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Abstract: Future Distributed Power Grid (DPG) control systems may strongly benefit from the
introduction of a communication network enabling cooperation between distributed generators.
However, this typically comes at the cost that network induced time delay deteriorates control
performance and possibly destabilizes the overall system. In this paper we study the effect of
the time delay on the performance of a DPG with networked cooperative controllers exchanging
state information of generators via a communication network and analyze up to which time
delay such a communication network is still beneficial for the overall control performance. Here
the delay is assumed to be constant and identical for all links. Standard Linear Quadratic
Regulators (LQR) are designed together with communication topology, but without explicitly
considering the time delay. We compare the Linear Quadratic (LQ) cost in infinite horizon as
a measure of the performance of two cases: the networked cooperative controller with global
information and time delay vs. the controller with only local information. It is observed that
there exists a performance guaranteed time delay bound where the cost with the cooperative
controller is smaller than without information exchange, i.e. it is still beneficial to introduce
a communication network. By means of a Linear Matrix Inequality (LMI) problem based on
first order Pade approximation for time delay this performance guaranteed time delay bound is

approximated in a systematic way. A numerical example is given to illustrate the result.

1. INTRODUCTION

With the ongoing introduction of novel renewable energy
resources power generation units start shifting from tradi-
tional centralized, large scaled power plants to distributed
and small scaled power generators. A power grid with dis-
tributed power generators, a so-called Distributed Power
Grids (DGP), is more energy-efficient and produces less
environmental damage.

A lot of research on the control of DPG has been conducted
by considering its stability, grid connection, voltage control
and power flow. Moreover, different control methods, e.g.
PI control (Marwali et al. [2004]), distributed Model
Predictive Control (Venkat et al. [2006]) as well as multi-
agent systems models (Negenborn [2007]) have been
proposed.

In general, the power grid can be considered as a large scale
dynamical system with interconnections due to naturally
physically coupled generators. Decentralized control is a
well-known area that is devoted to analyze such systems
and design local control laws that use only local subsystem
information in order to stabilize the overall system. Bakule
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2008] gives an overview on the past and present results in
g p p
this area.

In future DPG, it appears promising to introduce a com-
munication network in order to provide local controllers
with non-local information allowing the cooperation be-
tween distributed generators. The resulting system con-
tains a mixture of physical and communication intercon-
nections between the subsystems. In addition to local
information of the controlled generator each local con-
troller may also use the information transmitted from
other generators. Clearly, with instantaneous global infor-
mation available to every subsystem controller in general
we expect a better overall system performance compared
to the decentralized approach.

However, a communication network introduces time delay
which is known to deteriorate control performance and
possibly destabilize the overall system. Richard [2003]
gives an overview of some recent research and stabiliza-
tion problems in time delay systems. In Hassan et al.
[2007] decentralized optimal control laws are constructed
to stabilize discrete systems with system constraints and
delays with an iterative multilevel algorithm but no coop-
eration between subsystems. In Rotkowitz et al. [2004] the
problem of decentralized control for linear interconnected
system with constraints on communication topology is



addressed. It is shown that distributed control with time
delays may be reduced to a convex optimization problem
when the controllers can transmit information faster than
the dynamics propagate between subsystems.

In this paper we address the following practically relevant
question: given a pre-designed LQR controller without
consideration of time delay, what is the effect of time
delay to the system performance? The main contribution
of this paper is to analyze, up to which time delay value
a communication network is still beneficial in terms of
a LQ performance measure. The DPG dynamics are ap-
proximated by a Linear Time-Invariant (LTT) system with
interconnections due to the physical couplings between the
generators. Standard Linear Quadratic Regulators (LQR)
are designed under the assumption of a given communica-
tion topology, but without explicitly considering the time
delay. Our main goal is to study the effect of time-delay
on LQ performance in such a setup, i.e. we are not imple-
menting delay compensation methods such as e.g. in Zhang
et al. [2001] . The time delay is assumed to be identical and
constant for all communication links. We also assume no
propagation delay exists in the physical interconnections
between generators, i.e. the dynamics propagate occurs in-
stantaneously which is different to Rotkowitz et al. [2004].

We compare the control performance of two cases: the
networked cooperative control scheme with information
exchange over the communication network and time delays
vs. the controller with only local information and no
time delay. In order to study the effect of time delay,
unlike the widely applied systems decay rate in the case
of exponential stabilization of time delay systems (e.g.
Liu [2003]), here as a measure of performance the Linear
Quadratic (LQ) cost is considered and optimal control laws
for infinite horizon are implemented. It is observed that
there exists a performance guaranteed time delay bound
where the cost of the cooperative case is smaller than
the case without information exchange, i.e. it is beneficial
to introduce communication networks. This performance
guaranteed time delay bound is approximated by means
of Linear Matrix Inequalities (LMIs) and first order Pade
approximation.

The remainder of the paper is organized as follows. In
section 2 the model of the simplified DPG is introduced. In
section 3 the networked cooperative and controller without
information exchange are defined. The networked cooper-
ative control with time delay is also discussed. The ap-
proximation of performance guaranteed time delay bound
based on Pade approximation is introduced in section 4.
The numerical evaluation of the control performance is
shown in section 5 and the conclusion is given in section

6.
2. MODEL OF DISTRIBUTED POWER GRID

The model of the DPG which may represent a simplified
microgrid is shown in Figure 1. The DPG consists of NV
spatially distributed power generators G ... Gy support-
ing a constant load R. We assume here the generators have
linear characteristics. This constant load represents the
average consumption of several households in a real power
grid. The generators are connected to the load by transmis-
sion lines represented by resistances Ry ... Ry. Each power
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Fig. 1. Model of DPG with linear electrical DC generators

generator has a locally implemented controller and could
communicate with others via the communication network.

For each individual power generator, linear electrical DC
power generators model is considered. The dynamics of a
linear power generator GG; are modeled as

Ul(t) = kiwi(t), Mel,i(t) = k/’ili(t),
szz(t) = Mmech,i(t) - Mel,i(t)v

. 1 1
Mmech,i(t) = *EMmech,i(t) + Euz(t)v

with

Ui(t) — Induced voltage [V]

I;(t) — Induced current [A]

w;(t) — Angular frequency of the rotor [rad/s]

k; — Frequency dependency factor of the induced
voltages [V - s/rad]

J; — Moment of inertia [kg - m?/s?|

Me;,;(t) — Electromagnetic torque [N - m]

Mmecn.i(t) — Mechanical torque of the rotor [N - m)]
Bi — A time constant of mechanical torque [s]

u;(t) — Driving force for the torque [N - m].

The state vector of a single generator G; is defined as
x;(t) = [wi(t) Mmechyi(t)]T and the control input is the
driving force for the torque u;(t).

Due to Kirchhoff’s law, the voltages and currents of
all generators are coupled with each other. This results
in that the rotor dynamics of all generators are also
interconnected. The dynamics of a single generator G; are
then given by

Xi(t) = Ai7iXi(t) + biui(t) + Z Ai,jxj (t), (1)

J=1,j#i
0
b; = i )
Bi

where r;;,7;; are the elements of the inverse of the
resistance matrix R of transmission lines given by

with

2p. .
_—ki Ti,i i k‘ikﬁjT‘i’j
A= Ji Ji . ¥ i = B Ji >
0
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Note that R is symmetric i.e. 7;; = 7;;. Due to space
limitation we do not show its derivation here. The term
> j—1,j2i AijX; in (1) represents the physical interconnec-
tions between the generators influenced by the moment of
inertia J; and the frequency dependency factors k;, k;.

The state space representation of the DPG in Figure 1
including all generators is an LTI system with intercon-
nections given by

x(t) = Ax(t) + Bu(t), (2)
with
Ajg A - AN by 0 .- 0
Asq1 Ass -+ Agn oo
A= . . -  B= 0 b . 7
; Do Lo
An1 Anp2 - AN N 0 --- 0 by

where x(¢) is the state vector consisting of all generator
states and u(t) contains all control signals. The matrices
A,B, A, ;,b; withi,j € {1...N} are of appropriate dimen-
sions. The analysis in the next section is also applicable for
a general large scale dynamical system with interconnec-
tions.

3. PROBLEM FORMULATION

In this section we design controllers based on standard
LQR. Assume that the system in (2) is controllable with
initial condition x(0) = x¢ in a regulation problem, and
the states are directly available to the controller. We
associate a quadratic performance index

- T (O)Qex(t) + T ()Quu()dr, ()
0

where Q, > 0 and Q, > 0 are symmetric weighting
matrices of appropriate dimensions.

3.1 Networked Cooperative LQR

First, we consider the cooperative case where an ideal
communication network exists in the DPG such that
the controller of each subsystem (generator) is able to
receive state information from the others. In order to
know the best possible performance as a baseline for
further comparison, here the communication topology is
assumed to be fully connected i.e. each generator can
receive information from all other generators in the grid. A
similar approach can be extended for non-fully connected
communication topology.

The optimal control law for the system in (2) that mini-
mizes the cost in (3) is given by
uSI(t) = —LSIX(t),
where the state feedback gain Lg; is
Lgi = Q. 'B” S
and Sg; is the solution of the algebraic Riccati equation
ATSg +Sg1A — SsiBQ, 'B"Sg1 +Q, = 0. (4)

Communication
Links

Physical
Interennnections

Fig. 2. Graph of a DPG with 4 generators Gy - -Gy
connected physically and by communication links
with a constant time delay 7.

Due to the LTT system with interconnections in (2), the
state feedback gain matrix Lgr can be formulated as

Lii L Lin
o1 :
LSI —_ 2.,1 .2,2 . . (5)
oo In_1,~
Ini - Inno1 Inw

The non-diagonal terms 1; ; of appropriate dimension with
i, € {1..N} and i # j in (5) show the state information
exchange from other generators via the communication
network for the computation of the local control signal.

Therefore, the local control law for a single generator G;
can be written as

N
u;si(t) = — Z L; jx;(t). (6)

With ideal communication, i.e. zero time delay, the opti-
mal solution achieves the minimum cost

Js1 = X3 Ssrxo. (7)

Now, let us consider the networked cooperative control
with constant and identical time delay for all communi-
cation links. The graph of the power grid with physical
and communication interconnections with time delay 7
is illustrated in Figure 2, where the nodes represent the
generators. From (6), the networked cooperative local con-
troller for a single generator G; affected by time delay 7
turns out to be

N
uiyf(t) = flm-xi(t) — Z liﬁij (t — T).
j=1.#i
Thus, the networked cooperative control with time delay
for the overall system can be written by

Ur (t) = *Ldiagx(t) - Lcrx(t - T)ﬂ (8)
where the gain matrix Lg;qg and L, correspond to

1171 o --- 0 0 11,2 1l,N
0 Lo L1 O
Ldiag = 22 yLer = %1
: . . 0 : . . lN—l,N
0 -~ 0 Ilyn Ini - lyn—1 O

and the matrices Lgjqg, Ler and Lg; satisfy the relation
LSI = Ldiag + Lcr- (9)

In (8), the term —Lg;qgx(¢t) implies the control actions

based on the own states of each generator, while the term



—L.-x(t — 7) represents the control actions driven by the

delayed states transmitted from other generators.

The closed loop dynamics with time delay is then given by
x(t) = Aox(t) + Aix(t — 1), (10)

with A9 = (A — BLgjey) and A; = —BL,. The initial

condition for the delayed states is defined as x(t —7) = %o

for0<t<r.

In a next step we determine the cost resulting from the
networked cooperative LQR with delayed states informa-
tion exchange. Recall the minimum cost Jg1 achieved by
the networked cooperative LQR with ideal communication
defined in (7). Since the Sgy is the solution of the algebraic
Riccati equation in (4), the cost J in (3) for a regulation
problem with the initial state xo can be formulated as

J = xg Ssrxo + /oo(u(t) + Q"B Ssix(1)'Q, -
(u(t) + Q;lEO»TSSIx(t»dt

= Js1 + /oo(u(t) +Lex ()T Qu(u(t) + Lsrx(t))dt (1)
for any admissil:le u(t) (Kwong [2008]). Substituting u(t)

in (11) by u,(¢) in (8) and using (9) we obtain

Jr=Js1 + /OOO(Ldiagx(t) — Lewx(t — 7) + Lerx())” -

Qu(—Laiagx(1)
—Jsi+ /0 Lo A, ()7 Qq - [Ler s ()]dE

and the increased amount AJ, of the cost J, relative to
Jsr is given by

8 = [ e, (0 Q- [, (0] >0 (13
0

— L¢x(t — 7) + Lex(t))dt

(12)

where Ax.(t) = x(t) — x(t — 7). The cost increase AJ:
shows the performance degradation caused by time delay.

3.2 LQR without Information FExchange

Now, we assume there is no communication between the
generators. In this case, a local controller for a single
generator G; is defined as

u; nsi(t) = =1 nsix;(¢),
with 1; st of appropriate dimension independent of the
states of other generators.

The control law for the whole grid then becomes
unsi(t) = —Lnsix(),
with a block diagonal state feedback gain matrix Lygt

linst O --- O
0 1 ' :
LNSI — . 2,NSI (14)
: 0
0 -+ 0 Iynsr

is sought. The feedback gain matrix Lngr with a block
diagonal structure is computed by restricting Snsr to a
positive definite, symmetric and block diagonal matrix

Lyst = Qg ‘B Snst
with condition that Q, and B have block diagonal struc-
ture. Note that the resulting controller is suboptimal and

the corresponding cost achieved by such controller with the
initial condition x(0) = % is given by Langholz [1979)
(15)
where A € R2V*2N 5 the positive definite and symmetric
solution of the linear algebraic equation

T
JInst = xp Axo,

(A — BLys1)? A +A(A — BLyst)
+ SnsiBQ, 'BYSns1 + Q, = 0.

3.8 Benefit of Cooperative Control

Notice that since LQR without information exchange is
suboptimal, the cost Jxgr in (15) is larger than the cost
Js1 of the networked cooperative LQR with ideal com-
munication in (7). This means that a perfect cooperation
between the generators is beneficial, i.e. results in a better
performance.

On the other hand, time delay degrades the performance
of the networked cooperative LQR as shown in (13).
Therefore, one of the interesting questions is up to which
time delay such a communication network is still beneficial
for the overall system. This can be formulated as to find a
maximal delay 7,,,, defined as follows

Definition 1. The performance guaranteed time delay
bound 74z € [0, 00) is defined as the maximum time delay

maxT S.t.

JT(T) S JNSI- (16)
The question is, how this delay bound can be computed in
a systematic way. To avoid computation of the cost over
an infinite horizon with time delay; here we propose to
approximate this bound. Note that for the comparison of
performances, it is assumed that there exists Lnsr that
stabilizes the system.

4. LMI APPROACH FOR PERFORMANCE
GUARANTEED TIME DELAY BOUND
APPROXIMATION

The goal is to find a performance guaranteed time delay
bound such that the the cost of the networked cooperative
LQR is smaller than the cost of LQR without information
exchange. As a first step, we propose to approximate this
bound.

4.1 Time Delay System Approximation

In this section we introduce an LMI problem based on
the first order Pade approximation for the time delay
to approximately determine the performance guaranteed
time delay bound.

The Laplace transform of the delayed state vector x(t —7)
is known as e "*X(s), where X(s) is the Laplace transform
of the undelayed state vector x(¢). By using the first order
Pade approximation we introduce a new state vector ()
whose Laplace transform I'(s) is defined by

1-1Is
T'(s) = 2-X(s). 17
()= TX0) (1)
Thus, v(t) in time domain represents an approximation for
the delayed state vector x(t — 7). Substituting the delayed




state vector x(t—7) in (10) by the approximation ~(t), the
closed loop system with approximated time delay becomes

x(t) = Aox(t) + A1v(t). (18)

Next, transforming I'(s) back to time domain and substi-
tuting x(t) by (18), we obtain the dynamic of v(t) as

3(0)= (21~ M) + CT- Ag)x(t),  (19)

with the identity matrix I. As the initial condition for the
approximated delayed state vector we set v(0) = xo.

Combining (18) and (19), we define a new state vector

X(t) 4N x 1
t) = R 0) = 20
x0 = 3] ex x0=x 0
with the closed loop dynamic
x(t) = Ax(t), (21)
where
. Ao Ay
A=121 Ay Z1-A
T T

Consider the approximated delayed state «(¢), the cost of
networked cooperative LQR affected by the approximated
time delay is given as

Japproac = XgSSIXO + /0 [Lc'r‘ (X(t) - V(t))]TQu ’

[Ler (x(2) —~(t)))dt
and by using (20) the corresponding cost increase AJgpprox
relative to the minimum cost Jgy turns out to be

Aduppron = / " () — x() "W (1) — x(0))dt

=[x eMxo, (22)
0

with

I

—I

Since Q,, is positive definite, W and M are positive

definite as well.

W:LZ;QuLcra M:|: ]W[I_I]

4.2 LMI Approach

Based on the closed loop system in (21) and AJgppros in
(22), an LMI approach is introduced to determine a time
delay bound 7,4, such that the following inequality

AJa;upro;v S JNSI - JSI

holds. The 7,4, can be interpreted as an approximation
of the performance guaranteed time delay bound 7,44
defined in section 3.3. Moreover, intensive numerical sim-
ulations indicate that the 7,,4, indeed is an upper bound
t0 Tmawz, SINCE Timag is larger than Tmas (Japproz < Jr).
The mathematical proof for this statement is still under
investigation.

The value of 7,4, is determined by a search algorithm
where the delay is continuously increased while checking
the conditions of the following theorem. First we define a
Lyapunov function V(x(t)) = xT (t)Ex(t).

Theorem 2. If there exists a positive definite matrix =
such that the following conditions hold

520
e A E+EAO
e ®©<0

with @ = M + A’ 5 + ZEA and the system (21) is

stable. In addition, if V(x(0)) < Jxst — Js1 holds, then
AJa;upro;v < JNSI - JSI-

Proof. By means of (21), the derivative of the Lyapunov
function V(x(t)) is given by

V(x(t) =x®)"Ex(t) + xt)" Ex(t)
=x"()(A" 5+ ZA)x().
If ATE'JrEA < 01ie. V(x(t)) <0, the closed loop system
(21) is asymptotically stable.
Next we modify AJappros in (22) according to

AJapproz = / O (OMX(t) + V(x)(1))dt — / V(x(#))dt
0 0
= / X (t)M + AT = + ZA)x(t)dt — V(c0) + V(0),
0

where V(x(00)) =0 and V(x(0)) = x& Ex0-

~T ~
Furthermore, defining a matrix @ = M+ A" 5 + Z A, if
©® is negative semidefinite, then

Adappros — / T XT 0O (Bt + V(x(0)) < V(x(0)).

Finally if V(x(0)) < Jnst — Js1, then
AJapproz < JNSI - JSI-

By verifying the feasibility of the LMI problem in The-
orem 2, the approximated performance guaranteed time
delay bound 7,4, can be determined in a systematic way.
Alternatively, the LQ cost over infinite horizon in (3)
would need to be evaluated in an approximate way.

5. NUMERICAL EVALUATION

As an example we consider a microgrid consisting of 5 gen-
erators with topology shown in Figure 1. The generators’
parameters and the resistances of transmissions lines are
chosen to be realistic as shown in Table 1. The constant
load R is chosen to be 100€2. The weighting matrices in
cost function (3) are Q, =TI and Q, = 0.1 - I, where I is
the identity matrix.

Table 1. Simulation Parameters

G, R; 9] ki [Vs/rad] J; [kgm? /s?] Bi [s]
G 9 8.1942 1 4.0312
G2 6 4.5923 0.5037 7.6671
Gl3 7 9.9249 0.8929 3.2975
Gy 5 3.5350 0.5934 2.2140
Gs 11 11.7269 0.2071 1.4856

The initial condition of the system is randomly chosen as
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Fig. 3. Control performance in the presence of time delay.

X0 = [ 12.4470 1.8143 22.2208 1.5649 10.2052 1.8241
28.4662 0.4444 8.6477 1.504817.

First, we simulate the dynamics of the DPG in MAT-
LAB/SIMULINK over a time interval of T = 70s. The
time delay 7 is increased from 0Os to 0.8s in 0.1s step. By
analyzing the system poles, the simulated system turns to
be stable for all considered time delay.

As shown in Figure 3, the system performance with net-
worked cooperative LQR with no time delay (7 = 0) is bet-
ter than LQR without information exchange (red dashed
line) indicated by a lower cost for the former one. This
confirms that introducing communication network could
be beneficial for the overall control performance. However,
the cost J. of the networked cooperative LQR with time
delay (blue line) rises with the increase of time delay. Be-
yond a certain delay called performance guaranteed time
delay bound, the cost for networked cooperative controllers
becomes larger than LQR without information exchange
i.e. it is no more beneficial to exchange states information.
By using a line search algorithm of comparison of the
resulted LQ cost, the performance guaranteed time delay
bound 7,4 is equal to 0.536s.

Next, we simulate the dynamics of DPG again with ap-
proximated time delay. As shown in Figure 3, the cost
Japproz (green line) also shows similar behavior with the
increase of time delay. Then, the approximated perfor-
mance guaranteed time delay bound (7,,4.) for system
with approximated delay is determined by evaluating the
feasibility of the LMI in Theorem 2 using the YALMIP
toolbox (Lofberg [2004]) with SEDUMI and PENBMI
solver which are 7,40 = 0.560s and 7,4 = 0.559s re-
spectively.

Thus, the simulation strengthens the indication that the
approximated performance guaranteed time delay bound
Tmaz can also be interpreted as an upper bound of the
true time delay bound. Naturally, we expect this value to
increase, if the time delay is included in the design.

6. CONCLUSION

In this paper, the effect of time delay on the performance of
a Distributed Power Grid with networked cooperative con-
trollers is studied. Introducing a communication network
results in a better performance, i.e. lower cost compared
with controllers with only local information. However, in
the presence of time delay, the cost is shown to be increased
with the increase of time delay and beyond a certain
point, the cost becomes larger than for controller without
information exchange. Based on first order Pade approxi-
mation and by solving the LMI problem, the approximated
performance guaranteed time delay bound is determined
analytically. Future work includes more sophisticated con-
trol design (e.g. Hassan et al. [2007]) and the inclusion of
other communication topologies and network effects.
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