
 1

Definition and Implementation of Temporal Operators for a
4D Query Language

S. Daum and A. Borrmann

Chair of Computational Modeling and Simulation, Technische Universität München,

Arcisstraße 21, 80333 München; PH +49 89 289-23047; FAX +49 89 289 25051;
email: {daum,borrmann}@bv.tum.de

ABSTRACT

Currently, there is no technology available to validate 4D Building Information
Models using formal methods of temporal and spatial analysis. We propose to fill this
technological gap by providing a query language which provides dedicated spatial
and temporal operators. In the presented approach, a building is digitally represented
by an instance of the neutral data format Industry Foundation Classes (IFC). With
reference to the temporal and spatial data, the promoted IFC class structure is
optimized for the particular query functionality. On the basis of this adapted object
model we make use of the Language-Integrated Query technology (LINQ) provided
by Microsoft’s .NET framework. As LINQ was originally developed for defining
static queries which are evaluated at compile time, we have implemented a dynamic
version called Live LINQ in order to allow the user to flexibly formulate queries and
to process these during the runtime of the BIM application. The developed interface
provides a powerful and easy-to use mechanism for the spatial-temporal analysis and
verification of 4D building information models.

BIM QUERIES

The concept of Building Information Modeling (BIM) is based on the use of
intelligent, machine-readable representations of a building over its entire lifecycle.
Using these representations, it is possible to provide extended computational
functionality such as interactive query evaluation involving spatial and temporal
predicates. This technology is well known from database management systems.
However, BIM data models have particular characteristics that necessitate special
implementations to realize the desired query support. In its standard form, a building
model combines 3D geometry information with a complex object structure of
components and their interrelations. By capturing construction schedule data, the
BIM model can be extended to include temporal information concerning the
construction and/or installation of individual components. This turns a conventional
BIM model into a 4D model (Fischer, 2003).

 2

Today, these 4D models have to be manually checked for correctness, which
is a laborious and error-prone process. Based on our previous work concerning the
realization of a spatial query language (Borrmann & Rank, 2009a,b), in this paper we
discuss their extension through the inclusion of temporal operators. The resulting
spatio-temporal query language facilitates the computational analysis and validation
of 4D building models. An example of a spatio-temporal BIM query is “Select all
non-supporting walls which touch floor 1 and ceiling 1 and which have been
completed after ceiling 1”. This request combines the examination of temporal,
spatial and semantic predicates. Furthermore, the query is an example for the
validation of a 4D model. The result represents all non-supporting walls in one
particular storey. The system presented in this paper is able to process this query.

As input for the developed spatio-temporal query functionality, we make use
of the vendor-neutral product model Industry Foundation Classes (IFC). However, the
IFC object model has a complex and extensive data structure, particularly with
respect to the geometric and temporal properties of building components, which
makes the formulation of spatio-temporal queries extremely complicated. We
therefore propose to transform this into a streamlined data structure. Combined with
an extended version of the Language Integrated Query (LINQ) library, the system
provides end users with an easy-to-use syntax for the formulation of queries involving
spatial, temporal and semantic information.

RELATED WORK

One of the main functionalities of geographical information systems (GIS) is the
processing of spatial queries. Though most of the available commercial GIS products
restrict the spatial query functionality to 2D space, there has been ongoing, intensive
research into 4D data storage and appropriate query technology (Noh, 2004). At the
same time, the different modeling approaches in GIS and BIM make the direct
application of GIS query technology for Building Information Modeling impossible.
Entities in geographical information systems are set up as separate objects. They are
often brought in a common context solely by their spatial location. BIM by contrast
promotes a hierarchical product model with complex relations between the diverse
components (buildingSMART, 2012). In addition, the representation of temporal data
in GIS is not suitable for analyzing the construction and lifetime intervals of
components in a BIM construction schedule.

Current research in BIM addresses methods for model filtering and the
extraction of valid model views. General approaches using standardized database
technology (SQL) have to be distinguished from domain-specific implementations.
The complex IFC data structure and the associated object-relational mapping can lead
to problems in performance and scaling when relational databases are employed
(Wiet, 2012). Domain-specific developments range from native queries in the
EXPRESS-X language to schema-based approaches such as GMSD (Weise, 2003)
and PMQL, the Product Model Query Language of the EuroSTEP Model Server.
Using these approaches, the creation of even a simple query can become very
cumbersome (Borrmann & Rank, 2010). BIMQL is a promising research project
realized as part of the bimserver.org platform (Wiet, 2012). This language operates

 3

directly on the native IFC data format. The approach of using query shortcuts is also
employed in our proposed system for geometry and temporal information.

DEFINITION OF THE TEMPORAL OPERATORS

The available data of the construction schedule represents the anticipated construction
times of components. The user of the proposed BIM query system can additionally
store information about the estimated lifetime of building parts. This makes it
possible for the system to handle temporal queries concerning the lifetime interval of
components.

Figure 1: Construction interval and lifetime interval of component 1

To establish a common understanding of the meaning of the temporal operators, we
institute a formal definition of their semantics based on the definitions provided by
(Vilain, 1982). The temporal primitives employed here are intervals and points in
time. The possible relations between these primitives are reflected by the 14 temporal
predicates depicted in Table 1, which are implemented in our presented system. Using
these predicates we are able to analyze the temporal relationships in a construction
schedule.

Table 1: Temporal operators of the query language, based on (Vilain, 1982)

IFC DATA MODELING

The IFC standard includes about 600 classes, providing extensive data structures for
the comprehensive and detailed modeling of buildings. IFC as a neutral data format
has particular importance as it enables data exchange between software products from

 4

different vendors, and serves as well as for realizing the hand-over of building data
from the designers and contractors to the building operators.

The BIM query system we have developed uses ifcXML data conforming to
the ifcXML2x3 standard as input (ifcXML2x3, 2012). A particular challenge is that
the IFC make use of a very fine-grained object model involving a large set of inter-
connected entities. In addition, the relationships between these entities are modeled as
explicit objects. This makes the formulation of spatio-temporal queries using the
original IFC schema extremely complicated. As a consequence, we propose adapting
the model for the specific requirements of spatio-temporal analysis. This model
resolves the objectified relationships and combines fine-grain data into more
meaningful structures.

In the following, we describe our modifications of the IFC class structure to
include temporal data. In the original model, scheduled construction intervals are
represented by a branched structure composed of four different classes: The
IfcRelAssignsToProduct class associates an IfcProduct, e.g. a wall, with a
corresponding IfcTask. The task again refers to an IfcTaskTime, which finally
includes a start and finish time (Figure 2).

Figure 2: Relations between components and their construction times in the IFC

The data structure is simplified by adding a direct link between the IfcProduct object
and the IfcTaskTime object. Thus, the recurring traversal of branches is not required
for temporal queries. Furthermore, the relation arises at an IfcProduct which is a more
natural starting point for use in a query than to examine a set of objectified
relationships. The streamlined data structure is depicted in Figure 3.

Figure 3: Simplified structure of components and their construction times

The geometrical information of IfcProduct objects is even more widely scattered
across the IFC model. However, for the evaluation of the topological predicates
explicit geometry is needed. Thus, the geometry information is transferred to explicit
triangular meshes by use of external software. The resulting meshes are then linked to
the appropriate IfcProduct objects.

SPATIAL AND TEMPORAL ALGORITHMS

The evaluation of the temporal algorithms is based on a comparison of the interval
and points in time. For example, the start and end points are examined to compute

 5

whether two intervals are overlapping. The speed of execution of these tests is fast
enough to obviate the need for a supporting indexing structure.

However, the execution of topological operators is expensive and can slow
down the system. To alleviate this a spatial index using an R* tree (Beckmann et al.
1990.) is constructed for IfcProduct objects. This eliminates many candidates using
inexpensive pretests in topological queries. The topological algorithms are based on
octrees. Here, the geometry of two IfcProduct objects is transferred on-the-fly to
corresponding octrees. The cells of the tree, called octants, are classified by color
attributes. The colors reflect the octant’s spatial location concerning the hull of the
original geometry. Possible color values are Black (Inside), Gray (Boundary) and
White (Outside). By using a flooding approach, three colored octrees are produced. In
the parallel traversal of two trees, color combinations are recognized. The
9 Intersection Model (9-IM) introduced by (Egenhofer, 1989) can now be used to
deduce the accurate topological predicate. The collected color combinations of
octants serve as input data. A detailed description of the implementation of
topological operators is presented in (Daum & Borrmann, 2012).

FORMULATION OF FILTER EXPRESSIONS AND THEIR EVALUATION

In the proposed concept, a query expression is entered as source code by the end user
or application programmer, respectively. The expression defines a predicate, which is
used to select objects from a given set. The objects in the returned result set satisfy
the predicate in the expression. By way of example, a set of walls is filtered by the
expression wall.GlobalID.StartsWith(“1pJQ”) . Here, wall is a formal parameter which
is replaced by all walls in the set one after another.

For the evaluation of query expressions at a set level, we use LINQ as it
provides powerful query mechanisms for in-memory collections and object networks.
LINQ is neatly integrated into the .NET framework and queries can be formulized by
any .NET language. The queries are type safe and attributes and methods of involved
objects can be used. For the definition of a query, an anonymous function, called a
Lambda expression, like wall => wall.GlobalID.StartsWith(“1pJQ”) is used. The
developed BIM system uses C# in combination with LINQ to examine in-memory
collections. This means the filtering of building models can be executed directly in
the fast main memory of the machine. When a 64-bit operating system is used, even
very large building models can be queried without data having to be swapped to
slower secondary storage. This is not possible with conventional database technology.

LIVE LINQ

When used as a standard component of .NET, LINQ requires the definition of filter
predicates at compile time. While it is possible to pass parameters to a LINQ query at
runtime, the system is restricted to pre-defined filters. To support flexible query
statements that are entered by the end user at runtime, the expression must be
converted to an executable filter object. This is achieved by on-the-fly compilation of
user input at runtime. We call this functionality Live LINQ. If the entered C# code is
accurate, it is compiled and saved as a .NET assembly, shown as a DLL in the file
system. The query application can then load this assembly at runtime and use the

 6

contained filter object in the pending filter execution. An unfiltered set of IfcProduct
objects is supplied to the user as a data source. If a query is executed, the LINQ
processor iterates over the IfcProduct collection. The returned set only contains
entities, for which the dynamic filter evaluates to true.

As mentioned above, the IFC class structure can lead to complex filter
statements. To make it easier to formulate filters, so-called query shortcuts are used
and implemented with extension methods provided by the .NET framework.
Extension methods make it possible to publish new methods on already existing types
without having to recompile the original type. The approach of dynamic DLL
creation and import is comparable to the query case: the difference is that the user
enters a new extension method instead of a query. This method is compiled and
loaded to the BIM application process. The extension method is automatically
attached to the specific type. The user can simplify the query, as shown in Example 5,
using a query shortcut.

In contrast to standard LINQ, the usage of Live LINQ allows the user to
flexibly define queries. All object attributes can be used in a query and the system is
not restricted to predefined filters. Additionally, as LINQ directly interact at an object
level, methods published by objects are also accessible in queries, which make the
temporal and topological operators available. Finally, filter generation at runtime
means the compiler can be used as a validation tool for user-defined query statements.
If inadequate code is submitted, the compiler returns meaningful error messages.

QUERY EXAMPLES

Example 1: Select walls with GlobalId 1pJQicIrH4UR_2BqvRP
IfcProducts.Where(p =>
 p is IfcWallStandardCase && p.GlobalId == "1pJQicIrH4UR_2BqvRP")

Example 2: Select walls which overlap with wall 1 (index 25)
IfcProducts.Where(p => {
 var wall1 = IfcProducts [25];
 return p is IfcWallStandardCase && p.Overlaps(wall1); })

Example 3: Select walls, if their construction-interval overlaps with that of wall1
and if they meet wall1
IfcProducts.Where(n => {

var wall1 = IfcProducts [25];
var constructionInterval1= wall1.ConstructionIntervall;
return p is IfcWallStandardCase &&

 p.TOverlaps(constructionInterval1) && p.Meets(wall1);})

Example 4: Select walls made of concrete
IfcProducts.Where(p =>

p.hasAssociations[1].relatingMaterial.forLayerSet.
materialLayers[1].material.name == "concrete")

Example 5: Select walls made of concrete (using the extension method)

 7

IfcProducts.Where(p => p.GetMaterialName() == "concrete")

Figure 4: BIM system with spatio-temporal query functionality and LIVE LINQ

CONCLUSION

In this paper, we described the definition and implementation of a spatio-temporal
query language for BIM. This language facilitates the computer-aided analysis of 4D
models and the extraction of well-defined sub-models. As a basis for the query
language we use the IFC standard, which provides a powerful modeling environment
for the representation of buildings. Because the IFC class structure is only partially
suitable for queries which directly involve spatial and temporal relationships, we
propose a simplified data model adapted to meet the needs of representing and
querying spatio-temporal properties and relationships. This significantly simplifies
the formulation of query statements and reduces the computational costs of query
evaluation. At the same time, the system is also capable of querying the original,
complex IFC data structure. The queries are formulated as C# code and executed after
an on-the-fly compilation in the LIVE LINQ environment. Object attributes and
methods can therefore be included in query statements. In this way, spatio-temporal
predicates are made available for direct query formulation. Using the described
approach, we have been able to provide flexible BIM query functionality that
provides spatial and temporal awareness.

 8

REFERENCES

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B. (1990): The R*-Tree: An

Efficient and Robust Access Method for Points and Rectangles. In: Proc. of
the 1990 ACM SIGMOD International Conference on Management of Data.

Borrmann, A., and Rank, E. (2009a). “Topological analysis of 3D building models
using a spatial query language” Advanced Engineering Informatics 23(4),
370-385.

Borrmann, A., and Rank, E. (2009b). “Specification and implementation of
directional operators in a 3D spatial query language for building information
models”, Advanced Engineering Informatics 23 (1), 32-44

Borrmann, A., and Rank, E. (2010). “Query Support for BIMs using Semantic and
Spatial Conditions” Handbook of Research on Building Information Modeling
and Construction Informatics: Concepts and Technologies, IGI Global.

buildingSMART Ltd. (2012). “IFC data schemas” Industry Foundation Classes
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm>
(10 January 2012).

Daum, S., and Borrmann, A. (2012). “Efficient and Robust Octree Generation for
Implementing Topological Queries for Building Information Models”
Proceedings of the 19th EG-ICE International Workshop, EG-ICE.

Egenhofer, M., Herring, J., (1989). “A mathematical framework for the definition of
topological relationships.” Proc. of the 4th Int. Symp. on Spatial Data
Handling.

ifcXML2x3, (2012).”ifcXML reference”, http://www.buildingsmart-tech.org/>
(10 January 2012).

Fischer, M., Haymaker J., and Liston K. (2003) ”Benefits of 3d and 4d Models for
Facility Managers and AEC Service Providers”, 4D CAD and Visualization in
Construction, Developments and Applications

Noh, S.‐Y. (2004). “Literature Review on Temporal, Spatial, and Spatiotemporal
Data Models.” Technical Report ‐ Computer Science. Iowa, USA, Iowa State
University.

postGIS (2012). “Using PostGIS: Data Management and Queries”, postGIS reference
http://postgis.refractions.net/documentation/manual-
2.0/using_postgis_dbmanagement.html#DE-9IM> (10 January 2012).

Vilain M. B. (1982): “A system for reasoning about time” AAAI-82 Proceedings
Weise, M., Katranuschkov, P., and Scherer, R. J. (2003). “Generalized model subset

definition schema.” Proceedings of the 20th Conference on Information
Technology in Construction. CIB-W78.

