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Abstract— In this paper, we consider a discrete-time stochas-
tic system, where sensor measurements are sent over a network
to the controller. The design objective is a non-classical mul-
ticriterion optimization problem for finite horizon, where the
cost function consists of the linear quadratic cost reflecting
the control performance and a communication cost penalizing
information exchange between sensor and controller. It is shown
that the joint optimization of scheduling and control can be
separated into three subproblems: an optimal regulator prob-
lem, an estimation problem and an optimal scheduling problem.
The obtained results are extended to TCP-like networks with
random packet loss. In the proposed framework, we classify
three classes of schedulers, a purely randomized, a deterministic
and a state-dependent scheme, and compare their performance
by a numerical example.

I. INTRODUCTION

The issue of studying optimal stochastic control problems,

where acquiring sensor measurements at the controller is

costly, has already drawn attention in the 60s and 70s, for

example in [1] and [2]. At that time, the main motivation

for such consideration emerged in aerospace applications,

where telemetry data of space vehicles has to be sent to a

controlling ground station over a band-limited link. Recently,

due to the advent of networked control systems, stochastic

control problems with limited information exchange undergo

a reinvigoration. Networked control systems can be defined

as spatially distributed control systems with sensors, actua-

tors and controllers exchanging information over a common

digital communication network. There is an abundance of

promising application areas identified as networked control

systems, such as unmanned aerial vehicles [3], vehicular

control networks [4] and teleoperation systems [5].

In presence of limited communication bandwidth or lim-

ited battery capacity in wireless networks, a major objec-

tive of networked control systems is to maximize control

performance, while keeping information exchange over the

feedback link at a minimum. In order to meet the tradeoff

between such concurring objectives, basically three formula-

tions as stochastic control problems have been devised within

the linear quadratic Gaussian (LQG) framework taking into

account communication constraints [1], [2], [6]–[17]. The

first approach proposed in [6] takes an information theoretic

viewpoint. It is assumed that sensor and controller are

connected over a bit-rate constraint channel and conditions

under which the separation principle of stochastic control
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holds are given. On the premise of the separation principle,

the major task is then to develop optimal encoder-decoder

pairs. In the second approach there is only a limited number

of observations sent to the controller over a finite horizon.

Determining the optimal timings of the observations to be

sent is the main challenge in such approach. The procedure

of assigning such timings will be called scheduling. In [1],

[2], [7] timings are determined beforehand. Establishing

scheduling rules that take into account current observations

have been considered in [8]–[10] for discrete-time systems

and in [11], [12] for continuous-time systems. In [13], it

was shown that separation of estimation and control holds

for stochastic discrete-time systems with a limitation on the

number of control commands.

Rather than posing hard constraints on the information

exchange, the third approach that is also considered in this

paper introduces an additional communication cost term in

the cost function. This term can be viewed as a penalty that

has to be paid, whenever a measurement is transmitted to

the controller. The scheduler situated at the sensor decides

whether to transmit a measurement to the controller upon the

available information. Such formulation has been considered

in [14]–[16], but only for discrete-time estimation problems.

An offline determination of the timing sequence for the joint

optimal control and scheduling problem has been discussed

in [17], where it is argued that assigning the scheduling

sequence beforehand, the remaining problem reduces to the

standard LQG problem for time-varying systems. Hence,

in this case, the problem can be divided into separate

subproblems that can be solved sequentially.

The main contribution of this article is to solve the joint

optimal scheduling and control problem by establishing a

separation of the problem into tractable subproblems. The

scheduler may depend on the current state of the system. The

subproblems are identified as an optimal regulator problem,

an estimation problem and an optimal scheduling problem,

which can be solved by standard algorithms. It also turns out

that the joint optimal estimation and scheduling problem in

the proposed framework have an intrinsic coupling that has

not been regarded before. Furthermore, we give an extension

to TCP-like communication networks with packet dropouts

as in [18], where successful transmissions of packets are

acknowledged at the sensor. Three classes of schedulers

are identified, that are a purely randomized, a deterministic

and a state-dependent scheme. These types of schedulers

are compared in a numerical example to demonstrate the

performance gains of the optimal state-dependent solution

with respect to the optimal solutions of the other two classes.



The remainder of the paper is organized into five sections.

Section II introduces the stochastic discrete-time system

model and the design objective. In section III, the problem is

reformulated into tractable subproblems. An extension of the

results to networks with packet loss is given in section IV. In

section V three different types of schedulers are introduced,

which are compared in a numerical example in section VI.

Notation. In this paper, the operators tr[·] and (·)T denote

the trace and the transpose operator of a square matrix,

respectively. The variable P denotes the probability measure

on the abstract sample space denoted by Ω. The expectation

operator is denoted by E[·] and the conditional expectation

is denoted by E[·|·].

II. PROBLEM STATEMENT

We consider the following stochastic time-invariant

discrete-time system P

xk+1 = Axk + Buk + wk, (1)

where A ∈ R
n×n, B ∈ R

n×d. The variables, xk and uk

denote the state and the control input and are taking values in

R
n and R

d, respectively, the system noise wk takes values

in R
n and is an i.i.d. (independent identically distributed)

zero-mean Gaussian distributed sequence with covariance

matrix Cw = E[wkwT
k ]. The initial state, x0 is Gaussian with

mean x̄0 and covariance Cx0
= E[(x0 − x̄0)(x0 − x̄0)

T]. Let

(Ω,A,P) denote the probability space generated by the

initial state x0 and noise sequence (wk)k.

System parameters and statistics are known to the sched-

uler and controller. It is assumed that the scheduler S
situated at the sensor side can observe the complete state and

decides, whether the controller C should be updated with the

current state. The controller is assumed to be situated at the

actuator side, which implies that only sensor and controller

must exchange information over the network. The system

model is illustrated in Fig. 1. The interconnection of sensor

and controller can be stated as the following measurement

equation, which differs from the standard LQG formulation:

yk = δkxk, (2)

where yk is the available measurement at the controller and

δk ∈ {0, 1} is the scheduler output given by

δk =

{

1 measurement xk sent

0 no measurement transmitted

Let the scheduler law f = (f0, f1, . . . , fT−1) and the

control law γ = (γ0, γ1, . . . γT−1) denote admissible policies

for the finite horizon problem with horizon T and

δk = fk(IS
k ),

uk = γk(IC
k ).

In order to guarantee that the problem is well-defined,

we presume for convenience that f and γ are measurable

functions with respect to A. The information patterns IS
k

and IC
k of the scheduler and controller are given by their

complete observable history, i.e.

IS
k = {x̄0, x0, δ0, y0, u0, x1, δ1, y1, u1, . . . ,

δk−1, yk−1, uk−1, xk},

IC
k = {x̄0, δ0, y0, u0, δ1, y1, u1, . . . ,

δk−1, yk−1, uk−1, δk, yk}.

For k = 0, we have IS
k = {x̄0, x0} and IC

k = {x̄0, δ0, y0}.

With abuse of notation, we use IS
k and IC

k as sets, when

referring to information patterns, and as vectors, when re-

ferring to the information state. As we assume that the

control law γk is deterministic and the behavior of the

communication network N is also known to the scheduler,

past transmitted sensor measurements and control inputs are

known to the scheduler. In fact, it can be noticed that the

information patterns at scheduler and controller are nested

after having determined the next scheduling variable δk, i.e.

IC
k ⊂ {IS

k , δk, yk}. Roughly speaking, this is an indicator

that, although we have a distributed structure, decisions are

virtually made by a centralized instance maintaining the

possibility that the separation principle of optimal control

still holds contrary to the counterexample given in [19] for

a distributed information pattern.

The design objective is to find admissible policies f and γ

that minimize the multi-objective criterion

J(f, γ) = E

[

xT
T QT xT +

T−1
∑

k=0

xT
k Qxk + uT

k Ruk + λδk

]

.

(3)

The weighting matrices Q, QT are positive definite and

R is positive semi-definite. The positive factor λ can be

regarded as the weight of penalizing information exchange

between sensor and controller.

PC

N

S

yk xkuk

δk

Fig. 1. System model of the networked control system with plant P ,
scheduler S, controller C and communication network N .

III. REFORMULATION

Solving the optimization problem posed by the minimiza-

tion of J(f, γ) in (3) directly is a daunting task, since it

involves joint optimization over real-valued functions γk

and discrete functions fk, whose number of input arguments

increases with time k. In addition, due to the distributed

information structure of controller and scheduler, the under-

lying problem with imperfect state information can not be



transformed into a problem with perfect state information in

a straightforward way as given in [20].

The aim of this section is to gradually transform the

problem into equivalent problems that are more tractable

without losing optimality.

For that reason, we first introduce the following equiva-

lence classes of admissible pairs of scheduling and control

policies. The equivalence class denoted by [(f, γ)] is defined

in such way that any pair (̂f, γ̂) within [(f, γ)] yields the

same scheduling sequence (δk)k as for the pair (f, γ) for

any sample path ω ∈ Ω. Among all policy pairs within an

equivalence class we will show that we can not get better

than with a linear control policy obtained from the standard

LQG problem. [(f, γ)] can be constructed by the map T .

Given a pair (f, γ) the equivalence class [(f, γ)] can be

parameterized by the admissible control policies, which gives

the corresponding scheduling policy

f̂ = T (f, γ, γ̂),

where f̂ is adapted to control policy γ̂ appropriately to

satisfy the condition of having the same scheduling sequence

for any sample path. It can be showed that the map T
exists for any scheduling policy f and any admissible control

policy γ and γ̂ as they are deterministic, measurable w.r.t. A
and known to the respective scheduler by assumption. For

a fixed control policy, it can be seen that the scheduling

variable δk can be calculated by the information pattern

ÎS
k = {x̄0, x0, w0, w1, . . . , wk−1} at time k. With abuse of

notation the scheduling policy f̂k will be a function of ÎS
k

in the following.

Subsequently, let x
aug
k be the augmented state vector con-

sisting of the plant state xk and the internal states ÎS
k of the

scheduler, let Y k = {x̄0, y0, . . . , yk}, Uk = {u0, . . . , uk},

δk = {δ0, . . . , δk} be the observation history of the sys-

tem with control policy γ̂ and let Ỹ k = {ỹ0, . . . , ỹk},

δ̃k = {δ̃0, . . . , δ̃k} be the observation history assuming the

control input to be the zero sequence.

Lemma 1: Given a system by (1), (2) and the scheduling

policy f̂ constructed by T from a fixed pair (f, γ) adapted

to a used control policy γ̂, the augmented state estimation

error

∆aug
k = x

aug
k − E[xaug

k |Y k, δk, Uk−1]

is independent of the used control policy γ̂.

Proof: Fix a control policy γ̂ and rewrite the system

in the following augmented form with dynamics
[

xk+1

ÎS
k+1

]

=

[

Axk + Buk + wk

{ÎS
k , wk}

]

(4)

and measurement equation

yk = H(ÎS
k , δk),

where ÎS
0 = {x̄0, x0} and δk = f̂k(ÎS

k ). Similarly to [21],

define the forced system
[

x̄k+1

0k+1

]

=

[

Ax̄k + Buk

0k

]

(5)

and the autonomous system
[

x̃k+1

ÎS
k+1

]

=

[

Ax̃k + wk

{ÎS
k , wk}

]

(6)

with initial condition x̄0 for the forced and x0 − x̄0 for the

autonomous part, respectively. The dummy variable 0k has

the same dimension of ÎS
k containing only zero entries. Note

that addition of (5) and (6) yields (4). Then, the error

∆aug
k = [xT

k , ÎS,T
k ]T − E[[xT

k , ÎS,T
k ]T|Y k, δk, Uk−1]

= [x̃T
k , ÎS,T

k ]T − E[[x̃T
k , ÎS,T

k ]T|Y k, δk, Uk−1]

= [x̃T
k , ÎS,T

k ]T − E[[x̃T
k , ÎS,T

k ]T|Ỹ k, δ̃k].

The second equality is due to the fact that x̄k is measurable

w.r.t. Uk−1. The third equality is because [x̃T
k , ÎS,T

k ]T is

independent of Uk−1. We observe from that expression that

the error ∆aug
k does not depend on Uk−1.

Remark 1: The dimension of the augmented state space

is finite, since we consider problems with finite horizon. It

should be noticed that we could have written Equation (4)

in state space representation with a common state vector of

constant dimensionality.

Remark 2: The above lemma is in accordance with [21],

where it was shown that if a not completely controllable

system has nonlinear observations in the uncontrollable

subspace, the control may still have no dual effect. The

condition of no dual effect states that the error covariance

is independent of the control applied. The term dual comes

from the dual role of the controller, i.e. (i) affecting state

evolution and (ii) probing the system to reduce estimation

uncertainty. The control is said to have no dual effect, if the

latter probing property will have no effect.

It should be noted that Lemma 1 resembles Lemma 5.2.1

in section 5.2 of [20]. With the obtained results, a statement

about the structure of the optimal controller can be given as

follows:

Lemma 2: Given the system defined by (1), (2) and sched-

uler f̂ constructed by T from any pair (f, γ) and adapted to

a control policy yet to determine, the optimal control law

γ∗ = (γ∗
1 , . . . , γ∗

T−1) minimizing J(T (f, γ, ·), ·) is given by

uk = γ∗
k(IC

k ) = −Lk E[xk|I
C
k ] (7)

with

Lk =
(

R + BTPk+1B
)−1

BTPk+1A,

Pk = ATPk+1A + Q − ATPk+1B

×
(

R + BTPk+1B
)−1

BTPk+1A,

PT = QT ,

where Pk ∈ R
n×n is non-negative definite for all k.

Proof: We notice that the communication cost is

constant for any control policy by definition of f̂ . Thus,

the cost J(T (f, γ, ·), ·) in (3) reduces to the standard linear

quadratic cost. Then, the derivation of the optimal control

law γ∗ follows likewise as in section 5.2 in [20] by Lemma 1.



Lemma 2 already gives a full characterization of the

optimal control law. It states that if we have given an

arbitrary admissible pair (f, γ), we can construct another

pair (T (f, γ, γ∗), γ∗) with J(T (f, γ, γ∗), γ∗) less or equal

to J(f, γ). This is due to the fact that the communication

cost E[
∑T−1

k=0 λδk] are the same and the quadratic term is

minimized by γ∗ due to Lemma 2.

The remaining issue is how to calculate the conditional

mean E[xk|I
C
k ]. The calculation can not be performed in a

straight-forward way, as it is still coupled to the schedul-

ing law due to IC
k which includes scheduling variables

δl, l = 0, . . . , k. On the assumption of having the optimal

control law given by (7), we revise the cost function defined

in (3). We will use the following identity that has been shown

in [22] for the linear quadratic cost:

J(f, γ) = E

[

xT
0 P0x0 +

T−1
∑

k=0

wT
k Pk+1wk

+

T−1
∑

k=0

(uk + Lkxk)T(R + BTPk+1B)(uk + Lkxk) + λδk

]

,

where Lk and Pk are given by Lemma 2. In the following,

let J(f, γ) = JC + JS(f, γ), where

JC =E

[

xT
0 P0x0 +

T−1
∑

k=0

wT
k Pk+1wk

]

,

JS(f, γ) =E

[

T−1
∑

k=0

(uk + Lkxk)T(R + BTPk+1B)

× (uk + Lkxk) + λδk

]

. (8)

We observe that JC is constant, which implies it can be

omitted in the optimization procedure. Due to this fact, we

obtain the following optimization problem for the scheduling

law, when taking the control law γ∗ given by (7)

min
f

E

[

T−1
∑

k=0

(xk − E[xk|I
C
k ])TLT

k (R + BTPk+1B)Lk

× (xk − E[xk|I
C
k ]) + λδk

]

. (9)

If the estimation error at the controller ∆k = xk−E[xk|IC
k ]

forms a Markov chain controlled by δk, then the problem can

be posed in the dynamic programming framework with ∆k

as a sufficient statistic. Due to the information pattern IC
k

appearing in ∆k, it can not be asserted a priori that ∆k has

the Markov property. Resolving this issue is the aim of the

subsequent paragraph.

Our aim is to reduce the dimensionality of IC
k , which

appears in the conditional mean in (7). First, we observe

that, for δk = 1, both controller and scheduler have common

knowledge about the actual state xk at time k. Therefore,

due to (2), we have E[xk|I
C
k ] = yk = xk for δk = 1.

Let τk denote the last time instance where the state has

been transmitted, when the current time instance is k, i.e.

τk = max{l|δl = 1, l ≤ k}. In case, no state has been

transmitted before, we define τk = −1. For convenience, we

omit the index of τk in the following. The state at time k

with τ ≥ 0 can be written as

xk = Ak−τxτ +

k−1
∑

l=τ

Ak−l−1(Bul + wl).

In case τ = −1, let x−1 = x̄0, u−1 = 0, w−1 = x0 − x̄0 is

defined as the uncertainty of the initial state. Thus, we have

for τ = −1

xk = Ak(xτ + Buτ + wτ ) +

k−1
∑

l=0

Ak−l−1(Bul + wl).

Consider the case where τ ≥ 0 and k = τ + 1

E[xk|I
C
k ] = E[Axτ + Buτ + wτ |I

C
k ]

= (A − BLτ )xτ + E[wτ |I
C
k ]

= (A − BLτ )xτ + E[wτ |δτ+1 = 0].

The first equality is due to xτ = yτ ∈ IC
k . The second is due

to the fact that wτ is independent to information gathered

prior or at time τ . It can easily be seen that the conditional

mean for general τ ≥ 0 can be expressed as follows:

∆τ+l = xτ+l − E[xτ+l|I
C
τ+l]

= xτ+l − E[xτ+l|xτ , δτ+1 = 0, . . . , δτ+l = 0]

=

τ+l−1
∑

j=τ

Aτ+l−j−1 (wj − E[wj |δj+1 = 0, . . . , δτ+l = 0])

(10)

For τ = −1 similar results can be found.

The main observation is that the estimation of xk and the

scheduling law are coupled through the terms E[wj |δj+1 =
0, . . . , δτ+j = 0] in Equation (10), i.e. the choice of the

scheduling law will influence the structure of the estimator.

Fortunately, we will observe in the proof of Theorem 1 that

these terms will vanish due to symmetry properties of the

system.

The following theorem is the main result of this paper:

Theorem 1: The joint optimal controller and scheduling

pair (f, γ) for minimizing the cost function J defined in (3)

is determined by the control law in (7) with estimator

E[xk|I
C
k ] =

{

xk for δk = 1

(A − BLk)E[xk−1|I
C
k−1] for δk = 0

(11)

where E[x0|I
C
k ] = x̄0 for δ0 = 0 and by the solution of the

optimization problem

min
f

E

[

T−1
∑

k=0

(1 − δk)eT
k Γkek + λδk

]

,

s.t. ek+1 = (1 − δk)Aek + wk, (12)

where Γk = LT
k (R + BTPk+1B)Lk and e0 = x0 − x̄0.

Proof: The structure of the optimal control law is

already given by (7) due to Lemma 2. In the remainder

of the proof, we aim at showing that the sequence (∆k)k

is a Markov chain enabling us to transform the optimization

problem in (9) to the problem given by (12). For that reason,



we will show that the terms E[wj |δj+1 = 0, . . . , δτ+j = 0]
will vanish in Equation (10).

First, consider the case, where τ = T − 2. Then, the

remaining step T − 1 is to solve the minimization

min
δT−1∈{0,1}

E
[

∆T
T−1ΓT−1∆T−1 + λδT−1,

]

(13)

where Γk = LT
k (R + BTPk+1B)Lk, for all

k = 0, . . . T − 1. As optimization (13) is equivalent to

min{∆T
T−1ΓT−1∆T−1, λ} due to ∆T−1 = 0 for δT−1 = 1,

we have the following optimal scheduling rule

δT−1 =

{

1 ∆T
T−1ΓT−1∆T−1 > λ

0 ∆T
T−1ΓT−1∆T−1 ≤ λ.

Note that the scheduling law is not unique. It can differ

arbitrarily on the boundary set ∆T
T−1ΓT−1∆T−1 = λ, since

this set has Lebesgue measure 0 as Γk is positive semi-

definite and λ is a positive real number. In order to cater

for uniqueness, we define δk to be 0 on the boundary.

From (10), we have ∆T−1 = wT−2 −E[wT−2|δT−1 = 0].
Let ST−1 be the set defined by

{wT−2|(wT−2−E[wT−2|δT−1 = 0])TΓT−1

× (wT−2 − E[wT−2|δT−1 = 0]) ≤ λ}.
(14)

The set ST−1 basically defines the scheduling law for T −1.

It can be observed that there virtually exists a degree of

freedom in the choice for E[wT−2|δT−1 = 0]. From a

geometrical point of view, E[wT−2|δT−1 = 0] defines the po-

sition of the ellipsoid ST−1 in R
n, where E[wT−2|δT−1 = 0]

is situated at the center, see (14). On the other hand, the

choice of ST−1 determines the value of E[wT−2|δT−1 = 0],
which may not be situated at the center. This recursive inter-

dependence can only be resolved for E[wT−2|δT−1 = 0] = 0
due to symmetry properties of the Gaussian distribution. For

all other choices of E[wT−2|δT−1 = 0], the center of ST−1

and E[wT−2|δT−1 = 0] = 0 do not coincide, because of

monotonicity properties of the Gaussian density function. By

induction, it can be proved that E[wj |δj+1 = 0, . . . , δτ+j =
0] is zero for all τ and all j. Therefore, ∆k is given by the

recursive formulae

∆k =

{

0 for δk = 1

A∆k−1 + wk−1 for δk = 0
(15)

with ∆−1 = 0. Hence, the estimator is given by (11). In

addition, it can be seen that Equations (9) and (15) are

equivalent formulations to (12) which completes the proof.

Remark 3: We observe that the initial problem has been

transformed into three subproblems which can be solved

by standard numerical methods. Particularly, optimization

problem (12) for determining the scheduling law can be

solved by the dynamic programming algorithm [20].

Remark 4: The optimization given by (12) has been dis-

cussed in [15] as an average cost estimation problem with

time-invariant weighting matrix Γk. In [16] an sub-optimal

low-complexity algorithm has been derived for determining f
in the average cost sense to overcome the curse of dimen-

sionality of the dynamic programming algorithm.

Remark 5: Contrary to the standard LQG solution, the

distribution of the estimation error ∆k is not Gaussian. The

distribution of ∆k will have a support, which is a subset of

{∆k|δk = 0}.

Remark 6: Theorem 1 also holds for non-Gaussian noise

input. The only assumptions needed in the proofs are that

the noise sequence (wk)k is i.i.d. and zero-mean and that

its probability distribution exhibits certain symmetry and

monotonicity properties.

IV. EXTENSION TO LOSSY NETWORKS

The assumption of perfect transmission is difficult to

sustain for many digital communication networks, in partic-

ular for wireless time-varying channels and random access

schemes. In the following, we relax this strict requirement

on the communication network by allowing packet dropouts

to occur during transmission. In order to maintain the

separation principle, we assume a TCP-like communication

protocol as introduced in [18] for networked control systems.

With respect to optimal control and scheduling schemes in

lossy networks, the main feature of TCP-like communication

protocols in the feedback link is that an acknowledgment

is sent back to the sender, whenever a packet has been

successfully transmitted. We consider the following network

model: packet dropouts are modeled as a Bernoulli sequence

(qk)k ∈ {0, 1} with a successful transmission probability

P[qk = 1] = α for any k and

qk =

{

1 measurement successfully transmitted

0 packet dropout occurred

The system dynamics are equal to (1), but the measurement

equation is now defined as

yk = qkδkxk.

The probability space (Ω,A,P) is properly extended to

incorporate the random sequence (qk)k. We assume that

the acknowledgment is sent reliably and instantaneously to

the scheduler. The scheduler knows at any time instance

whether the measurement has been transmitted successfully.

Therefore, the fact that the information patterns of controller

and scheduler are nested, still holds.

It can be showed that basically all results in section III

with perfect signal transmission carry over to the case of the

proposed communication model with packet dropouts. The

controller structure remains the same as in Equation (7). The

estimator is given by

E[xk|I
C
k ] =

{

xk for δk = 1 and qk = 1

(A − BLk)E[xk−1|IC
k−1] otherwise



The scheduler law is the solution of the following minimiza-

tion problem with parameters given by Theorem 1:

min
f

E

[

T−1
∑

k=0

(1 − qkδk)eTΓkek + λδk

]

,

s.t. ek+1 = (1 − qkδk)Aek + wk. (16)

Alike in Theorem 1, problem (16) can be solved by the

dynamic programming algorithm, since (qk)k is assumed to

be i.i.d. .

In presence of time-delay during transmission, the prop-

erty that the information patterns of scheduler and controller

are nested does not hold and the separation property may not

be established anymore. In this context, the notion of delayed

information patterns introduced in [23] and the results therein

might be useful to overcome this problem.

V. THREE CLASSES OF SCHEDULERS

The first class of schedulers are policies which are re-

stricted to be causal and to have deterministic laws. These

schedulers are called state-dependent schedulers in the fol-

lowing. For this class the optimal controller and scheduling

policy has been found in previous sections. In order to show

the effectiveness of the solution, we consider two other

classes of schedulers, a deterministic scheduler and a purely

randomized scheduler.

The deterministic scheduler determines the scheduling

sequence offline. To find the optimal deterministic scheduler

and optimal controller, it can be seen that separation holds,

since for any fixed scheduling sequence, the controller is

given by solving the standard linear quadratic problem for

time-varying systems [17]. As the class of deterministic

schedulers is a subset of the state-dependent class, the opti-

mal deterministic scheduler can not perform better than the

optimal state-dependent scheduler. The optimal scheduling

sequence is determined by solving the following problem

min
(δk)k

T−1
∑

k=1

(1 − αδk) tr[ΦkΓk] + λδk

with

Φk+1 = (1 − αδk)AΦkAT + Cw, Φ0 = Cx0
,

which can be computed by the deterministic dynamic

programming algorithm.

The class of purely randomized schedulers is characterized

by the property that their decision whether to transmit a mea-

surement is given by an i.i.d. random variable, which is inde-

pendent of any other variable. The scheduler is determined by

the average transmission rate δ̄ = P[δk = 1] = E[δk]. Due to

the fact that the scheduling sequence is a Bernoulli sequence,

the problem separates into solving a linear quadratic problem

of a jump linear system, see [24], resulting in (7) and

then performing a line-search between zero and one to find

the optimal transmission probability δ̄. In fact, the optimal
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Fig. 2. Optimal state-dependent scheduling policy with indicated switching
thresholds.

transmission rate is the solution of the following static

optimization problem

min
δ̄∈[0,1]

(1 − αδ̄)

T−1
∑

k=1

tr[ΦkΓk] + λδ̄ (17)

with

Φk+1 = (1 − αδ̄)AΦkAT + Cw, Φ0 = Cx0
.

It can be easily shown that the cost function in (17) is convex

with respect to the average transmission rate δ̄.

In all three classes, the problem of finding the optimal so-

lution can be separated into an optimal linear quadratic regu-

lator problem and an optimal estimation/scheduling problem.

The optimal control law is equivalent for all three classes.

VI. NUMERICAL EXAMPLE

We consider the scalar system as in (1) with A = 1,

B = 1, Cw = 1 and Cx0
= 1, x̄0 = 0 with cost parameters

Q = QT = 1, R = 5 and T = 10. As already mentioned

in section V, the control law for the optimal solution is

the same irrespective of the class of schedulers. Therefore,

we can concentrate on the analysis of the estimation and

communication cost JS given by Equation (8) with γ∗

defined in Lemma 2. The fixed cost JC for above system

parameters is 26.2.

Figure 2 shows the optimal state-dependent scheduling

policies given by the solution of optimization in (16) for

successful transmission rate α = 1 (no packet dropouts),

α = 0.8 and α = 0.5 with communication penalty λ =
5. The lines indicate the threshold between δk = 0 and

δk = 1 depending on ek which is given by Equation

(16). Figure 2 shows that transmission occur sparsely, when

packet dropouts are present. At first glance this seems to be

counterintuitive, but can be reasoned by the fact that state

updates at the controller are not guaranteed anymore, when

δk = 1, in the presence of packet dropouts, whereas the price

λ has to be paid even when no updates reach the controller.
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Fig. 3. Comparison of the three types of optimal schedulers with packet
dropouts (upper curve) and without packet dropouts (lower curve) depending
on communication penalty λ.

A comparison between the optimal schedulers of the three

classes of schedulers introduced in section V is illustrated in

Figure 3 without packet dropouts (lower curves) and with

packet dropouts (upper curves) with dropout probability 0.2
(α = 0.8). From Figure 3 we observe that packet dropouts in

such range play a minor role in comparison to the choice of

scheduling policy. The maximum decrease in cost is about

42%, when comparing deterministic scheduler with the state-

dependent scheduler, and 55% for the randomized scheduler.

In contrast to that the maximum performance gain of the

state-dependent scheduler in a lossy network with α = 0.8
to a network fully reliable network (α = 1) is about 15% for

λ greater than 1. Hence, rather than increasing the reliability

of the digital communication network, it can be conjectured

that the choice of scheduling policy is a crucial factor for

the performance under communication constraints.

VII. CONCLUSIONS

By considering the LQG framework this paper solves

the problem of joint optimal control and scheduling in-

corporating communication costs. It is showed that the

problem can be separated into standard subproblems. These

subproblems are computationally tractable in contrast to the

initial joint optimization problem. An extension to TCP-

like communication networks with packet dropouts is given

and performance is compared with the optimal deterministic

and optimal randomized scheduler with and without packet

dropouts. Based on the theoretical findings in this paper,

future work includes the extension to dynamical systems with

noisy observations at the scheduler and the consideration

of time delays during transmissions. In addition, ergodicity

and stability issues still need to be discussed for the infinite

horizon case. Finally, extensions of the proposed approach

to networks with multiple sensor and controllers sharing a

common network is planned.
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