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Summary

A direct Monte Carlo wave packet sampling method for Liouville space pathways,
based on the solution of the quantum stochastic differential equation in a dou-
bled Hilbert space, was developed to widen the scope of nonlinear spectroscopy
simulations. Using this method we can: compute third order infrared response
functions for systems with thousands of states, which was not possible before;
simulate a very broad range of experiments with any number of pulse interactions;
reduce the computational cost through selection of „important” perturbative terms
represented by Feynman diagrams.

Zusammenfassung

Zur Erweiterung des Anwendungsbereichs der theoretischen Beschreibung mehrdi-
mensionaler Schwingungsspektroskopie durch Pfade im Liouvilleraum wurde, ba-
sierend auf der Lösung quantenstochastischer Differentialgleichungen im doppel-
ten Hilbertraum, ein direkter Ansatz zu deren Monte Carlo Wellenpaket Sampling
entwickelt. Dieser erlaubt Responsefunktionen höherer Ordnungen für Systeme
mit über tausend Konfigurationen zu berechnen, eine große Vielfalt von Experi-
menten mit beliebiger Anzahl von Wechselwirkungen mit einem externem Feld zu
simulieren, sowie den Rechenaufwand durch die Auswahl „wichtiger” Störungster-
me (dargestellt durch die Feynman-Diagramme) zu reduzieren.

Резюме

Для расширения возможностей теории нелинейной многомерной спектроско-
пии мы разработали статистический метод Монте Карло, основаный на реше-
нии стохастических дифференциальных уравнений в удвоеном пространстве
Гильберта для пространственных путей Лиувиля. Наш метод позволяет: рас-
читывать функции отклика для систем более тысячи конфигураций, что ранее
не было возможно; моделировать эксперементы с любым количеством взаимо-
действий с электромагнитным полем; уменьшить обём вычислений благодаря
выбору „важных” членов, представленых в виде диаграмм Фейнмана.
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Chapter A

Introduction

The Guide is definitive. Reality is

frequently inaccurate.

Douglas Adams

Multidimensional infrared spectroscopy is a cutting-edge technique that pro-
vides us with new insights relevant for a very broad range of disciplines like energy
sciences, biophysics, physical chemistry etc. It can be applied to all time-scales
observed in chemical processes. For example, its fast time-resolution allows us
to follow electron transfer indirectly and solvent dynamics directly. We also can
study long time-scale kinetics in a „snapshot” mode. Multidimensional infrared
spectroscopy can be applied to different kind of samples like solutions, solid-state
systems, or membranes [1]. But the most important advantage of multidimen-
sional vibrational spectroscopy for this work lies in its structural sensitivity, which
not only provides us with new insights into the structure and vibrational motion of
polyatomic molecules [2,3] but also gives us information about couplings between
different vibrational modes, which is crucial for many biochemical processes [4].

The vibrational spectrum of a sample is determined not only by the three-
dimensional structure of the molecules in that sample, but also by their intra-
and intermolecular interactions. Therefore, the amount of information about the
system studied, which can be retrieved from such spectra, is very high.

The challenge of multidimensional vibrational spectroscopy lies not only in the
complicated experimental setup, but also in a very complex theory, whose main
limitation is a highly superlinear scaling of the computational effort with system
size. For that reason, to the best of our knowledge, it is so far applicable to small
model systems or with very crude approximations only [2].

In this work we aim to go beyond the model system approach and to develop an
approximative method that allows for the computation of vibrational 2D spectra
for molecular systems with more than 1000 dimensional Hamiltonian matrices.

7



8 CHAPTER A. INTRODUCTION

Because of the superlinear scaling of the computational effort of the Liouville
space based methods, we have to move away from the exact solution of the master
equation and focus on approximations based on the quantum stochastic differential
equation in Hilbert space.

In Chap. B we are going to survey the state-of-the-art of the theory behind
vibrational spectroscopy. We will start with a comparison between the Hilbert
and Liouville space based formalisms. Then we will introduce matter-light inter-
action and formally solve the resulting master equation. In the next step we will
present the perturbative approach for computation of the response functions. An
interaction with the environment will be presented semi-classically and in form of
the Lindblad formalism. Having done that we will show the equality of a quantum
stochastic differential equation and the master equation based on [5]. We describe
the doubled Hilbert space propagators and introduce a Monte Carlo sampling al-
gorithm as a stochastic quantum jump approach for vibrational spectroscopy. The
Monte Carlo sampling algorithm is new and its development is based on results
from [6–12].

In Chap. C we will test the theory and implementation for some well under-
stood benchmark systems. We start with a single harmonic oscillator, compute its
first order response functions in time and frequency domains and introduce line
broadening. As our next step we will examine third order response functions in
a perturbative way. We represent the perturbative terms as double-sided Feyn-
man diagrams and introduce low temperature and rotating wave approximations
to reduce the number of terms. The distinct choice of an experiment gives us
further possibilities of term selection due to the different detection directions of
the rephasing and non-rephasing signals. Anharmonicity is introduced and the
number of oscillators is increased to three. We observe the anharmonic and cross-
peaks in 2D spectra. Since the applicability of the exact propagation for three
(an-)harmonic oscillators in the Lindblad formalism is reaching its limit we imple-
ment a parallel version of the Chebyshev polynomial propagator for the Liouville
and Hilbert space based methods. We examine the semiclassical approximation as
a very practical approach for computing (in-)homogeneous dephasing. We intro-
duce the relaxation matrix and solve the resulting stochastic differential equations
in doubled Hilbert space for the same benchmark systems.

In Chap. D we proceed with applications on „real” molecular systems. We have
chosen the water and formamide molecules for testing purposes. The Hamiltonian
and dipole matrices were computed with quantum chemistry programs. At this
point we are interested in the general applicability of the method and not in
absolute values of the matrix elements, therefore no computationally expensive
quantum chemical methods were used in this work. Both first and third order
response functions for the sum of the rephasing and non-rephasing signals were
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computed.
In Chap. E we present the result of a joint work with the experimental group of

Tobias Steinel. The measured linear FTIR spectrum of 2-pyrrolidinone deviated
from the initial theoretical predictions. The deviation of the spectra occurs because
of aggregation effects in solution. We developed a vibrational tight-binding model
to describe those effects. The results presented in Chap. E were published in
Ref. [13].
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Chapter B

„Need to know”s

B.01 Hilbert space

A time-dependent state of a quantum mechanical system can be described by a
wavefunction |ψ(t)〉. To define a linear vector space, called Hilbert space, we define
an addition (superposition) and scalar multiplication operations as

|ψ(t)〉 = ca |ψa〉+ cb |ψb〉 , ca, cb ∈ C,

where ψa,b are orthonormal eigenfunctions of the time independent Hamilton op-
erator

H |ψk〉 = ǫk |ψk〉 , k = a, b, . . .

and

〈ψa | ψb〉 = δab, (B.01.1)

where δab is the Kronecker delta function

δab =

{
1, a = b

0, a 6= b
. (B.01.2)

The scalar product in the Eq. (B.01.1) is defined as

〈ψa(x) | ψb(x)〉 =
∫
ψ∗
a(x)ψb(x)dx (B.01.3)

for more precise definitions see Ref. [4] and references therein.
The expectation value of a dynamical variable A in the Schrödinger picture is

given by

〈ψ(t) |A|φ(t)〉 =
∫
ψ∗(x, t)Aφ(x, t)dx. (B.01.4)

11
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To obtain the wavefunction (|ψ(t)〉) as a function of time the Schrödinger equation
has to be solved

i~
∂ |ψ〉
∂t

= Ĥ(t) |ψ〉 , (B.01.5)

where Ĥ is the, in general time-dependent, total Hamiltonian of the system.
We introduce the evolution operator Û(t, t0), which acts on the wavefunction

at the t0 and transforms it to the wavefunction at t.

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (B.01.6)

Û(t0, t0) is defined to be the a unity operator (|ψ(t0)〉 = Û(t0, t0) |ψ(t0)〉).
Inserting equation (B.01.6) into equation (B.01.5) yields

i~
∂Û(t, t0) |ψ(t0)〉

∂t
= Ĥ(t)Û(t, t0) |ψ(t0)〉 , (B.01.7)

which leads us to

i~
∂Û(t, t0)

∂t
= Ĥ(t)Û(t, t0). (B.01.8)

Since equation (B.01.7) must hold for any initial |ψ(t0)〉. Integrating this equation
results in

Û(t, t0) = 1− i

~

∫ t

t0

Ĥ(τ)Û(τ, t0)dτ. (B.01.9)

by plugging this equation into itself and solving it iteratively we obtain

Û(t, t0) = 1 +
∞∑

n=1

(
i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1Ĥ(τn)Ĥ(τn−1) · · · Ĥ(τ1).

(B.01.10)
If the Hamilton operators at different times commute, then the time ordering is
not of a concern and we can write the r.h.s. of Eq. (B.01.10) as

Û(t, t0) = exp

{
− i

~

∫ t

t0

dτĤ(τ)

}
. (B.01.11)

At this point it turns out to be very useful to define the interaction picture
and to transform Eq. (B.01.11) accordingly. In the interaction picture the total
Hamiltonian consists of two parts

Ĥ(t) = Ĥ0(t) + Ĥ ′(t) (B.01.12)

Ĥ0 is a simple Hamiltonian and its time evolution can be calculated exactly. Ĥ ′(t)
is a more complicated contribution and is treated perturbatively. The relation
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between wavefunctions in the Schrödinger (ψS) and the interaction (ψI) picture,
respectively, is presented in the following equation

|ψS(t)〉 =Û0(t, t0) |ψI(t)〉
=Û0(t, t0)ÛI(t, t0) |ψI(t0)〉
=Û0(t, t0)ÛI(t, t0) |ψS(t0)〉

(B.01.13)

The derivation of the final expression for the evolution is straightforward and
therefore we will only present the result for the not time ordered expression, with
the integration variables dτ1, . . . , dτn (see [4] for further details).

Û(t, t0) =
∞∑

n=0

(
− i

~

)n ∫ t

t0

dτn · · ·
∫ τ2

t0

dτ1

Û0(t, τn)Ĥ
′(τn) · · · Û0(τ2, τ1)Ĥ

′(τ1)Û0(τ1, t0)

(B.01.14)

In this equation the free propagation of the system under the system Hamiltonian
Û0 and interaction with the perturbation Ĥ ′ are subsequent. This result will be
used to describe the dynamics of the system combined with field interaction.

B.02 Liouville space

A wavefunction describes the system in a pure state. However, a general state of a
system may be an ensemble, which consists of a distribution of pure states. Such
a system can be described by a density matrix [14]

ρ(t) =
∑

k

Pk |ψk(t)〉 〈ψk(t)| (B.02.1)

where Pk ≥ 0 is the probability to find the system in a state |ψk(t)〉 with normal-
ization

∑
k Pk = 1. If Pk is equal 1 for one particular value of k and 0 for every

other value of k, then the system is in a pure state. Otherwise the state of the
system is incompletely defined (mixed state).

In the case of density matrices the expectation value of an arbitrary operator
A can be computed as (compare with Eq. (B.01.4))

〈A(t)〉 = 〈〈A | ρ(t)〉〉 = tr
{
A†ρ(t)

}
, (B.02.2)

where A† is the adjoint (conjugate transpose) of the operator A and tr {·} is the
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trace operation

tr
{
A†B

}
=
∑

m

(∑

n

(
A

†
)
mn

Bnm

)

=
∑

m

(∑

n

A
∗
nmBnm

)

= 〈vec (A) | vec (B)〉 ,

(B.02.3)

where vec (·) is the vectorization operator [15]. The expression 〈〈· | ·〉〉 defines a
scalar product in Liouville space. For further details on the properties of Liouville
and Hilbert spaces we recommend Ref. [4, 16] and references therein.

The time evolution of the density operator can be described with the quantum
Liouville equation (Liouville – von Neumann equation)

i~
∂ρ

∂t
= Lρ

= Ĥρ− ρĤ

=
[
Ĥ, ρ

]
(B.02.4)

The formal solution of this equation is given by

ρ(t) = Û(t, t0)ρ(t0)Û
†(t, t0). (B.02.5)

In equation (B.02.5) we implicitly defined the Liouville space propagator

ρ(t) = U(t, t0)ρ(t0). (B.02.6)

We can solve the time dependent Schrödinger equation for the operator U(t, t0) as
it was done in Eq. (B.01.8)

i~
∂U(t, t0)

∂t
= L(t)U(t, t0) (B.02.7)

the solution of this equation is

U(t, t0) ≡ exp

{
− i

~
L(t− t0)

}
. (B.02.8)

After deriving of the Liouville space operators, we want to compare them to the
previously defined Hilbert space operators.

U(t, t0)ρ(t0) ⇔ Û(t, t0)ρ(t0)Û
†(t, t0) (B.02.9)

exp

[
− i

~
L(t)

]
ρ(0) ⇔ exp

[
− i

~
Ĥt

]
ρ(0) exp

[
i

~
Ĥt

]
(B.02.10)
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Switching to the interaction picture

L(t) = L0(t) + L′(t) (B.02.11)

in complete analogy to Sec. B.01, we get the not time ordered expansion for the
evolution operator (U(t, t0)) in Liouville space

U(t, t0) =U0(t, t0) +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn · · ·
∫ τ2

t0

dτ1

U0(t, τn)L′(τn) · · · U0(τ2, τ1)L′(τ1)U0(τ1, τ0),

(B.02.12)

which is analogous to Eq. (B.01.14)

B.03 Matter-light interaction

We have already considered a time evolution of the system using Hilbert and Liou-
ville space formulations. Now we want to describe an interaction with a radiation
field.

The interaction Hamiltonian in the dipole approximation, also known as long
wavelength approximation (LWA), has the following form

Ĥint(t) = −E(r, t)µ̂
Lint(t) = −E(r, t)M,

(B.03.1)

where MA = [µ̂, A].

The total Hamilton operator therefore becomes

Ĥ(t) = Ĥ0 + Ĥint(t) (B.03.2)

and the Liouville – von Neumann equation (B.02.4) will become (compare to
Eq. (B.02.11))

i~
dρ

dt
= L(t)ρ = L0ρ+ Lint(t)ρ

=
[
Ĥ0, ρ

]
+
[
Ĥint(t), ρ

] (B.03.3)

The equations (B.03.2) and (B.03.3) have a form suited for the perturbative ap-
proach introduced by the interaction picture in sections B.01 and B.02.
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B.04 Hilbert vs. Liouville space formulation

Having derived a total system Hamiltonian for Hilbert and Liouville formalism in
Eqs. (B.03.2) and (B.03.3), we can compare both of them.

In most experimental setups we are dealing with ensembles of particles and
therefore mixed states. The Liouville space time propagation can handle mixed
states exactly but for the price of greater computational cost. The corresponding
Hilbert space methods are cheaper, but require further considerations to describe
mixed states.

We use Eqs. (B.02.6) and (B.02.12), setting L′(t) = Lint(t) from Eq. (B.03.1)
and change the time variables to

t1 ≡ τ2 − τ1, t2 ≡ τ3 − τ2, . . . , tn ≡ t− τn.

Further we can set t0 → −∞, since we start with the equilibrium density operator
and it does not evolve with time when subject to the material Hamiltonian without
field G(τ1 − t0)ρ(t0) = ρ(t0). Assuming an n-th order interaction with light pulses
and changing the time variables as described above, we will get an expression:

ρ(n)(r, t) =

(
i

~

)n ∫ ∞

0

dtn . . .

∫ ∞

0

dt1

E(r, t− tn) . . . E(r, t− t1 − . . .− tn)

G(tn)M . . .G(t1)M|ψ(−∞)〉 〈ψ(−∞)| ,

(B.04.1)

where tn > 0 are time intervals between successive interactions and

G(t) = θ(t) exp

(
− i

~
Lt
)
, (B.04.2)

with the Heavyside step function

θ(t) =

{
1, t ≥ 0
0, t < 0

(B.04.3)

Since the dipole operators M are commutators, we have 2n terms in our n-th order
dipole correlation function.

The corresponding expressions for the wavefunctions are
∣∣ψ(0)(r, t)

〉
= |ψ(−∞)〉

∣∣ψ(1)(r, t)
〉
=

(
i

~

)∫ t

−∞

dτ1E(r, τ1)G(t− τ1)µ̂ |ψ(−∞)〉

...

∣∣ψ(n)(r, t)
〉
=

(
i

~

)n ∫ t

−∞

dτn . . .

∫ τ2

−∞

dτ1E(r, τ1) . . . E(r, τn)

G(t− τn)µ̂ . . . G(τ2 − τ1)µ̂ |ψ(−∞)〉 ,

(B.04.4)



B.05. RESPONSE FUNCTIONS 17

where

G(t) = θ(t) exp

(
− i

~
Ĥt

)
. (B.04.5)

If we want to construct the density matrix that describes the n-th order light
interaction out of wavefunctions, we have to consider every ket-bra

∣∣ψ(k)
〉 〈
ψ(n−k)

∣∣
term in the following equation, whose sum over left and right order is equal to n

ρ(n)(r, t) =c0
∣∣ψ(n)(r, t)

〉 〈
ψ(0)(r, t)

∣∣+ c1
∣∣ψ(n−1)(r, t)

〉 〈
ψ(1)(r, t)

∣∣+ . . .

+cn
∣∣ψ(0)(r, t)

〉 〈
ψ(n)(r, t)

∣∣ (B.04.6)

Obviously, we have only n+1 terms in the sum of the Eq. (B.04.6) in comparison
to 2n terms of the Eq. (B.04.1). This discrepancy lies in the fact that in the case
of multiple time variables acting on bra and ket we will have to split single terms,
considering every possible time ordering between them, which is not an issue of
the Liouville space formulation.

In the Liouville space formulation we maintain a simultaneous bookkeeping of
the interactions with the ket and with the bra and each of the resulting terms has
a complete well-defined time ordering.

Each time ordering is calculated as a distinct Liouville space pathway (see
Sec. B.06), which is not the case in the Hilbert space formalism, where different
terms only reflect the order of the interactions within the bra and the ket (but not
the relative time ordering of bra and ket interactions)

B.05 Response functions

Electronic and nuclear motions and relaxation processes will show up in optical
measurements only through their effect on the optical polarization P (r, t), which
is the only material quantity that appears in the Maxwell equations. Therefore
the calculation of P (r, t) is the main goal of any theory of optical spectroscopy.

Having introduced Eq. (B.04.1), the value of P (r, t) is given by the expectation
value of the dipole operator µ̂

P (r, t) = 〈〈µ̂ | ρ(t)〉〉 . (B.05.1)

The polarization function (B.05.1) can be expanded in powers of the radiation
field E(r, t)

P (r, t) = P (1)(r, t) + P (2)(r, t) + P (3)(r, t) + . . . (B.05.2)

with

P (n)(r, t) =
〈〈
µ̂
∣∣ ρ(n)(t)

〉〉
(B.05.3)
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Each order in the expansion (B.05.2) represents a different class of optical
measurements. P (1) is responsible for linear effects, whereas P (2) and P (3) are
responsible for second- and third-order nonlinear processes respectively. We are
especially interested in the computation of P (1) and P (3), which will be used to
describe linear absorption and 2D-spectra.

P (2) vanishes in an isotropic medium because of its symmetry. This is valid
for all even order response functions, because if the direction of all fields acting on
the response function is reversed, then the polarization will reverse its direction
P (2n) → −P (2n). On the other hand, since E2n (see Eq. (B.03.1)) does not change
its sign P (2n) → P (2n). This is possible only when P (2n) vanishes.

If we insert Eq. (B.04.1) into expression (B.05.3) we obtain

P (n)(r, t) =

∫ ∞

0

dtn . . .

∫ ∞

0

dt1S
(n)(tn, . . . , t1)E(r, t− tn) . . . E(r, t− t1 − . . .− tn)

(B.05.4)
with

S(n)(tn, . . . , t1) =

(
i

~

)n

〈〈µ̂ |G(tn)M . . .G(t1)M| ρ(−∞)〉〉 (B.05.5)

The complete microscopic information necessary for the computation of optical
measurements is carried by the S(n) (n-th order nonlinear response function).

Eq. (B.05.5) can either be evaluated in Liouville space, or as a combination of
ordinary correlation functions in Hilbert space.

B.06 Liouville space pathways

As it was mentioned in the Sec. B.04 the response function S(n) contains 2n terms
after all M commutators are evaluated. We will show, that only half of these
terms should be explicitly evaluated, since the other half is simply the complex
conjugate of the former. The overall sign of the term is calculated as (−1)n, where
n is the number of dipole operator (M) actions from the right, because each time
M acts from the right in a commutator, it carries a minus sign.
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Now let us take an explicit look at

S(1)(t1) =

(
i

~

)
〈〈µ̂ |G(t1)M| ρ(−∞)〉〉

=

(
i

~

)
θ(t1) 〈〈µ̂(t1) |M(0)| ρ(−∞)〉〉

=

(
i

~

)
θ(t1) 〈[µ̂(t1), µ̂(0)] ρ(−∞)〉

=

(
i

~

)
θ(t1) (〈µ̂(t1)µ̂(0)ρ(−∞)〉 − 〈µ̂(0)µ̂(t1)ρ(−∞)〉)

=

(
i

~

)
θ(t1) (J(t1)− J∗(t1)) ,

(B.06.1)

where
J(t1) ≡ 〈µ̂(t1)µ̂(0)ρ(−∞)〉 = 〈µ̂(t1)ρ(−∞)µ̂(0)〉∗ . (B.06.2)

In analogy to Eq. (B.06.1) we can derive the explicit formulation for the third
order nonlinear response function

S(3)(t3, t2, t1) =

(
i

~

)3

〈〈µ̂ |G(t3)MG(t2)MG(t1)M| ρ(−∞)〉〉

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)

×〈[[[µ̂(t3 + t2 + t1), µ̂(t2 + t1)] , µ̂(t1)] , µ̂(0)] ρ(−∞)〉

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)

(

〈µ̂(t3 + t2 + t1)µ̂(t2 + t1)µ̂(t1)µ̂(0)ρ(−∞)〉IV
−〈µ̂(t2 + t1)µ̂(t3 + t2 + t1)µ̂(t1)µ̂(0)ρ(−∞)〉III
−〈µ̂(t1)µ̂(t3 + t2 + t1)µ̂(t2 + t1)µ̂(0)ρ(−∞)〉II
+ 〈µ̂(t1)µ̂(t2 + t1)µ̂(t3 + t2 + t1)µ̂(0)ρ(−∞)〉I
−〈µ̂(0)µ̂(t3 + t2 + t1)µ̂(t2 + t1)µ̂(t1)ρ(−∞)〉I
+ 〈µ̂(0)µ̂(t2 + t1)µ̂(t3 + t2 + t1)µ̂(t1)ρ(−∞)〉II
+ 〈µ̂(0)µ̂(t1)µ̂(t3 + t2 + t1)µ̂(t2 + t1)ρ(−∞)〉III
−〈µ̂(0)µ̂(t1)µ̂(t2 + t1)µ̂(t3 + t2 + t1)ρ(−∞)〉IV)

.

(B.06.3)

The numbering of terms in Eq. (B.06.3) is made in accordance with the one used
by Mukamel [4]. It is obvious, that terms with the same roman subscripts are
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complex conjugates and we can rewrite Eq. (B.06.3) as

S(3)(t3, t2, t1) =

(
i

~

)3

θ(t1)θ(t2)θ(t3)
∑

α

(
Rα(t3, t2, t1)−R∗

α(t3, t2, t1)
)
,

α = I, II, III, IV,

(B.06.4)

with

RIV (t3, t2, t1) = 〈µ̂(t3 + t2 + t1)µ̂(t2 + t1)µ̂(t1)µ̂(0)ρ(−∞)〉IV , (B.06.5)

and so on.
Before we show how the response function can be represented in terms of Feyn-

man diagrams, we introduce the construction rules for the double-sided Feynman
diagrams (see Fig. B.1):

(a) The vertical lines represent the time evolution of the density operator. The
line on the left represents the ket and the line on the right the bra. Time
runs from bottom to top.

(b) Interactions with the field are represented by arrows. The last arrow

〈
µ̂(tn)ρ

(n)
〉

is emission from the ket (by convention) and represented by a different arrow.
The corresponding diagrams with the emission from the bra do not carry any
additional information.

(c) The sign of the diagram is (−1)k, with k the number of interactions from
the bra.

(d) An arrow pointing to the right represents an electric field contribution of
e−iωjt+ikjr+iφ while an arrow pointing to the left represents an electric field
contribution of eiωjt−ikjr−iφ.

(e) Absorption of the light is represented by an arrow pointing to the bra or ket,
whereas emission by an arrow pointing away from the bra or ket. Double-
sided arrows represent a sum of both interactions.

(f) The last interaction must end in a population state |f〉 〈f | , f = 0, 1, . . ..

At this point we will assign both terms of Eq. (B.06.1) and four positive terms
(since negative terms are simply complex conjugates of the positive terms, they
will be left out of the assignment) of the expansion in (B.06.3) to the double-sided
Feynman diagrams (see Fig. B.1).
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J(t1) J∗(t1)

∆t1

|i〉 〈i|

|f〉 〈f |

∆t1

|i〉 〈i|

|f〉 〈f |

RI(t3, t2, t1) RIII(t3, t2, t1)

∆t1

∆t2

∆t3

|i〉 〈i|

|f〉 〈f |

∆t1

∆t2

∆t3

|i〉 〈i|

|f〉 〈f |

RII(t3, t2, t1) RIV (t3, t2, t1)

∆t1

∆t2

∆t3

|i〉 〈i|

|f〉 〈f |

∆t1

∆t2

∆t3

|i〉 〈i|

|f〉 〈f |

Figure B.1: Double-sided Feynman diagrams representing two terms of equation
(B.06.1) and four positive terms of Eq. (B.06.3). The rules to describe the Feynman
diagrams can be found on page 20. ∆tn is the time interval between the lower and
the upper pulse and equals tn − tn−1. |i〉 〈i| is the initial and |f〉 〈f | is the final
state.
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The Feynman diagrams presented in Fig. B.1, are still complex and complicated
to evaluate. In the Chap. C we will show what further approximations can be
applied to select the response functions responsible for the observed signal [1] and
further simplify their computational cost. We will also compute nonlinear signals
for different test systems to verify the methodology used in this work.

B.07 Interaction with the environment A: Semi-

classical approach

So far we have considered the solution of the master equation for an isolated
system. But any system of molecules (or atoms) will interact with its environment
(thermal bath).

These interactions are not only time dependent, but every single molecule is
generally in a different environment at time t. We therefore have not only to
include the frequency time dependence (or time trajectory) of single molecule, but
average over a lot of such trajectories. This averaging is usually written as

ρ(t) ∝
〈
exp

(
−i
∫ t

0

ω(τ)dτ

)〉
(B.07.1)

This time dependence of the transition frequency leads to inhomogeneous dephas-
ing. There are a lot of ways of solving the Eq. (B.07.1). One of the most popular
approaches is called the semiclassical theory of dephasing and its applicability
will be studied in Sec. C.08. This theory treats the vibrational motions quantum
mechanically and the inhomogeneous broadening classically [1].

To approximate the exponential in Eq. (B.07.1) one can use a multi-exponential
approach, which allows to consider both inhomogeneous and homogeneous spectral
broadening separately. To demonstrate the influence of this approach on the peak
line shapes in the spectra, we show the real part of the Fourier-transformation (see
Sec. C.02) of the first-order response function of the ω01 transition. The absorption
spectrum

J(ω) ∝ ℜ
∫ ∞

0

ei(ω−ω01)te
− t

T∗
2 e−

∆ω2t2

2 dt

∝ 1

(ω − ω01)2 +
(

1
T ∗
2

)2 · e−
(ω−ω01)

2

2∆ω2
(B.07.2)

becomes a Voigt profile [1, 4], which is a convolution of Lorentzian profiles for
the homogeneous broadening and a Gaußian distribution function for the inho-
mogeneous broadening (this can be described as Bloch dynamics). Eq. (B.07.2)
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introduces T ∗
2 and ∆ω phenomenologically. The influence of those parameters on

the 2D spectrum will be described in detail in Sec. C.08.
For the third order linear response functions in the time domain the exponential

factors (compare to Eq. (B.07.2)) are [1]

R1,2,3(t3, t2, t1) ∝ e
−

t1+t3
T∗
2 e−

∆ω2(t1−t3)
2

2

R4,5,6(t3, t2, t1) ∝ e
−

t1+t3
T∗
2 e−

∆ω2(t1+t3)
2

2

(B.07.3)

One of the important consequences of Eq. (B.07.3) is the difference between the
second exponential function of the so-called rephasing (R1,2,3) and non-rephasing
(R4,5,6) terms. This leads to the observed line narrowing in the antidiagonal di-
rection. One of the reasons of the line narrowing is the correlation between ω3

and ω1. The system retains a memory of ω1 during the ω3 excitation [1]. The
smaller bandwidth represents the inhomogeneous broadening, whereas the larger
bandwidth is the sum of the homogeneous and the inhomogeneous one.

Another consequence of the semiclassical approach is its static limit: the line
shape is independent of the population time t2. In this approximation only the
evolution of the phase is taken into account and during the population time t2
time system does not acquire a phase (see [4] for the details).

B.08 Interaction with the environment B: Lind-

blad-Kossakowski approach

Another degree of sophistication in the description of the interaction with the
environment is to take bath degrees of freedom into account [14, 17]. A complete
description of the bath and its coupling to the system is rarely feasible and does not
necessarily give new insights. A more common approach is to consider the reduced
density matrix of the system and trace over the bath degrees of freedom [4]. An
even simpler approach is to assume a continuous energy distribution of the bath
modes and get phenomenological relaxation rates. For example, if we assume a
heat bath of harmonic oscillators, then there has to be a reservoir transition that
can absorb or emit a vibrational quantum of any system transition [18].

At this point we can define a system-reservoir interaction operator (relaxation

operator) Ŵ . The relaxation operator is usually represented as a four index tensor.
TheWm′mn′n element of the relaxation operator describes the transition probability
between ρm′m and ρn′n averaged over the reservoir degrees of freedom. If m′ =
m and n′ = n, we can interpret Wmmnn elements as transition rates between
populations ρmm and ρnn (Wmmnn ∝ kn→m) induced by the interaction with the
reservoir. One important property of the relaxation operator is that it always has
to satisfy the following relations [14,17]:
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(a) Detailed balance. The reservoir is assumed to be in thermal equilibrium,
which is described by the Boltzmann distribution. Therefore the quotient of
the transition probabilities between two states is equal to their Boltzmann
factor

Wmmnn

Wnnmm

= exp

{
−~ωmn

kBT

}
(B.08.1)

(b) Conservation of probability . Let us look, how the population state ρmm

evolves with the time.

ρ̇(t)mm = gain in ρ(t)mm − loss from ρ(t)mm (B.08.2)

The relaxation operator does not change the norm of the system, therefore
the total change of the population states must be zero

∑

m

ρ̇(t)mm = 0. (B.08.3)

Since
∑

m

ρ̇(t)mm =
∑

n′n

(∑

m

Wmmn′n

)
ρ(t)n′n (B.08.4)

and, in general, ρn′n 6= 0 ∑

m

Wmmn′n = 0 (B.08.5)

for any n′ and n. In other words, if we write the relaxation operator Ŵ as a
matrix, the sum of each column of elements must be zero.

After the introduction of the system-bath interaction the remaining question
is how it will influence the master equation. To answer this question, we have to
go back to Eq. (B.02.11). In this equation the L0(t) term will gain an additional
imaginary contribution

L(t) = L0(t)− iŴ (t) + L′(t) (B.08.6)

There are many approaches to construct the operator Ŵ . For the dissipative
dynamics to be of the Markovian character [5] we will use an approach first pro-
posed by Kossakowski and Lindblad [19, 20]. The derivation of the Kossakowski-
Lindblad equations can also be found in [5].

Ŵρ =
∑

k

γk

2

(
2σ̂kρσ̂

†
k −

[
ρ, σ̂

†
kσ̂k

]
+

)
(B.08.7)
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σ̂k and σ̂†
k can be selected as the lowering and raising operators, respectively. As an

overview of the quantum mechanics represented in terms of raising and lowering
operators we recommend Ref [21]. The rate (probability) of a k process is defined

by γk. Eq. (B.08.7) expresses the tensor operator Ŵ in terms of matrices σ and σ†.

After the definition of Ŵ we can insert the Liouville operator from Eq. (B.08.6)
into Eq. (B.02.4).

i~
∂ρ

∂t
= L(t)ρ(t0) =

{
L0(t)− iŴ (t) + L′(t)

}
ρ(t0) (B.08.8)

We can treat the first two terms of Eq. (B.08.8) the same way we treated L0 in
Sec. B.02. Doing this, we will obtain a new expression for the time evolution
operator U(t, t0)

U(t, t0) = exp

[
− i

~

(
L(t− t0)− iŴ (t)

)]
. (B.08.9)

Eq. (B.08.9) is an exponential function of a complex sparse matrix. The dimension
of this matrix grows super-linearly with the size of the system. Therefore, solving
of Eq. (B.08.9) presents one of the main difficulties of the Liouville space based
methods. This equation can either be solved exactly or approximated with a
truncated polynomial expansion. For a comparison of different approximations to
calculate the exponential function of a matrix we recommend Ref. [22]. We will use
both Liouville and Hilbert space based approaches on different example systems
in Chap. C.

B.09 Quantum Stochastic Differential Equation

If the effects of the molecular environment (bath) are assumed to be random, the
transition vibration ω becomes a stochastic function of time and one can prove
the equivalence of the stochastic Schrödinger approach (in Hilbert space) and the
generalized master equation (in Liouville space) [5, 6].

One possibility to express a stochastic process is to use so called quantum
jumps [8]. After the definition of Eq. (B.08.7) we can define an effective non-
hermitian Hamiltonian for a single trajectory

Ĥef = Ĥ − iΓ, (B.09.1)

where the Γ operator is defined as

Γ =
~

2

∑

k

γkσ̂
†
kσ̂k, (B.09.2)
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the sum runs over all defined reservoir induced processes σ̂†
kσ̂k, σ̂

†
k and σ̂k are raising

and lowering operators respectively [21], as defined in the Kossakowski-Lindblad
approximation (see Sec. B.08) and γk is the probability of the k process multiplied
with the overall rate. Eq. (B.09.1) can be written as follows

Ĥef = Ĥ − i~

2

∑

k

γkσ̂
†
kσ̂k (B.09.3)

A quantum jump is defined as

|ψ(t+ dt)〉 −→ wkσ̂k |ψ(t)〉 (B.09.4)

wk is the probability of the σ̂k jump (
∑

k wk = 1). We can summarize the quantum-
jump procedure as follows:

(a) Calculate the jump probability

dp = dt 〈ψ(t) |Γ|ψ(t)〉 (B.09.5)

(b) Generate a random number between 0 and 1 (r ∈ [0, 1[):

r < dp: A quantum jump occurs.

|ψ(t+ dt)〉 −→ wkσ̂k |ψ(t)〉√
〈ψ(t) |Γ|ψ(t)〉

(B.09.6)

r ≥ dp: No quantum jump occurs. The system evolves under the influence of
the Hamiltonian in Eq. (B.09.3)

|ψ(t+ dt)〉 −→ 1√
1− dp

exp

{
− i

~
Ĥdt− Γdt

}
|ψ(t)〉 (B.09.7)

Different approaches suggested in the literature [8,23,24] use a truncated
Taylor expansion instead of the exponential function in (B.09.7)

exp {·} ≈ 1− i

~
Ĥdt− Γdt (B.09.8)

A more sophisticated approach to evaluate the exponential function [22]

of the Ĥef operator (B.09.3) can and will be used in Chap. C.

(c) Continue the trajectory

(d) Average the observable over estimated trajectories
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At a time t + dt we have the wave function after jump
∣∣∣ψ̃
〉

with probability dp

and the wave function without
∣∣∣ψ̆
〉

jump with probability 1− dp.

|ψ(t+ dt)〉 〈ψ(t+ dt)| = dp
∣∣∣ψ̃(t)

〉〈
ψ̃(t)

∣∣∣+ (1− dp)
∣∣∣ψ̆(t)

〉〈
ψ̆(t)

∣∣∣ (B.09.9)

If we combine those results, using the truncated Taylor expansions for simplicity,
we will get

dp
∣∣∣ψ̃(t)

〉〈
ψ̃(t)

∣∣∣ = dt
∑

k

γkσ̂k |ψ〉 〈ψ| σ̂†
k (B.09.10)

and

(1− dp)
∣∣∣ψ̆(t)

〉〈
ψ̆(t)

∣∣∣ =
(
1− i

~
Ĥdt− Γdt

)
|ψ(t)〉 〈ψ(t)|

(
1 +

i

~
Ĥdt− Γdt

)

≈ |ψ(t)〉 〈ψ(t)| − i

~
dt
[
Ĥ, |ψ(t)〉 〈ψ(t)|

]
−
[
Γ, |ψ(t)〉 〈ψ(t)|

]
+
dt

(B.09.11)

adding those two equations and substituting Γ accordingly to Eq. (B.09.2), sub-
stituting |ψ(t)〉 〈ψ(t)| with ρ(t) and |ψ(t+ dt)〉 〈ψ(t+ dt)| with ρ(t+ dt) we get

ρ(t+ dt) = ρ(t)− i

~
dt

[[
Ĥ, ρ(t)

]
−
∑

k

γk

2

(
2σ̂kρσ̂

†
k −

[
ρ, σ̂

†
kσ̂k

]
+

)]
(B.09.12)

this is exactly the solution of the master equation in Lindblad form (B.08.7).
Therefore Eq. (B.09.12) shows the equivalence of the two approaches. The full
proof of the equality presented in Eq. (B.09.12) can be found in Ref. [5].

B.10 Propagation in doubled Hilbert space

One of several possible improvements to the quantum jump approach presented in
the previous section is the introduction of the doubled Hilbert space method first
proposed in Ref. [7]. Let us compare how the expectation value of an arbitrary
operator A is computed in Liouville (B.02.2) and in Hilbert space Eq. (B.01.4).
Using the definition of the trace operation in Eq. (B.02.3) and Eqs. (B.01.6),
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(B.02.1) and (B.02.5), we can write for a two time correlation function

〈B(t2)A(t1)〉 = tr {B(t2)A(t1)ρ(t0)} = tr {A(t1)ρ(t0)B(t2)}
= tr {U(t2, t0)AU(t1, t0)ρ(t0)B}

= tr

{
U(t2, t0)AU(t1, t0)

∑

k

Pk |ψk(t0)〉 〈ψk(t0)|B
}

=
∑

k

Pktr {U(t2, t0)AU(t1, t0) |ψk(t0)〉 〈ψk(t0)|B}

=
∑

k

Pktr
{
Û(t2, t0)AÛ(t1, t0) |ψk(t0)〉 〈ψk(t0)| Û †(t1, t0)Û

†(t2, t0)B
}

=
∑

k

Pk

〈
〈ψk(t0)| Û †(t1, t0)Û

†(t2, t0)B
∣∣∣ Û(t2, t0)AÛ(t1, t0) |ψk(t0)〉

〉

(B.10.1)

Eq. (B.10.1) is easily extendable to any number of operators and time variables.
The third order response functions are, for example, three time four operator
correlation functions. In the first step in Eq. (B.10.1) we have used the fact that
the trace operation is invariant under cyclic permutations. Since trace and sum
operations commute, we can write a sum operator in front of the trace operator.
The last step shows us the equality between Hilbert and Liouville space approaches,
in which case we have a pure state (Pk = 1 for one value of k and Pk = 0 otherwise)
and can omit the sum in front of the equation. If the two time correlation function
is computed as it is presented in the last step of Eq. (B.10.1), we formally have

a propagation in negative time for the Û † operators. Since a quantum jump is
relevant for both bra and ket at a certain time t, the propagation in negative time
is not compatible with the Markov approximation.

The introduction of the doubled Hilbert space is a simple and effective method
to retain the Markov approximation for the stochastic Schrödinger equation with-
out noticeable changes in the computational effort. The new space is spanned by
(φ, ψ). We can rewrite Eq. (B.10.1) as (assuming a pure state)

(
|φ(t2)〉
|ψ(t2)〉

)
=

(
BÛ(t2, t1)Û(t1, t0) |φ(t0)〉
Û(t2, t1)AÛ(t1, t0) |ψ(t0)〉

)
(B.10.2)

and in matrix form

x(t2) = BU(t2, t1)AU(t1, t0)x(t0), (B.10.3)

where

x(t) =

(
|φ(t)〉
|ψ(t)〉

)
, (B.10.4)
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U(tn, tm) =

(
Û(tn, tm) 0

0 Û(tn, tm)

)
(B.10.5)

and

A =

(
A 0
0 1

)
, B =

(
1 0
0 B

)
(B.10.6)

depending on whether the operator A or B is acting from the left (on the ket) or
from the right (on the bra), respectively. The expectation value is computed in
complete analogy to Eq. (B.10.1) as

〈x(t)〉 = 〈ψ(t) | φ(t)〉 . (B.10.7)

The norm of x(t) is now

‖x(t)‖ = ‖ψ(t)‖+ ‖φ(t)‖ = 〈ψ(t) | ψ(t)〉+ 〈φ(t) | φ(t)〉 . (B.10.8)

It can be shown that for the non-hermitian operator Hef the norm is a monotoni-
cally decaying function of time [9]:

d(‖x(t)‖)
dt

≤ 0. (B.10.9)

The relaxation operators, defined in Sec. B.08, assume the following form:

Γ =

(
Γ 0
0 Γ

)
(B.10.10)

Γ is defined in Eq. (B.09.2). We can also redefine the Hef

Hef = H− iΓ =

(
Ĥ 0

0 Ĥ

)
− i

(
Γ 0
0 Γ

)
=

(
Ĥ − iΓ 0

0 Ĥ − iΓ

)
(B.10.11)

and write the double Hilbert space propagator as

U(tn, tm) =


exp

{
− i

~

(
Ĥ − iΓ

)
∆t
}

0

0 exp
{
− i

~

(
Ĥ − iΓ

)
∆t
}

 , (B.10.12)

where tn > tm and ∆t = tn − tm. From Eq. (B.10.2) it is obvious that φ and ψ

are propagated simultaneously and forwards in time. Having defined a doubled
Hilbert space and its operators we will proceed with the construction of a stochastic
algorithm in the next section.
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B.11 Monte Carlo Sampling along Feynman dia-

grams

Based on ideas proposed in [9], we may change and extend the basic algorithm
introduced in Sec. B.09. We will explain the algorithm for the example of the two
time correlation function 〈B(t2)A(t1)〉 presented in Eq. (B.10.1) and Eq. (B.10.3).

(a) Compute the norm of the starting vector

N0 = ‖x(t0)‖ (B.11.1)

(b) For i = 1, . . . , N , where N is the number of time steps ∆t

(i) Compute
x(ti) = U(ti, ti−1)x(ti−1) (B.11.2)

(ii) And the norm of x(ti)
Ni = ‖x(ti)‖ (B.11.3)

(iii) Draw a random number r ∈ [0, N0[

if Ni ≥ r: No quantum jump occurs. Propagate again according to Eq. (B.11.2).

if Ni < r: A quantum jump occurs. Compute

x̃ = Γ · x(ti) (B.11.4)

Since the quantum jump changes the norm, we have to recompute
N0 = ‖x̃‖ and return to the propagation loop in Eq. (B.11.2) with
x(ti−1) = x̃.

(iv) When i reaches N we apply the next operator (A in our case) and
continue from Eq. (B.11.1). When i reaches the next value of N we
apply the next operator (B) and so on.

(c) When all time variables reached their desired values, represented by the iter-
ation counter i, we compute the expectation value of the correlation function
according to Eq. (B.10.7).

This algorithm allows us to compute correlation functions in time domain as ar-
rays of numbers. Every number of such array represents an expectation value
〈S(ti, tj, . . .)〉 in the time domain. A comparison between the functions in time
and frequency domains and some theory of Fourier transformation is explained on
some illustrative examples in Sec. C.02.
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Another practical aspect of the presented algorithm is the normalization. This
approach is mathematically and numerically equivalent to normalization after ev-
ery operator step and selecting random numbers r ∈ [0, 1[. The advantage in using
non-normalized functions lies in the possibility of a direct comparison to the exact
Liouville space propagation, starting from the same populated states (for example
a Boltzmann distribution at room temperature).

This algorithm is used to compute the signal of different optical measurements
in a perturbative bottom-up way. In this work we consider only first and third-
order polarization as the most common experiments, however the method is not
limited to these and can be easily expanded to any type of optical signal. We
assume delta pulses and construct different signals (represented by double-sided
Feynman diagrams) as described in Sec. B.05 and Sec. B.06. The response func-
tions are calculated N times using the quantum jump approach described above.
The mean response functions are estimated and used as an approximation to the
Liouville space approach. The numerical results are presented in Chap. D.

On the other hand, there are approaches to compute the optical polarization
non-perturbatively. The polarization then contains the sum of all different signals,
in which it has to be decomposed according to the experimental requirements [10–
12]. This decomposition is one of the main problems for the stochastic treatment
and diverges easily [25].

Another advantage of the perturbative bottom-up approach is in its native par-
allelizability. Every single response function, which is responsible for some part of
the observed signal, can be sampled independently from all other response func-
tions. Since the samples are also independent, the computations can be massively
parallelized.
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Chapter C

From theory to numbers

After a brief introduction of the theory behind the multidimensional vibrational
spectroscopy in Chap. B, we want to give some illustrative examples to describe
the most important spectral features. In this chapter we will use the spectral
nomenclature introduced by Hamm∗ in Ref. [1] to simplify the comparison of the
computed spectra with the literature.

The code used in this chapter was written from scratch as a part of the thctk

package suite [26] using a combination of the Python, C and FORTRAN program-
ming languages.

C.01 Single harmonic oscillator

First, we will compute linear absorption spectra represented by the J(t1) term
in Eq. (B.06.1), which we can split into two different Feynman diagrams (see
Fig. C.1 and compare to Fig. B.1). As a simple benchmark we choose one harmonic
oscillator with frequency ω01 = 250 cm−1 (or 7.49×1012 Hz). We also assume weak
pulses and therefore allow only one level transitions (0 ↔ 1, 1 ↔ 2, and so on).
The system is initially in its ground state at t0

ρ(t0) =

(
1 0
0 0

)
. (C.01.1)

Under these restrictions all but the ground and the first excited states of the
harmonic oscillator can be omitted. The Hamiltonian matrix sufficient for the
linear absorption spectrum will become

Ĥ =

(
0 0
0 ω01

)
, (C.01.2)

∗The third time domain along the abscissa and the first time domain along the ordinate.

33
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J b̂† (t1) J b̂ (t1)

t1

|i〉 〈i|

|f〉 〈f |

t1

|i〉 〈i|

|f〉 〈f |

Figure C.1: Double-sided Feynman diagrams for a first order linear response func-
tion from Eq. (B.06.1) divided into terms due to the interaction with raising ( b̂†

– left diagram) and lowering ( b̂ – right diagram) operators as components of the
dipole operator µ̂. |i〉 〈i| is the initial and |f〉 〈f | is the final state.

while the transition dipole matrix is defined (for simplicity reasons) as

µ̂ =

(
0 1
1 0

)
=

(
0 1
0 0

)
+

(
0 0
1 0

)
= b̂ + b̂† (C.01.3)

From the two upper diagrams in Fig. B.1 remains only the left one (the right one
is its complex conjugate). This diagram can be further divided into two diagrams
(see Fig. C.1). These Feynman paths do not necessarily have any physical meaning,
but their sum does. Generally, though, the calculation of the response function
can be greatly simplified, due to the fact that some of the terms can be neglected.

Since our system is in the ground state |i〉 〈i| = |0〉 〈0| (see Eq. (C.01.1)), the

interaction of the system with lowering operators ( b̂ from left and b̂† from right)
will not contribute to the response function. This approximation is called the Low
Temperature Approximation (LTA). In case the system is not in the ground state

at t0 (i 6= 0 in Fig. C.1) the J b̂ (t1) response function can be neglected because
of the Rotating Wave Approximation (RWA) [16, 27]. Having only one remaining

Feynman path J b̂† (t1) that describes the linear response function, omitting the b̂†

superscript and discretizing the time variable† (τi = τi−1 +∆τ , with i = 1 . . . , N ,
time step ∆τ and τ0 = t0), we can compute it as

ρ′(τ0) = b̂† ρ(τ0)

ρ′(τi) = e−iĤ∆τρ′(τi−1)e
iĤ∆τ

J(τi) =
〈
b̂ ρ′(τi)

〉
, i = 1 . . . , N

(C.01.4)

J(τi) is an array of points with length N . To compute every single point of this

†We denote the discretized time with τ and the absolute time with t. The time points ti and
τi are equivalent.
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Figure C.2: First-order response function for a single harmonic oscillator with a
frequency of 250 cm−1 computed in time domain (a) and transformed to frequency
domain (b). The real part of the response function is plotted with solid lines, while
the imaginary part is plotted with dotted lines.
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Figure C.3: First-order response function for a damped harmonic oscillator with
a frequency of 250 cm−1 and FWHM of 10 cm−1 computed in time domain (a)
and transformed to frequency domain (b). The real part of the response function
is plotted with solid lines, while the imaginary part is plotted with dotted lines.
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array one has to perform four matrix-matrix products and a trace operation. Since
the matrix-vector products are much more convenient to work with than matrix-
matrix products, especially while working with sparse matrices, we will work with
the vectorized form of the Eq. (C.01.4). The rules how to use the vectorization
operator vec (·) can be found in Ref [15]. Eq. (C.01.4) then takes following form

J(τi) = tr




(I⊗ b̂ ) exp

{
−i(I⊗ Ĥ − Ĥ ⊗ I)∆τ

}

︸ ︷︷ ︸
G(∆τ)

(I⊗ b̂† )vec (ρ(τi−1))





(C.01.5)
It is more convenient to work with time steps ∆τ instead of absolute times t (to
compute the next step we only need the previous one and not the density matrix
or wavefunction at time τ0). The computing algorithm has a following form

vec (ρ′(τ0)) = (I⊗ b̂† )vec (ρ(τ0))

vec (ρ′(τi)) = exp
{
−i(I⊗ Ĥ − Ĥ ⊗ I)∆τ

}
vec (ρ′(τi−1))

J(τi) = tr
{
(I⊗ b̂ )vec (ρ′(τi))

}
, i = 1 . . . , N

(C.01.6)

The steps two and three of Eq. (C.01.6) are performed repeatedly, until the last
point J(τN) is computed. The time resolution (∆τ) and the total propagation time
(N∆τ) are parameters, which can be set depending on our requirements. In the
frequency domain (see Sec. C.02) those parameters are connected to the maximal
frequency via

ωmax =
2π

2∆τ
(C.01.7)

and the frequency resolution via

∆ω =
2π

N∆τ
. (C.01.8)

ωmax from the Eq. (C.01.7) is known as the Nyquist critical frequency described
in Sec. C.02 and it is a consequence of the Nyquist-Shannon theorem on page 39.
Setting ωmax to 2000 cm−1 and ∆ω to 0.1 cm−1 (which is equal to ∆τ ≈ 8.34 fs
and N = 40000) we compute the first order linear response function in the time
domain. The Fourier transformation of this function (see Sec. C.02) gives us a first
order response function in frequency domain (see Fig. C.2).

The linear response function of a harmonic oscillator is a benchmark case with
well known result and therefore can be used for understanding, code checking and
debugging purposes. The Liouville and Hilbert space computations yield the same
result (since we have a pure state without any dissipation). We get one single
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peak at 250 cm−1 (Fig. C.2-(b)) or less than 7.5 oscillations in one picosecond

(Fig. C.2-(a)). In the frequency domain the peak appears as a sinc(x) = sin(x)
x

function. The reason for that is the rectangular shape of the time time domain
function (f(t)). See Ref. [28] for details.

f(t) =

{
J(t), t ∈ [τ0, τN ]
0, t < τ0 ∪ t > τN

(C.01.9)

The easiest way to simulate a dissipation processes is to assume a Gaussian-
type population decay, which results in the convolution of the time-dependent
signal with

exp

{
− τ 2i
2σ2

}
(C.01.10)

The full width at half maximum (FWHM) of the resulting Gaussian function is
given by

FWHM = 2
√

2 ln(2)σ (C.01.11)

or the other way around, if we want to get a peak with an artificial but defined
value of FWHM we can also get a σ value from Eq. (C.01.11). In Fig. C.3 we
computed the spectra from Fig. C.2 but with the FWHM set to 10 cm−1.

C.02 Fourier transformation

So far response functions in time and in frequency domains were calculated. Since
the relationship between both is very important for different kinds of spectroscopy,
we will give a short description of the Fourier transformation in this section. For
more detailed descriptions Ref. [1, 28] are recommended.

The Fourier transformation of a time domain function is defined as

f(ω) = FT (f(t)) =
1√
2π

∫ ∞

−∞

f(t)eiωtdt (C.02.1)

its inverse operation is a transformation of a frequency domain function

f(t) = FT−1(f(ω)) =
1√
2π

∫ ∞

−∞

f(ω)e−iωtdω. (C.02.2)

The condition is also known as the Fourier inversion theorem and it holds if both
f(t) and its Fourier transform are absolutely integrable (in the Lebesgue sense [29])
and f(t) is continuous at the point t (f(t) = FT−1(FT (f(t)))).

The 2D Fourier transformation is defined as

f(ω2, ω1) ∝
∫ ∞

−∞

∫ ∞

−∞

f(t2, t1)e
iω2t2eiω1t1dt2dt1 (C.02.3)
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and

f(t2, t1) ∝
∫ ∞

−∞

∫ ∞

−∞

f(ω2, ω1)e
−iω2t2e−iω1t1dω2dω1. (C.02.4)

Since the response functions are discretized, instead of using equations (C.02.1-
C.02.4), one has to use the discrete Fourier transformation. The equations (C.02.1)
and (C.02.2) will then become

f(ωn) =
∆t√
2π

N−1∑

k=0

f(tk)e
2πi kn

N (C.02.5)

and

f(tk) =
∆ω√
2π

N−1∑

n=0

f(ωn)e
−2πi kn

N (C.02.6)

respectively. N is both the number of time steps and the length of the trans-
formed array. ∆t is the time step. The larger N and ∆t are, the smaller ∆ω (see
Eq. (C.01.8)) and the higher the frequency resolution of the spectrum will be.

Eq. (C.01.7) is the result of the Nyquist–Shannon sampling theorem: If a

function f(t) contains no frequencies higher than νmax–Hertz, it is completely de-

termined by giving its ordinates at a series of points spaced 1
2νmax

seconds apart.

The consequence of the Nyquist–Shannon sampling theorem is the Nyquist
critical frequency (Eq. (C.01.7)). All frequencies above ωmax are folded back into
the frequency window defined by the ωmax. This effect is called aliasing.

C.03 Third order response functions

b̂

b̂† b̂

b̂†

|i1〉 〈i2|

|f1〉 〈f2|

Figure C.4: Possible field interactions that lead to transition from the initial
state |i1〉 〈i2| to the final state |f1〉 〈f2|. Transition dipole µ̂ is presented (see

Eq. (C.01.3)) in terms of rising b̂† and lowering b̂ operators.

Let us consider the third order nonlinear response function from Eq. (B.06.3)
and RI , . . . , RIV from Fig. B.1. If we now divide the interactions with the radiation
field as it was done in Eq. (C.01.3), we get four possible interactions (Fig. C.4).
Since in the third order nonlinear response function we have three subsequent
light interactions, we get 64 (43) possibilities, which can be represented in terms

of Feynman diagrams. We can neglect all terms with b̂ being the first interaction
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Figure C.5: Third order nonlinear response function terms (Eqs. (B.06.3) and
(C.01.3)) that survive LTA and RWA (Sec. C.01). The numbering of the terms
was chosen to match the nomenclature used in [1].
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from the left and b̂† – from the right applying the LTA (see Sec. C.01). This
reduce the number of terms to 16. Using RWA (see Sec. C.01) we further reduce
the number of terms to 8. The Feynman diagrams representing those terms are
displayed in Fig. C.5.

The terms R1, R2, R3 are emitted in the −~k1 + ~k2 + ~k3 direction and can be
separated from R4, R5, R6 (~k1 − ~k2 + ~k3) and from R7, R8 (~k1 + ~k2 − ~k3) by phase
matching. The most general form of a 2D IR experiment is called box-CARS‡. The
generated signal field has the wave vector ∓k1± k2+ k3. The R7 and R8 diagrams
represent a different experiment and are called two-quantum pulse sequences [1].
Our methods are not restricted by the experimental setup and we can simulate any
pulse sequence. Since we will focus on method development and its comparison
to the experiment, we will consider only rephasing and non-rephasing diagrams,
which are discussed in detail in the following section.

C.04 Rephasing and non-rephasing spectra
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Figure C.6: The real parts of R1 and R4 are shown in time domain. Every point of
the spectra represents a value of the normalized response function. The damping
in both time dimensions was introduced phenomenologically in analogy to Fig. C.3
(see text for details). The value of t2 is set to zero.

The contributions R1, R2, R3 are the so-called rephasing diagrams, because the
individual Bloch vectors rephase at t1 = t3, which leads to reappearance of a
macroscopic polarization as photon echo (see Ref. [1] for details). The R4, R5, R6

are non-rephasing response functions.
The rephasing terms can be separated from non-rephasing by phase matching.

The diagrams R1, R2 and R4, R5 can be explained for the example of a single

‡Coherent Anti-Stokes Raman Spectroscopy (CARS) [1, 4]
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Figure C.7: The rephasing (R1) and non-rephasing (R4) response functions in
frequency domain. The value of t2 is set to zero, FWHM=20 cm−1.
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Figure C.8: The absorptive (ℜ{R1(ω3, 0,−ω1) + R4(ω3, 0, ω1)}) and dispersive
(ℑ{R1(ω3, 0,−ω1)+R4(ω3, 0, ω1)}) signals are calculated as sums of real and imag-
inary parts of the rephasing and non-rephasing signals, respectively. The value of
t2 is set to zero, FWHM=20 cm−1.

harmonic oscillator and are suited well to describe both the rephasing and the
non-rephasing effects on the spectrum. The anharmonic effects will be described
in Sec. C.05 for example of the R3 and R6 terms.

In the case of a single oscillator with population time t2 set to 0 fs and without
relaxation the terms R1 = R2 and R4 = R5 are pairwise equal. Therefore we will
consider only R1 and R4 in this section.

For now, we will omit the discussion of the relaxation effects and consider only
the oscillating part of the response functions.

R1(t3, 0, t1) ∝ e−iωt3e+iωt1

R4(t3, 0, t1) ∝ e−iωt3e−iωt1
(C.04.1)

The difference between both terms in Eq. (C.04.1) results in the different oscillation
pattern (see Fig. C.6). As in Sec. C.01 and in analogy with Fig. C.3 we introduce
a phenomenological Gaussian-broadening with FWHM=20 cm−1 to improve the
appearance of the 2D spectra and postpone the introduction of the homogeneous
and inhomogeneous broadening to the later sections.

The real and imaginary parts of the response function in the frequency domain
are represented in Fig. C.7. The signal from the non-rephasing diagram (R4) ap-
pears in the first quadrant of the spectrum, whereas the rephasing diagram yields
a peak in the forth quadrant. If we invert the ω1-axis of the rephasing signal, we
will map it into the first quadrant (lower four spectra of the Fig. C.7). The sum
of the real parts of rephasing and non-rephasing diagrams (ℜ{R1(ω3, 0,−ω1)} +
ℜ{R1(ω3, 0, ω1)}) gives us very sharp absorptive signal and the sum of the imagi-
nary parts (ℑ{R1(ω3, 0,−ω1)}+ℑ{R1(ω3, 0, ω1)}) gives us a dispersive signal (see
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Figure C.9: The anharmonicity effects in 2D spectra shown for the example of the
rephasing (R3) and non-rephasing (R6) response functions (upper four spectra)
and sums of rephasing and non-rephasing terms (lower four spectra) in frequency
domain. The value of t2 is set to zero, FWHM=20 cm−1.
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Figure C.10: Absorptive (ℜ{R1+R2+R3+R4+R5+R6}) and dispersive (ℑ{R1+
R2 +R3 +R4 +R5 +R6}) spectra of a single anharmonic oscillator. The distance
between the maximum and the minimum in the absorptive spectrum is 50 cm−1.
The value of t2 is set to zero, FWHM=20 cm−1.

Fig. C.8 and Ref. [1]). Though the separation in the pure absorptive and dispersive
signals is desirable, more common in 2D spectroscopy are the mixed signals, which
result from the superposition of real and imaginary parts of the response function.
The peak shape that corresponds to mixed signal is referred to as phase-twist [30].

C.05 Anharmonic oscillator

To consider the signal from the diagrams R3 and R6 we need more than one
excited level and a non-vanishing transition dipole moment between the first and
the second excited levels. We set the anharmonicity (ω(0→ 1) − ω(1→ 2)) to
∆ω = 50 cm−1 to avoid the peak-overlap and make the spectral feature well
recognizable. The Hamiltonian matrix becomes

Ĥ =



0 0 0
0 ω01 0
0 0 ω02


 , (C.05.1)

with ω01 = 250 cm−1, ω02 = 450 cm−1 and ∆ω = 2ω01−ω02 = 50 cm−1. Using the
harmonic approximation for climbing up the vibrational ladder, the dipole matrix
for the three lowest states becomes [1]

µ̂ =



0 1 0

1 0
√
2

0
√
2 0


 =



0 1 0

0 0
√
2

0 0 0




︸ ︷︷ ︸
b̂

+



0 0 0
1 0 0

0
√
2 0




︸ ︷︷ ︸
b̂†

. (C.05.2)
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With equations (C.05.1) and (C.05.2) we can compute the third order response
functions for the terms R3 (two left upper spectra in Fig. C.9) and R6 (two right
upper spectra in Fig. C.9). After that we compute sums of the rephasing signals
and non-rephasing signals (two lower left and right spectra in Fig. C.9 respectively).
In Fig. C.10 we compute the sum of real and imaginary parts of all six terms of the
response function. The upper spectrum in Fig. C.10 is the absorptive spectrum of
one anharmonic oscillator with ω = 250 cm−1, an anharmonicity of ∆ω = 50 cm−1,
and FWHM = 20 cm−1.

C.06 Three oscillators

Before considering dissipation problems and computing real system Hamiltonians
and transition dipole operators we want to examine yet another benchmark con-
sisting of three (an)harmonic oscillators. The resulting case is more complex than
it may seem to be at first glance. At first we define three harmonic oscillators
with frequencies ωa

01 = 2880 cm−1, ωb
01 = 2950 cm−1 and ωc

01 = 3220 cm−1. With
the weak pulse approximation only first and second excited states need to be con-
sidered. Taking into account all possible excitation combinations (33) we will get
a 27 dimensional Hamiltonian matrix. For example, one of the possible excited
configurations is (1, 0, 2) and it denotes a combination of the first excited level
of the first harmonic oscillator, the ground state of the second, and the second
excited level of the third vibrational mode. We have chosen frequencies of two
CH and one NH stretching modes because they are usually well separated from
other vibrational modes and therefore easier to separate from other frequencies in
a measured spectrum (see Chap. E).

The transition dipole operator for the three oscillators in the same basis has
the form

µ̂3O = 1⊗ 1⊗ µ̂+ 1⊗ µ̂⊗ 1+ µ̂⊗ 1⊗ 1, (C.06.1)

where µ̂ is the transition dipole operator of a single oscillator as defined in
Eq. (C.05.2), 1 is a unity matrix with dimensions equal to the number of sin-
gle oscillator levels. For simplicity reasons we used the same transition dipole
moments for all three oscillators. If needed, those values can always be adjusted.

In Fig. C.11 we show the real parts of the first six response functions from
Fig. C.5 (the same response functions were calculated for one anharmonic oscillator
in Sec. C.04 and Sec. C.05). The lowest two spectra in Fig. C.11 are again the sums
of the real and imaginary parts of the six response functions, respectively. The
quite complex appearance of the third order response functions for three harmonic
oscillators adds up to three sharp absorptive peaks at the respective harmonic
frequencies.
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Figure C.11: The real parts of third order response functions of three harmonic
oscillators (see Sec. C.06), their sum and the sum of imaginary parts of these
response functions. The value of t2 is set to zero, FWHM is set to 20 cm−1.
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Figure C.12: The real parts of third order response functions of three anharmonic
oscillators (see Sec. C.06), their sum and the sum of imaginary parts of these
response functions. The value of t2 is set to zero, FWHM=20 cm−1.
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Figure C.13: The real parts of third order response functions of three anhar-
monic oscillators with additional coupling between (1, 0, 0) and (0, 0, 1) states (see
Sec. C.06), their sum and the sum of imaginary parts of these response functions.
The value of t2 is set to zero, FWHM is set to 20 cm−1.
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In a next step we add the anharmonic effects to the previously defined oscil-
lators, setting ∆ωa = 2ωa

01 − ωa
02 = 50 cm−1, ∆ωb = 2ωb

01 − ωb
02 = 100 cm−1 and

∆ωc = 2ωc
01 − ωc

02 = 150 cm−1, thus changing the energies of all states that in-
clude a second excitation in any of the vibrational modes. The dipole operator
and the dimensionality of the problem remain unchanged. The influence of the
anharmonicity on the response functions and the sum spectra can be seen from
Fig. C.12. As it was shown in Sec. C.05, only the terms R3 and R6 are influenced
by the introduction of anharmonicities. In the sum spectra in Sec. C.05 new neg-
ative peaks appear to the left from the positive diagonal peaks. The horizontal
distance between the positive and the negative peak is equal to the anharmonicity
∆ωi (i = a, b, c) of the oscillator.

Let us now assume, that the energy of the state (1, 0, 1) is ǫ(1,0,1) = ǫ(1,0,0) +
ǫ(0,0,1) − δ(1,0,1). If the energy of the state (1, 0, 1) is not equal to the sum of
the energies of states (1, 0, 0) and (0, 0, 1) (δ(1,0,1) 6= 0), we will observe cross peaks
between (1, 0, 0) and (0, 0, 1) vibrational modes. We have not changed the structure
of the Hamiltonian and dipole matrices. For the value of δ(1,0,1) = 50 cm−1 the
2D spectra are presented in Fig. C.13. As before we show the real parts of the
third order signals and the sums of their real and imaginary parts in Fig. C.13.
As in the case of the anharmonicity effects the coupling between the oscillators
influences only the R3 and R6 response functions. The changes in those response
functions result in the appearance of two new cross peaks between the first and
the third normal modes, which is consistent with the literature [1].

We have changed the energy of a combined state without introducing any
non-diagonal elements into the Hamiltonian matrix and therefore the system is
in the eigenbasis at the beginning (τ0). However if the Hamiltonian matrix is
non-diagonal, which is usually the case, computation of its exponential function is
not trivial anymore. One has to either diagonalize the matrix and transform the
density matrix and dipole operators into the eigenbasis

H̃ = U
†ĤU

µ̃ = U
†µ̂U

ρ̃ = U
†ρU

vec (ρ̃) = U
† ⊗U

†vec (ρ) ,

(C.06.2)

or approximate the exponential function without diagonalizing the matrix. While
the first approach is faster for the smaller, dense matrices, the second is getting
preferable for bigger and sparser matrices.
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C.07 Chebyshev polynomial propagator

A very nice overview of the methods to compute the exponential function of a
matrix without diagonalizing it is given in Ref. [22]. One of those methods is
the Chebyshev polynomial approximation, which was suggested for use as a short-
time propagator in Refs. [31,32]. As it was mentioned in the previous section, the
Hamiltonian and dipole matrices we intend to use are extremely sparse (only a
few percent of the matrix elements are non-zeros) and we want to take advantage
of this property in our computational routines and storage formats. Before we
continue with the implementation details, we want to refer to [33] that covers the
necessary basics of matrix computations. For information about sparse matrix
formats and their applications we recommend Refs. [34–36].

Since the fill-in and sparsity patterns of the matrices that will be used later
are unknown and both factors influence the performance of the matrix operations
very strongly, we will test our routines for dense matrices, which is expected to be
the worst possible performance scenario.

without permutation
matrix: fl64

vector: fl64

#CPUs 1 2 4 8 12

CSR 743 401 322 268 264

CSRd 839 450 339 275 264

dense 317

matrix: fl64

vector: c128

#CPUs 1 2 4 8 12

CSR 940 480 360 277 265

CSRd 805 466 352 276 264

matrix: c128

vector: c128

#CPUs 1 2 4 8 12

CSR 1310 845 526 396 355

CSRd 1677 885 589 472 442

dense 682

with a random permutation
matrix: fl64

vector: fl64

#CPUs 1 2 4 8 12

CSR 1130 623 444 306 270

CSRd 1148 658 475 305 270

dense 378

matrix: fl64

vector: c128

#CPUs 1 2 4 8 12

CSR 1154 684 424 295 269

CSRd 1156 681 425 297 269

matrix: c128

vector: c128

#CPUs 1 2 4 8 12

CSR 1824 1042 691 505 448

CSRd 1984 973 548 343 290

dense 685

Table C.1: Symmetric (Hermitian) dense matrices with a dimension 20000 filled
with random data of real (fl64) or complex (c128) type were multiplied 500 times
with a vector of real or complex type. Matrix-vector products were performed
for CSR, CSRd (or MSR) [34, 35] and NumPy Array data storage format. The
walltime in seconds is estimated for different matrix types and different CPU
numbers.

A Chebyshev polynomial approximation for the exponential function in Hilbert
and Liouville space was implemented for the current work. We have used the
Python and C programming languages, and the shared memory multiprocessing
(OpenMP) libraries [37]. The routine is written to be compatible with any matrix-
vector multiplication available in the code. The NumPy [38] package suite has
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Figure C.14: Walltime (in seconds) as a function of CPU numbers used for
the matrix-vector products (data from Tab. C.1). Only CSR and CSRd (or
MSR) [34, 35] data storage types are shown, _p indicates that a random per-
mutation was used and _ff (float64-float64), _cf (complex128-float64)

and _cc (complex128-complex128) indicate the types of matrix and vector.

a fast matrix-vector multiplication (dense in Tab. C.1). But this routine can
not handle sparse matrix formats and is therefore inappropriate for large matrices
(dimensions larger then 20000-50000). It is not parallelized and has problems
with handling data of different numeric data types at its current version.§ A
permutation function (~y = Ap(~x) instead of ~y = A~x) can sometimes be very
useful in applications and is implemented as well.

The performance of the implemented routines was tested on randomly gener-
ated dense square matrices with dimension 20000. The times in seconds needed
to perform 500 matrix-vector products for different data types, storage formats
and CPU counts is presented in Tab. C.1. The test matrices were symmetric if
float64 and Hermitian if complex128 data types were used. The comparison to

§
NumPy version 1.4.1 is used.
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standard, not parallelized, NumPy matrix-vector products for float64-float64
and complex128-complex128 data types with and without a random permutation
is shown in Tab. C.1. The complex128-float64 matrix-vector products are also
implemented, but no comparison to the NumPy routine is given, because of the
very poor simultaneous handling of different numeric data types by the current
version of NumPy, which results in inadequate performance times (more than
3000 instead of ≈ 400 seconds).

In Fig. C.14 we plot the times presented in Tab. C.1 as a function of the CPU
number. Using two CPUs instead of one reduces the walltime almost by a factor
of two. Using four CPUs reduces the walltime by further 25 percent. Larger
CPU counts reduce the total time further but not as significantly as two to four
processors.

C.08 Semiclassical approximation in practice

So far we have considered only the origin and positions of the spectral features in
2D spectra. Now we are going to take a closer look at their shape. The physical
reasons, why the peaks do not appear to be infinitesimally sharp in the spectra
are discussed in Sec. B.07 and B.08. Since the spectral features are not easily rec-
ognizable if they are infinitesimal sharp, a phenomenological Gaussian broadening
(with a FWHM set to 20 cm−1) was applied throughout Sec. C.02.

At this point we want to apply the theory from Sec. B.07 to our previously
computed spectra. Two parameters are introduced – the homogeneous vibrational
dephasing time T ∗

2 (or the homogeneous dephasing rate (T ∗
2 )

−1) which is usually
about 0.5 to 2 ps for molecules in the liquid state or solution and the fluctuation
amplitude ∆ω up to 100 cm−1 (inhomogeneous broadening), which is equivalent
to a rate of approximately 0.5 ps−1.

In Fig. C.15 we show the same third order response functions as in the lowest
left spectrum of Fig. C.13. Instead of the Gaussian broadening we are now using
semiclassical homogeneous and inhomogeneous dephasing with different values for
the (T ∗

2 ,∆ω) tuples. The larger the ∆ω, the longer the peaks along the diagonal
and the smaller the T ∗

2 , the broader the peaks. This result is in direct agreement
to the literature [1] for a Photon-Echo experiment.

A big advantage of the semiclassical approximation is its flexibility. The homo-
geneous and the inhomogeneous effects can be included into every approximation
used in this work independently and at a low computational cost.
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Figure C.15: Illustration of the semiclassical approximation of dephasing for the
example of the third order response functions (compare to lowest left spectrum
in Fig. C.13). T ∗

2 is the homogeneous dephasing time and ∆ω is the fluctuation
amplitude.
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Figure C.16: Third order response functions computed using the relaxation matrix
introduced in the Eq. (C.09.1). Relaxation rates to the ground state are set to
≈ 1000 fs−1, all other relaxation rates set to 0. No semiclassical dephasing.

C.09 Introducing a relaxation matrix

In Sec. B.08 we have introduced the concept of a relaxation matrix along with
some conditions it must fulfill. Now we want to take a closer look at Eq. (B.08.7)
and its possible implementation. Applying the rules of the vectorization operators,
we can write

vec
(
Ŵρ
)
= 1⊗ Ŵvec (ρ)

=
∑

k

γk

2

(
2
(
σ̂
†
k

)T
⊗ σ̂k − 1⊗ σ̂

†
kσ̂k −

(
σ̂
†
kσ̂k

)∗
⊗ 1

)
vec (ρ)

=
∑

k

γk

2

(
2σ̂∗

k ⊗ σ̂k − 1⊗ σ̂
†
kσ̂k −

(
σ̂
†
kσ̂k

)∗
⊗ 1

)
vec (ρ) (C.09.1)

assuming that the operators σ̂k are real, this expression can be simplified to

=
∑

k

γk

2

(
2σ̂k ⊗ σ̂k − 1⊗ σ̂T

k σ̂k − σ̂T
k σ̂k ⊗ 1

)
vec (ρ) (C.09.2)

using the properties of the direct matrix product we can further write

=

(∑

k

γk σ̂k ⊗ σ̂k − 1⊗
∑

k

γk

2
σ̂T
k σ̂k −

∑

k

γk

2
σ̂T
k σ̂k ⊗ 1

)
vec (ρ)

(C.09.3)
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with Σ̂ =
∑

k
γk
2
σ̂T
k σ̂k the previous expression can be written as

=

(∑

k

γk σ̂k ⊗ σ̂k − 1⊗ Σ̂− Σ̂⊗ 1

)
vec (ρ) . (C.09.4)

In Eq. (C.09.4) the operator Σ̂ can be computed before the direct matrix product,
which is computationally cheaper than the sum of direct products. This equation
represents the Lindblad-Kossakowski approximation [19,20] in the Liouville space
for the vectorized density matrices. The operators σk can be chosen depending on
the required sophistication, with relative rates γk of the respective processes. This
way, we may easily incorporate any dissipative processes in question.

For the purposes of this work, we define the lowering operators σk and the rais-
ing operators σT

k . The index k runs over all allowed transitions. The rates γk can
be chosen depending on the required broadening or estimated from experimental
data. To fulfill the detailed balance condition (see Eq. (B.08.1)) the rate of any
upward transition (σT

k ) is equal to the respective downward transition (σk) rate
times the respective Boltzmann factor

γ0→1

γ1→0

= exp

{
−~ω01

kBT

}
, (C.09.5)

with Boltzmann constant kB and temperature T = 300 K (room temperature).
The density matrix at τ0 is populated with respect to the Boltzmann factors (ther-
malized)

ρ(0)ij ∝ exp

{
− ~ωi

kBT

}
δij. (C.09.6)

One of the main computational challenges in the description of the relaxation
processes with the Liouville space based methods is the dimensionality of the
problem. The dimensions of the 1 ⊗ Ŵ operator is N2 × N2 and even if this
operator can remain sparse, the density matrix has to be a dense matrix with
dimensions N × N (or vector with dimensions N2 × 1). This results in highly
super linear scaling of the computational cost of the method with system size.

To examine the relaxation on example third order response functions for the
relaxation operator defined in Eq. (C.09.4) we set the relaxation processes γkσk
equal to the dipole matrix elements times the parameter γ. The parameter γ gives
us a possibility to increase or decrease the overall relaxation rate. In Fig. C.16 we
calculate spectra with population times (T2) set to 0 (top spectrum) and 2000 fs
(bottom spectrum). The intensities of the peaks in the bottom spectrum are
much lower (about 40%) than in the top spectrum. Another important change is
the lower intensity of the negative bands in the upper spectrum in Fig. C.16 in
comparison to Fig. C.13 and Fig. C.15. The reason for that is the relaxation from
the excited state during the t1 and t3 periods of time.
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Figure C.17: Real (ℜ{J(ω)}) and imaginary (ℑ{J(ω)}) parts of the first order
response function (J(ω)) computed in Liouville space (L) compared to those com-
puted in doubled Hilbert space (H). The jump probability is set to 0 (no quantum
jumps).
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C.10 Wavefunction based propagation

The disadvantage of the unfavourable computational cost of the Liouville space
based methods is even more apparent when dealing with the dissipation, as de-
scribed in Sec. C.09.

In Sec. B.09 we have shown, that the random environmental effects can be
equally described by the master equation in Liouville space and by the quantum
stochastic differential equations in Hilbert space. Before introducing the quan-
tum jump approach from Sec. B.11 we want to examine a no-jump Hilbert space
propagation, with the relaxation matrix defined the same way as in Sec. C.09.

The comparison of the first order response functions computed in Liouville
space to those computed in doubled Hilbert space without quantum jumps is
presented in Fig. C.17. For the first order response functions (J(ω)) computed in
this section a 5 cm−1 resolution was used.¶

The spectra in Fig. C.17 are identical. This means, that our benchmark system
is simple enough and can be described with a pure state. Therefore no quantum
jumps are needed. In the next chapter we will use the algorithm presented in
Sec. B.11 for the example of molecular Hamiltonians, which can not be described
with pure states anymore.

C.11 Chemical exchange

We want to consider the dynamics of a chemical exchange process because its
description requires more than a pure state and is therefore a good example for
the introduction of both the doubled Hilbert space propagation (Sec. B.10) and
the Monte Carlo Sampling algorithm (Sec. B.11).

We will start with the three anharmonic oscillators we have introduced in
Sec. C.06 and change the fundamental frequency of the third oscillator by 100 cm−1

(ωc2
01 = 3320 cm−1 instead of 3220 cm−1) mimicking e.g. a change of this oscillators

environment by some external process. The dipole matrix of the modified system
is equal to the dipole matrix of the original system µ̂3AO

2 = µ̂3AO. If we want to
allow chemical exchange between those two systems, we will have to include both
of them into the propagation thus doubling the dimensionality of the problem.
The new Hamiltonian matrix will become

¶ If we want a response function with a maximal frequency of 7000 cm−1 and the frequency
resolution of 10 cm−1, we will need 1400 points per time dimension and zero filling up to at
least 2048 points for 1D-FFT. For the 2D third order response function we have to compute
1,960,000 (1400×1400) and store 4,194,304 (2048×2048) points (of complex data type). This
example shows that computing and saving first order response function does not present any
difficulties. On the other hand the resolution limit for the third order response functions has to
be considered more carefully.
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Figure C.18: The real part of the first order response function (J(ω)) for the
doubled three oscillator system. The first two oscillators have frequencies ωa

01 =
2880 cm−1 and ωb

01 = 2950 cm−1 in both states. The third oscillator has frequen-
cies ωc1

01 = 3220 cm−1 and ωc2
01 = 3320 cm−1. The rate of chemical exchange r0 is

set to 0.

Ĥ II =

(
Ĥ 0

0 Ĥ2

)
, (C.11.1)

with the Hamiltonian matrix Ĥ taken from Sec. C.06 and the modified Hamiltonian
matrix Ĥ2. The doubled dipole matrix will become

µ̂II =

(
µ̂3AO 0
0 µ̂3AO

)
. (C.11.2)

We will also introduce the exchange operator in accordance with Refs. [9, 30]

X̂ =

(
0 1

1 0

)
, (C.11.3)

where 1 is the unity matrix of the dimension equal to the dimension of Ĥ.
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In Fig. C.18 we show the real part of the first order response function (J(ω))
for the doubled system with exchange rate r0 = 0. Using the same normalization
factor as in Fig. C.17 we see that peaks of the first two oscillators overlap causing
the doubled intensities of these bands, whereas the intensities of the peaks at 3220
and 3320 cm−1 are equal to 1.

In Fig. C.19 we introduce chemical exchange with different probabilities of
exchange transitions (relative rates). The spectrum without exchange is presented
in red. With a low probability of exchange (green spectrum) the peaks are getting
smaller and broader. The blue spectrum has a higher exchange rate and is close
to coalescence (both peaks nearly disappeared). Even higher rates lead to single
sharp peak at 3270 cm−1 (purple and black spectra) by motional narrowing.
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Figure C.19: The real part of the first order response function (J(ω)) for the dou-
bled three oscillator system in the spectral window between 3100 and 3450 cm−1.
The relative rates of the chemical exchange are rred = r0 = 0 < rgreen < rblue <

rpurple < rblack.

In Fig. C.20 we examine the third order response functions for the same doubled
three anharmonic oscillator system with chemical exchange. The population time
T2 is set to zero. With exchange rate equal to zero (r0 = 0) we can see two
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Figure C.20: Third order response functions computed using the Monte Carlo
Sampling algorithm (Sec. B.11) for the doubled three anharmonic oscillator system
with chemical exchange (see text). The relative rates of exchange are: r0 = 0 <
r1 < r2 < r3 < r4 < r5 < r6 < r7 → ∞. The r4 and r5 spectra are magnified two
times. Population time T2 = 0.
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peaks at 2880 and 2950 cm−1 with intensity normalized to 1 and two peaks at
3220 cm−1 and 3320 cm−1 with half of the intensity in correspondence to the first
order response function in Fig. C.18. The increase of the relative rate reduces the
intensity of the last two peaks and elongates them in the frequency time domain
(r1 and r2). With exchange rate r3 we observe the onset of coalescence represented
by the blue spectrum in Fig. C.19. Further increase of the exchange rate leads to
almost complete disappearance of both peaks (r4 and r5). After that a sharp peak
appears at 3270 cm−1 (r6, r7) due to motional narrowing.

In Fig. C.21 we take a lower exchange rate (r1 from previous example) and
increase the population time T2. After 750 fs the exchange cross peaks appear in
the spectrum, while chemical exchange would not be detectable in 1D spectra of
this system.

T2 = 0 fs
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Figure C.21: Third order response functions computed using the Monte Carlo
Sampling algorithm (Sec. B.11) for the doubled three anharmonic oscillator system
with chemical exchange for the population times T2 = 0 and 750 fs (see text).



Chapter D

Monte Carlo Sampling of Liouville

Space Pathways

As a benchmark system for the Monte Carlo Wave Packet Sampling we are going to
use the water (Sec. D.01) and formamide (Sec. D.02) molecules. Their Hamiltonian
and dipole matrices were computed within the scope of our institute collaboration
[39]. The theory behind the build-up of vibrational configuration interaction (VCI)
matrices was described in [36,40–43] and will not be further discussed in this work.
In this chapter we plot 2D spectra with the first time domain along the abscissa
and third time domain along the ordinate.

D.01 Dihydrogen monoxide

With only three atoms and three normal modes, the water molecule (Fig. D.1)
is one of the simplest benchmark systems to study vibrational motions. The 38

Figure D.1: Optimized geometry of water molecule (see Appendix G.01).

dimensional Hamiltonian and dipole matrices are computed with the semiclassical
PM3 method [44, 45] and the configuration selection algorithm presented in [39].

63
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(0, 0, 0) (3, 0, 0) (2, 2, 0) (3, 0, 2)
(1, 0, 0) (0, 3, 0) (2, 0, 2) (2, 3, 0)
(0, 1, 0) (0, 0, 3) (1, 3, 0) (2, 0, 3)
(0, 0, 1) (2, 1, 0) (1, 0, 3) (0, 4, 1)
(2, 0, 0) (2, 0, 1) (0, 3, 1) (0, 3, 2)
(0, 2, 0) (1, 2, 0) (0, 2, 2) (2, 2, 1)
(0, 0, 2) (1, 0, 2) (2, 1, 1) (1, 3, 1)
(1, 1, 0) (0, 2, 1) (1, 2, 1) (0, 4, 2)
(1, 0, 1) (0, 1, 2) (1, 1, 2)
(0, 1, 1) (3, 0, 1) (4, 0, 1)

Table D.1: 38 vibrational configurations of water that survive the configuration
selection algorithm [39]. Three numbers in parentheses represent three normal
modes and their excitation levels.

The configurations selected this way can be found in Tab. D.1. The configura-
tion list consist of the ground state, fundamentals, first and second overtones and
combination modes.

The red spectrum in Fig. D.2 is the linear absorption spectrum of a water
molecule computed from the Hamiltonian eigenvalues with intensities proportional
to the squares of the transition dipole moments [2]. The peaks are plotted with
an artificial Lorentz-type broadening of 2 cm−1. The z axis lies perpendicular to
the molecular plane and therefore there is no dipole moment change along the
z axis and no linear absorption associated with the z component of the dipole
moment (purple spectrum in Fig. D.2). The peaks at 1672 cm−1 and 3809 cm−1

are associated with the change of the y component of the dipole moment and
present symmetric OH bend and stretch vibrations (front blue line in Fig. D.2).
The second blue spectrum is computed as the first order response function in
doubled Hilbert space with the algorithm described in Sec. B.11. The necessary
number of quantum jumps per trajectory is lower than 20 and one needs less than
10 trajectories for convergence. The small peak at 3295 cm−1 is the first overtone of
the symmetric bending mode. The almost disappearing peak at around 2000 cm−1

(encircled) is a higher combination mode and it appears in the spectrum due to
the aliasing effect described in Sec. C.02.

The linear absorption spectrum associated with the x component of the dipole
moment (front green line in Fig. D.2) consists of the asymmetric OH stretch at
3691 cm−1. As in the case of the y component, the second green spectrum is
computed in doubled Hilbert space with the algorithm described in Sec. B.11.
The number of quantum jumps per trajectory is again lower than 20 and one
needs less than 10 trajectories for convergence. We normalize all spectra to the
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Figure D.2: Total linear absorption spectrum of the water molecule (red) and its x
(front green), y (front blue) and z (purple) transition dipole moment components
computed as eigenvalue spectra and x (second green), y (second blue) components
computed as first order response functions using the Monte Carlo sampling al-
gorithm described in Sec. B.11. The intensity of the x component of the dipole
moment is normalized to 1 (off scale).
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intensity of this band.
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Figure D.3: The real parts of the third order response functions associated with
the y component of the transition dipole moment computed using the Monte Carlo
Wave Packet Sampling approach (see Sec. C.03 and Sec. B.11). The value of t2 is
set to zero. The intensity of the negative band is normalized to 1.

After the examination of the linear absorption spectra we want to take a closer
look at the third order response functions computed with the Monte Carlo sampling
algorithm. In Fig. D.3 we show the third order response function associated with
the x component of the transition dipole matrix. The intensity of the highest signal
in the spectrum is normalized to one. We can see the sharp absorptive signal is
visible on the diagonal at 3691 cm−1 and a strong anharmonic peak with negative
sign appears below it. Since it is the only asymmetric band, no other structure is
visible in the spectrum.

The situation is very different for the y component of the transition dipole
operator. In the upper spectrum in Fig. D.4 we see the expected diagonal peaks
and their anharmonic counter parts at 1672 cm−1 and 3809 cm−1. Those peaks
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Figure D.4: The real parts of the third order response functions associated with
the y component of the transition dipole moment computed using the Monte Carlo
Wave Packet Sampling approach (see Sec. C.03 and Sec. B.11). The value of t2
is set to zero. The same normalization constant as in Fig. D.3 was used. The
lower spectrum is magnified ten times to show the fine structure of the spectrum.
Aliased bands are indicated by circles.
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are weaker than the x component peak. We use the same same normalization
constant as in Fig. D.3 for comparison purposes. After tenfold magnification of
the signal (lower spectrum in Fig. D.3) we observe a quite complex fine structure in
the spectrum. The cross peaks with the overtone and the aliased band (indicated
by circles) appear in the spectrum. This interaction is expected because of the
symmetry of the underlying vibrational motions.

To generate the spectra in Figs. D.3 and D.4, the Monte Carlo sampling with
only five trajectories per Feynman path and the Feynman paths denoted R1, R2,
R3, R4, R5 and R6 in Chap. C were used.

D.02 Formamide

Formamide (see Fig. D.5) is the smallest model amide and is, with its six atoms and
12 normal modes, both a simple and interesting benchmark molecule. The VCI and

Figure D.5: Optimized geometry of formamide (see Appendix G.01).

transition dipole matrices of formamide used in this work are 1146 dimensional and
were computed using the semiclassical PM3 method [44,45], and the configuration
selection algorithm presented in [39]. The normal modes of formamide with their
respective VCI eigenvalues are shown in Fig. D.6.

In Fig. D.7 we show the total linear absorption spectrum (red) of formamide, as
well as its x (green), y (blue) and z (purple) components. The eigenvalue spectra
(front spectra in Fig. D.7) are compared to the Monte Carlo Wave Packet Sampling
results (back spectra in Fig. D.7). The peaks are plotted with an artificial Lorentz-
type broadening of 10 cm−1. The intensity of the z component band at 107 cm−1 is
normalized to 1. Having computed the absorption spectra for frequency ranges of
8000 and almost 12000 cm−1 we have not found any visible aliasing in the spectral
window between 0 and 4000 cm−1.
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(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

539 cm−1 535 cm−1 112 cm−1

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

1001 cm−1 1082 cm−1 1189 cm−1

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

1365 cm−1 1621 cm−1 1941 cm−1

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

2988 cm−1 3351 cm−1 3398 cm−1

Figure D.6: Normal mode basis of formamide. The orange lines represent the
corresponding atomic displacements. Frequencies are based on PM3 calculations
(see text).
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Figure D.7: Total linear absorption spectrum of formamide (red), its x (green), y
(blue) and z (purple) transition dipole moment components computed as eigen-
value spectra and x (second green), y (second blue), z (second purple) components
computed as first order response functions using the Monte Carlo sampling algo-
rithm described in Sec. B.11. The intensity of the z component band at 107 cm−1

is normalized to 1 (offscale).
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The linear absorption spectrum of formamide is very complex and can not
be described with fundamental transitions only. We do not only see many new
signals in the simulated spectra, but also the intensities of the peaks frequently
differ. From the comparison between the front and back spectra of the same color
in Fig. D.7 we can conclude that the fundamental excitations present an insufficient
approximation for the linear absorption spectrum.

The 2D vibrational spectra of formamide are shown in Figs D.8, D.9, and
D.10. As expected, the structure of the spectra is much more complex than in
the case of the water molecule. As in the 1D spectrum we also see four diagonal
peaks in Fig. D.8 (top spectrum), which is associated with the x component of
the transition dipole moment. The diagonal peak at 539 cm−1 is associated with
the in-plane NH2 bending mode (see Fig. D.6). The highest intensity mode in this
spectrum is the Amide II mode with the frequency 1621 cm−1. It is the eighth
normal mode of the molecule. The Amide II mode is coupled to the in-plane NH2

band, Amide I, which is the second in intensity peak in the spectrum and is the
ninth vibrational mode and is located at 1941 cm−1. The fourth normal mode
we observe is the symmetric NH2 stretch mode (12th normal mode of formamide)
at 3398 cm−1. This vibrational motion is also coupled to the Amide II mode.
Tenfold magnification of the signal unveils a complex pattern of couplings in the
lower spectrum in Fig. D.8. Not only the peak at 1082 cm−1 becomes visible, but
also many coupling bands not seen in the top spectrum of Fig. D.8.

The y component of the transition dipole moment shows three diagonal peaks
in correspondence to the 1D spectrum and a coupling pattern between them (see
top spectrum in Fig. D.9). The first diagonal peak corresponds to the fifth normal
mode – NCO bending mode at 1082 cm−1. We do not see the second NCO bending
mode at 1189 cm−1 on the diagonal, because it has much smaller transition dipole
moment than the first NCO band. Instead we observe a strong coupling of those
two vibrational motions. It appears as a non-diagonal peak above the peak at
1082 cm−1. The second diagonal peak is the Amide II mode at 1621 cm−1. This
mode is coupled to the NCO band at 1082 cm−1. The third diagonal peak is
the NH stretch at 3351 cm−1. This vibrational motion is strongly coupled to the
first overtone of the Amide II at 3231 cm−1 (peak below the diagonal). It is also
coupled to the combination mode of its first excitation with the first excitation of
the lowest energy out-of-plane NH2 bending mode (peak above the diagonal). Yet
another interesting fact is that the Amide II mode is coupled to the NH stretch,
whereas the NCO bending mode at 1082 cm−1 is coupled to the combination mode
of the NH stretch and out-of-plane NH2 band. As in the case of the x component
of the transition dipole operator, a tenfold magnification of the signal for the lower
spectrum in Fig. D.9 shows richer and more complicated coupling patterns. The
Amide I normal mode at 1941 cm−1 and its couplings appear in the spectrum.
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Figure D.8: The real parts of the third order response functions computed using
the Monte Carlo Wave Packet Sampling approach (see Sec. C.03 and Sec. B.11)
for the x component of the transition dipole moment of formamide. The lower
spectrum is 10 times magnified.
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Figure D.9: The real parts of the third order response functions computed using
the Monte Carlo Wave Packet Sampling approach (see Sec. C.03 and Sec. B.11)
for the y component of the transition dipole moment of formamide. The lower
spectrum is 10 times magnified.
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The 2D signal associated with the z component of the transition dipole operator
appears to be both simple and complicated at the same time. Simple because only
few bands are visible in the normal (top spectrum of Fig. D.10) and the 25 times
magnified (lower spectrum of Fig. D.10) spectra. The main complication of the
signal is in the unusual structure of the bands. The most intensive band in the
1D spectrum appears not to be the out-of-plane NH2 band, but the cross peak
of the two out-of-plane bands at 112 and 535 cm−1. That coupled motion has a
huge dipole moment change associated with it, which explains its intensity. It is
also coupled to NCO bending mode at 1082 cm−1 and NH stretch at 3351 cm−1.
Both normal modes do not appear by themselves in the spectrum, since both are
in the xy plane of the molecule and therefore do not cause any change in the z
component of the transition dipole matrix.
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Figure D.10: The real parts of the third order response functions computed using
the Monte Carlo Wave Packet Sampling approach (see Sec. C.03 and Sec. B.11)
for the z component of the transition dipole moment of formamide. The lower
spectrum is 25 times magnified.
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Chapter E

Experimental inconveniences

The main purpose of the theory introduced in Chap. B and the methods developed
in Chap. C is to understand the physics behind the spectral features and to be able
to simulate (predict) multidimensional vibrational spectra. The first spectrum
we have looked at was the carbon tetrachloride solution of 2-pyrrolidinone (see
Fig. E.1). For this particular example we have found some discrepancies between

(a) (b) (c)

Figure E.1: a) 2-pyrrolidinone, b) doubly hydrogen bonded dimer (DHBD), c)
single hydrogen bonded dimer (SHBD).

the theoretical expectations and the measured spectrum. Our investigation of
those discrepancies is presented in this chapter, as well as it is published together
with our experimental colleagues in Ref. [13].

E.01 Observations

The experimental one-dimensional FTIR absorption spectrum of 2-pyrrolidinone in
carbon tetrachloride (1:50 volume concentration) measured in the mid IR spectral
range (1500 - 3600 cm−1) is presented in Fig. E.2 (top spectrum). The molecule 2-

77
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Figure E.2: Linear FTIR spectra of 2-pyrrolidinone in carbon tetrachloride at room
temperature. Top spectrum at the sample concentration (1:50) and its inset is the
enlarged view of the CH stretch vibrational band region. In the bottom spectrum
the CH and amide-A vibrational band regions for different sample concentrations
are shown.
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pyrrolidinone is a γ-lactam∗ (see Fig. E.1–(a)) and we therefore expect the observed
IR features to be related to the amide band and CH stretch vibrations. Indeed a
very strong narrow peak (FWHM ∼ 20 cm−1) is observed at 1699 cm−1. This well
separated band is typical for an amide-I vibrational band which is essentially the
CO double bond stretch vibration [46]. A narrow, small but well resolved peak is
observed at 1550 cm−1. This peak is assigned as amide-II band, which is basically
a composition of CN stretch with the in-plane NH bending mode [47]. There is
no noticeable feature in a broad spectral window between the amide-I band and
ca. 2800 cm−1. Four narrow small peaks are observed in the spectral range from
2837 cm−1 to 2977 cm−1. They can be assigned to the CH stretch vibrational
band [48] of the 2-pyrrolidinone molecule. The well resolved peak centered at
2878 cm−1 is strongly involved with the symmetric CH stretch vibration while the
peak at 2952 cm−1 is involved with the antisymmetric CH stretch vibration [48].
We expect the amide-A band, which is essentially the NH stretch vibration of
2-pyrrolidinone, to be found at ca. 3450 cm−1 [48, 49]. And indeed a narrow
small peak is observed at 3452 cm−1. All the typical vibrational bands of a single
2-pyrrolidinone molecule appear at their expected spectral positions.

Yet, three peaks remain unassigned. The first peak, the most prominent feature
of the vibrational spectrum, is a broad (FWHM ca. 165 cm−1) absorption band
centered at 3212 cm−1 partly covering a smaller and narrower second peak at ca.
3106 cm−1 as well as an even smaller third shoulder peak at 3360 cm−1. The
obvious question arises, what is the origin of these three peaks? In a recent work,
Pandey et.al. [49] also found a similar broad band at 3212 cm−1 and they assigned
it to the amide-A band from the doubly hydrogen bonded dimer (DHBD) of 2-
pyrrolidinone but they did not comment on the smaller peaks.

Apart from hydrogen bond formation we also have to consider lactam-lactim
tautomerization [50] as displayed in Fig. E.3. However, the lactim tautomer is

Figure E.3: Lactam-lactim-tautomerization [50].

found to be thermodynamically unfavorable and negligible at room temperature
[51]. Also, the vibrational frequencies of the lactim OH have to be expected
substantially higher than the monomer NH frequencies (about at 3600 cm−1).

Amides like 2-pyrrolidinone are known to form intermolecular hydrogen bonds
[52,53]. In particular 2-pyrrolidinone can form singly and doubly hydrogen bonded

∗A lactam is a cyclic amide with β = 2, γ = 3, etc. carbon atoms outside the carbonyl bond.
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species (see Fig. E.1). And since the frequencies of vibrations coupled by a hy-
drogen bond depend on the number and strengths of the hydrogen bonds [54],
we expect different vibrational frequencies of singly and doubly hydrogen bonded
dimers and larger oligomers.

Dimers of 2-pyrrolidinone are cyclic (see Fig. E.1–(b)) when they are doubly hy-
drogen bonded or linear (see Fig. E.1–(c)) when they are singly hydrogen bonded.
Trimers and higher oligomers are expected to predominantly form linear chains,
since ring formation becomes statistically very unfavourable for large oligomers.
Therefore the broad absorption band at 3212 cm−1 is assumed to be caused by a
distribution of 2-pyrrolidinone oligomers. This assumption will be studied in the
next sections.

E.02 Quantum chemical and experimental insights

In this section we are going to compare the observations made in Sec. E.01 with
theoretical results.

EXP. MP2
6-31G 6-31G† (∆PCM) TZVP

Amide-II 1522.16 1470.34 (-29) 1462.58
1560.69 1559.43 (-15) 1506.45

Amide-I 1695 1684.46 1755.26 (-12) 1773.28
CH 2837 2904.08 2890.95 (7) 2899.46
CH 2883 2890.49 2877.84 (-38) 3003.43
CH 2920 2919.31 2917.14 (-5) 3044.17
CH 2952 2963.11 2955.85 (3) 3041.44
CH 2980 3000.47 2999.02 (19) 3040.74

3014.34 3011.94 (-1) 3050.67
Amide-A 3452 3482.75 3558.96 (-10) 3498.74
Amide-A(g) 3473

Table E.1: Selected set of anharmonic frequencies (in cm−1) of 2-pyrrolidinone.
6-31G† is a combined 6-31G/6-31G∗∗ basis set. The numbers in brackets represent
the frequency deviations (in cm−1) induced by the solvent as modelled by the
PCM approach (see text). The gas phase value of the amide-A frequency was
taken from Ref. [49].

To describe the spectral features of the measured linear vibrational spectrum
we first performed geometry optimizations of the monomer (Fig. E.1 – (a)) using
MP2 and different basis sets (see Appendix G.01) within the gaussian package
suite [55]. By 6-31G† we denote a combined 6-31G/6-31G∗∗ basis set, in which
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6-31G∗∗ was used for O, N, and the H atom of the NH group, whereas 6-31G was
used for all other atoms. The anharmonic frequencies were computed with the
PT2 method [56,57] at the same levels of theory. Results for selected modes with
frequency assignments for the monomer are presented in Tab. E.1.

doubly hydrogen bonded dimer singly hydrogen bonded dimer

EXP. MP2 EXP. MP2
6-31G 6-31G† (∆PCM) 6-31G 6-31G† (∆PCM)

NH 3087.72 3118.33 (-2) NH 3360 3339.44 3331.36 (-16)
NH 3106 3238.60 3151.10 (94) NH 3452 3478.45 3558.53 (-6)

Table E.2: Anharmonic frequencies (in cm−1) of 2-pyrrolidinone double and single
hydrogen bonded dimers. 6-31G† is a combined 6-31G/6-31G∗∗ basis set. The
numbers in brackets represent the frequency deviations (in cm−1) induced by the
solvent as modelled by the PCM approach (see text).

The influence of the solvent (CCl4) was examined for monomers and dimers
based on the polarizable continuum model (PCM) with parameters (εr = 2.2 and
scaled van der Waals surface cavity) built into gaussian [55]. The frequency
deviations in wavenumbers introduced by PCM (presented in brackets as ∆PCM

values) for monomer and dimers are much smaller than the broadening effects
studied in this work and therefore have negligible impact on the simulated spectra.
Based on the monomer results, we optimized geometries (see Appendix G.01)
and computed anharmonic frequencies for the double and single hydrogen bonded
dimers (see Tab. E.2). Complete tables with the computed anharmonic frequencies
can be found in Appendix G.02.

The frequencies computed with gaussian (see Tab. E.1 and Tab. E.2) are
plotted together with a measured (1:50) spectrum in Fig. E.4. With the support
of our calculations with different quantum chemical methods and basis sets we
confirm the assignment of some questionable bands in the NH region: the amide-
A of the doubly hydrogen bonded dimer at 3106 cm−1 and the amide-A of the
singly hydrogen bonded dimer as the small peak at 3360 cm−1. The main feature,
the broad peak at 3212 cm−1 cannot be described by the frequencies of monomer
or dimers and has to be approached differently.

The shortcoming of the monomer and dimer bands to explain the broad band
at 3212 cm−1 supports the hypothesis of oligomer chains. To examine this hy-
pothesis further, we perform a series of concentration dependent (2-pyrrolidinone
in CCl4) FTIR measurements [13]. The comparison between the volume and mo-
lar concentrations used is shown in Tab. E.3. The measurements are presented in
the bottom spectrum of Fig. E.2. The absorption band at 3452 cm−1, which we
assigned to the amide-A from the 2-pyrrolidinone monomer, remains at the same
spectral position irrespective of the sample concentration, only the relative peak
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Figure E.4: Measured linear absorption spectrum of 1:50 (2-pyrrolidinone:CCl4)
solution, with MP2/6-31G† using PCM computed anharmonic spectra of 2-
pyrrolidinone monomer, SHBD, and DHBD. The computed spectra were plotted
as Lorentz-functions with FWHM=20 cm−1. The maximum intensity of the CH
band at ≈ 2900 was normalized to 1 for each spectrum, respectively.

size decreases with increasing sample concentration. In the pure sample, where
the monomer concentration is expected to be very small, there is no peak observed
at 3452 cm−1. This is also in accordance with our assignment of the monomer’s
amide-A band.

The spectral shape and position of the peak at 3106 cm−1, which we assigned to
the doubly hydrogen bonded dimers, remains the same irrespective of the sample
concentration. In contrast to the monomer peak intensity, the intensity of the
amide-A band from the doubly hydrogen bonded dimers increases with increased
sample concentration. This behavior reflects that the relative concentration of
doubly hydrogen bonded dimers increases with the sample concentration.

The shape of the broad band centered at 3212 cm−1, which we assigned to
the amide-A band from singly hydrogen bonded chains of 2-pyrrolidinone, also
depends on the sample concentration (see bottom spectrum in Fig. E.2). As the
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V(C4NOH7):V(CCl4) C, [mol/L]

1:0 13.1
1:1 6.6
1:2 4.4
1:5 2.2
1:10 1.2
1:20 0.6
1:50 0.2

Table E.3: Comparison between volume and molar concentrations used in the
experiment.

sample concentration increases, the blue side edge of the peak falls faster than in
the diluted sample. Specifically, the peak of the SHBD at 3360 cm−1 seems to gain
more relative intensity as the concentration increases.

Figure E.5: 2-pyrrolidinone dodecamer.

In contrast, the CH2 band shape and relative intensity does not depend on the
sample concentration noticeably. This means, the CH2 group is spectroscopically
identical in all 2-pyrrolidinone species and can therefore always be calculated as in
a monomer. In our calculation we find that the well separated peaks at 2955 cm−1

and 2890 cm−1, have very local character and make up for most of the intensity
of the CH vibrational band. The two peaks almost exclusively represent the axial
(2955 cm−1) and the equatorial (2890 cm−1) CH stretch vibrations of the two
CH bonds adjacent to the NH group. This assignment is of particular interest
for dynamical experiments, like two-dimensional spectroscopy, since the axial and
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equatorial CH bond interconvert as the 5-membered ring undergoes conformational
change. Signatures of chemical exchange between equatorial and axial CH stretch
vibrations have to be expected.
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Figure E.6: Computed harmonic PM3 frequencies in wavenumbers for singly
hydrogen bonded 2-pyrrolidinone chains plotted as Lorentz-functions with
FWHM=100 cm−1. The extrapolation of the lowest tight-binding eigenvalue for
the infinite 2-pyrrolidinone chain is displayed in the inset (frequency as a function
of chain length). See Sec. E.03 for details.

So far we were able to assign all but one spectral features and gain some in-
dications that it originates from different 2-pyrrolidinone oligomers. In order to
describe the vibrational frequencies of hydrogen bonded 2-pyrrolidinone oligomers,
we first construct oligomer chains using the monomer geometry optimized with
MP2 and 6-31G† basis set. Only the relative positions of the monomers to each
other are optimized using the semiclassical PM3 method [44, 45]. The harmonic
frequencies and their intensities are then computed with the PM3 method and
presented in Fig. E.6 as Lorentz functions with FWHM=100 cm−1. It is obvi-
ous that the harmonic frequencies cover the range between 3200 and 3400 cm−1.
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The anharmonic frequency computations are very expensive for oligomers. There-
fore, we have to restrict the analysis of anharmonic effects in the buildup of the
singly hydrogen bonded oligomer chains to the SHBD example. We found that
the anharmonicity of the NH stretching mode is almost the same for the hydro-
gen bonded and the free NH mode. Its value for the 2-pyrrolidinone monomer
is ∆mono = 164 cm−1. Whereas the anharmonicity of the hydrogen bonded NH
mode in SHBD is ∆SHBD-NH-bond = 163 cm−1 and the terminal (not hydrogen
bonded) NH stretching mode is ∆SHBD-NH-free = 166 cm−1. The influence of the
hydrogen bonding on the anharmonic effects is very small (far bellow the expected
broadening effects). Therefore the peak shifts observed in the spectrum can not
be explained by the anharmonic effects and harmonic frequencies can be used for
further approximations.

Another effect of 2-pyrrolidinone chains is the increasing dipole moment change
and higher band intensity of the longer chains. This fact is supported by both
the experiment (see Fig. E.2), in which the band at 3212 cm−1 has the highest
intensity, as well as the harmonic frequency computation (see Fig. E.6), in which
the intensity of red shifted bands (longer chains) is much higher than the intensity
of blue shifted bands (shorter chains).

At this point we qualitatively understand the measured FTIR spectra. The
next question would be, how does the concentration of 2-pyrrolidinone influence
the distribution of oligomer concentrations and how does the latter influences
the band intensity and shape? Further approximations have to be made for this
purpose.

E.03 Vibrational tight-binding model

As the next approximation, we assumed an interaction Hamiltonian for the hydro-
gen bonded NH vibrational modes in the chain molecules, where the frequency of
each hydrogen bonded NH stretch (α) is only influenced by its nearest neighbors
through a coupling term (β), tight-binding (TB) interaction. The terminal NH
bond (α′) has a different frequency and is treated separately. The dimension of
the model Hamiltonian matrix (H) is given by the length (i.e. the number of NH
oscillators) of the oligomer chain. Since we have computed harmonic frequencies
for all chains from dimer to dodecamer, we obtain eleven matrices with dimensions
from two to twelve. In the infinite ideal chain the matrix exhibits a band structure
as shown in (E.03.1)
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H = H0 +H
′
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(E.03.1)

with δ = α′−α. We assume that the harmonic frequencies from PM3 computations
(λ) for different oligomers correspond to the eigenvalues of the same size TB-
matrix. Since the TB-eigenvectors (U) are well known, we can write

λ̃ = U
T
HU = f(α, β, α′). (E.03.2)

It is obvious, that λ̃ is a function of α, β, and α′. To estimate the optimal values
of α, β, and α′ for all oligomers simultaneously we solve the min(λ − λ̃(α, β, α′))
problem iteratively using the least-squares approach for all matrices at the same
time. The resulting values are α = 3250 cm−1, β = 7.6 cm−1, and α′ = 3409 cm−1.
These values are then used further for the Monte-Carlo simulations.

At first we inspect the case of the infinite straight 2-pyrrolidinone chain. We
plot the lowest eigenvalues of the matrix H (the ones with the highest intensity) for
all polymers computed with PM3 and fit these points to an exponential function
using a least-squares approach (see the inset in Fig. E.6). With this function we
estimate the asymptotic value of the lowest possible frequency of the infinite chain
(3233 cm−1), which is higher than the highest NH frequency (3151 cm−1) of the
doubly hydrogen bonded dimer. Since this asymptotic value is very close to the
measured broad NH-band (3212 cm−1) and anharmonic effects were found to be
very small (see Sec. E.02), we will not apply any anharmonic corrections for the
PM3 frequencies. Further, we assume that all geometry variations of the polymers
in the solution that change vibrational frequencies are analogous to changes of
the α and β values of the TB-matrix. Under those circumstances a statistical
variation of α and β values will give us the inhomogeneously broadened spectrum
of the considered oligomer.

We used the Monte-Carlo method [58] to compute the inhomogeneous broaden-
ing. The spectrum of each oligomer was treated separately. The variation of up to
30 wavenumbers for values of α and up to 5 wavenumbers for values of β was used
in our Monte-Carlo sampling. After every Monte-Carlo step the eigenvalues of the
changed TB matrix were computed. With these eigenvalues we compute a single
homogeneously broadened Monte-Carlo spectrum (FWHM=100 cm−1). The result
of an average over 10000 such Monte-Carlo spectra gives us an inhomogeneously
broadened spectrum. This procedure is repeated for every oligomer.
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Since we assume that the Lambert-Beer law is valid for our system, we can
compute the total vibrational spectrum as a sum of the computed DHBD and
oligomer spectra multiplied with corresponding concentrations. Because the fre-
quencies and intensities of SHBD were computed with both PM3 and MP2/6-31G†

methods, we have scaled all PM3 intensities with the respective factor. The an-
harmonic frequencies of DHBD were used for the same reason. Since the model
oligomer spectra include only NH frequencies and we expect CH normal modes to
have mostly local character, we add the CH monomer spectrum multiplied by the
total concentration in each case. As a result we expect a better reproduced CH
region and higher intensity of the monomer NH band.
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Figure E.7: This Figure is continued on page 89

The remaining question is how to get the concentrations of the computed
species from the well-known total concentrations shown in Tab. E.3. We expect
that the system is in equilibrium and assume that any chain size increasing reac-
tion between any two reactants that leads to singly hydrogen bonded oligomers
has the same rate. The reverse rate is set to be equal to the rate of the forward
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reaction times a factor f .
k−1 = f · k (E.03.3)

The factor f ensures detailed balance and its computation goes far beyond the
approximations made in our approach. We will simply treat it as variable to
optimize. This assumption leads us to a classical textbook set of non-linear equi-
librium equations. The set is defined by the rate of the forward reaction (k) and
the parameter f .

The optimal values for k and f were found to be 0.01 and 10. Having these
numbers one can solve the set of non-linear equations iteratively, which gives us
concentrations of oligomers. The absolute concentrations in [mol/L] of all consid-
ered oligomers are displayed in the histograms in Fig. E.7. The singly hydrogen
bonded oligomer chains are named SHBn with n being the chain length. Based on
these concentrations we obtain sum spectra which we compare to the experimental
results (see insets in Fig. E.7).

Considering all the approximations discussed above, the results seem surpris-
ingly good. With such agreement between the experiment and theory, we may
claim to understand the origins of the broad amide-A spectral feature, which was
the main goal of this work.

Overall our model of hydrogen bonded 2-pyrrolidinone including chains repro-
duces the vibrational spectrum and specifically the amide-A band shape quite well
considering its simplicity and lack of detailed rate constants for the hydrogen bond
reactions of the different chain lengths. The quantitative details of the peak shape
and position go beyond the scope of this work. Nevertheless, the comparison of
spectra and calculations substantiates a microscopic picture of 2-pyrrolidinone in
solution, where monomers, hydrogen bonded dimers and chains are in equilibrium
with each other.
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Figure E.7: Monomer and oligomer concentration distributions and corresponding
measured (solid lines) and Monte-Carlo simulated (dashed lines) spectra displayed
in the insets. The concentrations are given as absolute values in [mol/L]. The spec-
tra are plotted in wavenumbers vs intensity. The intensities of the spectra are nor-
malized with respect to the intensity of the CO-band of the pure 2-pyrrolidinone.
The sum of the individual concentrations, each multiplied with the oligomer length,
yield the total concentrations from Tab. E.3 (For details see text). First part of
this figure is on page 87.
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Chapter F

Conclusions and Outlook

In the course of this work we have developed a new method to compute multidimen-
sional vibrational spectra based on the solution of a quantum stochastic differential
equation in the doubled Hilbert space, which we call Monte Carlo sampling of Li-
ouville space pathways. This method is based on the bottom-up buildup of the
polarization function as a sum of its perturbative terms and is better suitable for
the statistical sampling than the direct sampling of non-perturbative polarization
functions in Liouville space mentioned in Sec. B.11.

Using the Monte Carlo sampling method we were able to go beyond very small
systems or very crude approximations to obtain multidimensional vibrational spec-
tra. We were able to compute third order response functions for systems with sev-
eral thousands of states, which was not possible before to the best of our knowledge.

The Monte Carlo sampling method has some very distinct advantages. The first
of them lies in its ability to simulate a very broad range of experiments starting
with linear absorption and going to any number of pulse interactions. This may
be necessary in the future, since every additional light-matter interaction of the
system reveals more information about the system itself. For the example of
formamide, we were able to show in Chap. D that the high intensity absorption
band results from a combination of two out-of-plane bending modes and not just
a fundamental transition. This example shows us that the signals in the linear
absorption spectrum can be quite misleading and only higher order responses can
reveal the real type of interaction underlying an apparently simple 1D spectrum.
In the same way every additional interaction can unveil some new and important
information about the system studied.

The next advantage of the Monte Carlo sampling method results from the way
we build up the response functions as a sum of terms represented by Feynman
diagrams. This approach allows us to choose the „important” perturbative terms
beforehand on the basis of some approximations (rotating wave or low temperature
approximations) and the distinct experiment we want to simulate. The chosen
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Feynman diagrams can then be propagated and sampled independently. This way
we have constructed an intrinsically parallel problem, that can be distributed via
parallelization techniques in a straightforward manner across as many CPUs as
terms in question.

The method presented in this work shows some very promising results but it
still has a lot of space for further improvement. An open question so far is how to
obtain elements of the relaxation matrix and their respective relaxation rates.



Chapter G

Appendices

G.01 Optimized geometries

• water

• PM3

• see Sec. D.01

coordinates [Å]
atoms x y z

O 0.0000 0.0627 0.0000
H 0.7678 -0.4982 0.0000
H -0.7678 -0.4982 0.0000
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• formamide

• PM3

• see Sec. D.02

coordinates [Å]
atoms x y z

O 1.1034 0.2411 0.0000
N -1.1316 0.1741 0.0000
C 0.1061 -0.4610 0.0000
H -1.2089 1.1632 0.0000
H -1.9687 -0.3538 0.0000
H 0.1227 -1.5624 0.0000
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• 2-pyrrolidinone

• MP2/6-31G†(PCM)

• see Sec. E.02

coordinates [Å]
atoms x y z

H -0.4910 -2.0224 -0.0155
N -0.0876 -1.1001 -0.0853
C -0.9061 0.0010 -0.0071
C 0.0072 1.2356 0.1356
C 1.4278 0.6975 -0.1856
C 1.3391 -0.8275 0.1361
O -2.1464 -0.0134 -0.0356
H 1.9620 -1.4366 -0.5313
H 1.6316 -1.0397 1.1773
H 1.6518 0.8339 -1.2523
H 2.2173 1.1897 0.3949
H -0.3268 2.0371 -0.5338
H -0.0682 1.6063 1.1693
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• doubly hydrogen bonded dimer

• MP2/6-31G†(PCM)

• see Sec. E.02

coordinates [Å]
atoms x y z

H -0.7618 -0.9885 0.0041
N -1.7004 -0.5737 0.0303
C -1.8778 0.7675 -0.0441
C -3.3882 1.0518 -0.1329
C -4.0383 -0.2997 0.2699
C -2.9396 -1.3601 -0.0577
O -0.9708 1.6364 -0.0568
H -2.9223 -2.1901 0.6601
H -3.0667 -1.7790 -1.0688
H -4.2501 -0.3097 1.3479
H -4.9746 -0.5041 -0.2635
H -3.6588 1.8896 0.5205
H -3.6338 1.3370 -1.1675
H 0.7635 0.9919 0.0047
N 1.7011 0.5746 0.0296
C 1.8770 -0.7668 -0.0442
C 3.3871 -1.0527 -0.1329
C 4.0389 0.2980 0.2697
C 2.9413 1.3596 -0.0573
O 0.9693 -1.6349 -0.0568
H 2.9246 2.1890 0.6612
H 3.0690 1.7793 -1.0680
H 4.2515 0.3077 1.3475
H 4.9751 0.5013 -0.2643
H 3.6565 -1.8907 0.5209
H 3.6325 -1.3387 -1.1673
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• singly hydrogen bonded dimer

• MP2/6-31G†(PCM)

• see Sec. E.02

coordinates [Å]
atoms x y z

H 3.4816 -1.8705 -0.7543
N 3.2041 -0.9624 -0.4129
C 1.9210 -0.7488 -0.0025
C 1.8544 0.6502 0.6277
C 3.1957 1.3108 0.2055
C 4.1532 0.1080 -0.0687
O 0.9887 -1.5748 -0.1147
H 4.8446 0.2961 -0.8998
H 4.7415 -0.1586 0.8235
H 3.0548 1.8874 -0.7185
H 3.6012 1.9848 0.9696
H 0.9599 1.1833 0.2820
H 1.7815 0.5328 1.7207
H -0.7416 -0.8258 0.0372
N -1.7030 -0.4812 0.0758
C -2.0036 0.8208 -0.1948
C -3.5404 0.9414 -0.2766
C -4.0502 -0.3916 0.3324
C -2.8633 -1.3811 0.1114
O -1.1862 1.7501 -0.3597
H -2.7636 -2.1122 0.9245
H -2.9677 -1.9326 -0.8374
H -4.2321 -0.2699 1.4092
H -4.9763 -0.7539 -0.1310
H -3.8821 1.8363 0.2571
H -3.8289 1.0479 -1.3338
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G.02 Anharmonic frequencies

2-pyrrolidinone

B3LYP HCTH407 MP2

6-31G cc-pVDZ TZVP 6-31G 6-31G† 6-31G** 6-311G** cc-PVDZ TZVP
137.06 142.10 146.69 138.90 131.66 139.91 140.12 137.48 132.74
191.63 182.92 178.88 184.50 172.22 206.78 215.13 218.67 202.71
461.53 457.24 460.44 459.25 457.41 467.06 465.53 464.93 458.90
511.37 473.23 470.08 503.16 465.96 485.00 478.54 483.85 467.07
603.26 549.30 555.48 581.09 548.20 550.40 548.21 540.49 539.22
661.21 624.99 626.53 628.14 631.36 639.35 632.84 629.56 631.34
684.17 680.38 682.13 674.25 691.21 679.37 679.96 669.82 693.46
815.16 782.03 784.46 816.18 812.49 824.69 814.40 811.65 813.59
876.46 857.66 854.70 880.32 882.74 901.86 887.62 885.72 883.66
905.37 869.25 876.63 909.76 909.88 921.36 907.84 900.91 911.25
921.51 896.70 891.65 931.63 928.45 937.62 926.98 927.72 925.58
994.04 976.73 977.39 997.12 1002.23 1014.54 1001.20 997.13 1001.99
1057.07 1032.34 1037.79 1054.59 1064.61 1085.49 1071.25 1065.15 1071.61
1099.15 1055.20 1053.98 1112.86 1109.63 1098.66 1081.16 1075.53 1083.34
1183.70 1128.89 1138.68 1192.32 1183.84 1191.02 1175.26 1161.35 1180.05
1209.03 1151.41 1167.70 1222.23 1213.75 1210.12 1190.69 1183.65 1194.12
1229.12 1184.12 1194.53 1238.14 1233.69 1249.31 1232.42 1220.52 1233.39
1245.75 1207.83 1219.69 1266.34 1260.88 1266.85 1247.82 1237.79 1253.97
1302.27 1228.84 1241.93 1320.40 1313.89 1314.58 1282.75 1277.24 1296.73
1330.03 1263.38 1273.35 1346.92 1339.73 1346.09 1323.91 1311.33 1330.55
1366.91 1304.24 1325.55 1375.62 1371.60 1369.20 1343.82 1335.26 1353.33
1432.66 1360.84 1390.78 1436.74 1433.49 1442.54 1418.95 1412.81 1423.70
1522.16 1376.20 1393.29 1481.99 1470.34 1500.16 1459.35 1417.50 1462.58
1444.53 1397.70 1419.68 1514.03 1511.67 1541.38 1497.15 1466.57 1498.33
1532.39 1479.27 1431.28 1560.69 1559.43 1536.19 1506.61 1404.93 1506.45
1712.87 1792.10 1754.14 1684.46 1755.26 1813.25 1803.64 1814.78 1773.28
2871.55 2819.76 2754.31 2904.08 2890.95 2941.43 2887.47 2849.29 2899.46
2945.79 2877.75 2876.80 2890.49 2877.84 3054.79 2993.21 2968.93 3003.43
2842.64 2877.14 2886.16 2919.31 2917.14 3023.05 3035.31 3010.85 3044.17
2944.92 2889.28 2899.88 2963.11 2955.85 3035.20 2996.49 3005.72 3041.44
2988.85 2913.50 2919.08 3000.47 2999.02 3080.10 3031.40 3036.99 3040.74
2996.47 2948.07 2942.21 3014.34 3011.94 3089.02 3040.70 3044.88 3050.67
3487.32 3454.18 3466.10 3482.75 3558.96 3550.98 3505.89 3484.59 3498.74

Anharmonic frequencies computed with gaussian [55] and PT2 [56,57]. Refer to
Sec. E.02 for details.
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Hydrogen bonded dimers

doubly hydrogen bonded dimer singly hydrogen bonded dimer

B3LYP HCTH407 MP2 B3LYP HCTH407 MP2
6-31G cc-pVDZ 6-31G 6-31G† 6-31G cc-pVDZ 6-31G 6-31G†

26.94 -2.65 20.49 15.84 3.88 5.47 10.07 14.46
60.36 37.84 55.53 51.49 27.26 33.50 29.90 33.94
88.89 65.32 83.92 77.64 74.04 75.36 67.33 62.40
100.84 128.42 92.76 88.10 76.37 49.17 64.38 66.95
110.64 52.97 103.28 102.48 89.23 73.84 85.95 90.29
134.84 82.44 138.59 146.38 118.19 113.49 112.47 112.71
141.18 141.24 143.99 146.73 142.13 150.40 138.65 151.62
151.21 147.40 140.97 150.93 159.18 166.32 161.88 161.99
206.94 188.65 200.21 188.84 201.81 183.17 195.93 174.63
216.73 189.44 206.42 191.03 205.80 183.49 196.06 189.96
469.47 456.37 467.52 468.57 464.81 475.34 463.99 464.05
496.38 460.94 491.49 497.27 476.46 475.87 474.01 475.07
545.05 520.51 539.43 543.00 521.17 491.75 516.86 484.70
553.54 529.04 545.59 547.00 547.98 525.45 540.25 544.54
632.61 610.42 633.66 633.14 614.63 562.34 597.41 566.30
638.79 616.52 635.55 636.52 632.76 613.11 630.97 629.43
691.37 677.12 687.70 681.62 666.79 621.69 645.76 631.73
698.65 669.25 693.09 687.48 690.25 666.84 685.14 677.17
818.43 745.26 821.48 814.67 694.32 690.27 688.08 696.91
819.59 778.11 823.28 817.83 815.55 719.55 818.29 764.83
883.27 777.96 882.09 815.63 825.41 783.91 827.80 806.98
884.88 776.91 886.39 860.28 880.82 790.34 833.02 822.57
904.26 860.40 874.62 888.05 881.43 861.82 884.12 887.18
900.65 864.26 911.02 882.96 877.67 867.81 881.84 890.73
921.60 869.31 912.33 915.83 910.92 869.41 914.09 915.06
922.61 868.96 930.70 916.57 911.90 869.82 915.92 915.47
925.05 900.97 931.43 929.71 919.22 900.88 931.13 927.67
964.32 898.98 918.89 929.82 924.38 900.04 935.41 932.83
1002.21 985.70 1004.47 1011.56 992.79 983.32 997.88 1003.35
1003.46 982.01 1007.34 1012.33 1001.88 983.41 1007.63 1011.17
1062.01 1034.87 1059.66 1077.11 1051.05 1031.97 1052.79 1061.39
1070.50 1035.84 1065.19 1083.32 1066.02 1034.77 1067.09 1080.79
1104.04 1091.73 1116.12 1112.68 1102.75 1053.93 1113.96 1110.91
1104.34 1073.47 1116.80 1113.35 1109.77 1083.46 1123.61 1122.24
1184.34 1125.73 1192.02 1182.54 1182.34 1123.40 1190.66 1181.28
1184.27 1126.82 1192.16 1183.55 1197.43 1132.34 1204.18 1194.74
1214.66 1156.77 1227.31 1221.40 1214.16 1153.21 1223.99 1217.70
1213.44 1157.20 1227.07 1221.76 1211.32 1164.11 1223.66 1220.53
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1235.48 1185.54 1244.16 1241.75 1233.20 1178.60 1242.34 1239.69
1234.43 1186.03 1244.34 1242.25 1247.09 1192.64 1257.91 1255.13
1289.89 1217.02 1296.10 1297.74 1269.13 1219.21 1288.84 1284.41
1290.35 1220.66 1296.79 1299.08 1279.79 1232.51 1288.79 1286.67
1300.17 1248.23 1318.15 1314.97 1300.46 1244.95 1317.63 1314.63
1300.12 1251.01 1318.60 1315.34 1312.63 1246.29 1337.02 1335.16
1335.71 1267.30 1353.53 1351.47 1334.24 1263.79 1352.94 1345.04
1336.44 1269.81 1354.17 1353.25 1347.95 1273.89 1357.05 1352.00
1405.25 1344.82 1406.68 1400.70 1376.13 1314.28 1379.09 1375.16
1416.80 1353.89 1418.93 1422.80 1397.26 1366.49 1402.51 1395.65
1502.90 1355.11 1487.14 1495.54 1432.42 1355.04 1436.62 1439.11
1508.07 1363.88 1497.27 1502.64 1535.21 1368.53 1489.30 1484.27
1481.76 1382.03 1502.26 1500.70 1488.26 1382.83 1490.36 1483.62
1501.97 1382.90 1502.03 1496.90 1489.21 1383.47 1513.20 1517.93
1480.62 1440.12 1523.61 1522.42 1468.75 1401.92 1516.52 1514.73
1501.95 1448.10 1523.94 1530.38 1480.90 1469.21 1517.54 1515.08
1531.76 1465.61 1559.91 1556.92 1530.54 1463.39 1556.01 1556.85
1533.08 1449.88 1560.10 1557.92 1530.78 1477.49 1559.47 1555.92
1678.62 1722.65 1674.77 1720.17 1674.37 1750.59 1667.32 1724.53
1683.41 1756.89 1680.86 1741.79 1688.27 1764.49 1723.77 1747.38
2879.24 2784.52 2907.36 2894.57 2870.43 2802.70 2901.66 2885.99
2879.60 2812.15 2907.75 2894.68 2847.96 2818.82 2908.85 2897.00
2944.34 2865.99 2904.59 2902.57 2870.55 2852.45 2918.24 2917.48
2906.64 2865.81 2926.51 2908.68 2959.63 2854.53 2896.49 2887.17
2914.80 2861.23 2934.12 2933.57 2870.30 2863.99 2917.20 2915.67
2886.65 2861.15 2919.83 2921.41 2881.77 2865.93 2922.95 2928.56
2952.09 2898.09 2969.07 2959.89 2950.89 2866.66 2962.41 2954.12
2945.50 2898.15 2969.03 2959.83 2938.52 2865.70 2968.03 2959.14
2989.07 2900.01 2999.47 2997.67 3002.49 2906.98 2973.24 2967.93
2989.09 2900.17 2999.53 2997.59 2986.86 2931.69 2996.35 2994.63
2994.00 2914.13 3011.80 3010.75 2991.97 2937.37 3009.12 3007.79
2994.17 2915.18 3011.85 3010.66 2993.17 2917.24 3007.71 3005.55
2949.07 3063.01 3087.72 3118.33 3224.17 3266.20 3339.44 3331.36
3038.02 3056.83 3238.60 3151.10 3478.97 3448.37 3478.45 3558.53

Anharmonic frequencies computed with gaussian [55] and PT2 [56,57]. Refer to
Sec. E.02 for details.
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