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Abstract

We investigate gcf-Petri nets, a generalization of communication-free Petri nets allowing
arbitrary edge multiplicities, and characterized by the sole restriction that each transition
has at most one incoming edge. We use canonical �ring sequences with nice properties for
gcf-PNs to show that the RecLFS, (zero-)reachability, covering, and boundedness problems
of gcf-PNs are in PSPACE. By showing, how PSPACE-Turing machines can be simulated by
gss-PNs, a subclass of gcf-PNs where additionally all transitions have at most one outgoing
edge, we ultimately prove the PSPACE-completess of these problems for gss/gcf-PNs. Then,
we show PSPACE-hardness as well as a doubly exponential space bound for the containment,
and equivalence problems of gss/gcf-PNs. Last, we consider a new natural generalization of
context-free commutative grammars. Our results for gcf-PNs imply PSPACE-completeness
for its uniform word problem.

1 Introduction

In [17], Mayr proposed a non-primitive recursive algorithm for the general Petri net reachability
problem, thus proving its decidability. For many restricted Petri net classes, a better complexity
of the reachability problem can be shown. However, the nets of most Petri net classes for which
the complexity of the reachability problem could be re�ned are subject to the restriction that all
edges from places to transitions have multiplicity one. Well known examples of such nets with
NP-complete reachability problems are communication-free Petri nets (cf-PNs/BPP-PNs), [4, 23],
con�ict-free Petri nets [8, 9] and normal as well as sinkless Petri nets [9] (for the latter two, the
promise problem variation of the reachability problem was considered). Remarkable examples for
Petri net classes with general edge multiplicities and matching lower and upper bounds for the
reachability problem are single-path Petri nets [7] (PSPACE-complete) and reversible Petri nets
[18] (EXPSPACE-complete). For a more comprehensive overview, the reader is referred to [5].

Our ultimate goal is to gain insight into how general edge multiplicities in�uence the complexity
of the reachability problem and several other classical problems. In this paper, we investigate a
generalization of communication-free Petri nets. A cf-PN is a Petri net such that each transition
has exactly one input place, connected by an edge with multiplicity one. Cf-PNs are closely related
to Basic Parallel Processes de�ned in [1, 2] as well as to context-free (commutative) grammars
[5, 11]. We call our generalization generalized communication-free Petri nets (gcf-PNs). The nets
of this class are characterized by a single topological constraint, namely, that each transition has
at most one input place, connected by an edge with arbitrary multiplicity.

For cf-PNs, tight bounds for the reachability problem are known. Esparza [4] showed NP-
completeness while Yen [23] gave an alternative proof for NP-membership, based on canonical
�ring sequences. Both proofs (implicitly) rely on the fact that the RecLFS problem (recognize
legal �ring sequence, see [22]) is decidable in polynomial time due to a very easily checkable

∗Institut für Informatik, Technische Universität München, D-85748 Garching, Germany,
{mayr,weihmann}@in.tum.de

1



criterion. (The problem RecLFS asks if a given Parikh vector is enabled at some given marking.)
For gcf-PNs, no such criterion exists (under the assumption P 6= PSPACE) since the problem is
PSPACE-complete as shown in Section 4.

In Section 3, we show PSPACE-hardness for the RecLFS, the reachability, the covering, and the
boundedness problems of generalized S-Sytems (gss-PNs) which are a subclass of gcf-PNs where
each transition has at most one incoming and at most one outgoing edge, each with arbitrary edge
multiplicity. This is interesting because almost all the problems considered in this paper have very
low complexity for S-Systems (e.g., they are always bounded, the reachability problem is decidable
in polynomial time [6], etc.). Furthermore, the covering, and the boundedness problems of cf-PNs
are known to be NP-complete, and linear time (on RAMs), respectively [16].

In Section 4, we derive canonical permutations of �ring sequences of gcf-PNs, and use them
to show PSPACE-completeness for the RecLFS, the reachability, and the covering problems of
gcf-PNs.

In Section 5, we show the existence of canonical �ring sequences that have stronger properties
than the �ring sequences obtained by canonical permutations. These canonical �ring sequences
resemble those given in [23] for cf-PNs. We use them to show PSPACE-completeness for the
boundedness problem of gcf-PNs, and that the equivalence and containment problems of gcf-PNs
are PSPACE-hard as well as decidable in doubly exponential space.

In Section 6, we consider exponent-sensitive commutative grammars, a new natural general-
ization of context-free commutative grammars [11], which allow productions to substitute many
occurrences of a single variable. We use our results for gcf-PNs to show that the uniform word
problem of this class is PSPACE-complete.

2 Preliminaries

Z, N0, and N denote the set of all integers, all nonnegative integers, and all positive integers,
respectively, while [a, b] = {a, a + 1, . . . , b} $ Z, and [k] = [1, k] $ N. For two vectors u, v ∈ Zk,
we write u ≥ v if ui ≥ vi for all i ∈ [k], and u > v if u ≥ v and ui > vi for some i ∈ [k]. When k
is understood, ~a denotes, for a number a ∈ Z, the k-dimensional vector with ~ai = a for all i ∈ [k].

A Petri net N is a 3-tuple (P, T, F ) where P is a �nite set of n places, T is a �nite set of
m transitions with P ∩ T = ∅, and F : P × T ∪ T × P → N0 is a �ow function. Throughout
this paper, n and m will always refer to the number of places resp. transitions of the Petri net
under consideration, and W = max{F (p, t), F (t, p) | p ∈ P, t ∈ T} to the largest value of its �ow
function. Usually, we assume an arbitrary but �xed order on P and T , respectively. With respect
to this order on P , we can consider an n-dimensional vector v as a function of P , and, abusing
the notation, write v(p) for the entry of v corresponding to place p. Analogously, we write v(t) in
context of an m-dimensional vector and a transition t.

A marking µ (of N) is a vector of Nn0 . A pair (N,µ(0)) such that µ(0) is a marking of N is
called a marked Petri net, and µ(0) is called its initial marking. We will omit the term �marked�
if the presence of a certain initial marking is clear from the context.

For a transition t ∈ T , •t (t•, resp.) is the preset (postset, resp.) of t and denotes the set of all
places p such that F (p, t) > 0 (F (t, p) > 0, resp.). Analogously, the sets •p and p• of transitions
are de�ned for the places p ∈ P . A Petri net (P, T, F ) is a generalized communication-free Petri
net (gcf-PN) if |•t| ≤ 1 for all t ∈ T . A gcf-PN is a generalized S-System Petri net (gss-PN) if
additionally |t•| ≤ 1 for all t ∈ T .

A Petri net naturally corresponds to a directed bipartite graph with edges from P to T and
vice versa such that there is an edge from p ∈ P to t ∈ T (from t to p, resp.) labelled with w if
0 < F (p, t) = w (if 0 < F (t, p) = w, resp.). The label of an edge is called its multiplicity. If a
Petri net is visualized, places are usually drawn as circles and transitions as bars. If the Petri net
is marked by µ, then, for each place p, the circle corresponding to p contains µ(p) so called tokens.

For a Petri net N = (P, T, F ) and a marking µ of N , a transition t ∈ T can be applied at µ
producing a vector µ′ ∈ Zn with µ′(p) = µ(p)− F (p, t) + F (t, p) for all p ∈ P . The transition t is
enabled at µ or in (N,µ) if µ(p) ≥ F (p, t) for all p ∈ P . We say that t is �red at marking µ if t
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is enabled and applied at µ. If t is �red at µ, then the resulting vector µ′ is a marking, and we

write µ
t−→ µ′. Intuitively, if a transition is �red, it �rst removes F (p, t) tokens from p and then

adds F (t, p) tokens to p.
An element σ of T ∗ is called a transition sequence, and |σ| denotes its length. For the empty

transition sequence σ = (), we de�ne µ
σ−→ µ. For a nonempty transition sequence σ = t1 · · · , tk,

ti ∈ T , we write µ(0) σ−→ µ(k) if there are markings µ(1), . . . , µ(k−1) such that µ(0) t1−→ µ(1) t2−→
µ(2) . . .

tk−→ µ(k). We write σ(i,j) for the subsequence σi ·σi+1 · · ·σj , and σ(i) for the pre�x of length
i of σ, i.e., σ(i) = σ(1,i).

A Parikh vector Φ, also known as �ring count vector, is simply an element of Nm0 . The Parikh
map Ψ : T ∗ → Nm0 maps each transition sequence σ to its Parikh image Ψ(σ) where Ψ(σ)(t) = k
for a transition t if t appears exactly k times in σ. Note that each Parikh vector Φ is the Parikh
image of some transition sequence. Furthermore, we write t ∈ Φ if Φ(t) > 0, and t ∈ σ if t ∈ Ψ(σ).
For a transition sequence σ ∈ T ∗, we de�ne •σ =

⋃
t∈σ
•t. Ψ�rst(σ) is the Parikh vector such that,

for all transitions t, Ψ�rst(σ)(t) = 1 if •t̄ 6= •t for all transitions t̄ in front of the �rst occurrence of
t in σ, and Ψ�rst(σ)(t) = 0 otherwise. For σ, τ ∈ T ∗, σ �� τ ∈ T ∗ is obtained by deleting the �rst
min{Ψ(σ)(t),Ψ(τ)(t)} occurences of each transition t from σ.

If there is a marking µ′ with µ
σ−→ µ′, then we say that σ (the Parikh vector Ψ(σ), resp.)

is enabled at µ and leads from µ to µ′. For a marked Petri net (N,µ(0)), we call a transition

sequence that is enabled at µ(0) a �ring sequence. A marking µ is called reachable if µ(0) σ−→ µ for
some σ. The reachability set R(N,µ(0)) of (N,µ(0)) consists of all reachable markings. We say
that a marking µ can be covered if there is a reachable marking µ′ ≥ µ.

The displacement ∆ : Nm0 → Zn maps Parikh vectors Φ ∈ Nm0 onto the change of tokens at
the places p1, . . . , pn when applying transition sequences with Parikh image Φ. That is, we have
∆(Φ)(p) =

∑
t∈T Φ(t) · (F (t, p)−F (p, t)) for all places p. Accordingly, we de�ne the displacement

∆(σ) of a transition sequence σ by ∆(σ) := ∆(Ψ(σ)).
A Parikh vector or a transition sequence having nonnegative displacement at all places is

called a nonnegative loop since, if it is �red at some marking, the loop can immediately be �red
again at the resulting marking. A nonnegative loop having positive displacement at some place p
is a positive loop (for p). A nonnegative loop with displacement 0 at all places is a zero-loop.
For a marking µ, a transition sequence σ, and a subset S ⊆ P of places, we de�ne max(µ, S) :=
maxp∈S µ(p), and max(µ) := max(µ, P ), as well as max(µ, σ, S) := maxi∈[0,|σ|] max(µ+∆(σ(i)), S),
and max(µ, σ) := max(µ, σ, P ).

The wipe-extension P− = (P, T−, F−) of a Petri net P = (P, T, F ) is obtained from P by
introducing, for each place pi ∈ P , a transition t−i with F−(pi, t

−
i ) = 1.

Some marked Petri nets have reachability sets that are semilinear. A set S ⊆ Nn0 is semilinear, if
there are a k ∈ N0 and linear sets L1, . . . , Lk ⊆ Nn0 such that S =

⋃
i∈[k] Li. A set L ⊆ Nn0 is linear,

if there are ` ∈ N0 and vectors b, p1, . . . , p` ∈ Nn0 such that L = {b+
∑
i∈[`] aipi | ai ∈ N0, i ∈ [`]}.

The vector b is the constant vector of L, while the vectors pi are the periods of L. A semilinear
representation of a semilinear set S is a set consisting of k pairs (bi, {pi,1, . . . , pi,`i}), i ∈ [k], for
some k ∈ N0, such that S =

⋃
i∈[k] Li where Li = {bi +

∑
j∈[`i]

ai,jpi,j | ai,j ∈ N0, j ∈ [`i]}. If two
Petri nets allow the construction of semilinear representations of the respective reachability sets
within a certain space bound, then many problems are decidable that are undecidable for Petri
nets in general, and space bounds can be given as well. We will use this well known approach for
the containment and the equivalence problems.

Throughout this paper we use a succinct encoding scheme. Every number is encoded in binary
representation. A Petri net is encoded as an enumeration of places p1, . . . , pn and transitions
t1 . . . , tm followed by an enumeration of the edges with their respective edge weight. A vector of
Nk0 is encoded as a k-tuple. If we regard a tuple as an input (e.g. a marked Petri net), then it is
encoded as a tuple of the encodings of the particular components. size(P) denotes the encoding
size of a marked Petri net P. Analogously, size(P, µ) is the encoding size of P together with an
additional marking µ.

In this paper, we study the following problems for gcf-PNs.
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• RecLFS: Given a gcf-PN P and a Parikh vector Φ, is Φ enabled in P?

• Reachability: Given a gcf-PN P and a marking µ, is µ reachable in P?

• Zero-Reachability: Given a gcf-PN P, is the empty marking reachable in P?

• Covering: Given a gcf-PN P and a marking µ, is µ coverable in P?

• Boundedness: Given a gcf-PN P, is there, for each k ∈ N, a reachable marking µ with
max(µ) ≥ k?

• Containment: Given two gcf-PNs P and P ′, is R(P) ⊆ R(P ′)?

• Equivalence: Given two gcf-PNs P and P ′, is R(P) = R(P ′)?

We remark that the input size of a problem instance consists of the encodings of all entities that
are declared as being �given� in the respective problem statement.

3 PSPACE-Hardness of the RecLFS, (Zero-)Reachability,
Covering, and Boundedness Problems of gss-PNs

In this section, we show PSPACE-hardness for the (zero-)reachability, the covering, and the bound-
edness problems by illustrating how to simulate PSPACE-Turing machines (deciding decision prob-
lems) by gss-PNs. We give, for each problem L ∈ PSPACE, a logspace reduction from L to the
problems mentioned above. To this end, we �rst describe the initial step that is shared by each of
these reductions. After that, we will extend this initial step appropriately.

Consider an arbitrary language L ∈ PSPACE over the alphabet Σ. Then there exists a de-
terministic Turing machine M = (Q,Γ,�,Σ, δ, q0, qacc) with state set Q, tape alphabet Γ % Σ,
blank symbol � ∈ Γ \ Σ, transition relation δ ⊆ Q \ {qacc} × Γ×Q× Γ× {−1, 0, 1}, initial state
q0 ∈ Q and accepting state qacc ∈ Q such that, w.l.o.g., on input x ∈ Σ∗, M exhibits the following
behavior:

• M only uses the �rst d(|x|+ 2)c1e tape positions at each step of the computation, for some
constant c1.

• At the beginning, the tape contains the word x in the �rst |x| positions. All other positions
contain �.

• M halts after at most d2(|x|+2)c2 e steps, for some constant c2.

• M halts in state qacc with the �rst d(|x| + 2)c1e tape positions being � and the head over
the �rst tape position if and only if x ∈ L.

We now describe the gss-PN P = (P, T, F, µ(0)), onto which the input word x is mapped. For a
better understanding, the reader is encouraged to simultaneously consult Figure 1 which illustrates
(part of) this construction.

The set of places can be written as a union P =
⋃
i∈[d(|x|+2)c1e] Pi∪ P̃ ∪{pacc} of disjoint sets of

places. The set Pi contains a place p
(symb)
(s@i) for each symbol s ∈ Γ encoding the contents of the tape,

and places p
(req)
(d@i) and p

(exec)
(d@i) for each transition d ∈ δ, encoding the execution of d with the head

of M at position i. The set P̃ contains a place p
(state=q)
(pos=i) for each state q ∈ Q and tape position

i ∈ [d(|x| + 2)c1e], encoding the current state of M and the position of the head. The place pacc
encodes whether M accepts x. Next, we de�ne the transitions. If not stated otherwise, the edge
multiplicities are 1. For each tape position i ∈ [d(|x|+ 2)c1e] and transition d = (q, s, q′, s′, h) ∈ δ
of M , there are �ve transitions representing the execution of d with the head at position i.

• t(req state & pos)
(d@i) from p

(state=q)
(pos=i) to p

(req)
(d@i). The outgoing edge has multiplicity 3.
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p
(req)

(d@i)

p
(exec)

(d@i)

p
(symb)

(0@i) p
(symb)

(1@i) p
(symb)

(�@i)

p
(state=q1)

(pos=i)

p
(state=q2)

(pos=i)

p
(state=q|Q|)

(pos=i)

p
(state=q1)

(pos=i−1)

p
(state=q2)

(pos=i−1)

p
(state=q|Q|)

(pos=i−1)

t
(req symb)

(d@i)

t
(req state & pos)

(d@i)

3

t
(exec)

(d@i)

4

3

t
(set symb)

(d@i)

t
(set state & pos)

(d@i)

2

d = (q2, 1, q1, 0,−1) ∈ δ

Subnet corresponding to the head at position i moving left

⊆ P̃ ⊆ P̃⊆ Pi

...
...

Figure 1: This �gure illustrates a subnet of P where the marking is a con�guration marking. The
middle dashed rectangle contains (a subset of) the places and transitions corresponding to tape
position i. The dotted rectangle contains the places and transitions corresponding to the transition
d = (q2, 1, q1, 0,−1) ∈ δ of the Turing machine M . This transition requires that M is in state q2,
and that the tape contains the symbol 1 at the position i of the head. When d is executed, M
switches into state q1, writes 0 onto the tape, and moves to the left. This behavior is simulated
by the transitions inside of the dotted rectangle (see Lemma 3.2).

• t(req symb)
(d@i) from p

(symb)
(s@i) to p

(req)
(d@i).

• t(exec)(d@i) from p
(req)
(d@i) to p

(exec)
(d@i) . The multiplicities are 4 and 3.

• t(set state & pos)
(d@i) from p

(exec)
(d@i) to p

(state=q′)
(pos=i′) . The incoming edge has multiplicity 2.

• t(set symb)
(d@i) from p

(exec)
(d@i) to p

(symb)
(s′@i) .

For recognizing acceptance of x by M , there are the following transitions.

• There is a transition t(acc state) from p
(state=qacc)
(pos=1) to pacc. The outgoing edge has multiplicity

3.

• For each tape position i ∈ [d(|x|+ 2)c1e], there is a transition t(acc | i) from p
(symb)
(�@i) to pacc.

Note that P is indeed a gss-PN. The initial marking µ(0) of P has a token at p
(state=q0)
(pos=1) , a token

at p
(symb)
(xi@i)

for all i ∈ [|x|], and a token at p
(symb)
(�@i) for all i > |x|. All remaining places are empty.

We call a marking µ of P a con�guration marking if it corresponds to a con�guration of M ,
i.e., if the following holds.

• For each i ∈ [d(|x|+ 2)c1e], there is exactly one s ∈ Γ s.t. µ(p
(symb)
(s@i) ) = 1.

• There is exactly one i ∈ [d(|x|+ 2)c1e] and exactly one q ∈ Q such that µ(p
(state=q)
(pos=i) ) = 1.
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• All other places are empty.

Note that, for a con�guration marking, the places p
(symb)
(s@i) and p

(state=q)
(pos=i) contain either 0 or 1

tokens, i.e., they can be considered binary variables. In the obvious way, these places encode the
contents of the tape as well as the state and the position of the head of M . For a con�guration
marking µ of P, conf(µ) denotes the corresponding con�guration of M .

The marking µacc is the con�guration marking of the unique accepting con�guration of M ,

i.e., µacc(p
(state=qacc)
(pos=1) ) = 1, µacc(p

(symb)
(�@i) ) = 1 for all i ∈ [d(|x| + 2)c1e], and all other places are

empty. Note that conf(µ(0)) is the initial con�guration of M . Moreover, µend is the marking that
has d(|x|+ 2)c1e+ 3 tokens at pacc, and all other places are empty.

For a simpler description of reachable markings, we characterize them by certain types.

(1) Type A: Each Pi, i ∈ [d(|x| + 2)c1e], contains exactly one token, P̃ contains exactly one
token, and pacc is empty.

(2) Type B: There is a j ∈ [d(|x| + 2)c1e] such that each Pi, i ∈ [d(|x| + 2)c1e] \ {j}, contains
exactly one token, and P̃ and pacc are empty. Furthermore, the possible markings of Pj are
exactly those which can be obtained by starting with 3 tokens at exactly one of the places

p
(req)
(d@i), d ∈ δ, and with one additional token at exactly one place of Pj (therefore, 4 tokens

at some place p
(req)
(d@i) is a possibility), and then �ring transitions which transfer tokens within

Pj .

Lemma 3.1. Let µ(0) be a con�guration marking. Then, each marking µ reached by a �ring
sequence ρ such that t(acc state), t(acc | i) /∈ ρ for all i ∈ [d(|x|+ 2)c1e] is either of type A or type B.

Proof. This lemma can be proven by induction on the length of ρ: µ(0) is a marking of type A.
Let ρ have length k and assume the validity of the claim for all such �ring sequences of length less

than k. Let µ′ be the marking reached by ρ(1,|ρ|−1). If µ
′ is of type A, then �ring t

(req state & pos)
(d@i)

for the single possible i ∈ [d(|x| + 2)c1e] yields a marking of type B. Firing any other transition
(except t(acc state) and t(acc | i)) yields a marking of type A again. If µ′ is of type B, then �ring

t
(set state & pos)
(d@i) for the single possible i ∈ [d(|x| + 2)c1e] yields a marking of type A. Firing any

other transition (except t(acc state) and t(acc | i)) yields a marking of type B again.

Lemma 3.2. Let µ be a con�guration marking of P. Then the transition quintuple

t
(req state & pos)
(d@i) · t(req symb)

(d@i) · t(exec)(d@i) · t
(set state & pos)
(d@i) · t(set symb)

(d@i)

is enabled at µ in P if and only if the transition d ∈ δ is enabled at conf(µ) in M . If this quintuple
is enabled, then, for marking µ′ reached by this quintuple, conf(µ′) is the con�guration of M
obtained by applying d at conf(µ).

Proof. Clear.

We now show how �ring sequences of P leading to con�guration markings and computation
paths of M correspond to each other.

Lemma 3.3. Let µ, µ′ be con�guration markings of P. Then, µ
σ−→ µ′ in P for some transition

sequence σ if and only if conf(µ′) is reachable from conf(µ) in M .

Proof. �⇐�: This immediately follows from Lemma 3.2.
�⇒�: In the following, we will often make use of Lemma 4.2 without explicitly referring to it.

For µ = µ′, the claim holds. Let k > 0, and assume that the claim holds for all con�guration
markings µ and µ′ such that the shortest σ with µ

σ−→ µ′ has |σ| < k. Now, consider two

con�guration markings µ, µ′ such that there is a transition sequence σ with µ
σ−→ µ′ and |σ| = k.

First, note that t(acc state), t(acc | i) /∈ σ for all i ∈ [d(|x|+ 2)c1e], since otherwise, µ′ wouldn't be a
con�guration marking.
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Let i and q be the unique index and state with µ(p
(state=q)
(pos=i) ) = 1. If t

(req state & pos)
(d@i) /∈ Ψ�rst(σ),

then µ′ cannot be a con�guration marking since there is a place p
(req)
(d@i′) where tokens get stuck.

Hence, t
(req state & pos)
(d@i) ∈ Ψ�rst(σ), and we can push this transition to the front of the �ring

sequence, yielding a permutation ρ of σ with ρ(1) = t
(req state & pos)
(d@i) and ρ(2,k) = σ �� t

(req state & pos)
(d@i)

that is enabled at µ. With the same argument, we can push t
(req symb)
(d@i) and t

(exec)
(d@i) to the position

right behind t
(req state & pos)
(d@i) yielding a permutation ϕ of ρ with ϕ(1,3) = t

(req state & pos)
(d@i) ·t(req symb)

(d@i) ·
t
(exec)
(d@i) and ϕ(4,k) = ρ�� t

(req symb)
(d@i) �� t

(exec)
(d@i) that is enabled at µ.

Assume for the sake of contradiction that the �rst two transitions t, t′ of ϕ(4,k) with
•t = •t′ =

p
(exec)
(d@i) , which must exist, are both t = t′ = t

(set symb)
(d@i) or t = t′ = t

(set state & pos)
(d@i) . In the �rst

case, we can move them both to the positions right behind ϕ(1,3) yielding a permutation ψ of ϕ.

But now, after �ring ψ(5), no place p
(req)
(d′@i′) can ever gain at least 4 tokens anymore, preventing

the �ring of any transition t
(exec)
(d′@i′) and subsequently t

(set state & pos)
(d′@i′) . Hence, ψ cannot lead to a

con�guration marking. This contradiction shows that this case cannot occur. In the second case,

we can move t
(set state & pos)
(d@i) to the position right behind ϕ(1,3) yielding a permutation ψ of ϕ.

Now, ψ(5,k) must have a pre�x that contains t
(exec)
(d@i) but neither t

(set symb)
(d@i) nor t

(set state & pos)
(d@i) . By

�ring this transition t
(exec)
(d@i) , we obtain a marking where p

(exec)
(d@i) has (at least) 4 tokens. From this

marking, we can �re t
(set state & pos)
(d@i) two times in a row, yielding a marking that is neither of type

A nor of type B, a contradiction to Lemma 3.1. Hence, the second case is also impossible.
We conclude that t and t′ are di�erent. Moving them to the fourth and �fth position yields a

permutation ψ of ϕ that is enabled at µ whose �rst �ve transitions are a transition quintuple. Let

µ
ψ(5)−−→ µ′′

ψ(6,k)−−−−→ µ′. By Lemma 3.2, µ′′ is a con�guration marking such that transition d ∈ δ ofM
leads from conf(µ) to conf(µ′′). Furthermore, by the induction assumption, M has a computation
path leading from conf(µ′′) to conf(µ′). This concludes the proof.

Lemma 3.4. The only reachable marking µ with µ(pacc) ≥ d(|x| + 2)c1e + 3 is µend. Moreover,
µend is reachable if and only if µacc is reachable.

Proof. Let σ be a �ring sequence leading to a marking µ with µ(pacc) ≥ d(|x|+2)c1e+3. Then, by
pushing all occurrences of the transitions t(acc state) and t(acc | i), i ∈ [d(|x|+ 2)c1e], to the end of
the sequence which then constitute a su�x ψ we obtain a �ring sequence ρ·ψ that is a permutation
of σ. Let µρ be the marking reached by ρ. By Lemma 3.1, µρ is of type A or B. The only such
marking that has enough tokens to reach µ is µacc, hence µρ = µacc is reachable. It immediately
follows that µ = µend.

Lemma 3.5. The RecLFS, the zero-reachability, the reachability, the covering, and the bounded-
ness problems of gss-PNs are PSPACE-hard.

Proof. We obtain the gss-PN P1 from P by adding transition t with F (pacc, t) = d(|x|+ 2)c1e+ 3.
By Lemmata 3.3, 3.4, and 3.1, the following are equivalent.

• M accepts x.

• µacc is reachable in P.

• µend is coverable in P.

• µend is reachable in P.

• the empty marking is reachable in P1.
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This shows the PSPACE-hardness of the (zero-)reachability, and the covering problems.
We obtain P2 from P by adding a transition t with F (pacc, t) = d(|x|+2)c1e+3 and F (t, pacc) =

(d(|x|+ 2)c1e+ 3)2. By Lemmata 3.4, and 3.1, all places of P2 other than pacc are bounded, and
pacc can obtain at least d(|x| + 2)c1e + 3 tokens if and only if M accepts x. Therefore, P2 is
unbounded if and only if M accepts x. This proves PSPACE-hardness for the unboundedness and
thereby for the boundedness problem.

We obtain P3 from P2 by adding, for each place p of P2, a transition t with F (pacc, t) =
µend(pacc) = d(|x|+ 2)c1e+ 3 and F (t, p) = (d(|x|+ 2)c1e+ 3) · 4d2(|x|+2)c2 e. Then, by Lemma 3.4,
the fact that M is deterministic, and the bound on the running time of M , M accepts x if and
only if the Parikh vector having d2(|x|+2)c2 e at each component is enabled in P3. This proves
PSPACE-hardness for the RecLFS problem.

4 Canonical Permutations, and the RecLFS, (Zero-)Reach-
ability, and Covering Problems

In this section, we �rst show PSPACE-completeness of the RecLFS problem. Then, we describe
a procedure that, given a gcf-PN P = (P, T, F, µ(0)), and a �ring sequence σ with µ(0) σ−→ µ,
produces a permutation σ′ of σ enabled at µ(0) such that every marking reached while �ring σ′

has encoding size polynomial in size(P, µ). We use these sequences to decide the reachability, and
the covering problems in polynomial space, proving their PSPACE-completeness.

Theorem 4.1. The RecLFS problem of general Petri nets is PSPACE-complete, even if restricted
to gss-PNs.

Proof. The PSPACE-hardness of the RecLFS problem of gss-PNs has been shown in Lemma 3.5.
It remains to be shown that the RecLFS problem of general Petri nets is in PSPACE. Let
P = (P, T, F, µ(0)) with largest edge multiplicityW be a Petri net, and Φ a Parikh vector. Assume
Φ is enabled, and let σ be a �ring sequence with Ψ(σ) = Φ. Then, we have max(µ(0), σ) ≤
max(µ(0)) + |σ|W , i.e., to encode the markings obtained while �ring σ, we only need a polynomial
number of bits. Therefore, the reachability problem of gcf-PNs is accepted in polynomial space
by some Turing machine guessing σ step by step. This proves that the reachability problem of
gcf-PNs is in NPSPACE which, by Savitch's theorem [20], equals PSPACE.

Next, we propose four essential lemmata for the construction of canonical permutations of
�ring sequences in gcf-PNs.

Lemma 4.2. Let σ be a �ring sequence of a gcf-PN (N,µ(0)). If t ∈ Ψ�rst(σ(i+1,|σ|)) is enabled

at µ(0) + ∆(σ(i)), then σ(i) · t · (σ(i+1,|σ|) �� t) is a �ring sequence.

Proof. Assume •t 6= ∅. Let σj , j ≥ i+ 1, be the �rst occurrence of t in σ(i+1,|σ|), and assume that

t is enabled at µ(0) + ∆(σ(i)). Then, t is enabled at µ(0) + ∆(σ(j−1)) since, by the choice of t,
∆(σ(j−1))(

•t) ≥ ∆(σ(i))(
•t). Furthermore, since •σj−1 6= •t, σj−1 is enabled at µ + ∆(σ(j−2) · t).

If •t = ∅, a similar argumentation can be applied. By iteratively performing pairwise switches, we
obtain the Lemma.

Lemma 4.3. Let (P, T, F ) be a gcf-PN, σ a transition sequence, and µ, µ′ markings with µ +
∆(σ) = µ′ and µ(p), µ′(p) ≥ W for all p ∈ •σ. Then, there is a permutation of σ enabled at µ
(and leading to µ′).

Proof. For the empty sequence σ and all markings µ = µ′, the claim holds. Let σ be a transition
sequence of length k > 0 and µ, µ′ be markings satisfying the requirements.

Assume, the claim holds for all transition sequences of length less than k and for all markings
satisfying the requirements. We initialize σ̃ ← () and σ̄ ← σ. As long as |σ̃| < k and there is a
place p ∈ •σ̄ with ∆(σ̃)(p) ≥ 0, we choose a transition t ∈ σ̄ with •t = p, and set σ̃ ← σ̃ · t as well
as σ̄ ← σ̄ �� t.
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At the end of this procedure, σ̃ is a nonempty transition sequence enabled at µ. If σ̃ has length
k, then we are �nished.

Otherwise, we have 0 < |σ̃| < k. Then, σ̃ satis�es ∆(σ̃)(p) ∈ [−W,−1] for all p ∈ •σ̄. Consider
the sequence σ̄, and let µσ̄ = µ + ∆(σ̄). Since |σ̄| < k, and µσ̄(p) = (µ + ∆(σ̃ · σ̄) −∆(σ̃))(p) =
(µ′−∆(σ̃))(p) > µ′(p) ≥W for all p ∈ •σ̄, we can apply the induction hypothesis to σ̄, µ and µσ̄.

Hence, µ
σ̄′−→ µσ̄ for some permutation σ̄′ of σ̄.

In addition to µσ̄(p) ≥ W for all p ∈ •σ̄, we have µσ̄(p) = µ(p) ≥ W for all p ∈ •σ \ •σ̄, and
thus µσ̄(p) ≥ W for all p ∈ •σ̃. By applying the induction hypothesis to σ̃, µσ̄ and µ′, we obtain

µσ̄
σ̃′−→ µ′ for some permutation σ̃′ of σ̃. Therefore, the permutation σ̄′ · σ̃′ of σ is enabled at µ

and leads from µ to µ′.

Lemma 4.4. Let P = (P, T, F ) be a gcf-PN with largest edge multiplicity W , and S ⊆ P a

subset of places. Further, let σ = σ1 · · ·σk, σi ∈ T , be a transition sequence of P with µ(0) σ1−→
µ(1) . . . µ(k−1) σk−→ µ(k) such that

(a) •σ ⊆ S,

(b) µ(i−1)(•σi) = max(µ(i−1), S) for all i ∈ [k] (i.e., each transition removes tokens from a place
of S with the maximum number of tokens), and

(c) max(µ(k), S) > max(µ(0), S) + 2|S|W .

Then, for some i ∈ [1, k − 1], the su�x σ(i,k) is a positive loop.

Proof. Consider the disjoint intervals [max(µ(0), S)+2`W −2W +1,max(µ(0), S)+2`W ], ` ∈ [|S|].
Since max(µ(k), S) is outside of all of these intervals, at least one of these intervals, denoted by
[a, b], must satisfy µ(k)(p) /∈ [a, b] for all p ∈ S. Let i ∈ [0, k − 1] be the smallest index such
that max(µ(j), S) ≥ a + W for all j ∈ [i, k]. (Note that this index exists since max(µ(k−1), S) ≥
max(µ(k), S) − W ≥ b − W + 1 = a + W .) We observe max(µ(i), S) ≤ b since, by the choice
of i, max(µ(i−1), S) ≤ a + W − 1 = b − W . Now, for all p ∈ S having a j ∈ [i, k − 1] with
µ(j)(p) ∈ [a, b], we observe µ(k)(p) > b, and therefore µ(i)(p) < µ(k)(p), since, by the choice of
i, the token numbers of these places can leave the interval [a, b] only by crossing the border b.
(This applies to at least one place of S.) For all other places, we have µ(i)(p) ≤ µ(k)(p) since the
remaining sequence leading from µ(i) to µ(k) doesn't remove tokens from them. Therefore, σ(i+1,k)

is a positive loop.

Lemma 4.5. Let N = (P, T, F ) be a Petri net with n places and m transitions, and let W be
the largest edge multiplicity of N . Then, there is a �nite set H(N) = {Φ(1), . . . ,Φ(k)} $ Nm0
of nonnegative loops of N such that each loop of H(N) consists of at most (1 + (n + m)W )n+m

transitions, and such that, for each nonnegative loop Φ of N , there are a1, . . . , ak ∈ N0 with
Φ = a1Φ(1) + . . .+ akΦ(k).

Proof. Let D ∈ Zn×m be the displacement matrix of P, i.e., the i-th column of D equals ∆(ti).
Consider the system DΦ ≥ 0 of linear diophantine inequalities. The set L $ Nm0 of nontrivial
nonnegative integral solutions of this system equals the set of nonnegative loops having at least
one transition. Now, consider the system (D,−In)y = 0 having the set L′ $ Nm+n

0 of nontrivial
solutions where In is the n× n-identity matrix.

By Theorem 1 of [19], this system has a set H(D,−In) of minimal solutions (called the Hilbert
basis) having the following properties:

(i) Each nontrivial solution is a linear combination of the elements of H(D,−In) with nonneg-
ative integral coe�cients.

(ii) Each element of H(D,−In) has a component sum of at most (1 + (m+ n)W )m+n.
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Let y ∈ L′, and a and b be the projection of y onto the �rst m and the last n components,
respectively. We observe that a is a nonnegative loop of N with ∆(a) = b. Moreover, the set of
projections of the elements of L′ onto the �rst m components equals L. The properties (i) and
(ii) for L′ imply equivalent properties for L. This concludes the proof.

Using these lemmata, we can show that �ring sequences have canonical permutations with nice
properties.

Lemma 4.6. There is a constant c such that, for each gcf-PN P = (P, T, F, µ(0)) and each �ring
sequence σ leading from µ(0) to µ, there is a permutation ϕ of σ leading from µ(0) to µ, and
satisfying max(µ(0), ϕ) ≤ (2nmW + max(µ(0)) + max(µ))c(n+m).

Proof. Let P = (P, T, F, µ(0)) be a gcf-PN, and σ a �ring sequence leading to some marking µσ. We
de�ne two special levels `big := max{W,max(µ(0)),max(µσ)+1} and `�re := `big+W . Additionally,
for i ∈ [0, n], we de�ne the levels `i := `�re + W + i · (max{(1 + (n + m)W )n+m, 2n} + 1)W . A
place p is big at a marking µ if µ(p) ≥ `big, and �ring if µ(p) ≥ `�re.

Consider the following invariants for two transition sequences σ̃ and σ̄:

(i) σ̃ · σ̄ is a permutation of σ with µ(0) σ̃−→ µσ̃
σ̄−→ µσ,

(ii) max(µ(0), σ̃) ≤ `n, and

(iii) if there are b ≥ 1 big places at µσ̃, then max(µσ̃) ≤ `b−1.

For σ̃ = () and σ̄ = σ, these invariants are obviously satis�ed. Assume |σ̃| < |σ|, and that σ̃ and
σ̄ satisfy the invariants. We show how to extend σ̃ at the end to a longer transition sequence σ̃new

and obtain a corresponding sequence σ̄new such that σ̃new and σ̄new again satisfy the invariants.
First, consider the case that there are no �ring places at µσ̃. Then, we set σ̃new := σ̃ · σ̄(1),

and σ̄new := σ̄(2,|σ̄|). σ̃
new and σ̄new obviously satisfy property (i). For (ii) and (iii) notice that,

for each big place p of µσ̃ + ∆(σ̄(1)), we have (µσ̃ + ∆(σ̄(1)))(p) ≤ µσ̃(p) +W < `�re +W = `0.
Next, consider the case that there are �ring places at µσ̃. Let S be the set of big places at

µσ̃ and b = |S| ≥ 1 their number. The number of tokens of a big place p∗ ∈ S as a function of
time is illustrated in (a) of Figure 2. We initialize an empty transition sequence α← (), as well as
σ̄′ ← σ̄. As long as there is a �ring place p ∈ S at µσ̃ +∆(α), we select the transition t ∈ Ψ�rst(σ̄

′)
with p = •t, and set α← α · t, as well as σ̄′ ← σ̄′ �� t. Notice that t must exist since σ̄

′ must reduce
the number of tokens at p in order to reach µσ(p). By Lemma 4.2, σ̃ · α · σ̄′ is a �ring sequence

with µ(0) σ̃−→ µσ̃
α−→ µα

σ̄′−→ µσ , and α is nonempty since µσ̃ has a �ring place, see (b) of Figure 2.
Now, consider the nonnegative loop Φ with the largest component sum such that Φ ≤ Ψ(α).

Using Lemma 4.5, we decompose Φ into short nonnegative loops Φ(1), . . . ,Φ(k), each with compo-
nent sum at most (1 + (n+m)W )n+m. Since µσ̃(p) ≥W for all p ∈ S and •t ∈ S for all t ∈ Φ(j),
j ∈ [k], we can use Lemma 4.3 to �nd transition sequences τ (1), . . . , τ (k) with Ψ(τ (j)) = Φ(j),

j ∈ [k], such that τ := τ (1) · · · τ (k) is enabled at µσ̃. Let µσ̃
τ−→ µτ . For each p ∈ S, we observe

∆(Φ)(p) < W . To see this, assume ∆(Φ)(p) ≥W . By the maximality of Φ, Ψ(α)−Φ doesn't con-
tain a transition t with p = •t. Therefore, ∆(α)(p) = ∆(Φ)(p) + ∆(Ψ(α)−Φ)(p) ≥W . But then,
µσ̃(p) + ∆(α)(p) ≥ `big +W = `�re, a contradiction to the fact that no place of S is �ring. Since
all τ (j) are nonnegative loops, we obtain ∆(τ (1) · · · τ (j))(p) ≤W for all p ∈ S and j ∈ [k]. Further-

more, |τ (j)| < (1+(n+m)W )n+m implies ∆(τ
(j)
(i) )(p) ≤ (1+(n+m)W )n+mW for all i ∈ [|τ (j)|] and

p ∈ P . We obtain max(µσ̃ + ∆(τ (1) · · · τ (j−1)), τ (j), S) ≤ `b−1 +W + (1 + (n+m)W )n+mW ≤ `b
for all j ∈ [k], and thus our �rst important intermediate result of the proof:

max(µσ̃, τ, S) ≤ `b.

In other words, the token numbers of places of S at all markings obtained while �ring τ at µσ̃ are
at most `b.
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µσ(p∗)

`big

`�re

`0

`b−1

`b

µσ̃ µσ
σ̄

(a)

µσ(p∗)

`big

`�re

`0

`b−1

`b

µσ̃ µα µσ
α σ̄′

(b)

µσ(p∗)

`big

`�re

`0

`b−1

`b

µσ̃ µτ µα µσ
τ (1) τ (2) · · · τk−1 τ (k) ᾱ σ̄′

(c)

µσ(p∗)

`big

`�re

`0

`b−1

`b

µσ̃ µτ µβ µσ
τ (1) τ (2) · · · τ (k−1) τ (k) β ᾱ′ · σ̄′

(d)

Figure 2: (a)�(d) illustrate the development of the number of tokens at a place p∗ which is big
at µσ̃ during certain steps of the permutation procedure described in Lemma 4.6. The number
of tokens is bounded from above by the respective curve. The number of big places at µσ̃ is b.
Dashed lines symbolize that the number of tokens can become arbitrarily big.

We now consider Ψ(α) − Φ. Observing µτ (p) ≥ µσ̃(p) ≥ W and µσ(p) ≥ W for all p ∈ S,
and •ᾱ ⊆ S for some transition sequence ᾱ with Ψ(ᾱ) = Ψ(α) − Φ, we use Lemma 4.3 to �nd a
transition sequence ᾱ with Ψ(ᾱ) = Ψ(α)− Φ that is enabled at µτ , see (c) of Figure 2.

We initialize another empty transition sequence β ← (), as well as ᾱ′ ← ᾱ. As long as there is
a �ring place of S at µτ + ∆(β), we select a place p ∈ S with max(µτ + ∆(β), S) = (µτ + ∆(β))(p)
and the transition t ∈ Ψ�rst(ᾱ

′) with p = •t, and set β ← β · t, as well as ᾱ′ ← ᾱ′ �� t. It is
important to note the di�erence of this selection procedure compared to the one before. Here, we
select a place of S with the largest number of tokens. Also note that β is nonempty since µσ̃ has

a �ring place in S and µτ ≥ µσ̃. Let µβ := µτ + ∆(β). By Lemma 4.2, we observe µτ
β−→ µβ , and

ᾱ′ is enabled at µβ . In total, we have µσ̃
τ−→ µτ

β−→ µβ
ᾱ′·σ̄′−−−→ µσ.

We observe max(µτ , S) = max(µσ̃ + ∆(τ), S) ≤ max(µσ̃, S) + W ≤ `b−1 + W . Now, for
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the sake of contradiction, assume that max(µτ , β, S) > `b. Then, max(µτ + ∆(β(i)), S) > `b ≥
`b−1 + W + 2nW ≥ max(µτ , S) + 2nW for some i ∈ [|β|]. But then, Lemma 4.4 implies that β
contains a positive loop, a contradiction to the maximality of Φ. Therefore, max(µτ , β, S) ≤ `b.
We merge τ and β and obtain the nonempty transition sequence γ := τ · β.

Our observations can now be summarized as our second important intermediate result, also
see (d) of Figure 2:

µσ̃
γ−→ µβ

ᾱ′·σ̄′−−−→ µσ, |γ| > 0, max(µσ̃, γ, S) ≤ `b, and max(µβ , S) < `�re.

As the last step, consider the smallest j ∈ [|γ|] such that the number of big places at µσ̃ + ∆(γ(j))
is at least b + 1. If such a j does not exist, set j := |γ|. Now de�ne σ̃new := σ̃ · γ(j), as well as
σ̄new := γ(j+1,|γ|) · ᾱ′ · σ̄′. Observe that σ̃new is longer than σ̃, and, together with σ̄new, satis�es
the invariants (i)�(iii). In particular, if there is still a big place at the end of the step, then every
place that is big at some time during the step is also big at the end of it.

By iteratively applying this procedure, we obtain a permutation ϕ of σ such that µ(0) ϕ−→
µσ and max(µ(0), ϕ) ≤ `n, i.e., all markings obtained while �ring ϕ contain at most `n tokens
at each place. Note that if one of the values n,m,W is 0, then only the initial marking µ(0)

is reachable. Therefore, we can choose an appropriate constant c such that `n ≤ (2nmW +
max(µ(0)) + max(µ))c(n+m) for all possible inputs as de�ned at the beginning.

We can use Lemma 4.6 to show that the reachability and the covering problems of gcf-PNs are
PSPACE-complete.

Theorem 4.7. The zero-reachability, the reachability, and the covering problems of gcf-PNs are
PSPACE-complete, even if restricted to gss-PNs.

Proof. The PSPACE-hardness of these problems is shown in Lemma 3.5. It remains to be shown
that these problems are in PSPACE. Consider a gcf-PN P = (P, T, F, µ(0)), and a marking µ of P.
Assume µ is reachable in P. Then, there is a �ring sequence σ with µ(0) σ−→ µ. By Lemma 4.6,

there is a permutation ϕ of σ with µ(0) ϕ−→ µ such that max(µ(0), ϕ) ≤ (2nmW + max(µ(0)) +
max(µ))c(n+m), i.e., the encoding size of each marking obtained while �ring ϕ is polynomial in
size(P, µ). As before in the proof of Theorem 4.1 this implies that the problem is in PSPACE.

For the covering problem observe that µ can be covered in P = (P, T, F, µ(0)) if and only if
µ is reachable in the wipe-extension P− = (P, T−, F−, µ(0)) (which is a gcf-PN itself): If µ can
be covered in P, then there is a �ring sequence σ of P leading to a marking µ′ ≥ µ. The same
sequence is enabled in P−, and it can be extended by transitions of T− \T such that the resulting
�ring sequence σ′ leads to µ. On the other hand, if µ is reachable in P−, then there is a �ring
sequence σ of P− leading to µ. By removing all occurrences of the new transitions in T− \ T
from σ, we obtain a �ring sequence σ′ of P leading to a marking µ′ ≥ µ.

5 Canonical Firing Sequences, and the Boundedness, Con-
tainment, and Equivalence Problems

The canonical permutation obtained in Section 4 is, by itself, not strong enough to show the mem-
bership of the boundedness problem in PSPACE or to yield algorithms deciding the containment
and equivalent problems. Therefore, our �rst objective in this section is to distill a strong form of
canonical �ring sequences from canonical permutations.

Lemma 5.1. There is a constant c such that, for each reachable marking µ of a gcf-PN P =
(N,µ(0)), there are transition sequences ξ, ξ̄,α(1), . . . , α(k), τ (1), . . . , τ (k) for some k ≤ n ·max(µ)
having the following properties.

(a) ξ = α(1) · τ (1) · α(2) · τ (2) · · ·α(k) · τ (k) is a �ring sequence leading from µ(0) to µ.

(b) ξ̄ = α(1) · α(2) · · ·α(k) is a �ring sequence with |ξ̄| ≤ (2nmW + max(µ(0)))cn(n+m).
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(c) Each τ (i), i ∈ [k], is a positive loop with |τ (i)| ≤ (2nmW+max(µ(0)))cn(n+m) enabled at some
marking µ∗ with max(µ∗) ≤ (2nmW+max(µ(0)))c(n+m) and µ∗ ≤ µ(0)+∆(α(1) ·α(2) · · ·α(i)).

Proof. As before, we assume n,m,W > 0 since otherwise the claim holds. Let µ be a reachable
marking of a gcf-PN P = (P, T, F, µ(0)). Then, there is a �ring sequence σ leading to µ. Consider
the wipe-extension P− = (P, T−, F−, µ(0)) of P having n places,m+n transitions, and largest edge
multiplicity W . The sequence σ is also a �ring sequence in P− leading to µ, and can be extended
by transitions of T−\T to a �ring sequence σ′ leading to the empty marking µe having no tokens at
all places. Using Lemma 4.6, we obtain a canonical permutation ϕ of σ′ such that max(µ(0), ϕ) ≤
(2n(m + n)W + max(µ(0)) + max(µe))c(2n+m) = (2n(m + n)W + max(µ(0)))c(2n+m) =: b in P−.
De�ne the markings ν(i), i ∈ [0, |ϕ|], by µ(0)

ϕ(i)−−→ ν(i). Since max(ν(i)) ≤ b for all i, each contiguous
subsequence of (ν(0), . . . , ν(|ϕ|)) with length at least (b+ 1)n contains some marking at least twice.
Therefore, each such subsequence corresponds to a subsequence of ϕ with displacement 0 at all
places, a zero-loop. Furthermore, each such zero-loop is enabled at some marking with at most b
tokens at each place.

We split ϕ into contiguous nonoverlapping subsequences ϕ(1), . . . , ϕ(`) with ϕ = ϕ(1) · · ·ϕ(`)

such that, for each ν(i), i ∈ [0, |ϕ|], there is exactly one j ∈ [`] with µ(0) ϕ(1)···ϕ(j)

−−−−−−→ ν(i) in P−,
i.e., each marking ν(i) which could potentially enable a zero-loop, is witnessed by the sequences

ϕ(1), . . . , ϕ(`). Note that ` ≤ (b + 1)n. De�ne η(j), j ∈ [`], by µ(0) ϕ(1)···ϕ(j)

−−−−−−→ η(j) in P−. Now,
as long as there is a sequence ϕ(j), j ∈ [`], with length at least (b + 1)n, we �nd a zero-loop ϑ
of length at most (b + 1)n within ϕ(j), remove ϑ from ϕ(j), and add it to a list L. Notice that
after this procedure, each ϕ(j), j ∈ [`], has length less than (b + 1)n, and each ν(i), i ∈ [0, |ϕ|],
is still witnessed by the sequences ϕ(1), . . . , ϕ(`) since we only removed zero-loops, i.e., we still

have µ(0) ϕ(1)···ϕ(j)

−−−−−−→ η(j). In particular, the sequences ϕ(1) · · ·ϕ(`) and ϕ(1) · ϑ(1) · · ·ϑ(i1) · ϕ(2) ·
ϑ(i1+1) · · ·ϑ(i2) ·ϕ(3) · · ·ϕ(k) · ϑ(i`+1) · · ·ϑ(i`+1) are enabled at µ(0) in P− where the sequences ϑ(i),
i ∈ [1, i`+1], are the conveniently numbered zero-loops of L.

Now, let β(j), j ∈ [`], be the sequence obtained by removing all transitions of T− \T from ϕ(j).
Equivalently, we obtain γ(i), i ∈ [1, i`+1], from ϑ(i). First note that β(1) · · ·β(`) is a �ring sequence
of P with total length at most (b+ 1)2n since there are at most (b+ 1)n markings to be witnessed

and each sequence ϕ(j), and therefore β(j), has length at most (b + 1)n. Let µ(0) β(1)···β(j)

−−−−−−→ µ(j)

in P. Next, notice that the transition t−i ∈ T− \ T , i ∈ [n], was removed from the sequences
exactly µ(pi) times. Therefore, at most n ·max(µ) of the sequences γ(i) are positive loops (instead
of zero-loops). We only keep the loops that are positive loops, and call them τ (1), . . . , τ (k) where
k ≤ n · max(µ). Each of these positive loops is enabled at some marking ν(i), i ∈ [0, |ϕ|], and
for each ν(i) there is a j such that ν(i) = η(j) ≤ µ(j). This means that each positive loop τ (i) is
enabled at some marking µ(j). Therefore, we can �nd k transition sequences α(1), . . . , α(k) with
α(1) · · ·α(k) = β(1) · · ·β(`) such that the sequences α(i), τ (i), i ∈ [k], satisfy the properties of the
lemma, where we assume w.l.o.g. that the positive loops are conveniently numbered.

We call the sequence ξ̄ the backbone of the canonical sequence under consideration. Using
canonical �ring sequences as constructed in Lemma 5.1, we can show the following lemma.

Lemma 5.2. There is a constant c such that, for each gcf-PN P = (P, T, F, µ(0)), P is unbounded
if and only if there is a reachable marking µ with max(µ) ≥ max(µ(0)) + δ + 1 if and only if
there is a reachable marking µ with max(µ) ∈ [max(µ(0)) + δ + 1,max(µ(0)) + 2δ + 1] where
δ = (2nmW + max(µ(0)))cn(n+m) ·W .

Proof. As before, we assume n,m,W > 0 since otherwise only µ(0) is reachable and the lemma
holds. If P is unbounded, then there is a reachable marking µ̄ with max(µ̄) ≥ max(µ(0)) + δ + 1.
If such a marking µ̄ exists, then δ > W implies that one of the markings µ observed while �ring
a �ring sequence leading to µ̄ satis�es max(µ) ∈ [max(µ(0)) + δ + 1,max(µ(0)) + 2δ + 1]. If such
a marking µ exists, then the canonical �ring sequence ξ of Lemma 5.1 leading to µ contains a
loop τ (i) with ∆(τ (i))(p) > 0 for some place p with µ(p) = max(µ) since ∆(ξ̄) ≤ δ, implying the
unboundedness of P.
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We can now prove the following theorem.

Theorem 5.3. The boundedness problem of gcf-PNs is PSPACE-complete, even if restricted to
gss-PNs.

Proof. Since the PSPACE-hardness was shown in Lemma 3.5, it remains to be shown that it is
in PSPACE. By Lemma 5.2, we have to check if a reachable marking µ as de�ned in the lemma
exists. Hence, in order to check if P is unbounded, we guess µ in polynomial time, and check
in polynomial space if µ is reachable by using Theorem 4.7. As before, this nondeterministic
algorithm implies a deterministic polynomial space algorithm.

In the following, we show a doubly exponential space upper bound for the containment and
the equivalence problems. Let P and P ′ be the gcf-PNs of interest. The proof idea for the upper
bound is as follows. First we show, how to compute semilinear representations of R(P) and R(P ′)
s.t. each representation has doubly exponential size in the combined size of P and P ′. Then,
we simply apply known bounds for the equivalence, and the containment problems of semilinear
sets. The representation of R(P) is computed as follows. We consider all possible backbones of
canonical �ring sequences of P. Each of these backbones ξ̄ constitutes its own linear set, where
the constant vector is the marking reached by the backbone, and the set of periods is the set of
the displacements of all short positive loops enabled at some marking obtained while �ring the
backbone.

Lemma 5.4. Given a gcf-PN P = (P, T, F, µ(0)), we can construct a semilinear representation of
R(P) in doubly exponential time in size(P).

Proof. For convenience, let u := (2nmW+max(µ(0)))c(n+m) where c is the constant of Lemma 5.1.
Let Σ` denote the set of all �ring sequences of length `. For a �ring sequence σ, the setM

∗
σ contains

all markings µ∗ with max(µ∗) ≤ u and µ∗ ≤ µ(0) + ∆(σ(i)) for some i ∈ [0, |σ|]. For a marking µ∗,
the set Dµ∗ contains the displacements of all positive loops τ enabled at µ∗ with ∆(τ)(p) ≤ unW
for all p ∈ P . Consider the set

SL :=

bunc⋃
`=0

⋃
ξ̄∈Σ`

L(µ(0) + ∆(ξ̄),
⋃

µ∗∈M∗
ξ̄

Dµ∗).

Similar to the backbone of a canonical sequence of Lemma 5.1, we call each sequence of all Σ`
backbone.

To see SL ⊆ R(P), notice that, by construction of SL, a marking in SL can be reached by a
�ring sequence which results from inserting positive loops τ with displacement at most unW at all
places into a backbone ξ̄ of length at most bunc at appropriate positions which enable τ . Now we
showR(P) ⊆ SL. Let µ ∈ R(P) be a reachable marking. Consider the sequences ξ, ξ̄, τ (1), . . . , τ (k)

of Lemma 5.1 where µ(0) ξ−→ µ. Then, ∆(τ (i)) ∈
⋃
µ∗∈M∗

ξ̄
Dµ∗ for all i ∈ [k] proving µ ∈ SL.

It remains to be shown that SL can be constructed in doubly exponential time. We �rst
construct all relevant sets Dµ∗ . To this end, consider all marking µ∗ with max(µ∗) ≤ u one after
another. For each such µ∗, we check for all markings µ with µ∗ < µ and µ(p) ≤ µ∗(p)+unW for all
places p ∈ P if µ can be reached from µ∗. If this is the case for some µ, µ−µ∗ is the displacement
of a positive loop enabled at µ∗, and we add µ − µ∗ to Dµ∗ . By Theorem 4.7, this can be done
in polynomial space in size(P) since the encoding sizes of all µ∗ and µ under consideration are
polynomially bounded by size(P) (i.e., size((P, T, F, µ∗), µ) ≤ p(size(P)) for some polynomial p).
Since there are at most exponentially many possibilities for µ∗ and µ, respectively, the running
time to compute all sets Dµ∗ is also at most exponential.

Now, we generate all backbones ξ̄ of length at most un one after another. Each generated
sequence corresponds to a linear set. Since |Σ`| ≤ m` ≤ mun , the total number of produced linear
sets is at most doubly exponential in size(P). When generating the linear set corresponding to a
backbone ξ̄, we �re the transitions one by one and compare the current marking µ with all possible
µ∗ under consideration. If µ∗ ≤ µ, we add all elements of Dµ∗ to our set of periods. Therefore,
this procedure needs at most doubly exponential time in size(P) to compute SL.
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Theorem 5.5. The containment and the equivalence problems of gcf-PNs are PSPACE-hard and
decidable in doubly exponential space, even if restricted to gss-PNs.

Proof. We �rst show PSPACE-hardness for these problems. Let P = (P, T, F, µ(0)) be a gss-PN,
and δ be de�ned as in Lemma 5.2. We construct the gss-PN P+ = (P, T+, F+, µ(0)) from P by
adding, for all places pi, pj ∈ P , a new transition ti,j with F

+(pi, ti,j) = max(µ(0)) + δ + 1 and
F+(ti,j , pj) = max(µ(0))+δ+2. Notice that for each k ∈ N, the net P+ has a reachable marking µ
with µ(p) ≥ k for all p ∈ P if and only if P is unbounded. Now, consider the wipe-extension P+−

of P+ which is also a gss-PN. In P+−, every marking is reachable if and only if P is unbounded.
Let P ′ = (P, T ′, F ′, ν(0)) be the gss-PN where ν(0) is the empty marking, and for each place
p ∈ P , P ′ has a transition t ∈ T ′ with F ′(t, p) = 1. Observe that every marking of P ′ is reachable.
Therefore, P is unbounded if and only if R(P ′) = R(P+−) if and only if R(P ′) ⊆ R(P+−),
proving the PSPACE-hardness of the equivalence and the containment problems of gss-PNs.

It remains to be shown that the containment and the equivalence problems are decidable in
doubly exponential space. Let P1 and P2 be two gcf-PNs. Using Lemma 5.4, we compute semi-
linear representations SL1 and SL2 of R(P1) and R(P2) in doubly exponential time, respectively.
By [10] (also see [12] for a simpler proof), the equivalence problem of semilinear sets is in Πp

2, the
complement of the second level of the polynomial hierarchy. Therefore, the equivalence of SL1

and SL2 can be veri�ed in polynomial space in the size of SL1 and SL2, i.e., in doubly exponen-
tial space in the combined encoding size of P1 and P2. For the containment problem note that
R(P1) ⊆ R(P2) if and only if R(P1) ∪ R(P2) = R(P2) if and only if SL′ = SL2 where SL′ is a
semilinear representation of R(P1) ∪ R(P2) which can easily be be obtained by combining SL1

and SL2.

Our construction is similar to that given in [16] for cf-PNs which uses results of [23], and yields
a semilinear representation of the reachability set of cf-PNs having single exponential encoding
size, implying single exponential space algorithms for the containment and equivalence problems.
The di�erence in the encoding sizes of these semilinear representation between cf-PNs and gcf-PNs
does not result from the slight di�erences in the canonical �ring sequences themselves (in fact, our
canonical sequence can also be used to generate the semilinear representations for cf-PNs in single
exponential time), rather, it results from the following.

For cf-PNs, we used that each nonnegative loop that is intermediately enabled by some back-
bone can be partitioned into suitable nonnegative loops which are intermediately enabled by every
other backbone with the same Parikh image. Therefore, it is su�cient to only consider one of these
backbones. This results in a single exponential number of relevant backbones, and therefore in a
single exponential number of linear sets, each of single exponential size. However, the same strat-
egy fails in the case of gcf-PNs since the order of the transitions is much more relevant for gcf-PNs
than for cf-PNs: �ring transitions in a certain order can intermediately enable loops that cannot
be partitioned further and that are not intermediately enabled by �ring the same transitions in
some other order. This is illustrated in Figure 3. Hence, to improve the doubly exponential space
bound for the equivalence problem, some other or a re�ned approach will have to be found.

p1 p2 p3t1 t2

t3
2 2

Figure 3: The �ring sequences t1t1t2t2 and t1t2t1t2 have the same Parikh image but only the �rst
sequence intermediately enables the positive loop t3.
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6 Exponent-sensitive Commutative Grammars

For the de�nitions of commutative grammars and context-free commutative grammars (cfc gram-
mars) in particular, we refer to [11]. Based on our results for gcf-PNs, we can give complexity
results for the uniform word problem of a new class of commutative grammars we call exponent-
sensitive commutative grammars (esc grammars). An esc grammar is a quadruple (N,T, S, P ),
where N is a �nite set of variables (i.e., nonterminal symbols), T with T ∩N = ∅ is a �nite set of
terminal symbols, S ∈ N is the start symbol (i.e., the axiom), and P ⊂ {{x}⊕ | x ∈ N}×(N ∪T )�

is a �nite set of productions. Here,M� andM⊕ denote the free commutative monoid and the free
commutative semigroup on a set M , respectively. In other words, productions of an esc grammar
can substitute many occurences of a single variable x ∈ N at once by variables and terminal
symbols while productions of cfc grammars can substitute only one occurrence of a single variable.
Hence, in a certain sense, we have given up a little bit of context-freeness. Note, though, that
the families of esc grammars and of context-sensitive commutative grammars (csc grammars) are
incomparable since esc grammars allow productions where the left-hand side of a production is
longer than the right-hand side.

The uniform word problem of commutative grammars asks if, given a commutative grammar
and a commutative word of T�, if the word can be obtained from the start symbol by iteratively
applying productions. This problem has the same complexity for esc grammars as the reachability
problem of gcf-PNs.

Theorem 6.1. The uniform word problem of esc grammars is PSPACE-complete.

Proof. By identifying variables and terminal symbols by places of a gcf-PN, we can reduce the
uniform word problem of esc grammars in logspace to the reachability problem of gcf-PNs.

On the other hand, we can reduce the reachability problem to the uniform word problem:
Let P = (P, T, F, µ(0)) be a gcf-PN and µ a marking, where w.l.o.g. P = {p1, . . . , pn}, and
T = {t1, . . . , tm}. We obtain the gcf-PN P ′ = (P ′, T ′, F ′, ν(0)) from P as follows. We add a place
pn+1, such that F ′(pn+1, ti) = F ′(ti, pn+1) = 1 for all ti ∈ T with •ti = ∅, i.e., in the modi�ed
net, each transition has exactly one incoming edge. Next, we add, for each place pi ∈ P ∪{pn+1},
a new place p∗i and a transition t∗i with F

′(pi, t
∗
i ) = F ′(t∗i , p

∗
i ) = 1. Then, we add a place s, and a

transition ts with F
′(s, ts) = F (ts, pn+1) = 1 and F ′(ts, pi) = µi for all pi ∈ P . Last, we de�ne the

marking ν(0) by ν(0)(s) = 1 and ν(0)(pi) = 0 for all places p 6= s, and the marking ν by ν(s) = 0,
ν(p∗n+1) = 1, and ν(p∗i ) = µ(pi) and ν(pi) = ν(pn+1) = 0 for all pi ∈ P . Note that µ is reachable
in P if and only if ν is reachable in P ′.

Now, we identify all places in P ∪ {pn+1, s} with variables, s with the start symbol, and all
places p∗i , i ∈ [n+ 1] with terminal symbols. ν is mapped to the corresponding commutative word
w, and each transition in the intuitive way to a production. Let G be the resulting esc grammar.
Then, ν is reachable in P ′ if and only if w can be produced by G. Therefore, the reachability
problem of gcf-PNs and the uniform word problem of esc grammars have the same complexity
which, by Theorem 4.7, is PSPACE-completeness.

Table 1 summarizes the complexities for the (uniform) word problem of di�erent classes of
grammars that are of particular interest in context of this paper.

Class (Uniform) word problem Reference

Context-free
non-commutative P-complete [3, 13, 14, 21, 24]
commutative NP-complete [4, 11]

Context-sensitive
non-commutative PSPACE-complete [15]
commutative PSPACE-complete [11]

Exponent-sensitive commutative PSPACE-complete This paper
Semi-groups commutative EXPSPACE-complete [18]

Table 1: The complexities of some (uniform) word problems
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