An Architecture for Real-Time Control in
Multi-Robot Systems

Daniel Althoff, Omiros Kourakos, Martin Lawitzky, Alexaed Mortl, Matthias

Rambow, Florian Rohrmtiller, Drazen Brscic, Dirk Wadkr, Sandra Hirche and
Martin Buss

Abstract This paper presents a novel robotic architecture that talsiei for mod-
ular distributed multi-robot systems. The architecturbdsed on an interface sup-
porting real-time inter-process communication, whiclowhl simple and highly ef-
ficient data exchange between the modules. It allows mangaf the internal sys-
tem state and easy logging, thus facilitating the modulekb@ment. The extension
to distributed systems is provided through a communicatiadleware, which en-
ables fast and transparent exchange of data through therke@ithough without
real-time guarantees. The advantages and disadvantatpesasthitecture are rated
using an existing framework for evaluation of robot arctiitees.

1 Introduction

Software complexity of the emerging generation of versatibotic systems in-
creases alongside with their capabilities. Cooperatitiemof multiple robots, each
controlled by numerous software modules, requires seamiessage and data ex-
change internally among the modules, among the robots assvelith distributed
sensor systems.

We consider a scenario of multiple robots operating in a faipd environment
and interacting with humans. Multiple sensors such as ingcystems, on-board
laser range finders and force/position sensors permargeribrate new data. Data-
processing modules such as localization and the genemattiar8-D world repre-
sentation retrieve sensor data and update the world molisliTturn is utilized by
high-level reasoning and planning algorithms in ordersaésappropriate plans and
commands. Finally, low-level processes control actuatosder to execute these
commands.

The authors are with the Institute of Automatic Control Ewgiring (LSR) of the Technische Uni-
versitat Munchen, D-80290 Miinchen, Germdila, onmi r os. kour akos, m, noertl,
ranbow, rohrnueller, drazen, dw, hirche, nmb}@um de

2 D. Althoff et al.

To cope with the challenges arising from this kind of systeoyshisticated soft-
ware frameworks that provide interfaces between the magddee been developed.
Popular examples such Btayer[1] or ROS[2] are user-friendly frameworks incor-
porating a large number of open-source modules which eraaldgid implemen-
tation of robotic applications. Even though these softvieameworks offer mature
basic services in various respects, so far they cannotgatigfy all requirements of
highly modularized and distributed next-generation cogarobotic systems like:

support of feedback control under real-time constraints,

seamless data acquisition and sharing among multiple reedtubne robot,
inter-connectivity and bandwidth for efficient distribdteperation,

elaborate structure to provide maintainability and sdétgband

user support tools that convey the system state in an weuitianner and facili-
tate debugging and data logging.

In this paper we present a software architecture suitecef@arch on interaction
and cooperation in complex multi-robot scenarios. Theitgcture focuses on dis-
tributed robotic systems and provides support from reaétexecution in low-level
control up to efficient high-level information exchange.

This paper is organized as follows. Section 2 presents thgosed architecture
and gives a qualitative evaluation that illustrates itersgths and weaknesses. In
section 3 a brief application example is given. Finallytgec4 concludes the paper.

2 The ARCADE framework

ARCADEstands foArchitecture folReal-timeControl andAutonomou®istributed
Execution. It is a data-driven architecture built up on toaogal-time capable in-
terface for inter-process communication and the IceStarbligher-subscriber ex-
tension of the ICE RPC framework [3]. THERCADEframework is illustrated in
Fig. 1 and explained in the following.

2.1 System description

Real-time database (RTDBe real-time databaséogMo-RTDB[4] — originally
developed for autonomous cars — is the central part of thradweork. This real-
time database is not a database in its traditional meanawgeVer it implements a
number of features of hierarchical databases. The RTDBigesveal-time guaran-
tees for management and exchange of data structures, defimzda objects in the
RTDB terminology. It handles all local inter-process conmigation conveniently,
allows record/replay of states, buffers data and acts asvenal central hub for
all data and command transactions. A further core funclitynaf the RTDB is the
maintenance of hierarchical data objects. Data objectdeamasily inserted, up-
dated, deleted and attached as child objects. Searchingadithg can be executed

An Architecture for Real-Time Control in Multi-Robot Systs 3

World update _ (World model maintain-
- Other robots ance (belief update

- Supervisors update Knowledge manage-
- ment (learning

(\ . .
c ds accept/request wigiliiz Reasoning & Planning
ommands ICE unicast |provide/request
Information interfaces Iead/process Display & Protocol
read/process/write " e
Data processing
it

Platform Manipula-
control tor control

Subscription | .| ICEStorm 1
multicast [

topics

Announcement

xnur (DIXT) IVLY

execution/
KoglVoaRIDE Simulink Real-Time
Workshop

state

Fig. 1 Overview of theARCADEframework.

in a blocking or non-blocking fashion, depending on the #jmeiceeds. In addition,
circular buffers of configurable size are maintained to hddories of data objects.
The RTDB offers very high convenience and ease of use for giagaomplex
and large amounts of data while giving real-time assuram@$ormance measure-
ments for the database back end throughput and jitter aes @giv[5], for example
are the average/worst case times in a strongly busy systémowtireal-time con-
figuration 231s/181681usfor write operations and 1#%5/10721usfor read opera-
tions respectively. With real-time configuration the ageréimes are similar while
the worst case times are strongly reduced topis3dvrite) and 62us (read) [5].

Accessing the RTDBIhe RTDB can be accessed using the avail&ADE
interfaces. An interface is a C++ class implementing a setathods that operate on
a data object. Additionally, thaRCADEinterfaces automatically inherit the RTDB
interface methods (read, write, search etc.).

Any process that uses one or mé&xBCADEinterfaces is defined as a module.
For illustration we describe one producer and one consuneeiufe that use the
same interface. These modules could be a driver for a lasgerfinder and a line
extraction algorithm respectively. In this case the irtegfcomprises the data object,
which is an array of floating point numbers holding the rangasurements, and
methods to set (setData) and to get (getData) the data object

Both modules first have to create a connection to the RTDB.prbducer has
to instantiate atARCADEInterface and insert it in the RTDB with a descriptive
name. This name can be used by other modules to search amatikake this
data. The setData method is used to update the local copg afdta object which
subsequently is committed using the write method. The RTB8&lfiimposes no
constraints on the update rate (read/write) of the moduliew$olely depends on
the refresh rate of the laser range finder.

4 D. Althoff et al.

The consumer has to instantiate the same interface andiassavith the ex-
isting object by searching the RTDB with the descriptive paam explained above.
The local copy is updated using the read method and the getDethod to access
the data object and process it. Both modules can be impledeither as best-effort
(i.e. non real-time) processes or real-time tasks usinglREKRT [6].

In addition, theARCADEframework provides library blocks for Simulink to ac-
cess the RTDB. This enables rapid-prototypical controigreism Simulink together
with Real-Time Workshop [7] using the RTAI target.

Inter-RTDB communicationn order to transfer data between RTDBs the Ze-
roC/ICE middleware [3] is integrated into tReRCADEframework. ICE provides
an operating system independent interface and supportadsecommon object-
oriented programming languages. Furthermore it allows tsgfe and clear inter-
face definitions. ICE servers give access to any RTDB withaentire system for
reading data and setting command objects.

For information exchange among the robots, the IceStornticast extension
of ICE is used. IceStorm is a publisher/subscriber mechariics unidirectional
information exchange. Any module is able to create and phitdipics via IceStorm.
Agents on the network can subscribe to topics and receivanaiic updates on
content changes. In our wireless network setup, bandwifitiemcy is a crucial
factor. For the distribution of high-frequency sensor de¢eextended the IceStorm
multicast to allow the specification of a desired update ed@gside with topic
subscriptions. The maximum desired update rate for eadb dgpermines the rate
of multicast frames sent through the network. Hence, aniefficsynchronization
of robots in order to maintain a global up-to-date world masipossible.

In the ARCADEframework inter-RTDB data exchange can be implemented with
corresponding ICE interfaces. However, the abstractiothisfprocedure remains
future work.

Command exchange via the RTDEhe RTDB was originally designed to dis-
tribute data streams rather than commands. Straightfdrwadtating of a command
object in the database is not possible in case command reedyas to be guaran-
teed. The database command object could be updated mouefitgthan it is read
by the receiver. Due to the finite length of the object histoaintained by the RTDB
successful transmission cannot be guaranteed and as ajuense commands can
be lost. In this respect, to enable the command exchangéeiddtabase a three-
way handshake — referred to as “postbox system” — has besgratéd based on the
functionalities provided by the RTDB. It is illustrated ingk2.

A postbox object (P) is created by the receiver side (RX) dah tregularly
checked for new message objects. A sender process (TX) eanirikert a mes-
sage object, which is attached to the postbox. During it npsate cycle the re-
ceiver side reads all new messages, which in turn get an at&dgement object
appended. Since only the process which created a speciéctaiijtains write ac-
cess to it, the sender process regularly checks all its gueiy sent objects and
deletes them as soon as a corresponding acknowledgemeat ishjletected. Con-
sequently this three-way handshake obviates memory |leakg@sures reception
feedback for both sides. Instead of the acknowledgemeetcblije RX can also

An Architecture for Real-Time Control in Multi-Robot Systs 5

append any arbitrary response object which may contaiadrthe data requested
by TX.

RX RTDB TX1 TX2
C
N
r nsert ml
P <
7
mi <= — |

P

&

CtNe 7N
W} ml m2
P

S

-
2 ml m2
ml, W ! h
/ ack ack clear Aok —
- P %L
ml
ack \

Fig. 2 Scheme of théRCADEpostbox system.

2.2 Evaluation of the robot architecture

In order to further highlight the supported featuresA@CADEwe evaluated it
using the conceptual framework for comparing robot archites introduced in [8].
Other frameworks for architecture comparison were progose. in [9]. However,
[8] was chosen because of the detailed and specific deseripfithe evaluation
criteria and rating method.

Table 1 shows the evaluation criteria and the corresponidire of support in
ARCADE A detailed description of all the criteria is given in [8]sApposed to the
original framework we do not consider criteria regardirgpaithm implementations
such as localization or route planning in our evaluation.

Architectural primitives (F1.1) refer to predefined fuectal and/or knowledge
primitives. ARCADEprovides fundamental components to control the robotid-har
ware and to perform a set of basic actions which can be schedig a priority-
based action controller. However, a kind of generic behdvamework is not pro-
vided resulting in assomewhat supportechark. With respect to the software en-
gineering criteria (F1.2ARCADE provides coding guidelines and a set of basic
classes enabling code reusability and simplification. iKbeéess an explicit theo-
retical foundation is missing. Architecture neutralityl(B) is not provided since the
presented framework belongs to the class of blackboardtecttres.

Since the RTDB only supports Linux the same applies alshR€ADE(F2.1).
Additionally besides our own robotic hardware only few hat devices — such as
the SICK LSM200, S300 or the JR3 force/torque sensor — anetly supported
(F2.2). Regarding the simulator (F2.3yRCADEmakes use of several different
simulation/visualization tools, such as tARCADEVisualizer, see Fig. 3, which

6 D. Althoff et al.

Category Criteria ARCADE

Specification F1.1 Architectural Primitives ®

F1 F1.2 Software Engineering ©
F1.3 Architecture Neutrality no
F2.1 Operating System Linux

Platform F2.2 Hardware Support o

F2 F2.3 Simulator ©
F2.4 Configuration Method)

F3.1 Low-level Communication ICE,RTDB

F3.2 Logging Facilities

F3.3 Debugging Facilities
Infrastructure F3.4 Distribution Mechanisms
F3 F3.5 Scalability

F3.6 Component Mobility

F3.7 Monitoring/Management

F3.8 Security

F3.9 Fault-tolerance

F4.1 Programming Language C++, Simulink

CODPOODDD

F4.2 High-level Language no
Implementation F4.3 Documentation ®
F4 F4.4 Real-time Operation yes

F4.5 Graphical Interface (O]

F4.6 Software Integration o

Table 1 Qualitative evaluation of thRCADErobotic architecturem = well supported ® =
somewhat supported> = not supportedThe criteria codes, names and specifications were taken
from [8].

provide the means for dynamic or multi-robot simulationsdre currently separate
modules and not yet fully integrated into a single simulaoom the configuration

methods point of view (F2.4), XML-files are supported. Farthore graphical in-

terfaces are provided to set and modify parameters onlidécasend commands to
the respective modules.

The low-level communication (F3.1) through RTDB and ICE wascribed in
section 2.1. The RTDB provides a record and replay functignaith real-time
support, i.e. data can be captured of part of or all the datalbajects and later
be replayed keeping the original timing (F3.2). Additidpatonsole output of any
module can be remotely captured and stored in files. Due taistgebuted pro-
cessing, any module — except the central RTDB — can be susgenbdified and
restarted during runtime which facilitates the debuggk®)8). Nevertheless no au-
tomatic mechanism keeping care of continuing system ojperet provided, which
would be required for well supported component mobility.§3As already men-
tioned, the distribution mechanisms (F3.4) are well sugatthrough the use of ICE
and IceStorm. The scalability (F3.5) as defined in [8] is deleat on the values of
the other criteria and results in our case soanewhat supportedark.

TheARCADE Inspectoffig. 3) is a sophisticated graphical interface to staop/st
modules, view the current state of any database object dramnmands providing
a convenient tool for monitoring and management (F3.7)ufSc(F3.8) can only
be indirectly supported through usage of the SSL protoctCi, and the RTDB

An Architecture for Real-Time Control in Multi-Robot Systs 7

support for the single producer concept which allows datdifization of an object
only by its source process. The distributed processingeatARCADEmMakes it
fairly tolerant to failures (F3.9), but its notable weakses are the dependency of
all subscribed modules to their local RTDB and lack of actaikire recovery.
ARCADEprovides support for C++ and Simulink (F4.1). Even thoughraer-
face for high level commands is provided, which could be ipooated into a be-
havior framework, no explicit high level language is int@gd (F4.2). Even though
code documentation is available, no API or user guidelinepeovided at the mo-
ment (F4.3). While none of the compared architectures inpf8yides real-time
support (F4.4), it is the main strength and also the crucativation for the devel-
opment ofARCADE While theARCADE Inspectovisualizes each module opera-
tion, a graphical tool for the design of control code (F4s5hot provided (except
Simulink). A standard API for software integration (F4.6hbt supportedat all.

= ARCADE Inspector EEfE ARCADE Visualizer EEx

Objects | rtdb | laser_front_Data | Locomotion General Data | Device leftarm_Data Data Visualzation Search for RTDB Objects

[iaser front_oata_|<]

B
SR mERE

root

&=
[

| 4

Rotx Roty [-l Dolly

Fig. 3 The ARCADEInspector lists the tree of all database objects, providesss to the object
data and a record functionality. TR&RCADEVisualizer provides a 3D visualization of the current
system state.

In order to obtain also a quantitative measure, we calatlltite feature score
of the reduced criteria list according to [8] using equalgids. For binary-valued
criteria a value of 0 or 2, for ternary-valued criteria a \abf 0, 1 or 2 is assigned.
Accumulating the values in Table 1 leads to a total score 86.95 a comparison
with the architectures in [BARCADEranks sixth out of ten. The main weakness
of ARCADE:is the specification category (F1) where it scores 33%, wisitielow
all other architectures. This follows from the initial udteability of components
(F1.1and F1.2), such as standard hardware drivers, igeatgorithms and clearly
structured interfaces which in general are provided by egmirce frameworks. The
Linux-only support (F2.1) may be regarded a further disathge, especially when
a large number of researchers are involved, and the needuitirpratform support
arises.

ARCADE:s very strong in the infrastructure category (F3) achigvanscore of
75%, where onhADE (100%) ranks better [8]. Consequently, while further wark i
required in order to simplify its portabilitARCADEprovides very good tools and
mechanisms to develop and operate a running system.

8 D. Althoff et al.

Yet, for highly distributed systems considered in this paal-time support
(F4.4), sophisticated management (F3.7) and distributiechanisms (F.3.4) are
mandatory. As opposed BRCADE other existing architectures do not adequately
meet these aspects.

3 Application Example

In order to illustrate the integration of modules and thegesaf theARCADEframe-
work, an example of a fast reactive collision avoidanceiappibn for robotic arms
based on virtual forces is described. The example appicabmprises several in-
terconnected modules which are distributed on two compwershown in Fig. 4,
each running an instance of the RTDB. A potential reason $orgumultiple com-
puters is the distribution of computational load.

The world-builder module (WB) running on computer 1 proessthe raw data
stream of the sensor module and generates a world modelnitiaties a list of
objects and their respective collision shape primitivégs odel is mirrored from
RTDB 1 to RTDB 2 using the inter-RTDB communication mecharss

The world observer (WO) running on computer 2 monitors clearaf the world
model and passes a list of relevant world collision shapeabédorce generator
module (FG). The FG calculates virtual fordgsacting on the robotic arms based
on the current statey(@) of the arms and the current pose of the platform.

The update frequency of the world model depends on the kirskpn$ors and
processing algorithms used, but typically is less than 50HH®vever, the FG is
running at the same frequency as the actual control loop;twisi typically about
1kHz.

Sensor Arms |«

Y
raw World | | _| 5| World] ‘
data model model (a,9) F,
— o~ C
@ obj2 2 poseJ< Platform
= \ A =
14 o
> Y Y
WB [WO [==) [Low rate
) [High rate
Computer 1 Collision avoidance Computer 2

Fig. 4 Overview of the collision avoidance application: TARRCADEframework manages dis-
tributed computing and different update rates of the madule

An Architecture for Real-Time Control in Multi-Robot Systs 9

4 Conclusion

This paper presenRCADE a data-driven robot architecture combining KogMo-
RTDB and the ICE communication middleware. The RTDB prosidecentral el-
ement ofARCADEand an easy way for exchange of data between the modules,
whereas ICE and IceStorm provide the connection to diggtbmodules and other
RTDBs. The architecture is able to provide both real-timarguatees for low-level
robot control and a simple and effective information exadehbetween distributed
modules in multi-robot systems. The presented evaluatimwed thatARCADE
gives a very good solution for distributed multi-robot gyss, but still has several
weaknesses, mostly due to unavailability of components.€gse of use and versa-
tility of the architecture was illustrated in an applicatiexample.

5 Acknowledgements

We would like to thank Matthias Goebl from the Institute fagd® Time Computer
Systems of TU Munchen for allowing us access to the KogM®RBTits docu-
mentation and accompanying programs which served as éngtaint for our
architecture.

This work is supported in part within the DFG excellenceative research clus-
ter Cognition for Technical Systems - CoTeSy®Wv. cot esys. or g).

References

1. B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stpaggect: Tools for multi-robot
and distributed sensor systems,” Im Proceedings of the 11th International Conference on
Advanced Robotics (ICAR '03)Coimbra, Portugal), pp. 317-323, June 2003.

2. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, dibls, R. Wheeler, and A. Y. Ng,
“ROS: an open-source Robot Operating Systemihternational Conference on Robotics and
Automation Open-Source Software workshop, 2009.

3. M. Henning, “A new approach to object-oriented middlesyatEEE Internet Computing
vol. 8, no. 1, pp. 6675, 2004.

4. M. Goebl and G. Farber, “A real-time-capable hard- arfth&we architecture for joint image
and knowledge processing in cognitive automobilesPioceedings of the 2007 IEEE Intelli-
gent Vehicles Symposiypp. 734-740, June 2007.

5. M. Goebl,Eine realzeitfahige Architektur zur Integration kogwér Funktionen PhD thesis,
Technische Universitat Miinchen, Institute for Real-&i@omputer Systems, 2009.

6. L. Dozio and P. Mantegazza, “Real time distributed cdrdystems using RTAI,” ifProceed-
ings of the Sixth IEEE International Symposium on Objede@ed Real-Time Distributed
Computing (Hakodate, Japan), May 2003.

7. The MathworksReal-Time Workshop 7 - Generate C code from Simulink model$/&ATLAB
code 2007.

8. J. F. Kramer and M. Scheutz, “Development environmentsafitonomous mobile robots: A
survey,” Autonomous Robatsol. 22, no. 2, pp. 101-132, 2007.

9. A. Shakhimardanov and E. Prassler, “Comparative evaluaif robotic software integration
systems: A case study,” iRroceedings of the 2007 IEEE/RSJ International Conferemte
Intelligent Robots and SystengSan Diego, CA, USA), pp. 3031-3037, 2007.

