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ABSTRACT 
 
Currently, there is no technology available to validate 4D Building Information 
Models using formal methods of temporal and spatial analysis. We propose to fill this 
technological gap by providing a query language which provides dedicated spatial 
and temporal operators. In the presented approach, a building is digitally represented 
by an instance of the neutral data format Industry Foundation Classes (IFC). With 
reference to the temporal and spatial data, the promoted IFC class structure is 
optimized for the particular query functionality. On the basis of this adapted object 
model we make use of the Language-Integrated Query technology (LINQ) provided 
by Microsoft’s .NET framework. As LINQ was originally developed for defining 
static queries which are evaluated at compile time, we have implemented a dynamic 
version called Live LINQ in order to allow the user to flexibly formulate queries and 
to process these during the runtime of the BIM application. The developed interface 
provides a powerful and easy-to use mechanism for the spatial-temporal analysis and 
verification of 4D building information models. 
 
BIM QUERIES 
 
The concept of Building Information Modeling (BIM) is based on the use of 
intelligent, machine-readable representations of a building over its entire lifecycle. 
Using these representations, it is possible to provide extended computational 
functionality such as interactive query evaluation involving spatial and temporal 
predicates. This technology is well known from database management systems. 
However, BIM data models have particular characteristics that necessitate special 
implementations to realize the desired query support. In its standard form, a building 
model combines 3D geometry information with a complex object structure of 
components and their interrelations. By capturing construction schedule data, the 
BIM model can be extended to include temporal information concerning the 
construction and/or installation of individual components. This turns a conventional 
BIM model into a 4D model (Fischer, 2003).  
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Today, these 4D models have to be manually checked for correctness, which 
is a laborious and error-prone process. Based on our previous work concerning the 
realization of a spatial query language (Borrmann & Rank, 2009a,b), in this paper we 
discuss their extension through the inclusion of temporal operators. The resulting 
spatio-temporal query language facilitates the computational analysis and validation 
of 4D building models. An example of a spatio-temporal BIM query is “Select all 
non-supporting walls which touch floor 1 and ceiling 1 and which have been 
completed after ceiling 1”. This request combines the examination of temporal, 
spatial and semantic predicates. Furthermore, the query is an example for the 
validation of a 4D model. The result represents all non-supporting walls in one 
particular storey. The system presented in this paper is able to process this query. 

As input for the developed spatio-temporal query functionality, we make use 
of the vendor-neutral product model Industry Foundation Classes (IFC). However, the 
IFC object model has a complex and extensive data structure, particularly with 
respect to the geometric and temporal properties of building components, which 
makes the formulation of spatio-temporal queries extremely complicated. We 
therefore propose to transform this into a streamlined data structure. Combined with 
an extended version of the Language Integrated Query (LINQ) library, the system 
provides end users with an easy-to-use syntax for the formulation of queries involving 
spatial, temporal and semantic information. 
 
RELATED WORK 

 
One of the main functionalities of geographical information systems (GIS) is the 
processing of spatial queries. Though most of the available commercial GIS products 
restrict the spatial query functionality to 2D space, there has been ongoing, intensive 
research into 4D data storage and appropriate query technology (Noh, 2004). At the 
same time, the different modeling approaches in GIS and BIM make the direct 
application of GIS query technology for Building Information Modeling impossible. 
Entities in geographical information systems are set up as separate objects. They are 
often brought in a common context solely by their spatial location. BIM by contrast 
promotes a hierarchical product model with complex relations between the diverse 
components (buildingSMART, 2012). In addition, the representation of temporal data 
in GIS is not suitable for analyzing the construction and lifetime intervals of 
components in a BIM construction schedule. 

Current research in BIM addresses methods for model filtering and the 
extraction of valid model views. General approaches using standardized database 
technology (SQL) have to be distinguished from domain-specific implementations. 
The complex IFC data structure and the associated object-relational mapping can lead 
to problems in performance and scaling when relational databases are employed 
(Wiet, 2012). Domain-specific developments range from native queries in the 
EXPRESS-X language to schema-based approaches such as GMSD (Weise, 2003) 
and PMQL, the Product Model Query Language of the EuroSTEP Model Server. 
Using these approaches, the creation of even a simple query can become very 
cumbersome (Borrmann & Rank, 2010). BIMQL is a promising research project 
realized as part of the bimserver.org platform (Wiet, 2012). This language operates 
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directly on the native IFC data format. The approach of using query shortcuts is also 
employed in our proposed system for geometry and temporal information.  

 
DEFINITION OF THE TEMPORAL OPERATORS 
 
The available data of the construction schedule represents the anticipated construction 
times of components. The user of the proposed BIM query system can additionally 
store information about the estimated lifetime of building parts. This makes it 
possible for the system to handle temporal queries concerning the lifetime interval of 
components.  

 
Figure 1: Construction interval and lifetime interval of component 1 
 

To establish a common understanding of the meaning of the temporal operators, we 
institute a formal definition of their semantics based on the definitions provided by 
(Vilain, 1982). The temporal primitives employed here are intervals and points in 
time. The possible relations between these primitives are reflected by the 14 temporal 
predicates depicted in Table 1, which are implemented in our presented system. Using 
these predicates we are able to analyze the temporal relationships in a construction 
schedule.  
 

 
Table 1: Temporal operators of the query language, based on (Vilain, 1982) 

 
IFC DATA MODELING 

 
The IFC standard includes about 600 classes, providing extensive data structures for 
the comprehensive and detailed modeling of buildings. IFC as a neutral data format 
has particular importance as it enables data exchange between software products from 
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different vendors, and serves as well as for realizing the hand-over of building data 
from the designers and contractors to the building operators.  

The BIM query system we have developed uses ifcXML data conforming to 
the ifcXML2x3 standard as input (ifcXML2x3, 2012). A particular challenge is that 
the IFC make use of a very fine-grained object model involving a large set of inter-
connected entities. In addition, the relationships between these entities are modeled as 
explicit objects. This makes the formulation of spatio-temporal queries using the 
original IFC schema extremely complicated. As a consequence, we propose adapting 
the model for the specific requirements of spatio-temporal analysis. This model 
resolves the objectified relationships and combines fine-grain data into more 
meaningful structures. 

In the following, we describe our modifications of the IFC class structure to 
include temporal data. In the original model, scheduled construction intervals are 
represented by a branched structure composed of four different classes: The 
IfcRelAssignsToProduct class associates an IfcProduct, e.g. a wall, with a 
corresponding IfcTask. The task again refers to an IfcTaskTime, which finally 
includes a start and finish time (Figure 2). 

 
Figure 2: Relations between components and their construction times in the IFC 

 
The data structure is simplified by adding a direct link between the IfcProduct object 
and the IfcTaskTime object. Thus, the recurring traversal of branches is not required 
for temporal queries. Furthermore, the relation arises at an IfcProduct which is a more 
natural starting point for use in a query than to examine a set of objectified 
relationships. The streamlined data structure is depicted in Figure 3. 

 
Figure 3: Simplified structure of components and their construction times 

 
The geometrical information of IfcProduct objects is even more widely scattered 
across the IFC model. However, for the evaluation of the topological predicates 
explicit geometry is needed. Thus, the geometry information is transferred to explicit 
triangular meshes by use of external software. The resulting meshes are then linked to 
the appropriate IfcProduct objects.  

 
SPATIAL AND TEMPORAL ALGORITHMS 

The evaluation of the temporal algorithms is based on a comparison of the interval 
and points in time. For example, the start and end points are examined to compute 
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whether two intervals are overlapping. The speed of execution of these tests is fast 
enough to obviate the need for a supporting indexing structure. 

However, the execution of topological operators is expensive and can slow 
down the system. To alleviate this a spatial index using an R* tree (Beckmann et al. 
1990.) is constructed for IfcProduct objects. This eliminates many candidates using 
inexpensive pretests in topological queries. The topological algorithms are based on 
octrees. Here, the geometry of two IfcProduct objects is transferred on-the-fly to 
corresponding octrees. The cells of the tree, called octants, are classified by color 
attributes. The colors reflect the octant’s spatial location concerning the hull of the 
original geometry. Possible color values are Black (Inside), Gray (Boundary) and 
White (Outside). By using a flooding approach, three colored octrees are produced. In 
the parallel traversal of two trees, color combinations are recognized. The 
9 Intersection Model (9-IM) introduced by (Egenhofer, 1989) can now be used to 
deduce the accurate topological predicate. The collected color combinations of 
octants serve as input data. A detailed description of the implementation of 
topological operators is presented in (Daum & Borrmann, 2012).  

 
FORMULATION OF FILTER EXPRESSIONS AND THEIR EVALUATION 

 
In the proposed concept, a query expression is entered as source code by the end user 
or application programmer, respectively. The expression defines a predicate, which is 
used to select objects from a given set. The objects in the returned result set satisfy 
the predicate in the expression. By way of example, a set of walls is filtered by the 
expression wall.GlobalID.StartsWith(“1pJQ”) . Here, wall is a formal parameter which 
is replaced by all walls in the set one after another.  

For the evaluation of query expressions at a set level, we use LINQ as it 
provides powerful query mechanisms for in-memory collections and object networks. 
LINQ is neatly integrated into the .NET framework and queries can be formulized by 
any .NET language. The queries are type safe and attributes and methods of involved 
objects can be used. For the definition of a query, an anonymous function, called a 
Lambda expression, like wall => wall.GlobalID.StartsWith(“1pJQ”) is used. The 
developed BIM system uses C# in combination with LINQ to examine in-memory 
collections. This means the filtering of building models can be executed directly in 
the fast main memory of the machine. When a 64-bit operating system is used, even 
very large building models can be queried without data having to be swapped to 
slower secondary storage. This is not possible with conventional database technology. 

 
LIVE LINQ 

When used as a standard component of .NET, LINQ requires the definition of filter 
predicates at compile time. While it is possible to pass parameters to a LINQ query at 
runtime, the system is restricted to pre-defined filters. To support flexible query 
statements that are entered by the end user at runtime, the expression must be 
converted to an executable filter object. This is achieved by on-the-fly compilation of 
user input at runtime. We call this functionality Live LINQ. If the entered C# code is 
accurate, it is compiled and saved as a .NET assembly, shown as a DLL in the file 
system. The query application can then load this assembly at runtime and use the 
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contained filter object in the pending filter execution. An unfiltered set of IfcProduct 
objects is supplied to the user as a data source. If a query is executed, the LINQ 
processor iterates over the IfcProduct collection. The returned set only contains 
entities, for which the dynamic filter evaluates to true. 

As mentioned above, the IFC class structure can lead to complex filter 
statements. To make it easier to formulate filters, so-called query shortcuts are used 
and implemented with extension methods provided by the .NET framework. 
Extension methods make it possible to publish new methods on already existing types 
without having to recompile the original type. The approach of dynamic DLL 
creation and import is comparable to the query case: the difference is that the user 
enters a new extension method instead of a query. This method is compiled and 
loaded to the BIM application process. The extension method is automatically 
attached to the specific type. The user can simplify the query, as shown in Example 5, 
using a query shortcut. 

In contrast to standard LINQ, the usage of Live LINQ allows the user to 
flexibly define queries. All object attributes can be used in a query and the system is 
not restricted to predefined filters. Additionally, as LINQ directly interact at an object 
level, methods published by objects are also accessible in queries, which make the 
temporal and topological operators available. Finally, filter generation at runtime 
means the compiler can be used as a validation tool for user-defined query statements. 
If inadequate code is submitted, the compiler returns meaningful error messages.  
 
QUERY EXAMPLES 
 
Example 1: Select walls with GlobalId 1pJQicIrH4UR_2BqvRP 
IfcProducts.Where(p =>  
 p is IfcWallStandardCase && p.GlobalId  == "1pJQicIrH4UR_2BqvRP") 
 
Example 2: Select walls which overlap with wall 1 (index 25) 
IfcProducts.Where(p => { 
 var wall1 = IfcProducts [25]; 
 return p is IfcWallStandardCase  && p.Overlaps(wall1); }) 
 
Example 3: Select walls, if their construction-interval overlaps with that of wall1 
and if they meet wall1 
IfcProducts.Where(n => {  

var wall1 = IfcProducts [25]; 
var constructionInterval1= wall1.ConstructionIntervall; 
return p is IfcWallStandardCase  && 

                     p.TOverlaps(constructionInterval1) && p.Meets(wall1);}) 
 
Example 4: Select walls made of concrete 
IfcProducts.Where(p =>  

p.hasAssociations[1].relatingMaterial.forLayerSet. 
materialLayers[1].material.name == "concrete") 

 
Example 5: Select walls made of concrete (using the extension method) 
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IfcProducts.Where(p => p.GetMaterialName() == "concrete") 
 

 
 

Figure 4: BIM system with spatio-temporal query functionality and LIVE LINQ 
 
CONCLUSION 
 
In this paper, we described the definition and implementation of a spatio-temporal 
query language for BIM. This language facilitates the computer-aided analysis of 4D 
models and the extraction of well-defined sub-models. As a basis for the query 
language we use the IFC standard, which provides a powerful modeling environment 
for the representation of buildings. Because the IFC class structure is only partially 
suitable for queries which directly involve spatial and temporal relationships, we 
propose a simplified data model adapted to meet the needs of representing and 
querying spatio-temporal properties and relationships. This significantly simplifies 
the formulation of query statements and reduces the computational costs of query 
evaluation. At the same time, the system is also capable of querying the original, 
complex IFC data structure. The queries are formulated as C# code and executed after 
an on-the-fly compilation in the LIVE LINQ environment. Object attributes and 
methods can therefore be included in query statements. In this way, spatio-temporal 
predicates are made available for direct query formulation. Using the described 
approach, we have been able to provide flexible BIM query functionality that 
provides spatial and temporal awareness. 
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