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Over the last one decade there has been an increasing emphasiger-assistance systems for the automotive domain. In
this paper we report our work on designing a camera-base@iance system embedded in a “smart” car door. Such a
camera is used to monitor the ambient environment outside theegr, the presence of obstacles such as approaching cars
or cyclists who might collide with the car door if opened — andoanatically controls the car door operations. This is an
enhancement to the currently available side-view mirrorsttiedriver/passenger checks before opening the car dber. T
focus of this paper is on fast and robust image processingitilges specifically targeting such a smart car door system.
The requirement is to quickly detect traffic objects of instfeom gray-scale images captured by omnidirectional cameras
While known algorithms for object extraction from the imageqassing literature rely on color information and are seresiti

to shadows and illumination changes, our proposed algoriimaighly robust, can operate on gray-scale images (color
images are not available in our setup) and output resultsairtirae. We present a number of experimental results based on
image sequences captured from real-life traffic scenaridetaonstrate the applicability of our algorithm.

General Terms: Embedded Computing, Algorithms, PerformancedrReocessing

Additional Key Words and Phrases: Robust image processingedded computing, omnidirectional vision, road user ex-
traction, driver assistance systems, smart car door

1. INTRODUCTION

Driver assistance systems are increasingly gaining irapo# in high-end cars. Examples of these
include Lane Departure Warning System (LDW), Adaptive Gruontrol (ACC), Forward Colli-
sion Warning (FCW) and Blind-Spot Detection (BSD). While #nare many safety-oriented driver-
assistance systems that function when the car is movingméauof accidents also happen while
the car is stationary and one of its doors is being openedardsird practice is to check the side-
view mirrors of the car before opening the door. Howeves &till fairly common for approaching
cyclists to hit suddenly-opened car doors. In other wordmyrpassengers check if there is an ob-
stacle next to the door, but they do not pay sufficient atbertto approaching obstacles like cyclists
or other cars.
In this paper we report our work on designing a smart car doatris equipped with one omnidi-
rectional camera on each side of the car. These camerasamtirdtambient environment outside
the car and warn passengers — or car door users — about elsdikelapproaching cars, bicycles
or pedestrians. Collision avoidance systems use thisrirdtion to control, stop or lock car door
operations in order to avoid potential accidents.

Fig. 1 gives a high-level overview of our smart car door systh [Strolz et al. 2008], we pre-
sented a generic control system for intelligent, actuatedioors with arbitrary degrees of freedom.
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Fig. 1: TheSmart Car Door Systeninformation from the camera and surveillance system agd us
as input to control, stop or lock car door operations in otdeavoid accidents.

() (b)

Fig. 2: The omnidirectional camera system (a): A perspeatemera focuses on a hyperboloidal
mirror and takes pictures with a field-of-view 860°. Our camera system integrated with the side-
view mirror of a car (b).

That paper focuses on the mechanical design and the coffitifoé @oor. However, an important
component of such a smart door is the image capturing ancgsory subsystem, whose output
serves as an input to the control subsystem. In this papeouetesfon the camera subsystem, on
robust foreground detection algorithms and on algorithmadlifications for object extraction from
image sequences captured by the camera. The extractedsdiofgn images serve as an input for
a collision predictionsystem that estimates the risk of collisions when openiegctir door. This
paper mainly focuses on robust background estimation aedrfound detection, but we also briefly
describe the function of the collision prediction systeat tienerates a signal to lock or to stop door
operations. The cameras in question are omnidirectios@visensors consisting of a perspective
camera focused on a cone-like hyperboloidal mirror. Fig) #{ustrates such an omnidirectional
camera that is integrated with the side-view mirror of a canbnitor the external environment (see
Fig. 2(b)). Given the large field-of-view of the vision sersdhe camera is able to monitor the side
of the car door in its entirety (see Fig. 3) and the associmtedje processing algorithms enable
early-detection of impending obstacles.

We focus on detecting approaching obstacles like cyclsthey are often ignored by passengers
compared to stationary obstacles next to the door. It is itapbto detect such traffic participants
before any car door operation is performed, and they musidmified even if they are relatively
far away from the car. However, stationary obstacles clog@é door can be detected while the
door is opening with a single camera using motion-stereordlgns [Okutomi and Kanade 1993]
and their applications in automotive research [Suhr etGl02 Additionally, there is a small time
interval between parking and door operations. This allogdouformulate certain preconditions
under which our object detection and extraction algorithmay and should operate: (i) We may
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Fig. 3: Left: Panoramic image of the environment around adcar. Right: Different views and
sizes of approaching and passing traffic participants dtleettarge field of view of the camera. The
detection algorithm must be able to handle different sizgdais (large (I) and very small objects
(1) and to robustly detect passing objects that diffelseappear in panoramic images (Different
views of a passing car (front view (ll1), side view (IV) andareriew (V)).

Initia- | Prior Static | Obj. Perspective Paral- | Execution
lisation | Knowl. | Ob- Size Changes | leliza- | Time
jects Changes bility
Template no needed| ind bad bad middle | slow
Matching
HMM no needed| ind bad bad middle | slow
Feature no needed| ind bad bad good fast
Based
Optical no no bad ind ind good middle
Flow
Background | needed| no ind ind ind good fast
Estimation

Table I: Comparison of different object detection methoalseénvironment surveillance and the
performance of these methods for specific object propestied as static objects. Optical flow
based methods perform bad when detecting static objectsea$i¢he detection of static objects is
independent (ind) for background estimatiBackground estimatioseems to yield the best results
in our setting.

assume a static camera for a short time interval between diking processes and first door
operations. This interval may be used for learning the ermirent around the door. (ii) Objects that
are further away from the camera occupy less pixels on eatdovirame (i.e., they occupy fewer
pixels) and are hence not easy to differentiate from the dracind. (iii) Due to the large field-of-
view of the cameras used, there is a different view of the saloject (front, side and back) as it
moves (see Fig. 3). (iv) Algorithms for detecting approaghiraffic and obstacles must operate
in real-time. Cars driving at3.89m/s (about50km/h) move approximately).5m between two
frames tracked with cameras having frame rates of 30 framesgzond (fps). Hence, fast-moving
cars or motorbikes have to be detected within a maximum ofamtbree frames.

Our studies illustrated a need of cameras with frame rataslefst 30fps to detect approaching
objects and provide safe door operations. Consequentijzave to guarantee that our algorithms
extract objects and predict the risk of collisions withinnadst 33ms £30fps). The most time-
critical part of our system is the object extraction aldurit Therefore, an efficient realization of
these algorithms — e.g., on a multi-core CPU or on an FPGAdambedded system — is highly
desirable. Later in this paper, we present a conceptual imgpthe time-critical object extraction
algorithm on an FPGA. In doing so, real-time object exti@tis feasible for images captured from
high resolution, high frame rate cameras.
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A number of techniques for object detection and extractixiatén the image processing liter-
ature, viz., Hidden Markov Models [Rabiner 1989], Templstatching [Brunelli 2009], feature-
based detection methods, optical flow-based methods [Acmnd Trivedi 2002],[Ghandi and
Trivedi 2004] and background separating methods. Tableelsgh brief overview of possible meth-
ods and compares them in terms of the required computatios, fparallelizability for fast im-
plementation on a multi core CPU or on an FPGA, and the alidityandle perspective changes.
Background estimation and optical flow are not sensitiveetsjpective changes and object size, and
they do not need prior knowledge of object properties, eajar, shape and geometry.

One disadvantage of optical flow is that it can not detecicstat very slow moving objects.
Although background estimation solves this problem, itdsea small time interval to learn the
background. Fortunately, in our settings, such an intes/alailable, viz., the time interval be-
tween parking and door operation. Fig. 4 gives a high-levehaew of our object extraction and
risk prediction algorithm. As mentioned above, this papeuses on real-time moving extraction
algorithms using robust background estimation technigbeswe also briefly describe the func-
tion of the collision prediction system that generates aaligo lock or to stop door operations.
In particular, we present extensions to background estm#e.g., illumination compensation and
shadow elimination for gray-scale images) that are spatlifituned to our setting of a smart car
door equipped with omnidirectional cameras. The detailswfalgorithm for robust background
estimation and foreground detection are described in vadilaids.

1.1. Related Work and Our Contributions

The problem of extracting objects from a video sequence bas kwidely studied in surveillance
[Haritaoglu et al. 1998], traffic monitoring [Friedman andd$3el 1997] and vehicle guidance. In
most applications, separating the foreground from the dpaxciknd is the first step for object track-
ing. Background subtraction and foreground modeling avegpful methods whose advantages are
feature-independent segmentation (e.g., textures,taireof move, speed). Some common tech-
niques for background subtraction include Kalman filtefikgrman and Brandt 1990], kernel den-
sity estimation [Elgammal et al. 2002], hidden Markov mad@tenger et al. 2001], mixture of
Gaussians [Zivkovic and Heijden 2006], and the use of cbhémed intensity-independent features
[Ardoe and Berthilsson 2006]. Most of these algorithms espnt each background pixel using a
probability density function (PDF) and classify the pix&tsm new images as background depend-
ing on the description of the pixels by their density funieto

As an alternative, Bhaskat al.[Bhaskar et al. 2007] developed a foreground detectiorrilkgo
using cluster density estimation based on a Gaussian rairtadel. This algorithm is suitable for
handling illumination changes as well as dynamic backgdsuSimilar work was done in [Zhong
and Sclaroff 2003] using Kalman filtering to iteratively ieste the dynamic background texture
and the regions of foreground objects. Kalman filtering wiae ased by Karmaet al. [Karman
and Brandt 1990] to model the background dynamics of ead pixchoosing two different gains,
thereby allowing fast adaptation of background changesskovd adaptation of foreground pixels.
Ridderet al. [Ridder et al. 1995] improved this approach and presenté@ddmv detection method
assuming small differences between overshadowed andversbmdowed background. However,
strong shadows caused by direct sunlight cannot be detected

Although many background subtraction techniques have pegwosed, the majority of the al-
gorithms address shadow detection and illumination coisga@n by exploiting color information
(see [Elgammal et al. 2002; Zhong and Sclaroff 2003]). Imades where monochromatic video
cameras are used — such as ours — the existing methods anegeo suitable. Our camera system
consists of a monochromatic VGA camera that is designedcfust(sensitive) applications in the
automotive domain. Expensive, high resolution color vidameras may be useful for research,
but are impractical for real applications. For applicasiowhere only monochromatic cameras are
available, a common method to increase the robustness geim@cessing algorithms is by trans-
forming intensity-based images into lighting invariardrfres. This transformation, e.g., based on
Census filtering [Zabih and Woodfill 1994; Dinkar and Naya®@pis widely used, but intensity
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Fig. 4: Block diagram for object detection using backgroestimation, shadow compensation and
handling of illumination changes.

information of homogeneous regions are lost. In other watdsay be no longer possible to dis-
tinguish between homogeneous foreground (cars, truckdpankground regions (walls). There-
fore, the use of intensity-based images is highly desirfdsl@ur application. But intensity-based
monochromatic images lead to several challenges in obgettion. For example, it is difficult to

differentiate between small illumination changes causedhadows or by small, valid foreground
objects in gray scale images.

Another challenge is in detecting small objects in low ragoh images captured by an omni-
directional vision system. Furthermore, for safe door apiens, it is important to predict the risk
of possible collisions in advance: This prediction is basadhe object's positions in image data
and on recognizing if there are objects with dangerousdiajes. Shadows could cause an inaccu-
racy in position determination and may lead to a wrong ptemiof possible collisions. Hence, the
shadow pixels both for moving objects like cars and statjeab like pedestrians next to the door
must be detected and suppressed. These problems, alonipevakcuracy of background subtrac-
tion, the handling of sudden illumination changes and thesitdlity of parallelizing the algorithms
are the underlying motivations of our work.

Inspired by the background estimator of Rid@tral. [Ridder et al. 1995] and by the shadow
detector proposed by Jacquesal. [Jacques et al. 2005], we develop robust background estimat
and foreground detection algorithms for gray scale imagekleret al. proposed an extension to the
Kalman-based background algorithm of Karnetral. [Karman and Brandt 1990] that takes weak
shadows from stationary or moving objects into accountyTssume that weak shadows have the
same characteristics as illumination changes that may &eted into the background. Therefore,
their algorithm automatically increases the thresholddoeground detection using the variance of
the estimated background values over time. The threshdiyfsif the variance of the estimated
background values (e.g., caused by shadows) is high. Howteepixels from small foreground
objects — such as motorbikes — also cause a high variance détected as background and might
be suppressed. Strong shadows cannot be identified in [Retdd. 1995], as they are detected
as foreground. Once detected as foreground it is imposgibtifferentiate between shadow and
foreground.

A good shadow detector for gray scale images was introdugelhtquest al. [Jacques et al.
2005] using normalized cross correlation (NCC). The deteassumes shadow pixels as scaled
versions (darker) of the corresponding background pixasthat the NCC in a neighboring re-
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gion is close to unity. On the other hand, this shadow detexisclassifies valid foreground pixels
with small differences as shadow pixels. To overcome thiesitakions, we combine and modify
these different methods to design a powerful backgroundractor. We also extend the shadow
detector with zero means cross correlation (ZNCC) in orddretter distinguish between shadows
and valid foreground pixels. The proposed shadow detestsuitable for detecting and eliminat-
ing all types of shadows — e.g., shadows from moving objek¢sdars or leaves moving in the
wind and shadows from static objects. Our proposed alguoribtects illumination changes using
local search windows and updates the background to comigefsaslow or sudden illumination
changes. Our experiments in complex outdoor and indoor@mvients under various lightning
conditions demonstrate promising results. Additionadlg, tested the background initialization al-
gorithm in a heavy snowy scenario. We also evaluated and aedpour approach with the ap-
proaches of Jacques al. [Jacques et al. 2005] and Riddetral. [Ridder et al. 1995]. We further
evaluated our algorithms for their parallelizability patial and compared sequential and parallel
implementations (on an AMD Quad-Core CPU). Our resultscatdi that they work in real-time
on a multi-core CPU and are therefore suitable for potentiplementation on an embedded plat-
forms. In Section 5, we outline a conceptual mapping of thekpeound estimation and foreground
detection algorithm on an FPGA-based embedded system.

The rest of the paper is organized as follows. We describentlage rectification techniques
in Section 2, the background initialization and the backgrbestimator, the shadow detector, as
well as our handling of illumination changes in Section 3. befly introduce our collision risk
prediction algorithm in Section 3.7, and discuss our resulittained in Section 4. In Section 5, we
present the conceptual mapping of the object detectionitigpon an FPGA. Finally, we conclude
by briefly outlining some possibilities for future work.

2. CALIBRATION AND IMAGE RECTIFICATION

In this section we provide the technical details relatedhss amnidirectional camera subsystem.
Original images from omnidirectional vision sensors argatied and are not easy to handle for
conventional image processing algorithms. The main probein extracting geometric and per-
spective relations like size and position of objects. Torosme this limitation, original images
are transformed into panoramic (rectified) images. But in thse the camera model and the cali-
bration parameters must be precisely known. We designednaidoectional vision system based
on the well-known single point of view (SPOV) theorem of Baked Nayar [Baker and Nayar
1999]. SPOV is also known as the projection center of theanonto which the perspective camera
should focus. This is a prerequisite for geometrically ectipanoramic image transformation. Our
omnidirectional camera uses a mirror whose surface follmwgperboloidal equation. Using such
mirrors, the SPOV constraint is only valid for an accuratgrahent of the mirror and the camera.
However, this is difficult to realize and hence the camer&esysnust be calibrated to compensate
for misalignments as well as to obtain a precise relatioween the 3D world point coordinates
and the camera sensor coordinates.

2.1. Calibration

To determine the 3D positions of object points that are tep on the sensor plane, a calibration
function f(p) has to be found that describes a relation between a vgttoa 3D pointP in world
coordinates: p, yp andz, and the camera coordinates andvp.

ﬁ_{gi]_f(mwithﬁ_xFZ)I,A>0 1)
Zp

Different techniques are known for determining the functfgp) [Baker and Nayar 2001; Scara-
muzza et al. 2006a]. We use the calibration method develbpettcaramuzzet al. [Scaramuzza
et al. 2006b]. All points lying on a light ray (vectgd in world coordinates (see Fig. 5(a)) are
mapped to the projection poim” on the virtual planel” (see Fig. 5(b)). Poinf” on the vir-
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Fig. 5: The camera model (a) used in this paper. The worldtg®is mapped on a virtual sensor
planeE” (b) and the projection transformed to the real sensor plgnes(ng affine transformations.
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Fig. 6: Proposed image rectification process.

tual sensor plané&” is then transformed to the real sensor plane using a tranafan function
that takes misalignments of the imaging device to the carsemnaor into account (see Fig. 5(c)).
Scaramuzzet al. propose the relation between world and virtual sensor pdarfellows:

Tp upr Tp
p= |y | =X | vpr = Yp N (2)
2p f(p) ao + asp® + ... +anp

with A = 1andp = /22 + y2. Furthermore, they approximate the componeott f () depending

on the curvature as a polynomial function. The relation leemthe real sensor plane and the virtual
or ideal sensor plane is given as an affine transformatianEse 3).

Pr=A-P+7% with A:{Cd] 13:{“’3} and f:{“m”] ®)

d 1 vp Veenter
The parametersy . . . a,,, A and? are the calibration parameters.

2.2. Image Rectification

Using the camera model and the calibration data, the piojectf any 3d point onto the sensor
plane can be calculated and vice versa. This allows us tordigie a projection area based on
individual projection parameters like width, height N as well as a region of interest (ROI) for
image rectification as a first step. Secondly, each gixeh]” of the projection area is stored in a
M x N x 3 dimensional matri¥ containing its world coordinateX (m, n), Y (m,n) andZ(m,n).
Lastly, the corresponding pixel position of each point amphojection area is calculated and stored
in a look up table (LUT) [Scharfenberger et al. 2009]. Usimg information in the LUT and bicubic
interpolation, every original image can be transformed apanoramic image. Fig. 6 illustrates this
flow.
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Fig. 7: Left: Rectified panoramic image. Middle: Pixel pasits of rectified gray-scale images with-
out interpolation. Right: Pixel positions of a rectified R@Bage captured by a simulated color
camera (Bayer pattern). The use of color cameras with Bagtgenm reduces the resolution of rec-
tified panoramic images.

The resolution of regions in rectified images highly depesrdtheir image positions. Due to the
physical properties of the camera there are more pixeldadblaiat the outer parts of the mirror
than at the inner part for image rectification. Consequerglyions in original images close to the
image center have lower resolutions than regions closestoudkter bounds. This may lead to a lack
of information in lower parts of rectified images as shown gufe 7(b). The resolution is further
decreased for images captured by color cameras as they yse [&tern [Bayer 1976] to obtain
color information (see Fig. 7(c)). This effect can be redlasing high-resolution (color) cameras,
but on the other hand the execution time for image procesgilhgrastically increase.

We use a VGA-resolution camera. However, the usage of ingadavices such as mirrors to
enhance the horizontal field of view leads to a loss of regwiuin panoramic images. This is
because the mirror reflects light onto a limited space on tBé&ensor (herd80 x 480 pixels)
(see Fig. 6, bottom left). Removing the pixels on which theeea sees itself leads to a resolution
of 480 x 204 pixels for panoramic images.

3. BACKGROUND MODEL

As discussed in Section 1, we used background estimatioextoacting objects of interest from
the captured images. Our background model is based on theambpof Karmaret al. [Karman
and Brandt 1990] and Riddet al. [Ridder et al. 1995]. It is extended to provide better shadow
detection and to be more robust against illumination charfigeour application. In this section,
we present the mathematical details of the background nadaiet) with the shadow detector and a
method to account for illumination changes (see Figure 4)déécribe the background initialization
in Section 3.1 and the background model based on Kalmaniritgroposed by Karmaet al.
[Karman and Brandt 1990] to model the dynamics of each backgt pixel in Section 3.2. We
classify pixels as background or possible foreground pinsing thresholding. Possible foreground
pixels are then classified as valid foreground or shadowpixeng the NCC and the ZNCC (see
Section 3.3 and 3.4). Finally, we present a method to accdmurglobal illumination changes in
Section 3.5.

3.1. Background Initialization

Due to typical parking situations with moving cars, bicgtdi pedestrians, etc. it is not possible
to record a separate background image without any objectgagred in many approaches. Every
background pixel in the approach of Karmanhal. [Karman and Brandt 1990] is initialized with
a fixed value that is adapted during the training period usiteyge number of frames. Jacquets
al. [Jacques et al. 2005] use median-based background irdien over a large number of frames.
Median-based initialization allows to record backgrourahf busy-street scenarios, but it assumes
that pixels contain background content for at least halhefinitialization frames. Real life experi-
ments demonstrated that this assumption may be violateskfaral traffic scenarios.
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N — Input Images Foreground 4 v Background

(a) Similarity matrix for pixel positiomn; . (b) Initialized background.

Fig. 8: This figure illustrates the Similarity Matrix for orgxel positionp; (a). Low differences
between the blocks for each pair of frame are shown as dagk, differences between the blocks
as bright areas. b: Estimated background image as indt#diz for the background model.

Farinet al, [Farin et al. 2003] proposed a powerful method to solve phidlem. The principal
idea of their algorithm is to roughly segment each pixel frimput frames into foreground and
background scenes. The segmentation is carried out on binaks for each pixel position from
the input frames. Background content is classified by s@agdbr the subsets of frames that show
stable content in the blocks. In other words, the contentloéks with background varies less
than content of blocks with foreground. To identify the lsaontaining background pixels, the
similarity of block contents over a fixed trainings periodstsered into aSimilarity Matrix. This
matrix contains the differences (realized with Sum of AbgeDifferences, SAD) between image
content at the block position for each pair of frames. Lowalin the matrix relate to background
regions whereas high values correspond to foregroundnsgloe to differences between these
blocks. The matrix for each position is decomposed into tamsy one that may contain background
(low values) and one that may contain foreground (high \@lu€he background image is then
calculated based on pixels with background content usingianealgorithm [Massey and Bender

1996]. Such segmented background image represents tiagsyitem staté, , (¢y) of the Kalman
background model that is presented in Section 3.2.

Although the method proposed by [Farin et al. 2003] is velyust in background estimation, it
is very time consuming due to the block difference calcatatising SAD. Following the definition
of SAD

SAD = > |Li(z,y) — La(x,y)| “)

r=1ly=1

the absolute, pixel wise differences of the intensitiege, y) and Ix(z,y) for pixels (z,y) in

a frame 1 and 2 is computed for a blogk with sizem x m. These absolute differences have
to be computed for every image pair in a setroframes. This leads to high computation times
for background initialization depending on the number aihfesn. Due to this, we replaced the
SAD for block difference calculation by block averaging drydcomputing the absolute difference
based on the block averages for each corresponding bloabnisecutive frames. In other words,
we compute an average, (p;) for each block and use,, (p;) for further computations. Previously
computed mean-values can be used so that only one blocketiffe computation is necessary. On
the other hand, nine difference computations for block$ wize of 3x3 or more pixels would be
required using SAD. In Eq. 5, we propose an efficient algorifor block difference calculation
based on block averaging.

t1 o pi(pi) = mean(Bi(p;))
ta ¢ p2(pi) = mean(B;(pi)) , di,2(pi) = |1 (pi) — p2(pi)| ®)
tn 1 pn(pi) = mean(Bi(pi)) , djn(pi) = |pj(pi) — pn(pi)| J € [1,n —1]

For each pixel positiop; in a frame ofn training frames, the (block)-average (p;) of a block B;
in the neighborhood of a pixel is determined as a first step. Thereafter, the absoluteelifées of
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blocks for each pair of frames are computed using the preliam@omputed block-averages, (p;).
Clearly, the block average; (p;) for each pixelin the first frame is computed at time stept time
stepts, the block averages. (p;) for all pixels in the second frame are computed and the atesolu
differenced; »(p;) is calculated using the previously determined block avesag(p;). The results
are then stored in the matrix elememts,(p;) = d, ;(p;) of the similarity matrix. At time step
ts, the block averagegs(p;) are computed and the absolute differendes(p;) andds 3(p;) are
determined. As in time stef, the previously determined block averagagp;) anduz(p;) from
time stepg; andt, can be used for further processing (see Alg. 1).

However, block averaging leads to less robust initialmatiesults (see Section 4) but it allows
previously determined block average valugs_)(p;) - - - 1 (p;) to be reutilized for background
initialization. The result is a ten times speed up of the pssing time. The computed background
image serves as an initialization for the Kalman-based drackd estimation and foreground de-
tection presented in the next section. The number of fram@sired for background initialization
strongly depends on the number of foreground objects inrétieing sequence. Ten frames are suf-
ficient to learn the background for empty scenarios and at l&aframes for parking scenarios with
high traffic volume.

3.2. Kalman Background Estimation

In this section, we describe the background model on whictapproach is based. The background
model has been proposed by Karnemal. [Karman and Brandt 1990] and was extended by Ridder
etal.in[Ridder et al. 1995]. The intensity of a pixel at positiory) at timet is given byI, y( ). The

estimated system state of the background model is denotéd,4#) and its derivative ag, , (t).

The estimation on the background is
Ly ] _ [Ly@ _ N A0
{f;,ym}‘[z,y(w e <I“’(t) " [f;,yu)D ©

Following Eq. 7, the predictiod, , (¢) of the system staté, ,(¢) and its derivativefw(t) at time
t is given by:
[I}u(t)] _g. [{Lu(t_l)} @)
Loy (1) Loy(t —1)

The system matrix, the measurement matriX and the Kalman gaix are:

1 s kl?‘ [
S:{Osiﬂ,H:[lo] and Ko, (t) = {sz,é” ®)
In [Karman and Brandt 1990}, > = s2 2 = 0.7 was used for modeling the background dynamics.
Because the camera returns only the intensitiegt), the measurement matri is a constant. The
Kalman gain was chosen depending on detected foregrounalcgtound using a pre-estimation
of the next system state (see Eq. 9 and Eq. 10).

1, if {d’ y(t) > thig| v
(i iy (£) < thig) A

My (t) = (diy (t) > thug ] 9)
0, if |[d, o () <thig| A
d” ( ) < thbg

(1) = Loy (8) = Loy (D)
. d,z,,y(t) ~: |[x u( ) - [,ﬁc Y t)| (10)
With  Fay(8) = oy () + B+ [Teus(8) = o (8)]
Pixels whose differences of the intensity to the systene stee smaller than a fixed threshéitd <
thyg), do not necessarily indicate background. To identify suielp, a pre-estimatiod’, , (¢)
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ALGORITHM 1: Background initialization.
1: for allimages/;, j € {0,...,n} do

2: for all pixelsp;, i € {0,...,m} do

3: 1j,i(pi) = mean(B(p;)) llcompute the mean valye; ; (p;) of each blockB (p;)

4: de,i(pi) = |pa,i — 1j,i)], © € {0,...,5 —1}  /lcompute the entries of the similarity matric68/ (p;) (see Eq. 5)
5: end for

6: end for

7: for all similarity matricesSM (p;), i € {0, ..., m} do

8: bg(pi) = decomposeSM{M (p;)) Ilextract the background (see [Farin et al. 2003])

9: end for

of the next system state is calculated assuming that thasés fiielong to background. If the pre-
estimated valu€” is greater thamh,,, this pixel nevertheless belongs to foreground. A binarpma
my ,(t) represents the segmentation of pixelsfgr foreground and) for background), and the
Kalman gaink1,2, ,(t) = a or k1,2, (t) = j3 is chosen depending on the binary map , ()
(see Eq. 11).

1
o (11)

w20 ={ 5 i med

3.3. Shadow Detection

As mentioned in Section 1, it is important to predict the $lpossible collisions in advance. This
prediction is based on the object’s positions in image dathan recognizing if there are objects
with dangerous trajectories. Shadows cause an inaccungmysition determination that lead to a
wrong prediction of possible collisions: Therefore, shasianust be detected and suppressed. The
proposed shadow detection algorithm is suitable both ftaadimg stationary and dynamic shadows.
The characteristic of shadows from moving leaves is idahtiz the characteristic of shadows of
moving cars and can hence be detected and suppressed. Weeusatalized cross correlation
(NCC, [Jacques et al. 2005]) as an initial step for shadowddiein and refined it using zero means
normalized cross correlation (ZNCC) to handle foregrouixelp with small differences with the
background.

Let I, ,(t) be the estimated background image @ng(¢) an image given by the camera system.
For each foreground pixel, we generate a temglatgn, m) such thatl’,, (n, m) = L4 n ytm(t)
for —N < (n,m) < N wheret is the mean of the templaf&,, (n, m). Furthermore, leB,, (n, m)
be the template of the background such ta§(n, m) = I, ., +m(t) whereb is the mean of tem-
plate B, (n,m). The ZNCC as well as the NCE & 0, b = 0) betweer(l,,, (n, m) and B, (n, m)
at pixel (z,y) can be calculated using Eq. 12:

B EZRy .,
ZNCCey = EZB., EZT,, (12)
with
N N B
EZR,y = Z Z |(Bay(n,m) = b)[|(Tay(n, m) — 1)
n=—N m=—N
N N
EZBay = | > Y. (Buy(n,m)—b)?and (13)

n=—N m=—N

n=—N m=—N

EZT:y = \ Z Z (sz(n7m)—f)2

where EZT,, , considers the energy of the image template &¥B, , considers the energy
of the estimated background. A pixel may potentially be sifier! as shadow if its NCC in the
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neighborhood is close to unity and its ene@¥’, , is lower than the energy of the background
EB, , (see Eq. 14).

NC’C’Z,y > thyoo andEBI,y > Eszy (14)
EB,, as well asET,, , can be determined by calculatidgy? B, , (b = 0) andEZ T, ,(t = 0).

3.4. Shadow Refinement

Depending on the chosen thresholdycc with (thyce < 1.0), many foreground pixels with
small differences to background pixels may be misclassdgeghadow pixels. To overcome this
limitation, we refined the classification of shadow- and maa®w-pixels using the ZNCC. The
advantage of ZNCC is light invariance, so that only differesin texture cause significant changes
in its value. The refinement stage verifies if there are sicgnifi changes through textures and not
through illumination. Although the ZNCC is light invarigrimage noise (texture changes) influ-
ences the ZNCC and causes an offset. This offsean be determined while learning the back-
ground model or can be considered by the threshblgy . Similar to the NCC, a pixel is a
shadow candidate if the ZNCC in the neighborhood is closkeddarned initial value and the en-
ergy £T, , of the template is lower than the energy of the backgraobiis), ,,. But contrary to the
NCC,ErZT, , andEZB, , represent only the energy of the textures from the backgtauma the
template. Hence, the energy of texture from a valid foregdopixel can be lower than the energy
of texture from background. This is the case for large homogs objects like cars. A pixel must
then be a shadow candidate if the enefgy T, , is approximately equal to the ener@”z B, ,
(see Eq. 15).

|ZNCCx7y — (1.0 — 9)| < thzncc and
EZByy — EZT,y| < theomp and (15)
Y Y
ET,y < EBa,

3.5. Active Light Adaptation

Background models based on Kalman filtering can follow sldwriination changes in the back-
ground. However, when foreground objects cover the backgtallumination changes in the back-
ground cannot be detected. Furthermore, sudden illunsimathanges cannot be respected by the
background because depending on the chosen thresholdrsilldadeination changes cannot be
classified as valid foreground or illumination changes.l%ué is a need to modify the background,
taking illumination changes into account. Therefore, wiedsvide every new image inta subim-
ages at each positign,(,,y andp,.,,) fitting the whole image and calculate their mean gray values
(see Eq. 16).

J/2 1/2

1 . .
j=—J/2i=—1/2

Here,J andI are the subimage sizes. The global illumination chaf\g® can now be detected
by calculating the median of all local illumination changésa, ¢):

A(t) = mediand(m, t) a7

with

o(m,t) = p(m,t) — p(m,t —1) (18)
Because small illumination changes are adapted by the bawkd model, we decided to use simple
thresholding in order to avoid modifying the background elddo frequently.

0, if A(t) <tha

At) = { A(D), if Alt)> tha (19)
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Fig. 9: Parallelization concept of the object detectingpathm. Each input frame is subdivided into
n-frames and the same number of concurrent threads is gedeosextract road users. The results
are then merged by the thread interpolation.

| Thread 1

Finally, Eq. 7 for system state prediction is modified to @eene illumination changes and to
update the background.
iwy(t) fwy(t -1) |: A(t) }
T =S| 2 20
[Ix,ya)] [Lw(t— 1)] Lo 0

Using this approach, the background model can accountdar&$ well as for sudden illumination
changes.

3.6. Parallelization

For all our proposed techniques, it may be seen that difteaerls may be processed in parallel.
In other words, image rectification, the background estimahe shadow detector as well as the
illumination compensation can all be run in parallel on atiredre CPU. As mentioned before,
our algorithms have to work in real-time and hence such [gdizadtion is highly desirable. This is
useful for speeding up the system for time critical taske liletection of traffic participants. The
original image returned by the camera subsystem is diviaedi subimages and the same number
of threads is generated to run on a multi-core platform.Aftecessing each image the results from
all threads must be merged and interpolated (e.g., whenjantdi®ing detected is split across two
or more subimages) for further object detection and clasgi€in algorithms. Fig. 9 illustrates our
realized parallelization technique.

3.7. Collision Risk Prediction

In this section, we briefly describe our algorithm that peéslithe collision risk of approaching
objects with the car door. The algorithm generates infolonahat serves as an input for the door
collision avoidance planner. The prediction of potent@lisions is based on actual object positions
in image data and on recognizing if there are objects witlgdeous trajectories.

The ambiance besides the door is subdivided into three danoges: in ared, in ayellow and in a
green danger-zone. These danger zones define the potelfiisabn risk of objects located in one of
these zones and allow risk prediction of approaching objiecadvance (see Fig. 10, left). In other
words, the collision risk of an approaching road user depemdts presences in one of these three
danger-zones. Objects moving in the green zone will noidilhile collisions are highly probable
for objects located in the red zone. The width of the red zsrejual to the maximum workspace
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Classified danger-zones Displayed risk of a .
next to the car door potential collision. No collision

e ah e

Lowest position of a car in Predicted trajectory Collision when
images for risk prediction of a tracked car door opening

Fig. 10: Left:) Danger-zones next to the car and trajecsooieobjects used to predict the risk of
collisions. Right:) Examples of detected objects and tedirisk of potential collisions.

of the car door. Objects within the yellow-zone do not diyectiuse a collision, but may move into
the red-zone and need hence to be indicated as a poterkialhis size of the green zone and of
the yellow zone can be specified during car manufacturind tiae corresponding areas in images
can be determined by intrinsic and extrinsic camera caldmaFor these reasons, the location of
extracted objects — here the lowest point of an object (sgelbi left) — their approximate distance
from the car and their presences in one of these zones cant&ieaetbfrom image data only. So,
the proposed algorithm is suitable for distinguishing ketwobjects that pass the door very closely
and objects passing within a suitable large distance.

To increase the robustness of risk prediction, the algoritiso estimates the trajectory of de-
tected objects by tracking the object’s positions. A tragecis computed using a quadratic func-
tion and the vertex of the parabola is determined. The looaif the vertex in one of these zones
additionally defines the collision risk for an approachitjeat. Trajectory estimation prevents un-
detected, potential collisions for objects in the greerez&uch objects may move into the red zone
and may be classified as hazard-free if only their actuakiposiare used.

Finally, the algorithm generates three types of messageabkdaloor collision avoidance planner
(see Fig. 1): One message that indicates a collision and teaaldoor lock, one that indicates a low
weighted collision (for objects in the yellow zone) allogionly slow door operations and one for
no collision. Fig. 10 illustrates examples of extractedesh§ and their predicted collisions. Since
the proposed algorithm distinguishes between objectspiisd the door very closely and objects
that pass the door in a suitable large distance, car doos aserable to open the door while parking
in a busy street when there are no objects potentially éodigvith the car door. However, if there
are objects passing the car very closely, one may not be @blesn a car door.

4. EXPERIMENTAL RESULTS

To verify and to evaluate our approach, we conducted expatisnin complex environments con-
taining weak and strong shadows as well as small differebe&geen foreground and background
scenes using an omnidirectional vision system (ODVS). knagtification was used to transform
the captured images into panoramic images of $&kx 204 pixels. Images from the ODVS were
used to test the algorithm under various conditions (daddight regions, image noise and different
resolutions due to image rectification and interpolati®#.also conducted experiments to test the
algorithm in terms of fast and slow illumination changes present its performance in the presence
of heavy snow. Similar to all image processing algorithmagieff-the-shelf CMOS cameras, the
performance drastically decreases for dark scenariosthenalgorithm does not work in absolute
darkness.
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Fig. 11: Left: Number of image pixels containing foregrousthtive to the total number of image
pixels. Middle: Quality differences using SAD and averagiRight: Quality of the obtained back-
ground images for different numbers of training images fitbwn initialization process started at
different frames of the trainings sequence.

4.1. Background Initialization
In this section, we present our results on background lizidon. We introduce the background
quality @ to compare and to evaluate different methods for backgranitidlization (see Eq. 21).
The background quality is defined as the ratio between théeuof correctly extracted background
pixels Npackgrouna and the number of ground truth pix&la,oundtrutn - A Valid background pixel
pb; is a pixel that have a maximum differende= |pb; — pbg;| < THRES Vi € [1,n] to the
corresponding ground truth background pix&d,;, whereT H RE'S = 5 for our application.
NBackgr'ound
QbﬂCkQ”“OU«"d o NGroundtruth (21)
Additionally, we generated trainings sequences from rigalpgarking scenarios with many non
stationary foreground objects to evaluate the applidshili the background initialization in busy-
street scenarios. Fig. 11 (left) illustrates the percesgagf foreground pixels in frames from a
chosen initialization sequence. Due to the large field ofnaéthe camera, such a high number of
foreground objects in images is quite common for busy-sgeenarios. The background image is
estimated using a block similarity matrix (SM) (see Secfioh), whose entries are determined by
calculating the similarity between the pixels (in a bloc&) €ach pair of frames. To speed up the
execution time, averaging instead of SAD for block differieig was used. However, the quality of
our initialized background image is lower compared to thekgeound image based on SAD (see
Fig. 11), middle, but experiments demonstrated a fast atlaptof wrongly initialized background
pixels.

Fig. 11, right, compares our method for background initegtion to the median-based [Jacques
et al. 2005] and to the kalman-based [Ridder et al. 1995piisation. Our initialization process
started at different frames of the trainings sequence féffereint numberN of input images. The
comparison demonstrates that at least 40 images are enaughlfbased background initialization
compared to other methods where more training images adedder better initialization results.
Thereby, the challenge for the other methods is the largebeumf pixels containing foreground
content for more than the half of input frames.

We also conducted experiments to determine the perfornamackground-initialization in the
presence of heavy snow. Fig. 12 illustrates training images snowy scenario (with highlighted
snowflakes) and the resulted initialized background imagésulations demonstrated the same
performance for rainy scenarios. So, the proposed backgdrimitialization is mostly robust against
heavy snow and heavy rain.

4.2. Detection of Shadow Pixel Candidates

To detect small differences in intensity between foregtband background objects, the threshold
thyg (see Eqg. (9)) must be low. An experimentally obtained valaestk,, > 5 that allows the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, AricRRublication date: January YYYY.



A:16 C. Scharfenberger et al.

Images used for Initialization Extracted Background

Fig. 12: Training images of a snowy scenario (highlightedvgiakes) and initialized background
image.

detection of small intensity differences, but still mangadbw pixels and noise are detected. Fig. 13
illustrates the result of foreground detection (BG/FG)doe pixel over time using NCC and ZNCC.
NCC was useful to pre-estimate shadow pixels, but validgianend pixels are often misclassified
as shadow pixels that can be seen on the noisy charactdastioe foreground BG/FG NCQ.
ZNCC overcomes these limitations by taking textural chaniggo account, so that foreground
pixels are not misclassified as background. The result iste8rer characteristic of the foreground/
background characteristiBG/FG ZNCG.

Fig. 14 compares our results of shadow detection to the shaeétection algorithm proposed
by [Ridder et al. 1995]. Riddegt al. assume, that weak shadows have the same characteristic as
illumination changes that may be adapted into the backgtrotinerefore, their algorithm automat-
ically increases the threshold for foreground detectiangithe variance (see Fig. 14, variance) of
the estimated background values over time. The threshdi@isif the variance of the estimated
background values (e.g. caused by shadows) is high. Howgixels from small foreground objects
— such as motorbikes — that are classified as background alse @ high variance and might be
suppressed (see frames 160-175).

Strong shadows cannot be identified as they are detectedeggdand. Once detected as fore-
ground it is impossible to differentiate between shadow faneground (see frames 115-130). In-
creasing the threshold up & may suppress strong shadows, but foreground objects widll sm
differences to the background may be suppressed as welllo&hdetection based on NCC and
shadow refinement based on ZNCC allows the use of a smalhiickto extract foreground ob-
jects (see Fig. 14, ZNCC) and is suitable to eliminate stisirapow borders.

4.3. lllumination Changes and Background Adaptation

Fig. 15 illustrates our experiments with various illumioatchanges. The reference characteristic
of the background is presented in Fig. 15(a) and variousacheristics of the background disturbed
by illumination changes Fig. 15(b). The background modebaats for slow illumination changes
even if the background was covered for a short time intervelibumination changes were not to
large (see Fig. 15(b), framés— 100). Sudden illumination changes, which are larger thag,
cause wrong foreground information (see frames (280 - 319)380 - 400)). Lastly, figure (15(c))
demonstrates that detected illumination changes can ssfcdly be compensated if they are ac-
counted for by the background model (see Eq. (20)).

We also conducted experiments to find the optimal numberasttenvindows (NoW) for detect-
ing global illumination changes. The number of search wirelmust be chosen so that influence
of illumination changes caused by foreground objects isimmized (see Eq. (17)). We generated
a test profile of illumination changes (IC) and tracked it ltettting illumination changes with
different numbers of search windows. Experiments showatiaghleast 60 search windows were
necessary to track the light profile sufficiently. The maiokpem of less then 60 search windows
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Fig. 15: (a) One pixel and the detected foreground over tiraience). (b) Misclassification of
foreground pixels caused by fast and slow illuminationsngjes. (c) Adaptation of fast and slow

illumination changes.

is the high influence of lighting changes caused by foregil@mbjects. The influence of foreground
objects is almost suppressed usiigNoW. Our measurements of tracking the test profile using
different numbers of search windows illustrates Fig. 16.al¢® derived from our experiments that
one search window should not be smaller tliah x 15) pixels due to the increased influence of
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Fig. 16:Left: lllumination changes, Right: Frames 40 - 100. The more numbsearich windows (NoW) can
be used for detecting illumination changes(IC), the better is the detectiolt ©s0d results give a NoW of
60 - 90.

image noise from smaller window size. An offset less thare@gtharth ) in tracking the profile
was tolerable and automatically adapted by the backgrowuakm

4.4. Validation of Foreground Pixels

Not all detected foreground pixels need to be valid (truetpes = t.p.), i.e., there might also
be false positives. For example, shadow pixels are ofteclassified as valid foreground (false
positives = f.p.). On the other hand, pixels having smafledénces to background can falsely be
classified as background pixels (f.n., false negativeg). EY illustrates an example of a typical
road scenario containing both true and false positives #isaswéalse negatives. We also evaluated
our algorithm in terms of false negative, true positive aaldd positive detection rates under var-
ious conditions like diffused light, direct sunlight andloor conditions and compared the results
obtained with a perfect detection. These results are showalble I, where the percentages were
computed based 018200 test images. Shadow pixels in images with sunlit sceaaan easily be
misclassified as valid foreground pixels. In general, swigjibcts like motorbikes are also extracted
in sunlit scenarios even when they are far away from the carobly 76% of their pixels are clas-
sified as valid foreground. Clearly, such regions may comasisnly 20 pixels — and approximately
five pixels of such objects not being classified as valid foyegd resutls in a false negative rate of
25%. The false negative rates drastically decrease when syebtslapproach to the car. High false
negative rates may lead to collision warnings due to badsemfl prediction for objects far away
from the car, but the prediction becomes more precise whel sbjects approach the car. Good
detection rates were achieved for large foreground objecB tested scenarios.

Fig. 18 illustrates the detection of a simulated object@unded by snow flakes in a snowy sce-
nario. The snowflakes are detected as small, rapidly mouijects and are removed using median
filtering [Massey and Bender 1996]. Fig. 18, right, illuststhe result for objects in snowy scenar-
ios with removed snow flakes: Large snowflakes close to theecamverlapping the boundary of
objects cannot be removed using median-filtering and mad/tkea wrong estimation of the object
position in images. However, tracking the object over langge sequences or using cameras with
high frame rates overcomes this limitation. Since snowflakeve very fast, the number of images
in a huge data set containing inaccuracies in object detectiused by snowflakes or heavy rain is
small.

4.5. Computation Time and Parallelization

We chose a complex indoor environment with three walkingpfeeshadow effects and some illu-
mination changes (switching light on/off) to measure thecetion time of the proposed algorithm.
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Scenario | Obj. Size| tp. | fn. | fp.
Diffuse light farpgaél B5% [ 15% [ 2%
o 198

0 0 0
Indoor cond. farpggl 820;2 13%/? 111(;2

Fig. 17: Left: Detected pixels of a foreground Table II: Overview of our validation results:
object. Right: Examples of true positives and Percentages of true positive, false negative and
false negative pixels in an detected foregroundfalse positive pixels in foreground regions.
object.

Fig. 18: Left: Simulated foreground object with extractedwflakes. Right: Removed snowflakes
using median-filtering and remaining disturbances at theatied object.

time | Averaging | Similarity | Decomp. | Total Time
to ~ 2.7ms - - 2.7ms
t1 ~ 2.7ms ~ 0.2ms - 2.9 ms
to ~ 2.7ms ~ 0.4ms - 3.1ms
tsg | = 2.7ms ~ 8.2ms - 10.9 ms
tao | = 2.7ms ~ 9.0 ms - 11.7 ms
ta1 - - ~ 412 ms 412 ms

Table IlI: This table illustrates the computation time onfAviD Phenom 9650 quad-core CPU at
2.54 GHz for background initialization.

We use about 400 test images of this data set and calculaetiehn execution time as well as
the standard deviation (Std. Dev.). Table Il gives an omnof the execution times for our back-
ground initialization algorithm (see Section 3.1) usiNig= 40 input frames with size80 x 204.

We also conduct experiments to determine the executionfomaosition determination, trajectory
estimation and risk prediction. Therefore, we chose a s@epantaining five small and large ap-
proaching objects: The execution times for all objects wa3ns using a single core. Table 1V, left
demonstrates the execution times for rectification, bamkgd modeling as well as shadow detec-
tion, illumination changes and collision detection usirgrayle core of a 2.54 GHz AMD Phenom
9650 quad-core CPU. As discussed in Section 3.6, we paraltebur object detection algorithm
using multithreading on the quad-core CPU and measuredéueion times for the same test data
set. The image was divided intosubimages, each of that was processed by a different cemturr
thread. The result of all threads is then merged using simahtl called interpolation. Clearly, as
the total computation time will be decreased with incregsinmber of threads, the time for merg-
ing and interpolation increased. Table 1V, right gives aargiew of the measured times. Table IV
also illustrates the performance (throughput) in framesspeond (fps) of the proposed algorithm.
Fig. 19 illustrates the single computation time for eactcpssing step as well as the overall compu-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, ArficRRublication date: January YYYY.



A:20 C. Scharfenberger et al.

| Mean Time (1 core) Std. Dev.| Image Size| 2cores | 4cores

Rectification ~ 3.6 ms 0.7ms | 640x 480 || ~ 19ms | ~ 1.0ms
Background ~ 30.1 ms 12ms | 480x 204 | =~ 15.1ms| ~ 7.5ms
Shadow Dect ~ 24.1ms 2.3ms " ~ 12.2ms| ~ 6.3 ms
lll. Comp ~ 10.4 ms 1.6 ms " ~ 56ms | ~ 28ms
Interpolation 0.0ms 0.0ms " ~20ms | =~ 2.2ms
Collision Prediction ~ 2.0ms " ~ 20ms | = 2.0ms
Total Time \ 70.2 ms \ \ ” | 388ms | 21.8ms

Throughput \ 14.25 fps \ \ ” | 25.77fps | 45.87 fps

Table 1V: This table illustrates the computation time on842GHz AMD Phenom 9650 quad-core

CPU for the non parallelized algorithm (left), the parafled algorithm (right) and the achieved
throughput in frames per second [fps] using 1-4 cores.

~
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Fig. 19: Estimation of computation time using Fig. 20: Detection rate of fast, middle and slow

more than 4 cores (without collision predic-objects depending on the frame rate.
tion).

tation time for more than 4 cores. This estimation is basesdlwmeasurements for 1, 2 and 4 cores
on the quad-core CPU and is extrapolated up to 16 cores. Die tmcreasing time for merging
and interpolation the results of all threads there is noegpble speed up using more than 16 cores.
In Fig. 20, we present our results on object detection arildpiiediction using different sized
objects and frame rates. We refer object detection and risttigtion as detection and compared
the results with perfect detection. Detection rates for fdgects might not be sufficient for cam-
eras with low frame rates due to poor risk prediction resdltés can be explained due too large
distances between one object in consecutive frames: Sieagiositions are used for trajectory es-
timation, the trajectories cannot sufficiently be estirddite fast moving objects, in particular when
an object is not detected. Higher frame rates overcome ithitation due to smaller differences
in object position for consecutive frames. On the contralgw objects result in good detection
rates independent of the chosen frame rate. Finally, weiated our proposed method using var-
ious scenarios and compare our approach with other well kradgorithm described in Section
1.1. Fig. 21 illustrates one of our evaluated scenariosatoing up to 500 test frames. Difficul-
ties of this scenario are a less textured environment asaselleak and strong shadows induced
by different lighting sources. While the approach in [Riddéeal. 1995] modeled the background
well, shadow detection failed in some cases. Similarlylevtiie shadow detector in [Jacques et al.
2005] performed well, the background model has some limitat One limitation is that once the
background is learned the background is not updated, weglits in many noisy foreground pix-
els caused by illumination changes etc. The combinatiorotf blgorithms and the modification
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There is a good shadow detection in [Jacques et al. 2005], but still in@ge.

Our approach with proposed shadow and foreground detection. B®isell as shadows can be better
suppressed.

Fig. 21: Evaluation of our approach with different backgrdunodels and shadow detection algo-
rithms.

of the shadow detector as well as the light compensationdedgowerful background estimator
that resulted in better foreground detection on grayseasges, when compared with state of the
art techniques (see Fig. 21). Fig. 22 illustrates two paylsoenarios and detected road users like
bicycles, motorbikes, cars and people walking close to #inelthe images in the first row illustrate
detected objects in a hormal street parking scenario witoimmng traffic, whereas the images in
the second row illustrate road participants detected incalame one-way street parking scenario.
It can be shown, that fast moving, small objects like motabiare also detected, although they
are relatively far away from the car (see Fig. 22, 2. row, rf@ydRisk prediction is performed with
using the image positions of extracted objects in one of #mgdr-zones and their trajectories. The
prediction result is displayed in the image.

5. POTENTIAL IMPLEMENTATION ON AN FPGA

Robust detection of fast moving objects like cars or cydesprerequisite for safe door operations.
Cars driving atl3.89m/s (about50km/h) move approximately.5m between two frames tracked
with cameras having frame rates of 30 fps and have to be éetedthin two or three frames.
The most time-critical part of our system is the backgrousiingtion and foreground detection
algorithm: Therefore, we introduced a parallelizationesole in Section 3.6 to guarantee real-time
foreground detection within 33ms=(30 fps) for panoramic images with a resolutiordsf) x 204
pixels. For our implementation, we used a quad-core CPU émaireed a maximum throughput
of ~ 45 fps. However, the core-based implementation providdég @throughput of 84 fps (see
Fig. 19) for images with resolutions dB0 x 204 pixels. Furthermore, this throughput drastically
decreases when the image resolution increases. On thel@thdr high-resolution cameras with
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Fig. 22: Detected traffic participants and road users in aabstreet (top) and in a two-lane one-
way street (bottom).

frame rates of 80-120 fps would lead to a faster and more ggatetection of traffic participants
and are therefore highly recommended. For this reason, tredunce a potential implementation
of the foreground detection algorithm on an FPGA to guamargal-time foreground detection for
high-resolution high-frame rate cameras. The parallétimascheme presented in Section 3.6 allows
to port the algorithm onto small form-factor embedded syste e.g., on low-power, cost-effective
FPGA's or cameras with FPGA's integrated within the package

In our setup, we use firewire-cameras that are suitable feast-based FPGA implementations.
However, high parallelization concepts may be preferre@ragye rectification, background ini-
tialization and shadow detection require information froeighboring pixels — e.g., information
from pixels from the following two or three rows. But this arfnation is normally not available
for stream-based implementations. In the following sextjave propose an exemplary, highly par-
allel implementation of the foreground detection algaritfor FPGA-based embedded systems to
guarantee real-time foreground detection for high-rdgmithigh-frame rate cameras within at least
33ms.

5.1. Background Initialization

The initialization of the background as presented in Sac8d. is the first stage for foreground
detection. The background is initialized by choosing theelsi that contain background in a train-
ing sequence of frames. For each pixel positign, a similarity matrix is computed containing
absolute, mean-based block differences. Backgroundspexa selected within a matrix decom-
position stage and the initial background value is caledlaising median filtering. Fig. 23 illus-
trates a FPGA-based hardware-architecture for backgrtialization for one pixel positiomn;.
Thereby, letp;,i € [1,.., N x M] be pixels of original images with siz&¥ x M, p,; be pixels of
rectified/transformed images apdl; be pixels used for background initialization. Original iges
are transformed into rectified images as a first step. For pixet positionp; in original images,
a Look-Up-Table (LUT) is provided that may be stored in théeexal memory of the embedded
system. The LUT may be obtained by camera calibration (setoBe2.1) and contains the pixel po-
sitionspr1..pr, in original images whose intensity values are used for becuiterpolation within
the hardware-blocknterpolation The resulting intensity value is stored at pixel positignin a
rectified image (see blodRectificatiof). The hardware modulBackground Initializatiorrealizes
the background initialization. Block-based averagin@ (sardware blockean) requiring intensity
values from neighboring pixels.;..p,,, may be used to build the similarity matrix on that back-
ground pixel selection is based. For each pixel position frame of the training sequence, the
hardware blockMeancomputes the average of intensity values and stores the resulf (p;) in

a buffer. Based on the mean-valyes(p;), the entries of the similarity matri#; ,,,(p;) are com-
puted with the blockSimilarity and the results may be stored in an external men&imilarity also
provides a signatontrol to select the values needed for similarity matrix compatatFinally, the
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Fig. 23: Hardware architecture for background-initiaiaa.

hardware blociMatrix Decompositiorns a realization of the decomposition algorithm proposed by
Farinet al. [Farin et al. 2003] and selects the pixels of the trainingusege that relate to back-
ground. The final intensity value of the background may bemaed within the hardware module
Medianand serves as initialization for the Kalman-based backgtouodel.

5.2. Realization of the Object Detection Algorithm

In this section, we describe the hardware architectureh®iproposed background estimation and
object detection algorithm (see Section 3). Fig. 24 illatgs a potential implementation of back-
ground estimation and foreground detection for one pixeitim p,.;. The architecture consists
of two hardware modulefynamic Background Estimaticand Shadow DetectiariThe hardware
blocksRectificationpresented in Section 5.1 may also be used to transform pixélem original
images into pixel,; that serve as input for the foreground detection module.sSkiséem state of

the background modulg,.;(t) and1,,,.;(t) for each pixel positiom,; may be stored in an external
memory and is initialized with the background vajig.

The hardware-blocSystem State Predictiamonsiders global illumination changes,,;(t) (see
Section 3.5) and predicts the next system state to detemtiatherp,.; belongs to foreground or to
background (see blodkG BG). The system state is updated using the hardware 3gskem State
Update by choosing different Kalman-gainsl, 2 depending on a detected foreground or back-
ground pixel. Block=G BGalso generates a signadntrol that activates and deactivates the blocks
NCC/ZNCCand Shadow Classificatiomwithin the moduleShadow DetectianShadow detection
is not required for background pixels, and hence the bIdERE/ZNCCandShadow Classification
may be deactivated when a background pixel is identified bithek NCC/ZNCCconsists of a hard-
ware realization for NCC and ZNCC computation and calcsléte energy-valueBT,,;, EB),;,
EZT, andEZBm NCC and ZNCC computation is based on image blocks con@hhnia pixel
pr1--Prm IN @n actual frames and on the corresponding image blockeibdckground image (sys-
tem statesfprl Iprm) wherea®,.; represents the center of each image block (see SectioiBB8k
Shadow Classificatiorepresents a hardware-realization of the shadow clagficalgorithm (see
Eqg. 15) and distinguishes between shadow pixels or valebfmund pixels. This block also gener-
ates a control signallassto specify the value of the output pixel positipig; that indicates the
background estimation and foreground detection resulg= @ for background and shadow and
255 for valid foreground. The result is then stored in an extenmamory as an image that serves as
an input for further processing stages like collision ris&diction.
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Fig. 24: Hardware architecture of the background-estiomagind foreground detection algorithm.

6. CONCLUDING REMARKS

In this paper, we presented algorithms for robust backgt@stimation and foreground detection
in gray scale images captured by omnidirectional camerdsedded inside a smart car door. The
focus lay in modifying and developing algorithms for fasjestt detection to quickly detect fast ap-
proaching objects for safe door operations. In this impletaigon, we achieved a throughput of at
least 30 frames per second using a quad-core CPU. The prbalggeithm initially estimates back-
ground images even from scenarios in which no empty backgr@uavailable during initialization.
Foreground is segmented based on the recorded backgroage iamd based on Kalman-filtering
as a next stage. Shadow pixel candidates are determinegl N§I€, and a refinement is carried
out using ZNCC to distinguish between foreground pixeldwsinall differences from background
or shadow pixels. In order to reduce the influence of illurtiorachanges that cause foreground
detection to fail, illumination changes were detected byalsearch windows and compensated
for by updating the background model. The proposed algostivere successfully implemented to
track objects like walking humans, motorbikes, bicycled ears. They were parallelized to obtain
attractive speedups on multi-core processors. Finalgy there evaluated against other state-of-
the-art methods and showed enhanced foreground detentanr setting. We briefly described an
algorithm to predict the risk of collisions and to block tha&r door in case of a collision. How-
ever, further studies on optimally selecting the diffeneatameters associated with the algorithms
are necessary to make them work better in a wide variety fiictecenarios and lighting conditions
such as heavy rain or snow. Another interesting directi@xfsore would be to implement our algo-
rithms on small form-factor embedded platforms (e.g., anade up of a heterogeneous collection
of reconfigurable and general-purpose processors) whiatdblvell with a standard automotive
electronics setup. Therefore, we presented an implen@nttheme to port the time-critical back-
ground initialization and foreground detection algorihonto a low-power, cost-effective FPGA.
Such platforms might also lead to more efficient/fast imgatations and therefore better reaction
times for the smart door due to a higher throughput compareaiiti-core-based solutions.
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