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A theory has only the alternative of being right or wrong.
A model has a third possibility: it may be right but irrelevant.

Manfred Eigen
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1
I N T R O D U C T I O N

It is also a good rule not to put overmuch confidence in the observational
results that are put forward until they are confirmed by theory.

Sir Arthur Stanley Eddington

Mathematical modeling of real-world processes and phenomena is an integral part
of physics and engineering. A model is the representation of the collected knowledge
about a system. It usually describes the states of the components of the system, the
interactions among the components, and it often links causes with the resulting (ob-
served) effects. Real-world systems could be, among others, physical systems (be they
natural or man-made), economic or financial systems, ecosystems, social systems, or
biological systems. The objectives of mathematical modeling are typically

• to gain better understanding of the organization and the structure of the studied
object(s), to identify interactions, and to discover any existing hierarchies and
subunits,

• to predict the system behavior (i) under ambient or initial conditions not yet
examined, (ii) in the future, or (iii) with respect to unobservable components.

Many of these objectives are achieved through (numerical) simulation, which is there-
fore an essential component of the modeling process.

The formation of a model requires the definition of system boundaries; and thus
the determination which components are part of the system, which are not, and
which components interact with the environment. Furthermore, the level of detail
must be determined: Usually, some of the components can be measured or observed,
others cannot. Therefore, it is often advisable to combine several components and
the interactions among these components into a single unit. In other cases, the goal
might be to “measure virtually” those unobservable variables by means of the model.
The challenge is thus to capture and reproduce the main characteristics of the studied
system and to keep the model as simple as possible at the same time.

The modeling process normally consists of the following basic steps (compare [1,
99] and Fig. 1.1):

. Given the real system whose behavior or observed phenomena are to be repre-
sented in the language of mathematics. The available observations and measure-
ments are analyzed and a conceptual model (that is, a hypothesis) is created.
The conceptual model can, for example, be a verbal description, an interaction
graph, a set of if-then rules, a logical model, mathematical equations, or else.
This step of creation of a conceptual model from observations of the real system
is also known as model qualification. During this step, the system boundaries are

1



2 introduction

defined, assumptions are made, the main components of the system are deter-
mined, and interactions are postulated. Furthermore, the interfaces to the en-
vironment (that is, the inputs and outputs) are specified as well as constraints
imposed on the system by the environment.

. In the next step the conceptual model is translated into a computer model or
program and thus made executable. By means of implementation, the concep-
tual model becomes an object that can be used to experiment with on the com-
puter [99]; that is, through simulations, virtual experiments can be performed
and virtual measurements or observations can be made. During implementa-
tion or programming, it must always be ensured that the computer model ac-
tually is a reasonable representation of the conceptual model. This process is
termed model verification.

. Finally, the results of the virtual experiments (the simulations) are used to en-
sure that the computer model adequately represents the observed behavior of
the real system. The comparison of the virtual measurements with the real
measurement data then leads to either validation or invalidation of the model.
Therefore, parameter calibration (that is, the adjustment of parameters and ini-
tial conditions of the simulation model to obtain the best possible agreement
of virtual and real measurement data) is an essential component of the valida-
tion process. If the model provides only a poor representation of reality right
after the calibration, then rethinking and modification of the computer model
and in consequence of the conceptual model is necessary. Another component
of model validation is the prediction by the model of the behavior of the real
system under conditions that have not yet been probed. The model prediction
is then either confirmed or rejected by the observations of the real system re-
sponse to these new conditions. If the prediction has been falsified, the informa-
tion from the new measurements can be used to infer a necessary adjustment
of the conceptual model.

The last step closes the modeling cycle and by reiteration both the conceptual model
and computer model are repeatedly modified and refined. Thus, from iteration to
iteration both our understanding of the real-world system and the accuracy of the
model should increase.

Conceptual model

Programming

Analysis

Simulation

Computational
model

Real world
system

Model
qualification

Model
verification

Model
validation

Figure 1.1: The modeling cycle according to the Society of Computer Simulation [1]
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The modeling process outlined above is closely related to the scientific method [2],
which can be described with the following steps:

• Observation of a real-world phenomenon.

• Formulation of a hypothesis to explain the observation.

• Prediction of new phenomena based on the hypothesis or development of a test
to confirm (or deny) the hypothesis.

• New observation of the real-world system under study.

• Comparison of the prediction with observations.

• Confirmation or rejection of the hypothesis depending on the results from the
last step.

This linear chain of observation, hypothesis formation, and verification is iterated
over and over, leading to a more mature and elaborate hypothesis.

“And yet it moves”1 - the modeling cycle at work

One of the most popular examples to demonstrate and illustrate the power of this
approach comes from astronomy [18]. Going back to the works of Aristotle, the earth
was a long time considered as the center of the cosmos, around which all the planets
(known at that time) and also the sun were revolving. The observations of the plan-
etary movements, however, were not in agreement with this model. Astronomers
observed that the planets sometimes slowed their movement, stopped, and then with
increasing acceleration moved in the opposite direction.

The attempts to explain and mathematically model these movements culminated in
the works of Claudius Ptolemy who successfully developed an adequate mathemat-
ical representation. Ptolemy combined three geometric constructs into a comprehen-
sive model: the eccentric, the epicycle and the equant. In Aristotle’s view of the world
all planets rotated on circular paths, in the center of which was the earth. By means
of the eccentric, Ptolemy displaced the Earth slightly from the center. To describe and
explain the reversal of the motions of the planets, he introduced epicycles. In this con-
struction, a planet moves on a smaller circular path whose center point rotates on
a larger circle (the deferent - see Fig. 1.2). If one epicycle alone was not sufficient to
describe the observed motions, then several epicycles were simply stacked on each
other. Finally, the equant completed the model. The center point of the epicycle re-
volved no longer around the center of the deferent but at a constant velocity around
the equant point (Fig. 1.2). Considering the precision of the measurements at that
time, the Ptolemaic model was accurate enough to describe the observed motions of
the planets quite well.

Nicolaus Copernicus later created a model which placed the sun in the center of
the universe. However, he also used the epicycle-concept to describe planetary mo-
tion. Interestingly, in some cases he had to stack even more epicycles on each other
than Ptolemy. Johannes Kepler, after analyzing his own observations and those of

1 attributed to Galileo Galilei
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Earth

planet

center

equant point

deferent

epicycle

Figure 1.2: Ptolemy’s model of planetary motion

Tycho Brahe, abandoned the intricate epicycle construct by postulating that the plan-
ets move on elliptic orbits. Later on, Isaak Newton developed his laws of gravitation
which imply and generalize Kepler’s laws of planetary motion.

This example from astronomy nicely illustrates how the modeling cycle changes
and facilitates our understanding of physical phenomena. Moreover, the impressive
advances and developments in technology and engineering demonstrate that mathe-
matical modeling is not only suitable for the analysis and description of observations.
In fact, modeling and simulation have become invaluable tools nowadays that guide
and drive the development of new technological products; that is, the synthesis prob-
lem.

1.1 systems biology - the "science" of adding epicycles

The life-sciences, by contrast, have a completely different culture. Although in some
areas of the life-sciences, such as physiology and neuroscience, mathematical mod-
eling is well established, there is considerable room for development in other areas
like microbiology and molecular biology. The traditional modeling process in cell bi-
ology is a rather rudimentary variant of the cycle shown in Fig. 1.1. Here, typically
only a conceptual model is formulated based on measured data. This model, which
actually provides only a qualitative understanding of the observed phenomena, is
then used to suggest new experiments, the results of which in turn lead to either
confirmation or rejection of the conceptual model. The extremely rare success stories
in the life-sciences indicate that this approach is not a particularly successful concept.

In his essay “Can a biologist fix a radio? - Or, what I learned while studying apop-
tosis”, Yuri Lazebnik takes a humorous look on the common methodology of biol-
ogists and contrasts it with the approaches used in engineering [63]. He arrives at
the conclusion that the biological approach might allow for the identification of the
supposedly most important components of a system, however, many important inter-
actions among the components and design principles of the studied system remain
largely undetected. At the same time, Lazebnik emphasizes the advantage of the
quantitative, formal language which is commonly employed by all engineers to both
analyze and design even large and complex systems: mathematics.
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Systems Biology

Systems biology has been praised by its advocates as a new paradigm that should
fundamentally change and even revolutionize the scientific methodology of biology.
While the cell biology approach described by Lazebnik more or less amounts to
listing all the components and their putative properties of a biological system, the
systems-level approach of systems biology goes far beyond that: Systems biologists
seek the understanding of [57]

• the system structure and related design patterns that can help to characterize the
interactions among components and particular properties of the system under
study, and

• the dynamics and underlying control strategies to explain the behavior of the
cell under different environmental conditions and the cell’s response to various
stimuli.

However, the community which is committed to systems biology could not yet agree
on a consensus definition of their field of research. This disagreement can occasion-
ally be attributed to the fact that systems biology is a biotope comprising of biologists,
physicists, computer scientists, mathematicians, and engineers; all of them trying to
establish the basic principles and methodologies of their respective disciplines in this
new environment. Thus, several points of view fight for the privilege of interpreta-
tion of this trans- and interdisciplinary environment. Engineers, for example, tend to
see systems biology as “the reincarnation of systems theory applied in biology” [116].
The author of this thesis is of course affected by his education as systems and control
engineer, and is therefore biased in favor of the systems theory concept.

However, all philosophical and reviewing texts about this “new” field of research
share a common notion: they all emphasize the importance of mathematical model-
ing and computer simulation for the analysis and the understanding of the processes
in living organisms. This dissertation builds upon this perception. We will apply the
extremely successful concept of mathematical modeling of natural/physical phenom-
ena to a problem in cell biology. The incentive to do so is obvious: Biology is currently
at most in its Ptolemaic phase; that is, the biological “cosmos” is poorly and insuffi-
ciently explored, the assumptions and conceptions about the properties and relations
of the components of this cosmos are mostly wrong and and so are the few existing
mathematical models that are usually built to describe tiny “galaxies” (small reaction
networks that are part of a large cellular network). To make a long story short: So far,
there exists no systems theory of cell biology.

This dissertation is intended to contribute to the development of a biological sys-
tems theory. Our object of consideration is the Kdp system of the bacterium Escherichia
coli (E. coli), an emergency system that is activated by potassium (K+) limitation or
by osmotic stress to satisfy the cellular demand for K+ under these conditions. There
already exists a first mathematical model of this system [61]. In the following, some
more epicycles will be added to this model.



6 introduction

1.2 motivation and scope of the thesis

This doctoral thesis was originally involved in the project KOSMOBAC: Ion and solute
homeostasis in enteric bacteria: an integrated view generated from the interface of modeling
and biological experimentation of the European transnational funding and research ini-
tiative SysMO2. The author was a member of the research team of Work Package 1:
Population based and single cell based modeling of the K+ uptake systems in E. coli. The
research of the group focused on the deterministic modeling of K+ uptake by the
Kdp system, notwithstanding the title of this work package.

To illustrate the role of the Kdp system for the K+ homeostasis of E.coli, the various
K+ transport systems of the bacterium and their properties will be reviewed in the
next subsection. Thereafter, we will present the objectives and contents of this thesis.

1.2.1 K+ transport in E. coli

Potassium (K+) is regarded as the most important intracellular cation in living cells
[10]. There seems to be a common strategy among both prokaryotes and eukaryotes
to exclude sodium (Na+) from the cytoplasm and to accumulate K+ within the cells
[27]. K+ plays an important role in turgor control and therefore the ion is involved in
osmoregulation/adaptation and cell volume regulation [27, 105]. Besides that main
function, K+ has also been reported to be important for the regulation of pH [16].
The cytoplasmic pH value in bacteria is approximately neutral. Due to K+ uptake
the cells extrude protons in order to maintain electro-neutrality and consequently pH
becomes slightly alkaline. In addition, K+ affects gene expression [91], the activation
of enzymes [106] and the cellular response to other stress situations [19].

In order to respond to the "cellular need" for K+, there exist several K+ uptake
and efflux systems [7]. Each of these transport systems possesses its maximum trans-
port capacity/activity under specific physiological conditions. Furthermore, the trans-
porters facilitate different energy sources, which allows for effective K+ translocation
under the respective conditions.

Currently, three K+ uptake system are known [105]: Trk, Kup and Kdp (see Fig.
1.3). In E. coli, the TrkG/H system (Trk) is the dominant/major transporter at K+ con-
centrations above 200 µM at medium and higher pH values. Trk is a constitutively
expressed low affinity transporter (Km ≈ 1mM) that occurs in small numbers per cell
[17] and that features very high turnover rates [21] - each complex has the capacity to
transport 104 − 105 K+ ions per second into the cell. The name TrkG/H stems from
the two similar membrane bound proteins TrkG and TrkH [101]. It is assumed that
the trkH gene is an intrinsic gene of E. coli whereas the trkG gene has entered the
bacterium via a prophage. In order to enable K+ uptake, the TrkA protein, which
possesses a binding site for NAD or NADH, is required to attach to TrkG and TrkH
[100]. Another protein that binds to the two membrane proteins is TrkE, which pos-
sesses ATP binding sites [47]. Whereas TrkE is crucial for the activity of TrkH, TrkG
can be active without TrkE being bound to it. The current conceptual model of the
mode of function of the Trk system states that TrkG/H is a secondary porter that uses
the proton gradient ∆µH+ as energy source to transport K+ against its concentration
gradient into the cell [105]. In this model ATP is seen as an activator of the transport

2 SysMO: Systems Biology of Microorganisms
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process. Recently, a link between cell metabolism and K+ uptake has been identified
[64]. Protein EIIANtr of the nitrogen phosphotransferase system was found to bind to
TrkA and to consequently inhibit Trk activity. The purpose of the interaction between
central metabolism and K+ uptake has not been resolved yet and will be subject to
further analyses.

Kup is the second constitutively expressed K+ uptake system in E. coli [112]. This
system gains importance when Trk activity is not sufficient and Kdp is not yet in-
duced. Just like Trk, Kup is a secondary porter that facilitates the proton gradient
as energy source, however, with a lower K+ transport rate. In contrast to Trk, Kup
reaches its maximum transport capacity at lower pH values. Thus, these two sec-
ondary porters seem to complement each other.

This thesis deals with the third K+ uptake system, the high affinity system Kdp
(Km ≈ 2 µM [21]), which is induced when E. coli cells grow at low K+ concentrations
or when the intracellular osmotic pressure is to low [113]. Under these conditions the
two constitutively expressed transporters Trk and Kup cannot keep up with the cells’
requirement for K+ so that Kdp serves as an emergency system that scavenges the
extracellular K+ and reduces it to concentrations as low as 50 nM [105]. Kdp consists
of the K+ transport complex KdpFABC and the two-component system KdpD/KdpE,
which senses various physiological signals and controls expression/induction of the
kdpFABC operon [3]. K+ uptake by KdpFABC is powered by hydrolysis of ATP via a
P-Type ATPase mechanism [85].

Figure 1.3: K+ uptake and extrusion systems in E. coli
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In addition to the aforementioned uptake systems, E. coli possesses also several
extrusion systems [7]. To prevent the cell pressure from rising abruptly following an
osmotic downshock, the cells release large quantities of K+ to the environment. The
quite rapid extrusion of K+ is mediated by the stretch-activated Msc channels [109].

The KefB/KefC channels are somewhat exceptional since they play no active role
in turgor or pH regulation. Instead, they underlie regulation by glutathione (GSH)
and glutathione derivatives [30]. GSH is involved in the detoxification of methylgly-
oxal (MG) [29]. Reaction of methylglyoxal with glutathione produces an intermediate
which is then converted to S-lactoylglutathione (SLG). While GSH has an inhibiting
effect on the KefB/KefC channels, activates SLG the K+ outflow through them. Due
to the K+ loss the cell pH decreases, which protects the cells against the toxic effect
of MG.

Moreover, it is known that there exists a K+/H+ antiporter in E. coli [9]. Unfor-
tunately, there is no further information available about its functionality and the
conditions under which the system is active.

1.2.2 Outline of the thesis

It was explained above that Kdp is an emergency system which is, unlike Trk and
Kup, activated and synthesized only under certain conditions. This thesis was in-
tended to contribute to a better understanding of the hitherto poorly characterized
regulation of Kdp under K+ limitation by means of mathematical modeling.

All modeling efforts were based on the experimental work that was conducted
at the Chair of Microbiology in the workgroup of Prof. Kirsten Jung at the Ludwig-
Maximilians-Universität (LMU), München. The kdpFABC transcript data and the Kdp-
FABC translation data shown in Fig. 1.4 were the starting point and motivation for
this doctoral thesis. The figure displays data from (i) an E. coli wild-type strain
(MG1655) and from (ii) a mutant with a supposedly defective KdpFABC complex
(MG1655kdpA4). Both strains were exposed to K+-limiting conditions. Particularly
striking is the tremendous qualitative difference between the non-monotonic dynam-
ics of the wild-type transcripts and the monotone time course of the mutant (Fig.
1.4a)

The main question was how the non-monotonic dynamics of wild-type transcripts
can be explained. Gowrishankar has some time ago expressed the hypothesis that
there exists an osmotically active proportion of K+ in the cell and an osmotically in-
active proportion [37]; only one of these two fractions influences the two-component
system KdpD/KdpE and, consequently, the transcription of the kdpFABC operon. We
have revived this idea. We decided to augment the mathematical model of the Kdp
system developed by Kremling [61] by the balances of external and intracellular K+,
and to examine more closely the possible influence of K+ on the two-component
system. To support the formulation and verification of the augmented model, the
cooperation partners in the working group Jung quantified all relevant K+ concen-
trations experimentally.

Therefore, the initial objectives of this doctoral thesis were

. Formulation of a comprehensive mathematical model of the Kdp system of E.
coli including
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(b) Translation

Figure 1.4: Wet lab data of kdpFABC transcript and KdpFABC amounts. The non-monotonic
time-course of the wild-type transcript is presumably caused by intracellular K+

acting on the KdpD/KdpE two-component system.

• the KdpD/KdpE two-component system

• transcription of the kdpFABC and the kdpDE operons and translation of the
respective gene products

• balances of external and internal (free and bound) K+.

. Analysis of the model with respect to

• structure

• possible dynamic behavior

• parameter uncertainties.

. Calibration of the model to experimental data.

. Verifiable predictions of the behavior of Kdp system at K+ abundance.

Model analysis and parameter calibration usually require the application of numer-
ical methods. Thus, it was in some cases necessary to enhance established tools/algo-
rithms and to adapt them to the particular problems of this study, which led to these
additional objectives:

. Development of an algorithm to modularize mathematical models of biochemi-
cal networks.

. Development of a strategy for parameter identification that is robust against
non-identifiable parameters.

. Application, adaptation and development of methodologies to simulate dynam-
ical models with uncertain parameters.

Figure 1.5 illustrates how the individual objectives relate to each other.
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Experimental data
Sec. 1.2, 3.1

Modeling approach
Sec. 2.1

Model formulation
Sec. 3.2

Model analysis
Sec. 6.2, 6.4

Predictions
Chapter 7

Modularization
Theory      Application
Sec. 2.2           Sec. 6.1

Uncertainty analysis
  Theory        Application

  Chapter 5       Sec. 6.4, 7.4

Parameter estimation
     Theory         Application
  Sec. 4.1, 4.2          Sec. 6.3

Regularization
Sec. 4.3

Figure 1.5: The contents of this thesis and how they are related. Arrows indicate the flow of
information.



2
M AT H E M AT I C A L M O D E L I N G A N D M O D U L A R I Z AT I O N O F
B I O C H E M I C A L N E T W O R K S

2.1 chemical kinetics and the law of mass action

One of the most important milestones of this thesis was the development of a dy-
namic model of the biochemical reaction network of the Kdp system. Here, we will in-
troduce the approach that was used to obtain the model presented in Sections 3.2.1 to
3.2.3. Let us consider a biochemical network with n chemical species Xi, i = 1, . . . ,n.
The species are involved in a system ofm elementary reactions (sometimes also referred
to as reaction channels) Rj, j = 1, . . . ,m of the type

n∑
i=1

αi,j ·Xi
kj→

n∑
i=1

βi,j ·Xi, j = 1, . . . ,m (2.1)

where the αi,j> 0 are the stoichiometric coefficients of the reactants, the βi,j> 0 are the
stoichiometric coefficients of the products, and kj is the rate constant (or kinetic constant)
of the reaction. The stoichiometric coefficients αi,j and βi,j are integers that represent
the relative molar proportions of the species in the respective reaction [84]. In gen-
eral, the velocity (or: the rate) of a reaction depends on (i) the temperature, (ii) the
concentrations1 of the involved enzymes and (iii) the concentrations of the reactants.

When modeling cellular systems, it is normally assumed that the temperature is
constant throughout the process so that the influence of this variable can be neglected.
Furthermore, it is common to treat the concentrations of the enzymes which catalyze
the reactions as constant - unless the mass balances of all or some of the enzymes are
also modeled. Due to these assumptions and simplifications, the rates of the reactions
are solely dependent on the rate constant and the concentrations of the reactants.

The most common approach for the modeling of intracellular reaction networks is
the law of mass action. This law simply states that the rate of a reaction is proportional
to the probability of the collision of the reactants. The probability of a collision, on
the other hand, is proportional to the concentrations of the reactants by the power of
their molecularities (that is, the stoichiometric coefficients) [58]. Therefore, the rates
or velocities vj of the elementary reactions (2.1) are

vj(c, p) = kj ·
n∏
i=1

c
αi,j
i (t) > 0 ∀ t, j = 1, . . . ,m,

where the parameters kj and αi,j, i = 1, . . . ,n, j = 1, . . . ,m are combined into the
vector p. By means of those reaction rates vj(c, p), we can formulate the differential

1 Concentration: The amount concentration (or: molar concentration) ci of a chemical species Xi is de-
fined as the amount ni of the substance (in moles) divided by the volume V of the mixture; that is,
ci =

ni
V [73].

11
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equations for the concentrations of the species Xi, i = 1, . . . ,n of the reaction network
as

d ci(t)

dt
=

m∑
j=1

(
βi,j −αi,j

)
· vj(c(t), p) , ci(0) = ci,0. (2.2)

The right hand side of each of these equations depends on both the concentration of
species Xi and on the concentrations of other species so that the entire network is
described by a system of coupled differential equations

d c(t)
dt

= N · v (c(t), p) , c(0) = c0 (2.3)

where N ∈ Rn×m is the stoichiometric matrix with elements nij = βi,j − αi,j. Thus,
we can determine the time courses of the concentrations of all species in the network
by solving this ODE system. In the derivation of the ODEs in Eq. (2.2) and (2.3) the
system volume (that is, the cell volume) was considered constant. However, in reality
cells grow and therefore the reaction volume changes over time. In order to account
for the dilution due to cell growth, the ODEs have to be corrected accordingly so that
the ODE system (2.3) becomes

d c(t)
dt

= N · v (c(t), p) − µ · c(t), c(0) = c0 (2.4)

where µ is the growth rate of the cells.
All biochemical reactions are, in general, reversible; that is, theoretically there al-

ways exist two elementary reactions
∑n
i=1 αi,l ·Xi

kl→
∑n
i=1 βi,l ·Xi and

∑n
i=1 βi,l ·

Xi
k−l→
∑n
i=1 αi,l ·Xi that can be collected in a (reversible) reaction

n∑
i=1

αi,l ·Xi
kl


k−l

n∑
i=1

βi,l ·Xi, l = 1, . . . , m̂ (2.5)

where m̂ = m/2 if all reactions in the network are considered reversible.2 The rate of
the reversible reaction (2.5) is then the difference of the velocities of the elementary
(irreversible) reactions

vl(c, p) = (βi,l −αi,l) ·

(
kl ·

n∏
i=1

c
αi,l
i (t) − k−l ·

n∏
i=1

c
βi,l
i (t)

)
.

Mathematical modeling of biochemical systems always requires a trade-off be-
tween detail, comprehensibility and simplicity of the system description. The mass
action approach usually results in large, non-linear ODE systems, which can often
be difficult to analyze. However, by means of model reduction techniques it is often
possible to determine simpler system representations with fewer state variables and
parameters. The individual reactions in biochemical networks usually evolve on dif-
ferent time scales. This property can be used for model simplification.

2 Modelers often neglect the fact that all chemical reaction are microscopically reversible. If the rate
of the backward reaction is small compared to the forward reaction, they often neglect the backward
reaction and consider only the irreversible forward reaction. Therefore, models of biochemical networks
often comprise of both reversible (combinations of elementary reactions) and irreversible (elementary)
reactions.
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Rapid equilibrium assumption

A common approach for model reduction or simplification is to assume rapid equilib-
rium of some of the reversible reactions; that is, the reaction is considered very fast
and the velocities of the forward and backward reaction are approximately equal.
Due to this assumption we have vl(c, p) = 0 and as result of that we obtain

kl
k−l

=

n∏
i=1

c
βi,l
i

n∏
i=1

c
αi,l
i

. (2.6)

Equations of that type often allow to remove some of the ODEs from system (2.3) and
to determine the concentrations of the corresponding species by means of algebraic
equations of the type (2.6). The result is a system of differential-algebraic equations
(DAE) that assumes the form

ċx(t) = N · v(cx(t), cz(t), p), cx(t0) = cx,0

0 = g(cx(t), cz(t), p), cz(t0) = cz,0.
(2.7)

where cx ∈ Rnx(nx < n) and cz ∈ Rnz(nx + nz 6 n). In Section 2.2.2 we are going
to state an example how the application of the rapid equilibrium assumption and
consideration of mass conservation can lead to equation systems of the type (2.7).

The quasi-steady state assumption and Michaelis-Menten kinetics

Another frequently used approach to model simplification is to eliminate the equa-
tions of intermediate complexes that arise during the conversion of educts in prod-
ucts. The so-called Michaelis-Menten kinetics, which is often used in Systems Biology to
define specific reaction rates or the velocities of substrate transport processes through
cell membranes, belongs to these methods. This approach will also be applied in parts
of this thesis to model trans-membrane transport of K+.

Michaelis-Menten kinetics are derived from considering the enzyme-catalyzed con-
version of a substrate S into a product P described by the reaction scheme

E+ S
k1


k−1

ES
k2→ E+ P, (2.8)

wherein E denotes the enzyme and ES is the enzyme-substrate complex. Using the
mass action law to specify the reaction rates, one obtains the differential equations of
the concentrations cS, cE, cES and cP [58]. Assuming then that the concentration of
the complex remains approximately constant in the course of the reaction, that is

ċES ≈ 0 ∀ t, (2.9)

then ES is in the so-called quasi-steady-state. The total amount of the enzyme cE,0

is conserved during the conversion of the substrate into the product so that cE,0 =

cE + cES = const. By substituting cE = cE,0 − cES into the differential equation for
cES and then taking ċES = 0 yields

cES =
k1 · cE,0 · cS

k−1 + k2 + k1 · cS
= cE,0

cS
k−1+k2
k1

+ cS
. (2.10)
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The rate of product formation rp is then determined by

ċP = k2 · cES = k2 · cE,0
cS

k−1+k2
k1

+ cS
= rP. (2.11)

With the definition of the maximum velocity

Vmax = k2 · cE,0 (2.12)

and the Michaelis constant (also called the half saturation constant)

Km =
k−1 + k2
k1

, (2.13)

the rate becomes

rP = Vmax
cS

Km + cS
. (2.14)

Reaction velocities of the type in Eq. (2.14) are referred to as Michaelis-Menten kinetics.

2.2 classification of the network connections using the network

theory for chemical processes

Modeling of biochemical networks by means of the law of mass action - and related
modeling approaches - often results in a set of differential equations of the form

ẋ(t) = f(x(t), p) = N · v(x(t), p), x(t0) = x0, (2.15)

where x ∈ Rn is the time-dependent vector of the concentrations of the network
components, N ∈ Rn×m is the stoichiometric matrix of the reaction network and
v ∈ Rm is the vector of the reaction rates [58]; compare Eq. (2.3) and (2.4). Note
that by appending the dilution terms µ · ci(t) from Eq. (2.4) to v(x(t), p) and by an
appropriate adjustment of the stoichiometric matrix N, the ODE system (2.4) can be
expressed in the form (2.15).

The network theory for chemical processes proposed by Gilles [33] offers a convenient
framework to facilitate comprehension and analysis of the interactions among the
components of the network defined by Eq. (2.15). Using this network theory allows
for both a better understanding of the network structure and the decomposition of
the network into smaller sub-units, the properties of which (under certain conditions)
can be analyzed independently from the other parts of the system.

In this network theory a system is composed of combinations of two types of el-
ementary units: components, which are storages of physical quantities, and coupling
elements, which describe the interactions between components. In terms of biochem-
ical reaction networks, the chemical species/compounds are the components with
their concentrations as physical quantities, whereas the reactions are the coupling el-
ements. Moreover, there exist two types of vectors that connect the components with
the coupling elements and vice versa. Potential vectors point from the components
to the coupling elements and current vectors conversely point from the coupling ele-
ments to the components (see Fig. 2.1a). In the context of biochemical networks, these
two types of vectors are interpreted such that the potential vectors carry information
about the concentrations from the biochemical species (the components) to the reac-
tions (the coupling elements), whereas the current vectors carry information about
the reaction rates from the reactions back to the species [97].
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rfxk xl

rexi xj

rd

(a) Classical network theory

rfxk xj

rexi zp

rd

st zq

(b) Generalization of network theory

Figure 2.1: Network theory for chemical processes applied to biochemical models. x• and z•
denote components (chemical species) of the network. The coupling elements are
denoted by r• (reactions) and s• (signaling elements). Dashed arrows represent
potential vectors, solid lines are current vectors.

2.2.1 Application of the network theory to ODE models

The mathematical description of a biochemical system by means of the ODE system
in Eq. (2.15) already contains all elements of network theory. In the following, we are
going to present a methodology to identify and mathematically represent these ele-
ments and their interrelations. From now on, the effect of a component (biochemical
species) on a coupling element (reaction) will be termed potential and the effect of a
coupling element on a component will be termed current.

Next, all potentials and currents shall be identified. In order to to so, we follow
the procedure and the notation of Saez-Rodriguez and coworkers [98] who originally
developed this method. Further details can be found in [32]. The goal of this analy-
sis is to characterize the interactions among the system’s components by means of
an interaction graph. Therefore, one needs to know whether two species are linked
through at least one reaction (that is, a current) and whether this reaction/these reac-
tions is/are affected by the two species (that is, whether there is a connection through
potentials).

In order to characterize the connection between two components through currents,
the stoichiometric matrix is used. If we follow the arguments in [28] then the stroichio-
metric matrix is a reaction map in which the species are the nodes and the reactions
are the directed edges. On the other hand, the matrix −NT can be interpreted as the
compound map in which the reactions are the nodes and the species are the directed
edges. Thus, we define the symmetric binary matrix NCI ∈ {0, 1}n×n

NCIij =

{
1 if

[
N(−N)T

]
ij,i 6=j 6= 0

0 else
(2.16)

the entries of which indicate whether two components are linked through currents.
Component xi influences reaction vj(x, p) if ∂vj∂xi

6= 0. Conversely, reaction vj(x, p)
influences component xi if Nij 6= 0. Therefore, the information whether the compo-
nent xj affects component xi through at least on reaction is encoded in the Jacobian
J = N · ∂v(x,p)

∂x . There exists an influence of xj on xi through a potential if Jij(x, p) 6= 0.
Therefore, we define the indicator matrix of the Jacobian JI ∈ {0, 1}n×n

JIij =

{
1 if Jij 6= 0
0 else

(2.17)
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which stores all potentials among the components of the network. For the sake of
completeness it shall be mentioned that in [98] the authors specify a method for
the determination of JI that also accounts for the magnitude of the interactions and
therefore allows to neglect potentials that are small in comparison to others.

It is of special interest if two components affect each other mutually; that is, if
there is a bidirectional connection between them. This information, for instance, is
important for the modularization of networks since bidirectionally coupled compo-
nents should not be placed in two different modules. This information is already
stored in the matrix JI. Therefore, if we are only interested in the bidirectional
couplings among components through potentials it is convenient to use the matrix
JIR ∈ {0, 1}n×n

JIRij =

{
1 if JIij 6= 0 and JIji 6= 0
0 else

. (2.18)

A coupling between two storages i and j is termed retroactive in terms of network
theory if JIRij = JIRji = 1 and NCIij = NCIji = 1 [98]. In contrast we will denote a
connection with JIRij = JIRji = 1 and NCIij = NCIji = 0 as bidirectional.

example The small network of Fig. 2.1a serves to illustrate this concept briefly.
The connection between xk and xl is retroactive since the two variables are coupled
by both current vectors as well as potential vectors (JIRkl = JIRlk = 1, NCIkl = NCIlk = 1).
Components xi and xk are connected in a unidirectional manner since there is no
current vector pointing from re to xk (JIRik = 1, JIRki = 0, NCIik = NCIki = 0). Similarly,
as the potential vector from xj to re is missing, the connection between xi and xj is
unidirectional (JIRij = 0, JIRji = 1, NCIij = NCIji = 1). Moreover are xj and xk unidirec-
tionally linked (JIRjk = 1, JIRkj = 0, N

CI
jk = NCIkj = 0). The connection between xi and xk

could be made bidirectional if there were a potential vector pointing from xi to rd.
Then, one would have (JIRik = JIRki = 1, N

CI
ik = NCIki = 0).

2.2.2 Novel algorithm for the analysis of DAE models

Unfortunately, the method Saez-Rodriguez and coworkers [98] is limited to ODE
models of the type ẋ(t) = N · v(x(t), p), which restricts the applicability of this tool.
More often the dynamic models of biochemical networks are given as semi-explicit
DAE systems of the form

ẋ(t) = f(x(t), z(t), p) = N · v(x(t), z(t), p), x(t0) = x0 (2.19)

0 = g(x(t), z(t), p), z(t0) = z0. (2.20)

with x ∈ Rnx , z ∈ Rnz , g ∈ Rnz , p ∈ Rq, v ∈ Rm and N ∈ Rnx×m. Models of
this type generally arise through the application of simplifying assumptions which
eventually allow to describe the concentrations of some of the biochemical species
through implicit or explicit algebraic equations. Taking into account mass conserva-
tion relations also offers the possibility to replace the respective differential equations
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by algebraic equations for some of the species. For example, consider the reaction
scheme

S+ E
k1


k−1

SE
k2→ P+ E (2.21)

E+ 2I
k3


k−3

EII (2.22)

which describes the enzyme catalyzed conversion of a substrate S into a product P
with the formation of the enzyme-substrate complex SE as an intermediate step. In
parallel, two inhibitor molecules I can bind to the enzyme, which cannot react with
the substrate in its bound form EII. Application of the law of mass action leads to the
following set of differential equations for the concentrations of all involved species

ċS

ċE

ċSE

ċP

ċI

ċEII


=



−1 1 0 0 0

−1 1 1 −1 1

1 −1 −1 0 0

0 0 1 0 0

0 0 0 −2 2

0 0 0 1 −1


·



k1 · cS · cE
k−1 · cSE
k2 · cSE
k3 · cE · c2I
k−3 · cEII


, (2.23)

the structure of which corresponds to the form of Eq. (2.15). If the reversible reaction
(2.22) is very fast in comparison to the reactions (2.21), the rapid equilibrium assump-
tion can be applied so that cEII = k3

k−3
· cE · c2I . Moreover, we can take into account

that the total amount of the inhibitor, which is either free or bound, remains constant.
Therefore, the conservation relation for the total concentration of I is cI+2cEII = cItot .
Inserting the result of the rapid equilibrium assumption into that equation yields an
algebraic relation for the concentration of free I, cI + 2 k3k−3 · cE · c

2
I = cItot , which re-

places the differential equation for cI. In addition, one can take into account that the
total amount/concentration of the enzyme cEtot is also a constant quantity so that
cE + cSE + cEII = cEtot = const. With that relation the differential equation for cSE
can be replaced. Thus, the dynamic behavior of the reaction scheme (2.21) and (2.22)
is captured by the DAE system

Example to illus-

trate the algorithm
outlined below

ċSċE
ċP

 =

−1 1 0

−1 1 1

0 0 1

 ·
k1 · cS · cEk−1 · cSE

k2 · cSE

 (2.24)

(
0

0

)
=

cE + cSE + k3
k−3
· cE · c2I − cEtot

cI + 2
k3
k−3
· cE · c2I − cItot

 . (2.25)

Comparison of this dynamic model with the ODE model (2.23) clearly shows that
essential information about reaction rates and the connection of system variables
through reactions have been lost. Kinetic models of biochemical reaction networks
are, however, very often stated in a form like the DAE system in Eq. (2.24) and (2.25).
Therefore, it would be very convenient to have an algorithm at hand that allows to
analyze such models by means of the network theory of Gilles.
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In what follows, a novel methodology is going to be developed that makes use of
the concept of the network theory for chemical processes and that can be seen as a
generalization of the method of Saez-Rodriguez and colleagues [98]. The DAE system
(2.24) and (2.25) will be used as example to illustrate the new algorithm. All matrices
specified at the side margins of this and of the following pages refer to this example.

We will stick to the fundamental idea of the network theory that a system consists
of two types of elementary elements, namely, components an coupling elements. And
we will also retain the idea that components and coupling elements are connected
through potential vectors and current vectors. The extension and generalization of
the network theory and, therefore, of the method of Saez-Rodriguez and coworkers
is that a second type of coupling element, which shall be termed signaling element,
is introduced. This novel coupling element links certain components only through
potential vectors, that is, potential vectors point from components to the signaling
elements and vice versa (see Fig. 2.1b).

In order to do so, the components of an arbitrary biochemical network are grouped
into two distinct sets: The set X contains all of those components the dynamic behav-
ior of which can be described by differential equations of the type in Eq. (2.19). All of
those components that are determined by algebraic equations like (2.20) are grouped
in the set Z.

Inspection of the set of equations (2.19) clearly shows that both components from
the set X and components from Z carry information about their concentrations via
potential vectors to the coupling elements (v = v(x, z)). Moreover, there are only
current vectors pointing from these coupling elements to components in X.

The equations in (2.20) are such that the components in Z are linked with each
other directly through coupling elements of the new type since there is no direct
information about the reaction rates stored in these equations. In addition, informa-
tion about the potentials of components in X is carried to components in Z via the
signaling elements. However, there are no current vectors pointing to any of the Z

components (see also the example equations (2.25)).
The presented generalization of network theory requires a new methodology to

analyze the connection structure of such generalized models. Therefore, we propose
the following strategy to identify all currents and potentials in a biochemical network
that is described by a DAE system of the type (2.19) and (2.20). In order to identify
all currents, we first define the indicator matrix NCIf ∈ {0, 1}nx×nx with

NCIf =

1 1 0

1 1 1

0 1 1

 [
NCIf

]
ij
=

{
1 if

[
N(−N)T

]
ij,i 6=j 6= 0

0 else

which indicates which components from X are coupled through currents. As already
mentioned, the components in the set Z are not connected to coupling elements
through current vectors so that the indicator matrix

NCI=



1 1 0 0 0

1 1 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

 NCI =

(
NCIf 0nx×nz

0nz×nx 0nz×nz

)

is the mathematical representation of all currents in the DAE system.
Whereas it was quite easy to identify the potentials of the ODE system (2.15) by

means of the Jacobian, we face some difficulties when treating the DAE system (2.19)
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and (2.20). Unfortunately, we cannot simply evaluate the system Jacobian. Instead, we
need to create the digraph3 of the system from which we can infer which components
of the network influence other components through potentials.

In [71] the authors have introduced an algorithm for the determination of digraphs
of DAE models of chemical processes. We have adapted this algorithm for our pur-
poses, that is, to models of the type that is used throughout this thesis; and we shall
present the result in the following.

Determination of the digraph of the ODE system (2.19) x=

cScE
cP

, z=

(
cSE

cI

)
Since in ODE systems the causality is "from right to left" [71], we can proceed

analogously to the method in [98]. The influence through potentials among the com-
ponents in X can be determined by means of the sub-Jacobian

Fx=


−k1cE −k1cS 0

−k1cE −k1cS 0

0 0 0

Fx = N
∂v(x, z, p)

∂x
.

Accordingly, the information which components in Z affect which components in
X through potentials is encoded in the sub-Jacobian

Fz=

k−1 0

k−1 0

k2 0

Fz = N
∂v(x, z, p)

∂z
.

Therefore, just like in [98], binary indicator matrices of the Jacobians FIx ∈ {0, 1}nx×nx

and FIz ∈ {0, 1}nx×nz with

[
FIx
]
ij
=

{
1 if [Fx]ij 6= 0
0 else

FIx=

1 1 0

1 1 0

0 0 0


[
FIz
]
ij
=

{
1 if [Fz]ij 6= 0
0 else

FIz=

1 0

1 0

1 0


are defined, which store the information about all potentials that influence the com-
ponents in X.

Determination of the digraph of the algebraic system (2.20)

Algebraic systems capture instantaneous behavior and are, thus, acausal [71] so that
the procedure is as follows. We shall term the components in Z the system variables of
the equation system (2.20) whereas the components in X shall be termed exovariables
(or exogenous variables). The Jacobian with respect to the exovariables is

Gx=

0 1+
k3c

2
I

k−3
0

0
2k3c

2
I

k−3
0

Gx =
∂g(x, z, p)

∂x
and the Jacobian with respect to the system variables is

Gz=

1 2k3cEcI
k−3

0
4k3cEcI
k−3

+ 1

Gz =
∂g(x, z, p)

∂z
.

These two matrices are necessary to determine the dependency graph of the system,
which is constructed as follows.

3 Digraph: Directed graphs (digraphs) are defined as sets of nodes which are connected by directed
edges (also denoted as arcs). In the context of this section, the nodes represent the components of a
biochemical network, and the edges represent the directed interactions among them.
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I First, for every equation gi, directed edges are drawn from the exovariables to
all system variables in that equation. A matrix representation of that step is
given by the indicator matrix DIx ∈ {0, 1}nz×nx which determines whether there
is an connection between the exovariable xj and the variable zk

[
DIx
]
kj

=

{
1 if [Gx]ij 6= 0 and [Gz]ik 6= 0 for at least one i

0 else.
DIx=

(
0 1 0

0 1 0

)

I Next, for each equation, bidirectional edges between all system variables in that
equation are drawn. We obtain a matrix representation of this step by means
of the indicator matrix DIz ∈ {0, 1}nz×nz which determines whether there is an
connection between the variable zj and the variable zk so that

[
DIz
]
kj

=
[
DIz
]
jk

=

{
1 if [Gz]ij,j6=k 6= 0 and [Gz]ik,k6=j 6= 0 for at least one i

0 else.
DIz=

(
0 1

1 0

)

Note that the actual number of bidirectional edges between any two system
variables is irrelevant. The important information is whether there exists at
least one such connection.

I The dependency graph is then represented by the matrix

D =
(

DIx DIz
)

.

After constructing the dependency graph, a bipartite graph4 between the system
equations and the system variables is created and a perfect matching5 is determined.
The bipartite graph can be represented by the indicator matrix GIz ∈ {0, 1}nz×nz

GIz=

(
1 1

0 1

) [
GIz
]
ij
=

{
1 if [Gz]ij 6= 0
0 else.

We can find a perfect matching in Matlab if we apply the Dulmage-Mendelsohn
decomposition dperm to GIz. As result, one obtains a vector with indexes that indicate
which equation (row of GIz) was matched with which system variable (column of GIz).

∃ only one perfect
matching since[

GIz
]
21

= 0. Match
cSE with row 1,
cI with row 2.

Now it is possible to construct the digraph of the system. The procedure is straight-
forward for components/system variables for which there exists only one perfect
matching. Components for which more than one perfect matchings are possible re-
quire a slightly different treatment.

4 Bipartite graph: In a bipartite graph, the nodes can be divided into two disjoint subsets so that there are
only edges (connections) between nodes that are not in the same set. In terms of the algebraic system,
the equations are seen as nodes that are grouped into one subset and the system variables are nodes
that are collected in the second subset. Therefore, there are only edges between equations and system
variables (and vice versa) but no edges among the equations and no edges among the system variables.

5 Perfect matching: Several edges are removed from the bipartite graph so that each equation is connected
(matched) to only one system variable (and vice versa). If there is no equation and no system variable
left unmatched we obtain a perfect matching. However, it is possible that there exist several different
perfect matchings for a bipartite graph.
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I Digraph generation for variables with only one perfect matching: Let the kth
equation gk be matched with system variable zi. Then directed edges are drawn
from all exovariables in equation gk to variable zi. The matrix representation of
this step is given through MI

x ∈ {0, 1}nz×nx with entries

[
MI
x

]
ij
=

{
1 if variable zi is matched with equation gk ∧ [Gx]kj 6= 0
0 else.

MI
x=

(
0 1 0

0 1 0

)

Furthermore, directed edges are drawn from all system variables zj,j6=i in gk to
zi, that is, in matrix notation this step is represented by MI

z ∈ {0, 1}nz×nz with
entries[
MI
z

]
ij
=

{
1 if variable zi is matched with equation gk ∧ [Gz]kj,j6=i 6= 0
0 else.

MI
z=

(
0 1

0 0

)

I Digraph generation for variables with more than one possible perfect matching: assume that

GIz=

(
1 1

1 1

)
If there are system variables for which more than one perfect matchings are
possible then there exists at least one strongly connected component6 (SCC) that
consists of these variables. ∃ 2 perfect

matchings
In [71] the authors merge the variables that consti-

tute an SCC into a supernode which then replaces the variables. Here, we pursue
another strategy. First, one defines the set C that contains the indexes of all vari-
ables that lead to more than one perfect matchings

C = {i | i ∈ {1, . . . ,nz} ∧ zi leads to multiple perfect matchings}. C={1,2}

Then, instead of replacing the variables zi, i ∈ C, through a supernode, all con-
nections among these variables are made bidirectional. Therefore, the potentials
that connect the system variables in C with each other can be identified using
the dependency graph:

[
MI
z

]
ij
=

{
1 if variable zi is matched with equation gk ∧

[
DIz
]
kj
6= 0 ∧ i, j ∈ C

0 else.
MI
z=

(
0 1

1 0

)

Furthermore, directed edges are drawn from all exovariables that influence at
least one of the variables in C to all other variables in C. This way, the entries in
MI
x become

[
MI
x

]
ij
=

{
1 if variable zi is matched with equation gk ∧

[
DIx
]
kj
6= 0 ∧ i, j ∈ C

0 else
MI
x=

(
0 1 0

0 1 0

)

Digraph of the DAE system

Then the matrix representation of the digraph of the DAE system is given by

JI=



1 1 0 1 0

1 1 0 1 0

0 0 0 1 0

0 1 0 0 1

0 1 0 0 0

JI =

(
FIx FIz
MI
x MI

z

)
.

As we have already stressed, the digraph JI contains the entire information about
the potentials of the DAE system (2.19) and (2.20). Therefore, this matrix is the DAE-
equivalent of JI for ODE models (see Eq. (2.15)).

6 Strongly connected component (SCC): A subset of a digraph in which every node can be reached from
every other node in this subset.
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2.2.3 Modularization of the models

Saez-Rodriguez and coworkers have already established that symmetric entries JIRij =

JIRji = 1 are a necessary, but not a sufficient, criterion for a retroactive connection in
an ODE model [98]. Only when NCIij = NCIji = 1 applies simultaneously, then are two
components i and j retroactively coupled. On the other hand symmetric entries are
a sufficient criterion for bidirectional connections. In the case of an DAE model, the
connections between dynamic and algebraic variables as well as among the algebraic
variables can only be bidirectional, but not retroactive7. Therefore, the matrix JIR will
be used for modularization of both ODE and DAE models. The modularization it-
self is achieved by solving an optimization problem, which dissects a biochemical
network by means of the interaction structure of JIR such that the bidirectional con-
nections among the modules are minimized.

A central assumption of community structure detection, a sub-field of graph theory,
is that networks have by nature a modular structure, which can be discovered. Size
and number of the subunits are thus inherent properties of the respective network
under study [81]. However, the discovery of subunits first requires both a qualitative
and quantitative definition of a module. Newman and Girvan have presented an al-
gorithm, which decomposes a network such that there are less connections between
the subunits than one would expect [82]. If the structure of a network is given by
the adjacency matrix A, and the degree di =

∑
kAik is the number of edges that are

connected to node i, then the probability that two edges are connected to each other
can be calculated as

Pij =
didj

2m
,

where m = 1
2

∑
i di is the total number of nodes of the network. Using this property,

Newman and Girvan proposed to dissect a network by means of maximization of the
modularity

Q =
1

2m

∑
ij

(
Aij − Pij

)
· δ
(
Mi,Mj

)
(2.26)

where

δ
(
Mi,Mj

)
=

{
1 if the nodes i and j are in the same module

0 else.

which consequently maximizes the difference between the actual number of nodes in
the modules and the expected number of nodes. This approach was applied in this
thesis.

Biochemical networks defined either by ODE models of the type in Eq. (2.15) or by
DAE models (Eq. (2.19) and (2.20)) can be dissected into subunits such that the num-
ber of bidirectional connections within the modules is maximized, or equivalently
minimized among the modules. To this end, we take JIR (see Eq. 2.18) as adjacency
matrix, that is, A = JIR, and subsequently solve the optimization problem (2.26). Sev-
eral optimization approaches have been developed to solve this particular problem;
Saez-Rodriguez and coworkers have reviewed and applied some of them [98].

7 This is a direct consequence of the model reduction, which causes the loss of information about the
existence of currents.
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In the next chapter a dynamic model of the Kdp system will be developed. The
results of the characterization of the network structure by means of the network
theory, and the results of the modularization of the model will be discussed in Section
6.1.
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Algorithm 1: Modularization of biochemical networks defined as DAE systems
Input: dynamic components x, algebraic components z, stoichiometric matrix N,

vector of reaction rates v(x, z), vector of algebraic relations g(x, z)
Output: list of modules (and corresponding components)

// determination of the digraph of the ODE subsystem:

Fx ← N∂v(x,z,p)
∂x , Fz ← N∂v(x,z,p)

∂z ;1

calculate FIx and FIz ;2

// determination of the digraph of the DAE subsystem:

Gx ← ∂g(x,z,p)
∂x , Gz ← ∂g(x,z,p)

∂z ;3

calculate bipartite graph GIz;4

determine perfect matching(s) for GIz;5

if ∃ only one perfect matching then6

determine MI
x and MI

z using Gx and Gz;7

else8

// dependency graph:

compute DIx and DIz;9

D←
(
DIx DIz

)
;10

C← indexes of all components for which multiple perfect matchings exist;11

determine MI
x and MI

z using C, DIx and DIz;12

end13

// digraph:

JI ←

(
FIx Fiz
MI
x MI

z

)
;

14

compute JIR;15

// adjacency matrix:

A← JIR;16

determine degree di of each node/component;17

// probability matrix:

compute P;18

// optimize modularity:

maximize Q = 1
2m

∑
ij

(
Aij − Pij

)
· δ
(
Mi,Mj

)
;19

return list of modules {M1,M2, . . .M#modules} ;20



3
M AT H E M AT I C A L M O D E L O F T H E K D P - S Y S T E M O F E . C O L I

In this chapter, a mathematical core model of the Kdp system of E. coli will be devel-
oped and presented. Some parts of the model have already been developed elsewhere
[61]. However, we will nevertheless provide a complete and detailed derivation of
the core model; on the one hand to facilitate understanding of the model equations
and on the other hand to lay foundations for potential model expansions or possi-
ble experimental setups for validation or invalidation of the model, which will be
discussed in Chapters 6 and 7. As a basis for the model formulation, the current
biological knowledge (the conceptual model) will be recapitulated first.

3.1 literature review - the world according to the biologists

The Kdp system of E. coli is activated when the cells are either exposed to osmotic up-
shock or to K+ limitation, conditions under which the constitutively expressed trans-
porters Trk and Kup fail to maintain the intracellular K+ levels required to ensure cell
growth. Kdp is composed of two subunits: (i) the KdpD/KdpE two-component sys-
tem, which senses or detects the aforementioned conditions, and (ii) the high-affinity
KdpFABC complex, which translocates K+ into the cell.

kdpd/kdpe two-component system KdpD is a sensor protein, which spans
the cytoplasmic membrane four times; both terminal ends are located in the cyto-
plasm [114]. In spite of numerous studies which were dedicated to this subject the
signal that is detected by KdpD could not be clearly identified yet. Upon detection
of the unknown stimulus, KdpD undergoes autophosphorylation, that is KdpD re-
acts with ATP which then releases a phosphate group to KdpD. The phosphorylated
sensor protein is denoted KdpD-P. Phosphorylated KdpD in turn can react with the
response regulator KdpE whereupon the phosphate group is transferred from Kdp-D
to KdpE [114] (see Fig. 1.3). However, KdpD also dephosphorylates KdpE-P [54].

In its phosphorylated state, the response regulator exhibits an increased affinity
for the promoter region of the kdpFABC operon [78], the genes of which encode the
proteins of the KdpFABC complex (see Fig. 3.1). Adjacent and partially overlapping
with kdpC is the kdpDE operon [90]. In this context, a significant readthrough of
the kdpFABC transcript into the kdpDE operon was observed [90]. Researchers sus-
pect that the binding of KdpE-P causes a change in the DNA bending which sub-
sequently amplifies the transcription of the operon [108]. It was also observed that
non-phosphorylated KdpE can bind to the promoter-region, however, without any
effect on transcription [107].

The stimulus of KdpD is unknown. However, the following factors were discussed
by various researchers:

(i) ATP: Since ATP is capable of binding to the N-terminal domain of KdpD [48],
and osmotic up-shock causes increased intracellular ATP levels [83], ATP was

25
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kdpF kdpA kdpB kdpC kdpD kdpE

P
kdpFABC P

kdpDE

KdpEP

K+ transport system two-component systemTF

Figure 3.1: Kdp regulon of E. coli

hypothesized as a possible signal for the regulation of the two-component sys-
tem. However, this hypothesis has never been studied in detail.

(ii) turgor pressure: Turgor pressure (the difference of the osmotic pressure of the
medium and that of the cytoplasm) has been discussed as stimulus due to the
following observations. On the one hand, a transient induction of the kdpFABC
operon upon hyperosmotic shock was reported [62]. On the other hand, tur-
gor can be manipulated by low K+ levels [26]; a condition under which the
enhanced expression of the operon has also been detected. However, the in-
duction can be observed only when the external osmolarity is affected by salt
osmolytes. Sugars as osmotic agents have no impact on the expression [4]. Sev-
eral years ago again experiments were conducted in which cells were exposed
to various extracellular osmolytes. The evaluation of the cell volumes that were
measured in the individual experiments indicates that the turgor indeed exerts
no influence on the two-component system [39].

(iii) K+: Eventually, the regulation of KdpD/KdpE was related to external and in-
tracellular K+ concentrations and also to the K+ uptake rate. It was observed
that the reduction of the external K+, after falling below a certain threshold,
leads to the expression of kdpFABC [36, 62]. However, it was observed using
trkA mutants that the threshold value can be adjusted [36]. Therefore, it can be
assumed that extracellular K+ is not the desired signal but that after-effects of
K+ reduction cause the induction of the kdpFABC operon. Based on these obser-
vations, Gowrishankar suggested that intracellular K+ exists in two fractions, of
which one is osmotically active, whereas the other one is not involved in osmo-
regulation [37]. He suggested that the second fraction controls the expression
of the kdpFABC operon.

kdpfabc complex K+ is taken up by the KdpFABC complex against its concen-
tration gradient. KdpFABC is a P-type ATPase which uses the dephosphorylation of
ATP as energy source for K+ translocation [38]. K+ uptake by the complex is elec-
trogenic according to literature sources [8] so that the cell membrane is depolarized.
However, it was also reported that the cell maintains electroneutrality by extruding
Na+ during K+ uptake [95].

KdpFABC consists of the four proteins KdpA, KdpB, KdpC and KdpF [38, 105].
KdpA contains several K+ binding sites and is most likely the actual K+ transporting
unit. The subunit KdpB appears to play a role in the hydrolysis of ATP and in the
conformational changes of the complex that are necessary to carry extracellular K+

into the cytoplasm. KdpA and KdpB are presumably connected by KdpC. The role of
KdpF is not yet resolved, however, it might also serve to stabilize the complex [31].
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3.2 model formulation/development

3.2.1 Module 1: KdpD/KdpE two-component system

We start with the introduction of the first module of the core model. This module
describes the dynamics of the KdpD/KdpE two-component system as well as the
initiation of transcription through the binding of phosphorylated KdpE and further
transcription factors to the promoter of the kdpFABC operon.

The dynamics of the two-component system are determined by three reactions:
(i) autophosphorylation of the sensor kinase KdpD (D) (reaction R1 - Eq. (3.1)), (ii)
transfer of the phosphoryl group from KdpD-P

(
DP
)

to the response regulator KdpE
(E) (reaction R2 - Eq. (3.2)) and (iii) dephosphorylation of free (that is, not bound to
DNA) KdpE-P

(
EPf
)

through KdpD (reaction R3 - Eq. (3.3)).

R1 : ATP+D
k1


k−1

ADP+DP (3.1)

R2 : DP + E
k2


k−2

D+ EPf (3.2)

R3 : D+ EPf
k3→ D+ E (+Pi) (3.3)

This scheme is also illustrated in Fig. 3.2
We shall stress again here that the stimulus/the stimuli for the KdpD/KdpE sys-

tem are not known. In what follows, all possible but so far unknown input signals
will be denoted as u. We expect that all extrinsic signals enter the two-component sys-
tem by affecting either the autophosphorylation reaction or the dephosphorylation
reaction. The transfer of the phosphoryl group is regarded very fast in comparison to
these two reaction so that this reaction is considered unregulated. Therefore, in the
model we assume that the input signals u affect the reaction parameters k1 = k1(u)

or/and k3 = k3(u).

KdpDP KdpEP

KdpEKdpD

r3r1 r2

PiATP

ADP

u1 u2

Figure 3.2: Reaction scheme of the KdpD/KdpE two-component system. Reactions r1 and r3
are possibly subject to the impact of external signals (denoted u1 and u2, respec-
tively).

Furthermore, this module describes the initiation of transcription, which is based
on the interaction of RNA polymerase and free KdpE-P proteins with the promoter
of the kdpFABC operon. The initiation of basal transcription of the operon can be
described by the reactions in Eq. (3.4) and (3.5): (i) first, free RNA polymerase (Pf)
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binds to free σ-factor yielding complex P (loaded polymerase) which (ii) then binds
to the free binding site DNAf on the promoter.

Pf + σ
Kσ

 P (3.4)

P+DNAf
KP

 PD (3.5)

Transcription of the kdpFABC operon can be enhanced/amplified through binding of
free KdpE-P to the respective binding site at the promoter. We describe this process
by the following set of reactions

2 EPf +DNAf
KE

 ED (3.6)

2 EPf + PD
αKE

 PED (3.7)

P+ ED
αKP

 PED (3.8)

which can take place in an arbitrary order. On the one hand, dimerized free KdpE-P
can bind to the promoter which is not yet occupied by loaded polymerase; see Eq.
(3.6). In this configuration (ED), transcription of the operon is not possible. Alter-
natively, the promoter can already be occupied with polymerase (see reaction (3.5)).
Then, dimerized free KdpE-P binds to the promoter with higher affinity, represented
by the factor α in Eq. (3.7). The third possibility is that loaded polymerase binds
to the promoter with KdpE-P already attached to it; see Eq. (3.8). In this case the
binding affinity is also increased by the factor α. In configurations PD and PED the
polymerase can clear the promoter and subsequently move along the DNA and initi-
ate transcription of the kdpFABC operon.

For the sake of simplicity and due to the fact that there are no experimental data
available, we consider the reactions (3.4) to (3.8) very fast in comparison to the reac-
tions of the two-component system and in comparison to transcription and transla-
tion so that we apply the rapid-equilibrium-approach to this equations.

So far the experimental quantification of RNA polymerase Pf and σ factor under
K+ limiting conditions was impossible. Therefore, we collect these two variables to-
gether with the dissociation constants Kσ and KP in a single unit-free parameter

1

K
=

Pf · σ
Kσ ·KP

.

Using this parameter, we calculate the stationary concentrations of P, PD, ED and
PED as functions of free KdpE-P and free DNA binding sites:

P =
1

Kσ
· Pf · σ

PD =
1

KP
· P ·DNAf =

1

Kσ ·KP
· Pf · σ ·DNAf =

1

K
·DNAf

ED =
1

KE
· EPf

2 ·DNAf

PED =
1

αKE
· EPf

2 · PD =
1

αKE
· 1

Kσ ·KP
· Pf · σ · EPf

2 ·DNAf =
1

αKE
· 1
K
· EPf

2 ·DNAf.
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Taking into account the conservation relations of the binding site of the kdpFABC
promoter

DNA0 = DNAf + PD+ ED+ PED = DNAf ·
(
1+

1

K
+
1

KE
·
(
1+

1

αK

)
· EPf

2
)

,

we derive an equation for the concentration of the free DNA binding sites as an
explicit function of free KdpE-P

DNAf =
DNA0

1+
1

K
+
1

KE
·
(
1+

1

αK

)
· EPf

2
=
α ·KE ·K
1+αK

· DNA0
α ·KE · (1+K)

1+αK
+ EPf

2
.

The concentration of the free transcription factor KdpE-P
(
EPf
)

is determined likewise
from the conservation relations of the total concentration of KdpE-P

EP = EPf + 2 ED+ 2 PED = EPf + 2
1

KE
·
(
1+

1

αK

)
· EPf

2 ·DNAf

= EPf + 2
EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
·DNA0

which yields an implicit relation.
After the derivation of these relationships we are now in a position to state a

dynamic model for the KdpD/KdpE two-component system and the associated ini-
tiation of transcription. The result is a coupled set of differential-algebraic equations
(DAEs)

dDP

dt
= −k−1 ·ADP ·DP − k2 ·DP · E+ k1 ·ATP ·D+ k−2 ·D · EPf (3.9)

dEP

dt
= −k−2 ·D · EPf − k3 ·D · EPf + k2 ·DP · E (3.10)

EP = EPf + 2
EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
·DNA0 (3.11)

D = D0 −D
P (3.12)

E = E0 − E
P (3.13)

with differential equations for the phosphorylated states of KdpD
(
DP
)

and KdpE(
EP
)

(Eq. (3.9) and (3.10)) as well as algebraic equations for the unbound KdpE-P
proteins

(
EPf
)
, Eq. (3.11). The concentrations of non-posphorylated KdpD (D) and

KdpE (E) are determined through Eq. (3.12) and (3.13) where D0 and E0 denote
the total concentrations of the KdpD and KdpE proteins (phosphorylated and non-
phosphorylated), respectively. Due to the readthrough from kdpFABC to the kdpDE
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operon, the synthesis of both proteins is augmented at K+ limitation. Consequently,
D0 and E0 are time-dependent variables. Therefore, we are going to derive the differ-
ential equations for them in Section 3.2.2.

3.2.2 Module 2: Transcription and translation

Building on the modeling of transcription initiation in the last section, we proceed
now with the deduction of a mathematical model of transcription and the subsequent
translation. We start with the complexes PD and PED which undergo the reactions

PD
kctr→ Y +DNAf + σ (3.14)

PED
kctr→ Y +DNAf + σ+ 2 E

P
f (3.15)

in order to create a complex Y, which denotes the polymerase moving along the DNA.
Through these reactions, the polymerase clears the promoter leading to a free DNA
binding site DNAf and free σ factor. In reaction (3.15) the bound KdpE-P dimer is
also released.

Subsequently, the polymerase (Y) moves along the DNA and binds nucleotides Nu
in order to create mRNA [60]

Y +Nu
ktr→ Y1 (3.16)

Y1 +Nu
ktr→ Y2 (3.17)
...

Yi +Nu
ktr→ Yi+1 (3.18)
...

YL−1 +Nu
ktr→ Pf +mRNA (3.19)

where L is the length of the final mRNA (that is, the number of appended nu-
cleotides).

We assume that all nucleotides possess the same binding affinity and that they are
available in sufficient amounts so that they are no limiting factor for chain elongation.
After termination of elongation a completed mRNA chain has been created and the
polymerase is released from the DNA; see Eq. (3.19). The final mRNA is then subject
to degradation:

mRNA
kz→ ∅.



3.2 model formulation/development 31

In order to keep the model simple, we assume that the complexes (chains) Yi, (i =

1, . . . ,L) are in quasi-steady-state so that we obtain the following relations:

Y =
kctr

ktr
· (PD+ PED)

Y1 = Y

...

Yi = Yi−1 = Y

...

Yl−1 = Y.

Using this result, we can state a differential equation for the tanscript (mRNA)

dmRNA

dt
= ktr · Yl−1 − (kz + µ) ·mRNA = kctr · (PD+ PED) − (kz + µ) ·mRNA

where we have also considered growth dependency (µ). The fraction of occupied
promoter of the kdpFABC operon is

ψ =
PD+ PED

DNA0
=

1

K
·
(
1+

1

αKE
· EPf

2
)

1+
1

K
+
1

KE
·
(
1+

1

αK

)
· EPf

2
=

α ·KE + EPf
2

α ·KE · (1+K) + (1+αK) · EPf
2

=
1

1+αK
·

α ·KE + EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
,

which can be substituted into the transcript ODE so that

dmRNA

dt
= ktr ·ψ ·DNA0 − (kz + µ) ·mRNA.

Currently, it is not known whether the synthesis of both the kdpFABC and kdpDE gene
products is subject to regulation by some effectors. Therefore, the approach by Lee
and Bailey [65] was used to model the concentrations balances of KdpFABC (FABC)
and of the total protein concentrations of KdpD (D0) and KdpE (E0). They assume
that the rate of protein synthesis is proportional to the concentration of transcript so
that the ODEs become

d FABC

dt
= ktl,F ·mRNA− (kd,FABC + µ) · FABC

dD0
dt

= ktl,D ·mRNA− (kd + µ) ·D0
dE0
dt

= ktl,E ·mRNA− (kd + µ) · E0.

Owing to the lack of information about the dynamics of KdpFABC complex forma-
tion from the four subunits, the model simply implies that the complex is synthesized
in one step - see also Fig. 3.3.
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Figure 3.3: Reaction scheme of transcription and translation of the Kdp system. For the sake
of simplicity, expression of the genes coding for the four subunits of the KdpFABC
transporter is treated as a single process.

3.2.3 Module 3: Potassium uptake

The third module of the Kdp-system describes the dynamics of the K+ balances.
The modeling approach builds upon the idea of Gowrishanka according to which a
fraction of the intracellular K+ is bound (for example, to macromolecules) and the
remainder moves freely in the cytoplasm [37] (see Fig. 3.4). Thus, a set of differential
equations were defined which describe the uptake of K+ from the culture medium
into the living cell, the mass transfer between free and bound fractions and the release
of K+ from dead cells into the medium. Moreover, the model was complemented by
equations to describe cell growth and death.

KexK+

KdpFABC

TrkG/H

?

KfreeK+

KboundK+

cell death

K+

Figure 3.4: Assumed distribution of K+ outside and inside the cells. Extracellular K+ is taken
up by viable cells and added to the pool of free intracellular K+. A fraction thereof
binds/unbinds to/from macromolecules. Due to K+ limitation, a sub-population
of cells dies. If these cells lyse, their entire K+ content is released into the culture
medium.
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The basic model for the description of all balances has the following form

dK+
free

dt
= rup − rexch − µ ·K+

free

dK+
bound

dt
= rexch − µ ·K+

bound

dK+
dead

dt
= δ ·

(
K+
free +K

+
bound

)
· Volv − rlys

K+
tot = K

+
ex +

(
K+
free +K

+
bound

)
· Volv +K+

dead = const. (3.20)
dVolv

dt
= (µ− δ) · Volv

dVold
dt

= δ · Volv

Voltot = Volv + Vold

where rup is the uptake rate, rexch the rate of mass exchange between free and bound
K+ and rlys is the rate with which lysing cells release K+ into the medium. The
parameters µ and δ denote the growth and the death rate, respectively. K+

free and
K+
bound denote the concentration of free and bound K+ in a viable cell whereas K+

dead

is the total concentration in all dead cells. The total volume of cells Voltot is the sum of
the volume of viable cells Volv and the volume of dead cells Vold. Finally, Eq. (3.20) is
the conservation equation of the total concentration of K+ which is distributed across
the culture medium, the viable cells (free and bound) and the dead cells. Derivation
of this equation with respect to time yields

K̇+
ex +

(
K̇+
free + K̇

+
bound

)
· Volv +

(
K+
free +K

+
bound

)
· ˙Volv + K̇+

dead = 0

and consequently, after rearranging and canceling terms, one obtains a differential
equation for the extracellular K+ which is

dK+
ex

dt
= −rup · Volv + rlys.

In the provisional basic model, the individual reaction rates were defined as fol-
lows. The uptake rate is proportional to the concentration of the KdpFABC complex
and it is also a saturable function of the extracellular K+ concentration:

rup = kup · FABC ·
K+
ex

Km +K+
ex

. (3.21)

The non-linear term is due the fact that all transport complexes possess only a limited
transport capacity so that the uptake rate is at some point in saturation and no longer
proportional to the quantity of the substrate to be transported (here: K+

ex). The rate
law (3.21) also arises when one considers the following simplified reaction scheme
for K+ uptake

K+
ex + FABC 
 K•FABC

kup→ K+
free + FABC

which corresponds to the enzyme-substrate reaction scheme in Eq. (2.8). Here, FABC
serves as the enzyme, K+

ex is the substrate, and K+
free is the product. If the complex

K•FABC is assumed to be in the quasi-steady state, the same formalism as in Eq. (2.9)
to (2.14) can be applied to derive the “rate of product formation”; that is, rup.
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Little is known how free and bound K+ are distributed in E. coli cells. Moreover, the
kinetics of the mass transfer between these two fractions is also unknown. Therefore,
at first a linear rate law for the description of the K+ binding/unbinding was used,
that is,

rexch = kbind ·K+
free − kdiss ·K

+
bound.

Furthermore, also nothing is known about the fate of cells that die due to K+

limitation. For model formation, it was assumed that the cells lyse gradually and
that K+ is released into the medium with the rate

rlys = Vmax,lys
K+
dead

Km,lys +K
+
dead

.

With the specified rates, the basic model for K+ uptake reads

dK+
ex

dt
= −FABC · kup ·

K+
ex

Km +K+
ex
· Volv + Vmax,lys

K+
dead

Km,lys +K
+
dead

dK+
free

dt
= FABC · kup ·

K+
ex

Km +K+
ex

− kbind ·K+
free + kdiss ·K

+
bound − µ ·K

+
free

dK+
bound

dt
= kbind ·K+

free − kdiss ·K
+
bound − µ ·K

+
bound

dK+
dead

dt
= δ ·

(
K+
free +K

+
bound

)
· Volv − Vmax,lys

K+
dead

Km,lys +K
+
dead

dVolv

dt
= (µ− δ) · Volv

dVold
dt

= δ · Volv.

However, this model is not applicable for two main reasons. First, the measure-
ments of free and bound K+ average over both viable and dead cells. And second, no
measurements of dead cells were taken in case of the mutant and the complemented
mutant; see Chapter 6. Therefore, we propose a smaller, lumped model that should
be sufficient and realistic enough to reflect the experimental data. In the reduced
model no distinction between viable and dead cells is made so that only the total
number/volume of cells is considered. Consequently, the model contains no separate
balance equation for the K+ in the dead cells. Instead, the balance equations of the
intracellular K+ express the conditions of the average cell of the total population.
The average cell is thus both partially viable and takes up K+ and at the same time
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it is partially dead and releases K+ into the medium. The model of the ambivalent
average cell then reads

dK+
ex

dt
= −FABC · kup ·

K+
ex

Km +K+
ex
· Voltot

+ Vmax,lys
K+
free +K

+
bound

Km,lys +K
+
free +K

+
bound

· Voltot

dK+
free

dt
= FABC · kup ·

K+
ex

Km +K+
ex

− kbind ·K+
free + kdiss ·K

+
bound − µ ·K

+
free

− Vmax,lys
K+
free

Km,lys +K
+
free +K

+
bound

dK+
bound

dt
= kbind ·K+

free − kdiss ·K
+
bound − µ ·K

+
bound

− Vmax,lys
K+
bound

Km,lys +K
+
free +K

+
bound

dVoltot

dt
= µ · Voltot

which obeys the mass conservation rule

K+
ex +

(
K+
free +K

+
bound

)
· Voltot = K+

tot = const.

Due to K+ limitation, the cell growth decreases over time so that the growth rate
becomes time-dependent. For the sake of simplicity the cell volume was modeled
applying a versatile approach of Nelder [79] with which the growth rate can be
expressed as the function of the cell volume so that

dVoltot

dt
· 1

Voltot
= µ = kµ,1 ·

(
1−

(
Voltot

kµ,2

)n)
.
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3.2.4 The core model

The state equations of the constituents of the Kdp system derived in Sections 3.2.1
to 3.2.3 can be combined in a comprehensive model, which shall be termed the core
model. The model is given by the following DAE system.

dDP

dt
= −k−1 ·ADP ·DP − k2 ·DP · E+ k1 ·ATP ·D+ k−2 ·D · EPf

− (kd + µ) ·DP
(3.22)

dEP

dt
= −k−2 ·D · EPf − k3 ·D · EPf + k2 ·DP · E− (kd + µ) · EP (3.23)

EP = EPf + 2
EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
·DNA0 (3.24)

dmRNA

dt
= ktr ·ψ ·DNA0 − (kz + µ) ·mRNA (3.25)

d FABC

dt
= ktl,F ·mRNA− (kd,FABC + µ) · FABC (3.26)

dD0
dt

= ktl,D ·mRNA− (kd + µ) ·D0 (3.27)

dE0
dt

= ktl,E ·mRNA− (kd + µ) · E0 (3.28)

K+
tot = K

+
ex +

(
K+
free +K

+
bound

)
· Voltot = const. (3.29)

dK+
free

dt
= FABC · kup ·

K+
ex

Km,Kdp +K
+
ex

− kbind ·K+
free + kdiss ·K

+
bound

− µ ·K+
free − Vmax,lys

K+
free

Km,lys +K
+
free +K

+
bound

(3.30)

dK+
bound

dt
= kbind ·K+

free − kdiss ·K
+
bound

− µ ·K+
bound − Vmax,lys

K+
bound

Km,lys +K
+
free +K

+
bound

(3.31)

dVoltot

dt
= µ · Voltot (3.32)
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where

D = D0 −D
P (3.33)

E = E0 − E
P (3.34)

ψ =
1

1+αK
·

α ·KE + EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
(3.35)

µ = kµ,1 ·
(
1−

(
Voltot

kµ,2

)n)
. (3.36)

Finally, the effect of K+ on the two-component system had to be modeled. We as-
sumed that the fraction of free K+ affects the phosphatase activity of KdpD (that is,
the dephosphorylation of KdpE-P by KdpD). Thus,

k3 = k3,f ·K+
free (3.37)

was chosen. Reaction R3 is the most likely target for regulation through K+
free since it

provides the fastest way to adjust kdpFABC transcription. If the free K+ acted on the
autophosphorylation reaction R1, the signal would be delayed through the signaling
cascade from sensor protein to response regulator.

The graphical representation of the core model is shown in Fig. 3.5.
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Figure 3.5: Reaction scheme of the Kdp core model. Three distinct sub-units (modules) can
be identified: i) KdpD/KdpE two-component system, ii) transcription and trans-
lation unit, and iii) K+ uptake.
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PA R A M E T E R E S T I M AT I O N - T H E O R E T I C A L F O U N D AT I O N S

Calibration of the model parameters, such that the discrepancy between simulated
and measured data is minimized, is an essential step in the process of model valida-
tion. If the model is to be used to make meaningful predictions about the system’s
evolution in the future or about conditions that have not been studied yet, then it
must reproduce the existing observations of the real-world system reasonably well as
a prerequisite. The calibration task is usually formulated as an optimization problem
which deals with the minimization of the squared distance between measurements
and simulation. Functional relations or correlations between parameters and mea-
surement noise hamper the unique identification of parameter values. Therefore, the
calibration problem is always accompanied by the question which parameters can be
identified at all.

In this chapter, we re going to address these issues. First, some standard calibration
methodologies will be introduced. Then, we will dwell on the theoretical aspects of
the identifiability problem. In Section 4.2, the gradient based parameter estimation
algorithm which was applied in this thesis is presented. Finally, a method to ensure
the successful termination of the aforementioned calibration algorithm even in the
case of non-identifiability of some of the parameters will be developed.

4.1 state of the art

4.1.1 Methods for parameter calibration

The parameter estimation problem is usually based on the minimization of the objec-
tive function

Φ(p) =
1

2

nexp∑
i=1

nobs∑
j=1

nmeas∑
k=1

(
iwjk ·

iŷjk −
iyj (tk, x(tk), p)

iσjk

)2
(4.1)

where iŷjk denotes the measurement of the jth observation variable at the kth time
point in the ith experiment, and iσjk denotes the standard deviation associated with
the measurement. iyj (tk, x(tk), p) correspondingly denotes the respective observa-
tion function of the simulation model. Moreover, the weights iwjk allow the modeler
to express his (subjective) confidence in the measurements. We assume that a total of
nexp different experiments were conducted and that the nobs observation variables
were quantified at nmeas discrete time points.

Optimization methods can be generally characterized as either local or global. The
local approaches again can be subdivided into direct-search methods and gradient-
based methods [5]. One major advantage of direct-search methods is that they do
not require derivatives of the objective function with respect to the parameters. This
procedures are based on a finite number of displacements from the current parameter
vector pcurr, which serve to explore the surrounding parameter space, yielding a set
of potential new vectors pnew,i. Any pnew,i that satisfies Φ(pnew,i) < Φ(pcurr) is

39
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acceptable, however, the set of parameters p?
new that minimizes the objective function

is usually preferred. The best-known approaches in this category are the Hooke-Jeves
algorithm [50] and the Nelder-Mead method [80].

The objective function (4.1) can also be formulated as

Φ(p) =
1

2
||r(p)||2 =

1

2
· r(p)T · r(p),

that is, the elements of r(p) are given by the differences iwjk ·
iŷjk−

iyj(tk,x(tk),p)
iσjk

. Using
this representation, the Jacobian

J(p) =
∂ r(p)
∂p

can be defined. Gradient-based methods then use the residual r(p) and the Jacobian
J(p) to determine a descent direction ∆p of the parameter vector. The optimal parame-
ter vector p?, which minimizes the objective function (4.1), is then determined in an
iterative process, wherein at each step k the new vector is calculated as

pk+1 = pk + δk ·∆pk.

The descent direction ∆p depends on the optimization method. Using the Gauss-
Newton approach, the descent direction is found by solving

J(pk)T · J(pk) ·∆pk = −J(pk)T · r(pk),

the Levenberg-Marquardt method [70] relies on solving(
J(pk)T · J(pk) + λ · I

)
·∆pk = −J(pk)T · r(pk).

Both methods are equivalent for λ ≈ 0; however, the convergence of the iterative
problem can be influenced and improved by a clever choice of λ.

The presented local methods have the critical disadvantage that they converge to-
wards the nearest local minimum. For this reason, various stochastic metaheuristics
have been developed that explore the the parameter space globally and that usually
do not require the calculation of gradients. Most of these heuristics aim to mimic
physical or biological phenomena to find the supposedly global optimal solution.

For example, Kirkpatrick’s Simulated Annealing algorithm emulates the process of
cooling down molten mass [56]. In reality, the molten material becomes solid upon
cooling and the molecules arrange themselves in a thermodynamically optimal struc-
ture when the system is cooled down slowly enough. This principle was translated
into a mathematical optimization problem. Starting from an initial “temperature” T0
and an initial random parameter vector, the iteration is as follows. The temperature
is lowered according to a predefined cooling schedule and a new random parameter
vector pk is generated. The new vector is generally accepted if Φ(pk) < Φ(pk−1),
otherwise the vector is accepted with the probability

P(∆Φ, Tk) = exp
(
−
Φ(pk) −Φ(pk−1)

kB · Tk

)
,

where kB is the Boltzmann constant and Tk the current temperature [5]. If the can-
didate pk is rejected then a new random pk is generated and the acceptance test is
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repeated. By means of P(∆Φ, Tk), the objective function is allowed to increase occa-
sionally, which enables the algorithm to escape from local minimums. At low tem-
peratures the probability P(∆Φ, Tk) becomes very small so that the acceptance rate of
parameter vectors that cause the objective function to increase is very low. Unfortu-
nately, the performance of Simulated Annealing is strongly dependent on the cooling
schedule that controls the lowering of the temperature and to this day no ideal algo-
rithm, which provides a trade-off between too slow annealing (time-consuming and
computationally intensive) and too fast annealing (leading to sub-optimal solutions),
could be found.

Biologically inspired algorithms are also very important in global optimization,
here in particular the heuristics developed by the Evolutionary Computation [6] com-
munity. Evolutionary algorithms aim to emulate and simulate the basic principles of
biological evolution; this approach can be used to solve optimization problems.

Initially, a random population of N possible solutions of the optimization problem
is generated; in the case of parameter estimation, the individuals of the population
are represented by parameter vectors pi, i = 1, . . . ,N (points in the parameter space).
The objective function Φ(pi) is then a measure for the fitness of each individual. This
is followed by the selection process: The individuals with the highest fitness (that is,
the smallest objective function) are selected as parents for reproduction. By means of
the recombination (or: cross-over - the combination of the genetic information [param-
eter values] of the parents) and the mutation (random alteration of the genetic code)
operators, a new offspring population is generated. The offspring individuals are sub-
sequently ranked according to their respective fitness. Thereafter the individuals of
the parent population having the worst fitness values are replaced by the offspring
individuals with the highest fitness. Thus, a new parent population evolves and the
reproduction process starts again.

There exist many variations of evolutionary algorithms [6], the best known subcat-
egories are genetic algorithms, evolution strategies and evolutionary programming.
Just like all metaheuristics are these algorithms often computationally expensive and
time consuming and it cannot be guaranteed that the global minimum is actually
found.

4.1.2 Parameter identifiability

Mathematical models of real world processes like physical phenomena, engineering
systems, economic systems, biochemical networks and others are generally used to
facilitate and improve the understanding of these processes, to detect possible targets
for intervention and to develop control strategies. Moreover, these models allow pre-
dictions of the system response under initial or ambient/environmental conditions
hitherto uninvestigated and to predict and to reconstruct non-measurable system
variables.

In order to use a model for the aforementioned purposes, it is necessary to calibrate
the model parameters such that the model realistically reproduces the actual system
behavior. Parameter identification, therefore, requires the solution of the inverse prob-
lem; that is, the parameter values must be adjusted such that the observation function
of the model can describe the available measurement data as closely as possible. For
the solution of the inverse problems to exist, it must be clarified first whether and un-
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der which conditions the parameters of the model can be identified, that is, whether
each parameter can be assigned an unambiguous value.

Hereinafter, it is assumed that the dynamic parameters of the considered ODE and
DAE models are collected in vector p ∈ Rq. Usually, there are no measurement data
available for some of the model variables so that the initial conditions x0 ∈ Rn must
also be identified. Therefore, both the dynamic parameters and the initial conditions
are concatenated in the vector θ = (p, x0)

T and the identifiability of the system with
regard to θ is studied. The following definitions of identifiability are due to Ljung
and Glad [69] (see also [74]).

Identifiability. A dynamic model with a model output (or: observation function) y (θ) is
globally identifiable if for any two parameter vectors θ1 and θ2 in the parameter space
P ⊆ Rq+n the following applies:

y (θ1) = y (θ2) ⇒ θ1 = θ2. (4.2)

If the relation (4.2) is only valid within an open neighborhood of some point θ? in the param-
eter space P ⊆ Rq+n, then the model is locally identifiable.

There are two types of identifiability: (i) structural identifiability is independent of
the available measurement data and is determined only by the model structure; (ii)
practical identifiability depends on the quantity and quality of the measured data.

Structural identifiability

A model is structurally unidentifiable if there are functional relations ϕ (θ) = 0
or ϕ (θ) = const. among parameters; for example, ϕ = k1 − 5 · k2 = 0 or ϕ =

k23 + k
2
4 = const. Consequently, the model is parameterized redundantly [93]. The

first approaches to analyze structural identifiability have been developed for linear
systems [12]. Some of these approaches could be successfully enhanced and applied
to certain nonlinear models.

Pohjanpalo’s power series expansion approach [89] is based on the evaluation higher
order derivatives of the system output y with respect to time. An unfortunate side
effect of this procedure is that the higher order derivations of the system equations
with respect to the variables must be calculated. The resulting system of equations is
usually (in the nonlinear case) very difficult to solve so that the applicability of the
power series expansion is limited to a small number of models.

Another approach is the similarity transformation, which is motivated by the observ-
ability test widely used in systems and control engineering. This method requires
as a prerequisite that the studied system is both controllable as well as observable.
In simplified terms, the similarity transformation converts the original identifiability
problem in a system equivalence problem so that a particular system is structurally
identifiable if for any two parameter set θ1,θ2 ∈ P with θ1 6= θ2 no equivalent
system exists. Such as the power series approach is the similarity transformation
impracticable for most nonlinear systems.

The demand for the automatization of structural identifiability analysis has led to
the development of methods that make use of the concepts of differential algebra.
The basic idea is to convert controlled ODE systems of the form

ẋ(t) − f (t, x(t), u(t),θ) = 0 (4.3)

y(t) − h (x(t), u(t),θ) = 0, (4.4)
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where u is a vector of inputs, into differential polynomials by means of suitable trans-
formations or algebraic manipulations. Assume that we are given the variables t, x, u,
y and the parameters θ of the dynamic system in Eq. (4.3) and (4.4). Then, a differential
polynomial is an expression that is constructed from these variables, constant integer
powers and constant integral derivatives of these variables. The construction of this
expression must only involve the mathematical operations of addition, subtraction
and multiplication [74].

Denis-Vidal and Joly-Blanchard have introduced a direct identifiability test for un-
controlled nonlinear ODE systems [22]. This test only requires the direct evaluation of
the right hand side f(x(t), p) of the ODEs ẋ(t) = f(x(t), p), x(t0) = x0. The authors
have proposed a necessary condition for structural identifiability: If for almost all
p1 ∈ P and a given p2 ∈ P from f (x(t), p1) = f (x(t), p2) follows that p1 = p2, then
the parameters of the system are structurally identifiable. Although this approach
appears to be simple in theory, the authors in [74] point out that computer algebra
tools need to be employed for its application. Moreover, state variables that cannot
be measured must be eliminated prior to analysis.

In summary, it can therefore be stated that the current methods are usually only
applicable to the analysis of simple dynamic models and that in particular the au-
tomation of these methods is difficult.

Practical identifiability

While structural identifiability analysis is based solely on the evaluation of the model
equations of a dynamic system (that is, the structure), practical identifiability analysis
addresses the question whether all or any of the system parameters can be assigned
unique values given the available measurement data. The practical calibration of pa-
rameters by means of measured data is hampered by two problems: (i) the measure-
ment data are flawed and noisy, and (ii) the model is only an approximation of reality.
Especially in systems biology there is often little reliable prior knowledge about the
interactions of intracellular components so that the developed models often enough
provide only a rough guess of the true system structure.

One of the most popular methods for the investigation of practical identifiability
analyzes the correlations between the parameters. The entries of the correlation matrix
are calculated from the elements of the Fisher Information Matrix (FIM), which is

FIM =

nmeas∑
i=1

(
∂y(ti)
∂θ

)T
Σ̂
−1
(
∂y(ti)
∂θ

)

where the subscript i labels the ith time-point ti of the measurement, ∂y(ti)
∂θ is the

sensitivity matrix1 of the observation functions y and Σ̂ is a weighting matrix that
contains variances of the measurements. Then, the parameter estimation covariance ma-
trix is calculated as the inverse of the FIM; that is,

C = FIM−1.

1 The practical calculation of the sensitivities is introduced in section 5.2.
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Finally, C is used to calculate the correlation matrix R with entries

rij = rij
(
θi, θj

)
=

 1 if i = j
cij√
cii·cjj if i 6= j.

where i, j = 1, 2, . . . ,q+ n and −1 6 rij 6 1. When a strong correlation between the
two parameters θi and θj exists, then the absolute value of the correlation coefficient∣∣rij∣∣ is close to 1 so that the two parameters are virtually indistinguishable from each
other: A change in the model output resulting from a variation of the value of one
of the two parameters can be compensated by the appropriate variation of the other
parameter. Or, if the value of one of the two parameters was changed, it can not be
inferred from the resulting change of the model output which of the two parameters
was varied.

A much more computationally expensive approach is the usage of Monte-Carlo
methods [74]. After an optimal parameter set θ? has been identified, the model is
simulated with this set yielding the ideal noise-free observation function y(t), that
is, the virtual measurement signal, which can be evaluated at the time points of
the real measurements tj, j = 1, 2, . . . ,nmeas. A random noise signal which has the
same noise level as the real measurement signal is then added to these data y(tj).
Thereafter, a new parameter estimation is carried out wherein the model parameters
are calibrated to match the artificial measurement signal; this yields a new parame-
ter estimate θ̂. This task is repeated msamp times so that one obtains the estimates
θ̂i, i = 1, 2, . . . ,msamp. With these, the average relative estimation error (ARE) of each
parameter θk, k = 1, 2, . . . ,q+n

AREk = 100% · 1

msamp

msamp∑
i=1

∣∣θ?k − θ̂i,k∣∣∣∣θ?k∣∣ (4.5)

can be computed, where θ̂i,k is the kth element of θ̂i. If the ARE is very large then
the according parameter is not practically identifiable. However, as the authors in
[74] point out, there is no clear rule how to determine a threshold value for the ARE
beyond which a parameter can be classified as non-identifiable.

Raue and co-workers have proposed another computationally intensive algorithm
[93]. Their approach uses the so-called profile likelihood (PL)2, which is calculated for
each parameter θi, i = 1, 2 . . . ,q+n, that is,

ΦPL (θi) = min
θj 6=i

Φ (θ) . (4.6)

In practice, this means that one changes the value of θi and then all other parameters
θj6=i are recalibrated. An interesting aspect of this method is that it allows for both
structural and practical identifiability analysis. Structural non-identifiability or func-
tional dependencies induce a manifold in the parameter space on which the profile
likelihood is minimal and remains virtually constant. In the case of practical non-
identifiability there exists a distinct minimum in the PL of θi but in addition there
is also a manifold either in ascending or descending direction of the parameter on
which the profile likelihood remains almost constant. Like the Monte Carlo-method,
this approach is only suitable for models with few parameters.

2 In the literature one often finds the rather naive assumption that the measurement error ε is normally
distributed with standard deviation σ, that is ε ∼ N

(
0,σ2

)
. In this (unrealistic) case, the objective

function Φ(θ) equals the likelihood L(θ) of the goodness of fit.
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The gap

The analysis of structural identifiability usually occurs before parameter calibration
and is therefore also known as a priori identifiability analysis. On the other hand,
practical identifiability analysis is also called a posteriori analysis since it is applied
after the identification. It thus serves primarily to test the reliability of the parameter
estimates. Although both analysis steps are very important for model calibration and
validation, one question remains unanswered: How can any estimation algorithm
converge successfully and deliver feasible results if (i) the model is practically non-
identifiable and if (ii) we find only after the calibration that this process was doomed
to fail?

Thus, there are two fundamental problems:

• structural identifiability analysis is a non-trivial task and it is under circum-
stances not possible to discover functional dependencies between parameters,
and

• one can diagnose only after the identification whether the parameters can be
identified on the basis of the given measurement data.

Against this background, it seems almost impossible that the parameter calibration
can be performed and completed successfully. An effective identification algorithm
should therefore be capable to

• recognize functional relations or at least correlations between parameters,

• determine, which parameters can be identified on the basis of measured data,
and

• detect unidentifiable parameters and set them to nominal values

online, that is, during the identification process.

A possible solution

As part of this thesis, a parameter identification strategy has been developed and ap-
plied which comes with the desired robustness against non-identifiable parameters.
This strategy is based on the Multiple Shooting algorithm, a parameter estimation
method that will be introduced in the next section. Multiple Shooting depends on
the iterative solution of constrained and often ill-posed linear least squares prob-
lems. There exists a relation between non-identifiable parameters and ill-posed in-
verse problems. Thus, Section 4.3 will first deal with the analysis and solution of
unconstrained ill-posed linear least squares problems. Finally, an algorithm for the
automatic solution of constrained ill-posed least squares problems will be presented
in Section 4.3.7. This algorithm has been applied as a subroutine of the Multiple
Shooting method to identify the parameters of the Kdp model. By means of the new
algorithm, Multiple Shooting becomes robust against non-identifiable parameters.

Figure 4.1 illustrates how the contents of the following two sections relate to each
other.
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Multiple Shooting
Sec. 4.2

Constrained (ill-posed)
LLS problem
min || A·x – b ||
 s.t.  Aeq·x = beq

            Aineq·x ≥ bineq

Automated solution of
 constrained LLS problems

Sec. 4.3.7

Eq. constraints
Aeq·x = beq

Ineq. constraints
Aineq·x ≥ bineq

QR decomposition

Active set strategy

Regularization
min || A·x – b || + λ2·||x||

Unconstrained ill-posed LLS problem
min || A·x – b ||

Analysis
Sec. 4.3

Performance evaluation
Theory: Sec. 4.3.1

Different approaches
Sec. 4.3.2, 4.3.3, 
4.3.4, 4.3.5, 4.3.6

Determination of λ 

Solution: Tikhonov regularization
min || A·x – b || + λ2·||x||

Figure 4.1: Contents of Section 4.2 and 4.3. The Multiple Shooting approach (Section 4.2)
depends on the iterative solution of ill-posed linear least squares problems. In
Section 4.3, such problems will be analyzed in detail; subsequently an algorithm
for the automated solution of these problems will be presented.

4.2 multiple shooting

Here, a gradient-based parameter estimation algorithm will be presented, which has,
among others, been successfully applied in the field of chemical reaction systems [14]
and in non-linear model predictive control [23]. Like all gradient-based optimization
and estimation methods is also this method prone to getting stuck in a local minimum
of the optimization problem. However, this procedure was developed with the basic
idea to reduce the susceptibility to local minimums.

The Multiple Shooting (MS) approach was originally developed by Stoer and Bu-
lirsch [103] and then further enhanced by Bock [13]. Multiple shooting was originally
designed for the parameter calibration of ODE models; meanwhile it also allows for
the identification of DAE systems. In the following, only the DAE variant of the MS
approach will be presented owing to the fact that the model developed in this thesis
is of this type. The reader should be able to abstract the application of the MS method
to ODE models from the given presentation.

The basis of the following considerations is thus a DAE system in semi-explicit
representation

ẋ(t) = f(t, x(t), z(t), p), x(t0) = x0 (4.7)

0 = g(t, x(t), z(t), p), z(t0) = z0 (4.8)

y(t) = h(x(t), z(t), p) (4.9)

with x ∈ Rnx , z ∈ Rnz , the observation (or: output) vector y ∈ Rm, and the pa-
rameters p ∈ Rq which have to be identified. Assume that for each of the outputs
yi, i = 1, 2, . . . ,m of the model, a measurement ŷi of the real system exists and that
at the time points tj, j = 1, 2, . . . ,nmeas, the datum ŷi(tj) = ŷij was determined.
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Furthermore, it is assumed that the model is an accurate or true representation of the
real system so that the relation

ŷij = yi
(
tj, xtrue(tj), ztrue(tj), p

)
+ εij, i = 1, . . . ,nobs, j = 1, . . . ,nmeas

between the measured points and the observation functions holds, where εij denotes
the measurement error or noise.

As mentioned already in the introduction, parameter calibration is usually accom-
plished by minimizing the weighted difference between the measured values ŷij and
the observation functions yi(tj) for all time points

Φ =
1

2

nobs∑
i=1

nmeas∑
j=1

(
wij ·

ŷij − yi
(
tj, x(tj), z(tj), p

)
σij

)2
, (4.10)

that is, the parameters p as well as the initial conditions x0 are determined so that
(4.10) becomes minimal. The following considerations will only capture the single-
experiment case (that is, nexp = 1 - compare Eq. (4.1)); however, the application to
the multi-experiment case is straightforward [86]. An alternative representation of
the objective function (4.10) is by means of the Euclidean norm (and omitting the
factor 12 ):

Φ = ||r1(y(t1), y(t2), . . . , y(tnmeas), p)||22 =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
...

wij ·
ŷij−yi(tj,x(tj),z(tj),p)

σij
...

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

. (4.11)

In practice, the initial value problem (IVP) is often used to solve the minimization
problem (4.11), which means that the DAE system (4.8) is simulated with a set of
initial estimates for x0 and p in the time span [t0, tend], and by means of an iterative
approach (for example, the Levenberg-Marquardt algorithm [70]) these estimates are
then updated repeatedly, so that the objective function (4.11) is being minimized
gradually.

Unfortunately, this procedure tends to get stuck in local minimums. The authors
in [15] list several additional disadvantages of the IVP approach. For this reason, the
Multiple Shooting is based on the solution of a boundary value problem (BVP) instead
of an IVP. The transformation from the IVP to the BVP approach results from the
introduction of ms additional suitable shooting nodes τj with

t0 = τ0 < τ1 < . . . < τms = tend.

With these nodes, the time interval [I] = [t0 tend] is divided into smaller intervals[
Ij
]
=
[
τj, τj+1

]
, j = 0, 1, . . . ,ms − 1.

Then, a set of new initial conditions sxj and szj for the state variables x and the con-
straint variables z, respectively, is defined at each shooting node τj, and the relaxed
DAE problem

ẋ(t) = f(t, x(t), z(t), p), x(τj) = sxj
0 = g(t, x(t), z(t), p) −α(t)g(τj, sxj , szj , p), z(τj) = szj
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with the damping factor

α(t) = exp
(
−β

t− τj
τj+1 − τj

)
, β > 0

is solved on each interval
[
Ij
]
. The monotonically decreasing function α(t) has the

property α(τi) = 1 and thus allows to chose inconsistent initial conditions szj of the

constraint variables, that is g
(
τi, sxj , szj , p

)
6= 0 [67]. Due to α(t), the constraint vari-

ables z
(
t, sxj , szj , p

)
become more and more consistent with the algebraic equations

g(t, x(t), z(t), p) over time.

s0

y(t, s0, p)

s1

y(t, s1, p)

s2

y(t, s2, p)
s3

y(t, s3, p)

s4

y(t, s4, p)

 

 

τ0 = t0 τ1 τ2 τ3 τ4 τ5 = tf

initial values
exp. data

Figure 4.2: Principle of multiple shooting. System trajectories are simulated in sub-intervals
of the full time span [t0, tf]. The continuity conditions of the trajectories at ad-
jacent time intervals provide additional constraints that prevent the optimization
algorithm from getting stuck in local minimums.

The basic idea of the MS approach is illustrated in Fig. 4.2. Through the introduc-
tion of shooting nodes, the original IVP has been transformed into a series of IVPs
which are related with each other by additional conditions. The continuity conditions
require that

x
(
τj+1, sxj , szj , p

)
− sxj+1 = 0,

that is the endpoint of the trajectory x
(
τj+1, sxj , szj , p

)
of the DAE system (4.8) in the

interval
[
Ij
]

have to coincide with the initial condition sxj+1 of the interval
[
Ij+1

]
, j =

1, 2, . . . ,ms − 2.
Thus, the original optimization problem (4.11) becomes dependent on the initial

conditions sxj and szj at the shooting points τj, and it is constrained by the continuity
conditions. Since the relaxed DAE formulation allows for inconsistent initial values
szj , the conditions

g
(
τj, sxj , szj , p

)
= 0, j = 0, 1, . . . ,ms

are added to the constraints of the optimization problem (4.11).
Next, the initial conditions at each shooting node are collected in the vectors

sj =
(

sxj , szj
)T

, which are then concatenated in s = (s0, . . . , sms
)T . Taking into ac-

count additional equality constraints r2 and inequality constraints r3 (for example,



4.2 multiple shooting 49

the concentrations of the components of biochemical reaction networks and the reac-
tion rate constants are always greater than zero), the original optimization problem
(4.11) can be transformed into the constrained problem

min
s,p

||r1 (s0, s1, . . . , sms , p)||22 (4.12)

s.t. r2 (s0, s1, . . . , sms , p) = 0

r3 (s0, s1, . . . , sms , p) > 0

x
(
τj+1, sxj , szj , p

)
− sxj+1 = 0 j = 0, . . . ,ms − 1 (4.13)

g
(
τj, sxj , szj , p

)
= 0 j = 0, . . . ,ms. (4.14)

To achieve a simpler representation, the constraints (4.13) and (4.14) are appended to
r2 = 0, which yields the set of equality constraints rcat2 (s0, s1, . . . , sms , p) = 0.

However, this nonlinear optimization problem cannot be solved directly. Therefore,
the problem is linearized.

Generalized Gauss-Newton method

The optimization problem (4.12) is then solved iteratively by means of a generalized
Gauss-Newton method. Let w = (s, p)T and let wk denote w at the kth iteration. The
iteration scheme is then given by

wk+1 = wk + δk ·∆wk, 0 < δk 6 1 (4.15)

where ∆wk =
(
∆sx0,∆sz0, . . . ,∆sxms

,∆szms
,∆p

)T solves the linear least squares prob-
lem

min
∆w

||r1 (wk) + J1(wk) ·∆w||
2
2 (4.16)

s.t. rcat2 (wk) + J2(wk) ·∆w = 0 (4.17)

r3 (wk) + J3(wk) ·∆w > 0 (4.18)

with

rcat2 =



r2
g0
v0
...

vms−1


and

g0 = g(τ0, s0, p)

vj =

(
y(τj+1, sj, p) − sxj+1

g(τj+1, sj+1, p)

)
, j = 0, . . . ,ms − 1.

The Jacobians Ji(i = 1, 2, 3) of the minimization problem (4.16) are then

J1 =
(

D01 D11 · · · Dms

1 Dp1

)
,
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J2 =



D02 D12 · · · · · · Dms

2 Dp2
D00 0 · · · · · · 0 Dp0
G0 H0 Gp0

G1 H1 0 Gp1
. . . . . .

...

0 Gms−1 Hms−1 Gpms−1


and

J3 =
(

D03 D13 · · · Dms

3 Dp3

)
where

Dji =
∂ri
∂sj

, j = 0, . . . ,ms, i = 1, 2, 3

Dpi =
∂ri
∂p

, i = 1, 2, 3

D00 =
∂g(τ0, s0, p)

∂s0

Dp0 =
∂g(τ0, s0, p)

∂p

Gj =

∂y(τj+1,sj,p)
∂sj

0

 , j = 0, . . . ,ms − 1

Hj =

 −I 0
∂g(τj+1,sj+1,p)

∂sxj+1

∂g(τj+1,sj+1,p)
∂szj+1

 , j = 0, . . . ,ms − 1

Gpj =

 ∂y(τj+1,sj,p)
∂p

∂g(τj+1,sj+1,p)
∂p

 , j = 0, . . . ,ms − 1

Due to the particular block structure of the Jacobian matrix of the equality conditions
a condensing algorithm may be used to reduce the dimensionality of the optimization
problem [14]. Given that ∂g(τj,sj,p)

∂szj
is not singular, one can express the ∆szj in terms

of ∆sxj and ∆p [67] so that

∆szj = −

(
∂g(τj, sj, p)

∂szj

)−1

·

(
∂g(τj, sj, p)

∂sxj
·∆sxj +

∂g(τj, sj, p)
∂p

·∆p + g(τj, sj, p)

)
,

j = 0, . . . ,ms. (4.19)

Moreover, ∆sxj+1 can be expressed in terms of the variables ∆sxj , ∆szj and ∆p [14],
which yields

∆sxj+1 =
∂y(τj+1, sj, p)

∂sxj
·∆sxj +

∂y(τj+1, sj, p)
∂szj

·∆szj +
∂y(τj+1, sj, p)

∂p
·∆p

+
(
y(τj+1, sj, p) − sxj+1

)
, j = 0, . . . ,ms − 1.

(4.20)
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Substituting the ∆szj from Eq. (4.19) into Eq. (4.20) and subsequently substituting
the ∆sxj+1 into the Eqs. (4.16) to (4.18) of the LLS problem, one obtains a reduced

constrained LLS problem that has to be solved for ∆wredk =
(
∆sx0,∆p

)T .
Bock has also devised a strategy to control the damping parameter 0 < δk 6 1; see

Eq. (4.15). Details can be found in [13].

4.3 regularization of ill-posed linear least squares problems

The generalized Gauß-Newton method introduced in the last section is often ill-
conditioned or, worse, ill-posed. Bock has presented a strategy to deal with ill-condi-
tioning when the Jacobian J1(wk) is rank-deficient [14]. In reality, most estimation
problems are ill-posed due to both rank-deficiency of J1(wk) and measurement noise
in the vector r1(wk). In this section, we shall go deeper into the analysis of this kind
of problems, provide formal definitions for ill-conditioning and ill-posedness, and
suggest solution strategies based on regularization. The purpose of this section is to
develop a strategy to automatically solve linear least squares problems, regardless
of whether they are well-posed or ill-posed. The method to be developed should be
robust both with respect to the intensity of the measurement noise as well as with re-
spect to the frequency spectrum of the noise signal because these two characteristics
are usually unknown.

We concern ourselves here with the solution of general linear least squares prob-
lems

min
x∈Rn

||Ax − b|| (4.21)

with

A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m > n.

For the time being, our analysis will focus on the unconstrained problem (4.21). Op-
timization problems of this type arise in many areas of science and engineering. This
study was motivated by the parameter calibration problem from Section 4.2. The data
vector b usually contains measurement data which is contaminated by noise:

b = b̄ + e

where b̄ is the true, noise-free, signal and e contains the measurement error and other
disturbances. In this treatise, we shall assume that the coefficient matrix A does not
contain measurement information.

A very important analysis tool of linear algebra is the singular value decomposition
(SVD) [44, 104], which allows to decompose matrix A as

A = UΣVT =

n∑
i=1

uiσivTi

with matrices

U =
(

u1 · · · un
)

, Σ =


σ1 0 · · · 0

0 σ2
. . .

...
...

. . . . . . 0

0 · · · 0 σn

 , V =
(

v1 · · · vn
)

.
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The matrix U ∈ Rm×n contains the left singular vectors whereas V ∈ Rn×n consists
of the right singular vectors of A. Both matrices have orthonormal columns so that

UTU = VTV = In×n.

The singular values in Σ are ordered so that

σ1 > σ2 > · · · > σn > 0.

By means of the SVD we are able to define the properties ill-conditioning and ill-
posedness [77]. The condition number of the Matrix A is

κ(A) :=
||A||

||A−1||
=
σ1
σn

.

Definition 1. If the condition number is large, that is, κ(A) � 1, Matrix A is said to be
ill-conditioned.

From this definition one can see instantly that A is ill-conditioned if σn ≈ 0. The
authors of [77] distinguish two types of ill-conditioning on the basis of the spectrum
of the singular values. These two types are characterized by the following two defini-
tions:

Definition 2. If there is an obvious gap between large and small singular values, that is
σj � σj+1 ≈ · · · ≈ σn ≈ 0, then A is considered numerically rank deficient.

Definition 3. If the singular values decay to zero with no particular gap in the spectrum, the
system Ax = b is a discrete ill-posed problem.

One can assess the effect of ill-conditioning on the solution of the linear least-
squares problem (4.21) by taking a look at the naïve solution which can be calculated
by means of the SVD as

xn = (ATA)−1ATb = VΣ−1UTb =

n∑
i=1

uTi b
σi

vi. (4.22)

Obviously, the solution tends towards large absolute values if one or more of the
σis approach zero or/and if one or more of the uTi b are much smaller than the
corresponding σis. Therefore, the following condition guarantees the existence of a
solution to the LLS problem [44]:

The Discrete Picard Condition. Let ε denote the level at which the computed singular
values σi level off due to rounding errors. The discrete Picard condition is satisfied if, for all
singular values larger than ε, the corresponding coefficients

∣∣uTi b
∣∣, on average, decay faster

than the σi.

The coefficients
∣∣uTi b

∣∣ are called the Fourier coefficients. Figure 4.3 displays a so
called Picard plot in which the singular values, the Fourier coefficients and the ra-
tios

∣∣uTi b
∣∣ /σi for different types of noise (white noise, high frequency (HF) noise

and low frequency (LF) noise) in the measurement vector b are plotted. Linear least-
squares problems are usually analyzed by means of standardized test problems. Very
often, discretizations of Fredholm Integral Equations of the First Kind are employed (see
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Figure 4.3: Picard plot for different types of noise. a) In the noise-free case, the Fourier coeffi-
cients monotonically decay to zero faster than the singular values. Thus, the DPC
is satisfied. b) c) d) Due to the noise in the measurements, the DPC is not satisfied
and the LLS problem requires regularization. All sub-figures were created using
the deriv2-problem from Appendix A with a relative noise level η = 10−3.

Appendix A). Throughout this section, the deriv2-problem (see Appendix A) from
Hansen’s Regularization Toolbox [43] is used as example.

We shall discuss now how noise in the measurement vector b and linear dependent
rows in the system matrix A affect the solution of the inverse problem (4.21). The
existence of very small singular values indicates that there are several column vectors
in A that are either parallel or almost parallel, that is, that they are highly correlated.
This feature is a direct result from the definition of the SVD: The left singular vectors
ui create an orthogonal basis of the column space of A, that is, each column of A is
a linear combination of the weighted vectors σi · ui, where the elements of the vj are
the weights.

On the other hand, the measurement vector b is the sum of the true, noise-free
signal b̄ and the measurement error e. From Eq. (4.22) it is obvious that the solution
xn of the inverse problem is a linear combination of the right singular values vj
which span an orthogonal basis of the row space of A. In the ideal case, the noise
e lies outside the column space of A so that uTi b = uTi

(
b̄ + e

)
≈ uTi b̄. Then the left

singular vectors ui can be regarded as filters that suppress the noise signal [44]. In
reality, however, a fraction of the noise signal lies in the column space of A. Therefore,
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the noise could possibly be magnified by the product uTi b. In real-world problems,
the left singular vectors ui associated with the large singular values σi act as filters
that suppress the noise signal to a large extent, whereas the uis associated with the
small σis cannot attenuate the noise sufficiently so that the corresponding Fourier
coefficients uTi b decay slower to zero than the singular values (see Fig. 4.3).

From these considerations we can deduce a general rule for ill-posed discrete in-
verse problems. First, the Fourier coefficients decay faster to zero than the singular
values. Then, depending on the noise type, the following behavior can be observed:
If the noise is white, the Fourier coefficients level off at the noise level and fluctuate
around it. In the case of HF noise, the uTi b tend to increase again whereas in the case
of LF noise the Fourier coefficients continue to decay to zero, however, with a smaller
slope than in the initial phase. Figure 4.3 illustrates some typical sequences of the
Fourier coefficients for the three noise types.

Thus, real-world LLS problems require to first check whether the Discrete Picard
Condition is satisfied. If the result of this test is positive, the solution of the LLS
problem can be calculated according to Eq. (4.22). Otherwise, alternative solution
strategies have to be found. Unfortunately, there exists no straightforward way to
check the DPC numerically. Although the singular values are ordered so that σi >
σi+1 (that is they monotonously decay to zero), the same is not true for the Fourier
coefficients. Due to the noise in the measurements the property uTi b > uTi+1b does
not hold in general. Therefore, it is necessary to check for a trend in the coefficients
to decay to zero faster than the singular values.

A practical solution to this problem was proposed by Hansen [41] who suggested
to evaluate the moving geometric mean

mi =
1

σi

 i+q∏
j=i−q

∣∣uTj b
∣∣ 1

2q+1

, i = q+ 1, . . . ,n− q

for small values of q (that is q = 1, 2, 3). The DPC is considered satisfied when the mi
decay monotonically to zero. In the following, we are going to pursue another strat-
egy. Jones has introduced an algorithm for the automatic regularization of ill-posed
LLS problems, which includes the calculation of what he termed the usable rank of the
problem [53]. The routine for the determination of the usable rank is listed in Algo-
rithm 2. A fundamental problem of ill-conditioned and ill-posed inverse problems is
the determination of the numerical rank of the matrix A. Execution of traditional rank
analysis would, in general, yield the result that the matrix has full rank although it
is numerically rank-deficient. Gene Golub and colleagues (see for example [34]) have
dealt extensively with this issue and have developed several methods and algorithms
for the determination of the numerical rank of matrices.

The method of Jones utilizes the SVD to determine the numerical rank of the LLS
problem (4.21) - the result of this procedure is the information whether the DPC is
satisfied or not: If the usable rank ru = n, then the DPC is satisfied. Else, if ru < n,
then the problem is ill-posed.

If there is a distinct gap in the singular values, it is possible to determine an integer
r for which σr � σr+1 ≈ · · · ≈ σn ≈ 0. With this value the truncated SVD solution

xtr =
r∑
i=1

uTi b
σi

vi, 1 6 r 6 n
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can be calculated (for example, using Jones’ algorithm, one would obtain r = ru).

Algorithm 2: Determination of the usable rank of an LLS problem [53]
Input: right singular vectors ui, singular values σi, measurement vector b
Output: usable rank ru

for j← 1 to n do1

// calculation of the Fourier coefficients

tj ←
uTj b
σj

;
2

end3

for i← 1 to n-3 do4

// calculation of the 2-norm of three successive terms of the

// naïve LLS solution (note: ||vj|| = 1)

si ←
i+3∑
j=i

(
tj
)2 ;

5

end6

Ilow ← value of i at which si is minimal ;7

Ihigh ← value of first i > Ilow at which si > min(15 · sIlow , 1.1 · s1) ;8

if no such value exists then9

// DPC satisfied

ru ← min(m,n) ;10

else11

Ihigh ← value of first i > Ilow at which si > min(3 · sIlow , 1.1 · s1) ;12

ru ← value of i within Ihigh 6 i 6 Ihigh + 3 at which ti is maximal ;13

for i← ru down to Ilow + 1 do14

if ti−1 < ti then15

ru ← i− 1 ;16

end17

end18

end19

Unfortunately, in most real-world cases there is no gap in the σi-spectrum and the
discrete Picard condition is not satisfied. In theses cases, one of the most common
approaches is to solve the LLS problem (4.21) by means of Tikhonov regularization.
Tikhonov suggested to introduce a regularization parameter λ and solve the problem

min
x∈Rn

||Ax − b||+ λ2||x|| = min
x∈Rn

∣∣∣∣∣
∣∣∣∣∣
(

A

λ · In×n

)
x −

(
b

0n×1

)∣∣∣∣∣
∣∣∣∣∣ (4.23)

instead. The rationale for this optimization problem is quite intuitive: When the dis-
crete Picard condition is not satisfied, the ratios

∣∣uTi b
∣∣ /σi are very large for i → n

leading to large solution norms ||x||. Therefore, the regularization parameter λ penal-
izes such cases.
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The solution to problem (4.23) is a function of λ and is given by means of the SVD:

xλ = (ATA + λ2I)−1ATb = V(Σ2 + λ2I)−1ΣUTb. (4.24)

In order to better understand the effect of λ on the solution, it is beneficial to
rewrite Eq. (4.24) in sum notation:

xλ =

n∑
i=1

σ2i
σ2i + λ

2
·

uTi b
σi

vi =
n∑
i=1

fi
uTi b
σi

vi

This solution is quite similar to the naïve solution (4.22); however, now each term of
the sum is weighted by a filter factor

fi =
σ2i

σ2i + λ
2

. (4.25)

It can be seen easily that fi(σi � λ) → 0 and that fi(σi � λ) → 1. This way, the fis
filter out the effects of the σis that violate the discrete Picard condition. Therefore,
the proper choice of λ is crucial to the solution of the ill-posed LLS problem.

Now, we are going to introduce the so called L-curve which is an intuitive, graph-
ical tool to assess and analyze the influence of λ on the solution. First, define the
variables

X(λ) = ||xλ||22 =
n∑
i=1

(
fi

uTi b
σi

)2
= bTA

(
ATA + λ2I

)−2
ATb,

that is the square of the 2-norm of the solution vector, and

R(λ) = ||Axλ − b||22 =
n∑
i=1

(
(1− fi)uTi b

)2
+ ε2⊥ = λ4bT

(
ATA + λ2I

)−2
b,

which is the square of the 2-norm of the residual r = Axλ − b. The squared norm of
that component of b which lies outside the column space of A is given by [44]

ε2⊥ = ||(I − UUT )b||22.

Given X and R, the L-curve, which owes its name to its characteristic shape, is then
defined as

L := (log ||xλ||2, log ||Axλ − b||2) =
(
1

2
logX,

1

2
logR

)
.

Figure 4.4 depicts three L-curves: one for white noise, one for HF noise and one for
LF noise. The basic shape remains the same, irrespective of the noise type. For small
values of λ, the solution norm of xλ is large whereas the the norm of the residual r
is small. Increasing λ values cause X(λ) to increase and R(λ) to decrease. This can be
shown mathematically: Calculating the derivatives of X(λ) and R(λ) with respect to
λ yields:

X ′ =
dX

dλ
= −

4

λ

n∑
i=1

(1− fi) · f2i ·
(
uTi b

)2
σ2i

R ′ =
dR

dλ
=
4

λ

n∑
i=1

(1− fi)
2 · fi ·

(
uTi b

)2
= −λ2 ·X ′
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Figure 4.4: L-curve for truncated SVD (left) and for Tikhonov-regularization (right). The noise
type has a strong impact on solution norm (the shown curves have all been cal-
culated using the deriv2-problem from Appendix A with a relative noise level
η = 10−3).

(hint: λ2 · (1− fi) · f2i = σ2i · (1− fi)
2 · fi). Therefore, we have X ′ < 0 ∀ λ > 0 and

R ′ > 0 ∀ λ > 0. The two derivatives are related by

dX

dR
= −

1

λ2
.

The solution of the LLS problem (4.21) and the regularized problem (4.23), respec-
tively, are affected by both the type of the measurement noise and the strength of the
noise. Figure 4.5 illustrates how the shape of the L-curve depends on the noise level
η (for white noise). If the noise level is high, the curve exhibits its characteristic L-
shape and the transition from under-regularization (||xλ|| large) to over-regularization
(||Axλ − b|| large) is rather sharp, that is, the “corner” of the curve can be identified
easily. Reduction of the noise level yields a smoother transition from under- to over-
regularization (the “corner” converts into an arc). Below a certain level η, when the
noise signal becomes almost irrelevant in comparison to the true signal, the L-curve
completely loses the L-shape so that the problem requires no regularization any more.
Therefore, it is obvious that there is need for a reliable routine that checks whether a
given LLS problem can be solved using the naïve solution or whether the Tikhonov
approach (or any other regularization method) has to be used.

By means of extensive simulation studies, the author of this thesis found that Jones’
algorithm is very well suited to perform this test. The critical step of Tikhonov regu-
larization is a proper or suitable selection of the regularization parameter λ. Several
parameter choice algorithms have been developed in the past, for example, General-
ized Cross-Validation (Section 4.3.3) or the Quasi-Optimality Principle (Section 4.3.4).
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Figure 4.5: Dependency of the L-curve of on the noise level. For small η the characteristic
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of the problem. This graph was was generated using the deriv2-problem from
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In the following, we are going to present and analyze some commonly used regu-
larization methods (Sections 4.3.2 - 4.3.4). Furthermore, new alternative approaches
will be proposed and compared to the standard methods (Section 4.3.5 and 4.3.6).
Based on these studies, a novel (automatic) regularization strategy will be proposed
in Section 4.3.7. Prior to that, a criterion to evaluate the performance of these regu-
larization approaches methods is introduced. Since there is no such criterion that is
generally accepted and used throughout the regularization community, a new, bene-
ficial norm will be introduced.

4.3.1 Assessment of the regularization error

Usually, the performance of a regularization method is evaluated by means of LLS
problems, the true solution xtrue of which is known. For that purpose, one first gen-
erates Ns samples of random noise signals e (with the same noise type and the same
noise level) and then one adds these to the pure data vector b. Then, for each sample
the regularization parameter λi, i = 1, · · · ,Ns is determined according to the applied
method.
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Hansen, for example, assesses the performance of a regularization approach on the
basis of the distributions (or: histograms) of the ratios

Λi =
λi
λ?

,

where

λ? = arg min
λ

∣∣∣∣xtrue − xλi
∣∣∣∣
2

is the regularization parameter of the best solution among all samples [44]. He argues
that ratios Λi close to 1 and spiked distributions of the ratios are preferable. However,
we are going to demonstrate in Section 4.3.5 that the solution of a regularization
problem is not necessarily very sensitive to the value of λ so that the ratio Λi is not
an appropriate factor for the evaluation of regularization methods.

Bauer and Lukas applied a different evaluation criterion [11]: They utilized the
distributions of the difference norm

ei =
∣∣∣∣xtrue − xλi

∣∣∣∣
2

.

Although more suitable than the performance test of Hansen, this criterion, however,
is insofar not optimal for the evaluation of parameter choice methods that the order
of magnitude of the solution xtrue strongly depends on the particular problem so
that the the distributions of the eis of different LLS problems cannot be compared
with each other. For this reason, it is advisable to consider the order of magnitude of
xtrue. Therefore, we propose to use the scaled difference norm

es,i =
||x? − xλi ||2

||x?||2
,

where x? minimizes
∣∣∣∣xtrue − xλi

∣∣∣∣
2

, for the performance analysis of Thikonov param-
eter choice methods. Moreover, it is also important to determine whether the method
under study exhibits a tendency to either under- or over-regularization. Hence, we
propose to utilize the relative difference norm

ereli = sign
(
||x?||2 − ||xλi ||2

)
· es,i

with

sign(y) =

{
1 if y > 0

−1 if y < 0
.

That is, if ereli < 0, the solution is under-regularized; if ereli > 0, the solution is
over-regularized. Although the Multiple Shooting approach includes an automated
step size control (see Eq. 4.15) and could consequently compensate for an under-
regularized LLS solution, we prefer parameter choice methods that tend to over-
regularization. In the following, some regularization methods will be presented and
discussed. Furthermore, we will introduce and analyze two new approaches.
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4.3.2 Curvature of the L-Curve

It is obvious that both large X and large R values are undesirable since the solutions
associated with them are far from optimal: large values of R imply a bad match of
the model A · x to the measurements b; large values of X suggest that the solution
x is unrealistic. Therefore, the best solution offers a compromise so that both X and
R become as small as possible. If we consider the L-curve, an intuitive strategy to
find such a compromise solution is to detect the "corner" of the L-curve [45]. At
this particular point, we obtain a trade-off between over-regularization (R too large)
and under-regularization (X too large). Hansen has suggested a trivial method for
the detection of the "corner" [45]: The corner is determined by that point on the L-
curve at which the curvature of the curve attains its maximum. We can calculate the
curvature as

κ(λ) = 2 · X · R
X ′
· λ
2 ·X ′ · R+ 2 · λ ·X · R+ λ4 ·X ·X ′

(λ2 ·X2 + R2)
3
2

As already mentioned, we shall analyze in the course of this treatise how the type
and the strength of measurement noise affect the solution of the LLS problems (4.21)
and (4.23), respectively. Therefore, if the curvature is to be used to find the optimal
LLS solution, we need to determine how the curvature is affected by noise. Figure
4.6a depicts representative courses of the curvature −κ(λ) 3 for white, HF- and LF-
noise and different noise-levels η, respectively. Depending on the type and strength
of the noise, the curvature varies by several orders of magnitude. In order to evaluate
the quality of the method, the locations of the respective optimal solutions −κ(λ?)

are indicated by the green dots in the figure.
Figure 4.6b shows the histograms of the relative difference norm for white noise

and different noise levels. As explained in Section 4.3.1, Ns = 500 noise samples
were generated for each noise level and the respective error norm was calculated.
The histograms indicate that for noise levels 10−2 6 η 6 10−1 the curvature method
tends to over-regularization, whereas for noise levels 10−5 6 η < 10−2 the solutions
are mainly under-regularized. For noise levels η < 10−5, one observes a clear bias
towards negligible under-regularization.

4.3.3 Generalized Cross-Validation

Of course, the L-curve is only one of many methods that have been developed to
determine the optimal value of the regularization parameter λ. A further common
method is Generalized Cross-Validation (GCV), the development of of which was
motivated by the analysis of statistical properties of the LLS problem [35]. This ap-
proach is based on a simple idea: Data point bi is left out and the solution xλ,i of the
reduced LLS problem of dimension (m− 1)×n is calculated. Then, by means of the
solution xλ,i, an estimate of bi can be calculated. This strategy can be repeated for

3 Some of the parameter choice methods presented in this section depend on the minimization of a
certain objective function, others on maximization. In terms of a consistent presentation, all methods
are displayed graphically as minimization problems.
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Figure 4.6: Curvature κ(λ) of the L-curve. All sub-figures were generated using the deriv2-
problem from Appendix A.

each of the data points. Wahba and coworkers [35] have shown that then the optimal
value of λ is that one for which the function

G(λ) =
||A · x(λ) − b||22

(trace (I − A ·A(λ)I))2

attains a minimum. The generalized inverse is A(λ)I =
(
ATA + λ2I

)
AT .

GCV has also been applied to various LLS problems, and its performance with
respect to the three types of noise and various noise levels was studied. Figure 4.7a
illustrates a representative result. For white and HF noise, the function G(λ) exhibits
a local minimum which is located in the vicinity the optimum λ? for almost all noise
levels . One can see that the slope of G(λ) to the left of the respective minimum is
smaller for white noise than for HF noise. The method tends to fail completely for
LF noise, as Fig. 4.7a shows very clearly. In this case, there is often no local minimum
close the optimal solution so that the solution of the LLS problem becomes heavily
under-regularized.
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indicate the optimal solution. Dashed lines indicate that according to Jones’ algorithm no regulariza-
tion is necessary.

−10
−9

−8
−7

−6
−5

−4
−3

−2
−1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0

10

20

30

40

50

60

70

log
10

(η)

overregularized (e
rel

 >= 0)

|e
rel

|
−10

−9
−8

−7
−6

−5
−4

−3
−2

−1

−5

0

5

10

15

20

25

30

35

40

0

100

200

300

400

500

log
10

(η)

underregularized (e
rel

 < 0)

|e
rel

|

(b) Histograms for white noise and different noise levels

Figure 4.7: Generalized Cross-Validation. All sub-figures were created using the deriv2-
problem from Appendix A.

The histograms of the relative difference norm for white noise and different noise
levels in Fig. 4.7b indicate that for noise levels 10−3 6 η 6 10−1 there is a clear
bias towards over-regularization. However, there are also some severe outliers which
result in under-regularization. For noise levels η < 10−5, one observes a slight bias
towards under-regularization. From these results we conclude that GCV should not
be incorporated into an automated regularization routine.
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4.3.4 Quasi-Optimality Principle

The Quasi-Optimality criterion, originally introduced by Tikhonov, is a heuristic which
is based on finding the optimal regularization parameter λ by minimizing the objec-
tive function

Q(λ) =

∥∥∥∥λdxλ
dλ

∥∥∥∥
2

=

(
n∑
i=1

(
(1− fi) · fi ·

uTi b
σi

)2) 1
2

.

Although there was originally no real mathematical justification for this method,
Hansen later showed that by minimizing Q(λ) one obtains a good trade-off between
over- and under-regularization [42]. Thus, the Quasi-Optimality criterion is also a
good method to identify the “corner” of the L-Curve.
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(a) Application of the Quasi-Optimality Principle for different noise types and noise levels. Green mark-
ers indicate the optimal solution. Dashed lines indicate that according to Jones’ algorithm no regular-
ization is necessary.
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Figure 4.8: Quasi-Optimality Principle. All sub-figures were generated using the deriv2-
problem from Appendix A.

The representative curves of Q(λ) for the three noise types and different noise
levels in Fig. 4.8a indicate that the local minimums of all curves are always very
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close to the optimal solutions. This result is validated by the histograms in Fig. 4.8b,
which demonstrate that the Quasi-Optimality method yields comparably small rela-
tive scaled errors for all noise levels. A particularly striking feature is that the solu-
tions are almost all over-regularized for 10−4 6 η 6 10−1. Therefore, this parameter
choice method is very suitable for the application in an automated LLS solver.

4.3.5 A novel criterion - analysis of the arc-element of the L-Curve

Throughout many simulation studies and tests with different parameter choice meth-
ods, the following was observed. If one plots the discrete L-Curve for Nλ logarithmi-
cally spaced points λi, i = 1, · · · ,Nλ between the limits λmax = σ1 and λmin = σn,
one can see that a lot of the solution points aggregate around the “corner”. Hence,
the author of this thesis proposes an alternative approach to localize the corner of the
L-Curve: the calculation of the differential arc-element of the L-Curve.

Since the L-Curve is defined on a double-logarithmic scale (L = (0.5 · logX, 0.5 · logR)),
we introduce the new variables (omitting the factor 0.5)

R̂λ = logRλ
X̂λ = logXλ

with

dR̂ = R̂ ′(λ) · dλ =
R ′

R
· dλ =

−λ2 ·X ′

R
· dλ

dX̂ = X̂ ′(λ) · dλ =
X ′

X
· dλ.

The differential arc-element of L is thus

dâ =
√
dR̂2 + dX̂2 =

√
R̂ ′(λ)2 + X̂ ′(λ)2 · dλ =

√(
−λ2

R

)2
+

(
1

X

)2
·X ′ · dλ

=

√
λ4 · X

2

R2
+ 1 · X

′

X
· dλ =

√
λ4 · X

2

R2
+ 1 · X̂ ′ · dλ.

Transformation of λ into logarithmic scale

λ̂ = log λ

yields

dλ̂ =
1

λ
· dλ

so that

dâ =

√
λ4 · X

2

R2
+ 1 · X

′

X
· λ · dλ̂.

The corner of the L-Curve is then determined by the maximum (recall that X ′ <
0 ∀ λ > 0) of

A(λ) =
dâ

dλ̂
=

√
λ4 · X

2

R2
+ 1 · X

′

X
· λ.

The investigation of various test problems has shown that the values of A(λ) always
range in between 10−1 − 100 irrespective of the given LLS problem (data not shown).
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4.3.6 Yet another parameter choice method

Using different test problems, it was found empirically that the corner of the L-Curve
could be reliably detected through maximization of A(λ). However, the solutions of
the respective LLS problems were always under-regularized. The known solution
xtrue was always located on the right of the corner where the L-Curve begins to
flatten out. On the horizontal segment of the L-Curve, the residuum norm R is highly
dependent on λ whereas the solution norm X is only slightly influenced by a change
of λ. Consequently the author studied whether the maximization of

S(λ) =
dX̂

dλ̂
=
d logX
d log λ

=
dX

dλ
· λ
X

=
X ′

X
λ,

that is, the logarithmic sensitivity of Xwith respect to λ, could be used as a parameter
choice method.

−6 −5 −4 −3 −2 −1 0
−6

−5

−4

−3

−2

−1

0

1
white noise

log
10

(λ)

lo
g

1
0
(S

(λ
))

η = 10
−10

η = 10
−9

η = 10
−8

η = 10
−7η = 10
−6

η = 10
−5

η = 10
−4

η = 10
−3η = 10
−2

η = 10
−1

−6 −5 −4 −3 −2 −1 0
−6

−5

−4

−3

−2

−1

0

1
HF noise

log
10

(λ)

lo
g

1
0
(S

(λ
))

η = 10
−10

η = 10
−9

η = 10
−8

η = 10
−7

η = 10
−6

η = 10
−5

η = 10
−4

η = 10
−3η = 10
−2

η = 10
−1

−6 −5 −4 −3 −2 −1 0
−6

−5

−4

−3

−2

−1

0

1
LF noise

log
10

(λ)

lo
g

1
0
(S

(λ
))

η = 10
−10

η = 10
−9

η = 10
−8

η = 10
−7

η = 10
−6η = 10
−5

η = 10
−4

η = 10
−3

η = 10
−2η = 10
−1

(a) Logarithmic sensitivity −S(λ) for different noise types and noise levels. Green markers indicate the
optimal solution. Dashed lines indicate that according to Jones’ algorithm no regularization is neces-
sary.
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Figure 4.9: Logarithmic sensitivity of X(λ). All sub-figures were generated using the deriv2-
problem from Appendix A.
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Figure 4.9a shows representative curve profiles for the three noise types and vari-
ous noise levels. In comparison with the quasi-optimality criterion Q(λ), it is found
that −S(λ) has a more distinctive local minimum. It was also found that both methods
yield similar results. However, as can be seen from the histograms in Fig. 4.9b, the
method yields both over- and under-regularized solutions for 10−4 6 η 6 10−1, with
a bias towards over-regularization. We conclude from these results that the Quasi-
Optimality criterion is the better choice for an automated regularization procedure.

4.3.7 A novel heuristic for the solution of linear ill-posed discrete problems with inequality
constraints

The solution of the LLS problem (4.16) of the Multiple Shooting approach needed
to be automated so that the iteration (4.15) can execute independently, without the
user’s intervention. Based on the previous analyzes and results, the following heuris-
tics is proposed.

1. Use of of Jones’ Algorithm (2) to determine whether the LLS problem is ill-
posed and requires regularization. If the usable rank ru = n, the solution xn
can be calculated using the naïve approach (4.22). Otherwise, the following
steps a)-c) are executed.

a) Minimization of −A(λ) (only local minimums are feasible candidates) to
identify the corner of the L-Curve. The result λc = arg minλ−A(λ) is the
lower boundary of the regularization parameter. All λ < λc are unaccept-
able since they definitely result in under-regularized solutions.

b) Minimization of Q(λ) (or −S(λ)) such that λ? = arg minλQ(λ) > λc and
minλQ(λ) is a local minimum. Empirical studies have shown that there
might exist local minimums of Q(λ) and −S(λ) for λ < λc. Therefore, the
constraint λ? > λc is essential.

c) Calculation of the regularized solution xλ of the unconstrained LLS prob-
lem using λ? as regularization parameter.

2. An active set strategy is applied to enforce the constraints (4.17) and (4.18). The
idea is as follows. Given a set of inequality constraints with

Aineq · x > bineq, (4.26)

all inequalities which are violated by the naïve solution xn (if ru = n) or by the
regularized solution xλ (if ru < n) are made active. This means that all rows of
Aineq and the corresponding elements of bineq for which the constraints (4.26)
are not satisfied are appended to the equality constraints so that we obtain(

Aeq
A<ineq

)
· x =

(
beq

b<ineq

)
,

where A<ineq contains the appended rows from Aineq and b<ineq consists of the
appended elements from bineq.
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With Acateq =

(
Aeq

A<ineq

)
∈ Rmc×n and bcateq =

(
beq

b<ineq

)
∈ Rmc×1, we conse-

quently obtain the constrained LLS problem

min
x∈Rn

||A · x − b|| if ru = n, (4.27)

s.t. Acateq · x = bcateq (4.28)

or

min
x∈Rn

∣∣∣∣∣
∣∣∣∣∣
(

A

λ? · In×n

)
x −

(
b

0n×1

)∣∣∣∣∣
∣∣∣∣∣ if ru < n (4.29)

s.t. Acateq · x = bcateq (4.30)

which has to be solved. Yoshioka and coworkers have presented a strategy to
solve this type of problem by substituting the equality constraints (4.30) into
the LLS problem (4.27) or (4.29), respectively [117]. Assuming that Acateq has full
rank, the transpose of this matrix is decomposed by the QR factorization(

Acateq
)T

= Q ·R,

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×mc is an upper triangu-
lar matrix. Q and R can be partitioned so that

Q =
(

Q1 Q2
)

and R =

(
R1

0mc×n−mc

)
with Q1 ∈ Rn×mc , Q2 ∈ Rn×n−mc and R1 ∈ Rmc×mc . Then by introducing(

y

z

)
= QT · x, (4.31)

with y ∈ Rmc×1 and z ∈ Rn−mc×1, one obtains

Acateq · x = RT ·QT · x = RT ·

(
y

z

)
= RT1 · y = bcateq .

The equation RT1 · y = bcateq is solved for y. Thus, using (4.31) transforms the
problem in Eq. (4.27) and (4.28) in the unconstrained LLS problem

min
z∈Rn−mc

||A ·Q2 · z − (b − A ·Q1 · y)||

which can be solved for z. The optimization problem (4.29) and (4.30) can be
transformed likewise into

min
z∈Rn−mc

∣∣∣∣∣
∣∣∣∣∣
(

A

λ? · In×n

)
·Q2 · z −

((
b

0n×1

)
−

(
A

λ? · In×n

)
·Q1 · y

)∣∣∣∣∣
∣∣∣∣∣ .

Finally, the solution

x = Q

(
y

z

)
is calculated. This strategy is repeated until all inequality constraints are satis-
fied.



68 parameter estimation - theoretical foundations

This heuristic allows for the automatic solution of constrained linear least squares
problems. The method determines whether the given inverse problem is well-posed
or ill-posed and then applies the appropriate solution strategy. By means of the au-
tomated regularization, it is possible to calculate feasible solutions for ill-posed prob-
lems, which usually possess no feasible solutions. This feature is particularly impor-
tant for iterative optimization process like the Multiple Shooting algorithm. Multiple
Shooting would otherwise terminate prematurely without a feasible solution. The
embedded active set strategy ensures that all constraints are satisfied, independent
of whether the inverse problem is well-posed or ill-posed.
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Algorithm 3: Heuristic for the automatic solution of constrained LLS problems
Input: matrices A, Aeq and Aineq; vectors b, beq and bineq
Output: solution x of linear least squares problem

compute SVD A = UΣVT ;1

determine usable rank ru by means of Jones’ Algorithm (2);2

if ru = n then3

// compute naïve solution:

x← VΣ−1UTb;4

else5

// minimization of −A(λ):

λc ← arg minλ−A(λ);6

// minimization of Q(λ):

λ? ← arg minλQ(λ) s.t. λ > λc;7

// compute regularized solution:

x← V(Σ2 + λ?
2
I)−1ΣUTb;8

end9

// active set strategy:

evaluate inequality constraints Aineq · x > bineq;10

repeat11

determine which constraints are not satisfied;12

append the corresponding rows of Aineq to Aeq: Acateq ←

(
Aeq

A<ineq

)
;

13

append the corresponding elements of bineq to beq: bcateq ←

(
beq

b<ineq

)
;

14

apply QR decomposition
(
Acateq

)T
= Q ·R;15

partition Q =
(

Q1 Q2
)

and R =

(
R1
0

)
;

16

solve RT1 · y = bcateq for y;17

if ru = n then18

// solve unconstrained LLS problem:

z← arg minz ||A ·Q2 · z − (b − A ·Q1 · y)||;19

else20

// solve unconstrained LLS problem with regularization:

z← arg minz

∣∣∣∣∣
∣∣∣∣∣
(

A

λ? · I

)
·Q2 · z −

((
b

0

)
−

(
A

λ? · I

)
·Q1 · y

)∣∣∣∣∣
∣∣∣∣∣;21

end22

until all inequality constraints are satisfied ;23

return x← Q

(
y

z

)
;

24





5
A N A LY S I S O F PA R A M E T R I C U N C E RTA I N T I E S I N D Y N A M I C
M O D E L S

Numerical simulation of deterministic, dynamical models given by ODE or DAE sys-
tems requires the knowledge of precise values of the model parameters including the
initial conditions of the system variables. Models of biochemical networks generally
lack important information regarding the values of the parameters. On the one hand,
there is the problem that several parameters cannot be identified due to noisy and
incomplete measurement data so that the modeler often has to guess some nomi-
nal values. Then again, due to strong correlations among certain parameters, only
the ratio between parameters can be identified but no absolute values. Furthermore,
these models include variables for which no measurement data exist at all, which
implies that the initial conditions need to be guessed, too. If the modeler is lucky,
he has some (mostly unreliable) information about the order of magnitude of these
variables at hand.

For these reasons, it is essential to analyze both the qualitative and the quantitative
change in the simulated trajectories of the system variables if the value of one or
more parameters are deviated from a nominal (or: reference) value. The study of
the model behavior in response to variations of the parameter values is generally
abstracted under the terms sensitivity analysis and uncertainty analysis.

5.1 state of the art

Local methods usually deal with the calculation of partial derivatives dx
dp(t) (or the

approximation thereof) of the trajectories x(t, p) of a model with respect to one or
more parameters p. In some rare cases higher order derivatives dx(i)

d(i)p(t), i ∈ {2, 3, . . .}
might also be of interest. In Section 5.2, we are going to present two approaches for
the calculation of first order sensitivities.

Local sensitivity analysis only provides information on how the system response
changes due to small perturbations of the parameters from their nominal values. In
contrast, global sensitivity methods aim at quantifying how the system variables vary if
the parameters or initial conditions are spread over a large range of values. A critical
issue of the global approach is the way of representing uncertainties. Very often,
the spread of the parameter values is defined by intervals. Moreover, it is common
practice to represent parameter uncertainties by means of probability distributions.

Interval arithmetic is virtually a “natural” approach for the simulation of parameter
variability, which is a generalization of classical arithmetic such that it allows the
application of operations on intervals. For example, if two variables x and y are

71
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defined on intervals [x] = [x, x] and [y] =
[
y, y

]
, then the four basic operations

+,−, ·, / are defined by [75]

[x] + [y] =
[
x+ y, x+ y

]
[x] − [y] =

[
x− y, x− y

]
[x] · [y] =

[
min

(
xy, xy, xy, xy

)
, max

(
xy, xy, xy, xy

)]
[x] / [y] =

[
min

(
x/y, x/y, x/y, x/y

)
, max

(
x/y, x/y, x/y, x/y

)]
if 0 /∈ [y] .

Elementary functions, such as the logarithm, can be defined in a similar way to treat
arguments that are defined on intervals. Thus, it is possible to calculate an inter-
val extension [f] ([x]) ⊇ {f(z) | z ∈ [x]} of an arbitrary function f(x). There even exist
algorithms for the simulation of ODEs and DAEs with interval variables [68]. The
dependency problem, however, often yields an overestimation of the actual range of
function values through the interval extension, that is, the lower and upper limits of
the extension are then less or greater, respectively, than the actual limits of the func-
tion range. This problem typically occurs when a variable appears more than once in
a function expression [68]. Particularly in the simulation of dynamical systems this
effect is very problematic because the overestimation is propagated and amplified
with each time step. Although methods have been developed that can reduce the
effect of overestimation, for example, contractor operators [40], overestimation can not
be totally eliminated in most cases. This is why interval arithmetic usually can not
be used for uncertainty analysis.

Instead, often sampling methods are used, that is, depending on the algorithm se-
lected parameter values (samples) are drawn from the uncertain value space and then
the system response is computed for each sample. Both the required computation
time and computational load vary depending on how many samples are generated
and according to which rule.

Latin hypercube sampling is a relatively simple and efficient method to scan the
parameter space evenly without requiring a large number of samples [52]. The idea
is as follows. First, the region of interest of each of the q uncertain parameters is
divided into mI equally spaced intervals. This decomposes the parameter space into
m
q
I hypercubes. Subsequently, one value is drawn from each interval. mI parameter

vectors are then combined randomly from the q ·mI samples; that is, each of the mI
samples of the jth parameter is assigned at random to the jth element of one vector.
This yields mI points in the search space at which the model is evaluated to obtain
information on the variability of the outputs.

Morris’ method is also based on discretization of the region of interest [76, 119]. After
scaling the studied range of values of each parameter pi, i = 1, · · · ,q, to the interval
[0, 1], nodes at the points

{
0, 1
mI−1

, 2
mI−1

, . . . , 1
}

are defined. Morris has termed the
grid in the q-dimensional hypercube which is generated by these nodes the region of
experimentation ω. For a given vector p ∈ ω, the so-called elementary effect of the ith
parameter on the model output y is then determined as

di(p) =
y (p1,p2, . . . ,pi−1,pi +∆,pi+1, . . . ,pq) − y(p)

∆
,

where pi 6 1−∆ and ∆ is a predefined multiple of 1
mI−1

[76, 119]. It is possible to

calculate mq−1I · (mi −∆ · (mI − 1)) elementary effects for each parameter. The dis-
tribution of these effects is then a measure of the influence on the system response.



5.1 state of the art 73

A large mean value indicates that the output is greatly influenced by the respective
parameter, a large standard deviation is a sign for either correlations with other pa-
rameters or for non-linear effects.

The global sensitivity indices, as defined by Sobol’ [102], stem from the decomposi-
tion of the model output y(p) into summands of the output components

y(p) = y0 +
q∑
i=1

yi(pi) +

q∑
i=1

q∑
j=i+1

yij(pi,pj) + . . .+ y12...q(p1,p2, . . . ,pq)

where each term represents the effect of combinations of parameters. Using y(p) and
y0, the total variance D of the output function can be calculated; by means of the
yi1...is it is possible to determine the partial variances Di1...is . Sobol’ defined the
global sensitivity indices as

Si1...is =
Di1...is
D

,

which determine how much of the total variance of y(p) can be attributed to a single
parameter or to arbitrary combinations of parameters. Unfortunately, the calculation
of the Sobol’-indices is computationally very expensive, so the analysis is usually
limited to the determination of the sensitivities of the individual parameters and to
combinations of two parameters.

The previously introduced approaches are generally applicable to any type of
model. However, there exist also simulation methods that are specially tailored to
uncertainties in ODE models, where the variability of the initial conditions and/or
parameters is defined by distributions [51, 111]. Consider an ODE system ẋ = f(x, p, t)
with x(0) = x0. The parameters p can be converted into state variables, which yields
the extended system of ODEs(

ẋ

ṗ

)
=

(
f(x, p, t)

0

)
,

(
x(0)

p(0)

)
=

(
x0
p

)
.

We assume that a probability density

ρ(x, p, t0) = ρ0(x, p)

represents the uncertainty of the initial conditions of the extended dynamic system.
The uncertainty of the initial conditions imposes uncertainty on the time-courses of
the state variables. By means of the Fokker-Planck equation

d

dt
ρ(x, p, t) = −div (f(x, p, t) · ρ(x, p, t)) , ρ(x, p, t0) = ρ0(x, p),

the time-dependent probability density ρ(x, p, t) of the state variables can be calcu-
lated. The Fokker-Planck equation is a nonlinear partial differential equation which
is generally difficult to solve.

For this reason, simulation methods have been developed which approximate both
the initial density and the time-dependent density by a Gaussian sum, that is,

ρ(θ, t) ≈
∑
i

wi(t) · e(θ−θ0)
TGi(θ−θ0), with θ =

(
x

p

)
.
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By inserting the Gaussian sum in the Fokker-Planck equation, a set coupled non-
linear ODEs for the for the weights wi(t), the mean values θ0(t) and the shape
matrices Gi(t) can be derived, which are then solved instead of the partial differential
equation. Finally, the weightswi(t) are readapted by means of optimization problems
to improve the Gaussian-sum approximation [51, 111].

Within this doctoral thesis we will resort to the representation of parameter un-
certainties by fuzzy numbers, an approach that is widely used in engineering but
that has not yet found many applications in systems biology. In Section 5.3, a sim-
ple algorithm for the simulation of models, the uncertain parameters of which were
defined as fuzzy numbers, will be presented. Subsequently, a new approach for the
simulation of fuzzy-parameterized dynamic models is developed in Section 5.4.This
novel method depends on the calculation of local parameter sensitivities. Local sensi-
tivities are also required by the Multiple Shooting algorithm. Therefore, the practical
calculation of local sensitivities will be discussed in the following section.

5.2 local sensitivity analysis

There exist a range of methods for the calculation of local sensitivities of dynamic
systems. In the following, two methods are presented, which are commonly applied
in the scientific community, and which are employed both by the Multiple Shooting
algorithm (see Section 4.2) and for the approximation of the (fuzzy) reachable set (see
Section 5.4). These are the direct differential method and the finite differences method [92].
Both methods can be applied to ODE as well as to DAE systems.

First, ODE models of the type

ẋ(t) = f(t, x(t), p), x(t0) = x0 (5.1)

y(t) = h(x(t), p) (5.2)

with x ∈ Rn, p ∈ Rq and y ∈ Rm will be considered. The local sensitivity of a state
variable xi, i = 1, . . . ,n with respect to a variation of parameter pj, j = 1, . . . ,q is
defined as

sij(t) =
dxi(t, p)
dpj

which can be determined by solving the sensitivity ODE. This differential equation
is obtained when a single ODE from Eq. (5.1) is derived partially with respect to pj.
That is, differentiating the equation of xi for pj yields

d

dpj

(
dxi(t, p)
dt

)
=
d fi(t, x(t), p)

dpj

so that

d

dt

(
dxi(t, p)
dpj

)
=

n∑
k=1

∂fi(t, x(t), p)
∂xk

· dxk
dpj

+

n∑
l=1

∂fi(t, x(t), p)
∂pl

· dpl
dpj

. (5.3)

Assuming that the parameters are independent of each other, one obtains

dpl
dpj

=

{
1 if l = j

0 otherwise.
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As can be seen from Eq. (5.3), this differential equation is dependent on the sensitivi-
ties with respect to pj of the other system variables. Therefore, the sensitivity ODEs
of all system variables have to be solved simultaneously.

This case can be generalized by computing the sensitivities of all state variables
with respect to the parameter of interest. Differentiating Eq. (5.1) for the jth parameter
yields

d

dpj
ẋ =

d

dpj
f(t, x(t), p)

and consequently

d

dt

dx
dpj

=
∂f(t, x(t), p)

∂x
· dx
dpj

+
∂f(t, x(t), p)

∂pj

where J =
∂f(t,x(t),p)

∂x is the Jacobian matrix and Jpj =
∂f(t,x(t),p)

∂pj
is the parametric

Jacobian matrix. With sj =
(
sij
)

the ODE system of the local sensitivities then reads

ṡj = J · sj + Jpj , sj(0) = 0n×1.

This equation system is then solved together with system (5.3).
Analogously, it is possible to determine the sensitivity of state variable xi with

respect to the initial condition of xj

sij,0(t) =
dxi(t, p)
dxj(0)

.

The differential equations (5.3) are differentiated for the initial conditions

d

dxj,0
ẋ =

d

dxj,0
f(t, x(t), p)

and since the parameters p are independent of x0 the result is

d

dt

dx
dxj,0

=
∂f(t, x(t), p)

∂x
dx
dxj,0

.

With sj,0 =
(
sij,0

)
the matrix representation of this dynamic system becomes

ṡj,0 = J · sj,0, sj,0(0) = In×1.

In Section 4.2, the Multiple Shooting approach was introduced, which requires the
computation of the local sensitivities of the observation functions (5.2). Therefore,
differentiation of y for pj yields

dy
dpj

=
∂h(x(t), p)

∂x
· dx
dpj

+
∂h(x(t), p)

∂pj
=
∂h(x(t), p)

∂x
· sj +

∂h(x(t), p)
∂pj

.

In the same manner the sensitivities with respect to the initial condition xj(0) read

dy
dxj,0

=
∂h(x(t), p)

∂x
· sj,0.
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To determine the sensitivities of semi-explicit DAEs of the type

ẋ(t) = f(t, x(t), z(t), p), x(t0) = x0
0 = g(t, x(t), z(t), p)

(5.4)

y(t) = h(x(t), z(t), p)

the coupled system of equations

ṡx
j =

∂f(t, x(t), z(t), p)
∂x

· sx
j +

∂f(t, x(t), z(t), p)
∂z

· sz
j +

∂f(t, x(t), z(t), p)
∂pj

0 =
∂g(t, x(t), z(t), p)

∂x
· sx
j +

∂g(t, x(t), z(t), p)
∂z

· sz
j +

∂g(t, x(t), z(t), p)
∂pj

has to be solved simultaneously with the dynamic system (5.4) [87], where sx
j =

dx
dpj

and sz
j =

dz
dpj

. The sensitivities of the observation function are then

dy
dp

=
∂h(x(t), z(t), p)

∂x
· dx
dpj

+
∂h(x(t), z(t), p)

∂z
· dz
dpj

+
∂h(x(t), z(t), p)

∂pj

=
∂h(x(t), z(t), p)

∂x
· sx
j +

∂h(x(t), z(t), p)
∂z

· sz
j +

∂h(x(t), z(t), p)
∂pj

.

The computation of the sensitivities of ODE and DAE systems requires, as is eas-
ily seen, the computation of the Jacobian matrices. For large systems of equations,
the determination of these matrices can be very laborious and complex. Especially
the manual calculation of the partial derivatives is very error-prone. Although there
are now computer-algebra programs such as Mathematica and Matlab’s Symbolic
Toolbox available, which enable rapid and easy determination of the Jacobians, it
is nevertheless possible that the sensitivities still have to be calculated numerically.
Then the sensitivities can be approximated using the finite differences

dxi(t, p)
dpj

≈
xi(t,pj +∆pj) − xi(t,pj)

∆pj
,

that is, the dynamic system (5.1) or (5.4) is first solved for the parameter set p and
then for the perturbed set with pj +∆pj. Since the local sensitivity is defined as

dxi(t, p)
dpj

= lim
∆pj→0

xi(t,pj +∆pj) − xi(t,pj)
∆pj

,

the proper choice of the perturbation ∆pj is very critical to make the approximation
as accurate as possible. Even though there exist some heuristics for the choice of
∆pj [92], no general rule for the optimal displacement of the parameter can be given.
However, the finite differences method is very easy to implement and, unlike the
direct differential method, it does not require the additional solution of a large ODE
or DAE system.

5.3 uncertainty analysis using fuzzy set theory

The Fuzzy Set Theory, originally introduced in 1965 by Lotfi Zadeh [118], constitutes a
practical approach for the treatment of parameter uncertainties in all kinds of math-
ematical models. Within this framework, uncertain parameters are represented as
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fuzzy numbers. By means of specially adapted algorithms, models with fuzzified pa-
rameters can be simulated, yielding system responses that are also fuzzy numbers.
Fuzzy sets are generalizations of classical sets whereas fuzzy numbers are fuzzy sets
with special properties.

In the notation of fuzzy set theory numbers belonging to a classic sets are denoted
crisp numbers. Whereas crisp numbers either belong to a certain set or not, fuzzy
numbers are allowed to belong to set to a certain degree. The degree of membership
of a number x from the universal set X can be expressed through a so called mem-
bership function µ(x). For crisp sets the membership function can only take one of
the values 0 or 1, that is µ(x) ∈ {0, 1}. Let x be the elements of a universal set X (for
example, R) and A ⊆ X. The membership function µA(x) is then given as

µA(x) =

{
1 if x ∈ A
0 if x 6∈ A

that is, µA is 1 if the element x belongs to the set A and µA is 0 if x is not a member
of A.

Fuzzy sets, however, allow for the membership function to take on values in be-
tween 0 and 1; that is, µ(x) ∈ [0, 1]. By means of this generalization it is possible to
express the uncertainty whether an element x does belong to a set or if it does not. In
other words, whereas crisp numbers belong certainly to a set (µ(x) = 1) or certainly
not (µ(x) = 0), fuzzy numbers1 have the opportunity to belong to a set only a little
bit (for example, µ(x) = 0.1) .

In daily life, humans often work with fuzzy expressions or relations that are easy
to handle as long as they are used linguistically. It is, however, challenging to find
a quantitative representation for linguistic expressions. Here, the characterization of
the age of a human is used as an introductory example [59]. The age of humans
can be coarsely linguistically characterized by the terms young, middle-aged and old.
Unfortunately, it is rather difficult to define a mathematical representation of these
terms. Taking a poll, one might find people to agree that every person not older
than 20 is young and that every person older than 60 is old. There might also be a
consensus that people around 40 are middle-aged. It is, however, difficult to draw a
strict line between young and middle-aged persons. A 30 year old person is relatively
young compared to a 70 year old senior, however, he is also approaching the middle-
ages. Therefore, a 30 year old is to a certain degree member of both groups (in terms
of mathematics: sets). This example illustrates that the characterization of the age of
humans in the sense of the classic set theory is not very useful. Instead, it makes
sense to use membership functions (with respect to age) in the spirit of Fuzzy Set
Theory. This strategy allows a person to be member of several groups (sets) to a
certain degree. Figure 5.1 visualizes a possible realization of the fuzzy membership
functions of the sets Y (young person - membership function µY(x)), M (middle-aged
person - µM(x)) and O (old person - µO(x)) as functions of the age x.

1 A fuzzy set A from the universal set X is termed fuzzy number if the following conditions are satisfied
[110]:

• A is a convex fuzzy set

• there exists only one x∗ for which µA(x∗) = 1

• µA is continuous on an interval.
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µ
(x
)

Figure 5.1: Age distribution of humans encoded as fuzzy sets

The concept of Fuzzy Set Theory can also be applied to the analysis of parametric
uncertainties in the modeling of scientific phenomena and engineering problems. It
is common practice to recruit optimization algorithms to identify or calibrate crisp
parameter sets so that the distance between the observation functions of the model
and measurement data is minimized (see Chapter 4). However, the measured data are
erroneous and contaminated by noise and are, therefore, uncertain. The uncertainty
of the experimental data is generally expressed through standard deviations that are
determined from multiple repetitions of a certain experiment. Especially, in the realm
of molecular and microbiology experiments are repeated only three times, that is the
mean value and the standard deviation of a measured variable are calculated from
only three data points at a given time point; therefore, these data are statistically only
conditionally meaningful [20]. In addition, the available experimental data might not
be sufficient to determine all unknown model parameters (see Section 4.3). Therefore,
the crisp parameter set p? identified by the optimization algorithm is uncertain and
there might exist an infinite number of crisp sets of parameters in a neighborhood of
p? that could explain the experimental data sufficiently well. Fuzzy Set Theory offers
one possible strategy to deal with this uncertainty of the model parameters.

The basic idea is to represent uncertain model parameters as fuzzy numbers and
to analyze and assess how the fuzziness of the parameters translates to the model
outputs. In the following, an algorithm for the simulation of fuzzy-parametrized
models developed by Hanss [46], the Transformation method, will be introduced. This
algorithm is very versatile and can be applied to different types of mathematical
models including the ODE and DAE models used in this thesis.

A very interesting aspect of Hanss’ method is that it allows to identify those pa-
rameters which cause non-monotonic behavior in the system variables. However, the
algorithm provides no means to assess how the parametric uncertainty translates to
the non-monotonic response. Therefore, an extension of the Transformation method
was developed in the course of this thesis. With this extension it is possible to both
simulate a model with parameter uncertainties and to analyze the monotony of the
model response.
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5.3.1 Transformation method

The simulation of a fuzzy-parametrized model usually requires the following com-
ponents [46]:

• A set of q∼ independent parameters that are uncertain. These uncertain pa-
rameters are represented as fuzzy numbers p̃i, i = 1, 2, . . . ,q∼ with respective
membership functions µp̃i(pi).

• The model

y = F(p)

itself that maps the q input parameters p to the m outputs/observation vari-
ables y. In general, there are two groups of parameters: (i) the certain parame-
ters with fixed values pcert and (ii) the uncertain parameters punc; that is, the
model can be stated as

y = F(pcert, punc).

Here, the aim is to analyze the model response to parameter uncertainties.
Therefore, the certain parameters will be neglected since they have fixed val-
ues and do not require any special treatment so that the model of interest is

y = F(punc).

Through representation of the uncertain input parameters as fuzzy numbers p̃i
one obtains the fuzzy- parametrized model

ỹ = F(p̃)

with the membership functions µỹj(yj), j = 1, 2, . . . ,m of the observation vari-
ables ỹj.

Hanss considers general muli-input/multi-output (MIMO) models without assuming
a certain type like, for example, linear, nonlinear, algebraic, dynamic, etc. This thesis
deals with dynamic, that is, time-dependent, models. Therefore, each step of the
following algorithms that deals with the evaluation of the observation variables ỹj
must be carried out for every time point of interest t∗ with t0 6 t∗ 6 tend where t0
is the initial time point and tend is the end point of the dynamic simulation.

The simulation then requires the sequential execution of the following four steps:

1. Definition and discretization of the independent fuzzy input parameters

First of all, the membership functions µp̃i(pi) of the uncertain parameters p̃i must be
defined. There exist many mathematical formalisms to define membership functions.
One of these concepts was applied in this thesis, namely, the representation of a
membership function as L-R fuzzy number [25]. The definition is as follows.

L-R fuzzy number. Let L and R be functions that satisfy the conditions
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(i) L(x) = L(−x), R(x) = R(−x)

(ii) L(0) = 1, R(0) = 1

(iii) L and R are not increasing on [0,∞).

Then, L and R are reference functions of fuzzy numbers. A fuzzy number M̃ is denoted as
L-R type fuzzy number if and only if

µM̃(x) =


L

(
x̄− x

αs

)
for x 6 x̄, αs > 0

R

(
x− x̄

βs

)
for x > x̄, βs > 0

(5.5)

L and R are also denoted shape functions [110] where L is the left reference and R is
the right reference [25]. x̄ is termed the mean value (which should not be mistaken for the
mean value known from probability theory); αs and βs are denoted as left and right spreads,
respectively. The short-hand notation for a fuzzy number M̃ that is defined by the reference
function L(x) and R(x), the mean value x̄ and the spreads αs and βs is given by

M̃ = (x̄,α,β)LR .

The shape functions are often realized through either triangular functions, for ex-
ample,

L(x) = max(1− |x|) (5.6)

(R(x) can be defined analogously - a possible realization of the resulting L-R fuzzy
number is depicted in Fig. 5.2, left panel), or through quasi-gaussian functions, for
example,

L(x) = exp
(
x2
)

(R(x) can be defined analogously - a possible realization of the resulting L-R fuzzy
number is depicted in Fig. 5.2, right panel).

Since they are continuous functions, it is necessary to discretize the uncertain
model parameters p̃i before the simulation. Therefore, each parameter p̃i is dissected
into so called α-cuts. An α-cut Aα of a fuzzy set A is defined by the crisp set

Aα = {x | µA(x) > α} , α ∈ [0, 1).

For the dissection into α-cuts, the µ axis is divided into mα equally spaced segments
with size

∆µ =
1

mα
.

This procedure yields (mα+ 1) α-cuts at the α levels µj that are given by the iteration

µ0 = 0,

µj = µj−1 +∆µ j = 1, 2, . . . ,mα.
(5.7)

Then, the α-cut of a parameter p̃i on the α-level µj is defined through the interval[
P
(j)
i

]
=
[
a
(j)
i , b(j)i

]
, a

(j)
i 6 b

(j)
i , i = 1, 2, . . . ,q∼, j = 0, 1, . . . ,mα, (5.8)
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i)

c
(3)
1,i = a

(3)
i c

(3)
2,i c

(3)
3,i = b

(3)
i

c
(2)
1,i = a

(2)
i c

(2)
2,i c

(2)
3,i c

(2)
4,i = b

(2)
i

p̃i

0
0

µ1

µ2

µ3

µ4

1

pi

µ
p̃
i
(p
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Figure 5.2: Representation of an uncertain parameter pi as a fuzzy number p̃i. Left plot: De-
composition of a triangular fuzzy number p̃i, which causes a monotonic system
response (denoted type-r-parameter) into intervals (α-cuts). Right plot: Decomposi-
tion of a quasi-Gaussian fuzzy number into intervals if the parameter is assumed
to cause non-monotonic behavior (denoted type-g-parameter).

that is

µp̃i

(
a
(j)
i

)
= L

(
a
(j)
i

)
= µj

µp̃i

(
b
(j)
i

)
= R

(
b
(j)
i

)
= µj.

Finally, the discretization of the parameter p̃i is represented by the set of intervals

[Pi,:] =
([
P
(0)
i

]
,
[
P
(1)
i

]
, . . . ,

[
P
(mα)
i

])
. (5.9)

2. Transformation of the input intervals

The Transformation Method is based on the idea to select at each α-level µj values

from the intervals
[
P
(j)
i

]
of the uncertain parameters p̃j according to a predefined

rule, to generate sets of combinations of the values of the different parameters pi and
then to simulate the model for all these parameter sets. Hanss defined different trans-
formation schemes that determine how the combinations of the parameter values are
generated, depending on whether the model response is monotonic with respect to
some (or all) parameters or not.

The reduced transformation method was developed for models that are mono-
tonic with respect to all uncertain parameters (see Appendix B). If the model is non-
monotonic in all parameters, the general transformation method should be used (see
Appendix B). The extended transformation method combines these two approaches.

Extended transformation method If it is known which parameters cause non-mono-
tonic behavior (denoted as type-g-parameters by Hanss) then only these parameters
should be transformed by the general scheme whereas those parameters that yield
a monotonic system response (denoted type-r-parameters) can be treated with the re-
duced transformation method. Let the parameters be sorted so that the model is non-
monotonic with respect to p̃1, . . . , p̃q≺ , 1 6 q≺ < q∼, and that it is monotonic with re-
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spect to p̃q≺+1, . . . , p̃q∼
. Then, the intervals

[
P
(j)
i

]
, i = 1, 2, . . . ,q≺,q≺+1, . . . ,q∼, j =

1, 2, . . . ,mα, are "transformed" into crisp arrays (or matrices) according to the scheme

• for i = 1, 2, . . . ,q≺:

P̂
(j)
i,: =

( (
γ
(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(mα+1−j),i

)
, . . . ,

(
γ
(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(mα+1−j),i

)︸ ︷︷ ︸
(mα+1−j)i−1 (mα+1−j)-tuples

)

with

γ
(j)
l,i =

(
c
(j)
l,i , . . . , c(j)l,i︸ ︷︷ ︸

(mα+1−j)q≺−i 2q∼−q≺ elements

)

and

c
(j)
l,i =



a
(j)
i for l = 1 and j = 0, 1, . . . ,mα

1

2

(
c
(j+1)
l−1,i + c

(j+1)
l,i

)
for l = 2, 3, . . . ,mα − j and j = 0, 1, . . . ,mα − 2

b
(j)
i for l = mα − j+ 1 and j = 0, 1, . . . ,mα

(5.10)

• for i = q≺ + 1,q≺ + 2, . . . ,q∼:

P̂
(j)
i =

( (
α
(j)
i , β(j)

i

)
,
(
α
(j)
i , β(j)

i

)
, . . . ,

(
α
(j)
i , β(j)

i

)︸ ︷︷ ︸
(mα+1−j)q≺ ·2i−q≺−1 pairs

)

with

α
(j)
i =

(
a
(j)
i , . . . , a(j)i︸ ︷︷ ︸
2q∼−i elements

)
, β

(j)
i =

(
b
(j)
i , . . . , b(j)i︸ ︷︷ ︸
2q∼−i elements

)
.

3. Simulation of the model

Due to the fact that the fuzzy-parametrized model ỹ = F (p̃) cannot be evaluated
(or simulated) directly, the fuzzy-valued observation function must be approximated.
Thus, the crisp model y = F (p) is simulated for all crisp sets of parameters that are
stored in the columns of the arrays P̂(j) and the results are stored in the output arrays
Ŷ(j), j = 1, 2, . . . ,mα. That is, the kth column Ŷ(j):,k of the array Ŷ(j), j = 0, 1, . . . ,mα,
is given by

Ŷ
(j)
:,k = F

(
P̂
(j)
:,k

)
= F

(
P̂
(j)
1,k, P̂(j)2,k, . . . , P̂(j)q∼,k

)
(5.11)

where P̂(j):,k is the kth column of the array P̂(j).
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4. Reverse transformation of the output array

In the last step, the membership functions µỹe (ye) , e = 1, 2, . . . ,m∼, of the outputs
are approximated by their discretized representation through evaluation of the ele-
ments Ŷ(j):,k of the output arrays. To this end, the minimum and the maximum values

a
(j)
e and b(j)e , respectively, of the observation functions ye, e = 1, 2, . . . ,m∼, are cal-

culated by the iteration

a
(mα)
e = min

k

(
Ŷ
(mα)
e,k

)
= max

k

(
Ŷ
(mα)
e,k

)
= b

(mα)
e (5.12)

a
(j)
e = min

(
a
(j+1)
e , min

k

(
Ŷ
(j)
e,k

))
, j = mα − 1,mα − 2, . . . , 1, 0 (5.13)

b
(j)
e = max

(
b
(j+1)
e , max

k

(
Ŷ
(j)
e,k

))
, j = mα − 1,mα − 2, . . . , 1, 0. (5.14)

Thus, one obtains the α-cuts of the observation functions that are determined by the
intervals[

Y
(j)
e

]
=
[
a
(j)
e , b(j)e

]
, e = 1, 2, . . . ,m∼, j = 0, 1, . . . ,mα (5.15)

so that the discretized fuzzy-valued observation functions are given by the sets of
intervals

[Ye,:] =
([
Y
(0)
e

]
,
[
Y
(1)
e

]
, . . . ,

[
Y
(mα)
e

])
, e = 1, 2, . . . ,m∼.

That is, the membership functions of the output variables ỹe satisfy

µỹe

(
a
(j)
e

)
= µj, j = 0, 1, . . . ,mα

and

µỹe

(
b
(j)
e

)
= µj, j = 0, 1, . . . ,mα.
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Iteration (5.12) to (5.14) guarantees that the approximation of ỹe is a convex set and,
therefore, satisfies all conditions of a fuzzy number. This algorithm allows for the the
simulation of arbitrary models using the concept of fuzzy numbers.

Algorithm 4: Transformation method

set number of α-levels ;1

calculate α-levels µj ;2

foreach uncertain parameter pi do3

define membership function µp̃i(pi) ;4

foreach α-level j = 0, 1, . . . ,mα do5

calculate the α-cuts
[
P
(j)
i

]
of each parameter ;6

end7

end8

select transformation scheme according to monotony behavior ;9

foreach α-level j = mα, . . . , 1, 0 do10

foreach parameter p̃i do11

apply transformation scheme to create arrays P̂(j)i,: ;12

end13

foreach column k of the array P̂(j) do14

evaluate the model y = F
(
P̂
(j)
:,k

)
;15

foreach time point t do16

store the output y in the array Ŷ(j):,k ;17

end18

end19

compute the α-cuts
[
Y
(j)
e

]
of the observation function ;20

end21

5.3.2 Novel algorithm for analysis of monotonicity

Using the transformation methods introduced in the preceding section yields the
minimum and maximum values of each trajectory at each α-level in dependence of
the respective uncertain parameter intervals. However, Hanss did not define an algo-
rithm which allows to identify which sets of parameter values induce these extreme
trajectories. This issue becomes specially interesting if the model is non-monotonic
with respect to some of the parameters. In order to enable an analysis of the induc-
ing parameter sets of the extreme trajectories at each time point of the simulation an
extension of the Transformation method will be introduced in this section.

Monotonicity of a dynamic system. [55, 66] Let x0,1, x0,2 be two different vectors of ini-
tial conditions ∈ Rn and u1(t), u2(t) be two different input vectors ∈ Rq. Additionally, let
≺ denote a partial order on suitable subsets of Rn and Rq.2 Then, the system is monotone
for all times t > 0 if for

x0,1 ≺ x0,2 and u1(t) ≺ u2(t)⇒ ξ (t, x0,1, u1(t)) ≺ ξ (t, x0,2, u2(t)) ,

2 In this particular case one uses a partial order induced by an orthant cone of the form K ={
x ∈ Rn | eT · x > 0

}
where e ∈ {−1, 1}n. The partial order is then given by x ≺ y⇔ y − x ∈ K
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where ξ (t, x0,i, ui(t)) , i ∈ {1, 2} is the solution of the dynamic system at time t.

This definition can be generalized if the parameters of a model are regarded as
constant inputs. Moreover, this definition implies that non-monotonic behavior leads
to overlapping trajectories (or solutions) for different sets of parameters.

In the following, for each of the three transformation methods simple extensions
are specified that allow to keep track of the parameter combinations that cause the
respective minimum and maximum values of each trajectory. The strategy to be pur-
sued here is relatively trivial. Recall that the parameter vector at the α-level µmα = 1

consists of the mean values p̄i = a
(mα)
i = b

(mα)
i of the fuzzy parameters. The tra-

jectory induced by this vector is stored the array Ŷ(mα)
:,1 (or in the interval vector[

Y(mα)
]

respectively3 - see Eq. (5.11) and (5.15)) and will be termed the mean trajec-

tory. For each output interval
[
Y
(j)
e

]
=
[
a
(j)
e ,b(j)e

]
, e = 1, 2, . . . ,m∼ on the α-levels

j = 0, 1, . . . ,mα − 1 the relation a(j)e 6 a
(mα)
e = b

(mα)
e 6 b(j)e holds.

Thus, each of the entries
[
P
(j)
i

]
, i = 1, 2, . . . ,q∼ can be specified relative to the

mean values of
[
P
(mα)
i

]
, i = 1, 2, . . . ,q∼, that is whether it is less or greater than

the mean value. In the same manner one can characterize the trajectories Ŷ(j):,k as less
or greater than the mean trajectories. The strategy to be developed should therefore
determine (i) whether an extreme trajectory is less than or greater than the mean
trajectory and (ii) whether the inducing parameters are each greater than or less than
the mean parameter values.

For this purpose each array P̂(j) is supplemented with an array Σ̂
(j)

of the same
dimension whose entries are elements from {−1, 0, 1}. Since a(j)i 6 a

(mα)
i = b

(mα)
i 6

b
(j)
i the element σ̂(j)i,k of the array Σ̂

(j)
is then

σ̂
(j)
i,k = −1 if P̂(j)i,k < a

(mα)
i

σ̂
(j)
i,k = 0 if P̂(j)i,k = a

(mα)
i

σ̂
(j)
i,k = 1 if P̂(j)i,k > a

(mα)
i

This rule was formalized for each of the three transformation schemes of Hanss.
Below only the definition of Σ̂

(j)
of the extended transformation method will be given.

The formulas for the reduced transformation method and the general transformation
method are listed in Appendix B. For the following definition it will be assumed that
the arrays P̂(j) were formed according to the rules in the last section.

Extended transformation method This procedure was introduced in the last sec-
tion of in order to avoid unnecessary computational expense. The Extended transfor-
mation method should be used if information is available, which parameters cause
monotonic behavior and which parameters induce non-monotonic system responses.
In analogy to the transformation rules presented above one obtains the following
scheme. Recall that the parameters are sorted so that the model is non-monotonic
with respect to p̃1, . . . , p̃q≺ , 1 6 q≺ < q∼ and that it is monotonic with respect to
p̃q≺+1, . . . , p̃q∼

. Then, the transformation is

3 The interval
[
Y(mα)

]
is a degenerate interval since its upper bound equals its lower bound.
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• for i = 1, 2, . . . ,q≺:

Σ̂
(j)
i =

( (
σ
(j)
1,i , σ

(j)
2,i , . . . , σ

(j)
(mα+1−j),i

)
, . . . ,

(
σ
(j)
1,i ,σ

(j)
2,i , . . . ,σ

(j)
(mα+1−j),i

)︸ ︷︷ ︸
(mα+1−j)i−1 (mα+1−j)-tuples

)

with

σ
(j)
l,i =

(
s
(j)
l,i , . . . , s(j)l,i︸ ︷︷ ︸

(mα+1−j)q≺−i 2q∼−q≺ elements

)

and

s
(j)
l,i =


0 for l = 1 and j = mα
0 if c(j)l,i = a

(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

−1 if c(j)l,i < a
(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

1 if c(j)l,i > a
(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

and

• for i = q≺ + 1,q≺ + 2, . . . ,q∼:

Σ̂
(j)
i =

( (
σ
(j)
1,i , σ

(j)
2,i

)
,
(
σ
(j)
1,i , σ

(j)
2,i

)
, . . . ,

(
σ
(j)
1,i , σ

(j)
2,i

)︸ ︷︷ ︸
2i−1 pairs

)

with

σ
(j)
1,i =


(
0, . . . , 0︸ ︷︷ ︸

2q∼−i elements

)
for j = mα

(
−1, . . . , −1︸ ︷︷ ︸
2q∼−i elements

)
for j = 0, 1, . . . ,mα − 1

σ
(j)
2,i =


(
0, . . . , 0︸ ︷︷ ︸

2q∼−i elements

)
for j = mα

(
1, . . . , 1︸ ︷︷ ︸

2q∼−i elements

)
for j = 0, 1, . . . ,mα − 1

.

By means of the reverse transformation of the output array in the last step of the
transformation method, the minimum function value a(j)e and the maximum value
b
(j)
e of the eth observation function are calculated. To determine the monotony of
a
(j)
e and b(j)e with respect to the inputs, we define the two arrays and S(j)

a and S(j)
b .

The eth row of S(j)
a is given by

s
(mα)
ae,: =

(
σ̂
(mα)
:,1

)T
, e = 1, 2, . . . ,m∼

and

s
(j)
ae,: =


s
(j+1)
ae,: if a(j+1)e < min

k

(
Ŷ
(j)
e,k

)
(
σ̂
(j)
:,k∗

)T
if a(j+1)e > min

k

(
Ŷ
(j)
e,k

)
, with k∗ = arg min

k

(
Ŷ
(j)
e,k

)
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for j = mα − 1,mα − 2, . . . , 1, 0, where σ̂(j):,k denotes the kth column of Σ̂
(j)

. Analo-

gously, the eth row of S(j)
b is determined by

s
(mα)
be,:

=
(
σ̂
(mα)
:,1

)T
, e = 1, 2, . . . ,m∼

and

s
(j)
be,:

=


s
(j+1)
be,:

if b(j+1)e > max
k

(
Ŷ
(j)
e,k

)
(
σ̂
(j)
:,k∗

)T
if b(j+1)e < min

k

(
Ŷ
(j)
e,k

)
, with k∗ = arg max

k

(
Ŷ
(j)
e,k

)
for j = mα − 1,mα − 2, . . . , 1, 0.

Using these two arrays, it is possible to determine for each input/output pairing
whether the extremal output a(j)e or b(j)e , respectively, was induced by parameter
values that are less or greater than their respective mean value. The application of
this expansion of the transformation method will be illustrated in Section 7.4.

5.4 approximation of the fuzzy reachable set

The simulation algorithm of Hanss, introduced in the preceding section, offers several
benefits. It can be applied to arbitrary types of models, it is gradient-free (that is, no
derivatives of the system variables with respect to parameters need to be computed),
and it can be easily programmed. A tremendous drawback of the algorithm is that
the model must be evaluated for a lot of different sets of parameters; the number of
model evaluations increases exponentially with the number of uncertain parameters,
that is the necessary number of model evaluations is of the order O (kq∼), where k ∈
{2, . . . ,mα} depending on the α-cut level and the used type of transformation. In the
case of dynamic models this property might become problematic since the numerical
integration of ODE systems is a time-consuming task - especially if the models are
stiff (that is, the variables have different time-scales). Therefore, the transformation
method becomes infeasible when the number of uncertain parameters increases.

For this reason, in this thesis a new method for simulation of fuzzy-parametrized
dynamic systems has been developed that allows to circumvent the strict scheme of
the transformation method. The newly developed algorithm is based on a parameter
synthesis method of Donzé and others [24] with which the reachable set of an ODE
system can be computed. In contrast to the Transformation method, the new method
is gradient-based and adaptive, so that the computational effort can be, at loss of
accuracy, significantly reduced.

Estimation of the reachable set

Donzé considers ODE systems of the form

ẋ(t) = f(t, x(t), p), x(t0) = x0 (5.16)

where x ∈ Rn and p ∈ Rq . Moreover, f(t, x(t), p) is assumed to be continuously
differentiable which is essential for the computation of the dynamic parameter sen-
sitivities. The parameters p and the initial conditions x0 are collected in the vector
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θ = (p, x0). The expanded parameter vector θ lies in a compact subset of Rq+n, that
is θ ∈ P ⊂ Rq+n.

Reachable Set. Let ξθ be the solution (or equivalently: the trajectory) of the ODE (5.16)
for a given θ, that is ξ̇ = f(t,ξθ(t),θ) ∀ t. Then the reachable set induced by the set of
parameters P (or: the set that can be reached from P) at a time point t is

Rt(P) =
⋃
θ∈P

ξθ(t).

It is obvious from this definition that the calculation of the reachable set is an infea-
sible problem since it would require to determine an infinite number of trajectories.
This challenge can be circumvented by computing an approximation of the reachable
set that only requires the determination of a finite number of trajectories.

Therefore, Donzé and colleagues have developed an algorithm that employs the
parameter sensitivities to estimate the reachable set; this method shall be termed
reachable set algorithm (RSA). If a parameter vector θ is perturbed by δθ ∈ Rq+n, then
the trajectory that is induced by the vector θδ = θ+ δθ can be approximated by a
Taylor series expansion of ξθ(t) around θ, that is

ξθδ(t) = ξθ(t) +
∂ξθ(t)

∂θ
δθ+O

(
||δθ||2

)
where ∂ξθ(t)∂θ = S(t) is the sensitivity matrix, the calculation of which has been intro-
duced in Section 5.2. Dropping the higher order terms yields the first order estimate

ξ̂
θ

θδ(t) = ξθ(t) + Sθ(t) ·
(
θδ −θ

)
(5.17)

of ξθδ(t). By means of this approximation the reachable set Rt(P) at time t can be
estimated by

R̂θt (P) =
⋃
θδ∈P

ξ̂
θ

θδ(t) = {ξθ(t) − Sθ(t) ·θ}⊕ Sθ(t) ·P

for all vectors θδ ∈ P 4, where Sθ(t) · P = {Sθ(t) · p, p ∈ P} (see also Fig. 5.3b).
The vector θ is chosen as the center of the set P. Furthermore, the trajectory ξθ(t)
shall be termed reference trajectory from now on. Whereas the approximation (5.17)
is exact for linear dynamic systems, the first order estimate becomes inaccurate for
non-linear ODE systems if the deviation δθ from the reference vector θ becomes too
large. Therefore, the precision (or reliability) of the approximation (5.17) has to be
verified. Donzé and colleagues suggest to do this by partitioning the superset P into
subsets {P1,P2, . . . ,Pmsub

} such that

• P =

msub⋃
k=1

Pk and

• there exists a γ < 1 such that max
k∈{1,2,...,msub}

||Pk|| 6 γ||P||,

4 Minkowski sum: The operator ⊕ denotes the Minkowski sum S1 ⊕ S2 of two sets S1 and S2 which is
defined as S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}
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where the diameter of a compact set is defined as ||S|| = sup {||s1 − s2|| : s1, s2 ∈ S}.
More information on the partitioning of P into subsets can be found in [24]. The au-
thor of this thesis proposes a rather simple refinement operator instead: P is bisected
along one dimension (that is one parameter) into two subsets P1 and P2, preferably
along the dimension that spans the widest range of values (that is the dimension,
which determines the diameter of P). After that, the estimate R̂θt (Pk) - that is, the
estimate of the reachable set of Pk where θ is the center of P - is compared with
R̂
θk
t (Pk) - that is, the estimate of the reachable set of Pk where θk is the local center5

of Pk - for all k = 1, 2, . . . ,msub. Figure 5.3c illustrates how these sets are related with
each other.

The Haussdorf distance between two sets S1 and S2 is

dH (S1, S2) = max

(
sup

s1∈S1
d (s1, S2) , sup

s2∈S2
d (s2, S1)

)
where the distance from x to S is d(x, S) = inf

s∈S
||x − s||. Donzé and coworkers proved

that the Haussdorf distance between R̂θt (Pk) and R̂
θk
t (Pk) satisfies

dH

(
R̂θt (Pk), R̂

θk
t (Pk)

)
6 Err (P,Pk)

where

Err (P,Pk) =
∣∣∣∣∣∣ξθk(t) − ξ̂θθk(t)∣∣∣∣∣∣∞ +

∣∣∣∣∣∣Sθk(t) − Sθ(t)
∣∣∣∣∣∣∞ · ∣∣∣∣Pk∣∣∣∣

with

ξ̂
θ

θk
(t) = ξθ(t) + Sθ(t) · (θk −θ) .

If Err (P,Pk) is smaller than a user-specified tolerance tol (that is, Err (P,Pk) < tol)
for all k = 1, 2, . . . ,msub then the estimate R̂θt (P) is considered to be precise enough.
Otherwise, if the approximation R̂θt (P) fails the reliability test, each of the subsets
Pk, k = 1, 2, . . . ,msub becomes a superset which is partitioned into subsets analogous
to the partitioning of P. As for P the Err function of Pk with respect to its subsets is
calculated and it is checked whether the error is below the tolerance tol. The process
of partitioning the respective supersets into subsets is repeated until all estimates of
the reachable sets of the subsets are classified as reliable.

Computation of the fuzzy reachable set

The algorithm of Donzé was extended in the course of this thesis to simulate the
reachable set of fuzzy-parametrized dynamic models yielding what shall be termed
the fuzzy reachable set. Therefore, this method will be denoted fuzzy reachable set algo-
rithm (fRSA). Assume that the uncertain parameters have been defined as L-R fuzzy
numbers (see Eq. (5.5)) and that the membership functions µ(p) have been discretized
according to the iteration (5.7). Then, a set of uncertain parameters

P(j) =
{
θ
∣∣∣ a(j) 6 θ 6 b(j)

}
(5.18)

5 Throughout this thesis all sets are defined as intervals [Ii] = [ai,bi] the centers (or: the midpoints) of
which are c([Ii]) = 1

2 (ai + bi).
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P

p

Pk

pk

(a) Parameter
space

(b) Reachable set (c) Approximation of the reachable set

Figure 5.3: Elements of the reachable set algorithm introduced by Donzé

can be defined for each α-level, where a(j) and b(j) are the same as in Eq. (5.8)6. Since
the uncertain parameters are fuzzy numbers they possess the advantageous property
that they constitute a convex set so that P(mα) ⊆ P(mα−1) ⊆ . . . ⊆ P(0). Therefore,
the reachable set for each α-level can be determined easily if the reachable set of P(0)

is known.
Using the algorithm of Donzé and coworkers the strategy is straightforward and

as follows. First, set P = P(0) and apply Donzé’s method to compute the estimate of
the reachable set R̂t(P

(0)). The algorithm yields the partitioning of P(0) into msets
subsets Pk, k = 1, 2, . . . ,msets with the local centers (midpoints) θk so that

P(0) =

msets⋃
k=1

P
(0)
k

and the reachable set can be approximated by

R̂t(P
(0)) =

msets⋃
k=1

R̂
θk
t

(
P
(0)
k

)
=

msets⋃
k=1

{ξθk(t) − Sθk(t) ·θk}⊕ Sθk(t) ·P
(0)
k . (5.19)

By means of this result the estimates of the reachable sets of P(j), j = 1, 2, . . . ,mα are
computed by

R̂t

(
P(j)

)
=

msets⋃
k=1

(j)R̂
θk
t

(
P
(0)
k

)
, j = 1, 2, . . . ,mα (5.20)

where

(j)R̂
θk
t

(
P
(0)
k

)
=

 ∅ if P(0)
k ∩P

(j) = ∅
{ξθk(t) − Sθk(t) ·θk}⊕ Sθk(t) ·

(
P
(0)
k ∩P

(j)
)

else
.

Therefore, Eq. (5.19) and (5.20) constitute the fuzzy reachable set of a dynamic system
with fuzzy-valued parameters P(j), j = 0, 1, . . . ,mα.

6 Note that the sets in Eq. (5.18) are the equivalent representation of the interval vector in Eq. (5.9)
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The intersections P
(0)
k ∩ P

(j) can be determined easily due to the definition of the
P
(0)
k and the P(j) as intervals. Recall that an arbitrary vector of intervals is simply

[x] =


[x1]

...

[xn]

 , with [xi] = [ai,bi] , i = 1, 2, . . . ,n

and that the intersection of two interval vectors [x] and [y] with [yi] = [ci,di] , i =

1, 2, . . . ,n is

[x]∩ [y] =


[x1]∩ [y1]

...

[xn]∩ [yn]


where [xi] ∩ [yi] = [max (ai, ci) , min (bi,di)] if ai < di or bi > ci (otherwise the
intersection is empty). Algorithm 5 lists the entire procedure.

Example

To illustrate the results of the fRSA and to exemplify its relation to the transformation
method of Hanss, both algorithms have been applied to the famous Van der Pol
oscillator equations

ẋ = k ·
(
x−

1

3
· x3 − y

)
ẏ =

1

k
· x.

For this study k was chosen k = 1 and the initial conditions of the system were
defined as triangular fuzzy L-R numbers (see Eq. (5.6)) with x̃0 = (2, 0.5, 0.5)LR and
ỹ0 = (0, 0.5, 0.5)LR. The fuzzy numbers x̃0 and ỹ0 were discretized into mα = 8 α-
levels. Figure 5.4a displays the fuzzy reachable set at t = 3 (time units are arbitrary)
that was computed using Algorithm 5; the uncertain initial conditions are illustrated
in the lower right corner. In contrast, Fig. 5.4b illustrates the “reachable set” accord-
ing to the Transformation method. These two sets are related as follows. At each
α-level the Transformation method theoretically yields the lower and upper bounds
of the true reachable set. Due to the fixed and deterministic transformation scheme
of the general and the extended transformation method, only selected parameter sets
are used to approximate the boundaries

[
Y
(j)
e

]
=
[
a
(j)
e , b(j)e

]
, e = 1, 2, . . . ,q∼, j =

0, 1, . . . ,mα of the model outputs so that the TM possibly might not determine an
exact enclosure of the reachable set. The accuracy of the method decreases with the
number of α-cuts. The potential under-approximation of the true boundaries of the
reachable set is illustrated in Fig. 5.4c where both the enclosure by means of the TM
(dashed line) and the hull determined by the fRSA (solid line) are depicted for µ0 = 0
(left diagram) and µ6 = 0.75 (right diagram). Whereas the estimation of the extreme
values of the reachable set are correct at the lowest α-level (due to a large number
of sampling points c(j)l,i ; see Eq. (B.3) and (5.10)) the transformation method clearly
underestimates the minimal value of x at level µ6 = 0.75.
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Of course, the accuracy of the TM can be improved by increasing the number
of α-cuts at the cost of higher computational expense. The fRSA shares a similar
problem; the precision of the algorithm strongly depends on the value of the tolerance
tol and up to now no verified rule exists how tol should be chosen. Therefore, the
accuracy of fRSA (just as that of RSA) depends on user-settings and, like the TM,
can only be improved by increasing the computational load. However, the fRSA has
a decisive advantage over the Transformation method: fRSA permits to compute an
approximation of the hull of the true fuzzy reachable set, whereas Hanss’ method
only yields an estimate of the lower and upper boundaries of this set.

(a) Fuzzy Reachable Set (b) Reachable Set Transformation Method
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(c) Comparison of the Reachable Sets

Figure 5.4: Fuzzy reachable set of the Van der Pol example at t = 3
a) Approximation of the reachable set determined by the fRSA method (Algorithm
5). The fuzzy initial conditions are shown in the lower right corner.
b) Bounds of the reachable set obtained using the Transformation Method by
Hanss (Algorithm 4).
c) Enclosures of the reachable sets at α-levels µ0 = 0 (left plot) and µ6 = 0.75 (right
plot). Solid lines: fRSA, dashed lines: TM. The Transformation Method tends to
underestimate the bounds of the reachable set due to the discretization of the
membership functions of the fuzzy parameters.
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Algorithm 5: Fuzzy Reachable Set Algorithm

set number of α-levels ;1

calculate α-levels µj ;2

foreach α-level j = 0, 1, . . . ,mα do3

foreach uncertain parameter pi do4

define membership function µp̃i(x) ;5

calculate the α-cuts
[
P
(j)
i

]
of each parameter ;6

end7

define the uncertain set P(j)8

end9

set Psuper =
{
P(0)
}

, Psub = { } and Prel = { } ;10

while Psuper 6= ∅ do11

remove last element Plast from Psuper ;12

partition Plast into subsets Pk and add the Pks to Psub (Psub ← {{Psub} ,Pk}) ;13

foreach Pk ∈ Psub do14

if Err (Plast,Pk) 6 tol then15

remove Pk from Psub ;16

add Pk to Prel (Prel ← {{Prel} ,Pk} ) ;17

else18

remove Pk from Psub ;19

add Pk to Psuper (Psuper ← {{Psuper} ,Pk} ) ;20

end21

end22

end23

end24

foreach α-level µj do25

foreach Pi ∈ Prel do26

calculate reachable set (j)R̂
θi
t (Pi) ;27

end28

compute reachable set R̂t
(
P(j)

)
;29

end30





6
R E S U LT S

In the previous chapters a dynamic model of the K+ uptake in E. coli by the KdpFABC
complex, methods to analyze the model structure and to assess parameter uncertain-
ties as well as a robust methodology to identify the model parameters from experi-
mental data have been introduced. This chapter deals with the analysis and verifica-
tion of the presented Kdp model and hence with the application of the theoretical
concepts from Chapters 2, 4 and 5.

A very important aspect of model validation is the comparison of observed real-
world data with the simulated model response. For this purpose, experimental data
from three different but related E. coli strains were used:

. MG1655 wild-type (WT)

. MG1655kdpA4 mutant (Mut): This strain has a point mutation in kdpA; Glycine
345 is replaced by serine. The amino acid replacement affects the K+ binding
site in the K+ selectivity filter of KdpA, causing a lower K+ transport rate in
comparison to the wild-type.

. MG1655kdpA4pKT84 complemented mutant (cMut): The MG1655kdpA4 mu-
tant was complemented by the KtrAB K+ uptake system from Vibrio algenolyti-
cus. The KtrAB transporter operates in parallel to the defective KdpFABC com-
plex. Consequently, the complemented uptake system should approximately
restore the K+ uptake capacity of the wild-type.

experimental setup : Cells of the respective strains were cultured in a mini-
mal medium with 10 mM K+ (corresponding to K+ abundance). After reaching an
optical density of OD ≈ 0.5 the cells were shifted into a medium with 40 µM K+

(corresponding to K+ limitation). To monitor the cellular response to K+ limitation
measurements of the following variables were taken at discrete time points over a
period of three hours after the shift:

• kdpFABC transcript - units: transcriptscell

• KdpA protein - units: proteinscell

It was assumed that the number of kdpFABC complexes is equivalent to the
number of kdpA proteins; therefore we used the relation

# KdpA proteins
cell

=
# KdpFABC complexes

cell

• extracellular K+ (K+
ex) - units µmoll = µM

This concentration was determined with respect to the volume of the culture
medium.

• total intracellular K+ (K+
tot) - units: mmoll = mM

This concentration was determined with respect to the volume of the average
cell (see below).
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• bound intracellular K+ (K+
bound) - units: mmoll = mM

This concentration was determined with respect to the volume of the average
cell (see below). The concentration of free intracellular K+ was then calculated
as

K+
free = K

+
tot −K

+
bound

• total cell number of the population Ntot - units: cellsl

Moreover, the constant volume of the average cell was determined experimentally
as V = 8.12 · 10−16 l

cell . Using this the total volume of the respective population of
cells was calculated as

Voltot = V ·Ntot.

These data were recorded in the lab of Prof. Kirsten Jung at the Ludwig-Maximilians-
Universität, München.

Since the variables mRNA and FABC of the model represent concentrations with re-
spect to the cell volume, that is molarities, the simulated quantities can be compared
to the experimental data using the conversion

molecules

cell
= molarity ·NA · V ,

where NA = 6.022 · 1023moleculesmol is the Avogadro constant.

The outline of this chapter is thus as follows. First, the modularization of the core
model will be discussed. This is followed by the analysis of the qualitative dynamics
of two-component system regarding the possible regulation by K+. Subsequently, the
results of the calibration of the model parameters using the available measurement
data will be presented. Finally, the impact of the uncertainty of selected parameters
on the observation variables is discussed.

6.1 characterization of the model structure - modularization

As a basis for the work described in the following section, the connection-structure
of the core model was examined first. Using the generalized network theory, which
was presented in Section 2.2.2, the links among the state variables were characterized.
Thereby, all unidirectional and all bidirectional links were identified. In the next step,
the model was then modularized based on its connection structure.

The system equations of the core model (3.22) to (3.32) were the starting point
for the structural analysis. The concentrations of K+

ex and KdpEPfree are determined
by the algebraic equations (3.29) and (3.24), respectively, whereas the concentrations
of the other state variables are determined by the respective differential equations.
System (3.22) to (3.32) is thus a DAE system of the form (2.19) and (2.20), as it was
assumed and defined for the generalized network theory in Section 2.2.2. Although
the differential equations of the core model are not directly displayed in the canonical
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form ẋ = N · v(x, z), they can be transformed very quickly in this representation form
if each term of the equation system is conceived of as a reaction rate.

Here, the algebraic equation to determine K+
ex represents a special case, since K+

ex

can be determined in principle by a differential equation; that is, the two equations
are equivalent. However, in this particular case the ODE-representation does not fit
into the framework presented in Section 2.2.2. This problem arises from the fact that
K+
ex is an extracellular entity, whereas all other state variables are intracellular quan-

tities. In the sense of the network theory of Gilles [33] K+
ex is thus a hierarchical level

higher than the other variables1. K+
ex, K+

free and K+
bound are connected through several

shared currents, but because K+
ex is consumed by all cells, these currents are multi-

plied with the total volume, so that the uptake rates of K+
ex are not the same as those

of K+
free and K+

bound. However, the procedure of Saez-Rodriguez and coworkers is
applicable only to intracellular entities. Due to the novel extension to DAE models of
biochemical networks, the connection structure can nevertheless be analyzed (even if
K+
ex is on a different hierarchical level than the remaining variables), albeit under loss

of essential information about the network structure. Thus, if K+
ex is determined by

the algebraic equation, then the DAE framework from Section 2.2.2 can be applied to
the Kdp network.

The result of the structural analysis is shown in Fig. 6.1. here, the representation is
geared to the ODE notation, as introduced in Section 2.2.2: the causality is from “left”
to “right” (see also [71]), that is, the variables in the rows are affected by the variables
in the columns. For each of the two algebraic equations in each case there is only one
perfect matching, so that K+

ex is matched with Eq. (3.29) and KdpEPfree with Eq. (3.24).
Therefore, a causality from left to right arises also for these two variables. The color
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Figure 6.1: Connection structure of the Kdp core model in the sense of network theory

coding of a connection between a variable in column j and a variable in row i is the
following:

I white: no connection exists

1 In terms of the network theory of Gilles, the cells and K+ex are located on the level of cells; all other
variables are on the level of pathways [97].
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I green:

(i) differential equation: xi is influenced by at least one reaction, the rate of the
reaction is modified by either xj or zj.

(ii) algebraic equation: zi is affected by either xj or zj.

I blue: xi and xj are connected through at least one reaction, the rate of which is
dependent on xj but not on xi

I black: xi and xj are connected through at least one reaction, the union of all
reaction rates is influenced by both variables.

(Note: Self loops are not considered since they are unimportant, so the main diagonal
is white colored.) The connection structure of the Kdp core model can also be partially
deduced from its graphical representation in Fig. 3.5.

Take KdpEP as example: this component is connected to KdpDP through the re-
versible reaction R2, the velocity of which depends on the concentrations of both
components (see also Fig. 3.5). Therefore, KdpEP and KdpDP are coupled retroac-
tively. Moreover, the total protein concentrations KdpD0 of the sensor kinase and
KdpE0 of the response regulator affect the rate of R2 , whereas KdpEP does not act
directly on the synthesis rate of those proteins (compare the corresponding equations
in Section 3.2.4). Hence, the effect from KdpD0 and KdpE0 on the phosphorylated re-
sponse regulator is unidirectional. The same relation holds for the dependency of
KdpEp on K+

ex and the volume Voltot. Likewise, the kinase reaction R3 affects the bal-
ance of KdpEP and depends on KdpEPf . The algebraic equation of KdpEPfree in turn
is a function of KdpEP, so that these two components are connected with each other
bidirectionally.

All the remaining links of the network can be characterized and interpreted anal-
ogously. Thus the core model can be modularized as follows. KdpEP is connected
with KdpDp retroactively and with KdpEPfree bidirectionally, so that these three com-
ponents are combined in one module. Similarly, the link between K+

free and K+
bound

is retroactive and the connection of K+
free with K+

ex is bidirectional; thus, these three
variables constitute another module. All other components are influenced by other
variables only uni-directionally, so that for the time being each of these can be viewed
as a single module. In connection with the parameter identification problem in the
following section it will be shown that it can be useful to combine several of these
modules into larger subunits.

The next step is to study the two-component system KdpD/KdpE as a separate
sub-system with regard to the possible regulation by unidirectional input signals.

6.2 qualitative dynamics of the kdpd/kdpe two-component system

As already mentioned in the introduction, it is unclear to this day, which is the pri-
mary stimulus for the Kdp system. Therefore, it was examined as part of this thesis
whether K+ is a potential signal and whether the existing measurement data, as well
as the observations described in the literature can be explained by a K+-dependent
regulation of the two-component system. Owing to the lack of enough (or any) data
this analysis could rely on, the symbolic dynamics approach [88] was employed to
study the qualitative temporal behavior of the KdpD/KdpE system.
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In principle a potential control signal could act on two possible targets in the two
component system: (i) the autophosphorylation of KdpD (reaction R1) or (ii) the
phosphatase activity of KdpD that causes the dephosphorylation of KdpE-P (reaction
R3). It is also plausible that both reactions are affected simultaneously. The reaction
rate of the phosphate transfer R2 is assumed to be so fast that the alteration of the
reaction velocity due to an effector signal has no noticeable impact on the system
behavior.

Since KdpD is a membrane-bound protein that is exposed to both the periplasm
and the cytoplasm there exist several scenarios how K+ as the primary stimulus
could act on the two-component system: Either one or both of the reactions R1 and
R3 could be influenced by (i) the extracellular K+, (ii) the free intracellular K+ or (iii)
by both fractions. It cannot be excluded that the bound intracellular K+ influences
the reactions (which was suggested by Gowrishankar [37]); however, this hypothesis
seems implausible since the bound K+ serves to counter the negative charge of the
macromolecules, in consequence K+

bound is osmotically inactive [94].
Thus, there are several possible combinatorial configurations of the regulation of

the two reactions R1 and R3 by the two signals K+
ex and K+

free. In order to keep things
simple, it is assumed that that each of the two reactions can be affected by only one
of the two inputs K+

ex and K+
free. The input/target configurations considered in this

work are listed in the following table where a filled circle indicates that a reaction is

K+
ex K+

free K+
ex K+

free K+
ex K+

free K+
ex K+

free

R1
y i i i i y i i

R3
i i y i i i i y
K+
ex K+

free K+
ex K+

free K+
ex K+

free K+
ex K+

free

R1
y i i y y i i y

R3
y i i y i y y i

Table 6.1: Possible combinations how K+ could affect the reactions R1 and R3 of the two-
component system

influenced by the respective input, and an open circle implies that there is no effect.
The analysis to determine which of these configurations are consistent with the

available measurement data can be either qualitative or quantitative. However, the
quantitative analysis is associated with some difficulties since it requires (i) an exact
specification of the reaction rates r1 and r3 as functions of the inputs and (ii) the
identification of the kinetic parameters of the two-component system. On the one
hand, it is unclear how the reaction rates depend on the the input signals, since it is
not known whether the effect of the inputs is linear or nonlinear. Moreover, in case
of a nonlinear influence the type of the nonlinearity is not known. On the other hand
can not be guaranteed that the parameter calibration yields the optimal result. In
consequence, if no parameter set is found, which allows to reproduce the measured
data quantitatively, this is not a proof that the model is wrong.

For this reason, first, a qualitative analysis method is used, with which the symbolic
dynamics of the two-component system is evaluated. The author is aware of the
fact that the qualitative reproduction of the measured system dynamics does not
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imply quantitative reproducibility. However, the qualitative approach might assist to
identify regulation patterns that do not exhibit the desired qualitative behavior so
that they can be neglected in future studies.

For this study a simple algorithm of Pigolotti and others [88] was adapted to this
specific task and applied (for details, see Appendix C) to the KdpD/KdpE two-
component system. Pigolotti and colleagues deal with dynamic systems described
by sets of coupled ODEs ẋ = f(x). The author of this thesis has enhanced their
methodology in order to analyze ODE systems with inputs ẋ = f(x, u) (see Appendix
C). The symbolic state of each state variable xi, i = 1, 2, . . . ,n and of each input
uj, j = 1, 2, . . . ,nu is then represented by the sign of its time derivative Σ (ẋi) and
Σ
(
u̇j
)

respectively, that is the symbolic state determines whether a variable/input is
either increasing or decreasing.

We limited our analysis to the ODEs of the two-component system

dDP

dt
= −k−1 ·ADP ·DP − k2 ·DP ·

(
u4 − E

P
)
+ k1(u1) ·ATP ·

(
u3 −D

P
)

+ k−2 ·
(
u3 −D

P
)
· EP − (kd + µ) ·DP

(6.1)

dEP

dt
= −k−2 ·

(
u3 −D

P
)
· EP − k3(u2) ·

(
u3 −D

P
)
· EP

+ k2 ·DP ·
(
u4 − E

P
)
− (kd + µ) · EP

(6.2)

with the substitutions KdpEPf = KdpEP, u3 = KdpD0 and u4 = KdpE0. The substitu-
tion KdpEPf = KdpEP is valid since it can be seen from Eq. (3.24) that KdpEPf ≈ KdpEP
if KdpEP � DNA0. Furthermore, the two variables KdpD0 and KdpE0 were catego-
rized as unidirectional inputs of the KdpD/KdpE system in Section 6.1, hence the
choice u3 = KdpD0 and u4 = KdpE0. It has already been explained that the reac-
tions R1 and R3 may be affected by additional input signals; most likely by K+

ex and
K+
free. We therefore assume that the reaction constants k1 and k3 are functions of the

input variables u1 and u2, that is k1 = k1(u1) and k3 = k3(u2). Moreover, the effects
of u1 and u2 are assumed to be inhibitory, that is Σ

(
∂k1
∂u1

)
= −1 and Σ

(
∂k3
∂u2

)
= −1.

The sign function of the Jacobian of Eq. (6.1) and (6.2) is

Σ

((
∂f1
∂DP

∂f1
∂EP

∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f1
∂u4

∂f2
∂DP

∂f2
∂EP

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

∂f2
∂u4

))
=

(
−1 1 −1 0 1 −1

1 −1 0 −1 −1 1

)
(6.3)

which then serves to determine the state transitions using either the rule in Eq. (C.1)
or the rule in Eq. (C.2).

By comparing the symbolic dynamics of all possible model variants with the qual-
itative behavior of the measured data one can examine which of the potential reg-
ulation schemes can explain the behavior of the real system. This study focuses on
the wild type. Based on the observed data from transcript and K+ concentrations
(see Fig. 6.2), the symbolic dynamics of these variables can be inferred. At each of
the dashed lines in Fig. 6.2 one of the variables moves from one symbolic state to
an adjacent state (for example, at t = 0.5 h the transcript moves from decreasing
levels (−) to increasing levels (+)). A subtle point are the state transitions of K+

free

at t = 0.25 h, t = 0.33 h and at t = 0.5 h. The measurement data indicate that the
sequence of transitions is + → - → + → - . However, the law of mass
conservation of external and internal K+ and causality suggest that the datum of
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K+
free at t = 0.33 h is an outlier and that the true sequence of transitions is therefore

+ → + → - → - as marked in Fig. 6.2.
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Figure 6.2: Experimental transcript and K+ data with inferred symbolic dynamics (indicated
by the + and − signs)

Table 6.2 then lists the symbolic states within the respective time intervals. Even
though the initial and end-points of the individual time intervals are ambiguous
(since the data are time-discrete and uncertain), should the sequence of transitions
given in the table be a good approximation of the real dynamics.

t 0 - 0.25 h 0.25 - 0.33 h 0.33 - 0.5 h 0.5 - 0.75 h 0.75 - 1 h

Σ
( ˙mRNA

)
+ - - + +

Σ
(
K̇+
ex

)
- - - - -

Σ
(
K̇+
free

)
+ + - - -

Table 6.2: Time-resolved symbolic dynamics of measured transcript and K+ data

For the sake of simplicity we assume that the dynamics of the transcript follows the
EP-dynamics almost directly, that is with a negligible time lag, so that the symbolic
mRNA-dynamics and EP-dynamics are virtually equivalent, that is we assume that
Σ
(
ĖP
)
≈ Σ

( ˙mRNA
)
.

To reproduce the real dynamics in Table 6.2 the model has to comprise the consis-
tent sequence of transitions

Σ
(
ĖP, K̇+

ex, K̇+
free

)
: + - + → - - + → - - - → + - - .

Alternatively, if the two-component system is not affected by K+
free, only the transition

sequence

Σ
(
ĖP, K̇+

ex

)
: + - → - - → + -

is of interest. Similarly, only

Σ
(
ĖP, K̇+

free

)
: + + → - + → - - → + -

has to be considered if K+
ex does not influence KdpD/KdpE.

The considerations made so far produce a series of combinatorial possibilities how
the two-component system is regulated by the inputs u1 to u4. Two scenarios were
distinguished:
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I On the one hand, we studied the case, that the synthesis of both proteins exactly
compensates for the dilution by growth and degradation, that is the dynamics
are

dD0
dt

= ktl,D ·mRNA− (kd + µ) ·D0 = 0

dE0
dt

= ktl,E ·mRNA− (kd + µ) · E0 = 0.

Then the total concentrations remain constant and the dynamics of the phos-
phorylated states are

dDP

dt
= −k−1 ·ADP ·DP − k2 ·DP · E+ k1(u1) ·ATP ·D+ k−2 ·D · EP = f1

(6.4)

dEP

dt
= −k−2 ·D · EP − k3(u2) ·D · EP + k2 ·DP · E = f2 (6.5)

The sign function of the Jacobian of Eq. (6.4) and (6.5) is equivalent to the sign
function in Eq. (6.3) to determine the state transitions of the two-component
system. Since Ḋ0 = 0, Ė0 = 0, the symbolic dynamics is independent of these
variables and is only determined by the regulation pattern of R1 and R3 (see
table 6.1).

If the two reactions are unregulated, then the symbolic dynamics depends only
on DP and EP. All feasible transitions between the possible symbolic states of
the system are shown in case I.0 on the left side of table 6.3. As one can see
there are only four states, two of which, - - and + + , are terminal (or final)
states. The symbolic dynamics for all other possible regulation schemes from
Table 6.1 are listed in the top rows of Tables 6.4 and 6.5, where ui = −, i ∈ {1, 2}
indicates that the respective input is not active and therefore does not affect the
dynamics.

II The second case studied more likely reflects the conditions under K+ limita-
tion, that is we assume that D0 and E0 are time-dependent inputs of the two-
component system with dynamics Ḋ0 > 0, Ė0 > 0. In this case the symbolic
Jacobian of the dynamics of the phosphorylated states is also equivalent to the
matrix in Eq. (6.3). As in scenario I all possible state transitions for all regu-
lation patterns were then determined. Table 6.3 shows on the right side the
most simple case (II.0) where inputs u1 and u2 are not active. Unfortunately,
the symbolic dynamics now features many possible state transitions, which are
all virtually reversible. Moreover, there are no terminal states. The symbolic
dynamics of all the other regulation patterns are listed in the second rows of
Tables 6.4 and 6.5. Here too, it can be seen that most transitions are reversible
and that there are no terminal states.

Scenario II, although probably the better approximation of the reality, is rather un-
suitable for the analysis of the symbolic dynamics. Since almost all transitions are
reversible, the system can pass through virtually any sequence of symbolic states.
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u1 = −

u3 = D0, Ḋ0 = 0
u2 = −

u4 = E0, Ė0 = 0
u1 = −

u3 = D0, Ḋ0 > 0
u2 = −

u4 = E0, Ė0 > 0

����I.0 ����II.0

−  −

−  + +  −

+  +

−  −  +  +

−  +  +  +

+  −  +  +

+  +  +  +

Σ(DP ,EP) Σ(DP ,EP ,D0,E0)

Table 6.3: Symbolic dynamics of the two-component system without K+-dependent control

Therefore, each of the models II.0-II.8 can reproduce the observed qualitative tran-
scription dynamics, so that we cannot discriminate between the model variants. The
cases II.1 and II.3 are actually equal.

These results can be used to propose a potential experimental setup. Since scenario
II has no final States and almost all state transitions are reversible, it is inappropriate
for the analysis of the regulation of the two-component system. In contrast, scenario
I is much more useful, since most transitions are unidirectional and a number of final
states exist, which can not be left. This result can be interpreted such that the read-
through effect from kdpFABC to kdpDE contributes to the robustness of the response of
the two-component system to stress situations, which always allows for an adequate
adjustment of the system dynamics.

Therefore, we recommend to eliminate the read-through effect from kdpFABC to
kdpDE by a corresponding manipulation of the biological system, so that the syn-
thesis of the sensor kinase and the response regulator possibly is in balance with
dilution and degradation of the proteins. The behavior of the real biological system
should then match one of the cases in scenario I, so that under circumstances a model
selection would be possible. A model variant could for example be excluded if the
experimental data exhibit a state transition that is not possible according to the pre-
diction of the model.
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6.3 parameter estimation & identifiability analysis

For a mathematical model to be valid, its observation functions have to agree with
the experimental observations. Therefore, the calibration of the model parameters
(including the initial conditions) to match the measurements is an essential step in
the modeling process. Parameter calibration is not only an important tool for model
validation but also for model selection. If there exist several competing models, that
is hypotheses that are likely to explain the observed behavior of the real-world sys-
tem under study, these models can be ranked according to how well they fit the
observations.

Since the nature of the regulation of the two-component system could not be in-
ferred from the analysis of the symbolic dynamics (see previous section), parameter
estimation was employed to determine the most plausible model for the explanation
of the observed effects. Furthermore, the results of the identification process were
used to suggest modifications of the model. For the sake of simplicity, the general
estimation strategy will be presented on the basis of the core model.

In Sections 4.2 and 4.3 a calibration algorithm has been presented which is ro-
bust against poorly or not identifiable parameters. Notwithstanding it is advisable
to detect such parameters prior to calibration, if possible. To know why a particular
parameter is not identifiable, is of course more useful than to know only that this
parameter cannot be identified. However, it was already mentioned in Section 4.1.2
that the structural identifiability analysis as a priori method is often not practically
applicable to nonlinear dynamic systems. Therefore, a quasi-identifiability analysis
has been applied which depends on the scaling of the system variables. Usually it is
impossible to measure all state variable of a model, so that the orders of magnitude of
the non-measurable variables are unknown. Consequently, some of the model param-
eters can not be identified uniquely since they can only be determined with respect
to the unknown scale of a state variable.

The major problem of the parameter calibration of the Kdp model is that the states
of the two-component system can not be measured, neither the total amounts or
concentrations of KdpD and KdpE nor their phosphorylated states. The identification
of the parameters of the K+ balances, however, should be less problematic since there
exist measurements of each component.

According to the model the dynamics of the transcript depends on the fraction
of occupied promoter ψ which in turn is a function of the free phosphorylated
response regulator EPf . Because EPf is not measurable, neither the actual value of
this component at time t is known nor the magnitude of its concentration. Scaling
EPf = sE · EPf ,s, where sE = const. scales for the order of magnitude of the concen-
tration of KdpE, yields

ψ =
1

1 + αK
·

α · KE + s2E · EPf ,s
2

α · KE ·
1 + K

1 + αK
+ s2E · EPf ,s

2
=

1

1 + αK
·

α · KE ,s + E
P
f ,s
2

α · KE ,s ·
1 + K

1 + αK
+ EPf ,s

2

with KE ,s = KE
s2E

. Hence, if the order of magnitude of KdpE is unknown, KE cannot
be determined uniquely.

The same holds for the parameters governing the dynamics of the total concentra-
tions of the sensor protein KdpD, D0 , and of the response regulator KdpE, E0 . In-
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serting the transformations D0 = sD · D0 ,s and E0 = sE · E0 ,s, where sD = const.
and sE = const., into the ODEs (3.27) and (3.28), respectively, one obtains the ODEs
of the scaled concentrations

dD0,s

dt
= ktl,D,s ·mRNA− (kd + µ) ·D0,s

dE0,s

dt
= ktl,E,s ·mRNA− (kd + µ) · E0,s

where ktl,D,s =
ktl,D
sD

and ktl,E,s =
ktl,E
sE

which implies that both ktl,D and ktl,E are
not uniquely identifiable.

The results of the modularization in Section 6.1 and the findings of the quasi-
identifiability analysis were then used to devise a strategy for parameter estimation.
Finding the solution of the inverse problem (4.16) is usually computationally expen-
sive and therefore very time consuming. The computational effort depends on both
the number of observation variables and the number of unknown parameters. There-
fore, one aims to calibrate relatively small models with only few unknown param-
eters. The performance of the procedure presented in Section 4.3 to solve ill-posed
inverse problems also depends on the dimensionality of the problem. Although there
exist very powerful algorithms for the calculation of the SVD of matrices, it is also ad-
visable to keep the dimensionality of the problem small to minimize the computing
time.

Therefore, it is appropriate not to calibrate the complete model with all the un-
known parameters at once, but to adopt a modular strategy instead. That is, individ-
ual modules of the model are adjusted sequentially to the experimental data, so that
that the number of parameters that have to be identified at the same time is reduced.
This strategy will henceforth be referred to as sequential parameter estimation. The ap-
proach will be illustrated in the context of the calibration of the model to describe
the wild type data.

6.3.1 Calibration of the core model with MG1655 wild-type data

Identification of the unknown parameters of the wild-type model was subdivided in
these consecutive steps (see also Fig. 8.1):

I: From section 6.1 it is known that that the total volume of cells Voltot influences
all other dynamic system variables of the core model without being affected by
any of these variables. Therefore, Voltot is an individual module, the parameters
of which can be identified independently of other factors.

II: Next, the dynamic behavior of KdpFABC was mimicked by the model

τ1 · τ2 · ¨FABC(t) + (τ1 + τ2) · ˙FABC(t) + FABC(t) = FABCs (6.6)

where τ1 and τ2 are the reciprocals of the eigenvalues of the homogeneous
part of the ODE and FABCs determines the steady-state. The parameters τ1, τ2
and FABCs were calibrated to match the experimental data of KdpFABC (see
Fig. 6.3). In systems and control engineering ODEs of the type (6.6) are known
as second-order lag elements. This approximation was required as preliminary
work for the next identification step.
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Figure 6.3: Comparison of experimental KdpFABC data with calibrated dynamics of the sec-
ond order ODE (6.6)

III: The K+ balances are, since they are connected with each other retroactively,
combined in one module. This subunit is unidirectionally affected by Voltot
and FABC, respectively. The parameters and initial conditions of Voltot have
been identified in step I, the dynamics of FABC was emulated in step II. Thus,
Eqs. (3.29) to (3.32) and the substitute dynamics from Eq. (6.6) were combined
to an ODE system and subsequently the yet unknown parameters of the K+

balances were calibrated.

IV: Then the parameters of the two-component system
(
Eqs. (3.22) to (3.24), (3.27)

and (3.28)
)

and of the transcriptional dynamics (Eq. (3.25)) were adjusted. The
two-component system consists of the variables D0, DP, E0, EP and EPf . Unfor-
tunately, there are no in vivo data available for any of these variables. However,
since there is a reciprocal dependency between the transcript dynamics and the
two-component system (the rate of synthesis of the transcript is a function of
EPf - conversely the total amounts of KdpD and KdpE, D0 and E0, depend on
the transcript concentration), all these variables were grouped together and the
unknown parameters were calibrated.

V: In the final step the parameters of the FABC dynamics were identified to match
the measurement data.

Thereafter the core model as a whole was adjusted to the existing measurement data;
the parameter values identified in steps I-V were used as the initial estimate. The
final outcome of the process is illustrated in Fig. 6.5. Overall, the model reflects the
experimental data very well both qualitatively and quantitatively. It has already been
stressed that it is not known how K+, if at all, affects the two-component system
(see Section 6.2). Multiple versions of the core model that aim to reproduce these
different control strategies have been created. However, so far it was not possible to
obtain feasible parameter sets for any of these control modes that yielded such an
excellent match of model and data as shown in Fig. 6.5. Therefore, we conclude that
the non-monotonic dynamics of the transcript can be best explained by the regulation
of the kinase activity of KdpD by K+

free.
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II

Figure 6.4: The sequential steps of parameter estimation

6.3.2 Calibration of the core model with MG1655kdpA4 mutant data

Once a satisfactory adjustment of the parameters describing wild-type behavior has
been found, the model was next adapted to the experimental data of the mutant. The
following alterations of the model had to be incorporated in the core model.

Invariability of parameters not affected by the mutation

Most of the parameters of the core model should retain the same values which induce
the wild-type dynamics, since these parameters are not influenced by the alteration
of K+ transport through the mutation.

Altered growth curve

The growth of the mutant strain is slightly slower in relation to the wild-type. There-
fore, the parameters of the total cell volume Voltot had to be adapted to this new
condition.

Impaired transport capacity

The transport velocity of KdpFABC is severely altered by the amino acid replace-
ment in the selectivity filter. Consequently, the values kup and Kmof the mutant are
different from the wild-type values. The calibration of these parameters followed the
procedure as for the wild-type, that is the steps I-III from the previous section were
carried out successively to determine kup and Km anew.

Putative control through proteolysis

The quantities of transcripts and transport complexes remain approximately constant
after an hour, they can therefore be considered as being in the steady-state. The ratio
of wild-type transcript to mutant transcript is mRNAWT

mRNAMut
≈ 4

14 . In comparison, the
ratio of wild-type transporters to mutant transporters is FABCWT

FABCMut
≈ 7
10 , that is the

mutant produces three times more transcripts per cell than the wild type, whereas
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Figure 6.5: In silico data vs. in vivo data for wild-type.
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the amount of KdpFABC complexes is only 1.5-fold higher. However, according to the
model there is a linear proportional relationship FABCs ∝ mRNAs between transcript
and protein in the steady state, which is in contradiction with the measured data,
which indicate a non-linear relationship.

This effect raised the question whether there is additional regulation at either the
translational or the post-translational level. To clarify this issue protein stability was
investigated experimentally in both wild-type and mutant cells. In parallel, the dy-
namics of protein degradation was modeled using the simplified approach

d FABC

dt
= −(kd + µ(OD)) · FABC

dOD

dt
= µ(OD) ·OD

(6.7)

with

µ(OD) = kµ,1 ·
(
1−

(
OD

kµ,2

)n)
,

where OD is the optical density which is an indicator of cell growth. Calibration of
the parameters to the turn-over data revealed that the degradation constant kd of
the mutant must be 1.5-fold greater than the kd of the wild type. From this result it
was concluded that the proteolysis of KdpFABC is probably subject to regulation and
that for this reason the parameter kd,FABC of the core model had to be re-estimated
to match the mutant data. Figure 6.6b shows the experimental data of the turn-over
experiment and the corresponding simulations.

application of multiple shooting At this point we use the calibration of
the model (6.7) to illustrate the application and benefit of the regularized Multiple
Shooting procedure. Since this model has only few variables and parameters it is not
very complex, and thus it constitutes a very convenient example. In the left diagram
of Fig. 6.6a the trajectories of the model variables after the first iteration of the Mul-
tiple Shooting algorithm, the measured data and the shooting nodes (indicated by
the dashed lines) are shown. The parameters of the wild type and the mutant were
identified simultaneously.

Right is the matrix C of the linear correlation coefficients between each pair of
columns of the matrix J1(wk) of the minimization problem (4.16), that is the element

ckl =
jTk · jl

||jk|| · ||jl||
, where − 1 6 ckl 6 1

specifies the cosine of the angle between the rows jl and jk of J1(wk). If an element
ckl is approximately zero, then the columns are almost linearly independent, and
the two associated parameters can be identified independently of each other. If, on
the other hand, two columns of J1(wk) are almost parallel, then either ckl ≈ 1 or
ckl ≈ −1 and the related parameters can not be determined independently of one
another, so that the inverse problem (4.16) is ill-conditioned.

To demonstrate the efficiency of regularized Multiple Shooting, the initial estimates
of the parameters were chosen so that all parameters of the respective model (wild-
type and mutant, respectively) were highly correlated (see Fig. 6.6a). The chessboard
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Figure 6.6: Multiple shooting approach applied to the proteolysis model.
a) Model trajectories after the first iteration and the corresponding experimental
data are shown in the left plot. To the right, the correlation matrix is plotted. In
order to illustrate the effectiveness of regularization, the initial guess of model
parameters and the weights of the least squares function have been chosen so that
all parameters of the wild-type and the mutant, respectively, are highly correlated.
b) Model trajectories, experimental data and correlation matrix after the last itera-
tion. Due to regularization, a set of feasible model parameters could be identified.
Additionally, the correlations among the parameters of each sub-model have been
reduced to a large extent.
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pattern displayed on the right of Fig. 6.6a results from the fact that the parameters of
the wild-type model are independent of those of the mutant model. In combination
with the available measurement data the ill-conditioned problem then became ill-
posed. By using regularization, parameter identification could still be carried out
and completed successfully, as can be seen in Fig. 6.6b. The plot on the left shows
the simulated data after the last iteration step in comparison to the experimental data.
Here one can see clearly how the trajectories of one shooting interval smoothly merge
with the trajectories of the following time interval due to the continuity conditions.

Looking at the matrix C of the linear correlation coefficients after calibration yields
an interesting picture. Only kµ,1 and kµ,2 are highly correlated. The remaining pair-
wise linear dependencies of the model have been reduced considerably, however.
Based on this example it could be shown that ill-posed inverse problems can be suc-
cessfully resolved using appropriate measures, here by using Tikhonov-regularization.

Discrepancy between steady-state levels of wild-type and mutant transcripts

It was already was mentioned that according to the experimental data the ratio of
stationary transcript numbers is mRNAWT

mRNAMut
≈ 4
14 . There is currently no plausible ex-

planation for this observation. In any case, this observation can not be explained by
the putative influence of K+ on the two-component system:

. Both in wild type cells and in mutant cells the free K+ has been almost com-
pletely bound after an hour, so that virtually no free K+ in present in the cells
for times t > 1 h. The relatively small residual amount of free K+ is approxi-
mately the same in both strains (see Fig. 6.8c). The signal strength of the free
K+ on the two-component system should therefore be roughly the same in
both cases, so one would expect a ratio of the steady-state transcript amounts
of mRNAWTmRNAMut

≈ 1.

. Bound K+ as a signal for KdpD/KdpE is also unlikely. On the one hand, K+
bound

is still transiently changing after one hour, so that one could expect that the
amount of transcripts is also varying over time. On the other hand, after one
hour the concentration of bound K+ in the mutant cells is slightly higher than
in the wild-type cells. However, if the transcript-level is an indicator of K+

limitation, then after 1 h there should be fewer transcripts in the mutant than
in the wild-type.

. A similar argument applies to the extracellular K+ as a potential control signal.
In the wild-type experiments, no K+ was present in the medium after one hour.
This situation corresponds to the highest level of K+ limitation. So one can ex-
pect that the cells synthesize the maximally possible amount of transcript. The
measured data of the mutant, however, show that, compared to the wild-type
data, there is permanently more K+ in the medium due to the decelerated K+-
uptake. Thus, the mutant cells experience a lower level of external K+ limitation
than the wild-type cells. In consequence one can expect fewer transcripts in the
mutant than in the wild-type.

Even after discussions with the cooperation partners the source of the significantly
higher transcript-level of the mutant, compared to the wild-type, could not be iden-
tified. Most probable is a quantification error in the experimental determination of
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Figure 6.7: Comparison of transcription and translation data of the mutant without and with
delayed K+ exchange (green curves). As reference, the wild-type data is also
shown (blue curves). Obviously, the assumption that there is no binding/unbind-
ing of K+ during the first half hour leads to a much better fit of the simulated
trajectories to the experimental data.

the transcript levels. As can be seen from the raw data (Fig. 1.4), the qualitative be-
havior is unaffected; only the order of magnitude is unreliable. In order to adapt the
model to the experimental data notwithstanding this unresolved issue, parameter K
was re-estimated for the mutant data. K can be be roughly interpreted as the equilib-
rium binding constant of σ-factor and RNA-polymerase, whose numerical value has
a significant influence on the steady-state values of the transcripts.

To summarize the foregoing considerations, the parameters kµ,1, kµ,2, kup, Km, kd,FABC,
and K were identified again to adapt the core model to the experimental data of the
mutant cells. The results are shown in the left plots of Fig. 6.7 and 6.8. For com-
parison, the corresponding simulations and measured data of the wild-type are also
displayed. Apart from the adjustment of the K+

ex-dynamics the model could not ade-
quately reflect the time behavior of the other measured variables.

The reason is that the exchange between free and bound K+ is not characterized
properly. In the core model the exchange between the two K+-pools was formulated
with the linear rate rexch = kbind · K+

free − kdiss · K
+
bound. The experimental data in-
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Figure 6.8: Comparison of K+ data of the mutant without and with delayed K+ exchange
(green curves). The experimental data indicates that after approx. 30 min. the free
K+ rapidly binds to macromolecules.
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dicate that both K+
free and K+

bound remain approximately constant during the first 20

minutes after the shift. In the simulation, however, the concentration of free K+ de-
creases quickly, because the defective K+ transporter cannot take up K+ fast enough
to balance both the binding to macromolecules and the dilution by growth. The mea-
surement data further show that the free K+ concentration drops rapidly after 30 min,
while the concentration of bound K+ consequently rises. The measured dynamics of
intracellular thus K+ shows the same behavior as the simulated dynamics, however
with about 30 min delay.

Therefore the rate of the binding kinetics was multiplied with an artificial delay
term, that is the rate was modified so that

rexch =
(
kbind ·K+

free − kdiss ·K
+
bound

)
· t6

τ6 + t6
. (6.8)

Due to this adjustment there is almost no exchange between the K+-pools in the time
interval 0 6 t < τ. Only for times t > τ, K+ binds to macromolecules or dissolves
from them. The value of τ was set to τ = 0.35 h since the value can be extracted
directly from the measured data. This modification yielded a better adaptation of
the simulation to the experimental data, as shown in the right plots of Fig. 6.7 and
6.8. Consequently, not only the intracellular K+ data can be reproduced much better
by the model but also the transcript data. According to the experimental data the
transcripts appear to level off at a steady-state after approximately 25 min, however,
then the amount suddenly rises again and actually attains the real stationary state
after about one hour. The model reflects this dynamics much better by means of the
rate law (6.8).

6.3.3 Calibration of the core model with MG1655kdpA4pKT84 complemented mutant data

To verify the hypothesis that the free intracellular K+ actually regulates the two-
component system and consequently affects the synthesis of kdpFABC, the mutant
was complemented by the cooperation partners of the author with the Ktr K+ trans-
porter of the organism Vibrio alginolyticus. Consequently, the model was extended
with the uptake term

rKtr = Vm,Ktr ·
K+
ex

Km,Ktr +K
+
ex

of the Ktr-transporter, so that the balance equations of the free K+ became

dK+
free

dt
= FABC · kup ·

K+
ex

Km +K+
ex

+ Vm,Ktr ·
K+
ex

Km,Ktr +K
+
ex

− kbind ·K+
free + kdiss ·K

+
bound

− µ ·K+
free − Vmax,lys

K+
free

Km,lys +K
+
free +K

+
bound

.

It was expected that the complemented Ktr complex would compensate for the re-
duced K+ transport capacity of the mutant so that consequently the wild-type be-
havior would be largely restored. Both the experimental data of this strain and of
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the wild-type are displayed in Fig. 6.9. Most interesting is the transcript dynamics,
which is indeed qualitatively similar in both strains (Fig. 6.9a). Although not very
pronounced there exists a minimum in the time course of the complemented mutant
at about 30 min.

Since the cell growth in this experiment differed from that in the two previous
experiments, the parameters kµ,1 and kµ,2 for the description of the time dependent
growth rate were calibrated again. We assumed that the degradation of KdpFABC
is subject to the same conditions as in wild-type cells, thus kd,FABC was set to the
wild-type value. For the parameters kup and Km of the uptake kinetics of KdpFABC
the same values as for the mutant were used. However, the parameters Vm,Ktr and
Km,Ktr of the newly added Ktr transporter had to be identified for the first time.

Moreover, parameter K had to be calibrated again since the steady-state level of
the transcripts were different from the wild-type levels. The reasons for this are anal-
ogous to the line of argument in the discussion of the mutant data:

. Both K+
ex and K+

free are almost completely consumed after one hour. For this rea-
son, if one of these two variables were influencing the two-component system,
should the steady-state levels of the transcript of the complemented mutant be
identical to the levels in the wild-type.

. The concentration of bound K+ in the complemented mutant cells is always
lower than in the wild type. Thus the degree of K+ limitation should be higher
in MG1655kdpA4pKT84 than in the wild-type, consequently leading to higher
transcript levels.

In summary, it is found that there is no explanation for the stationary transcript levels
in the three strains. The transient behavior, however, can be very well explained by the
influence of free K+ on the two-component system. Figure 6.9 shows the measured
data as well as the simulation data of the complemented mutant in comparison to the
wild type. Overall there is a good agreement between observation and simulation.

6.4 parametric uncertainty analysis

Many simulation studies were carried out in the course of this dissertation to infer
possible model modifications or necessary adjustments of parameter values. In this
context, the algorithms for the simulation of parameter uncertainties, presented in
Chapter 5, were applied. In the following we are going to discuss the practical use
of uncertainty analysis and some results. The parameters of dynamic models such as
those that were used in this work can be roughly classified into three groups:

(i) parameters that affect primarily the transient phase

(ii) coefficients that mainly influence the steady-state levels

(iii) parameters with little to no influence on the system behavior.

KE, the equilibrium dissociation constant of the binding of free KdpE-P to the DNA,
serves as an example for a coefficient of category (i). To demonstrate the influence of
KE on the observation variables of the core model in relation to the measured data,
the parameter was defined as triangular L-R fuzzy number
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Figure 6.9: Comparison of in silico data and in vivo data for wild-type (blue curves) and com-
plemented mutant (orange curves).
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Figure 6.10: Fuzzy uncertainty analysis for transcript and protein trajectories.
a) c) Effect of uncertainty of parameter KE on kdpFABC transcript and on Kdp-
FABC protein levels.
b) d) Effect of uncertainty of parameter K on kdpFABC transcript and on Kdp-
FABC protein levels.

K̃E =
(
5.32 · 10−2, 2.66 · 10−2, 5.32 · 10−2

)
LR

. All other coefficients of the model were
kept constant at the optimal values. The fuzzy valued simulations of the observation
variables are displayed in Fig. 6.10 and 6.11 in the plots on the right.

Figure 6.10a shows that KE has a great effect on the minimums and maximums
of the transcriptional dynamics, whereas for times t > 1.5 h the transcript levels
are almost independent from the actual value of KE. Looking at the translation data
reveals that the time response varies strongly in between 0.2 h < t < 1.5 h. However,
for times t > 1.5 h the impact of KE on the translation dynamics also diminishes. The
data in Fig. 6.11 displays the propagation of the uncertainty of KE on the K+ balances.
Even though the time courses of the transcripts and of the amount of protein are
subject to strong variations, the impact on the K+ concentrations is relatively low.

In comparison, K is a parameter of the category (ii). For purposes of illustration
K was defined as triangular L-R fuzzy number K̃ =

(
4 · 104, 9.23 · 104, 1.2 · 104

)
LR

while all other parameters were held constant at their identified values. Figure 6.10b
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Figure 6.11: Fuzzy uncertainty analysis of K+ balances.
a) c) e) Effect of uncertainty of KE.
b) d) f) Effect of uncertainty of K.
Despite the significant difference in the fuzzy trajectories of transcript and pro-
tein levels when comparing the influence of KE vs. the influence of K, the K+

balances show very similar fuzzy trajectories.
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illustrates clearly that K affects both the minimums and the maximums of the tran-
scription dynamics as well as the (almost) stationary values. The strong variation (or
uncertainty) of the transcriptional dynamics is propagated to the same degree on the
time courses of the KdpFABC complexes (see Fig. 6.10d), that is K has a strong impact
on both the transient and the (virtually) stationary phase. Although not shown here,
the KdpFABC dynamics settles in the true steady-state at times t > 3 h; the large
variation of the trajectory at t = 3 h is preserved in the steady-state.

Interestingly, the large uncertainty of the trajectories of KdpFABC is not propa-
gated to the concentrations. As seen in Fig. 6.11 there is virtually no (discernible)
difference between the simulations on the left (KE) and the right side (K). Thus, at
the given conditions the K+ concentrations are very robust against uncertainties in K.
We conclude from these results that the classification of parameters according to the
categories (i) to (iii) is only possible with respect to individual system/observation
variables but not with respect to their influence on the overall system.

At last, there are the coefficients of the category (iii). This type includes the pa-
rameters k2 and k−2, for example. In this case the visualization of simulations is
futile, since there are no discernible effects of these parameters on the corresponding
system variables.





7
M O D E L P R E D I C T I O N S

Model validation is essential to establishing model credibility. By validation we en-
sure that the model is accurate enough within the domain of its desired application
[1]. Since the Kdp system of E. coli cannot be counted to the well studied processes
in microbiology, it is impossible to fully validate the model presented in this thesis.
However, we are going to show that the model, with some modifications, is capable
to qualitatively reproduce experimental data that was not used to identify the ki-
netic parameters. Additionally, we are going to provide several predictions that can
be used in the future to either validate or invalidate the assumptions on which this
model is based. The primary intention of these predictions is to stimulate further
discussions about the properties of Kdp, to inspire new experiments and to question
the current view on the system.

So far, we have limited ourselves to the case of K+ limitation. The entire process of
model formulation was based on that condition, thus limiting the applicability of the
model. Therefore, in this chapter we will explore, mainly theoretical, the behavior of
Kdp if we gradually leave the domain of K+ limitation.

As mentioned before, the model was developed to reflect K+-limiting conditions.
Therefore, it is necessary to introduce a series of assumptions for the non-limiting
case.

7.1 cell growth

First, we deal with cell growth. It was already established that growth is time-dependent
under K+-limiting conditions. From an initial growth rate of µ ≈ 0.56 1h at t = 0 h

the rate drops to µ ≈ 0.05 1h after 3 hours. For model calibration we have inferred this
information from the cell volume data (see Section 6.3 and compare Eq. (3.32) and
(3.36)). In order to predict the behavior of Kdp when K+ is no limiting factor, infor-
mation about cell growth at K+ abundance has to be included in the model. Recall
the experimental setup described in Section 6.3. In addition to the experiments pre-
sented in that section, several control experiments were conducted by the cooperation
partners of the author.

Cells of E. coli MG1655 were grown in K10 medium1 and then, after reaching OD ≈
0.5, the cells were shifted to K0 medium2, that is K+-limiting conditions. In the initial
phase before the shift the cells grew exponentially with a growth rate of µ ≈ 0.6 1h .
The OD data after the shift show the same behavior as the volume data presented in
Section 6.3, that is the growth rate was time-dependent. As control, E. coli MG1655

cells were also first grown in K10 medium and, again after reaching OD ≈ 0.5, were
shifted to K10 medium to verify that the response of the Kdp system is a result of K+

limitation and not of the shift itself.

1 K10 medium: culture medium with 10 mM K+

2 K0 medium: culture medium that theoretically contains no K+. The real K+ content is K+ ≈ 20−40 µM
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After the shift to K10 medium the cells resumed exponential growth with a rate
of µ ≈ 0.6 1h . The corresponding data is shown in Fig. 7.1. On the left the complete
data set of the OD before and after shifting the cells is shown. It is obvious from the
experimental data that the shift itself did not change the growth behavior of the cells.
In order to determine the growth rate µ, we used the simple model

OD = OD(t = 0) · eµ·t.

Least-squares fitting of the model to the shown data yielded a growth rate of µ =

0.56 1
h for the complete time course including pre- and post-shift data. The time

course of the model is shown in Fig. 7.1a. In addition, we fitted the model to the
pre-shift and the post-shift data separately. This way, we obtained a growth rate of
µpre = 0.48 1

h for the data before the cells were shifted and µpost = 0.61 1
h for the

data after the shift. The two data sets and the respective model simulation are shown
in Fig. 7.1b. Obviously, the assumption of exponential growth of E. coli cells in K10
medium is valid and we shall use this assumption in the following.
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Figure 7.1: In silico OD data vs. in vivo data of E. coli cells grown in K10 control medium. Cells
were grown in K10 medium and then shifted to K10 medium at the time points
plotted in orange (left) in order to verify that growth is not impaired by the shift.
In the right panel the same data is separated in two sets: One contains the OD
data before the shift, the second one shows the data obtained after the shift.

To sum up, we have identified the growth behavior of E. coli cells under K+ limi-
tation (K0 medium) and under conditions that can be regarded as not limiting (K10
medium). The information inferred for these two extreme conditions were used to
predict the growth curves for extracellular K+ concentrations between 0.04mM 6
K+
ex(0) 6 8mM. The respective curves are shown in Fig. 7.2. These predictions were

included in the predictions of the K+ pools and of the transcription and translation
levels, the results of which will be presented in the following sections. An open point,
however, is at which K+

ex concentrations the transition between K+ limitation and K+

abundance conditions actually takes place. Linked to this problem is the question
whether the transition is slow and smooth or rather sharp and steep. So far, we have
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no further information available but we shall revisit this question at a later point (see
Section 7.4).
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Figure 7.2: Simulation of the total cell volume at different initial extracellular K+ concentra-
tions. At K+

ex(0) = 0.04mM the time-dependent growth rate identified in Section
6.3 is being used. At K+

ex(0) = 8mM exponential growth with µ ≈ 0.6 1h was as-
sumed. For 0.04mM 6 K+

ex(0) 6 8mM, the growth rate was interpolated between
these two growth rates for each time-point.

7.2 k
+

balances/distribution of k
+

Another issue that requires further contemplation is related to the K+ balances within
the cells. Unfortunately, even after decades of research on K+ uptake and the respec-
tive transport systems the “cellular need” for K+ has neither been qualified nor quan-
tified yet. Therefore, the question still is: how much K+ does the cell need in order
to grow (free K+) and to maintain the cellular functions (bound K+)? Unfortunately,
the data on the distribution of K+ in E. coli cells available from the literature are
scarce and not very informative.

McLaggan and coworkers reported that at low osmolarity a large fraction of the
intracellular K+is bound in order to balance charge on anionic macromolecules,
whereas the smaller fraction of free K+ balances the charge of small anions [72].
In their study they found that both the total amount of cytoplasmic K+ and the ra-
tio of free and bound K+ depends on the osmotic pressure of the medium. Higher
osmolarity would lead to increased levels of both total and bound K+, however, the
percentage of bound K+ decreases. An interesting aspect of McLaggan’s report is
that the cellular K+ content and the ratio of free and bound K+ appears to be depen-
dent on the osmotic agent. Ionic osmolytes seem to cause a different K+ distribution
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than sugars. Since the cells were grown in medium containing 5 mM KCl, we can
assume K+ abundance. The results of the study are listed in the following table.

K+
free K+

bound units K+
free

K+
bound

osmolarity osmotic agent

220 360
µmol
gDW

0.6 0.17 -

630 620
µmol
gDW

1 0.9 glucose

780 570
µmol
gDW

1.4 1.26 glucose

670 640
µmol
gDW

1 1.24 NaCl

Another report that contains measurements of free and bound K+ comes from Roe
and colleagues [96]. They studied the inhibition of cell growth by weak acids and the
effect of the accumulation of anions on the intracellular pH and on the concentrations
of amino acids. Furthermore, they also monitored the K+ levels and determined the
effect of the weak acids thereon. Roe and his coworkers found that the K+ pools were
not affected by the treatment and that the concentrations of free and bound K+ were

K+
free ≈ 254 mM and K+

bound ≈ 229 mM, respectively, yielding the ratio K+
free

K+
bound

≈ 1.1.
As in McLaggan’s study, the culture medium contained 5 mM K+.

In her diploma thesis, Melanie Herzog studied the production of KdpFABC at
different levels of K+ availability [49]. Similar to the experimental procedures men-
tioned in Chapter 6, E. coli cells (strain MG1655) were grown in medium with 5 mM
K+ and were then shifted into media with different K+ concentrations at OD ≈ 0.5.
Herzog quantified the intracellular K+ pools for K+

ex(0) = 0.02, 2, 2.1, 2.2, 5 mM.
Unfortunately, she missed to indicate the time of measurement. Based on the other
data presented in the thesis we presume that the measurements were taken at t = 3 h
after the shift. According to Herzog’s data the levels of free and bound K+ were quite
similar for all conditions studied, so that in average the concentration of free K+ was
K+
free ≈ 50 mM and the bound K+ added up to K+

bound ≈ 140 mM, which yields the

ratio K+
free

K+
bound

≈ 0.36.
Finally, the author could resort to data from his cooperation partners. The con-

centrations of free and bound K+ in cells of each of the three strains presented in
Chapter 6 were determined shortly before the cells were shifted from K10 medium to
K0 medium. The data are summarized in the following table.

K+
free K+

bound units K+
free

K+
bound

strain

231 440 mM 0.5 MG1655

226 341 mM 0.7 MG1655kdpA4

319 252 mM 1.3 MG1655kdpA4pKT84

However, these data raise new questions: Although Kdp should be irrelevant in K10
medium, the distribution of free and bound K+ in absolute numbers differs remark-
ably among the three strains. In addition to that, the ratios of the concentrations differ
from strain to strain. Even if Kdp had an effect on the K+ balances under non-limiting
conditions the data would be very conflicting. While the MG1655kdpA4pKT84 mutant
is akin to the MG1655 wild-type (that is the K+ transport capacity is much higher
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than that of the MG1655kdpA4 mutant), the ratio of free to bound K+ of the com-
plemented mutant is much higher than that of the kdpA4 mutant which on the other
hand exhibits a much higher K+

free/K
+
bound relation than the wild-type. Altogether we

come to the conclusion that all published data as well as the data from our coopera-
tion partners draw a vague picture of the K+ homeostasis and that we could not gain
any new insights on the topic.

Therefore, the model predictions are based on the following assumptions. At high
K+ availability the cells grow exponentially and there is an approximate equilibrium

between free and bound K+ at which we have K+
free

K+
bound

= 231
440 ≈ 0.5 (experimental data

of the MG1655 wild-type determined by Katja Zigann). In order to cause homeostatic
behavior, the binding kinetics

rbind = kbind ·K+
free − kdiss ·K

+
bound

used in the original model setup (Eq. (3.30) and (3.31)) was modified so that bind-
ing/unbinding of K+ is now described by

rbind = kbind ·K+
free − kdiss ·K

+
bound

K+
free

Km,free +K
+
free

.

The interpretation of that kinetics is as follows: Binding of free K+ is proportional to
the concentration of the available free K+. On the other hand dissociation of bound
K+ from macromolecules is proportional to the amount of bound K+ but also de-
pending on the amount of free K+. If the concentration of free K+ is much smaller

than the threshold Km,free, we obtain K+
free

Km,free+K
+
free

� 1 and therefore less bound K+

dissociates from its binding partner. Thus, the observed behavior under K+ limi-
tation can be described where the free K+ eventually completely binds. Using the
original binding kinetics kbind ·K+

free − kdiss ·K
+
bound this behavior is only possible if

kdiss = 0. If, on the other hand, K+
free � Km,free this yields K+

free

Km,free+K
+
free

≈ 1 so that in

the exponential growth phase free and bound K+ approximately equilibrate.
In K10 medium K+ is assumed to be abundant so that the kdpFABC operon is

not induced. Instead, Trk is the dominant K+ uptake system. In order to simulate
conditions ranging from K+ limitation to K+ abundance the Trk system has to be
incorporated in the model. Therefore, the uptake kinetics

rTrk = Vm,Trk ·
K+
ex

Km,Trk +K
+
ex

was added to the core model.
Moreover, the transport kinetics of the KdpFABC complex had to be modified to

yield realistic results when simulating non-limiting conditions. The original uptake
kinetics with the parameter values of kup and Km,Kdp identified in section 6.3.1 would
lead to physiologically unrealistic high intracellular K+ concentrations at K+ abun-
dance. Therefore, the rate law was modified so that large concentrations of free in-
tracellular K+ would inhibit the transport rate of KdpFABC. The new kinetics now

rKdp = FABC · kup ·
K3I,Kdp

K3I,Kdp +K
+3

free

· K+
ex

Km,Kdp +K
+
ex
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As a result of that the intracellular K+ balances are now given by

dK+
free

dt
= FABC · kup ·

K3I,Kdp

K3I,Kdp +K
+3

free

· K+
ex

Km,Kdp +K
+
ex

+ Vm,Trk ·
K+
ex

Km,Trk +K
+
ex

− kbind ·K+
free + kdiss ·K

+
bound

K+
free

Km,free +K
+
free

− µ ·K+
free − Vmax,lys

K+
free

Km,lys +K
+
free +K

+
bound

dK+
bound

dt
= kbind ·K+

free − kdiss ·K
+
bound

K+
free

Km,free +K
+
free

− µ ·K+
bound − Vmax,lys

K+
bound

Km,lys +K
+
free +K

+
bound

.

The parameters Vm,Trk and Km,Trk were then adjusted such that the K+ uptake by Trk
approximately compensates for the dilution of K+ due to cell growth in K10 medium.

7.3 regulation of kdpd/kdpe

In the core model of the two-component system (Eqs. (3.9) to (3.13)) it was assumed
so far that the free K+ affects only the dephosphorylation of KdpE-P. The results
from Section 6.3 demonstrate that this assumption is sufficient to reproduce and
explain the experimental data taken at K+ limitation. However, if we are to leave the
domain of K+ limitation and attempt to describe the behavior of the Kdp system at
high K+ availability as well as the span in between the model requires additional
modifications.

It was already mentioned in the literature review in Section 3.1 that several puta-
tive factors that influence the two-component system have been identified in past (for
example ATP, turgor, etc.). However, the aforementioned studies were either in con-
tradiction with each other or not conclusive enough to infer the regulation of the Kdp
system. Therefore, we do not know whether any of these factors actively regulates
Kdp or whether these variables only contribute to the fine-tuning of the regulation
of system. Moreover, it is completely unknown how Kdp is deactivated at high K+

availability. It may be the case that the interplay of several or even all of the identified
control factors cause the inhibition of Kdp at high K+ availability. It is also very likely
that a hitherto undiscovered quantity affects system.

Based on the ambiguity of the published experimental data and on the results
obtained in the course of this thesis, we assume that the free cytoplasmatic K+ is the
main regulator of the KdpD/KdpE two-component system and suggest the following
mode of regulation.

• Free K+ enhances the kinase activity of KdpD which allows for a rapid response
of the two-component system to temporary variations of the intracellular K+

concentrations. As was already established in Section 3.2.4 the signal strength
of the regulation is proportional to the concentration of free K+ so that the
control law is given by k3 = k3,f ·K+

free.
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• In order to react to sustained levels of free K+ the autophosphorylation is in-
hibited by K+

free. This is due to the following considerations. If the cells are
supplied with sufficient amounts of K+ by the Trk system (and possibly Kup)
the KdpFABC transporter is not needed. In that case the KdpD/KdpE system
should be "switched off", that is (i) there should be no synthesis of KdpFABC,
and (ii) the rate of synthesis of the two signaling proteins KdpD and KdpE
should only compensate for protein degradation and dilution effects due to cell
growth. Therefore, KdpE should be exclusively in the non-phosphorylated state
to prevent expression of the kdpFABC and kdpDE operons. From this condition
automatically follows that KdpD should not be phosphorylated as well.

A high concentration of free intracellular K+ is a good indicator that the "cel-
lular need for K+" is satisfied. Therefore, K+

free is an ideal signal to control the
inhibition of the autophosphorylation of KdpD. Inhibition of autophosphoryla-
tion was included in the core model by modification of parameter k1. We set

k1 = k1,f ·
K3I,D

K3I,D +K+3

free

where KI,D can be interpreted as threshold. For K+
free � KI,D the autophospho-

rylation is swithed on due to K+ limitation, for K+
free � KI,D autophosphoryla-

tion is inactive due to K+ abundance.

7.4 predictions

By means of the considerations and model modifications presented in Sections 6.3
and 7.1 to 7.3 it was possible to simulate the extended core model for different initial
levels of extracellular K+, K+

ex(0). The simulations are illustrated in Fig. 7.3 and 7.4.
Black circles and the corresponding error bars are wild-type measurement data (see
Section 6.3).

These simulations provide testable predictions, which can be verified or falsified
experimentally.

Melanie Herzog has determined the KdpFABC levels at t = 3 h after shifting the
cells from K5 in Kx medium [49], where x denotes the molarity of K+ in the respective
medium. These data were courteously provided by the author’s cooperation partners.
Figure 7.5 shows the experimental data (in the following termed characteristic data) in
comparison to the predictions of the extended core model. Whereas the qualitative
agreement is quite satisfactory, the quantitative match can be substantially improved.

Figure 7.6 illustrates “virtual measurements” of phosphorylated KdpD and KdpE
at t = 3 h. Maybe, one day it will be possible to experimentally validate or invalidate
these predictions.

Once the model prediction of the KdpFABC levels after 3 h could reproduce the
experimental data qualitatively quite well, it was investigated how the quantitative
adaptation could possibly be improved. We refrained from recalibration of the param-
eters since the KdpFABC data at t = 3 h alone represent an insufficient data source.
Quantitative data of the protein-levels at a given time are only meaningful in context
of the transcript- and K+-levels at this time point. Instead, simulation studies were
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Figure 7.3: Simulations of transcript (left) and protein levels (right) at different initial extra-
cellular K+ concentrations.

employed to investigate possibly necessary parameter adjustments. To this end the
Transformation Method for the simulation of fuzzy-parametrized models presented
in section 5.3.1 was applied.

Due to the following problem, no meaningful modification of parameter values
could be proposed. No set of parameter was found with which the full model could
satisfactorily reproduce both the dynamic data from section 6.3 and the KdpFABC
data from this section at the same time. When a parameter set was found with which
the K+

ex-dependent KdpFABC data could be better described, then the model adap-
tation to the dynamic data deteriorated. This situation is illustrated in Fig. 7.7 using
again the parameters KE and K with the same fuzzy-parametrization as in section
6.4 as examples. It is evident from Fig. 7.7a that an uncertainty in KE has almost no
effect on the characteristic KdpFABC levels at K+

ex(0) concentrations < 0.1 mM and at
concentrations > 2 mM. KE, however, shifts the position of the transition curve from
high to low protein amounts, which lies in the range 0.1 mM < K+

ex(0) < 2 mM. On
the other hand affects the uncertainty in KE the kdpFABC-transcript dynamics under
K+ limitation in the time range 0 h 6 t < 1 h, as can be seen in Fig. 7.7c. In conse-
quence, the time-dependent protein concentrations also vary strongly (see Fig. 7.7e).
Therefore it is not possible to vary KE such that both the characteristic KdpFABC
data and the dynamic transcript and protein data can be reproduced satisfactorily at
the same time.

By means of these simulations it is also possible to demonstrate the enhancement of
the Transformation method to monitor monotonicity that was introduced in Section
5.3.2. Time courses displayed in green are induced by KE values greater than the
mean value K̄E, whereas red curves are due to KE values below the mean value.

Looking at K gives a similar picture. Figure 7.7b indicates that the experimental
characteristic data of KdpFABC at K+

ex(0) concentrations < 0.25 mM can be matched
better by varying the value of K. The protein levels at K+

ex(0) concentrations > 0.8 mM
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Figure 7.4: Simulations of free and bound intracellular K+ balances at different initial extra-
cellular K+ levels. The kinetics of intracellular K+ binding/unbinding was chosen
so that there is an approximate equilibrium of both levels at high extracellular K+

availability (K+
ex(0) = 10 mM).

are more or less independent from the actual value of K. The position of the transi-
tion curve from high to low KdpFABC amounts is to some extent affected by K.
However, the uncertainty of K induces strong variations in the time-dependent levels
of transcript and protein under K+ limitation (see Fig. 7.7d and 7.7f). Here to, it can
be concluded that a satisfactory simultaneous adjustment of both characteristic data
and dynamic data by changing the value of K alone is not possible.

These results are not surprising, since there are no dynamic data of kdpFABC
transcripts, KdpFABC complexes and K+ concentrations available for K+-abundance
conditions. Such information can help to infer correlations and causal interrelations
among these variables and maybe even to gain understanding with respect to the reg-
ulation of the two-component system. It is very likely that such data would require
to modify and expand the current model.

7.5 a comprehensive mathematical model of the kdp system

Finally, we present a comprehensive model of the Kdp system of E. coli, which is
basically the core model presented in Section 3.2.4 comprising of all modifications
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suggested in Sections 6.3, 7.2 and 7.3. The DAE system is given by the coupled set of
equations

dDP

dt
= −k−1 ·ADP ·DP − k2 ·DP · E+ k1 ·ATP ·D

+ k−2 ·D · EPf − (kd + µ) ·DP
(7.1)

dEP

dt
= −k−2 ·D · EPf − k3 ·D · EPf + k2 ·DP · E− (kd + µ) · EP (7.2)

EP = EPf + 2
EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
·DNA0 (7.3)

dmRNA

dt
= ktr ·ψ ·DNA0 − (kz + µ) ·mRNA (7.4)

d FABC

dt
= ktl,F ·mRNA− (kd,FABC + µ) · FABC (7.5)

dD0
dt

= ktl,D ·mRNA− (kd + µ) ·D0 (7.6)

dE0
dt

= ktl,E ·mRNA− (kd + µ) · E0 (7.7)
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Figure 7.6: Predictions of KdpD-P and KdpE-P concentrations at different levels of K+ avail-
ability

K+
tot = K

+
ex +

(
K+
free +K

+
bound

)
· Voltot = const. (7.8)

dK+
free

dt
= FABC · kup ·

K3I,Kdp

K3I,Kdp +K
+3

free

· K+
ex

Km,Kdp +K
+
ex

+ Vm,Trk ·
K+
ex

Km,Trk +K
+
ex

+ Vm,Ktr ·
K+
ex

Km,Ktr +K
+
ex

+

(
−kbind ·K+

free + kdiss ·K
+
bound ·

K+
free

Km,free +K
+
free

)
· t6

t6 + τ6

− µ ·K+
free − Vmax,lys

K+
free

Km,lys +K
+
free +K

+
bound

(7.9)

dK+
bound

dt
=

(
kbind ·K+

free − kdiss ·K
+
bound ·

K+
free

Km,free +K
+
free

)
· t6

t6 + τ6

− µ ·K+
bound − Vmax,lys

K+
bound

Km,lys +K
+
free +K

+
bound

(7.10)

dVoltot

dt
= µ · Voltot (7.11)
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where

D = D0 −D
P (7.12)

E = E0 − E
P (7.13)

ψ =
1

1+αK
·

α ·KE + EPf
2

α ·KE ·
1+K

1+αK
+ EPf

2
(7.14)

µ = kµ,1 ·
(
1−

(
Voltot

kµ,2

)n)
(7.15)

and

k1 = k1,f ·
K3I,D

K3I,D +K+3

free

k3 = k3,f ·K+
free. (7.16)

By means of this model all simulations presented in this thesis can be reproduced.
Furthermore, all experimental data presented herein can be both reproduced satis-
factorily and explained by this model using the parameter values listed in Tables 7.1
and 7.2. This closes the modeling cycle.
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Figure 7.7: Fuzzy uncertainty analysis of model predictions of the amount of KdpFABC at
t = 3 h for different initial extracellular K+ concentrations.
a) Effect of uncertainty in KE.
c) e) Fuzziness of transcript and protein time courses at K+ limitation (K+

ex(0) =

0.04 mM) caused by the same uncertainty in KE as in a).
b) Effect of uncertainty in K.
d) f) Fuzziness of transcript and protein time courses at K+ limitation (K+

ex(0) =

0.04 mM) caused by the same uncertainty in K as in b).





8
S U M M A RY & O U T L O O K

This doctoral thesis was about (i) the development and analysis of a comprehensive
mathematical model of the emergency K+ uptake system Kdp of E. coli, and the
development and application of numerical tools to support model analysis and pa-
rameter identification.

The final model comprises three subunits:

. The KdpD/KdpE two-component system which serves to detect K+ limitation,

. transcription of the kdpFABC and kdpDE operons, and synthesis of the Kdp-
FABC complex and the proteins KdpD and KdpE

. external and intracellular K+ (free and bound) balances.

To the best knowledge of the author this is the first mathematical model, which in-
cludes the dynamic description of the intracellular free and bound K+ quantities.
This model has been formulated with the objective to better understand the regula-
tion of the entire Kdp system and in particular of the two-component system and the
associated dynamic response to K+-limiting conditions.

For validation the model parameters were calibrated using the experimental data
from three strains: (i) an MG1655 wildtype, (ii) an MG1655kdpA4 mutant strain with
defective KdpFABC complex and (iii) an MG1655kdpA4pKT84 mutant strain which
was complemented by the KtrAB K+ uptake system from Vibrio algenolyticus. The
parameters were identified using a regularized Multiple Shooting algorithm, which
allows for the solution of ill-posed estimation problems. Ill-posed estimation prob-
lems usually arise from the combination of parameter correlations and noisy mea-
surements. Consequently, some parameters cannot be determined uniquely from the
experimental data. To this end a heuristic for the automatic solution of ill-posed
linear least-squares problems with constraints was developed. By means of newly de-
veloped heuristic, Multiple Shooting can identify a feasible set of parameters, even if
some of the parameters are unidentifiable. An a priori identifiability analysis is there-
fore not necessary. The compliance of the solution with constraints was accomplished
using an active-set strategy and a projection method.

The process of estimating the parameter values from measurement data was di-
vided into sub-steps, during which only the parameters of modules of the model
were identified. For this purpose a method for the modularization of DAE models
of biochemical networks was developed. The new algorithm is a generalization and
enhancement of an already existing modularization methodology. Modularization is
a very useful tool to support the analysis of nonlinear dynamic models since smaller
subunits are usually easier to handle. In the context of parameter calibration, modu-
larization can be used to decompose a high-dimensional problem into several smaller
problems, which can then be solved faster and with less computational effort.

Many of the coefficients of the Kdp model could not be unambiguously identified.
Therefore it was necessary to simulate the influence of parameter uncertainties in
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order to assess their impact on the system behavior. We applied an approach, which
is based on the representation of uncertain parameters as fuzzy numbers, in a series
of simulation studies. By means of this algorithm one can quantify how the state
variables of a model vary when the uncertain parameters extend over a wide range
of values. This method yields a good approximation of the upper and lower bounds
of the reachable set of dynamic models. Moreover, the algorithm was enhanced to
facilitate monotonicity analysis. In addition to that, another approach for the approx-
imation of the reachable set of dynamical models, which is based on local sensitivity
analysis, has been enhanced so that now fuzzy-parameterized models can be simu-
lated.

The author concludes from the results of parameter calibration and from the results
of a great number of simulation studies that the observed non-monotonic dynamics
of the kdpFABC transcripts can be explained by the K+- dependent regulation of the
phosphatase activity of KdpD. Unfortunately, the analysis of the symbolic dynamics
of different regulation schemes of the two-component system revealed no definite
conclusion how K+ affects the system.

So far, there is no plausible explanation for the different steady-state transcript
levels of the three strains. Moreover, it was found that available measurement data are
inconsistent if the transcript levels are indeed an indicator of K+ limitation. However,
the possibility of an experimental quantification error must be considered, so that this
issue should be examined in detail first, before looking for a biological explanation
of this phenomenon.

Finally, predictions of the state variables of the Kdp system for different degrees
of K+ availability have been simulated and presented. Experimental examination of
these predictions can thus contribute to the validation or invalidation of the model.

Outlook

The experimental quantification of KdpD and KdpE and their phosphorylated states
can not be expected within the foreseeable future. Therefore indirect measurements
are needed, which allow to infer the state of the two-component system at least
partially. For example, in this work we used the time-dependent amount of kdpFABC
transcripts as an indicator for the qualitative dynamics of phosphorylated KdpE.

The currently available data were determined at K+-limiting conditions. Of course
these data are not sufficient to create a model that can reproduce the behavior of
the Kdp system under different conditions. We have even seen that the data did
not suffice to elucidate the regulation of the two-component system under limiting
conditions.

However, the experimental data presented in section 7.4 can be used as a basis
for the design of further experiments. The results of these experiments should then
provide an improved understanding of the regulation of the Kdp system so that both
the conceptual model of the system as well as the mathematical model and can be
enhanced and refined.

Analysis of the characteristic KdpFABC data suggests that there are three different
phases of activity the Kdp system.
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Figure 8.1: The three phases of Kdp activity indicated by the characteristic KdpFABC levels.

I K+ limitation was studied in this thesis. Another possible experimental setup
under these conditions, namely, the elimination of the transcriptional read-
through from kdpFABC to kdpDE, was proposed in section 6.2.

II Transition from K+ limitation to K+ abundance. Detailed investigation of this
phase should yield the most revealing results. Here, a series experiments for var-
ious degrees of extracellular K+ availability in the range 0.1 mM 6 K+

ex(0) 6
2 mM should be conducted. Recording of the dynamic response curves of kdp-
FABC transcript levels, KdpFABC protein levels, K+ concentrations (K+

ex, K+
free,

K+
bound) and of the growth curves could reveal correlations and causalities be-

tween these variables. From these data the true control strategy of the two-
component system might eventually be inferred.

III K+ abundance. In this phase most probably no findings concerning the regu-
lation of the two-component systems can be expected. However, the dynamic
data of the K+ concentrations (external; intracellular free and bound) should
shed light on the distribution of intracellular K+, so that the exchange between
the K+ pools can be better characterized and modeled.

The author hopes that these suggestions can help to design new experiments and
that the results thereof yield a better understanding of the regulation of the Kdp
system of E. coli.

Auch eine Enttäuschung, wenn sie nur gründlich und endgültig ist, be-
deutet einen Schritt vorwärts, und die mit der Resignation verbundenen
Opfer würden reichlich aufgewogen werden durch den Gewinn an Schätzen
neuer Erkenntnis.

Max Planck





A
F R E D H O L M I N T E G R A L E Q U AT I O N S O F T H E F I R S T K I N D

Fredholm Integral Equations of the First Kind are ideally suited for the design and
analysis of ill-posed inverse problems; hence, these equations are frequently used by
the regularization community to formulate test-problems [44]. The integral equations
take the general form∫1

0

K(s, t) · f(t)dt = g(s), 0 6 s 6 1, (A.1)

where K(s, t) is the kernel, g(s) is the right-hand side and f(t) is the unknown function,
which is to be found by solving the inverse problem. The right hand side g can be
interpreted as the observation variable of a system, f is the cause or source of the
observed effect and the kernel describes the input/output relation between f and g.

By means of the discretization of the continuous variables s and t, the integral equa-
tion can be transformed into a linear system of equations [43]. First, using numerical
quadrature, the integral is approximated by the weighted sum∫1

0

K(s, t) · f(t)dt ≈
n∑
j=1

wj ·K(s, tj) · f(tj) = In(s).

The midpoint rule yields the n discretization nodes

tj =
j− 1

2

n
, j = 1, 2, . . . ,n

and the according weights

wj =
1

n
, j = 1, 2, . . . ,n.

Next s is discretized with the collocation points s1, . . . , sn, which produces the rela-
tions

In(si) = g(si), i = 1, 2, . . . ,n.

These steps result in the usually ill-conditioned system of equations
w1 ·K(s1, t1) w2 ·K(s1, t2) · · · wn ·K(s1, tn)

w1 ·K(s2, t1) w2 ·K(s2, t2) · · · wn ·K(s2, tn)
...

...
...

w1 ·K(sn, t1) w2 ·K(sn, t2) · · · wn ·K(sn, tn)

 ·

f(t1)

f(t2)
...

f(tn)

 =


g(s1)

g(s2)
...

g(sn)

 . (A.2)

This equation system thus has the form A · x = b̄, with aij = wj ·K(si, tj), b̄i = g(si)
and xj = f(tj) for i, j = 1, . . . ,n.
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Application

The performance of regularization approaches and parameter choice methods is then
tested and analyzed as follows. One selects a test-problem with known kernel K, right-
hand side g and solution f. Discretization of the integral equation (A.1) as outlined
above yields the system of equations (A.2). Then, a noise signal e with predefined
noise level η and spectrum (for example HF noise) is generated and added to the
right-hand side, that is b = b̄ + e (the generation of such a noise signal is described
in the next paragraph). Due to the noisy right-hand side, the ill-conditioned problem
becomes ill-posed. Then the inverse problem

min
x

||A · x − b||2

is solved by means of the regularization method under study. Finally, the regularized
solution can be compared to the known true solution.

In Section 4.3, the results of studies using the deriv2-problem from Hansen’s Reg-
ularization Toolbox [43] are presented. The kernel of the deriv2-problem is

K(s, t) =

{
s · (t− 1) for s < t

t · (s− 1) for s > t
,

the right-hand side is

g(s) =

{
4·s3−3·s
24 for s < 1

2
−4·s3+12·s2−9·s+1

24 for s > 1
2

and the solution of the problem is

f(t) =

{
t for t < 1

2

1− t for t > 1
2

.

For the studies in this thesis n = 62 discretization nodes have been chosen. Addi-
tional information, including other test-problems, can be found in the manual of the
Regularization Toolbox [43].

Generation of artificial measurement noise

In this research project we studied the influence of white, low-frequency (LF) and
high-frequency (HF) noise on discrete inverse problems. The respective noise signals
can be generated relatively easily in Matlab (see also Hansen’s book [44]).

The Matlab statement

e White = randn(m, 1);

produces an m× 1 noise vector: all elements of e White are generated from a normal
distribution with mean 0 and standard deviation 1 [44]. Thus, one obtains white
Gaussian noise.

The singular value decompositions of the linear equation systems that arise from
the discretization of the Fredholm Integral Equations, have some specific properties.
For example, the elements of the left singular vectors ui oscillate. The number of
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oscillations of the ui (or: the frequency of the oscillations) increases when the cor-
responding singular values σi decrease. Therefore, the left singular vectors may be
used for the generation of LF and HF noise by multiplying linear combinations of
the ui with white noise.

To generate LF noise, the Matlab statement

e LF = U ∗ (logspace(0,−2, n) ′ ∗ (U ′ ∗ e White));

is used. By means of the logspace(0,−2, n) statement, the singular vectors ui are
multiplied (weighted) with factors between 1 and 10−2. This way, the high-frequency
vectors are attenuated while the low-frequency vectors remain almost unaffected.

HF noise can be generated similarly by reversing the weighting of the left singular
vectors:

e HF = U ∗ (logspace(−2, 0, n) ′ ∗ (U ′ ∗ e White));

Finally, the noise vector e = e White; or e = e LF; or e = e HF; must be scaled so
that it has a relative predefined noise level

η =
||e||2
||b̄||2

,

This can be achieved in Matlab using the statement

e = eta ∗ norm(b Exact)/norm(e) ∗ e;

where eta corresponds to η and b Exact to b̄. The noisy measurement vector is then

b = b Exact+ e;





B
T R A N S F O R M AT I O N M E T H O D A N D E X T E N S I O N F O R
M O N O T O N I C I T Y A N A LY S I S

The following two transformation schemes form the basis for the extended transfor-
mation method from section 5.3.1 [46].

Reduced transformation method If the model is monotonic with respect to all pa-
rameters p̃i, i = 1, 2, . . . ,q∼ the reduced transformation method can be applied.
According to this rule the intervals

[
P
(j)
i

]
, i = 1, 2, . . . ,q∼ of each α-level µj, j =

1, 2, . . . ,mα are "transformed" according to the scheme

P̂
(j)
i,: =

( (
α
(j)
i , β(j)

i

)
,
(
α
(j)
i , β(j)

i

)
, . . . ,

(
α
(j)
i , β(j)

i

)︸ ︷︷ ︸
2i−1 pairs

)
(B.1)

with

α
(j)
i =

(
a
(j)
i , . . . , a(j)i︸ ︷︷ ︸
2q∼−i elements

)
, β

(j)
i =

(
b
(j)
i , . . . , b(j)i︸ ︷︷ ︸
2q∼−i elements

)
. (B.2)

As can be expected for monotonic problems only the boundaries of the intervals[
P
(j)
i

]
are important, that is the transformation scheme (B.1) and (B.2) generates all

possible combinations of the extremal values of the parameters p̃i at each level of
membership µj, j = 1, 2, . . . ,mα.

General transformation method The transformation scheme must be modified if
the model exhibits non-monotonic behavior with respect to some or all parame-
ters p̃i and it is not known which of the parameters cause the non-monotonic re-
sponse. In that case it not sufficient to simulate the boundary values of the intervals[
P
(j)
i

]
, i = 1, 2, . . . ,q∼, j = 1, 2, . . . ,mα; values that lie within these intervals need to

be evaluated too. Therefore, Hanss defined the general transformation scheme [46]

P̂
(j)
i,: =

( (
γ
(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(mα+1−j),i

)
, . . . ,

(
γ
(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(mα+1−j),i

)︸ ︷︷ ︸
(mα+1−j)i−1 (mα+1−j)-tuples

)

with

γ
(j)
l,i =

(
c
(j)
l,i , . . . , c(j)l,i︸ ︷︷ ︸

(mα+1−j)q∼−i elements

)
and

c
(j)
l,i =



a
(j)
i for l = 1 and j = 0, 1, . . . ,mα

1

2

(
c
(j+1)
l−1,i + c

(j+1)
l,i

)
for l = 2, 3, . . . ,mα − j and j = 0, 1, . . . ,mα − 2

b
(j)
i for l = mα − j+ 1 and j = 0, 1, . . . ,mα

.
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(B.3)

The right panel of Fig. 5.2 illustrates how the points (B.3) are chosen. Obviously, the
general transformation scheme causes a high computational cost the more α-cuts are
chosen and the more non-monotonic parameters are present.

sign arrays for monotonicity analysis

The additional matrices Σ̂
(j)

to facilitate monotony analysis (see Section 5.3.2) can be
calculated according to the following rules.

Reduced transformation method Since all system variables are considered mono-
tonic with respect to all uncertain parameters the arrays Σ̂(j)

i , i = 1, 2, . . . ,q∼ for each
level of membership µj, 0, 1, . . . ,mα can be easily defined as

Σ̂
(j)
i =

( (
σ
(j)
1,i , σ

(j)
2,i

)
,
(
σ
(j)
1,i , σ

(j)
2,i

)
, . . . ,

(
σ
(j)
1,i , σ

(j)
2,i

)︸ ︷︷ ︸
2i−1 pairs

)

with

σ
(j)
1,i =


(
0, . . . , 0︸ ︷︷ ︸

2q∼−i elements

)
for j = mα

(
−1, . . . , −1︸ ︷︷ ︸
2q∼−i elements

)
for j = 0, 1, . . . ,mα − 1

σ
(j)
2,i =


(
0, . . . , 0︸ ︷︷ ︸

2q∼−i elements

)
for j = mα

(
1, . . . , 1︸ ︷︷ ︸

2q∼−i elements

)
for j = 0, 1, . . . ,mα − 1

General transformation method In order to account for the eventuality that the
model might exhibit non-monotonic behavior with respect to several or even all
parameters, the general transformation scheme generates additional sample points
within every interval

[
P
(j)
i

]
, i = 1, 2, . . . ,q∼, j = 0, 1, . . . ,mα − 2; see Eq. (B.3). The

calculation scheme of the additional points c(j)l,i requires to check separately for most
of these points, if their values are above or below the respective mean values. There-

fore, the scheme for the elements of the arrays Σ̂
(j)

given by

Σ̂
(j)
i =

( (
σ
(j)
1,i , σ

(j)
2,i , . . . , σ

(j)
(mα+1−j),i

)
, . . . ,

(
σ
(j)
1,i , σ

(j)
2,i , . . . , σ

(j)
(mα+1−j),i

)︸ ︷︷ ︸
(mα+1−j)i−1 (mα+1−j)-tuples

)

with

σ
(j)
l,i =

(
s
(j)
l,i , . . . , s(j)l,i︸ ︷︷ ︸

(mα+1−j)q∼−i elements

)
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and

s
(j)
l,i =


0 for l = 1 and j = mα
0 if c(j)l,i = a

(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

−1 if c(j)l,i < a
(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

1 if c(j)l,i > a
(mα)
i , for l = 1, 2, . . . ,mα − j+ 1 and j = 0, 1, . . . ,mα − 1

.





C
S Y M B O L I C D Y N A M I C S

Symbolic dynamics is a convenient concept to study the qualitative temporal behavior
of dynamic systems. Pigolotti and colleagues [88] deal with dynamic systems de-
scribed by sets of coupled ODEs where the variable xi, i = 1, 2, . . . ,n is determined
by

ẋi = fi (x1, x2, . . . , xn) .

They presuppose that the interactions among the system variables are monotonic,
that is sgn

(
∂fi
∂xj

)
∈ {−1, 0,+1} is constant for all values of xj, j = 1, 2, . . . ,n, where

sgn is the algebraic signum function. Throughout this section the symbol Σ shall
denote the signum function and therefore Σ(•) and sgn(•) are used interchangeably.

The symbolic state of each state variable xi, i = 1, 2, . . . ,n is then represented by
the sign of its time derivative Σ (ẋi), that is the symbolic state determines whether a
variable is either increasing or decreasing. Thus, the state space of a dynamic system
can be divided into different sectors, each one associated with a unique sign pattern
Σ (ẋ) (also termed symbolic state vector). The nullclines fi (x1, x2, . . . , xn) = 0 define
the boundaries of these sectors.

In order to determine the symbolic dynamics of a system it is necessary to identify
conditions under which the trajectory of a variable xi can move from one sector to
an adjacent one by crossing the nullcline fi = 0, causing the symbolic state of that
variable to change. On the nullcline fi (x1, x2, . . . , xn) = 0 the variable xi reaches
either a (local) maximum or a (local) minimum. Therefore, the authors of [88] state a
condition for the variable xi being able to move from a sector with fi < 0 to a sector
with fi > 0. On the nullcline fi = 0 the condition∑

j6=i
fj (x1, x2, · · · , xn) ·

∂fi
∂xj

(x1, x2, · · · , xn) > 0 (C.1)

has to be satisfied.
Wilds and Glass have stated an equivalent condition, which is, however, formu-

lated more generally and which can be converted into computer code more easily
[115]. According to their transition rule the symbolic state Σ (ẋi) of xi can change to
Σ (−ẋi) = −Σ (ẋi) if

sgn

(
∂fi
∂xj

)
· sgn

(
fj
)
· sgn (fi) < 0 (C.2)

for any xj, j = 1, 2, . . . ,n that influences fi, that is for all xj with sgn
(
∂fi
∂xj

)
∈ {−1,+1}.

Using either the rule in Eq. (C.1) or the rule in Eq. (C.2) one can determine all
possible transitions between the symbolic states of a dynamic system ẋ = f(x), the
union of which constitute the symbolic dynamics of the system.

As part of this thesis the methodology of Wilds and Glass was slightly modified in
order to investigate the symbolic dynamics of ODE systems with inputs

ẋ = f(x, u).
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The modification was as follows. Instead of defining a set of differential equations for
the input variables u and then calculating the symbolic dynamics of the coupled set
of ODEs

ẋ = f(x, u)

u̇ = g(x, u)

a set of transition rules (or a lookup table) independent from the system variables
x was defined. That is, the symbolic dynamics of the inputs variables were prede-
fined by means of a rule base in which all allowed and desired transitions Σ

(
u̇j
)
→

Σ
(
−u̇j

)
, j = 1, . . . ,nu were registered. This strategy was used because the symbolic

dynamics of the inputs K+
ex and K+

free was known from the measurements. Thus, for
ODE systems with inputs the symbolic state Σ (ẋi) of a variable is allowed to change
to Σ (−ẋi) if either the condition in Eq. C.2 is satisfied or if

sgn

(
∂fi
∂uk

)
· sgn (u̇k) · sgn (fi) < 0 (C.3)

for any uk, k = 1, 2, . . . ,nu that influences fi.



B I B L I O G R A P H Y

[1] Terminology for Model Credibility. SIMULATION, 32(3):103–104, January 1979.
ISSN 0037-5497, 1741-3133. doi: 10.1177/003754977903200304. URL http://

sim.sagepub.com/content/32/3/103.

[2] R. L. Ackoff. Scientific method: optimizing applied research decisions. Wiley, 1962.

[3] K. Altendorf, P. Voelkner, and W. Puppe. The sensor kinase KdpD and the re-
sponse regulator KdpE control expression of the kdpFABC operon in Escherichia
coli. Research in Microbiology, 145(5–6):374–381, 1994. ISSN 0923-2508. doi:
10.1016/0923-2508(94)90084-1. URL http://www.sciencedirect.com/science/

article/pii/0923250894900841.

[4] H. Asha and J. Gowrishankar. Regulation of kdp operon expression in Es-
cherichia coli: evidence against turgor as signal for transcriptional control. Jour-
nal of Bacteriology, 175(14):4528–4537, January 1993. ISSN 0021-9193, 1098-5530.
URL http://jb.asm.org/content/175/14/4528.

[5] Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A. Kaandorp, and Joke G.
Blom. Systems biology: parameter estimation for biochemical models. FEBS
Journal, 276(4):886–902, 2009. ISSN 1742-4658. doi: 10.1111/j.1742-4658.2008.
06844.x. URL http://dx.doi.org/10.1111/j.1742-4658.2008.06844.x.

[6] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 1:
Basic Algorithms and Operators. IOP Publishing Ltd., Bristol, UK, UK, 1st edition,
2000. ISBN 0750306645.

[7] E. P. Bakker. Alkali Cation Transport Systems in Prokaryotes. Taylor & Francis,
November 1992. ISBN 9780849369827.

[8] E. P. Bakker and W. E. Mangerich. Interconversion of Components of the
Bacterial Proton Motive Force by Electrogenic Potassium Transport. Journal
of Bacteriology, 147(3):820–826, January 1981. ISSN 0021-9193, 1098-5530. URL
http://jb.asm.org/content/147/3/820.

[9] E. P. Bakker, I. R. Booth, U. Dinnbier, W. Epstein, and A. Gajewska. Evidence
for multiple K+ export systems in Escherichia coli. Journal of Bacteriology, 169(8):
3743–3749, January 1987. ISSN 0021-9193, 1098-5530. URL http://jb.asm.org/

content/169/8/3743.

[10] A. Ballal, B. Basu, and S. K. Apte. The Kdp-ATPase system and its regula-
tion. Journal of Biosciences, 32(3):559–568, May 2007. ISSN 0250-5991, 0973-7138.
doi: 10.1007/s12038-007-0055-7. URL http://link.springer.com/article/10.

1007/s12038-007-0055-7?null.

[11] F. Bauer and M. A. Lukas. Comparing parameter choice methods for regular-
ization of ill-posed problems. Mathematics and Computers in Simulation, 81(9):

153

http://sim.sagepub.com/content/32/3/103
http://sim.sagepub.com/content/32/3/103
http://www.sciencedirect.com/science/article/pii/0923250894900841
http://www.sciencedirect.com/science/article/pii/0923250894900841
http://jb.asm.org/content/175/14/4528
http://dx.doi.org/10.1111/j.1742-4658.2008.06844.x
http://jb.asm.org/content/147/3/820
http://jb.asm.org/content/169/8/3743
http://jb.asm.org/content/169/8/3743
http://link.springer.com/article/10.1007/s12038-007-0055-7?null
http://link.springer.com/article/10.1007/s12038-007-0055-7?null


154 bibliography

1795–1841, May 2011. ISSN 0378-4754. doi: 10.1016/j.matcom.2011.01.016. URL
http://www.sciencedirect.com/science/article/pii/S0378475411000607.

[12] R. Bellman and K. J. Åström. On structural identifiability. Math-
ematical Biosciences, 7(3–4):329–339, 1970. ISSN 0025-5564. doi: 10.
1016/0025-5564(70)90132-X. URL http://www.sciencedirect.com/science/

article/pii/002555647090132X.

[13] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Syste-
men nichtlinearer Differentialgleichungen, volume 183 of Bonner Mathematische
Schriften. Universität Bonn, Bonn, 1987. URL http://www.iwr.uni-heidelberg.

de/groups/agbock/FILES/Bock1987.pdf.

[14] H. G. Bock, K. H. Ebert, P. Deuflhard, and W. Jäger. Numerical treatment of
inverse problems in chemical reaction kinetics. In Modelling of Chemical Reaction
Systems, volume 18, pages 102–125. Springer, 1981.

[15] H. G. Bock, E. Kostina, and J. P. Schlöder. Numerical Methods for Parameter
Estimation in Nonlinear Differential Algebraic Equations. GAMM-Mitteilungen,
30(2):376–408, 2007. doi: 10.1002/gamm.200790024. URL http://dx.doi.org/

10.1002/gamm.200790024.

[16] I. R. Booth. Regulation of cytoplasmic pH in bacteria. Microbiological Reviews,
49(4):359–378, January 1985. ISSN 1092-2172, 1098-5557. URL http://mmbr.asm.

org/content/49/4/359.

[17] D. Bossemeyer, A. Borchard, D. C. Dosch, G. C. Helmer, W. Epstein, I. R. Booth,
and E. P. Bakker. K+-transport Protein TrkA of Escherichia coli Is a Peripheral
Membrane Protein That Requires Other trk Gene Products for Attachment to
the Cytoplasmic Membrane. Journal of Biological Chemistry, 264(28):16403–16410,
May 1989. ISSN 0021-9258, 1083-351X. URL http://www.jbc.org/content/

264/28/16403.

[18] M. J. Crowe. Theories of the world from antiquity to the Copernican revolution. Dover
books on astronomy. Dover Publications, 1990. ISBN 9780486261737.

[19] L. N. Csonka and A. D. Hanson. Prokaryotic Osmoregulation: Genetics and
Physiology. Annual Review of Microbiology, 45(1):569–606, 1991. doi: 10.1146/
annurev.mi.45.100191.003033. URL http://www.annualreviews.org/doi/abs/

10.1146/annurev.mi.45.100191.003033.

[20] G. Cumming, F. Fidler, and D. L. Vaux. Error bars in experimental biology. The
Journal of Cell Biology, 177(1):7–11, September 2007. ISSN 0021-9525, 1540-8140.
doi: 10.1083/jcb.200611141. URL http://jcb.rupress.org/content/177/1/7.

[21] F. B. Waters D. B. Rhoads and W. Epstein. VIII. potassium transport mutants.
The Journal of General Physiology, 67:325–341, 1976. URL http://www.jgp.org/

cgi/content/abstract/67/3/325.

[22] L. Denis-Vidal and G. Joly-Blanchard. An Easy to Check Criterion for
(Un)indentifiability of Uncontrolled Systems and Its Applications. Automatic

http://www.sciencedirect.com/science/article/pii/S0378475411000607
http://www.sciencedirect.com/science/article/pii/002555647090132X
http://www.sciencedirect.com/science/article/pii/002555647090132X
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://dx.doi.org/10.1002/gamm.200790024
http://dx.doi.org/10.1002/gamm.200790024
http://mmbr.asm.org/content/49/4/359
http://mmbr.asm.org/content/49/4/359
http://www.jbc.org/content/264/28/16403
http://www.jbc.org/content/264/28/16403
http://www.annualreviews.org/doi/abs/10.1146/annurev.mi.45.100191.003033
http://www.annualreviews.org/doi/abs/10.1146/annurev.mi.45.100191.003033
http://jcb.rupress.org/content/177/1/7
http://www.jgp.org/cgi/content/abstract/67/3/325
http://www.jgp.org/cgi/content/abstract/67/3/325


bibliography 155

Control, IEEE Transactions on, 45(4):768–771, apr 2000. ISSN 0018-9286. doi:
10.1109/9.847119.

[23] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
Real-time optimization and nonlinear model predictive control of processes
governed by differential-algebraic equations. Journal of Process Control, 12(4):
577–585, June 2002. ISSN 0959-1524. doi: 10.1016/S0959-1524(01)00023-3. URL
http://www.sciencedirect.com/science/article/pii/S0959152401000233.

[24] A. Donzé, G. Clermont, and C. J. Langmead. Parameter Synthesis in Non-
linear Dynamical Systems: Application to Systems Biology. Journal of Com-
putational Biology, 17(3):325–336, March 2010. ISSN 1066-5277, 1557-8666.
doi: 10.1089/cmb.2009.0172. URL http://online.liebertpub.com/doi/abs/

10.1089/cmb.2009.0172.

[25] D. J. Dubois and H. Prade. Fuzzy sets and systems: theory and applications. Math-
ematics in Science and Engineering. Elsevier, Burlington, MA, 1980.

[26] W. Epstein. Osmoregulation by potassium transport in Escherichia coli. FEMS
Microbiology Letters, 39(1-2):73–78, 1986. ISSN 1574-6968. doi: 10.1111/
j.1574-6968.1986.tb01845.x. URL http://onlinelibrary.wiley.com/doi/10.

1111/j.1574-6968.1986.tb01845.x/abstract.

[27] W. Epstein. The Roles and Regulation of Potassium in Bacteria. In Progress in
Nucleic Acid Research and Molecular Biology, volume Volume 75, pages 293–320.
Academic Press, 2003. ISBN 0079-6603. URL http://www.sciencedirect.com/

science/article/pii/S0079660303750089.

[28] I. Famili and B. O. Palsson. The Convex Basis of the Left Null Space of
the Stoichiometric Matrix Leads to the Definition of Metabolically Meaning-
ful Pools. Biophysical Journal, 85(1):16–26, July 2003. ISSN 0006-3495. URL
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303061/. PMID: 12829460

PMCID: PMC1303061.

[29] G. P. Ferguson. Protective mechanisms against toxic electrophiles in Es-
cherichia coli. Trends in Microbiology, 7(6):242–247, June 1999. doi: 10.
1016/S0966-842X(99)01510-3. URL http://www.sciencedirect.com/science/

article/B6TD0-3WS6237-G/2/6de1437fbc0162726e59dadc4248fc28.

[30] G. P. Ferguson, A. W. Munro, R. M. Douglas, D. McLaggan, and I. R. Booth. Ac-
tivation of potassium channels during metabolite detoxification in Escherichia
coli. Molecular Microbiology, 9(6):1297–1303, 1993. ISSN 1365-2958. doi:
10.1111/j.1365-2958.1993.tb01259.x. URL http://onlinelibrary.wiley.com/

doi/10.1111/j.1365-2958.1993.tb01259.x/abstract.

[31] M. Gaßel, T. Möllenkamp, W. Puppe, and K. Altendorf. The KdpF Subunit Is
Part of the K+-translocating Kdp Complex of Escherichia coli and Is Responsible
for Stabilization of the Complex in Vitro. Journal of Biological Chemistry, 274(53):
37901–37907, December 1999. ISSN 0021-9258, 1083-351X. doi: 10.1074/jbc.274.
53.37901. URL http://www.jbc.org/content/274/53/37901.

http://www.sciencedirect.com/science/article/pii/S0959152401000233
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0172
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0172
http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.1986.tb01845.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.1986.tb01845.x/abstract
http://www.sciencedirect.com/science/article/pii/S0079660303750089
http://www.sciencedirect.com/science/article/pii/S0079660303750089
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303061/
http://www.sciencedirect.com/science/article/B6TD0-3WS6237-G/2/6de1437fbc0162726e59dadc4248fc28
http://www.sciencedirect.com/science/article/B6TD0-3WS6237-G/2/6de1437fbc0162726e59dadc4248fc28
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1993.tb01259.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1993.tb01259.x/abstract
http://www.jbc.org/content/274/53/37901


156 bibliography

[32] S. Gayer. System-theoretical decomposition of kinetic models of signal trans-
duction networks. Master’s thesis (Diplomarbeit), University of Stuttgart, 2007.

[33] E. D. Gilles. Network Theory for Chemical Processes. Chemical En-
gineering & Technology, 21(2):121–132, 1998. ISSN 1521-4125. doi:
10.1002/(SICI)1521-4125(199802)21:2<211::AID-CEAT121>3.0.CO;2-U. URL
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4125(199802)

21:2<211::AID-CEAT121>3.0.CO;2-U/abstract.

[34] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996. ISBN 0-8018-5414-8.

[35] G. H. Golub, M. Heath, and G. Wahba. Generalized Cross-Validation as a
Method for Choosing a Good Ridge Parameter. Technometrics, 21(2):215–223,
May 1979. ISSN 0040-1706. doi: 10.2307/1268518. URL http://www.jstor.

org/stable/1268518. ArticleType: research-article / Full publication date: May,
1979 / Copyright Â c© 1979 American Statistical Association and American So-
ciety for Quality.

[36] J. Gowrishankar. Identification of Osmoresponsive Genes in Escherichia coli:
Evidence for Participation of Potassium and Proline Transport Systems in Os-
moregulation. Journal of Bacteriology, 164(1):434–445, January 1985. ISSN 0021-
9193, 1098-5530. URL http://jb.asm.org/content/164/1/434.

[37] J. Gowrishankar. A model for the regulation of expression of the potassium-
transport operon, kdp, in Escherichia coli. Journal of Genetics, 66(2):87–92, 1987.
ISSN 0022-1333. doi: 10.1007/BF02931654. URL http://www.springerlink.

com/content/xl8n152xp0004486/abstract/.

[38] J.-C. Greie and K. Altendorf. The K+-translocating KdpFABC complex from
Escherichia coli: a P-type ATPase with unique features. Journal of bioenergetics
and biomembranes, 39(5-6):397–402, December 2007. ISSN 0145479. URL http:

//www.springerlink.com/content/n20504t164ku35t7/. PMID: 18058005.

[39] K. Hamann, P. Zimmann, and K. Altendorf. Reduction of Turgor Is Not the
Stimulus for the Sensor Kinase KdpD of Escherichia coli. J. Bacteriol., 190(7):
2360–2367, April 2008. doi: 10.1128/JB.01635-07. URL http://jb.asm.org/

cgi/content/abstract/190/7/2360.

[40] E. Hansen and S. Sengupta. Bounding solutions of systems of equations using
interval analysis. BIT Numerical Mathematics, 21(2):203–211, June 1981. ISSN
0006-3835, 1572-9125. doi: 10.1007/BF01933165. URL http://link.springer.

com/article/10.1007/BF01933165.

[41] P. C. Hansen. The discrete picard condition for discrete ill-posed prob-
lems. BIT Numerical Mathematics, 30(4):658–672, 1990. ISSN 0006-3835.
doi: 10.1007/BF01933214. URL http://www.springerlink.com/content/

ll27064141j631t1/abstract/.

[42] P. C. Hansen. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve.
SIAM Review, 34(4):561–580, December 1992. ISSN 0036-1445, 1095-7200. doi:
10.1137/1034115. URL http://epubs.siam.org/doi/abs/10.1137/1034115.

http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4125(199802)21:2<211::AID-CEAT121>3.0.CO;2-U/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4125(199802)21:2<211::AID-CEAT121>3.0.CO;2-U/abstract
http://www.jstor.org/stable/1268518
http://www.jstor.org/stable/1268518
http://jb.asm.org/content/164/1/434
http://www.springerlink.com/content/xl8n152xp0004486/abstract/
http://www.springerlink.com/content/xl8n152xp0004486/abstract/
http://www.springerlink.com/content/n20504t164ku35t7/
http://www.springerlink.com/content/n20504t164ku35t7/
http://jb.asm.org/cgi/content/abstract/190/7/2360
http://jb.asm.org/cgi/content/abstract/190/7/2360
http://link.springer.com/article/10.1007/BF01933165
http://link.springer.com/article/10.1007/BF01933165
http://www.springerlink.com/content/ll27064141j631t1/abstract/
http://www.springerlink.com/content/ll27064141j631t1/abstract/
http://epubs.siam.org/doi/abs/10.1137/1034115


bibliography 157

[43] P. C. Hansen. Regularization Tools - A Matlab Package for Analysis and Solution of
Discrete Ill-Posed Problems. Technical University of Denmark, 4.1 edition, 2008.

[44] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. Fundamentals
of Algorithms. Society for Industrial and Applied Mathematics, 2010. ISBN
9780898716962. URL http://www.ec-securehost.com/SIAM/FA07.html.

[45] P. C. Hansen and D. P. O’Leary. The Use of the L-Curve in the Regu-
larization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Com-
puting, 14(6):1487–1503, November 1993. ISSN 1064-8275, 1095-7197. doi:
10.1137/0914086. URL http://epubs.siam.org/action/showAbstract?page=

1487&volume=14&issue=6&journalCode=sjoce3.

[46] M. Hanss. The Extended Transformation Method For The Simulation And
Analysis Of Fuzzy-Parameterized Models. International Journal of Uncertainty,
Fuzziness & Knowledge-Based Systems, 11(6):711–727, December 2003. ISSN
02184885.

[47] C. Harms, Y. Domoto, C. Celik, E. Rahe, S. Stumpe, R. Schmid, T. Naka-
mura, and E. P. Bakker. Identification of the ABC protein SapD as the sub-
unit that confers ATP dependence to the K+-uptake systems TrkH and TrkG
from Escherichia coli k-12. Microbiology, 147(11):2991–3003, November 2001. URL
http://mic.sgmjournals.org/cgi/content/abstract/147/11/2991.

[48] R. Heermann, K. Altendorf, and K. Jung. The Hydrophilic N-terminal Do-
main Complements the Membrane-anchored C-terminal Domain of the Sensor
Kinase KdpD of Escherichia coli. Journal of Biological Chemistry, 275(22):17080–
17085, February 2000. ISSN 0021-9258, 1083-351X. doi: 10.1074/jbc.M000093200.
URL http://www.jbc.org/content/275/22/17080.

[49] M. Herzog. Kalium-Homeostase: Das Kdp-modul von Escherichia coli unter
spezieller Betrachtung der K+-Konzentration und des potentiellen Signal-
moleküls cAMP. Diplomarbeit, Ludwig-Maximilians-Universität München,
2005.

[50] R. Hooke and T. A. Jeeves. "Direct Search" Solution of Numerical and Statistical
Problems. J. ACM, 8(2):212–229, April 1961. ISSN 0004-5411. doi: 10.1145/
321062.321069. URL http://doi.acm.org/10.1145/321062.321069.

[51] I. Horenko, S. Lorenz, C. Schütte, and W. Huisinga. Adaptive approach for
nonlinear sensitivity analysis of reaction kinetics. Journal of Computational
Chemistry, 26(9):941–948, 2005. ISSN 1096-987X. doi: 10.1002/jcc.20234. URL
http://onlinelibrary.wiley.com/doi/10.1002/jcc.20234/abstract.

[52] R. L. Iman, J. C. Helton, and J. E. Campbell. An approach to sensitivity analysis
of computer models, Part 1. Introduction, input variable selection and prelimi-
nary variable assessment. Journal of Quality Technology, 13(3):174–183, 1981.

[53] R. E. Jones. Automatically regularized nonnegative solutions for illconditioned
linear systems, July 2006. Inverse Problems in Engineering Seminar (IPES),
Iowa State University, USA.

http://www.ec-securehost.com/SIAM/FA07.html
http://epubs.siam.org/action/showAbstract?page=1487&volume=14&issue=6&journalCode=sjoce3
http://epubs.siam.org/action/showAbstract?page=1487&volume=14&issue=6&journalCode=sjoce3
http://mic.sgmjournals.org/cgi/content/abstract/147/11/2991
http://www.jbc.org/content/275/22/17080
http://doi.acm.org/10.1145/321062.321069
http://onlinelibrary.wiley.com/doi/10.1002/jcc.20234/abstract


158 bibliography

[54] K. Jung, B. Tjaden, and K. Altendorf. Purification, Reconstitution, and Char-
acterization of KdpD, the Turgor Sensor of Escherichia coli. Journal of Biological
Chemistry, 272(16):10847–10852, April 1997. ISSN 0021-9258, 1083-351X. doi:
10.1074/jbc.272.16.10847. URL http://www.jbc.org/content/272/16/10847.

[55] H.-M. Kaltenbach, S. Constantinescu, J. Feigelman, and J. Stelling. Graph-
Based Decomposition of Biochemical Reaction Networks into Monotone Sub-
systems. In Teresa M. Przytycka and Marie-France Sagot, editors, Algo-
rithms in Bioinformatics, number 6833 in Lecture Notes in Computer Sci-
ence, pages 139–150. Springer Berlin Heidelberg, January 2011. ISBN 978-3-
642-23037-0, 978-3-642-23038-7. URL http://link.springer.com/chapter/10.

1007/978-3-642-23038-7_13.

[56] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-
nealing. Science, 220(4598):671–680, May 1983. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.220.4598.671. URL http://www.sciencemag.org/content/220/

4598/671.

[57] H. Kitano. Systems Biology: A Brief Overview. Science, 295(5560):1662–1664,
January 2002. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1069492. URL
http://www.sciencemag.org/content/295/5560/1662.

[58] E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, and R. Herwig.
Systems Biology: A Textbook. Wiley-VCH Verlag GmbH & Co. KGaA, 1. auflage
edition, June 2009. ISBN 3527318747.

[59] G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1995. ISBN 0-13-101171-5.

[60] A. Kremling. Comment on Mathematical Models Which Describe Transcription
and Calculate the Relationship Between mRNA and Protein Expression Ra-
tio. Biotechnology and Bioengineering, 96(4):815–819, 2007. doi: 10.1002/bit.21065.
URL http://dx.doi.org/10.1002/bit.21065.

[61] A. Kremling, R. Heermann, F. Centler, K. Jung, and E. D. Gilles. Anal-
ysis of two-component signal transduction by mathematical modeling us-
ing the KdpD/KdpE system of escherichia coli. Biosystems, 78(1-3):23–
37, December 2004. ISSN 0303-2647. doi: 10.1016/j.biosystems.2004.06.003.
URL http://www.sciencedirect.com/science/article/B6T2K-4D58G27-1/2/

db9df295edb4845ddeb3e03b8070d641.

[62] L. A. Laimins, D. B. Rhoads, and W. Epstein. Osmotic control of kdp operon
expression in Escherichia coli. Proceedings of the National Academy of Sciences of the
United States of America, 78(1):464–8, January 1981. ISSN 0027-8424. doi: 6787588.
URL http://www.ncbi.nlm.nih.gov/pubmed/6787588. PMID: 6787588.

[63] Y. Lazebnik. Can a biologist fix a radio?–Or, what i learned while study-
ing apoptosis. Cancer Cell, 2(3):179–182, September 2002. ISSN 1535-6108.
doi: 10.1016/S1535-6108(02)00133-2. URL http://www.cell.com/cancer-cell/

fulltext/S1535-6108(02)00133-2.

http://www.jbc.org/content/272/16/10847
http://link.springer.com/chapter/10.1007/978-3-642-23038-7_13
http://link.springer.com/chapter/10.1007/978-3-642-23038-7_13
http://www.sciencemag.org/content/220/4598/671
http://www.sciencemag.org/content/220/4598/671
http://www.sciencemag.org/content/295/5560/1662
http://dx.doi.org/10.1002/bit.21065
http://www.sciencedirect.com/science/article/B6T2K-4D58G27-1/2/db9df295edb4845ddeb3e03b8070d641
http://www.sciencedirect.com/science/article/B6T2K-4D58G27-1/2/db9df295edb4845ddeb3e03b8070d641
http://www.ncbi.nlm.nih.gov/pubmed/6787588
http://www.cell.com/cancer-cell/fulltext/S1535-6108(02)00133-2
http://www.cell.com/cancer-cell/fulltext/S1535-6108(02)00133-2


bibliography 159

[64] C.-R. Lee, S.-H. Cho, M.-J. Yoon, A. Peterkofsky, and Y.-J. Seok. Escherichia
coli enzyme IIANtr regulates the K+ transporter TrkA. Proceedings of the
National Academy of Sciences of the United States of America, 104(10), March
2007. doi: 10.1073/pnas.0609897104. URL http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=1794712. PMC1794712.

[65] S. B. Lee and J. E. Bailey. Genetically Structured Models for lac Promoter-
Operator Function in the Chromosome and in Multicopy Plasmids: lac Pro-
moter Function. Biotechnology and Bioengineering, 26(11):1383–1389, November
1984. ISSN 0006-3592. doi: 10.1002/bit.260261116. URL http://onlinelibrary.

wiley.com/doi/10.1002/bit.260261116/abstract.

[66] P. De Leenheer, D. Angeli, and E. D. Sontag. Monotone Chemical Reaction Net-
works. Journal of Mathematical Chemistry, 41(3):295–314, April 2007. ISSN 0259-
9791, 1572-8897. doi: 10.1007/s10910-006-9075-z. URL http://link.springer.

com/article/10.1007/s10910-006-9075-z.

[67] D. B. Leineweber. Efficient reduced SQP methods for the optimization of chemical
processes described by large sparse DAE models, volume 613 of Fortschritt-Berichte
VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

[68] Y. Lin and M. A. Stadtherr. Validated solutions of initial value problems
for parametric ODEs. Applied Numerical Mathematics, 57(10):1145–1162, Oc-
tober 2007. ISSN 0168-9274. doi: 10.1016/j.apnum.2006.10.006. URL http:

//www.sciencedirect.com/science/article/pii/S0168927406002030.

[69] L. Ljung and T. Glad. On global identifiability for arbitrary model
parametrizations. Automatica, 30(2):265 – 276, 1994. ISSN 0005-1098. doi:
10.1016/0005-1098(94)90029-9. URL http://www.sciencedirect.com/science/

article/pii/0005109894900299.

[70] D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):
431–441, June 1963. ISSN 0368-4245, 2168-3484. doi: 10.1137/0111030. URL
http://epubs.siam.org/doi/abs/10.1137/0111030.

[71] M. R. Maurya, R. Rengaswamy, and V. Venkatasubramanian. A Systematic
Framework for the Development and Analysis of Signed Digraphs for Chem-
ical Processes. 1. Algorithms and Analysis. Industrial & Engineering Chem-
istry Research, 42(20):4789–4810, 2003. doi: 10.1021/ie020644a. URL http:

//pubs.acs.org/doi/abs/10.1021/ie020644a.

[72] D. McLaggan, J. Naprstek, E. T. Buurman, and W. Epstein. Interdependence of
K+ and glutamate accumulation during osmotic adaptation of Escherichia coli.
J. Biol. Chem., 269(3):1911–1917, January 1994. URL http://www.jbc.org/cgi/

content/abstract/269/3/1911.

[73] A. D. McNaught and A. Wilkinson. IUPAC.Compendium of Chemical Terminology,
2nd ed. (the "Gold Book"). WileyBlackwell; 2nd Revised edition edition, August .
ISBN 978-0865426849.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1794712
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1794712
http://onlinelibrary.wiley.com/doi/10.1002/bit.260261116/abstract
http://onlinelibrary.wiley.com/doi/10.1002/bit.260261116/abstract
http://link.springer.com/article/10.1007/s10910-006-9075-z
http://link.springer.com/article/10.1007/s10910-006-9075-z
http://www.sciencedirect.com/science/article/pii/S0168927406002030
http://www.sciencedirect.com/science/article/pii/S0168927406002030
http://www.sciencedirect.com/science/article/pii/0005109894900299
http://www.sciencedirect.com/science/article/pii/0005109894900299
http://epubs.siam.org/doi/abs/10.1137/0111030
http://pubs.acs.org/doi/abs/10.1021/ie020644a
http://pubs.acs.org/doi/abs/10.1021/ie020644a
http://www.jbc.org/cgi/content/abstract/269/3/1911
http://www.jbc.org/cgi/content/abstract/269/3/1911


160 bibliography

[74] H. Miao, X. Xia, A. S. Perelson, and H. Wu. On Identifiability of Nonlinear ODE
Models and Applications in Viral Dynamics. SIAM Rev., 53(1):3–39, February
2011. ISSN 0036-1445. doi: 10.1137/090757009. URL http://dx.doi.org/10.

1137/090757009.

[75] R. E. Moore. Methods and Applications of Interval Analysis. Society for Industrial
and Applied Mathematics, 1979. doi: 10.1137/1.9781611970906. URL http:

//epubs.siam.org/doi/abs/10.1137/1.9781611970906.

[76] M. D. Morris. Factorial sampling plans for preliminary computational ex-
periments. Technometrics, 33(2):161–174, 1991. ISSN 0040-1706. doi: 10.
1080/00401706.1991.10484804. URL http://www.tandfonline.com/doi/abs/10.

1080/00401706.1991.10484804.

[77] J. G. Nagy and D. P. O’Leary. Image deblurring: I can see clearly now. Com-
puting in Science Engineering, 5(3):82 – 84, may-june 2003. ISSN 1521-9615. doi:
10.1109/MCISE.2003.1196312.

[78] K. Nakashima, A. Sugiura, K. Kanamaru, and T. Mizuno. Signal transduc-
tion between the two regulatory components involved in the regulation of
the kdpABC operon in Escherichia coli: Phosphorylation-dependent function-
ing of the positive regulator, KdpE. Molecular Microbiology, 7(1):109–116, 1993.
doi: 10.1111/j.1365-2958.1993.tb01102.x. URL http://dx.doi.org/10.1111/j.

1365-2958.1993.tb01102.x.

[79] J. A. Nelder. The Fitting of a Generalization of the Logistic Curve. Biometrics,
17(1):pp. 89–110, 1961. ISSN 0006341X. URL http://www.jstor.org/stable/

2527498.

[80] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, January 1965. ISSN 0010-4620, 1460-2067. doi: 10.
1093/comjnl/7.4.308. URL http://comjnl.oxfordjournals.org/content/7/4/

308.

[81] M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, June 2006. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.0601602103. URL http://www.pnas.

org/content/103/23/8577.

[82] M. E. J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69(2):026113, February 2004. doi: 10.
1103/PhysRevE.69.026113. URL http://link.aps.org/doi/10.1103/PhysRevE.

69.026113.

[83] T. Ohwada and S. Sagisaka. An immediate and steep increase in ATP concentra-
tion in response to reduced turgor pressure in Escherichia coli b. Archives of Bio-
chemistry and Biophysics, 259(1):157–163, November 1987. ISSN 0003-9861. doi:
10.1016/0003-9861(87)90481-4. URL http://www.sciencedirect.com/science/

article/pii/0003986187904814.

http://dx.doi.org/10.1137/090757009
http://dx.doi.org/10.1137/090757009
http://epubs.siam.org/doi/abs/10.1137/1.9781611970906
http://epubs.siam.org/doi/abs/10.1137/1.9781611970906
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1111/j.1365-2958.1993.tb01102.x
http://dx.doi.org/10.1111/j.1365-2958.1993.tb01102.x
http://www.jstor.org/stable/2527498
http://www.jstor.org/stable/2527498
http://comjnl.oxfordjournals.org/content/7/4/308
http://comjnl.oxfordjournals.org/content/7/4/308
http://www.pnas.org/content/103/23/8577
http://www.pnas.org/content/103/23/8577
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://www.sciencedirect.com/science/article/pii/0003986187904814
http://www.sciencedirect.com/science/article/pii/0003986187904814


bibliography 161

[84] H. G. Othmer. The Interaction of Structure and Dynamics in Chemical Reac-
tion Networks. In K.H. Ebert, P. Deuflhard, and W. Jäger, editors, Modelling of
Chemical Reaction Systems, number 18 in Series in Chemical Physics, pages 2–19.
Springer Verlag, 1981.

[85] P. L. Pedersen and E. Carafoli. Ion motive ATPases. i. Ubiquity, properties,
and significance to cell function. Trends in Biochemical Sciences, 12(0):146–150,
1987. ISSN 0968-0004. doi: 10.1016/0968-0004(87)90071-5. URL http://www.

sciencedirect.com/science/article/pii/0968000487900715.

[86] M. Peifer and J. Timmer. Parameter estimation in ordinary differential equa-
tions for biochemical processes using the method of multiple shooting. Systems
Biology, IET, 1(2):78–88, 2007. ISSN 1751-8849. doi: 10.1049/iet-syb:20060067.

[87] L. Petzold, S. Li, Y. Cao, and R. Serban. Sensitivity analysis of differential-
algebraic equations and partial differential equations. Computers & Chemi-
cal Engineering, 30(10–12):1553–1559, September 2006. ISSN 0098-1354. doi:
10.1016/j.compchemeng.2006.05.015. URL http://www.sciencedirect.com/

science/article/pii/S0098135406001487.

[88] S. Pigolotti, S. Krishna, and M. H. Jensen. Symbolic Dynamics of Biological
Feedback Networks. Physical Review Letters, 102(8):088701–4, February 2009.
doi: 10.1103/PhysRevLett.102.088701. URL http://link.aps.org/abstract/

PRL/v102/e088701.

[89] H. Pohjanpalo. System identifiability based on the power series expansion of
the solution. Mathematical Biosciences, 41(1–2):21–33, 1978. ISSN 0025-5564. doi:
10.1016/0025-5564(78)90063-9. URL http://www.sciencedirect.com/science/

article/pii/0025556478900639.

[90] J. W. Polarek, M. O. Walderhaug, and W. Epstein. Genetics of Kdp, the K+-
transport ATPase of Escherichia coli. In Becca Fleischer Sidney Fleischer, ed-
itor, Methods in Enzymology, volume Volume 157, pages 655–667. Academic
Press, 1988. ISBN 0076-6879. URL http://www.sciencedirect.com/science/

article/pii/0076687988571136.

[91] W. S. Prince and M. R. Villarejo. Osmotic control of proU transcription is me-
diated through direct action of potassium glutamate on the transcription com-
plex. Journal of Biological Chemistry, 265(29):17673–17679, October 1990. ISSN
0021-9258, 1083-351X. URL http://www.jbc.org/content/265/29/17673.

[92] H. Rabitz, M. Kramer, and D. Dacol. Sensitivity Analysis in Chemical Kinetics.
Annual Review of Physical Chemistry, 34(1):419–461, 1983. doi: 10.1146/annurev.
pc.34.100183.002223. URL http://www.annualreviews.org/doi/abs/10.1146/

annurev.pc.34.100183.002223.

[93] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller,
and J. Timmer. Structural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile likelihood. Bioinformat-
ics, 25(15):1923–1929, 2009. doi: 10.1093/bioinformatics/btp358. URL http:

//bioinformatics.oxfordjournals.org/content/25/15/1923.abstract.

http://www.sciencedirect.com/science/article/pii/0968000487900715
http://www.sciencedirect.com/science/article/pii/0968000487900715
http://www.sciencedirect.com/science/article/pii/S0098135406001487
http://www.sciencedirect.com/science/article/pii/S0098135406001487
http://link.aps.org/abstract/PRL/v102/e088701
http://link.aps.org/abstract/PRL/v102/e088701
http://www.sciencedirect.com/science/article/pii/0025556478900639
http://www.sciencedirect.com/science/article/pii/0025556478900639
http://www.sciencedirect.com/science/article/pii/0076687988571136
http://www.sciencedirect.com/science/article/pii/0076687988571136
http://www.jbc.org/content/265/29/17673
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.34.100183.002223
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.34.100183.002223
http://bioinformatics.oxfordjournals.org/content/25/15/1923.abstract
http://bioinformatics.oxfordjournals.org/content/25/15/1923.abstract


162 bibliography

[94] M. T. Record Jr, E. S. Courtenay, D. S. Cayley, and H. J. Guttman. Responses
of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes
and water. Trends in Biochemical Sciences, 23(4):143–148, April 1998. doi: 10.
1016/S0968-0004(98)01196-7. URL http://www.sciencedirect.com/science/

article/B6TCV-3VGRSDG-9/1/3bfeee4fe5f701125ccd0831bbba0595.

[95] D. B. Rhoads and W. Epstein. Energy coupling to net K+ transport in Escherichia
coli K-12. J. Biol. Chem., 252(4):1394–1401, February 1977. URL http://www.jbc.

org/cgi/content/abstract/252/4/1394.

[96] A. J. Roe, D. McLaggan, I. Davidson, C. O’Byrne, and I. R. Booth. Pertur-
bation of Anion Balance during Inhibition of Growth of Escherichia coli by
Weak Acids. Journal of Bacteriology, 180(4):767–772, February 1998. ISSN 0021-
9193. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC106953/. PMID:
9473028 PMCID: PMC106953.

[97] J. Saez-Rodriguez, A. Kremling, and E. D. Gilles. Dissecting the puzzle of
life: modularization of signal transduction networks. Computers & Chemi-
cal Engineering, 29(3):619–629, February 2005. ISSN 0098-1354. doi: 10.1016/
j.compchemeng.2004.08.035. URL http://www.sciencedirect.com/science/

article/pii/S0098135404002492.

[98] J. Saez-Rodriguez, S. Gayer, M. Ginkel, and E. D. Gilles. Automatic decom-
position of kinetic models of signaling networks minimizing the retroactiv-
ity among modules. Bioinformatics, 24(16):i213 –i219, 2008. doi: 10.1093/
bioinformatics/btn289. URL http://bioinformatics.oxfordjournals.org/

content/24/16/i213.abstract.

[99] R. G. Sargent. Verification and validation of simulation models. In Simulation
Conference, 2007 Winter, pages 124 –137, December 2007. doi: 10.1109/WSC.
2007.4419595.

[100] A. Schlosser, A. Hamann, D. Bossemeyer, E. Schneider, and E. P. Bakker.
NAD+ binding to the Escherichia coli K+-uptake protein TrkA and sequence
similarity between TrkA and domains of a family of dehydrogenases sug-
gest a role for NAD+ in bacterial transport. Molecular Microbiology, 9

(3):533–543, 1993. ISSN 1365-2958. doi: 10.1111/j.1365-2958.1993.tb01714.
x. URL http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1993.

tb01714.x/abstract.

[101] A. Schlosser, M. Meldorf, S. Stumpe, E. P. Bakker, and W. Epstein. TrkH and
its homolog, TrkG, determine the specificity and kinetics of cation transport by
the Trk system of Escherichia coli. J. Bacteriol., 177(7):1908–1910, April 1995. URL
http://jb.asm.org/cgi/content/abstract/177/7/1908.

[102] I. M. Sobol’. Global sensitivity indices for nonlinear mathematical mod-
els and their monte carlo estimates. Mathematics and Computers in
Simulation, 55(1–3):271–280, February 2001. ISSN 0378-4754. doi: 10.
1016/S0378-4754(00)00270-6. URL http://www.sciencedirect.com/science/

article/pii/S0378475400002706.

http://www.sciencedirect.com/science/article/B6TCV-3VGRSDG-9/1/3bfeee4fe5f701125ccd0831bbba0595
http://www.sciencedirect.com/science/article/B6TCV-3VGRSDG-9/1/3bfeee4fe5f701125ccd0831bbba0595
http://www.jbc.org/cgi/content/abstract/252/4/1394
http://www.jbc.org/cgi/content/abstract/252/4/1394
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC106953/
http://www.sciencedirect.com/science/article/pii/S0098135404002492
http://www.sciencedirect.com/science/article/pii/S0098135404002492
http://bioinformatics.oxfordjournals.org/content/24/16/i213.abstract
http://bioinformatics.oxfordjournals.org/content/24/16/i213.abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1993.tb01714.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1993.tb01714.x/abstract
http://jb.asm.org/cgi/content/abstract/177/7/1908
http://www.sciencedirect.com/science/article/pii/S0378475400002706
http://www.sciencedirect.com/science/article/pii/S0378475400002706


bibliography 163

[103] J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, and C. Witzgall. Introduction
to Numerical Analysis. Texts in Applied Mathematics. Springer, 2002. ISBN
9780387954523.

[104] G. Strang. Introduction to Linear Algebra, Third Edition. Wellesley Cambridge
Pr, March 2003. ISBN 0961408898. URL http://www.worldcat.org/isbn/

0961408898.

[105] S. Stumpe, A. Schlösser, M. Schleyer, E. P. Bakker, H. R. Kaback W. N. Kon-
ings, and J. S. Lolkema. Chapter 21: K+ circulation across the prokaryotic
cell membrane: K+-uptake systems. In Transport Processes in Eukaryotic and
Prokaryotic Organisms, volume Volume 2, pages 473–499. North-Holland, 1996.
ISBN 1383-8121. URL http://www.sciencedirect.com/science/article/pii/

S1383812196800625.

[106] C. H. Suelter. Enzymes Activated by Monovalent Cations. Science, 168(3933):
789–795, May 1970. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.168.3933.
789. URL http://www.sciencemag.org/content/168/3933/789.

[107] A. Sugiura, K. Nakashima, K. Tanaka, and T. Mizuno. Clarification of the struc-
tural and functional features of the osmoregulated kdp operon of Escherichia
coli. Molecular Microbiology, 6(13):1769–1776, 1992. doi: 10.1111/j.1365-2958.1992.
tb01349.x. URL http://dx.doi.org/10.1111/j.1365-2958.1992.tb01349.x.

[108] A. Sugiura, K. Nakashima, and T. Mizuno. Sequence-directed DNA Curvature
in Activator-binding Sequence in the Escherichia coli kdpABC Promoter. Bio-
science, Biotechnology, and Biochemistry, 57(2):356–357, 1993.

[109] S. I. Sukharev, P. Blount, B. Martinac, and C. Kung. Mechanosensitive Chan-
nels of Escherichia coli: The MscL Gene, Protein, and Activities. Annual Re-
view of Physiology, 59(1):633–657, 1997. doi: 10.1146/annurev.physiol.59.1.633.
URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.59.

1.633. PMID: 9074781.

[110] K. Tanaka and T. Niimura. An Introduction to Fuzzy Logic for Practical Appli-
cations. Springer, 1996. ISBN 9780387948072. URL http://books.google.de/

books?id=Fq-eXnV56coC.

[111] G. Terejanu, P. Singla, T. Singh, and P. D. Scott. Uncertainty Propagation for
Nonlinear Dynamic Systems Using Gaussian Mixture Models. Journal of Guid-
ance, Control, and Dynamics, 31(6):1623–1633, November 2008. ISSN 0731-5090,
1533-3884. doi: 10.2514/1.36247. URL http://arc.aiaa.org/doi/abs/10.2514/

1.36247.

[112] A. Trchounian and H. Kobayashi. Kup is the major K+ uptake system in Es-
cherichia coli upon hyper-osmotic stress at a low pH. FEBS Letters, 447(2–3):144–
148, March 1999. ISSN 0014-5793. doi: 10.1016/S0014-5793(99)00288-4. URL
http://www.sciencedirect.com/science/article/pii/S0014579399002884.

[113] P. Voelkner, W. Puppe, and K. Altendorf. Characterization of the KdpD pro-
tein, the sensor kinase of the K+-translocating Kdp system of Escherichia coli.

http://www.worldcat.org/isbn/0961408898
http://www.worldcat.org/isbn/0961408898
http://www.sciencedirect.com/science/article/pii/S1383812196800625
http://www.sciencedirect.com/science/article/pii/S1383812196800625
http://www.sciencemag.org/content/168/3933/789
http://dx.doi.org/10.1111/j.1365-2958.1992.tb01349.x
http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.59.1.633
http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.59.1.633
http://books.google.de/books?id=Fq-eXnV56coC
http://books.google.de/books?id=Fq-eXnV56coC
http://arc.aiaa.org/doi/abs/10.2514/1.36247
http://arc.aiaa.org/doi/abs/10.2514/1.36247
http://www.sciencedirect.com/science/article/pii/S0014579399002884


164 bibliography

European Journal of Biochemistry, 217(3):1019–1026, 1993. ISSN 1432-1033. doi:
10.1111/j.1432-1033.1993.tb18333.x. URL http://onlinelibrary.wiley.com/

doi/10.1111/j.1432-1033.1993.tb18333.x/abstract.

[114] M. O. Walderhaug, J. W. Polarek, P. Voelkner, J. M. Daniel, J. E. Hesse, K. Al-
tendorf, and W. Epstein. KdpD and KdpE, Proteins That Control Expression
of the kdpABC Operon, Are Members of the Two-Component Sensor-Effector
Class of Regulators. Journal of Bacteriology, 174(7):2152–2159, January 1992. ISSN
0021-9193, 1098-5530. URL http://jb.asm.org/content/174/7/2152.

[115] R. Wilds and L. Glass. Contrasting methods for symbolic analysis of biological
regulatory networks. Physical Review E, 80(6):062902, December 2009. doi: 10.
1103/PhysRevE.80.062902. URL http://link.aps.org/doi/10.1103/PhysRevE.

80.062902.

[116] O. Wolkenhauer. Systems biology: The reincarnation of systems theory applied
in biology? Briefings in Bioinformatics, 2(3):258–270, January 2001. ISSN 1467-
5463, 1477-4054. doi: 10.1093/bib/2.3.258. URL http://bib.oxfordjournals.

org/content/2/3/258.

[117] Y. Yoshioka, H. Masuda, and Y. Furukawa. A constrained least squares ap-
proach to interactive mesh deformation. In IEEE International Conference on
Shape Modeling and Applications, 2006. SMI 2006, page 23, June 2006. doi:
10.1109/SMI.2006.1.

[118] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June 1965.
ISSN 0019-9958. doi: 10.1016/S0019-9958(65)90241-X. URL http://www.

sciencedirect.com/science/article/pii/S001999586590241X.

[119] Z. Zi. Sensitivity analysis approaches applied to systems biology models. Sys-
tems Biology, IET, 5(6):336–346, 2011. ISSN 1751-8849. doi: 10.1049/iet-syb.2011.
0015.

http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1993.tb18333.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1993.tb18333.x/abstract
http://jb.asm.org/content/174/7/2152
http://link.aps.org/doi/10.1103/PhysRevE.80.062902
http://link.aps.org/doi/10.1103/PhysRevE.80.062902
http://bib.oxfordjournals.org/content/2/3/258
http://bib.oxfordjournals.org/content/2/3/258
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S001999586590241X

	Dedication
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Systems biology - the "science" of adding epicycles
	1.2 Motivation and scope of the thesis
	1.2.1 K+ transport in E. coli 
	1.2.2 Outline of the thesis


	2 Mathematical modeling and modularization of biochemical networks
	2.1 Chemical kinetics and the law of mass action
	2.2 Classification of the network connections using network theory
	2.2.1 Application of the network theory to ODE models
	2.2.2 Novel algorithm for the analysis of DAE models
	2.2.3 Modularization of the models


	3 Mathematical model of the Kdp-system of E. coli
	3.1 Literature review - the world according to the biologists
	3.2 Model formulation/development
	3.2.1 Module 1: KdpD/KdpE two-component system
	3.2.2 Module 2: Transcription and translation
	3.2.3 Module 3: Potassium uptake
	3.2.4 The core model


	4 Parameter estimation - theoretical foundations
	4.1 State of the art
	4.1.1 Methods for parameter calibration
	4.1.2 Parameter identifiability

	4.2 Multiple Shooting
	4.3 Regularization of ill-posed linear least squares problems
	4.3.1 Assessment of the regularization error
	4.3.2 Curvature of the L-Curve
	4.3.3 Generalized Cross-Validation
	4.3.4 Quasi-Optimality Principle
	4.3.5 A novel criterion - analysis of the arc-element of the L-Curve
	4.3.6 Yet another parameter choice method
	4.3.7 A novel heuristic for the solution of linear ill-posed discrete problems with inequality constraints


	5 Analysis of parametric uncertainties in dynamic models
	5.1 State of the art
	5.2 Local sensitivity analysis
	5.3 Uncertainty analysis using Fuzzy Set Theory
	5.3.1 Transformation method
	5.3.2 Novel algorithm for analysis of monotonicity

	5.4 Approximation of the Fuzzy Reachable Set

	6 Results
	6.1 Characterization of the model structure - Modularization
	6.2 Qualitative dynamics of the KdpD/KdpE two-component system
	6.3 Parameter estimation & identifiability analysis
	6.3.1 Calibration of the core model with MG1655 wild-type data
	6.3.2 Calibration of the core model with MG1655kdpA4 mutant data
	6.3.3 Calibration of the core model with MG1655kdpA4pKT84 complemented mutant data

	6.4 Parametric uncertainty analysis

	7 Model predictions
	7.1 Cell growth
	7.2 K+ balances/Distribution of K+
	7.3 Regulation of KdpD/KdpE
	7.4 Predictions
	7.5 A comprehensive mathematical model of the Kdp system

	8 Summary & Outlook
	A Fredholm Integral Equations of the First Kind
	B Transformation method and extension for monotonicity analysis
	C Symbolic dynamics
	Bibliography

