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Abstract

In a Bayesian Approach the Kalman filter can beardgd as recursive Bayesian estimator and be
described as Bayesian dynamic network. The lingawvaghic system discretized in the time domain
follows a first order hidden Markov process wheneartainties in the system model and the measurtemen
model are assumed to be Gaussian and modeled asalated white noise processes. As the assumption
of linearity and Gaussianity is often violated ayBsian approach of an extended skewed Kalman idter
derived which allows to consider a nonlinear dyrasystem excited by a process with skew-normal
probability distributions.

1 Introduction

Slender structures such as pedestrian bridges;sioaig frame structures or high-rise buildings under
transient loads as wind, traffic, earthquake, @&te.excited to vibrations. Uncertainties in the elaf the
structure and the loads lead to variations in tregliption of the expected vibration and the assedia
radiation of sound in buildings.

Using the Bayesian Approach the uncertain paramete modeled as random variables by incorporating
prior knowledge and observational evidence: stgriiom a prior density function including all aatile
information about the parameters, the posteriositieflunction is estimated at each time step based
measurements accompanying the construction procassparameters can thus be estimated evaluating
the a posteriori density function. Assuming a lin€aussian model where both, the measurement error
and the system error are modeled as additive zeemrbaussian noises, the Bayesian Approach leads to
the Kalman filter, an unbiased minimum variancénesste.

Identification problems of unknown parameters aregéneral nonlinear and can be solved using the
extended Kalman filter (EKF) which linearizes abth# current mean and covariance. The method is
applied to a single degree of freedom system irerotd identify the stiffness and damping parameters
using simulated measurement data.

As the EKF always approximates the posterior digtion as a Gaussian, the obtained estimate isdias
and the filter may provide poor performance in saraglinear problems where the true posterior is-non
Gaussian (e.g. multimodal or heavily skewed) [@]otder to apply the Kalman filter to a wider raraje
distributions than the normal one, Naveau introducaskewed Kalman filter which is based on the skew
normal distributions [2]. The method is derivedairBayesian framework and extended for a parameter
identification problem.

2 The Kalman filter

The Kalman filter was developed in 1960 by Rudo#ilindan. It is an optimal recursive algorithm to
estimate the state of a linear dynamic system discretized in the toheenain using noisy measurement
dataz [3][4]. The state-space model is generated bydguations, the system and the observational
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PREDICTION (TIME UPDATE) CORRECTION (MEASUREMENT UPATE)
1) Project the state aheattipri estimatg 1) Compute the Kalman gain matrix
X = TiRye—1 + By Ky = zﬁ,kAi(zw,k + Akzﬁ,kAD_l

2) Project theoriori error covariance ahead 2) Update estimate with measuremenosteriori
vk = TuZezk-1Th + BiZrsi-1Bi + SiZww—1Sk estimatg
Ry = X + Ky (2 — AgXy)

3) Updatea posteriorierror covariance

ook = Zxzk — KAl Zxzzk

Figure 1: Prediction-correction procedure of thénian filter

equations. The latter describe the linear relatietween their-dimensional vector of observationg at
time k and the unobserved-dimensional state vectay,

Z, = Akxk + Vi (1)
whereA,, is an X m matrix of scalars and, is an addea-dimensional noise vector to consider random
measurement errors e.g. due to sensor inaccurheysystem equation

Xg = TyeXp—1 + Bifi—1 + Spwie— (2)
describes the temporal changes in the state dfrtbar dynamic system. The x m transfer matrixT,,
relates the statle — 1 at the previous time step to the state at theentistept. Optionally a system input
(control) vector (e.g. external loadg) ; of lengthf can be included which is related to the actuakstat

x; by them X f input matrixB,.The model uncertainties or disturbances are repted by the added-
dimensional noise vecteov,_, which is related to the actual state by#he m matrixs,.

The Kalman filter is based on a Gaussian noise modethe measurement errgy as well as the state
errorwy, are modeled as independent, white noises with Hatisigibution

Vi ~ N(O, 2:vv,k)

Wi ~ N(O' 2:Ww,k) (3)
with the n x n measurement noise covariance magiy, , and them X m process noise covariance
matrixZ,,, -

The algorithm is characterized by an iteragivediction-correctionstructure as shown in figure 1 [5]. The
overline "~" indicates the prediction whereas the estimateasked by the hat*".

In the prediction stepa time update of the current state and error ¢avee is taken in order to obtain a
prior estimate of the process st&jeand its associated error covariance for the neng 8tep. The priori
error and its covariance are given by

€p k-1 = Xg—1 — Xg—1

Zeti-1= E[€fk_1854-1] (4)
The time-update of the current state is calcul&t@u the undisturbed system equation
Xg = TeXk-1 + Biefr— (5)
where the prediction error
Exi = X — Xie = Ty (Xp — Rp) + By (Femq — femq) + Spe (Wyemq — Wye_q) (6)
€xk—1 Ef k-1 Ew,k-1

leads to the updated error covariance matrix
ek = TeZzek-1Tk + BiZrrr—1Bk + SkZww -1k (7)
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The random noises_1, €yx-1 and €,;_1 = Zx_1 — Zy_; = Vi, denote the input, state and
measurement error which are described as stationacprrelated and zero-mean white noise processes.

In thecorrection steghe measurement equation is used to predict kbédst measurement for the given
prior state estimate. Once the actual measurem@ntained, the differenakl,

dy, = ArXy — 74 (8)
between the predicted measurement and the actwumament, also known as innovation or residual, is
calculated. The Kalman gain mati, is determined in order to correct the prior seggématex, in the
measurement update. It is the result of the miration of the mean-square error of the posteridesta
estimatex;

& =X, — %, E[efg] — min. 9)
which is equivalent to minimizing the trace of fhasterior estimate covariance matrix [3]. It letwls
Ky = Zxz Ak (Zovi + Akzﬁ,kA'II:t)_l (10)
which is used to update the prior estim&tewith measurement data and its associated postemior
covariance
Ry = Xy + Ky (zg — AgXy)
Zeek = Zxzi T KiA Zaxk (11)

2.1 Recursive Bayesian estimation

While in the standard Kalman filter the dynamictews is described by the Gaussian state space model,
where x; is the unobservable (hidden) stafg,,; a given system input and, is the incoming
measurement, the recursive Bayesian estimatoisidan a probabilistic state space model

2 ~ p(Zx|Xy)

X ~ P(Xpe|Xp—1, fre—1) (12)
wherep(A|B) denotes the conditional probability density fuantiPDF) of the evemt given that the
eventB occurred. Using the incoming measurements andthemetical state space model, the recursive
Bayesian estimator determines the estimates otitkk@own probability density function recursively in
time while the standard Kalman filter calculatesursively the true values of observations. In bxabkes
the underlying dynamic system model can be graphidascribed by a dynamic Bayesian network as
shown in figure. 2.

The recursive Bayesian filter is derived using agsumptions:

1. The state follows a first order hidden Markov pss;d.e. the future stasg,.; is independent of the
past stateg;.,_; = Xy, ..., X1 given the present statg and the inpuf;_;
P (Xir1 X110 21 Frie—1) = P K1 [ X Fe—1) (13)
2. The actual observation, is conditional independent of the previous onethd present state, is
given
P(Zk|X1:00 Z1:k—1) = P(Zic|Xk) (14)
The Bayesian estimator calculates the PDF of tistepior state at timé& from the PDF of the prior
estimate and the likelihood applying the Bayesrul
likelihood a priori
P (Zx | X3 )P K| 2151, F1:-1)
X |Z1.0, F10—1) = 15
P( kl 1:k» *1:k 1) p(zklzl:k—l) ( )
normalization
Similar to the Kalman filter the recursive Bayesistimation is based onpaediction stepprior to the

observation and eorrection stegafter obtaining the measurement data using thesunement likelihood.
The underlying probabilistic state space modehisryby

a posteriori
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past present future
input Ji St S -
hidden - X Xt -
observed z % Z Zywt Zy

Figure 2: Dynamic Bayesian network

p(zZi|Xy ) ~ N(Arxi, Zyk)
P X Xpe—1,Fie—1) ~ N(TRi—1 + BicFi_1, Sk Zww, k-15%)
applying the standard rules of linear transformmatibrandom variables.

Starting at timek — 1 the PDF of the actual stakg,_; is given by the posterior distribution of the
previous time step

(16)

P(Xg-11Z1:k-1, F1:k-2) ~ NRi—1, Zzg k1) (17)
which is assumed to be Gaussian with expect&tjan and error covariance matig; ;.
In the prediction steffirst the joint density ofx,, x;_,) conditional on the input and the observation up
to time k — 1 is calculated using the PDF given in (16) andphbsterior distribution from the previous
time step

PXpr Xp—11Z1:k—1, Fr:k—1) = PXpc|Xke—1, Fem 1 )P Ki—11Z1:0- 1, F1:6—2) (18)
from which the prior distribution is obtained by mgimalization, i.e. integration oves, _;
P(Xp|Z1:k—1, F1:k—1) ~ N (X, Tz o) (19)

wherex,, Zzz , denote the expectation and covariance of the ghestlistate as given in (5), (7).

In the correction stepthe likelihoodp(z,|x)) incorporates the new measurement into the postebid-.
Once the actual measuremeptis obtained, the residud},

dy =z — Z = 2 — AyXy (20)
between the predicted and the incoming measureisieatculated using the conditional expectaigrof
the priori PDF. The latter as well as the transitinatrix A, are known, i.e. observing the ermby and
observingez, are equally likely [6]. Using the observationatuatjon (1) the likelihood is given by

P(Z|Xi) ~ N(ArZie, Zpy i) (21)
In order to obtain the posterior distribution thermalization factorp(zy|z;.x—1) iS computed by
marginalization of

P(Zi, Xic|Z1:k-1) = P(Zi|Xp )P K| Z1:1- 1, F1ik—1) (22)
overx;, and it follows
P(Zk|Z1:k-1) ~ N(ArKp, ArZxz kAl + Zpw ) (23)
The posterior density is now computed applyingBhges’ rule leading to

p(xklzl:k' f1:k—1) ~ N(ﬂx|z' lez )

where
Byz =X + Kp(z — AgXy) = Ry
-1
2:x|z = 2:vv,kzﬁ,k (Akzﬁ,kATI; + 2:vv,k) = z)?)?,k (24)
Ki = ZgeiAL(ArZz AL + Z,,,,_k)_l = Kalman gain matrix

which is similar to the result (11) of the optinsthte estimate given by the standard Kalman filtehe
assumption of Gaussianity holds the optimal esgnedik, conditional on all the data.,_, is given by
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the expectation,, of the posterior PDF Qb (x|zy.x, f1.k—1). For other types of statistics, e.g. skewed,
multimodal PDFs or in the nonlinear case, thisosnecessarily the case [7].

2.2 Parameter identification using the Extended Kalman filter

If the assumption of Gaussianity holds the Kalmgterfis an optimal, unbiased minimum variance
estimator of linear state-space models [1][2]. Hesve in practice identification problems of unknown
parameters are in general nonlinear. Hence, the ks to be extended to include the maalameters
to be identified [3][4]. The new extended statdé$ined as

Xk
Xextk = [pk]
wherep,, is thep-dimensional vector of the unknown parameters.tirhe update of the parameter vector
is modeled as random walk process by adding amesn Gaussian noise
Pr = Pk-1 T Wy
Wy i ~ N(0, Zyw ) (26)
The extended state space system model is now given

Ty (Pr—1 + Wp i) Omxp [Xk—1]+ Bi(Pr—1+ W) £+ Sic(Pr—1 + Wpi) Omxp [
Pr-1 oxf k-1 0, s ka

(25)

Xext k=
0
pxXm

X
Zoxtk = [Ak AP,k] [pi] + Vg (27)

wherel,,,, denotes the X p identity matrix and),, ana X b zero matrix. The time-invariant matrices
Ty, B, andS; are now given as functions in nonlinear dependancyhe predicted state estimajgs
Assuming that the parameters are not directly olabée, it follwsA, , = 0,xp-

Hence, the state space model can be rewritten as

Zoxtk = Aext,kxext,k + Vg
Xextk = f(xk—ppk—1»fk—1;Wk—1;Wp,k—1)

wheref(:) is the nonlinear system equation of the extendst sector to be identified. In order to use
the standard Kalman filter algorithm the systemcfiom is linearized by applying a first order Taylo
expansion near the current state estimate

(28)

- ~ ; _ . T_
Xog-1 = [Xk-1 Pr-1 fre-1 Wk—1 Wpi1]" = [Xk—1 Pr—1 fro1 Wi_q Wp,k—l] =Xok-1 (29)
This leads to the following linear approximated reloof the extended state vector

~ Xp—1 — ﬁk—l 2 Wg_1— wk—l
Xext,k ~ f( XO,k—l) + Text,k [ = ] + Bext,k ( fk—l - fk—l) + Sext,k [ A ] (30)

Pk-1— Pk-1 Wik-1—~ Wpi-1
o o Eext,f,k—1
ext, X k—1 Eext,w,k—1

whereTgy,, i, Bexe x @NdS,, , indicate the linearized transfer matrices. Thevadéves with respect to the
parameter vectgs,_, and the associated noise vesigr,_, are expressed using thex m Jacobian
matrix J ¢ (-) of the nonlinear functiorf(-). Hence, the extended matrices are time-varianthae to
be calculated at each time step. It follows

Te(Pr-1) Jri(Ppy) af (xo-1)

T = ) k-1 with 0,k—1

extk [ 0y Ly it Jfk(Pk 1) T P

Sk(Pr-1) Jfk(Wp k—l)] . of (xok—1)

S = ’ ' with  Jre(Wyp—1) =5

ek [ OPXm IPXP f'k( Pk 1) W1 Xoik—1
B (Pr-1)

Beoxtx = [ kopxkf ! ] (31)

wheref (%1 ) denotes the prior extended state estimate defiped
f(Rox-1) = Te(Pr-1)Rk-1 + Be(Br— 1) = Kexe (32)
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Aw(t) c,= 50N
+—> X(1) p,=0N
m-lkg k[ w(t)
a,=k/m = — t
a,=c/m C =~
=7,

Figure 3: Damped single degree of freedom systeritezkby a white noise process

The approximated prediction error of the extendatbsestimate is now given by

Eext,)?,k = Xext,k - )_(ext,k ~ Text,ksext,a?,k—l + Bext,k£ext,f,k—1 + Sext,k£ext,w,k—1 (33)
Using the extended vectors and matrices the miitioz of the mean-square error of the extended
posterior state estimate,;, = Xcxex — Xexer l€ads to the extended Kalman gain matrix. The abov

described standard Kalman filter algorithm andBes/esian approach can be applied to the linearized
model.

In contrast to the linear problem the estimate mibg the extended Kalman filter is biased as inegan
the assumption

E[f ()] = f(Elxx]) (34)
is violated. Moreover the filter approximates ttoesterior distribution of the estimate always as $&&@an
which leads to poor results if the true posteristribution is for instance heavily tailed or mottdal [1].

2.3 Numerical Example

In order to illustrate the introduced method theerded Kalman filter is used to identify the stiffis and
damping parameters of a single degree of freedatesyexcited by an ambient load as shown in fiGure
using noisy measurement data of the displacement
The equation of motion is given by

mi + cx + kx = w(t) (35)
wherem, c, k denote the mass, damping and stiffness paramnietiee eystem, respectively. Assuming that
only the system response is measureable, the umkisgstem inputf(t) is regarded as system error
wy(t) which is described as zero-mean white noise psoddsing the state vecta(t) = [x(®), x()]"

the eq. (35) is transformed to the state-space form
0 1

o 0

X(t) =|_y /m —c /m] x(t) + [1 /m] wy (1) (36)
Assuming that the external load is constant withtime intervalAt = t, — t;_, €q. (36) is discretized to
a difference equation and one obtained the lingstem equation

Xk = TypXp_1 + ska’k_l where Xk = X(kAt) (37)
The transfer matrisT;, gives the relation between the system responsmat: for a given displacement
and velocity at timgc — 1. Hence, it can be derived from the homogenoustisalwf the equation of
motion (35) where the statg _,; gives the initial conditions. It follows
S5

T, = e 0At lwd

sin(wyAt) + cos(wyAt) wisin(wdAt)
‘ (38)

2
—ﬁsin(a)dAt) cos(wyAt) — isin(a)dAt)
wq wq

wherew? = k/m, § = ¢/2m, wyg = w3 — §2.
In a similar way the input matrig, is obtained from the steady state solution fongi@nt loading.

Assuming that the force is constant within the timtervalAt, the system response is calculated from the
Duhamel integral and it follows

S, = ftik_l T, (t, — 7) Gdr with GT =[0 1/m]T (39)
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error initial values assumption
P N(0,0,) |o,=5mm 5 % of the static displacement due to a loatlosf N (97"
z 1z z percentile)
oy = 0.5m
oy =1m/s

& N(0, Z¢¢ Gay = 1500 52 Arbitrarily chosen

0q, = 3.0572

éw, | N(0,04) |Ow,=50N Estimated deviation of the white noise process
éwp N(O, pr) pr = 02x2

Table 1: Stochastic error model

true values | initial values| initial error | identified parameters | identification error
ag[s™2] | 1000 1500 50 % 1008 0,8 %
a, [s71] |1 15 50 % 1,06 6 %

Table 2: Initial values and identification resuieat = 150 s

As described in section 2.2 the state vector ofakiended Kalman filter has to be extended by the
parameters to be estimated. While considering thgsrparameten to be known, the system response is
mainly depending on the parameters

ao = % and al = i (40)
and the extended state vector is given as
Xoxtk = X Xk Gox arx]” (41)

The transfer matrice¥,, andS;, of the system model are now nonlinear functionghaf unknown
parametersy, , anda; ;. The nonlinear system equations are approximayeal Taylor series around the
prior estimatesi,,_, anda, ,_, which leads to a linear state space model. Corselyuthe extended
matricesT,,. , andS,,.  are time variant and have to be calculated in &awh step.

The parameter identification is based on the measutisplacements of the system. Hence, the
observational equation (28) reduces to
Zextk = Xk—1 + Vg (42)

As the unknown parameteng, a; cannot be measured themselves, the identificatibrjust succeed as
long as there exists a dependency between thevallderuantities and the unknown parameters. B thi
example the dependency is given by the Jacobiarnicesincluded in the extended transfer matrices.

In order to start the filter algorithm the initiparameters and the initial stochastic model basethe
error covariances have to be defined. The choskrewvare shown in table 1 and 2. The measurements
were simulated based on the analytical solutiothefgiven example excited by a simulated white enois
process as input force. Hereby a random measuresnemtof 5 % of the static displacement due tozall

of 100 N (97" percentile of the load). The errors in the estédamarameterﬁwp were set to zero, as

there's no need to disturb the identification resul

The simulated measurement data, the estimatioheotlisplacement and velocity and the results of the
parameter identification are shown in figures 4 &ndespectively. The initial model parameters wher
chosen taking into account an initial error of 56#4he true model parameters. Table 2 shows tli@lini
values and the identified parameters after150s. As just a small damping ratio d = 0.5% is
considered the response is mainly depending ostiffieess parametet,. Hence, the difference between
the observed and the estimated displacement, leegorediction error of the state, is dominated hey t
error of the estimated stiffness. Consequentlyideatification of the parameter, requires significant
less iterations as can be seen from figure 5.
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Measurement x(t) Displacement
0,44

Velocity
0,29 6
0,34
-.H, 4 P
{ \ .‘"" |
%27 019 - 11 s [
A 71 2] \ I"
o] 7t [ ﬁ | 1
(oA 1 L L]
o, Ty L ] -+ 1
0 L U e FEE - e o ‘,‘.\" ot - true
L Vo1 l=—Kalman \ 1| l=——"ralman
0,1 k4 L I - | |
- ol 1] _2 | f
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-4 vl
-0,34 V
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Figure 4: Simulated measurement data of the disptent; estimated/true value of the displacememtvatocity
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Estimation a1 (c/m=1)
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tfsl tlsl
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Figure 5: Identified values of the stiffness amanping parameters, anda, aftert = 150 s

As the prediction error, on which the time updafethee parameters depends, decreases quickly the

damping parametea; converge slowly to the true value. Hence, the tifleation of the damping
parameter requires more iterations.

3 Skewed Kalman filter
3.1 Closed skew-normal distribution

The skewed Kalman filter is a modification of therglard Kalman algorithm in order to introduce
skewness to the state space model. It is basedeosa called closed skew-normal distribution (CSN)
which allows to model skewness while preserving #ovantageous properties of the Gaussian
distribution as the closure under conditioningedin transformations and marginalization [2][8][Phis
allows to derive a filter algorithm where the postedensity takes the prior form, so that the remn of

the Bayesian estimation reduces to an algebraigsien operation on covariance, mean and - in ahdit
to the standard Kalman filter - on skewing paramsete

The closed (multivariate) skew-normal density fimctof an-dimensional vectoX was introduced by
Gonzalez-Farias, Dominguez-Molina and Gupta [9]iantkfined as follows:

Definition: Form>1, n>1, ueR", veR™, an arbitrary matrib e R™"™ and positive definite
covariance matricese R™*™ and A e R™*™ the CSN is given by

X ~ CSNy (1, E,D, v, A)

pn,m(x) = C_1¢n(X; i, Z)Cl)m(D(X —w); v,A)
with

C =®,,(0; vA+DIDT) and XeR" (43)

where g, (x;n,Q) and®,,(*;n, Q) are the probability density function and the cuative distribution
function (CDF) of an-dimensional normal distribution with mean vecipe R™ and covariance matrix
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Q e R™" [7]. The matrixD regulates the skewness of the distribution anohallto vary continuously
from the normal PDFIY = 0) to a half normal distribution whereas the coristsgu andX are location
and scale parameters. The remaining parametersesiheuclosure properties of the CSN: the parameter
ensure the closure under conditioning, the pararfetnsure the closure under marginalization and the
parameterC allows the closure under summation of independ&8N random variables [8]. In the
following some important properties of the skewedlrKan filter are summarized which allows to
implement a recursive filter procedure comparablethte standard Kalman filter. The proofs of the
following properties are given in the appendix.

Property A - Closure under linear transformation
Let X~ CSN,, (i, Z,D,v,A) and letA be ar x n matrix of rankn andr < n, then

AX~ CSNT‘,m(”’AI ZA) DA, vV, AA)
where
Us =Au X, =AXAT D, =DIATEZ;! A= A+ (D-D,A)EDT (44)
As long as the conditions > 0 andrank(A) = n holdsX, is a non-singular matrix [8]. Wheh is a
n X n non-singular matrix, theP,, A, reduces td, = DA"! andA, = A.
Property B - Closure under marginalization
Let X ~ CSNy,» (1, Z, D, v,A) which is partitioned aX = [x] x7]” where x, e R* andx, e R** then

X1~ CSNn,m(ﬂpzn;D*:V; A")

with
D* =D; + D;Z,;,Z; and A" = A+ D,(Z;; — 25, 211Z;,)DY
k n—k
k n—k
_ [M1] K L1 Xp] k (45)
u_[ul] n—k Z=[221 2:22] n—k D=[D; D] m

Property C - Closer under conditioning
Let X ~ CSN,, (1, £, D, v, A) which is partitioned aX = [x] x7]” wherex, e R¥ andx, e R*¥, then
the density ok, conditional orx; = x,, is derived using the result pfoperty Band the Bayes’ rule

_ p(X1,X2)
p(X2]x1) = o)

= XX ~ CSNn,m(llz + 22121_11(x10 — W), Iy — 2:212:1_11212» D,, v —D"(X;0 — 1), A)  (46)

Property D — Closure under summation
LetX, ~ CSNp m(y, Zx, D, v,A) andY, ~ N(uy, X,), then the sur,, = X,, + Y, follows a closed skew-
normal distribution

Zn ~ CSNn,m (I’lzv X,D; v, Az)

wherep, =p, +p, %,=%,+4%, D,=DXX2;' v,=v A, =A+(D-D)x,D" (47)

As it is shown in [9] the closer under summationpoindependent random variable with CSN of
dimension(n, m) leads to another CSN of dimensi@m pm). Hence, in the recursive procedure of the
Kalman filter this would lead to a rapid increaséhe dimensions of the skewness paramddessandA

at each time step. Due pyoperty Dthis dimensional problem can be avoided by chapsirGaussian
error model where the system error as well as ts@sorement error are modeled as white noise [2].

3.2 Bayesian approach to the skewed Kalman filter

A linear state space model as given in (1), (2nwitdimensional vector of observationg and m-
dimensional state vector, is assumed where both the observation as welhasystem equation are
subjected to zero-mean Gaussian noise. Hence ¢balglistic state space model is given by

p(Z|Xk) ~ N(AkXi, Zppk)

r (48)
p(Xp|Xp—1,fr—1) ~ N(TkXp—1 + Bifr_1, S Zwwk—15F)
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G X

PREDICTION (TIME UPDATE) CORRECTION (MEASUREMENT UPATE)

Project the state aheaal ffriori estimatg 1) Compute the Kalman gain matrix

Xi|Z1ge— 1, Wage—1~ CSNim g (Bacior Exeior Doeor Voo Bcc) Ky = 2 kAL (Zon i + AkZor AR )_1

B = Telxpe—1 + Bifr 2) Update estimate with measuremeat fosteriori
Tk = TeZaxp-1 Tk + Bszfk 1B + SiZym -1k estimatg

_Dx,k - ka 1zxxk 1Tk xxk Xklzl:k, fl:k—l ~ CSNm‘q ([lx‘k, Exx‘k, Dx,k' Vx,k, Ax,k)
Vk = Vxk-1 _ K AT
U D T = + Z, —
Ay =ADyp 1+ (Dx,k—l - Dx,ka)zxx,k—le,k—l Fxje = Hxk k( ke k”x'k)
zxx,k = zxx,k - KkAkzxx,k

_ Ty-1
Dx,k - Dx,k—lzxx,k—lTk xx,k
Vak = Vaeko1—Dy i Ki (21 — Al )

_ T
Ay =ADyp 1+ (Dx,k—l - Dx,ka)zxx,k—le,k—l

=/

Figure 6: Prediction-correction procedure of theve&d Kalman filter

In contrast to the standard Kalman filter the @liitate vectoxy|z,.x, f;.x—1 iS assumed to follow a CSN.

The skewness is implemented by assuming that thial istate vectorx, follows a skew-normal
distribution.

UsingXy |Z1.x—1, f1.k—1 ~ CSNm,q(ﬂx,k—l'zxx,k—l'Dx,k—lrvx,k—erx,k—l) the prior distribution is a direct
consequence groperty AandD and it follows

Xy |Z1:k—1: fl:k—1~ CSNn,q (ﬁx,k: 2:;vcx,k: Dx,k' Vx,k: Ax,k)

where
By = Tilyj—1+Bifi_q Dik =Dyi—1Zvai-1Th Zxak
Tk = TeZaxi—1Th + BiZrr 1B + SiZwwk—15k Vik = Vxk—1
Axk - Axk 1 + (ka 1 kaTk)zxxk lek 1 (49)

The measurement distribution can be derived frosy, (@9)

P (Zi, Xic| 2140, F1:0-1) = P(Zr|X0 )P K| 21000 Frie—1)

_ - 5 =7 T (=
Xk Ky ] 2:xxk z:xx kA£ [ng [vxk ] x
Z1.x—1,f1.k—1~ CSN S Y e T , o, A 50

Zi et ket m+n,q< Akﬂx,k [Akzxx,k 2:vv,k'i'Akzxx,kATI:: 0n><m Omxl xk ( )
by marginalization ovex; which leads to

Zy |Z1:k—1' fik-1 ~CSNy q (ﬂz,k' XDk Vo Az,k)

with
Hz i = Akﬁxk Dz,k = ﬁx,kixx,kATI:',ZZ_zl,k
2:zz k= Akzxx kAk + 2:vvk 1 Vzk = Vx k-1
Bgy = Byx + (Dyk — DyiAr)Zox s Dk (51)

Applying the Bayes’ rule using the results (48)9)(4and (51), the posterior distribution is a direct
consequence g@ropertyC and finally defined as

Xp |2y froe-1 ~ CSNm,q (l‘x,k' Z ko Do jer Vi o Ax,k)
with
Bk = Tibyje—1 + Brefioy + Ki(Zie — Al )
2:xx,k = fxx,k - KkATI;Exx,k
Dx,k = Dx,k—lzxx,k—lTIz_;Jg,k
Vak = Vak-1—DyiKic(Zi — Ay )
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Axk = Ax k-1t (Dx k-1 — Dy ka)zxx k—ng,k—l (52)

Using the Kalman gain matriK; = X, A% (Zopx + AxZrrrAk ) the strong resemblance to the
standard Kalman filter algorithm is apparent. Theyaifferences are the additional skewness pararset
D, k. Vi @NdA, ; to be updated at each time step. The closure grepef the skew-normal distribution
allow to reduce the filter algorithm to the recuesicalculation of the parameters. The algorithnthef
skewed Kalman filter is summarized in figure 6.

The update of the skewness paramdbgrs at timek depends o, ,_, from the previous time step, i.e.
if D, -1, = 0 at any time thed, , = 0 for all timesk. Hence, the initial skewness might get lost during
the filter process and one obtains the standarch&alffilter. Furthermore assuming a Gaussian digtib
measurement error, the state converge againsnaahdistribution after some time.

In the following an extension of the method is adiuced which allows to implement a time variate
skewness (if needed) directly in the observatieaailation.

3.3 Bayesian approach of an extension of the skewed Kalman filter

In order to handle skewed measurement data, Nagleaeloped an extension of the skewed Kalman
algorithm which allows to introduce skewness digeictto the observational model.

As shown in [9] the sum of skew-normal distributed variables of dimensionm;) follows a CSN
distribution of dimension(n,zi-‘:lmi). Hence, modeling the skewness by adding a skewmador
measurement noise vector would lead to an increbee size of the matricds, , andA,y at each time
step if the above described recursive proceduusasl. In order to avoid the dimensional problenljn
the linear state space model is modified by spijttip the observational model in a linear part and
skewed part
Z; = G X +vi = Agu, + Sis, + v (53)
~—— —— )

linear skewed  noise

where G, = [Ag, Bi] andx, = [ui,si]TWith the vectorss;, € R%, u, e R* and the matrices of scalars
A, e RS, S, e R™%, Here the linear vecton, as well as the zero-mean measurement nejsés
assumed to be Gaussian distributed and indepeonfi¢éié skewness vectasy, with a CSN distribution.
Hence, the dimensiam of the observation vectay, stays unchanged.

In [1] the linear part is used to describe a sloghignging trend and the skewed part correspondgitoe
variate skewed process. In the investigated ideatibn problem, the method is used to determime th
system response due to an unknown ambient loadidunwith CSN distribution. Hence the linear vector
corresponds to the homogeneous part of the sysgponse while the skewed vector describes theystead
state response due to a skewed process descrit@nigdd. In order to generate a skewed process the
following lemma to be found in [9] is used:

Property E If X e R" andY € R™ are two random variables with joint normal distition

[Y] Notm ([ﬁ”—znz AJ:ZDI;TDT])

then the conditional distribution &fgivenY < Du is skew normally distributed

X|Y < D~ CSNy (1,5, D, v, A) (54)

Defining
U = Teug_ g +SypWye and  wy ~ N(uwwk,zwu’k) (55)
Vi = —Li¥k-1+ Wy and  wy, ~N (Iv‘wy,k,zwy_k) (56)

whereL, € R, T,e R*** are matrices of scalare,, , andw,,, are independent Gaussian distributed
noise vectors. The joint distributidm,, y;) is given by

U I“Lu,k 2:uu,k 2:uy,k
Yk] ~Nu+s ([l‘y,k]’ [zyu,k zyy,k]) (57)
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The skewed procesg is generated from the joint distributigy, y,_1) given by
Vi ] ~N <[_Lk”y.k—1 + ”Wy,k] [Lkzyy,k—lLTI; + 2:wk _zyy,k—lLTI:t]>
V-1l *S My k-1 B R Zyy k-1

Due toproperty Ethe conditional distribution afy ~ yi| yx—1 < D, x i, i follows aCSN,, ,,, distribution
and one obtains

i = —Ly Yo+ wy
S ~ CSNs,s(ﬂs,krzss,kr Ds,krvs,krAs,k) (58)
where
Vo™ = yi| i1 < Dy iy Doy =2y k-1LEZ5k
Mgy = —Lipy 1+ Ry, Vs = Myk—1 — Dgrlsik
2:ss,k = Lkzyy,k—lLTI; + 2“wy_k As,k = 2:yy,k—l - Ds,kzss,kng (58)

Using the inverse of property B the joint distribution x; = (ug,s;) follows a
CSNn+m><n+m(”x,kr 2:xx,kr Dx,k:vx krAx k) given by

_ Y] _ Kk wwk  Ouxs uxu  Ouxs uxl] [ uxu u><s]>
Xk = [ Sk ] CSNu+S'u+S ( ”S k] [Osxu ss k] [Osxu Ds k ] [vsxl Osxu (60)
Hence, usingroperty Dand the result (51) the observatignz, _, follows

Zy |Zk—1 ~ CSNn,n (ﬂz,kr 2:zz,k: Dz,k: Vzk» Az,k)

with
Bz = Gl Vzk = Vxk
2:zz,k = szxx ka + 2:vvk Az,k = Ax,k + (Dx,k - Dz,ka)zxx,kDg,k
Dz,k = Dx kzxx kazzz k (61)

In contrast to the linear skewed Kalman filter digsal in section 3.2, where the skewness parameter
D, was sequently derived from the previous time stiep,additive skewed procesg of the extended
algorithm allows to implement a different skewnasgach time step by introducing a temporal strattu

of the matrixL;, [2].

3.4 Recursive algorithm of the extended skewed Kalman filter

Due to eq. (60) the extended skewed Kalman fiténitialized by the posterior CSN given by

Xp-1 |Z1:k—1 ~ CSNm+s><m+s(ﬂx,k—1: 2:xx,k—l' Dx,k—l' Vx,k—l' Ax,k—l) (62)

In contrast to the linear skewed Kalman filter fimr time update of the statg = (uy,s;)” cannot be
calculated directly using eq. (49) ag has to be generated at each time step from tme jarmal
distribution(y, yx—1)T using eq. (58). Hence, the state space model defipehe observational equation
(53), the linear system (55), (56) and the equaft@®) of the skewed procesg has a nonlinear structure
in contrast to the model described in section 3.2.

The temporal structure of the staigdz,., is defined by the variableuy, yx, yx_1| Z1.x) conditionally on
Yik-1 < Dy x fy i . Using the Bayes'’ rule the posterior distributap (uy, yx, Yx-1|21.) is obtained by

P(Zg| U Y Yie-)PWg Vi Yie-1121:6-1) (63)
P(Zk|Z1:k-1)
The prior estimate of the multivariate normal disited variable(uy, yx, Vx—1| Z1.x—1) conditional on the
observationsz,.,_; up to timet = k — 1 is given by
Z1:k—1>

uy Trup_1 + Sy Wik
Ye | Zyk—1 | = —LiYr-1+Wyi
V-1

Yk-1

p(Wk, Vi, Yi-11Z1:4) =
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Tk”'u,k—l + Su,k”wu,k Euu,k _Tkzuy,k—ll-‘?c Tkzuy,k—l
Pk, Vi Yie-1l Zyk—1) ~ N | | —Libyp—1 + Bw,, |, ~LiZuy 1Tk Tk —LiZyyk
Ry -1 z:uy,k—lTlZ' _Eyy,kL?c Zyy k-1
where
Euu,k = Tkzuu,k—lle + Su,kzwu_kslz and Eyy,k = Lkzyy,k—lL?c + z:wy_k- (64)

Once the new measurement dag is available the likelihoogh(zy|uy,yx, Vx—1) is derived from the
observational equation (53). Assuming tfa,y., yx—1) are given, the only random variable in (53) is
the zero-mean measurement noige which leads to
P (Zie W, Vi, V-1, Z1:k-1) ~ N (Agly k-1 + SkE[Sk|Z14-1], Evv i) (65)

where iy y—1 = TeMy -1 + Surhw,,- IN contrast to the linear case the conditionapeexation
E[sk|z,.x—1] Of the variables; has to be included. Equation (64) and (65) leadké joint distribution of
P, Vi, Yi-1, Zi| Z1.-1) USING

Pk, Vi Vie—10 Zke) Z1:k-1) = P(Zie W, Yies Vi1, Z1k-1)P (Wi ¥ ¥y | Z1ke1) (66)
and it follows

[Ttui-1 + Sujeb, | I[ Zuuk ~TiZuy k-1l TiZuy k-1 fuu,kAi]l
5 ¥ T
p(uk' Yk; yk—l'zk zl'k—l) ~ Nl | _Lk”y'k_l + ”Wyk |l| L wke 1Tk E:yylk T LszJ’zk CkSkT |
. l I"’y,k—l J l uyk 1Tk _zyy,kLk zyy,k—l Ck—lsk J/
K, Lok Sk Ci SkCio1 Zok
where
2.2k = AkZuu kAl + Sevar[si|zyx—11SE + Zyv Cik—1 = Cov[yk_1,Sk|Z1.k-1]
Bz = AgHy -1 + SkE[sk|Z1k-1], Cy = Covlyk, slZ1:k-1] = —L,Cx—1 + Zy , (67)

Both the condition expectatioB[s,|z;.x—1] as well as the conditional varian¥ar(s;|z;.,_,] of the
skewed process, can be derived from the moment generating funaigan by [8]

P (Ds kZss,k0; Vs As k+Ds kZss kD, k) GT oTx.. .0
M(@O) = = Hsi+0" Zssp0/2 68
( ) ‘bs(o Vs kAsk+Ds kEss, sz k) ( )

After marginalization ovel,_; the updated distribution of the variakie,,y,) conditional onz;, is
defined as

Ruky [Buwk Zuyk
e[ [ 5]
p(uy, Yl Z1.5) ﬂy,k] Zyuk Zyyk

where

e = Vi — AxBui-1 — SkE[Sk|Z1x-1]

2:uy,k = _(Tkzuy,k—lLTI; + Euu,kATI;zz_zl,kSkCk) (69)
Hence, the updated parameters of the lineanga,., are given by

{ﬂu,k = TiMuk-1 + Sukbwy, + ZuukAkZ7 1k (70)
Zuwk = Zuwk — ZuukAkZ 7 Ak k
and for the update of the skewed paitz,., one obtains
{ﬂy,k = Lkﬂyk 1+ My, T CrSkZz ek 71)
Zyyk = Zyyk — CiSkZ7SkC

By marginalization of the distribution (67) ovet and conditioning with respect 3, one obtains after
some algebraic simplification

PN
k) Yk—11 £1:k ”y,k—l i _Z;y,k_ll;;c Zyy’k_l
where
* - * - * -1
Wy -1 = My -1+ Cko1SkE ke Ly =L + zwy'ksgzzzl,kskck—l(Zyy,k—l)

25 k-1 = Zyyk-1— Cko1SkZ77%SkCr-1- (72)
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Figure 7: Simulated process nogggand corresponding probability distribution

Usingproperty Eand eq. (58) the skewed procsgg$ollows a CSN distribution and one obtains
Skc|Z1. ~ CSNg s (Mg jer Zss oo Ds s Vs oo A i)
where
Lok = 2:yy,k

HUsk = Hyk
D.S‘,k - Z

—_ *
Vsik = Hyk—1 — Dsily i
N < T
As,k - 2:yy,k—l - Ds,kzyy,sz,k
-1

Sy ik-1Lk Zyyk (73)

3.5 Numerical example

The SDOF system of the example given in 2.3 is imowestigated using the extended skewed Kalman
filter. The linear partu, of the filter describes the system response wiike grocess; is used to
describe an ambient load modeled as skewed naisess. In order to apply the introduced algoritbm t
the parameter identification problem the systenpoase is nonlinearly depending on the unknown
stiffness and damping parameter. Hence, the lipaaru;, is obtain by approximating the nonlinear
system equation by a first order Taylor seriesescidbed in section 2.3. Consequently, the veatds
extended by the parameters to be identified andtrtresfer matriced), andS, are replaced by the
extended, linearised matric€s,;  andSe, .

The figure 7 shows the simulated process nsjsand the underlying probability density functionttwi
meanu, = 8 N and deviatiors; = 7 N. The estimation of the temporal evolution of theesig, by the
standard Kalman filter (red line) and the extend&dwed Kalman filter (green line) as well as the
simulated (true) system response are shown indi§uilhe figure 9 illustrates the results of theapeeter
identification by the standard Kalman filter ane thon-linear skewed filter. In the first case tiknown
load was assumed to be a zero-mean white noiseggoAs in the numerical example 2.3 the unknown
load is regarded as system emgrwith deviationawf = 12 N. A measurement error of, = 1 mm was

assumed and the error of the stgig was chosen as in the numerical example in seétiorhe initial
model parameters where estimated taking into ac@muarror of 50% of the true model parameters.

The table 3 shows the initial values and the idiextiparameters after= 190 s. While the identification
of the stiffness parametey, leads to similar results in both methods the emathe estimation of the
damping parameter; is much smaller in the non-linear skewed Kalméagrfi

identified parameters | identification error

true values | initial values| initial error Standard | Skewed | Standard| Skewed

Kalman Kalman Kalman Kalman

ag[s™2] | 1000 1500 50 % 998 999 0,2 % 0,1%
a, [s71] |1 15 50 % 1,17 0.99 17 % 1%

Table 3: Initial values and identification resulieat = 190 s



UNCERTAINTY IDENTIFICATION 5349

Displacermeant Welocity
0,03 B R

0,6
0,029
0,4

0,014 0,2

-- true
— Kalman
— skewed Kalman

skewed Kalman

-0,2

-0,44
-0,014

0,6

-0,02= -0,84 T T T T T
0 1 z 3 4 5 0 1 2 3 4 5
t[s] t[s]

Figure 8: Simulated (true) and estimated temporalution of the state, using the standard Kalman filter (red
line) and the extended skewed Kalman filter (grées)
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Figure 9: Identified values of the stiffness anthdang parameterg, anda, aftert = 150 s
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