weight for
aggregation and the color indicates the assessment value. The tree-map allows navigating the
property hierarchy by double-clicking on the rectangles for sub-properties.
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7 Tool Support

(a) Histogram View

(b) Tree-Map View

Figure 7.6: Visualization of Assessment Result in the Quality Model Editor
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In this section, we present a case study on the quality model for Java source code. The first research
question investigates the suitability of the meta-model for creating large quality models. The next
five research questions will focus on evaluating the results of automatic quality assessments using
the quality model. The sixth and last research question addresses a main threat-to-validity of the
other research questions. Since a benchmarking approach is used to find threshold values for the
evaluation specifications in the quality model, we will show that the results of the other research
questions do not depend on the chosen benchmarking base.

The first section of this chapter describes the study objects. The sections following thereafter are
dedicated to one research question each.

8.1 Study Objects

The primary study object is the quality model for Java source code presented in Section 6.2.

For conducting automated quality assessments, software products to be assessed are needed. We
used the repository SDS [5,119], containing about 18,000 open-source Java projects. These projects
have been mostly retrieved from open source databases such as Sourceforge by a Web-crawling
approach. In essence, this repository contains mirrors of the version control repositories of the afore-
mentioned databases. Such repositories usually contain not only the current version of a software,
but also “branches” and “tags”. Thus, we use a heuristic to identify the directory containing the
current version. This heuristic reads as follows in pseudo-code:

i f not e x i s t s d i r e c t o r y ‘ t r u n k ’ i n r e c u r s i v e sub− d i r e c t o r i e s then
r e t u r n r o o t − d i r e c t o r y ;

e l s e i f t h e r e i s a sub− d i r e c t o r y ‘ t r u n k ’ i n d i r e c t sub− d i r e c t o r i e s then
r e t u r n t h e sub− d i r e c t o r y

e l s e
f o r each d i r e c t sub− d i r e c t o r y do

r e p e a t t h i s a l g o r i t h m
end

This heuristic is able to recognize the following patterns of directory structures:

1. The source code is located directly in the root directory.
2. The root directory contains the usual structure with “trunk”, “branches”, “tags”.
3. The root directory contains exactly one directory, which contains the source code.
4. The root directory contains exactly one directory, which contains the usual structure with

“trunk”, “branches”, and “tags”.
5. The root directory contains multiple Java projects in single directories (e.g., as usually found

in eclipse applications), which are then recognized as single projects.
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8 Case Study: Java Source Code Quality

The SDS repository only contains the source code, not the binaries. For the quality assessment
however, binaries compiled with the debug-option of the Java compiler are needed. We compile
all projects in a batch approach, because the effort to manually configure and compile them is
prohibitive. The compilation of all 18,000 projects took about 30 hours, executed in parallel on
12 personal computers. Of all available projects, about 6,000 were compiled successfully. Others
could not be compiled because of missing external libraries or because code needed to be generated
during the build process.

For the studies of RQ 2, RQ 3, and RQ 4 we use all systems of the SDS repository larger than
5.000 LoC as a benchmarking base. We exclude smaller systems, because many open source repos-
itories contain software projects initiated by single persons without finishing them; these projects
then remain in the repository without ever being used [11, 127]. In RQ 5, we conduct the studies of
RQ 2 to 4 with different benchmarking bases, randomly selected from the products with more than
5.000 LoC. The distribution of sizes of the used systems shows that half of the systems are smaller
than 11 kLoC and 90% of the systems are smaller than 50 kLoC. Only 54 systems are larger than
100 kLoC, with the largest system having 477 kLoC.

8.2 RQ 1: Suitability for Creating Realistic Quality Models

Is the proposed quality meta-model suitable for creating realistic quality
models?

We assess whether it is possible to create realistic quality models conforming to our meta-model.
A main problem of creating a quality model for real-world purposes, in contrast to an illustrative
example, is manage its size during creation and application. We assess whether it is possible to
build a realistic quality model with the tool-support built on the meta-model.

8.2.1 Design and Procedure

First, we evaluate the tasks conducted by the quality modeler during the transformation and manual
adaptation of the Quamoco Base Model to the meta-model of this thesis (see Section 6.2 for a thor-
ough description of this process). Second, we provide some descriptive statistics used for discussing
the structuredness of the resulting quality model.

1. Elaborate Tool-Support: The quality model editor already described in Chapter 7 is evaluated
regarding its support of a set of frequently conducted scenarios. We describe the scenarios
in detail and show how the quality model editor supports the user operations and/or avoids
introducing modeling mistakes by the user.

2. Building Large Quality Models: The developed quality model is analyzed for its structured-
ness by descriptive statistics. We calculate the minimum/average/maximum of the following
metrics: (1) number of sub-properties for component properties, (2) depth of the property hier-
archy of component properties, (3) number of impacts originating from component properties,
and (4) number of impacts targeting quality attributes.
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3. Completeness of the Java Quality Model: For an estimation of how well the quality attributes
are covered by component properties and measure, we estimate their completeness by counting
the measures per quality attribute.

8.2.2 Study Results

The results of RQ 1 are structured according to the four criteria described in the study design.

Wizards Supporting Creation and Modification

In order to support the user in creating quality models, the quality model editor makes use of the
various relations and constraints in order to support the user. In the following we describe typical
scenarios and explain how the editor supports them.

Changing Property Names
The meta-model defines that a quality-property restricting another quality-property must have the
same name. Thus, if the name of one quality-property is changed, then the editor changes the names
of all restricting quality-properties accordingly.

Changing Classes
The meta-model defines that a quality-property dividing another quality-property must have the
same class. Thus, if the class of one quality-property is changed, the editor changes the classes of
all dividing quality-properties accordingly.

Selecting a Class
The meta-model defines that if a quality-property p2 restricts a quality-property p1, the class of p2
must be a subclass of the class of p1. This constraint is used by the editor to facilitate the selection
of a class for a quality-property. If the quality-property restricts another quality-property, then the
wizard for the selection of a class shows only subclasses of the parent-property. In many cases this
wizard significantly shortens the list of classes the user has to choose from.
For instance, in the Java model the user wants to introduce a restricting quality-property for
[Definition and Usage Consistency∣Library Statement]. For the newly created quality-property, the
user then has to choose a subclass of Library statement. This means choosing between 21 instead
of 86 classes.

Selecting a Suitable Weighting
As described in Section 5.2.5, for rule-based static code analysis measures, we usually choose a
weighting by ranges. In this case, the modeler has the task to define a suitable range-class for the
given quality-property. The approach of ranges restricts possible range-classes to the parent classes
of the quality-properties’ class. The wizard in the editor uses this information in order to show only
possible range-classes.
In the Java model, for instance, this means that instead of showing all 86 classes the editor shows
typically only two or three classes.

Creating Classes
When creating a new class, the user first selects a superclass of the newly-created class. According
to the inheritance of the part-of relation alongside the is-a relation, the editor then automatically sets
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the newly-created class to have the same parent as its superclass. In the Java model, the inherited
parent was not changed in 76.9% of the classes. Hence, in three quarters of cases the user is saved
the effort of selecting the parent.

Selecting a Parent
In addition to the inheritance of the parent of classes alongside the is-a relation, the meta-model
also defines that the inherited parent must only be replaced with one of its children. This constraint
is used so that the wizard for changing the parent of a class only shows the allowed classes and not
all classes. Like in the scenario Selecting a Class the number of classes to choose from is sharply
reduced this way.

The Java model in Numbers

Number of Model Elements
In the following table we present the number of model elements to give an impression of the size
of the model.

Model Element Count
Classes 86
Quality Attributes 38
Quality Attributes with Ingoing Impacts 9
Component Properties 566
(Leaf) Component Properties with Measures 378
Component Properties with Outgoing Impacts 144
Component Properties for Structuring only 44
Impacts 370
Measures 378
Boolean Measures 369
Floating-point Measures 9

Size Metrics
For judging the structuredness of the quality model, we calculate several ratios shown in the
following:

Model element Min. Avg. Max.
Outgoing Impacts per Component Property 1 2.56 6
Ingoing Impacts per Quality Attribute 10 37.0 93
Number of Sub-Properties (Except Leaves) per Component Property 1 3.03 37
Depth of the Leaf Component Properties in the Hierarchy 2 5.01 6

Completeness of the Java Quality Model

In Table 8.1, we present the number of measures per quality attribute.
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Quality Attribute Number of uniquea measures
Usability 0

Operability 0
Learnability 0

Functional Suitability 246
Functional Correctness 217
Functional Appropriateness 0
Functional Completeness 0
Time Behavior 99

Reliability 162
Security 28

Confidentiality 0
Integrity 0

Safety 0
Economic damage risk 0
Health and safety risk 0
Environmental Harm Risk 0

Maintainability 290
Analyzability 262
Modifiability 88
Verifiability 62

Releasability 0
Configurability 0
Installability 0

Reusability 45
Executability 102

Resource Utilization 102
Co-existence 0

Supportability 0
Assessability 0

aIt is possible that one measure influences a quality attribute twice through two different impacts. For instance, the
measure number of methods per class measures the quality-property [Detail complexity∣Java Class], which has an
impact on Analyzability and Modifiability. The measure is only counted once for Maintainability, which is divided
into these two quality attributes.

Table 8.1: Completeness of the Java Model
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8.2.3 Discussion

Elaborate Tool-Support
By the description of the scenarios we have seen the following advantages: If a model element
is renamed, all dependent model elements are renamed too. When selecting a model element in
a wizard, the tooling only shows allowed model elements. This way, the number of elements to
select from is reduced by up to 90%. This strongly reduces the effort needed for selecting the right
element by the user. When creating new classes, some of their attributes are set automatically using
an inheritance constraint. We have shown that the inherited default value is changed in less than a
quarter of cases. In this way, too, the effort for the user is reduced strongly.

Building Realistically Large Quality Models
In the quality model there are 144 component properties with outgoing impacts. These impacts are
targeting only 10 quality attributes. Thus, a quality attribute is targeted by an average of 37 impacts
(maximum: 93). This high number of ingoing impacts per quality attribute is seen as problematic,
because the modeler may get lost in it. Yet, a component property with outgoing impacts has an
average of 2.56 (maximum: 6) of them. Thus, from the viewpoint of the component properties the
impacts are manageable. Furthermore, an average of 2.56 and a maximum of 6 shows that the im-
pacts are evenly distributed.
The structuredness of the hierarchy of component properties is discussed by looking at the number
of sub-properties. Each component property (leafs excluded) has an average of 3.03 sub-properties.
The depth of the hierarchy averages at 5, with a maximum of 6. Thus, we conclude that the compo-
nent property hierarchy is evenly distributed and balanced.
Another observation is that the Boolean measures clearly outnumber other measures. This can be
explained by the fact that rule-based static code analysis tools check a large number of rules as a
matter of principle.
Summing up, we conclude that the built quality model is well-structured and well-manageable.

Completeness of the Java Quality Model
The analysis of completeness shows us that the coverage of the quality attributes by measures is
very diverse. Only six top-level quality attributes (functional suitability, reliability, security, main-
tainability, reusability, and executability) have a high coverage. Some quality attributes, such as
usability, are not associated with any measure. We interpret this uneven distribution to be a con-
sequence of using exclusively source code measures. It is understandable that maintainability and
reliability mostly rely on source code properties, while usability cannot be assessed by looking at
the source code.

Threats to Validity

For increasing the internal validity, we used triangulation to show the suitability of our meta-model
to build realistic quality models: (1) we constructively analyzed scenarios and (2) we discussed the
structuredness using descriptive statistics. The external validity is limited, because we only built one
quality model for source code quality of one programming language. However, for models referring
to source code quality, we assume good generalizability, because the model itself is extensive and it
incorporates different types of measures.
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8.3 RQ 2: Differentiation of Software Products

Do products of different quality get different quality assessment results?

Using the tool support, we conduct a quality assessment of software products. Then, we analyze the
assessment results regarding diversification. Diversification describes whether the quality assess-
ment yields different values for products with different quality levels.

8.3.1 Study Design and Procedure

To get an intuitive impression of the distribution of the assessment result values, we first print
histograms for all quality attributes. Furthermore, we calculate the following descriptive statistics:
minimum, maximum, mean, standard deviation, and quantiles.

For evaluating the diversification of software products via entropy we use a similar study design as
published by Kläs et al. [89]. As prime measure for the diversification, we use the entropy. It is a
measure commonly used in operational research for “diversification” [148]:

Definition 8.1 Entropy. The entropy in information science is defined as follows:

E = −∑pi × ln(pi)
i = 1 . . .m
pi is the probability to obtain scale level i

An entropy of E = 0 means there is a probability of 100% for obtaining the same assessment results
for all products; thus there is no differentiation at all. The other extreme is that all scale levels are
equally distributed, resulting in a high value of E. Since the maximum value of E depends on the
number of scale levels m, we define a normalized entropy yielding values between 0 and 1:

Definition 8.2 Normalized Entropy. The normalized entropy yields values in a range between 0
and 1. It is defined as follows:

e = − 1

ln(m)
×∑pi × ln(pi)

The quality model yields evaluation results as floating point numbers in the range from 0 to
1. To get to discrete values, we map them to a discrete scale between 0 and 19, by applying
f(x) = ceil(x ∗ 20). This way, the entropy can be calculated for the data. In order to use this
equation to estimate the diversification provided by our evaluations, we have to approximate the
probability values pi for each scale level. We can do this by determining the ratio between the
assessment results in the sample with level i (ni) and the total number of results in the sample
(n):

pi =
ni
n

for i = 0 . . .19.
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In order to define a threshold above which the diversification is considered satisfactory, an as-
sumption about the distribution of the assessment results must be made. The visual interpretation
of the histograms leads to the assumption of either a normal distribution or a logarithmic normal
distribution. Therefore, we formulate two hypotheses about the distribution.

Hypothesis H10: The quality assessment results are normal distributed.
Hypothesis H1A: The quality assessment results not are normal distributed.

For testing for normality we use a Shapiro-Wilk test [136]. This test can be applied to samples of
sizes 3 < n < 5000 and has good statistical power for small sample sizes too. We choose an alpha
level of α = 0.05 for rejecting the hypothesis of normal distribution. We use the p-value of the test,
i.e., the hypothesis H10 is rejected for p < 0.05.

Hypothesis H20: The quality assessment results are log-normal distributed.
Hypothesis H2A: The quality assessment results are not log-normal distributed.

We conduct a Kolmogorov-Smirnov (K-S) test [107] for this hypothesis. This test has the advan-
tage that it can be applied not only to test for normality, but it can be used to compare a sample
distribution with an arbitrary reference distribution. It is known to be very robust and reliable. To
conduct the K-S test for log-normal distribution we compare the sample distribution to the assumed
theoretical logarithmic normal distribution LN (µ,σ). The parameters µ and σ of the distribution
best fitting to our sample data are unknown and have to be determined. We determine these values
by defining an optimization problem, searching for values for these parameters so that the p value
of the K-S test is maximized. To obtain start-values for the optimization problem solver we use the
following relations of the parameters µ and σ to the mean and standard deviation:

E[X] = eµ+
1
2σ

2

s.d.[X] = eµ+
1
2σ

2√
eσ2 − 1

(8.1)

Accordingly, if E[X] and s.d.[X] are given, µ and σ can be estimated as follows:

µ = ln E[X] − 1

2
ln

⎛
⎝

1 + (s.d.[X]
E[X]

)
2⎞
⎠

σ =
√

ln(1 + ( s.d.[X]
E[X] )

2
)

(8.2)

We choose an alpha level of α = 0.05 for rejecting the hypothesis H20 of logarithmic normal
distribution, i.e., the hypothesis is rejected for p < 0.05.

Threshold for the Entropy

The assessment results are in a range of 0..1. Thus, we assume that the ideal log-normal distribution
has a mean E[X] = 0.5 so that it lies in the middle. The standard deviation we choose so that 98%
of the log-normal function lies within the 0..1 interval: ∫

1.0
0.0 φ(x) = 0.98. This results in a standard

deviation s.d[X] = 0.1921, shown in Figure 8.1a.

We allow deviations from this ideal distribution, up to different extremes. First, the mean remains at
0.50, but only half of the range 0..1 is used, i.e., the standard deviation was chosen so that 98% lay
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Figure 8.1: Normal Distributions with Different Means and Ranges
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within the interval [0.25,0.75]. This results in a standard deviation of 0.1044, shown in Figure 8.1b.
Second, we allow the mean to shift left to 0.25 and the function using the range [0.00,0.50]. This
log-norm function gets a standard deviation of 0.0960 and is shown in Figure 8.1c. Third, the means
shifts to 0.75 and the range is [0.50,1.00], resulting in a standard deviation of 0.1064, shown in
Figure 8.1d. Table 8.2 shows the entropies of these functions.

Log-Norm Distribution Entropy
Ideal 0.86
Small Range 0.71
Left-Shifted 0.66
Right-Shifted 0.70

Table 8.2: Entropies of Log-Norm Distributions

Summing up, the distribution is regarded as sufficient if the entropy is greater or equal to 0.66.

8.3.2 Results

Figure 8.2 shows histogram plots for all quality attributes of the quality model. Table 8.3 shows the
descriptive statistics for the quality attributes.

Hypothesis H1: The quality assessment results are normal distributed.

The results of the Shapiro test for normality can be found in Table 8.4. The Shapiro test rejected the
hypothesis H10 in favor of the alternate hypothesis. Therefore, we conclude that none of the quality
attributes is normal distributed.

Hypothesis H2: The quality assessment results are log-normal distributed.

The results of the K-S test for logarithmic normality can be found in Table 8.4. The hypothesis H10

of log-normality is rejected for five of twelve quality attributes.

Assessment of Differentiation by Entropy

For each quality attribute, we discretize the result values and calculate the entropy. Table 8.5 shows
the results of it.

8.3.3 Discussion

The hypothesis tests showed that normal distribution of the results was rejected for all quality at-
tributes. Logarithmic normal distribution was rejected for 5 of 12 quality attributes. Interestingly, it
was not rejected for the quality attributes Quality, Functional Suitability, or Maintainability, which
are the most complete quality attributes according to the discussion in RQ 1. Thus, we assume that
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Figure 8.2: Result Histograms
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Quality Attribute Min Q-25 Median Q-75 Max Mean Std.dev.
Quality 0.32 0.56 0.64 0.72 0.93 0.64 0.1083
Functional Suitability 0.34 0.63 0.72 0.79 0.98 0.71 0.1164
Functional Correctness 0.31 0.59 0.67 0.77 0.97 0.68 0.1268
Time Behavior 0.30 0.66 0.80 0.91 1.00 0.78 0.1558
Reliability 0.26 0.58 0.68 0.79 1.00 0.68 0.1436
Security 0.07 0.48 0.63 0.81 1.00 0.65 0.2110
Maintainability 0.11 0.29 0.37 0.46 0.85 0.38 0.1233
Analyzability 0.15 0.33 0.41 0.50 0.88 0.42 0.1226
Modifiability 0.03 0.16 0.24 0.35 0.84 0.27 0.1339
Verifiability 0.04 0.16 0.24 0.35 0.85 0.27 0.1513
Reusability 0.04 0.56 0.82 1.00 1.00 0.75 0.2401
Resource Utilization 0.16 0.49 0.63 0.77 1.00 0.63 0.1870

Table 8.3: Descriptive Statistics of Quality Attributes

Quality Attribute H10: Normality H20: Log-Normality
Shapiro test p Reject H10 K-S test p Reject H20

Quality 0.001842 yes 0.644082 no
Functional Suitability 0.000021 yes 0.057818 no
Functional Correctness 0.000005 yes 0.062310 no
Time Behavior 0.000000 yes 0.000000 yes
Reliability 0.000002 yes 0.037704 yes
Security 0.000000 yes 0.000003 yes
Maintainability 0.000000 yes 0.688586 no
Analyzability 0.000000 yes 0.685177 no
Modifiability 0.000000 yes 0.266487 no
Verifiability 0.000000 yes 0.323833 no
Reusability 0.000000 yes 0.000000 yes
Resource Utilization 0.000000 yes 0.000291 yes

Table 8.4: Test for Normal Distribution and Log-Normal Distribution

Quality Attribute Entropy Sufficient Differentiation
Quality 0.7323 ✓
Functional Suitability 0.7548 ✓
Functional Correctness 0.7833 ✓
Time Behavior 0.7970 ✓
Reliability 0.8168 ✓
Security 0.8907 ✓
Maintainability 0.7642 ✓
Analyzability 0.7630 ✓
Modifiability 0.7697 ✓
Verifiability 0.8018 ✓
Reusability 0.8220 ✓
Resource Utilization 0.8923 ✓

Table 8.5: Entropy of Quality Attributes
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quality attributes are log-normal distributed in general. Based on this assumption we also deter-
mined the threshold values for the test of differentiation using entropy.

The test for differentiation using the entropy showed that the entropy was higher than the defined
threshold for all quality attributes. Thus, we conclude that the differentiation of the products by the
quality model is sufficient.

Threats to Validity

Regarding internal validity, we do not know the “real” quality of the tested software products.
Hence, it could be possible that all software products are of the same quality and our quality model
should yield the same result for each of them. However, we regard this threat as minor due to the
high number of used systems (approx. 2000). We see it as unlikely that such a large number of open
source systems are of the same quality.

Another internal threat is the assumption of log-normality. Although the hypothesis of log-normality
was not rejected for the quality attributes with the best coverage, this is no proof for the results actu-
ally being log-normal distributed. Since the thresholds for the entropy are based on the assumption
of log-normality, this is a threat to validity.

A third internal threat is the usage of the entropy as a measure for differentiation. This measure
could be unsuited to testing the given hypothesis. Moreover, we had to discretize the result values
of the quality model, which could lead to distortion.

Regarding external validity, the generalizability of the results is limited, because we built a quality
model for source code for one specific programming language. Whether these results are valid for
other quality models is unclear. However, for quality models using static code analysis, we assume
good generalizability, because of the large extent of the quality model.

Another threat to generalizability is the fact that only open source products have been analyzed. It
is unknown if the results also apply for software products originating from other domains.

Third, the thresholds of the evaluation functions within the quality model have been determined by
a benchmarking approach. The used benchmarking base may have an influence on the results of the
quality assessment. To counter this threat we showed in RQ 6 that the results hold independently of
the chosen benchmarking base.

139
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8.4 RQ 3: Meaningfulness of Quality Assessment Results

Are the quality assessment results based on the quality model concor-
dant with expert opinion?

Using the tool support, we conduct a quality assessment of software products. Then, we analyze
the assessment results regarding validity. Validity means that the assessment results are in concor-
dance with the results obtained by another independent assessment approach. As an independent
assessment approach we use expert opinion.

8.4.1 Design and Procedure

In order to answer RQ 3, we compare the quality assessment results of the quality model, with the
expert assessment of the Linzer Softwareverkostung [51]. There, five open source systems in the
language Java have been assessed by 15 experts. The experts have been working in five groups.
Each group inspected each software product for about one hour. The result of the inspection was
the ranking of the five software products according to their quality. The goal of the inspection was
to look especially at the “internal”, i.e., source code quality of the products. After the inspections,
the different groups discussed their results and agreed on a common ranking of the five products.
Table 8.6 shows the ranking of the five products.

Next, we conduct the automated quality assessment using our quality model for the five systems. We
rank the five systems according to their results for [Quality∣Product] and [Maintainability∣Product]
because the focus of the expert assessment was code quality with a strong focus on maintainability.
Then, we compare the rankings of the Linzer Softwareverkostung with the results provided by our
quality model. For that, we use Spearman’s rank correlation coefficient (ρ) [141]. This coefficient
has a range of [−1; 1], whereby −1 indicates strong negative correlation and 1 a strong positive
correlation. A correlation thus means there is a high consistency between the two rankings.

For testing the correlation we do a hypothesis test, with an alpha level of 0.05. We state the following
null-hypothesis H30 in order to verify the alternative hypothesis H3A :

Hypothesis H30: There is no correlation between the rankings provided by the experts and
the quality model.

Product Version LoC1 Rank
Checkstyle 4.4 46,240 1
Log4j 1.2.15 30,676 2
RSSOwl 1.2.4 82,258 3
TV-Browser 2.2.5 125,151 4
JabRef 2.3.1 96,749 5

Table 8.6: Software Verkostung

1 Generated code was excluded.

140



8.4 RQ 3: Meaningfulness of Quality Assessment Results

Product LSV [Quality∣Product] [Maintainability∣Product]
Rank Value Rank Value Rank

Checkstyle 4.4 1 0.806 1 0.612 1
Log4j 1.2.15 2 0.617 2 0.414 2
RSSOwl 1.2.4 3 0.610 3 0.310 3
TV-Browser 2.2.5 4 0.505 4 0.239 4
JabRef 2.3.1 5 0.387 5 0.216 5

Table 8.7: Rankings of Software Products

Hypothesis H3A: There is a correlation between the rankings provided by the experts and the
quality model.

The Spearman’s rank correlation coefficient tests for the hypothesis H30 , i.e., we reject this hypoth-
esis if p < 0.05.

8.4.2 Results

First, we show the quality assessment results of the five products in Table 8.7. We can see that in
both cases the rankings are the same. This is reflected by Spearmans rank correlation coefficient,
which is ρ = 1 in both cases. Moreover, with a p-value of p = 0.01667 the hypothesisH30 is rejected
and thus the correlation is statistically significant.

8.4.3 Discussion

The result shows a perfect correlation between the quality assessment using the quality model and
the expert opinion. The correlation is statistically significant for both the quality attributes Quality
and Maintainability. Thus, we conclude that the quality model is able to generate quality assess-
ments that are in line with an expert opinion.

Threats to Validity

Regarding construct validity we have to note that we tested the ranking of products provided by
experts and the quality model. The ranking excludes information on the distance of quality between
two systems, which could impair the accuracy of the comparison.

Regarding internal validity, we cannot guarantee that the criterion chosen for the validation, namely
the expert-based quality rating, adequately represents the quality of the products.

Regarding generalizability, the same threats mainly exist as in RQ 2. First, we used a quality model
for source code quality for one programming language, although an extensive one with different
types of measures. Second, the result may depend on the used benchmarking base for determining
the threshold values of the evaluation functions. To mitigate this threat we showed the validity of
the results for different benchmarking bases in RQ 6.

141
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A third threat to generalizability is that we only used five open-source systems for assessing the
meaningfulness of the quality assessment. We regard the small number of systems as a minor
threat, because the correlation showed to be statistically significant. However, the fact that we used
only open-source systems may decrease the generalizability to other types of software.

8.5 RQ 4: Sensing of Quality Improvements

Are quality improvements between different versions of a software
product detectable by the quality assessment based on the quality
model?

An important use case for automatic quality assessments is the continuous control of quality. Thus,
a quality assessment approach should be able to detect quality improvements between different
versions of the same software product. We will analyze whether rather small changes in quality are
detectable.

8.5.1 Design and Procedure

For this research question, we compare the quality assessment results of different versions of the
same software. As a precondition for the study, we have to know for quality differences of the
compared versions from an independent source. We choose the software ConQAT1, because it is
open source and we are able to identify points in time when quality improvements did occur.

The development of ConQAT uses the review process LEvD [29]. Using the LEvD process each
source code file gets one of three states Red, Yellow, and Green. Red means that a file is currently
under work by a developer. When the developer finishes work, the file gets ready-for-review and it
gets the state Yellow. After another developer reviews the file, the developer either requires reworks
and sets the file to Red again, or accepts the file and it becomes Green.

The developers of ConQAT reported that before releasing a version of the software, they do a
“sprint” to get as many files as possible to the state Green. With the help of the diagram of file
states shown in Figure 8.3, they were able to reconstruct the timeframes when such sprints where
done. Together with the developers, three sprints were identified:

1. from 2009-07-17 to 2009-08-08
2. from 2010-01-24 to 2010-02-17
3. from 2010-10-09 to 2010-12-04

The developers generally expressed the opinion that the quality of the product increased through
these sprints. By focusing on the source code style and comments, the maintainability in particular
should have increased.

For studying the visibility of improvements we compare the quality assessment results for each
sprint. The results of the quality model are in concordance with the experts’ assessment if after

1http://www.conqat.org/
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each sprint an increase in quality is detected by the quality model. We do this comparison for
[Quality∣Product], [Maintainability∣Product] and for its sub-properties.

8.5.2 Results

The quality assessment results of ConQAT are shown in Table 8.8. For [Quality∣Product] the values
increased for two of three data points. For [Maintainability∣Product] the trend was only as expected
for one data point.

8.5.3 Discussion

The results regarding the visibility of improvements are ambiguous. Due to the reviews and im-
provements conducted on the product, an improvement of the quality was expected. However, an
improvement was detected by the quality model in two thirds of the cases for the quality attribute
Quality and only in one third of the cases for many other quality attributes. Thus, we cannot con-
clude that the quality model is able to detect such improvements in a software product.

Threats to Validity

A major threat to the validity of this study is uncertainty in the expert opinion regarding the quality
improvement. Though it is beyond question that reviews took place between the defined points in
time, it is unclear to what extent reworking has been done. Moreover, it is unclear if the rework
actually improved the quality. Furthermore, the experts explained that during these time periods
new code was implemented, which could distort the quality assessment. Second, only a relatively
small amount of the overall product has been changed at all during the review and rework periods.
Thus, the extent to which the overall quality was improved is lowered again. These two factors
could explain why the quality model was not able to detect an improvement altogether.

A threat to external validity is that only three improvement periods have been analyzed. Other
threats to external validity are the same as in RQ 2 and RQ 3. First, the quality model is limited
to source code of one programming language. Second, the used benchmarking base may have an
impact on the results (see RQ 6 for an in-depth analysis of the impacts of benchmarking bases).
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System Quality Functional
Suit.

Functional
Corr.

Time
Beh.

Reli-
ability

Security

2009-07-17 0.753 0.791 0.732 0.908 0.738 0.712
2009-08-08 0.783 0.815 0.756 0.933 0.765 0.705

✓ ✓ ✓ ✓ ✓ ◯
2010-01-24 0.778 0.810 0.749 0.931 0.756 0.714
2010-02-17 0.756 0.800 0.734 0.930 0.741 0.650

◯ ◯ ◯ ◯ ◯ ◯
2010-10-09 0.758 0.777 0.684 0.962 0.739 0.708
2010-12-04 0.760 0.796 0.711 0.964 0.721 0.712

✓ ✓ ✓ ✓ ◯ ✓

System Maintain-
ability

Analyz-
ability

Modifi-
ability

Verifi-
ability

Reusability Resource
Utiliza-
tion

2009-07-17 0.724 0.754 0.600 0.725 0.922 0.718
2009-08-08 0.751 0.772 0.610 0.782 0.951 0.799

✓ ✓ ✓ ✓ ✓ ✓
2010-01-24 0.738 0.758 0.604 0.766 0.931 0.789
2010-02-17 0.734 0.768 0.579 0.774 0.917 0.791

◯ ✓ ◯ ✓ ◯ ✓
2010-10-09 0.734 0.738 0.604 0.782 0.920 0.810
2010-12-04 0.720 0.759 0.587 0.770 0.828 0.827

◯ ✓ ◯ ◯ ◯ ✓

Table 8.8: Quality Assessment Result of different Versions of ConQAT
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8.6 RQ 5: Traceability of Results

Are quality improvements between different versions of a software
product traceable by the quality assessment based on the quality model?

It is important that the overall quality statement generated by the quality model is traceable to indi-
vidual defects in the source code. In a continuous application of the quality assessment, developers
must be able to drill-down changes in the overall quality assessment results to single measures and
positions in source code.

8.6.1 Design and Procedure

We use the study objects of RQ 4 for this research question. There, different versions with quality
improvements/degradations have been identified. Here, we will show how a developer can trace
the high-level change step-by-step to the location in the source code, which is responsible for the
change.

8.6.2 Results

We do the drill-down for the first sprint (versions 2009-07-17 and 2009-08-08) in order to show
where the change in the quality assessment result had its origin. Figure 8.4 shows the single
steps of the drill-down, which are explained subsequently. First, we start with the quality-property
[Quality∣Product] which increased from 0.753 to 0.783. Then, we take a look at the sub-properties
of it and at the relative impacts of their changes. The relative changes are given as percentages in the
table. We can see that the change of [Resource Utilization∣Product] had the biggest impact. Next,
we take a closer look at this quality-property by analyzing its sub-properties. This quality-property
has only two sub-properties, of which [Resource Utilization∣Product] had the bigger impact. This
quality-property is influenced by 36 sub-properties via impacts. Only three of the sub-properties
changed at all, with [Definition and Usage Consistency∣Resource Handle] having the biggest im-
pact. This quality-property is a findings-based component property and reports objects with a value
of 0, while all objects with a value of 1 are missing. Thus, we now print the number of findings for
this quality-property. It decreased from 28 to 11, causing the improvement in resource utilization.
[Definition and Usage Consistency∣Resource Handle] is divided into five other quality-properties,
whose number of findings are shown in the table. Of these sub-properties only one, namely [May
fail to clean up stream or resource∣Resource Handle] has findings at all. This quality-property is
directly measured by the tool FindBugs. Thus, we can take a look at the findings giving locations in
the source code. For one finding that appeared in the first version, but not in the second, we take a
close look at the source code. In the code snippet of 2009-07-17, we can see that a FileInputStream
is created in line 55 that is not closed if the length() or read() operation in lines 56/57 throw an
exception. In the version 2009-08-08, this quality deficit was resolved by using the library function
FileSystemUtils.readFileUTF8().

146



8.6 RQ 5: Traceability of Results

Property [Quality∣Product]
Property 2009-07-17 2009-08-08
[Quality∣Product] 0.753 0.783

Impact of Changes of Sub-Properties of [Quality∣Product]
Sub-Property Weight 2009-07-17 2009-08-08 Change
[Resource Utilization∣Product] 0.152 0.718 0.799 39%
[Functional Suitability∣Product] 0.246 0.791 0.815 19%
[Maintainability∣Product] 0.189 0.724 0.751 16%
[Reliability∣Product] 0.187 0.738 0.765 16%
[Reusability∣Product] 0.067 0.922 0.951 6%
[Security∣Product] 0.159 0.712 0.705 -4%

Impact of Changes of Sub-Properties of [Resource Utilization∣Product]
Sub-Property Weight 2009-07-17 2009-08-08 Change
[Definition and Usage Consistency∣Resource Handle] 0,111 0,626 0,818 79%
[Unneeded Resource Overhead∣String handling statement] 0,111 0,868 0,903 14%
[Unneeded Resource Overhead∣Type conversion expression] 0,044 1,000 0,983 -3%
[Unneeded Resource Overhead∣Object allocation statement] 0,044 0,980 0,992 2%
[Uselessness∣Assignment statement] 0,014 1,000 0,986 -1%
. . . (31 more sub-properties) 0%

Number of Findings of Property [Definition and Usage Consistency∣Resource Handle]
Property 2009-07-17 2009-08-08
[Definition and Usage Consistency∣Resource Handle] 28 11

Number of Findings of Sub-Properties of [Definition and Usage Consistency∣Resource Handle]
Sub-Property 2009-07-17 2009-08-08
[May fail to clean up stream or resource∣Resource Handle] 28 11
[May fail to close database resource∣Resource Handle] 0 0
[May fail to close database resource on exception∣Resource Handle] 0 0
[May fail to close stream∣Resource Handle] 0 0
[May fail to close stream on exception∣Resource Handle] 0 0

Findings of Property [May fail to clean up stream or resource∣Resource Handle]
2009-07-17 2009-08-08
. . . /clonedetective/tracing/CloneClassGateway.java:71,72,73
. . . /clonedetective/tracing/CloneGateway.java:215,217,218
. . . /clonedetective/tracing/DatabaseUtils.java:23,24,31,34
. . . /clonedetective/tracing/KeyValueGateway.java:50,51
. . . /clonedetective/tracing/UnitGateway.java:69,70
. . . /commons/input/PropertiesFileReader.java:82,83,85,86 . . . /commons/input/PropertiesFileReader.java:82,83,85,86
. . . /database/ValueSeriesProcessor.java:126,127 . . . /database/ValueSeriesProcessor.java:126,127
. . . /io/ZipFileCreator.java:66,69 . . . /io/ZipFileCreator.java:66,69
. . . /java/library/CachingRepository.java:157 . . . /java/library/CachingRepository.java:157
. . . /java/library/PackageDeclarationExtractor.java:62 . . . /java/library/PackageDeclarationExtractor.java:62
. . . /text/language/LetterPairDistribution.java:55,56,57

Code snippets of LetterPairDistribution.java
55: FileInputStream in = new FileInputStream(inputFile); 55: for (String line : StringUtils.splitLines(

56: byte[] buffer = new byte[(int) inputFile.length()]; 56: FileSystemUtils.readFileUTF8(inputFile))) {

57: in.read(buffer); . . .

58: in.close(); . . .

65: }

Figure 8.4: Drill-Down for the versions 2009-07-17 and 2009-08-08
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8.6.3 Discussion

The drill-down showed that the structure of the model and the tooling enable an effective traceability
of quality assessment results. It is easily traceable where the change of the overall result originated
from. In the example showed above, the static code analysis rule responsible for the biggest change
in the result could be easily detected and the relevant source code snippets could be found.

Threats to Validity

A threat to validity for this research question is that it was not conducted in an industrial setting with
developers. In practice, several factors, e.g., the integration of the approach into the development
environment, play a substantial role in the usefulness of an approach. Furthermore, only one data
point was analyzed.

8.7 RQ 6: Impact of Different Benchmarking Bases

How do different benchmarking bases influence the results of RQ 2,
RQ 3, and RQ 4?

Our quality assessment approaches relies on defining thresholds for measurement values by an
approach similar to benchmarking. Measurement values are calculated for all software products
of a given benchmarking base. Statistical values, such as mean, median, and quantiles, of those
data are used as threshold values. We analyze how the selection of different benchmarking bases
influences the results of RQ 2, RQ 3, and RQ 4.

8.7.1 Design and Procedure

To analyze the impact of different benchmarking bases on the results of RQ 2, RQ 3, and
RQ 4, we repeat those studies with the following benchmarking bases: First, we randomly select
500 products from all available products with more than 5.000 LoC. Second, we use large prod-
ucts (LoC > 100.000), and third, we calibrate with small products (10.000 < LoC < 20.000).

The procedure is as follows: The quality model is calibrated with these benchmarking bases. Then,
the studies of RQ 2, RQ 3, and RQ 4 are repeated. Finally, we compare the results and discuss the
influence of the benchmarking bases.
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8.7.2 Results

The benchmarking bases used were:
A Model calibrated with all products with LoC > 5.000 2041 products
B Model calibrated with randomly selected products 500 products
C Model calibrated with large products (LoC > 100.000) 65 products
D Model calibrated with small products (10.000 < LoC < 20.000) 607 products

Regarding RQ 2, we show the results of the test for log-normality in Table 8.9. We can see that the
results are the same for all benchmarking bases, except for the value of Functional correctness in
benchmarking base C. In Table 8.10, we see the values for the entropy for all quality attributes and
benchmarking bases. Here we can see that the result is the same for all benchmarking bases; the
entropy is above the defined threshold for all quality attributes.

Regarding RQ 3, the rankings of the five products for each benchmarking base are shown in Ta-
ble 8.11. We see that in two cases ([Quality∣Product] for benchmarking bases B and C) two prod-
ucts are interchanged in the ranking. For [Maintainability∣Product] all rankings by the quality
model correspond to the expert based rankings. If the rankings correspond, Spearman’s rank corre-
lation coefficient is ρ = 1, with a p = 0.01667, thus showing statistical significance. If two ranks are
interchanged, then ρ = 0.9, with a p = 0.08333, thus not being statistically significant.

Regarding RQ 4, the values for the quality attributes with the highest coverage are shown in Ta-
ble 8.12. We see that the results are the same for all benchmarking bases.

8.7.3 Discussion

We can see that the results of RQ 2, RQ 3 and RQ 4 are valid for all tested benchmarking bases:

RQ 2: The entropy was above the defined thresholds for all quality attributes and all bench-
marking bases. Hence, the result is exactly the same for all benchmarking bases.

RQ 3: Although the absolute values yielded by the quality model have changed slightly, the
correlation between the expert ranking and the quality model based ranking remains high. For
the quality attribute Quality two benchmarking bases resulted in a swap of two ranks. The
correlation is still high for these ranks, but the p-value is at 0.083 and thus the result is not
statistically significant. For the quality attribute Maintainability the rankings for all bench-
marking bases correspond to the expert ranking. With a p-value of 0.01667 this correlation is
statistically significant.

RQ 4: The results for all benchmarking bases are exactly the same. Thus, we conclude that
the different benchmarking bases have no influence on the result of RQ 4.

Additionally, we observed that the values of benchmarking base C diverge strongly from the other
values. We suspect this is because benchmarking base C is both the smallest one (only 65 products)
and comprises large systems, while the products under investigation are mostly small products.
Thus, this benchmarking base could be less suited to the products under investigation.
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8 Case Study: Java Source Code Quality

Threats to Validity

Our conclusions regarding different benchmarking bases are not statistically significant due to the
small number of different benchmarking bases used. To counter this threat we selected very distinct
benchmarking bases (small products vs. large products). Moreover, the different benchmarking
bases have a different size. The size of the benchmarking base itself may have an influence on the
result.

As in RQ 2, RQ 3, and RQ 4, a threat to generalizability is again that only one quality model
for source code of one programming language was used. Furthermore, we only used open-source
systems as study objects. Thus, the results cannot be generalized to other quality models or pro-
gramming languages. However, for this quality model, we assume the benchmarking base to have
only a minor influence on the quality assessment results.

150



8.7 RQ 6: Impact of Different Benchmarking Bases

Quality Attribute K-S test Reject H20

A B C D A B C D
Quality 0.644082 0.617551 0.106442 0.719777 no no no no
Functional Suitability 0.057818 0.057837 0.007675 0.100571 no no yes no
Functional Correctness 0.062310 0.054119 0.007377 0.069281 no no yes no
Time Behavior 0.000000 0.000000 0.000000 0.000000 yes yes yes yes
Reliability 0.037704 0.030395 0.001986 0.022450 yes yes yes yes
Security 0.000003 0.000003 0.000000 0.000000 yes yes yes yes
Maintainability 0.688586 0.517064 0.053511 0.512512 no no no no
Analyzability 0.685177 0.440128 0.163982 0.553180 no no no no
Modifiability 0.266487 0.192403 0.067813 0.152365 no no no no
Verifiability 0.323833 0.346812 0.074308 0.313417 no no no no
Reusability 0.000000 0.000000 0.000000 0.000000 yes yes yes yes
Resource Utilization 0.000291 0.001153 0.000290 0.000593 yes yes yes yes

Table 8.9: RQ 2 for Different Benchmarking Bases
(Test for Logarithmic Normal Distribution)

Quality Attribute Entropy Sufficient Differentiation
A B C D A B C D

Quality 0.7323 0.7302 0.7996 0.7317 ✓ ✓ ✓ ✓
Functional Suitability 0.7548 0.7550 0.8375 0.7572 ✓ ✓ ✓ ✓
Functional Correctness 0.7833 0.7811 0.8536 0.7843 ✓ ✓ ✓ ✓
Time Behavior 0.7970 0.8021 0.8889 0.8062 ✓ ✓ ✓ ✓
Reliability 0.8168 0.8104 0.8987 0.8176 ✓ ✓ ✓ ✓
Security 0.8907 0.8829 0.9077 0.8846 ✓ ✓ ✓ ✓
Maintainability 0.7642 0.7588 0.8051 0.7713 ✓ ✓ ✓ ✓
Analyzability 0.7630 0.7594 0.7833 0.7613 ✓ ✓ ✓ ✓
Modifiability 0.7697 0.7595 0.8354 0.7817 ✓ ✓ ✓ ✓
Verifiability 0.8018 0.7916 0.7965 0.8103 ✓ ✓ ✓ ✓
Reusability 0.8220 0.8262 0.8609 0.8189 ✓ ✓ ✓ ✓
Resource Utilization 0.8923 0.8925 0.9336 0.8931 ✓ ✓ ✓ ✓

Table 8.10: RQ 2 for Different Benchmarking Bases
(Entropy of Quality Attributes)

151



8 Case Study: Java Source Code Quality

Pr
od

uc
t

L
SV

[Q
ua

lit
y∣P

ro
du

ct
]

[M
ai

nt
ai

na
bi

lit
y∣P

ro
du

ct
]

R
an

k
Va

lu
e

R
an

k
Va

lu
e

R
an

k
A

B
C

D
A

B
C

D
A

B
C

D
A

B
C

D
C

he
ck

st
yl

e
4.

4
1

0.
80

7
0.

80
0

0.
79

0
0.

81
7

1
1

1
1

0.
61

2
0.

60
2

0.
58

7
0,

62
8

1
1

1
1

L
og

4j
1.

2.
15

2
0.

61
7

0.
60

7
0.

47
4

0.
64

6
2

3
3

2
0.

41
4

0.
39

9
0.

36
1

0.
43

2
2

2
2

2
R

SS
O

w
l1

.2
.4

3
0.

61
0

0.
61

1
0.

50
6

0.
62

3
3

2
2

3
0.

31
0

0.
31

0
0.

25
5

0.
30

6
3

3
3

3
T

V
-B

ro
w

se
r2

.2
.5

4
0.

50
5

0.
49

8
0.

36
9

0.
51

5
4

4
4

4
0.

23
9

0.
22

6
0.

16
7

0.
24

9
4

4
4

4
Ja

bR
ef

2.
3.

1
5

0.
38

7
0.

36
4

0.
24

8
0.

39
5

5
5

5
5

0.
21

6
0.

20
7

0.
15

7
0.

21
9

5
5

5
5

Ta
bl

e
8.

11
:R

Q
3

fo
r

D
iff

er
en

tB
en

ch
m

ar
ki

ng
B

as
es

(R
an

ki
ng

s
of

S
of

tw
ar

e
P

ro
du

ct
s)

Sy
st

em
Q

ua
lit

y
Fu

nc
tio

na
lS

ui
ta

bi
lit

y
M

ai
nt

ai
na

bi
lit

y
R

el
ia

bi
lit

y
A

B
C

D
A

B
C

D
A

B
C

D
A

B
C

D
20

09
-0

7-
17

0.
76

1
0.

75
9

0.
63

7
0.

77
3

0.
79

1
0.

71
8

0.
65

1
0.

74
6

0.
72

4
0.

70
1

0.
70

5
0.

74
4

0.
73

8
0.

77
6

0.
65

3
0.

77
2

20
09

-0
8-

08
0.

78
4

0.
78

2
0.

66
5

0,
79

4
0.

81
5

0.
74

8
0.

69
2

0.
76

8
0.

75
1

0.
73

0
0.

77
3

0.
76

6
0.

76
5

0.
80

0
0.

70
8

0.
80

1
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
20

10
-0

1-
24

0,
77

8
0,

77
5

0,
64

6
0,

78
9

0,
81

0
0,

74
3

0,
64

6
0,

76
0

0,
73

8
0,

71
5

0,
75

5
0,

75
4

0,
75

6
0,

78
2

0,
66

0
0,

79
3

20
10

-0
2-

17
0,

75
6

0,
75

3
0,

59
0

0,
76

4
0,

80
0

0,
71

9
0,

61
8

0,
73

3
0,

73
4

0,
71

3
0,

72
6

0,
74

9
0,

74
1

0,
76

8
0,

62
6

0,
77

4
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
◯

◯
20

10
-1

0-
09

0,
75

8
0,

75
7

0,
61

0
0,

76
9

0,
77

7
0,

68
2

0,
56

8
0,

69
3

0,
73

4
0,

71
2

0,
73

3
0,

74
9

0,
73

9
0,

76
6

0,
64

0
0,

77
5

20
10

-1
2-

04
0,

76
0

0,
76

0
0,

61
4

0,
77

2
0,

79
6

0,
71

0
0,

63
9

0,
72

1
0,

72
0

0,
70

0
0,

68
0

0,
73

5
0,

72
1

0,
74

9
0,

60
8

0,
75

7
✓

✓
✓

✓
✓

✓
✓

✓
◯

◯
◯

◯
◯

◯
◯

◯

Ta
bl

e
8.

12
:R

Q
4

fo
r

D
iff

er
en

tB
en

ch
m

ar
ki

ng
B

as
es

(V
is

ib
ili

ty
of

Im
pr

ov
em

en
t)

152



9 Conclusion

Despite the importance of software quality, there are several problems regarding its definition and
assessment. There is a gap between quality models for defining quality and software measurement
approaches. On one hand, there are quality models defining quality attributes, which are not precise
enough to be directly measurable. On the other hand, software measurement approaches provide a
large number of measures for characteristics of software products. However, the relation of these
measures to the quality models is unclear. Thus, these measures are applied in an inconsistent man-
ner and overall quality statements for software products cannot be issued. Moreover, the definition
of quality attributes by quality models is often unclear and ambiguous, thus further limiting their
acceptance in practice.

In this thesis, we propose a quality modeling and assessment approach bridging the gap between
quality definition and assessment. Our approach enables the construction of quality models, which
define quality attributes and their relation to component properties, which are directly measurable.
The quality model is operationalized by providing a specification of how measurement results are
aggregated to an overall quality statement.

Defining Quality

First, we introduce an explicit quality meta-model defining the structure of quality models. The
meta-model formally describes the elements of which quality models consist. This way, we achieve
a clear and unambiguous definition of the meaning of quality model elements.

In the literature, there are several approaches that directly operationalize quality attributes by attach-
ing measures to them. Since those approaches proved unsatisfactory, we introduce an intermediate
layer between quality attributes and measures: component properties. They describe characteristics
of artifacts the software product consists of. For each component property we define impacts on
quality attributes, describing and justifying the relation of the component property to the quality
attribute. To define the component properties in a clear and unambiguous way, we use a product
model of the software system. It describes the artifacts of the software product in the form of a data
model with generalization and composition relations known from class diagrams.

The structuring mechanism for component properties still does not address the clear definition of
quality attributes. In order to overcome the unclear and overlapping definitions of quality attributes,
we rely on the principle of activity-based quality models. We define an activity-hierarchy describing
activities conducted with the software product during its lifecycle and derive a hierarchy of quality
attributes from them. Since activities can be clearly decomposed into sub-activities, the quality
attributes defined based on activities are inherently unambiguous.
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9 Conclusion

Assessing Quality

To close the gap between quality models and software measurement, we operationalize our quality
model by integrating existing measures and their implementations by tools. The measures are at-
tached to component properties and are used to quantify the satisfaction of the respective properties.
Thereby, we overcome the problem of using measures without a clear rationale. For each measure
its connection to a quality attribute via impacts and component properties clearly defines its relation
to quality. For actually quantifying quality attributes and for delivering an overall quality statement
for a software product, the quality model defines how the measurement data is aggregated. The
aggregation follows the well-defined structure of the component properties and quality attributes.
This way, the formation of the overall quality statement is explained by the quality model. Hence,
the shortcoming of unsystematic aggregation is overcome.

Application in Practice

To show the applicability of our quality modeling and assessment approach, we develop a concrete
operationalized quality model. Since the effort for developing an operationalized quality model
covering all quality attributes is prohibitive, we focus on a topic we already have experience with:
source code quality with regard to maintainability. To be specific, we built a quality model for source
code in the Java programming language. The quality model contains 566 component properties
of which three quarters are directly measured. The measures include classical measures, such as
nesting depth, but also a large number of static code analysis rules. Limiting the quality model to
source code has the effect that five out of eleven top-level quality attributes are not covered by it;
while maintainability is operationalized by 291 measures, usability is not operationalized at all.

Operationalizing this quality model includes addressing challenges appearing in practice. To this
end, the quality assessment approach contributes the following: First, it provides an approach for
defining parameters of utility functions – i.e., threshold values for measurement values – based
on the principle of benchmarking. Second, it defines how incomplete measurement data can be
handled. Third, it enables the integration of existing tools by calculating the aggregation bottom-
up. Fourth, it defines how rule-based static code analysis tools yielding values on a nominal scale
are integrated with measures on ratio scales.

Evaluation

The quality assessment approach is evaluated using the quality model for Java source code. As
study objects, we use 2041 open source Java systems. First, we show that the differentiation of
the software systems by the quality assessment results is satisfactory. This means that the quality
assessment yields different values for software products with different quality levels. Second, we
test the meaningfulness of the quality assessment results by comparing it to an expert assessment.
The ranking of five systems regarding their quality is the same for the expert assessment and the
quality model-based assessment. Thus, we conclude that our approach is able to produce valid qual-
ity assessment results. Third, we show by example that the quality assessment based on the quality
model enables the tracing of quality changes between different versions of a software system. This
is important for enabling developers to identify the origin of a change in the quality assessment.

154



10 Future Work

The quality modeling and assessment approach presented in this thesis addresses several problems
in the area of software quality. However, software quality is a very broad topic and a large number of
challenges remain unsolved. In this chapter, we discuss possible directions for further research.

10.1 Further Evaluation

In this thesis, we used exclusively open source systems to evaluate the quality assessment approach.
Additional benefit would be achieved by diversifying the study objects by using software from dif-
ferent industries. For increasing generalizability, different types of software, such as embedded
systems or business information systems, should also be used. However, it is not only the soft-
ware systems themselves that are important study objects, but also expert-based assessments of the
systems for validating the quality model-based assessment result.

Besides extending the study objects, other research questions can be taken into account. For case
studies conducted in industry, it would be interesting to assess the usability and acceptance of the
approach by practitioners. Furthermore, cost-benefit analyses of the application of a quality model
in quality assurance could be conducted.

10.2 In-Depth Analysis of the Existing Quality Model

The quality model built for Java source code and the accompanying tool support for conducting au-
tomated quality assessments gives the possibility of conducting further studies and experiments.

An interesting question is the influence of different benchmarking bases on the quality assessment
results. We already took a first step in this direction in our paper [100]. We conducted a series
of experiments, using different benchmarking bases. Our initial results show that the larger the
benchmarking base, the less divergent are the quality assessment results obtained.

Further studies of this type could investigate the influence of other criteria than size, such as the
domain for which the systems have been developed. Seen from a more universal perspective, using
different benchmarking bases is just one way of modifying the quality model. A similar study could
investigate the sensitiveness of the quality assessment results to modification of the quality model.
The sensitiveness to modification is a relevant issue for estimating the transferability and compa-
rability of assessment results. This, in turn, is a relevant question for providing quality certificates
based on the quality assessment, since comparability is a fundamental prerequisite for certifying
software products of different domains and industries.
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10 Future Work

10.3 Broader Scope of the Quality Model

The presented quality meta-model and the general quality model defining quality attributes are
widely applicable for describing software quality. The assessment approach, however, is already
more specific and addresses specific problems encountered when assessing source code. The quality
model for Java source code, of course, is even more specialized. There are different possibilities for
creating quality models with a broader scope.

Besides source code, in software development a lot of other development artifacts are created that
are relevant for quality assessments. An obvious candidate is the architecture of a software system.
In software engineering a lot of work has been dedicated to architecture evaluation (e.g. [4,81]). This
body of knowledge could be integrated into a quality model. The predefined structure of the quality
model could lead to a consistent description of the knowledge gathered by different architecture
evaluation approaches. In the area of service-oriented architectures (SOA), we have already taken a
first step in building a quality model for describing SOA-specific architecture characteristics [47].

A clear limitation of our quality model describing Java source code is that it does not address
usability at all. To address usability, quality characteristics of user interfaces could be modeled.
In fact, during the development of the quality meta-model, we experimented with modeling an
excerpt of the Web Content Accessibility Guidelines (WCAG) 2.0 [168]. These first experiments
led to promising results. The structure of the WCAG exhibits similarities to the structure of the
quality model. For instance, the four chapters of WCAG directly correspond to activities of the
software usage, which can be mapped to quality attributes directly. The single sections of WCAG
describe characteristics of user interfaces, which can be directly mapped to component properties.
Moreover, the WCAG defines so-called techniques, which correspond to the measures of the quality
model. Integrating the WCAG standard into one quality model could lead to synergy effects. For
instance, once a quality model covering the entire WCAG is built, the quality assessment approach
can be applied to it, enabling (semi-)automated assessments of user interfaces. This would be a
considerable novelty, since currently the WCAG does not define how to assess the compliance of a
product to it.

Besides the two examples presented above for extending the quality model to other artifacts than
source code, a large variety of other topics could be addressed. The quality of test cases for software
products as well as dynamical aspects, such as performance or reliability, could be modeled by a
quality model.

10.4 Application in Practice

To apply the approach of this thesis in practice integration into an actual software development
process is necessary. The role of the quality model in the different phases of the development
process poses several new research questions.
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10.4 Application in Practice

Requirements Engineering

One research question is the role of the quality model for requirements engineering. Since the
quality-properties defined in the quality model are potential requirements, there is obviously a strong
interrelation between the requirements of a project and the quality model. On one side, the quality
model has to be adapted to the needs of the project. On the other hand, the quality model serves as
a repository of potential requirements that can support the requirements elicitation.

The idea of integrating an activity-based quality model into a requirements engineering process was
first proposed by Wagner et al. [156, 157]. In a case study, we applied this approach retrospectively
to security requirements for the Apache Tomcat Webserver [163]. Later, Luckey et al. [105] applied
an activity-based quality model for reusing quality requirements in an industrial case study. Finally,
we adapted the quality requirements approach to an earlier version of the meta-model proposed
in this thesis and applied it in an industrial case study at Siemens [103]. We re-specified require-
ments in retrospective with our approach, and compared the produced specification with the legacy
specification. While the completeness, structuredness, traceability, and modularity of the quality
model-based specification was better than that of the legacy specification, the perceived productiv-
ity of the approach did not improve.

These first results indicate that a quality model can be applied in requirements engineering ben-
eficially. Nonetheless, further case studies with a larger variety of study objects and subjects are
necessary. This way, the current results could be further confirmed, or additional needs and sugges-
tions for improvement could arise.

Besides conducting further case studies in the field of requirements engineering, the quality model
should be introduced as a first-class component of the development process. In requirements engi-
neering, the quality model would no longer be a supplementary artifact, but the actual repository
containing the approved quality requirements. This way, the quality model would be tailored or
supplemented in the requirements phase and then be used in quality assurance as outlined in Sec-
tion 2.2.5.

Integration into Quality Assurance Processes

As explained in Section 2.2.5 quality models should play a central role in the quality assurance
process. To actually accomplish this vision, a tight integration into the quality assurance process
is necessary. While the process integration is not part of this work, this thesis laid the groundwork
by providing the quality assessment approach. The process integration of the quality modeling
and assessment approach includes, for instance, connecting the quality assessment with a change
management system. Quality deficits identified in quality assessments must be tracked and commu-
nicated to developers. Furthermore, a cost-benefit analysis is necessary for deciding which quality
defects should be corrected.

Standardization and Certification

In this thesis, we have seen that a fixed quality model can be successfully used for quality assess-
ments. The preliminary results of using predefined quality models for requirements engineering are
promising as well. This naturally leads to the question of standardizing a quality model. If quality
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10 Future Work

models are applicable in different contexts, then a general quality model could be standardized by a
national or international standardization organization. A standardized quality model, which is fully
operationalized, would go far beyond the current standards. It could be the base for certifications
of software products. As mentioned before, further work on the quality assessment approach would
be necessary, to ensure transferable and comparable quality assessment results. This, of course, is a
necessary precondition for certifications.
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A Appendix

A.1 Fuzzy Propositional Logic

A.1.1 Definition of the Łukasiewicz Propositional Logic

We define Łukasiewicz propositional logic according to [53, p. 63] and [15, p. 209]. The syntax of
fuzzy propositional logic Ł has propositional variables p1, p2, . . . , operators ⊗, ∧, ∨, →, and ¬, the
constants 0 and 1. Formulas are defined as follows: Each propositional variable is a formula, each
constant is a formula; if φ and γ are formulas, then (φ), ¬φ, (φ ∧ γ), (φ ∨ γ), and (φ → γ) are
formulas. For the semantics of Ł we define: Let Ω be the set of all formulas, then we define the
σ-operator that assigns a truth value to each formula: σ ∶ Ω→ [0,1].

For each formula φ with variables p1, . . . , pn (written as φ(p1, . . . , pn)) the σ-operator is defined
as:

σ(φ(p1, . . . , pn)) = φ(σ(p1), . . . , σ(pn)) (A.1)

For the constants we define:
σ(0) = 0
σ(1) = 1

(A.2)

For two formulas φ and γ the operators are defined as:

σ(¬Łφ) = 1 − σ(φ)
σ(φ⊗Ł γ) =max(0, σ(φ) + σ(γ) − 1)
σ(φ ∧Ł γ) =min(σ(φ), σ(γ))
σ(φ ∨Ł γ) =max(σ(φ), σ(γ))
σ(φ→Ł γ) =min(1,1 − σ(φ) + σ(γ))

(A.3)

An n-ary formula φ(p1, . . . , pn) is a tautology if

σ(φ(p1, . . . , pn)) = 1 (A.4)

for all (σ(p1), . . . , σ(pn)).
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A Appendix

A.2 Fuzzy Operators and Modifiers

We collect binary fuzzy operators from literature:
Operation Source Definition
Ł strong comp. [53, p. 63] a⊗Ł b =max(0, a + b − 1)
Goedel strong comp. [53, p. 97] a⊗Goedel b =min(a, b)
Product strong comp. a⊗Product b = a ⋅ b
Ł, Goedel, Product
weak composition

[53, p. 36] a ∧Ł b =min(a, b)

Ł, Goedel, Product
weak disjunction

[53, p. 36] a ∨Ł b =max(a, b)

Probabilistic sum a ∨probabilistic b = a + b − a ∗ b
Bounded sum a ∨boundedsum b =min(1, a + b)
Ł neg. [53, p. 63] ¬Ła = 1 − a

Goedel neg. ¬Goedela =
⎧⎪⎪⎨⎪⎪⎩

1 if a = 0

0 if a ≠ 0

Zadeh imp. [15, p. 266] a→zadeh b =max(min(x, y),1 − x)
Mamdani imp. [15, p. 266] a→mamdani b =min(a, b)
Ł imp. [15, p. 266] a→Ł b =min(1,1 − a + b)

Goedel imp. [15, p. 266] a→goedel b =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≤ y
y otherwise

Kleene-Dienes imp. [15, p. 266] a→kleene−dienes b =max(1 − x, y)

Goguen imp. [15, p. 266] a→goguen b =
⎧⎪⎪⎨⎪⎪⎩

1 if x = 0

min(1, y/x) otherwise

Gaines-Rescher imp. [15, p. 266] a→gaines−rescher b =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≤ y
0 otherwise

Reichenbach imp. [15, p. 266] a→reichenbach b = 1 − x + x ∗ y
Larsen imp. [15, p. 266] a→larsen b = x ∗ y
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A.2 Fuzzy Operators and Modifiers

We collect n-ary fuzzy operators from literature:
Operator
Weighted Sum Composition
⩕(x1, . . . , xn) = ∑wi ∗ xi
wi > 0

∑wi = 1

Compensatory Lambda-Operator [147, p. 42]
aλb = λ ∗ a ∗ b + (1 − λ) ∗ (a + b − a ∗ b)
λ ∈ [0,1]
λ = 0⇒ aλb = a + b − a ∗ b = a ∨probabilistic b
λ = 1⇒ aλb = a ∗ b = a⊗Product b
Compensatory Gamma-Operator [147, p. 43]
aγb = (a ∗ b)(1−γ) ∗ (1 − (1 − a) ∗ (1 − b))(γ)
γ ∈ [0,1]
γ = 0⇒ a ∗ b = a⊗Product b
γ = 1⇒ a ∗ b = (1 − (1 − a) ∗ (1 − b)) = a ∨probabilistic b
Compensatory Weighted Gamma-Operator n-ary [147, p. 45]
γ(x1, . . . , xn) = (∏n

i=1 x
wi
i )1−γ ∗ (1 −∏n

i=1(1 − xi)wi)γ

γ ∈ [0,1]
∑wi = 1

Powering-Modifier [147, p. 48]
α(x) = xα
Gamma-Modifier (modification of Gamma-Operator)
α(x) = x1−α ∗ (1 − (1 − x)α)
Exp-Modifier
α(x) = αx−1

α−1
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