
An Architecture for Real-Time Control in
Multi-Robot Systems

Daniel Althoff, Omiros Kourakos, Martin Lawitzky, Alexander Mörtl, Matthias
Rambow, Florian Rohrmüller, Dražen Brščić, Dirk Wollherr, Sandra Hirche and
Martin Buss

Abstract This paper presents a novel robotic architecture that is suitable for mod-
ular distributed multi-robot systems. The architecture isbased on an interface sup-
porting real-time inter-process communication, which allows simple and highly ef-
ficient data exchange between the modules. It allows monitoring of the internal sys-
tem state and easy logging, thus facilitating the module development. The extension
to distributed systems is provided through a communicationmiddleware, which en-
ables fast and transparent exchange of data through the network, although without
real-time guarantees. The advantages and disadvantages ofthe architecture are rated
using an existing framework for evaluation of robot architectures.

1 Introduction

Software complexity of the emerging generation of versatile robotic systems in-
creases alongside with their capabilities. Cooperative action of multiple robots, each
controlled by numerous software modules, requires seamless message and data ex-
change internally among the modules, among the robots as well as with distributed
sensor systems.

We consider a scenario of multiple robots operating in a populated environment
and interacting with humans. Multiple sensors such as tracking systems, on-board
laser range finders and force/position sensors permanentlygenerate new data. Data-
processing modules such as localization and the generationof a 3-D world repre-
sentation retrieve sensor data and update the world model. This in turn is utilized by
high-level reasoning and planning algorithms in order to issue appropriate plans and
commands. Finally, low-level processes control actuatorsin order to execute these
commands.

The authors are with the Institute of Automatic Control Engineering (LSR) of the Technische Uni-
versität München, D-80290 München, Germany{da, omiros.kourakos, ml, moertl,
rambow, rohrmueller, drazen, dw, hirche, mb}@tum.de

1



2 D. Althoff et al.

To cope with the challenges arising from this kind of systemssophisticated soft-
ware frameworks that provide interfaces between the modules have been developed.
Popular examples such asPlayer[1] or ROS[2] are user-friendly frameworks incor-
porating a large number of open-source modules which enablea rapid implemen-
tation of robotic applications. Even though these softwareframeworks offer mature
basic services in various respects, so far they cannot fullysatisfy all requirements of
highly modularized and distributed next-generation cognitive robotic systems like:

• support of feedback control under real-time constraints,
• seamless data acquisition and sharing among multiple modules in one robot,
• inter-connectivity and bandwidth for efficient distributed operation,
• elaborate structure to provide maintainability and scalability, and
• user support tools that convey the system state in an intuitive manner and facili-

tate debugging and data logging.

In this paper we present a software architecture suited for research on interaction
and cooperation in complex multi-robot scenarios. The architecture focuses on dis-
tributed robotic systems and provides support from real-time execution in low-level
control up to efficient high-level information exchange.

This paper is organized as follows. Section 2 presents the proposed architecture
and gives a qualitative evaluation that illustrates its strengths and weaknesses. In
section 3 a brief application example is given. Finally, section 4 concludes the paper.

2 The ARCADE framework

ARCADEstands forArchitecture forReal-timeControl andAutonomousDistributed
Execution. It is a data-driven architecture built up on top ofa real-time capable in-
terface for inter-process communication and the IceStorm publisher-subscriber ex-
tension of the ICE RPC framework [3]. TheARCADEframework is illustrated in
Fig. 1 and explained in the following.

2.1 System description

Real-time database (RTDB):The real-time databaseKogMo-RTDB[4] – originally
developed for autonomous cars – is the central part of the framework. This real-
time database is not a database in its traditional meaning, however it implements a
number of features of hierarchical databases. The RTDB provides real-time guaran-
tees for management and exchange of data structures, definedas data objects in the
RTDB terminology. It handles all local inter-process communication conveniently,
allows record/replay of states, buffers data and acts as a powerful central hub for
all data and command transactions. A further core functionality of the RTDB is the
maintenance of hierarchical data objects. Data objects canbe easily inserted, up-
dated, deleted and attached as child objects. Searching andreading can be executed



An Architecture for Real-Time Control in Multi-Robot Systems 3

World model maintain-

ance (belief update)

Knowledge manage-

ment (learning)

Reasoning & Planning

Display & Protocol

Data processing

Sensors

ICE unicast 

interfaces

ICEStorm 

multicast 

topics

KogMo-RTDB

R
T

A
I (L

X
R

T
) L

in
u
x

Simulink Real-Time 

Workshop

Platform 

control

Manipula-

tor control

execution/

state

write

read/process/write

read/process

update

update

update

exchange

accept/request
provide/request

World

- Other robots

- Supervisors

- ...

Commands

Information

Subscription

Announcement

Fig. 1 Overview of theARCADEframework.

in a blocking or non-blocking fashion, depending on the specific needs. In addition,
circular buffers of configurable size are maintained to holdhistories of data objects.
The RTDB offers very high convenience and ease of use for managing complex
and large amounts of data while giving real-time assurances. Performance measure-
ments for the database back end throughput and jitter are given in [5], for example
are the average/worst case times in a strongly busy system without real-time con-
figuration 23µs/181681µs for write operations and 17µs/10721µs for read opera-
tions respectively. With real-time configuration the average times are similar while
the worst case times are strongly reduced to 134µs (write) and 62µs (read) [5].

Accessing the RTDB:The RTDB can be accessed using the availableARCADE
interfaces. An interface is a C++ class implementing a set ofmethods that operate on
a data object. Additionally, theARCADEinterfaces automatically inherit the RTDB
interface methods (read, write, search etc.).

Any process that uses one or moreARCADEinterfaces is defined as a module.
For illustration we describe one producer and one consumer module that use the
same interface. These modules could be a driver for a laser range finder and a line
extraction algorithm respectively. In this case the interface comprises the data object,
which is an array of floating point numbers holding the range measurements, and
methods to set (setData) and to get (getData) the data object.

Both modules first have to create a connection to the RTDB. Theproducer has
to instantiate anARCADEinterface and insert it in the RTDB with a descriptive
name. This name can be used by other modules to search and subscribe to this
data. The setData method is used to update the local copy of the data object which
subsequently is committed using the write method. The RTDB itself imposes no
constraints on the update rate (read/write) of the module which solely depends on
the refresh rate of the laser range finder.



4 D. Althoff et al.

The consumer has to instantiate the same interface and associate it with the ex-
isting object by searching the RTDB with the descriptive name as explained above.
The local copy is updated using the read method and the getData method to access
the data object and process it. Both modules can be implemented either as best-effort
(i.e. non real-time) processes or real-time tasks using RTAI/LXRT [6].

In addition, theARCADEframework provides library blocks for Simulink to ac-
cess the RTDB. This enables rapid-prototypical control design in Simulink together
with Real-Time Workshop [7] using the RTAI target.

Inter-RTDB communication:In order to transfer data between RTDBs the Ze-
roC/ICE middleware [3] is integrated into theARCADEframework. ICE provides
an operating system independent interface and supports themost common object-
oriented programming languages. Furthermore it allows type safe and clear inter-
face definitions. ICE servers give access to any RTDB within the entire system for
reading data and setting command objects.

For information exchange among the robots, the IceStorm multicast extension
of ICE is used. IceStorm is a publisher/subscriber mechanism for unidirectional
information exchange. Any module is able to create and publish topics via IceStorm.
Agents on the network can subscribe to topics and receive automatic updates on
content changes. In our wireless network setup, bandwidth efficiency is a crucial
factor. For the distribution of high-frequency sensor datawe extended the IceStorm
multicast to allow the specification of a desired update ratealongside with topic
subscriptions. The maximum desired update rate for each topic determines the rate
of multicast frames sent through the network. Hence, an efficient synchronization
of robots in order to maintain a global up-to-date world model is possible.

In theARCADEframework inter-RTDB data exchange can be implemented with
corresponding ICE interfaces. However, the abstraction ofthis procedure remains
future work.

Command exchange via the RTDB:The RTDB was originally designed to dis-
tribute data streams rather than commands. Straightforward updating of a command
object in the database is not possible in case command reception has to be guaran-
teed. The database command object could be updated more frequently than it is read
by the receiver. Due to the finite length of the object historymaintained by the RTDB
successful transmission cannot be guaranteed and as a consequence commands can
be lost. In this respect, to enable the command exchange via the database a three-
way handshake – referred to as “postbox system” – has been integrated based on the
functionalities provided by the RTDB. It is illustrated in Fig. 2.

A postbox object (P) is created by the receiver side (RX) and then regularly
checked for new message objects. A sender process (TX) can then insert a mes-
sage object, which is attached to the postbox. During its next update cycle the re-
ceiver side reads all new messages, which in turn get an acknowledgement object
appended. Since only the process which created a specific object obtains write ac-
cess to it, the sender process regularly checks all its previously sent objects and
deletes them as soon as a corresponding acknowledgement object is detected. Con-
sequently this three-way handshake obviates memory leaks and ensures reception
feedback for both sides. Instead of the acknowledgement object the RX can also



An Architecture for Real-Time Control in Multi-Robot Systems 5

append any arbitrary response object which may contain already the data requested
by TX.

RX RTDB TX1 TX2

P

P

P

P

P

m1

m1

m1

m2

m2

ack

m1

ack

ack

createPostbox

getNewMsg

ack(m2)

m1, m2

insert m1

insert m2

clearAck

Fig. 2 Scheme of theARCADEpostbox system.

2.2 Evaluation of the robot architecture

In order to further highlight the supported features ofARCADEwe evaluated it
using the conceptual framework for comparing robot architectures introduced in [8].
Other frameworks for architecture comparison were proposed, e.g. in [9]. However,
[8] was chosen because of the detailed and specific description of the evaluation
criteria and rating method.

Table 1 shows the evaluation criteria and the correspondinglevel of support in
ARCADE. A detailed description of all the criteria is given in [8]. As opposed to the
original framework we do not consider criteria regarding algorithm implementations
such as localization or route planning in our evaluation.

Architectural primitives (F1.1) refer to predefined functional and/or knowledge
primitives.ARCADEprovides fundamental components to control the robotic hard-
ware and to perform a set of basic actions which can be scheduled via a priority-
based action controller. However, a kind of generic behavior framework is not pro-
vided resulting in asomewhat supportedmark. With respect to the software en-
gineering criteria (F1.2)ARCADEprovides coding guidelines and a set of basic
classes enabling code reusability and simplification. Nevertheless an explicit theo-
retical foundation is missing. Architecture neutrality (F1.3) is not provided since the
presented framework belongs to the class of blackboard architectures.

Since the RTDB only supports Linux the same applies also toARCADE(F2.1).
Additionally besides our own robotic hardware only few further devices – such as
the SICK LSM200, S300 or the JR3 force/torque sensor – are currently supported
(F2.2). Regarding the simulator (F2.3),ARCADEmakes use of several different
simulation/visualization tools, such as theARCADEVisualizer, see Fig. 3, which



6 D. Althoff et al.

Category Criteria ARCADE
Specification F1.1 Architectural Primitives ⊙

F1 F1.2 Software Engineering ⊙

F1.3 Architecture Neutrality no
F2.1 Operating System Linux

Platform F2.2 Hardware Support ⊖

F2 F2.3 Simulator ⊙

F2.4 Configuration Method ⊕

F3.1 Low-level Communication ICE,RTDB
F3.2 Logging Facilities ⊕

F3.3 Debugging Facilities ⊕

Infrastructure F3.4 Distribution Mechanisms ⊕

F3 F3.5 Scalability ⊙

F3.6 Component Mobility ⊙

F3.7 Monitoring/Management ⊕

F3.8 Security ⊙

F3.9 Fault-tolerance ⊙

F4.1 Programming Language C++, Simulink
F4.2 High-level Language no

Implementation F4.3 Documentation ⊙

F4 F4.4 Real-time Operation yes
F4.5 Graphical Interface ⊙

F4.6 Software Integration ⊖

Table 1 Qualitative evaluation of theARCADErobotic architecture:⊕ = well supported, ⊙ =
somewhat supported, ⊖ = not supported. The criteria codes, names and specifications were taken
from [8].

provide the means for dynamic or multi-robot simulations but are currently separate
modules and not yet fully integrated into a single simulator. From the configuration
methods point of view (F2.4), XML-files are supported. Furthermore graphical in-
terfaces are provided to set and modify parameters online and to send commands to
the respective modules.

The low-level communication (F3.1) through RTDB and ICE wasdescribed in
section 2.1. The RTDB provides a record and replay functionality with real-time
support, i.e. data can be captured of part of or all the database objects and later
be replayed keeping the original timing (F3.2). Additionally, console output of any
module can be remotely captured and stored in files. Due to thedistributed pro-
cessing, any module – except the central RTDB – can be suspended, modified and
restarted during runtime which facilitates the debugging (F3.3). Nevertheless no au-
tomatic mechanism keeping care of continuing system operation is provided, which
would be required for well supported component mobility (F3.5). As already men-
tioned, the distribution mechanisms (F3.4) are well supported through the use of ICE
and IceStorm. The scalability (F3.5) as defined in [8] is dependent on the values of
the other criteria and results in our case in asomewhat supportedmark.

TheARCADE Inspector(Fig. 3) is a sophisticated graphical interface to start/stop
modules, view the current state of any database object or send commands providing
a convenient tool for monitoring and management (F3.7). Security (F3.8) can only
be indirectly supported through usage of the SSL protocol inICE, and the RTDB



An Architecture for Real-Time Control in Multi-Robot Systems 7

support for the single producer concept which allows data modification of an object
only by its source process. The distributed processing nature of ARCADEmakes it
fairly tolerant to failures (F3.9), but its notable weaknesses are the dependency of
all subscribed modules to their local RTDB and lack of activefailure recovery.

ARCADEprovides support for C++ and Simulink (F4.1). Even though aninter-
face for high level commands is provided, which could be incorporated into a be-
havior framework, no explicit high level language is integrated (F4.2). Even though
code documentation is available, no API or user guidelines are provided at the mo-
ment (F4.3). While none of the compared architectures in [8]provides real-time
support (F4.4), it is the main strength and also the crucial motivation for the devel-
opment ofARCADE. While theARCADE Inspectorvisualizes each module opera-
tion, a graphical tool for the design of control code (F4.5) is not provided (except
Simulink). A standard API for software integration (F4.6) is not supportedat all.

Fig. 3 TheARCADEInspector lists the tree of all database objects, provides access to the object
data and a record functionality. TheARCADEVisualizer provides a 3D visualization of the current
system state.

In order to obtain also a quantitative measure, we calculated the feature score
of the reduced criteria list according to [8] using equal weights. For binary-valued
criteria a value of 0 or 2, for ternary-valued criteria a value of 0, 1 or 2 is assigned.
Accumulating the values in Table 1 leads to a total score of 55%. In a comparison
with the architectures in [8]ARCADEranks sixth out of ten. The main weakness
of ARCADEis the specification category (F1) where it scores 33%, whichis below
all other architectures. This follows from the initial unavailability of components
(F1.1 and F1.2), such as standard hardware drivers, integrated algorithms and clearly
structured interfaces which in general are provided by open-source frameworks. The
Linux-only support (F2.1) may be regarded a further disadvantage, especially when
a large number of researchers are involved, and the need for multi-platform support
arises.

ARCADEis very strong in the infrastructure category (F3) achieving a score of
75%, where onlyADE (100%) ranks better [8]. Consequently, while further work is
required in order to simplify its portability,ARCADEprovides very good tools and
mechanisms to develop and operate a running system.



8 D. Althoff et al.

Yet, for highly distributed systems considered in this paper real-time support
(F4.4), sophisticated management (F3.7) and distributionmechanisms (F.3.4) are
mandatory. As opposed toARCADE, other existing architectures do not adequately
meet these aspects.

3 Application Example

In order to illustrate the integration of modules and the usage of theARCADEframe-
work, an example of a fast reactive collision avoidance application for robotic arms
based on virtual forces is described. The example application comprises several in-
terconnected modules which are distributed on two computers as shown in Fig. 4,
each running an instance of the RTDB. A potential reason for using multiple com-
puters is the distribution of computational load.

The world-builder module (WB) running on computer 1 processes the raw data
stream of the sensor module and generates a world model that includes a list of
objects and their respective collision shape primitives. This model is mirrored from
RTDB 1 to RTDB 2 using the inter-RTDB communication mechanisms.

The world observer (WO) running on computer 2 monitors changes of the world
model and passes a list of relevant world collision shapes tothe force generator
module (FG). The FG calculates virtual forcesFv acting on the robotic arms based
on the current state (q,q̇) of the arms and the current pose of the platform.

The update frequency of the world model depends on the kind ofsensors and
processing algorithms used, but typically is less than 50 Hz. However, the FG is
running at the same frequency as the actual control loop, which is typically about
1 kHz.

R
T

D
B

 2

R
T

D
B

 1

Computer 1

.
vF

Sensor

raw
data

World
model

obj1 obj2 . . .

WO

pose

(q,q)
World
model

Arms

Platform

Computer 2
Collision avoidance

High rate

Low rate
FG

WB

Fig. 4 Overview of the collision avoidance application: TheARCADEframework manages dis-
tributed computing and different update rates of the modules.



An Architecture for Real-Time Control in Multi-Robot Systems 9

4 Conclusion

This paper presentsARCADE, a data-driven robot architecture combining KogMo-
RTDB and the ICE communication middleware. The RTDB provides a central el-
ement ofARCADEand an easy way for exchange of data between the modules,
whereas ICE and IceStorm provide the connection to distributed modules and other
RTDBs. The architecture is able to provide both real-time guarantees for low-level
robot control and a simple and effective information exchange between distributed
modules in multi-robot systems. The presented evaluation showed thatARCADE
gives a very good solution for distributed multi-robot systems, but still has several
weaknesses, mostly due to unavailability of components. The ease of use and versa-
tility of the architecture was illustrated in an application example.

5 Acknowledgements

We would like to thank Matthias Goebl from the Institute for Real-Time Computer
Systems of TU München for allowing us access to the KogMo-RTDB, its docu-
mentation and accompanying programs which served as a starting point for our
architecture.

This work is supported in part within the DFG excellence initiative research clus-
ter Cognition for Technical Systems - CoTeSys (www.cotesys.org).

References

1. B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stageproject: Tools for multi-robot
and distributed sensor systems,” inIn Proceedings of the 11th International Conference on
Advanced Robotics (ICAR ’03), (Coimbra, Portugal), pp. 317–323, June 2003.

2. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: an open-source Robot Operating System,” inInternational Conference on Robotics and
Automation, Open-Source Software workshop, 2009.

3. M. Henning, “A new approach to object-oriented middleware,” IEEE Internet Computing,
vol. 8, no. 1, pp. 66–75, 2004.

4. M. Goebl and G. Färber, “A real-time-capable hard- and software architecture for joint image
and knowledge processing in cognitive automobiles,” inProceedings of the 2007 IEEE Intelli-
gent Vehicles Symposium, pp. 734–740, June 2007.

5. M. Goebl,Eine realzeitfähige Architektur zur Integration kognitiver Funktionen. PhD thesis,
Technische Universität München, Institute for Real-Time Computer Systems, 2009.

6. L. Dozio and P. Mantegazza, “Real time distributed control systems using RTAI,” inProceed-
ings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, (Hakodate, Japan), May 2003.

7. The Mathworks,Real-Time Workshop 7 - Generate C code from Simulink models and MATLAB
code, 2007.

8. J. F. Kramer and M. Scheutz, “Development environments for autonomous mobile robots: A
survey,”Autonomous Robots, vol. 22, no. 2, pp. 101–132, 2007.

9. A. Shakhimardanov and E. Prassler, “Comparative evaluation of robotic software integration
systems: A case study,” inProceedings of the 2007 IEEE/RSJ International Conferenceon
Intelligent Robots and Systems, (San Diego, CA, USA), pp. 3031–3037, 2007.


