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Abstract— The stability and performance of a networked
control system (NCS) strongly depends on the communication
quality in terms of time delay for example. According to the
Quality-of-Service (QoS) concept in modern communication
technology, the communication quality can be adapted to the
requirements of the network application. This paper presents
a first approach to conjointly control the NCS as well as the
communication quality on basis of the QoS concept. We assume
that the controller together with the time delay is switched to
meet control and network performance objectives. Sufficient
stability conditions are presented for the resulting switched
time delay system based on the concept of piecewise continuous
Lyapunov functions and the Razumikhin approach. Simulations
and experiments validate the proposed approach.

I. I NTRODUCTION

In the view of affordability, widespread usage and well
developed infrastructure, communication networks are very
attractive for the signal transmission in control systems.This
comes, however, at the cost of a no longer ideal signal
transmission. The intrinsic communication unreliabilities,
such as (varying) time delay and packet loss, have a strong
influence on the stability and the performance of the closed
loop system. In the current NCS literature the communication
quality is assumed to be given in advance, accordingly
stabilizing controllers are designed. Differently, in this paper
the communication quality is considered to be controllable.
This is motivated by the Quality-of-Service (QoS) concept in
modern communication technology. Generally, QoS refers to
the capability of a network to provide different communica-
tion quality to different network traffic. The communication
quality can be adapted to the requirements of the network
application. Depending on the QoS network architecture
deterministic bounds on time delay and packet loss can be
guaranteed, e.g. with the Integrated Service architecture[1].
A first implementation of the QoS concept can be found in
the Internet protocol IPv6.

Inspired by the QoS concept an innovative control ar-
chitecture is investigated here: It combines the control of
the time delay and the appropriate change of the system
controller following stability and performance requirements.
Here the time delay guaranteed by QoS is assumed to be
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Fig. 1. Architecture of the QoS controlled NCS: A switched time delay
system.

switchable between different levels resulting in piecewise
constant time delay. The controller is synchronously adapted,
see Fig. 1 for a visualization of the principal QoS control
architecture. Aiming at maximizing the control performance,
generally, low time delay is desirable. However, low time de-
lay (high network quality) requires large network resources,
i.e. induces high network cost. Considering the finite network
resources it is desirable that each network application only
consumes as much of them as required to guarantee the
desired level of control performance.

In this paper the time delay as well as the controller are
switched. Switched (hybrid) systems are dynamical systems
that consist of a finite set of subsystems and a logical rule that
orchestrates the switchings between them. The stability ofthe
subsystems themselves is not sufficient for the stability ofthe
overall system [2], [3]. Stability with arbitrary switching can
be ensured by the existence of a common Lyapunov function.
However, it is usually difficult to find a common Lyapunov
function for all candidates subsystems. As an alternative,
the concept of piecewise continuous Lyapunov functions
is developed in [4]–[6]. Dwell-time based switching is
considered in [7], [8]. These approaches, however, do not
consider time delay. Most prominent for the analysis of time
delay systems are Lyapunov-like approaches based either
on the Razumikhin or the Krasovskii method, see e.g. [9]–
[12] and references therein. Hybrid time delay systems are
considered in [13], [14] using an extension of the common
Lyapunov function approach, and adopting a dwell-time
based switching approach [15]. However, the time delay itself
is not switched in these works.

To the best knowledge of the authors for the first time a
switched system with switched time delays is considered in
this paper. The stability is analyzed by the construction of
piecewise continuous Lyapunov-Razumikhin functions, and
a sufficient stability condition is derived. The potential of the
proposed QoS control approach is examined in simulations



and experiments. Therefore for each considered time delay
a controller is designed using a standard LMI method for
delay-dependent controller design. The optimal switching
instants are determined by numerical minimization of a cost
function which comprises the control performance and the
network cost.

The remainder of the paper is organized as follows: The
problem setting is stated in Section II. Section III introduces
the foundations of stability analysis for both time delay and
switched systems. In Section IV, the main result on the
stability of switched time delay system is presented. The
optimal performance is discussed in Section V; the approach
is validated in simulations and experiments.

II. PROBLEM FORMULATION

The general architecture of the QoS controlled NCS con-
sidered in this paper is illustrated in Fig. 1 The network in-
duced time delay as well as the controller are synchronously
adjusted by a decision-maker. The generation of the switch-
ing law is discussed in Section V. The switching mechanism
causes the variation of the system dynamics and results in a
switched time delay system. In the general case of nonlinear
subsystems, the overall system dynamics is described by a
delay differential functional of the form

ẋ(t) = fσ(t)(x(t), xt, τσ(t)), (1)

wherex ∈ R
n is the state, having the same dimension for

all subsystems, andτσ(t) ∈ R
+ represents the piecewise

constant time delay. The switching signalσ(t) is a piece-
wise constant finite valued function taking values on the
setP := {1, . . . , N}. If σ(t) = i, then subsystemi is active
in the time intervalt ∈ [tj , tj+1); N represents the number
of subsystems. Byxt ∈ R

n the initial condition of the time
delay functional is specified which has the form of

xt = x(t + θ), θ ∈ [−τσ(t), 0], (2)

hence at each switching instantt the “length” of the initial
condition depends on the time delay of the previous active
subsystem. A finite number of switches is assumed in finite
time. The problem is assumed to be well-posed in the sense
that for each initial condition and switching sequence there
exists a unique solution. A simplified model is considered in
this first analysis with the forward and backward time delays
lumped into the single valueτσ(t). Note that this assumption
represents no restriction in case of linear subsystems or
control affine nonlinear subsystems with proportional state
feedback, and with synchronous switching of forward and
backward delay.

In contrast to conventional switched systems, the proposed
control structure comprises switching of controllers and time
delays. To the best knowledge of the author, there exists no
appropriate analysis and design method for such system until
now. The stability analysis starts from time delay systems
and extends to switched time delay systems. The background
on stability of switched systems and time delay systems is
introduced in the following.

III. F UNDAMENTALS

A. Stability of Switched Systems

Switching between stable subsystems may result in insta-
bility of the overall system [2], [3]. Stability with arbitrary
switching can be ensured by the existence of a common
Lyapunov function. As a common Lyapunov function is
generally difficult to find, an approach based on piecewise
continuous Lyapunov functions is considered in this paper.
Piecewise continuous Lyapunov functions are first introduced
for linear switched systems in [4], extended to nonlinear
switched systems in [5]; a very general result is derived
in [6].

Consider the switched system (1) without time delay

ẋ(t) = fσ(t)(x(t)). (3)

Consider a Lyapunov function associated to each subsystem.
Then the stability of the switched system (3) is ensured by
a nonincreasing sequence of the Lyapunov function values
at the switching instants into each subsystem. The precise
statement is given as follows.

Theorem 1: Given a switched (nonlinear) system (3) with
a Lyapunov functionVi with the equilibrium point atx = 0
associated to each subsystemfi, i ∈ P. Let tk > tj be
switching times for whichσ(tk) = σ(tj) = i such that

(i) Vi(t, 0) = 0 andVi(t, x) > 0 for x ∈ R
n\{0},

(ii) Vi(t, x(t)) ≤ γ(Vi(tj , x(tj))), ∀t ∈ [tj , tj+1) with γ(·)
a positive continuous function andγ(0) = 0,

(iii) Vi(tk, x(tk)) − Vi(tj , x(tj)) ≤ −h(||x(tj)||), where
|| · || denotes Euclidean norm,h(·) is a positive
continuous function andh(0) = 0.

Then the switched system (3) is Lyapunov stable. A strictly
decreasing sequence at the consecutive switching instantsfor
which σ(tk) = σ(tj) implies asymptotic stability.
Proof: See [6].

The stability condition of Theorem 1 is illustrated
in Fig. 2. The values of the corresponding Lyapunov function
at the switching instants are marked by filled symbols. The
switched system is asymptotically stable due to the strictly
decreasing values of Lyapunov functions at consecutive
switching instants.

B. Stability of Time Delay Systems

The standard time delay system is recovered from (1) by
assuming no switching occurs, i.e.σ(t) = const. Two differ-
ent techniques are commonly used for the stability analysis
of time delay systems; the Lyapunov-Krasovskii approach
and the Lyapunov-Razumikhin approach, see e.g. [9]–[12].
The construction of the Lyapunov function by the Krasovskii
approach results in a functionalV (t, xt) depending on the
delayed state (initial condition)xt, which is rather difficult
to analyze. The Razumikhin approach circumvents the dif-
ficulties by considering the Lyapunov functionV (t, x(t))
depending on the present statex(t) only. Asymptotic stability
is guaranteed if the Lyapunov functionξV (t, x(t)), ξ > 1,
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Fig. 2. Piecewise continuous Lyapunov function of a switched system with
3 subsystems, the values at the switching instants in a certain subsystem
form a strictly decreasing sequence.

does not exceed the maximum value

V̄ (t, xt) = max
θ∈[−τ,0]

V (t + θ, x(t + θ)), (4)

of the Lyapunov function over the past time delay interval
as stated more precisely in the following.

Theorem 2: (Razumikhin Theorem) A time delay sys-
tem (1) withσ(t) = const. is said to be asymptotically stable
if there exists a continuous differentiable positive definite
function V : R

n → R
+ such that

(i) u1(||x(t)||) ≤ V (t, x(t)) ≤ u2(||x(t)||) for some con-
tinuous nondecreasing functionu1 andu2, u1(s) > 0,
u2(s) > 0 for s > 0 andu1(0) = 0 = u2(0),

(ii) V̇ (t, x(t)) < −w(||x(t)||), whenever
V (t + θ, x(t + θ)) ≤ p(V (t, x(t))) for all θ ∈ [−τ, 0].
Where w(s) and p(s) are continuous nondecreasing
functionsw(s) > 0, p(s) > 0 for s > 0.

Proof: See [11].

In the performance evaluation later in this paper, we
consider a switched time delay system with linear time
invariant (LTI) subsystems

ẋ(t) = A0x(t) + A1x(t − τ),

xt = x(t + θ), ∀θ ∈ [−τ, 0],
(5)

with the system matricesA0, A1 ∈ R
n×n, and the subsystem

index i ∈ P omitted here for simplicity. Using a quadratic
Lyapunov function with the Razumikhin approach, a delay-
dependent stability criterion can be formulated as a LMI
problem as presented in the following corollary.

Corollary 1: The time delay system(5) is asymptotically
stable if there exists real symmetric matrixP > 0 and real
scalarsα > 0, α1 > 0 such that





M −PA1A0 −PA2
1

−AT
1 AT

0 P −αP 0
−(A2

1)
T P 0 α1P



 < 0, (6)

whereM = 1
τ
[P (A1 + A0) + (A1 + A0)

T P ] + (α + α1)P .
Proof: See [12].

Based on these approaches for switched systems and time
delay systems we will derive our main result in the following.

IV. M AIN RESULT: STABILITY OF SWITCHED TIME

DELAY SYSTEMS

We assume a switched time delay system given by (1)
with asymptotically stable subsystemsfi. A continuously
differentiable Lyapunov functionVi is associated to each
subsystemi, where in generalVi(x) 6= Vj(x) holds if i 6= j.
Furthermore, suppose that there is no state jump in the state
of (1) at the switching instants, i.e. the solutionx(t) is
continuous everywhere.

The following theorem extends the known Razumikhin
theorem to switched systems with piecewise continuous time
delays and providing sufficient conditions for asymptotic
stability.

Theorem 3: A switched time delay system (1) is said to be
asymptotically stable if there exists a continuously differen-
tiable positive definite functionVi for each subsystemi ∈ P,
active in the time intervalt ∈ [tj , tj+1), such that

(i) Vi(t, 0) = 0, Vi(t, x(t)) > 0 for x ∈ R
n\{0},

(ii) u1(||x(t)||) ≤ Vi(t, x(t)) ≤ u2(||x(t)||), whereu1, u2

are continuous nondecreasing functionsu1(s) > 0,
u2(s) > 0 for s > 0 andu1(0) = 0 = u2(0),

(iii) V̇i(t, x(t)) ≤ −w(||x(t)||), whenever
Vi(t + θ, x(t + θ)) ≤ p(Vi(t, x(t))) with θ ∈ [−τi, 0],
t ∈ [tj , tj+1). w(s) and p(s) are continuous
nondecreasing functionsw(s) > 0, p(s) > 0 for
s > 0 and V̇i(t, x(t)) is the right-hand derivative
V̇i(t, x(t)) = lim∆→0,∆>0

Vi(t+∆,x(t+∆))−Vi(t,x(t))
∆ ),

(iv) V̄i(tk, xtk
) − V̄i(tj , xtj

) ≤ −h(||xtj
||), h(·) is a

positive continuous function withh(0) = 0 and
tk > tj are consecutive switching instants for which
σ(tk) = σ(tj) = i.

Proof: For the sake of simplicity, the switched time de-
lay system (1) is assumed to contain two subsystems
ẋ = f1(x, xt, τ1) andẋ = f2(x, xt, τ2). Without loss of gen-
erality, the switched time delay system starts in subsys-
tem 1 at t0 with the initial condition xt0 = x(t0 + θ),
θ ∈ [−τ1, 0]assuming||xt0 || < δ1. The associated Lyapunov
function isV1. By (ii), there exists anε1 > u−1

1 (u2(δ1)) > 0
such thatV̄1(t0, xt0) ≤ u2(δ1) < u1(ε1). Since subsystem 1
is asymptotically stable by (i)-(iii), the Lyapunov function
satisfies V1(t, x(t)) < V̄1(t0, xt0) < u1(ε1) for all t with
t0 ≤ t < t1, where t1 marks the switching instant when
subsystem 1 is switched into subsystem 2. In addition,
limt1→∞ ||x(t1)|| = 0 following from (iii).

At the time instantt1 the execution enters subsystem 2,
wheret1 ≥ t0 +max{1,2}(τi)− τ1 is required for the proper
definition of the initial condition for subsystem 2. Since there
is no jump in the states at the switching instant, the initial
condition for subsystem 2 is given byxt1 = x(t1 + θ) with
θ ∈ [−τ2, 0]. By (iii) again, the associated Lyapunov function
V2(t, x(t)) can never exceed̄V2(t1, xt1), ∀t : t1 ≤ t < t2
where t2 marks the switching instant from subsystem 2
back to subsystem 1. Since||xt1 || < ε1, there is anε2 > 0
such thatu−1

2 (u1(ε2) > ε1. With the same argument as
above it follows that||x(t)|| < ε2, for all t with t1 ≤ t < t2.
Furthermore, it follows by (iii)limt2→∞ ||x(t2)|| = 0.



At the time instantt2, the execution re-enters subsystem 1.
By (iv) V̄1(t2, xt2) ≤ V̄1(t0, xt0) − h(||xt0 ||) < u1(ε1)
holds, hence||x(t)|| < ε1 for all t with t2 ≤ t < t3, t3
the next time instant when subsystem 1 switched back to
subsystem 2. With the same argument, it can be shown that
V̄2(t3, xt3) < u1(ε2).

At each switching instanttj , the Lyapunov func-
tion V̄σ(tj)(tj , xtj

) is bounded from above byu1(ε2),
which implies the existence of az ≥ 0 defined as
z = limj→∞ V̄σ(tj)(tj , x(tj)). As a result for each subsys-
tem i and any two consecutive switching instantstk > tj ,
σ(tk) = σ(tj) = i, by (iv) the following holds

0 = lim
k→∞

V̄i(tk, x(tk)) − lim
j→∞

V̄i(tj , x(tj))

≤ lim
j→∞

[−h(||xtj
||)] ≤ 0.

It implies limj→∞ ||x(tj)|| = 0 for each i, and thus leads
to limt→∞ x(t + θ) = 0 for θ ∈ [−τi, 0] which completes
the proof.

Remark 1: In case of a time delay system without switch-
ing, i.e. σ(t) = const., Theorem 3 reduces to the orig-
inal Razumikhin theorem [11] (condition (iv) then fol-
lows from (iii) and is no longer needed). Furthermore,
the valuesV̄i(tj , xtj

), V̄i(tk, xtk
) at consecutive switching

instants form a strictly decreasing sequence for each subsys-
temi ∈ P. If the time delay is set to zeroτi = 0, i ∈ P, then
the standard switched system is given and the stability result
from [6] is recovered. For constant time delay,τi = const.,
a similar result as in [16] is achieved.

Remark 2: Theorem 3 is applicable to switched systems
with an arbitrary finite number of subsystems. The subsys-
tems can be nonlinear and time-varying.

Remark 3: In Theorem 3, the considered switched time
delay system is described by an idealized mathematical
delay differential equation containing controllers and plant.
The state is assumed to have no state jump, and the initial
condition xt for each time delay subsystem is well defined
after switchings. However, for a real QoS controlled NCS as
illustrated in Fig. 1, this assumption is no longer true as the
following shows. Consider the plantẋ = f(x, u(t − τi)) and
the proportional state feedback controlleru(t) = Kix(t).
Controller and time delay are switched at time instant
tq to Kj and τj , respectively. If τi > τj , then there is
an overlap in the control signalu arriving delayed at
the plant over a time intervalτi − τj . Accordingly, if
τi < τj , the control signal remains undefined for the time
interval τj − τi. This is equivalent to an overlapping or
non-definition, resepectively, of the initial condition of
subsystemj. For the sound definition of solutions, we treat
the erratic definition of the initial condition as a kind of
state jump, representing a degree of freedom during design.
Here, for the overlapping case, we propose to drop the
excrescent initial conditionx(tq + θ), θ ∈ [−τi,−(τi − τj)].
For the gap case, the absent initial condition
is generated by holding the last received value,
i.e. x(tq + θ) = x(tq − τi), θ ∈ [−τj ,−(τj − τi)]. In

both cases, the valuēVj(tq, xtq
) is not changed, and thus

the stability condition from Theorem 3 is not violated.

V. PERFORMANCEEVALUATION

In order to evaluate the potential of the proposed QoS con-
trol approach, simulations and experiments are conducted.
Goal is to achieve a trade-off between control performance
and network cost. The switching law should guarantee sta-
bility and optimal performance in the sense of this trade-
off. The generation of the switching law is discussed in the
following.

A. Towards Optimal Performance

For high control performance of a NCS, generally, a low
time delay is desirable, however high network costs are in-
duced. The network cost-performace trade-off is formulated
as multi-criteria optimization problem

min
σ(t)

J =

∫ ∞

0

x(t)T Q(t)x(t) + ησ(t)dt, (7)

where x(t)T Q(t)x(t) is a measure for the control perfor-
mance with Q(t) a weighting matrix of appropriate di-
mension, and ησ(t) = η(τσ(t)) represents the network cost
associated with a certain time delay. The switching signal is
generated by the optimizer representing the decision maker.
The solution to this optimization problem gives the optimal
switching instants and sequence. An analytical solution is
difficult to find as the problem is hybrid, non-convex in
general and contains delay differential equations. The further
analysis is beyond the scope of this paper. Related optimal
algorithms and conditions for switched systems are found
in [17]–[21], however, without considering time delay in
the subsystems. In order to demonstrate the benefit of QoS
control, the optimization problem is solved offline in the fol-
lowing simulations and experiments with a similar approach
as in [21]. The switching times and sequence are fixed a
priori, the switching instants are determined by numerical
optimization.

B. Experimental System Model

The position control of a one degree-of-freedom pendulum
system, see Fig. 3, modelled as a damper-mass system

u = Jsysẍ + bsysẋ,

is considered, wherex is the angular position,u the mo-
tor torque. The inertiaJsys = 0.0274 kgm2 and the damp-
ing bsys = 0.2874 Nms/rad are identified from the experi-
mental system via a least square method.

The position of the pendulum is fed back via the QoS
communication channel switched between the two constant
time delays:τ1 = 15 ms andτ2 = 6 ms. The control torque is
generated by PI controllersu(t) = KIi

∫

e(t)dt + KPie(t),
with e = xd − x the control error, andi ∈ {1, 2}. They are
switched synchronously with the time delay. Withα = 100
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Fig. 3. Experimental one degree-of-freedom pendulum system.

andα1 = 7.8 the matrix inequality (6) gives the correspond-
ing positive definite matricesPi

P1 =





0.0193 −0.0163 0.0004
−0.0163 0.0198 −0.0018

0.0004 −0.0018 0.0017



 ,

P2 =





0.0184 −0.0214 −0.0004
−0.0214 0.0346 −0.0014
−0.0004 −0.0014 0.0026



 ,

using the lmi toolbox of MATLAB. The values of
the PI controllers areKP1 = 8.5, KI1 = 7 for τ1 and
KP2 = 10, KI2 = 12 for τ2, showing that for the low time
delay mode1 the controller can be tuned more aggressively.

C. Simulations

The simulation shows the effect of the switched time delay
system with respect to stability and performance. Here the
switching strategy is chosen such that the stability of system
is guaranteed. The pendulum model is initiated with the high
delay communicationτ1 = 15 ms along with an initial an-
gle x0 = 1 rad; the reference input isxd = 0 rad. The model
is switched to low delay communication withτ2 = 6 ms
and the corresponding controller att = 0.2 s. The pendulum
model is switched back and forth att = [0.8, 1, 1.2] s and
stays at high delay communication fromt = 1.2 s to the end.
The evolution of the systems statex is shown in Fig. 4 (b)
by the solid line. For comparison the state evolution with
high delay communication and low delay communication
are depicted by the dash-dotted and dashed line in Fig. 4 (b),
respectively. Even for this rather arbitrary switching strategy,
the performance in terms of overshoot and settling time of
the switched time delay system is better than the system
only with high delay communication. The evolution of the
piecewise continuous Lyapunov function of the switched
system is shown in Fig. 4 (c). The values at the consecutive
switching instants form a strictly decreasing sequence, the
switched time delay system is asymptotically stable.

D. Experiments

The experimental validation is performed using the same
controller and time delays as in the simulation. The exper-
imental testbed consists of the 1DOF pendulum as shown
in Fig. 3 connected to a PC running under RT Linux. The

0  0.2 0.5 0.8 1  1.2 1.5 2  [s]
(a)

0  0.2 0.5 0.8 1  1.51.2 2  [s]
−1

−0.5

0 

0.5

1 

(b)

0  0.2 0.5 0.8 1  1.2 1.5 2  [s]
0

0.5

1.5

2.5
x 10

−3

(c)

τ2

τ1
τ

x

V

V1
V1

V1

V2
V2

Low
High

Switch

[rad]

Fig. 4. Simulation results: Time delay evolution (a), state evolution (b) and
piecewise continuous Lyapunov function (b) of the pendulumsystem,V1

andV2 denote the Lyapunov functions corresponding to the subsystems 1
and 2 with the time delaysτ1 = 15 ms andτ2 = 6 ms.

original design of the pendulum can be found in [22]. The
DC-motor current, resulting in torque, is provided by the
PWM amplifier operated under current control. The reference
signal is given by voltage from the D/A converter and is an
output of the I/O board. The position of the lever is measured
by an optic pulse incremental encoder and processed by
a quadrature encoder on the I/O board. The control loop
including the controller, the time delays and the switching
strategy are implemented in MATLAB/SIMULINK block-
sets. Standalone realtime code is generated directly from the
SIMULINK model. All the experiments are performed with
a sampling time interval ofTA = 0.001s.

The switching instants are determined using the opti-
mization procedure proposed in Section V-A. The net-
work costs are heuristically set toη(τ1) = 2 × 10−5 s−1

and η(τ2) = 5 × 10−5 s−1. The initial conditions are spec-
ified by xT

0 = [0, 0], θ ∈ [−τ1, 0] and σ(0) = 1, i.e. sub-
system 1 with time delayτ1. A step function, which has
the amplitude 0.1 rad att = 1 s serves as position reference
input xd to the system. The position error is used for the
optimization in the cost functional (7), the weight is set
to Q(t) = I. The numberk of switches and the switch-
ing order are fixed prior to optimization, here withk = 2
and{(t1, 2), (t2, 1))}, i.e. switching into subsystem 2 takes
place at t = t1. The optimization problem is solved off-
line using thefminsearch algorithm from the MATLAB
optimization toolbox resulting in the switching timest1 = 1 s
and t2 = 1.5 s, respectively.

The evolution of the time delay is presented in Fig. 5 (a).
The position evolution for the switching approach, and
for comparison also for low and high time delay without
switching, is presented Fig. 5 (b). Surprisingly, the switched
system shows a control performance comparable to the
system without switching and only with low time delay, see
also Table I. However, the network cost of the switched
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Fig. 5. Experimental results: Communication time delay (a) and position
evolution (b) of the experimental pendulum system.

TABLE I : EXPERIMENTAL RESULTS

High delay Low delay Switched delay
Settling time1 [s] 1.153 1.0612 1.033
Overshoot [%] 90.5 80.7 80.4
Network costs 10×10

−5 25×10
−5 12.28×10

−5

time delay system is50.88% lower. Less overshoot and
a 10.14% lower settling time than with high time delay only,
is observed. These experimental results show the potential
of proposed approach and are indeed very promising for
a further investigation of QoS control in NCS. For real
application a number of challenges remain to be addressed,
e.g. online generation of a (sub-)optimal switching law and
consideration of time delay in the switching signal.

VI. CONCLUSION

In this paper a novel concept of Quality-of-Service control
for networked control system (NCS) is introduced. The NCS
itself and the communication quality in terms of time delay
is conjointly controlled to meet control performance and net-
work cost objectives. The time delay of the communication
network is switched together with the controller resulting
in switched system with piecewise constant time delay. A
sufficient stability condition is derived based on the Razu-
mikhin approach for time delay systems and the piecewise
continuous Lyapunov function method for switched systems.
Simulations and experiments show that the proposed QoS
control approach is very promising as a trade-off between
control performance and network cost is achieved.

Future research includes the extension of the results to the
less conservative Lyapunov-Krasovskii approach and online
generation of the switching law.

1The settling time is defined for the output response first to reach and
thereafter remain within5% of the final value.

2Theoretically, the settling time for low time delay without switching is
expected to be lower than with switched time delay. A possibleexplanation
for the slightly higher settling time are nonlinear phenomenasuch as
backlash and friction.
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