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Over the last one decade there has been an increasing emphasison driver-assistance systems for the automotive domain. In
this paper we report our work on designing a camera-based surveillance system embedded in a “smart” car door. Such a
camera is used to monitor the ambient environment outside the car– e.g., the presence of obstacles such as approaching cars
or cyclists who might collide with the car door if opened – and automatically controls the car door operations. This is an
enhancement to the currently available side-view mirrors that the driver/passenger checks before opening the car door. The
focus of this paper is on fast and robust image processing algorithms specifically targeting such a smart car door system.
The requirement is to quickly detect traffic objects of interest from gray-scale images captured by omnidirectional cameras.
While known algorithms for object extraction from the image processing literature rely on color information and are sensitive
to shadows and illumination changes, our proposed algorithmsare highly robust, can operate on gray-scale images (color
images are not available in our setup) and output results in real-time. We present a number of experimental results based on
image sequences captured from real-life traffic scenarios todemonstrate the applicability of our algorithm.

General Terms: Embedded Computing, Algorithms, Performance, Image Processing

Additional Key Words and Phrases: Robust image processing, embedded computing, omnidirectional vision, road user ex-
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1. INTRODUCTION

Driver assistance systems are increasingly gaining importance in high-end cars. Examples of these
include Lane Departure Warning System (LDW), Adaptive Cruise Control (ACC), Forward Colli-
sion Warning (FCW) and Blind-Spot Detection (BSD). While there are many safety-oriented driver-
assistance systems that function when the car is moving, a number of accidents also happen while
the car is stationary and one of its doors is being opened. A standard practice is to check the side-
view mirrors of the car before opening the door. However, it is still fairly common for approaching
cyclists to hit suddenly-opened car doors. In other words, many passengers check if there is an ob-
stacle next to the door, but they do not pay sufficient attention to approaching obstacles like cyclists
or other cars.
In this paper we report our work on designing a smart car door that is equipped with one omnidi-
rectional camera on each side of the car. These cameras monitor the ambient environment outside
the car and warn passengers – or car door users – about obstacles like approaching cars, bicycles
or pedestrians. Collision avoidance systems use this information to control, stop or lock car door
operations in order to avoid potential accidents.

Fig. 1 gives a high-level overview of our smart car door system. In [Strolz et al. 2008], we pre-
sented a generic control system for intelligent, actuated car doors with arbitrary degrees of freedom.
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A:2 C. Scharfenberger et al.

Fig. 1: TheSmart Car Door System. Information from the camera and surveillance system are used
as input to control, stop or lock car door operations in orderto avoid accidents.

(a) (b)

Fig. 2: The omnidirectional camera system (a): A perspective camera focuses on a hyperboloidal
mirror and takes pictures with a field-of-view of360∘. Our camera system integrated with the side-
view mirror of a car (b).

That paper focuses on the mechanical design and the control of the door. However, an important
component of such a smart door is the image capturing and processing subsystem, whose output
serves as an input to the control subsystem. In this paper we focus on the camera subsystem, on
robust foreground detection algorithms and on algorithmicmodifications for object extraction from
image sequences captured by the camera. The extracted objects from images serve as an input for
a collision predictionsystem that estimates the risk of collisions when opening the car door. This
paper mainly focuses on robust background estimation and foreground detection, but we also briefly
describe the function of the collision prediction system that generates a signal to lock or to stop door
operations. The cameras in question are omnidirectional vision sensors consisting of a perspective
camera focused on a cone-like hyperboloidal mirror. Fig. 2(a) illustrates such an omnidirectional
camera that is integrated with the side-view mirror of a car to monitor the external environment (see
Fig. 2(b)). Given the large field-of-view of the vision sensors, the camera is able to monitor the side
of the car door in its entirety (see Fig. 3) and the associatedimage processing algorithms enable
early-detection of impending obstacles.

We focus on detecting approaching obstacles like cyclists as they are often ignored by passengers
compared to stationary obstacles next to the door. It is important to detect such traffic participants
before any car door operation is performed, and they must be identified even if they are relatively
far away from the car. However, stationary obstacles close to the door can be detected while the
door is opening with a single camera using motion-stereo algorithms [Okutomi and Kanade 1993]
and their applications in automotive research [Suhr et al. 2010]. Additionally, there is a small time
interval between parking and door operations. This allows us to formulate certain preconditions
under which our object detection and extraction algorithmsmay and should operate: (i) We may
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Fig. 3: Left: Panoramic image of the environment around a cardoor. Right: Different views and
sizes of approaching and passing traffic participants due tothe large field of view of the camera. The
detection algorithm must be able to handle different sized objects (large (I) and very small objects
(II)) and to robustly detect passing objects that differently appear in panoramic images (Different
views of a passing car (front view (III), side view (IV) and rear view (V)).
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Execution
Time

Template
Matching

no needed ind bad bad middle slow

HMM no needed ind bad bad middle slow
Feature
Based

no needed ind bad bad good fast

Optical
Flow

no no bad ind ind good middle

Background
Estimation

needed no ind ind ind good fast

Table I: Comparison of different object detection methods for environment surveillance and the
performance of these methods for specific object propertiessuch as static objects. Optical flow
based methods perform bad when detecting static objects whereas the detection of static objects is
independent (ind) for background estimation.Background estimationseems to yield the best results
in our setting.

assume a static camera for a short time interval between after parking processes and first door
operations. This interval may be used for learning the environment around the door. (ii) Objects that
are further away from the camera occupy less pixels on each video frame (i.e., they occupy fewer
pixels) and are hence not easy to differentiate from the background. (iii) Due to the large field-of-
view of the cameras used, there is a different view of the sameobject (front, side and back) as it
moves (see Fig. 3). (iv) Algorithms for detecting approaching traffic and obstacles must operate
in real-time. Cars driving at13.89m/s (about50km/ℎ) move approximately0.5m between two
frames tracked with cameras having frame rates of 30 frames per second (fps). Hence, fast-moving
cars or motorbikes have to be detected within a maximum of twoor three frames.

Our studies illustrated a need of cameras with frame rates ofat least 30fps to detect approaching
objects and provide safe door operations. Consequently, wehave to guarantee that our algorithms
extract objects and predict the risk of collisions within atmost 33ms (≈30fps). The most time-
critical part of our system is the object extraction algorithm. Therefore, an efficient realization of
these algorithms – e.g., on a multi-core CPU or on an FPGA-based embedded system – is highly
desirable. Later in this paper, we present a conceptual mapping of the time-critical object extraction
algorithm on an FPGA. In doing so, real-time object extraction is feasible for images captured from
high resolution, high frame rate cameras.
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A number of techniques for object detection and extraction exist in the image processing liter-
ature, viz., Hidden Markov Models [Rabiner 1989], TemplateMatching [Brunelli 2009], feature-
based detection methods, optical flow-based methods [Achler and Trivedi 2002],[Ghandi and
Trivedi 2004] and background separating methods. Table I gives a brief overview of possible meth-
ods and compares them in terms of the required computation time, parallelizability for fast im-
plementation on a multi core CPU or on an FPGA, and the abilityto handle perspective changes.
Background estimation and optical flow are not sensitive to perspective changes and object size, and
they do not need prior knowledge of object properties, e.g.,color, shape and geometry.

One disadvantage of optical flow is that it can not detect static or very slow moving objects.
Although background estimation solves this problem, it needs a small time interval to learn the
background. Fortunately, in our settings, such an intervalis available, viz., the time interval be-
tween parking and door operation. Fig. 4 gives a high-level overview of our object extraction and
risk prediction algorithm. As mentioned above, this paper focuses on real-time moving extraction
algorithms using robust background estimation techniques, but we also briefly describe the func-
tion of the collision prediction system that generates a signal to lock or to stop door operations.
In particular, we present extensions to background estimation (e.g., illumination compensation and
shadow elimination for gray-scale images) that are specifically tuned to our setting of a smart car
door equipped with omnidirectional cameras. The details ofour algorithm for robust background
estimation and foreground detection are described in what follows.

1.1. Related Work and Our Contributions

The problem of extracting objects from a video sequence has been widely studied in surveillance
[Haritaoglu et al. 1998], traffic monitoring [Friedman and Russel 1997] and vehicle guidance. In
most applications, separating the foreground from the background is the first step for object track-
ing. Background subtraction and foreground modeling are powerful methods whose advantages are
feature-independent segmentation (e.g., textures, direction of move, speed). Some common tech-
niques for background subtraction include Kalman filtering[Karman and Brandt 1990], kernel den-
sity estimation [Elgammal et al. 2002], hidden Markov models [Stenger et al. 2001], mixture of
Gaussians [Zivkovic and Heijden 2006], and the use of color-based intensity-independent features
[Ardoe and Berthilsson 2006]. Most of these algorithms represent each background pixel using a
probability density function (PDF) and classify the pixelsfrom new images as background depend-
ing on the description of the pixels by their density functions.

As an alternative, Bhaskaret al.[Bhaskar et al. 2007] developed a foreground detection algorithm
using cluster density estimation based on a Gaussian mixture model. This algorithm is suitable for
handling illumination changes as well as dynamic backgrounds. Similar work was done in [Zhong
and Sclaroff 2003] using Kalman filtering to iteratively estimate the dynamic background texture
and the regions of foreground objects. Kalman filtering was also used by Karmanet al. [Karman
and Brandt 1990] to model the background dynamics of each pixel by choosing two different gains,
thereby allowing fast adaptation of background changes andslow adaptation of foreground pixels.
Ridderet al. [Ridder et al. 1995] improved this approach and presented a shadow detection method
assuming small differences between overshadowed and non-overshadowed background. However,
strong shadows caused by direct sunlight cannot be detected.

Although many background subtraction techniques have beenproposed, the majority of the al-
gorithms address shadow detection and illumination compensation by exploiting color information
(see [Elgammal et al. 2002; Zhong and Sclaroff 2003]). In scenarios where monochromatic video
cameras are used – such as ours – the existing methods are no longer suitable. Our camera system
consists of a monochromatic VGA camera that is designed for (cost sensitive) applications in the
automotive domain. Expensive, high resolution color videocameras may be useful for research,
but are impractical for real applications. For applications, where only monochromatic cameras are
available, a common method to increase the robustness of image processing algorithms is by trans-
forming intensity-based images into lighting invariant frames. This transformation, e.g., based on
Census filtering [Zabih and Woodfill 1994; Dinkar and Nayar 1996] is widely used, but intensity
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Fig. 4: Block diagram for object detection using backgroundestimation, shadow compensation and
handling of illumination changes.

information of homogeneous regions are lost. In other words, it may be no longer possible to dis-
tinguish between homogeneous foreground (cars, trucks) and background regions (walls). There-
fore, the use of intensity-based images is highly desirablefor our application. But intensity-based
monochromatic images lead to several challenges in object detection. For example, it is difficult to
differentiate between small illumination changes caused by shadows or by small, valid foreground
objects in gray scale images.

Another challenge is in detecting small objects in low resolution images captured by an omni-
directional vision system. Furthermore, for safe door operations, it is important to predict the risk
of possible collisions in advance: This prediction is basedon the object’s positions in image data
and on recognizing if there are objects with dangerous trajectories. Shadows could cause an inaccu-
racy in position determination and may lead to a wrong prediction of possible collisions. Hence, the
shadow pixels both for moving objects like cars and static objects like pedestrians next to the door
must be detected and suppressed. These problems, along withthe accuracy of background subtrac-
tion, the handling of sudden illumination changes and the possibility of parallelizing the algorithms
are the underlying motivations of our work.

Inspired by the background estimator of Ridderet al. [Ridder et al. 1995] and by the shadow
detector proposed by Jacqueset al. [Jacques et al. 2005], we develop robust background estimation
and foreground detection algorithms for gray scale images.Ridderet al.proposed an extension to the
Kalman-based background algorithm of Karmanet al. [Karman and Brandt 1990] that takes weak
shadows from stationary or moving objects into account. They assume that weak shadows have the
same characteristics as illumination changes that may be adapted into the background. Therefore,
their algorithm automatically increases the threshold forforeground detection using the variance of
the estimated background values over time. The threshold ishigh if the variance of the estimated
background values (e.g., caused by shadows) is high. However, the pixels from small foreground
objects – such as motorbikes – also cause a high variance whendetected as background and might
be suppressed. Strong shadows cannot be identified in [Ridder et al. 1995], as they are detected
as foreground. Once detected as foreground it is impossibleto differentiate between shadow and
foreground.

A good shadow detector for gray scale images was introduced by Jacqueset al. [Jacques et al.
2005] using normalized cross correlation (NCC). The detector assumes shadow pixels as scaled
versions (darker) of the corresponding background pixels,so that the NCC in a neighboring re-
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gion is close to unity. On the other hand, this shadow detector misclassifies valid foreground pixels
with small differences as shadow pixels. To overcome these limitations, we combine and modify
these different methods to design a powerful background subtractor. We also extend the shadow
detector with zero means cross correlation (ZNCC) in order to better distinguish between shadows
and valid foreground pixels. The proposed shadow detector is suitable for detecting and eliminat-
ing all types of shadows – e.g., shadows from moving objects like cars or leaves moving in the
wind and shadows from static objects. Our proposed algorithm detects illumination changes using
local search windows and updates the background to compensate for slow or sudden illumination
changes. Our experiments in complex outdoor and indoor environments under various lightning
conditions demonstrate promising results. Additionally,we tested the background initialization al-
gorithm in a heavy snowy scenario. We also evaluated and compared our approach with the ap-
proaches of Jacqueset al. [Jacques et al. 2005] and Ridderet al. [Ridder et al. 1995]. We further
evaluated our algorithms for their parallelizability potential and compared sequential and parallel
implementations (on an AMD Quad-Core CPU). Our results indicate that they work in real-time
on a multi-core CPU and are therefore suitable for potentialimplementation on an embedded plat-
forms. In Section 5, we outline a conceptual mapping of the background estimation and foreground
detection algorithm on an FPGA-based embedded system.

The rest of the paper is organized as follows. We describe theimage rectification techniques
in Section 2, the background initialization and the background estimator, the shadow detector, as
well as our handling of illumination changes in Section 3. Webriefly introduce our collision risk
prediction algorithm in Section 3.7, and discuss our results obtained in Section 4. In Section 5, we
present the conceptual mapping of the object detection algorithm on an FPGA. Finally, we conclude
by briefly outlining some possibilities for future work.

2. CALIBRATION AND IMAGE RECTIFICATION

In this section we provide the technical details related to the omnidirectional camera subsystem.
Original images from omnidirectional vision sensors are distorted and are not easy to handle for
conventional image processing algorithms. The main problem is in extracting geometric and per-
spective relations like size and position of objects. To overcome this limitation, original images
are transformed into panoramic (rectified) images. But in this case the camera model and the cali-
bration parameters must be precisely known. We designed an omnidirectional vision system based
on the well-known single point of view (SPOV) theorem of Baker and Nayar [Baker and Nayar
1999]. SPOV is also known as the projection center of the mirror onto which the perspective camera
should focus. This is a prerequisite for geometrically correct panoramic image transformation. Our
omnidirectional camera uses a mirror whose surface followsa hyperboloidal equation. Using such
mirrors, the SPOV constraint is only valid for an accurate alignment of the mirror and the camera.
However, this is difficult to realize and hence the camera system must be calibrated to compensate
for misalignments as well as to obtain a precise relation between the 3D world point coordinates
and the camera sensor coordinates.

2.1. Calibration
To determine the 3D positions of object points that are projected on the sensor plane, a calibration
functionf(p⃗) has to be found that describes a relation between a vectorp⃗ to a 3D pointP in world
coordinatesxP , yP andzp and the camera coordinatesuP andvP .

P⃗ =

[

uP

vP

]

= f(p⃗) with p⃗ = � ⋅

⎡

⎣

xp

yp
zp

⎤

⎦ , � > 0 (1)

Different techniques are known for determining the function f(p⃗) [Baker and Nayar 2001; Scara-
muzza et al. 2006a]. We use the calibration method developedby Scaramuzzaet al. [Scaramuzza
et al. 2006b]. All points lying on a light ray (vector⃗p) in world coordinates (see Fig. 5(a)) are
mapped to the projection pointP ′′ on the virtual planeE′′ (see Fig. 5(b)). PointP ′′ on the vir-
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Fig. 5: The camera model (a) used in this paper. The world point P is mapped on a virtual sensor
planeE′′ (b) and the projection transformed to the real sensor plane (c) using affine transformations.
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Fig. 6: Proposed image rectification process.

tual sensor planeE′′ is then transformed to the real sensor plane using a transformation function
that takes misalignments of the imaging device to the camerasensor into account (see Fig. 5(c)).
Scaramuzzaet al.propose the relation between world and virtual sensor planeas follows:

p⃗ =

⎡

⎣

xp

yp
zp

⎤

⎦ = � ⋅

⎡

⎣

uP ′′

vP ′′

f(�)

⎤

⎦ =

⎡

⎣

xp

yp
a0 + a2�

2 + . . .+ aN�N

⎤

⎦ (2)

with � = 1 and� =
√

x2
p⃗ + y2p⃗. Furthermore, they approximate the componentz of f(p⃗) depending

on the curvature as a polynomial function. The relation between the real sensor plane and the virtual
or ideal sensor plane is given as an affine transformation (see Eq. 3).

P⃗ ′′ = A ⋅ P⃗ + t⃗ with A =

[

c d
d 1

]

P⃗ =

[

uP

vP

]

and t⃗ =

[

ucenter

vcenter

]

(3)

The parametersa0 . . . an, A andt⃗ are the calibration parameters.

2.2. Image Rectification

Using the camera model and the calibration data, the projection of any 3d point onto the sensor
plane can be calculated and vice versa. This allows us to determine a projection area based on
individual projection parameters like widthM , heightN as well as a region of interest (ROI) for
image rectification as a first step. Secondly, each pixel[m,n]T of the projection area is stored in a
M×N×3 dimensional matrixF containing its world coordinatesX(m,n),Y(m,n) andZ(m,n).
Lastly, the corresponding pixel position of each point on the projection area is calculated and stored
in a look up table (LUT) [Scharfenberger et al. 2009]. Using the information in the LUT and bicubic
interpolation, every original image can be transformed into a panoramic image. Fig. 6 illustrates this
flow.
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Fig. 7: Left: Rectified panoramic image. Middle: Pixel positions of rectified gray-scale images with-
out interpolation. Right: Pixel positions of a rectified RGB-image captured by a simulated color
camera (Bayer pattern). The use of color cameras with Bayer pattern reduces the resolution of rec-
tified panoramic images.

The resolution of regions in rectified images highly dependson their image positions. Due to the
physical properties of the camera there are more pixels available at the outer parts of the mirror
than at the inner part for image rectification. Consequently, regions in original images close to the
image center have lower resolutions than regions close to the outer bounds. This may lead to a lack
of information in lower parts of rectified images as shown in figure 7(b). The resolution is further
decreased for images captured by color cameras as they use Bayer pattern [Bayer 1976] to obtain
color information (see Fig. 7(c)). This effect can be reduced using high-resolution (color) cameras,
but on the other hand the execution time for image processingwill drastically increase.

We use a VGA-resolution camera. However, the usage of imaging devices such as mirrors to
enhance the horizontal field of view leads to a loss of resolution in panoramic images. This is
because the mirror reflects light onto a limited space on the VGA-sensor (here480 × 480 pixels)
(see Fig. 6, bottom left). Removing the pixels on which the camera sees itself leads to a resolution
of 480× 204 pixels for panoramic images.

3. BACKGROUND MODEL

As discussed in Section 1, we used background estimation forextracting objects of interest from
the captured images. Our background model is based on the approach of Karmanet al. [Karman
and Brandt 1990] and Ridderet al. [Ridder et al. 1995]. It is extended to provide better shadow
detection and to be more robust against illumination changes for our application. In this section,
we present the mathematical details of the background modelalong with the shadow detector and a
method to account for illumination changes (see Figure 4). We describe the background initialization
in Section 3.1 and the background model based on Kalman filtering proposed by Karmanet al.
[Karman and Brandt 1990] to model the dynamics of each background pixel in Section 3.2. We
classify pixels as background or possible foreground pixels using thresholding. Possible foreground
pixels are then classified as valid foreground or shadow pixels using the NCC and the ZNCC (see
Section 3.3 and 3.4). Finally, we present a method to accountfor global illumination changes in
Section 3.5.

3.1. Background Initialization

Due to typical parking situations with moving cars, bicyclists, pedestrians, etc. it is not possible
to record a separate background image without any objects asrequired in many approaches. Every
background pixel in the approach of Karmanet al. [Karman and Brandt 1990] is initialized with
a fixed value that is adapted during the training period usinga large number of frames. Jacqueset
al. [Jacques et al. 2005] use median-based background initialization over a large number of frames.
Median-based initialization allows to record background from busy-street scenarios, but it assumes
that pixels contain background content for at least half of the initialization frames. Real life experi-
ments demonstrated that this assumption may be violated forseveral traffic scenarios.
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(a) Similarity matrix for pixel positionpi. (b) Initialized background.

Fig. 8: This figure illustrates the Similarity Matrix for onepixel positionpi (a). Low differences
between the blocks for each pair of frame are shown as dark, high differences between the blocks
as bright areas. b: Estimated background image as initialization for the background model.

Farinet al., [Farin et al. 2003] proposed a powerful method to solve thisproblem. The principal
idea of their algorithm is to roughly segment each pixel frominput frames into foreground and
background scenes. The segmentation is carried out on smallblocks for each pixel position from
the input frames. Background content is classified by searching for the subsets of frames that show
stable content in the blocks. In other words, the content of blocks with background varies less
than content of blocks with foreground. To identify the blocks containing background pixels, the
similarity of block contents over a fixed trainings period isstored into aSimilarity Matrix. This
matrix contains the differences (realized with Sum of Absolute Differences, SAD) between image
content at the block position for each pair of frames. Low values in the matrix relate to background
regions whereas high values correspond to foreground regions due to differences between these
blocks. The matrix for each position is decomposed into two parts, one that may contain background
(low values) and one that may contain foreground (high values). The background image is then
calculated based on pixels with background content using median algorithm [Massey and Bender
1996]. Such segmented background image represents the initial system statêIx,y(t0) of the Kalman
background model that is presented in Section 3.2.

Although the method proposed by [Farin et al. 2003] is very robust in background estimation, it
is very time consuming due to the block difference calculation using SAD. Following the definition
of SAD

SAD =

m
∑

x=1

m
∑

y=1

∣I1(x, y)− I2(x, y)∣ (4)

the absolute, pixel wise differences of the intensitiesI1(x, y) and I2(x, y) for pixels (x, y) in
a frame 1 and 2 is computed for a blockBi with sizem × m. These absolute differences have
to be computed for every image pair in a set ofn frames. This leads to high computation times
for background initialization depending on the number of framesn. Due to this, we replaced the
SAD for block difference calculation by block averaging andby computing the absolute difference
based on the block averages for each corresponding block in consecutive frames. In other words,
we compute an average�n(pi) for each block and use�n(pi) for further computations. Previously
computed mean-values can be used so that only one block difference computation is necessary. On
the other hand, nine difference computations for blocks with size of 3x3 or more pixels would be
required using SAD. In Eq. 5, we propose an efficient algorithm for block difference calculation
based on block averaging.

t1 : �1(pi) = mean(Bi(pi))

t2 : �2(pi) = mean(Bi(pi)) , d1,2(pi) = ∣�1(pi)− �2(pi)∣ (5)

tn : �n(pi) = mean(Bi(pi)) , dj,n(pi) = ∣�j(pi)− �n(pi)∣ j ∈ [1, n− 1]

For each pixel positionpi in a frame ofn training frames, the (block)-average�n(pi) of a blockBi

in the neighborhood of a pixelpi is determined as a first step. Thereafter, the absolute differences of
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blocks for each pair of frames are computed using the previously computed block-averages�n(pi).
Clearly, the block average�1(pi) for each pixel in the first frame is computed at time stept1. At time
stept2, the block averages�2(pi) for all pixels in the second frame are computed and the absolute
differenced1,2(pi) is calculated using the previously determined block averages�1(pi). The results
are then stored in the matrix elementsdj,n(pi) = dn,j(pi) of the similarity matrix. At time step
t3, the block averages�3(pi) are computed and the absolute differencesd1,3(pi) andd2,3(pi) are
determined. As in time stept2, the previously determined block averages�1(pi) and�2(pi) from
time stepst1 andt2 can be used for further processing (see Alg. 1).

However, block averaging leads to less robust initialization results (see Section 4) but it allows
previously determined block average values�(n−1)(pi) ⋅ ⋅ ⋅�1(pi) to be reutilized for background
initialization. The result is a ten times speed up of the processing time. The computed background
image serves as an initialization for the Kalman-based background estimation and foreground de-
tection presented in the next section. The number of frames required for background initialization
strongly depends on the number of foreground objects in the training sequence. Ten frames are suf-
ficient to learn the background for empty scenarios and at least 40 frames for parking scenarios with
high traffic volume.

3.2. Kalman Background Estimation
In this section, we describe the background model on which our approach is based. The background
model has been proposed by Karmanet al. [Karman and Brandt 1990] and was extended by Ridder
et al.in [Ridder et al. 1995]. The intensity of a pixel at position (x,y) at timet is given byIx,y(t). The

estimated system state of the background model is denoted asÎx,y(t) and its derivative aŝ̇Ix,y(t).
The estimation on the background is

[

Îx,y(t)
ˆ̇
Ix,y(t)

]

=

[

Ĩx,y(t)
˜̇
Ix,y(t)

]

+Kx,y(t) ⋅

(

Ix,y(t)−H ⋅

[

Ĩx,y(t)
˜̇
Ix,y(t)

])

(6)

Following Eq. 7, the predictioñIx,y(t) of the system statêIx,y(t) and its derivativẽİx,y(t) at time
t is given by:

[

Ĩx,y(t)
˜̇
Ix,y(t)

]

= S ⋅

[

Îx,y(t− 1)
ˆ̇
Ix,y(t− 1)

]

(7)

The system matrixS, the measurement matrixH and the Kalman gainK are:

S =

[

1 s1,2
0 s2,2

]

, H =
[

1 0
]

and Kx,y(t) =

[

k1x,y(t)
k2x,y(t)

]

(8)

In [Karman and Brandt 1990],s1,2 = s2,2 = 0.7 was used for modeling the background dynamics.
Because the camera returns only the intensitiesIx,y(t), the measurement matrixH is a constant. The
Kalman gain was chosen depending on detected foreground or background using a pre-estimation
of the next system state (see Eq. 9 and Eq. 10).

mx,y(t) =

⎧









⎨









⎩

1, if
[

d′x,y(t) ≥ tℎbg

]

∨
[

(d′x,y(t) < tℎbg) ∧
(d′′x,y(t) ≥ tℎbg)

]

0, if
[

d′x,y(t) < tℎbg

]

∧
[

d′′x,y(t) < tℎbg

]

(9)

d′x,y(t) = ∣Ix,y(t)− Ĩx,y(t)∣

d′′x,y(t) = ∣Ix,y(t)− Î ′x,y(t)∣

with Î ′x,y(t) = Ĩx,y(t) + � ⋅
[

Ix,y(t)− Ĩx,y(t)
]

(10)

Pixels whose differences of the intensity to the system state are smaller than a fixed threshold(d′ <
tℎbg), do not necessarily indicate background. To identify such pixels, a pre-estimation̂I ′x,y(t)
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ALGORITHM 1: Background initialization.
1: for all imagesIj , j ∈ {0, ..., n} do
2: for all pixelspi, i ∈ {0, ...,m} do
3: �j,i(pi) = mean(B(pi)) //compute the mean value�j,i(pi) of each blockB(pi)
4: dx,j(pi) = ∣�x,i − �j,i)∣, x ∈ {0, ..., j − 1} //compute the entries of the similarity matricesSM(pi) (see Eq. 5)
5: end for
6: end for
7: for all similarity matricesSM(pi), i ∈ {0, ...,m} do
8: bg(pi) = decomposeSM(SM(pi)) //extract the background (see [Farin et al. 2003])

9: end for

of the next system state is calculated assuming that these pixels belong to background. If the pre-
estimated valued′′ is greater thantℎbg, this pixel nevertheless belongs to foreground. A binary map
mx,y(t) represents the segmentation of pixels (1 for foreground and0 for background), and the
Kalman gaink1, 2x,y(t) = � or k1, 2x,y(t) = � is chosen depending on the binary mapmx,y(t)
(see Eq. 11).

k1, 2x,y(t) =

{

�, if mx,y(t) = 1
�, if mx,y(t) = 0

(11)

3.3. Shadow Detection

As mentioned in Section 1, it is important to predict the riskof possible collisions in advance. This
prediction is based on the object’s positions in image data and on recognizing if there are objects
with dangerous trajectories. Shadows cause an inaccuracy in position determination that lead to a
wrong prediction of possible collisions: Therefore, shadows must be detected and suppressed. The
proposed shadow detection algorithm is suitable both for detecting stationary and dynamic shadows.
The characteristic of shadows from moving leaves is identical to the characteristic of shadows of
moving cars and can hence be detected and suppressed. We use the normalized cross correlation
(NCC, [Jacques et al. 2005]) as an initial step for shadow detection and refined it using zero means
normalized cross correlation (ZNCC) to handle foreground pixels with small differences with the
background.

Let Ĩx,y(t) be the estimated background image andIx,y(t) an image given by the camera system.
For each foreground pixel, we generate a templateTxy(n,m) such thatTxy(n,m) = Ix+n,y+m(t)
for −N ≤ (n,m) < N wheret̄ is the mean of the templateTxy(n,m). Furthermore, letBxy(n,m)

be the template of the background such thatBxy(n,m) = Îx+n,y+m(t) wherēb is the mean of tem-
plateBxy(n,m). The ZNCC as well as the NCC (t̄ = 0, b̄ = 0) betweenTxy(n,m) andBxy(n,m)
at pixel(x, y) can be calculated using Eq. 12:

ZNCCx,y =
EZRx,y

EZBx,y ⋅ EZTx,y
(12)

with

EZRx,y =
N
∑

n=−N

N
∑

m=−N

∣(Bxy(n,m)− b̄)∣∣(Txy(n,m)− t̄)∣

EZBx,y =

√

√

√

⎷

N
∑

n=−N

N
∑

m=−N

(Bxy(n,m)− b̄)2 and (13)

EZTx,y =

√

√

√

⎷

N
∑

n=−N

N
∑

m=−N

(Txy(n,m)− t̄)2

whereEZTx,y considers the energy of the image template andEZBx,y considers the energy
of the estimated background. A pixel may potentially be classified as shadow if its NCC in the
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neighborhood is close to unity and its energyETx,y is lower than the energy of the background
EBx,y (see Eq. 14).

NCCx,y ≥ tℎNCC andEBx,y > ETx,y (14)

EBx,y as well asETx,y can be determined by calculatingEZBx,y(b̄ = 0) andEZTx,y(t̄ = 0).

3.4. Shadow Refinement
Depending on the chosen thresholdtℎNCC with (tℎNCC < 1.0), many foreground pixels with
small differences to background pixels may be misclassifiedas shadow pixels. To overcome this
limitation, we refined the classification of shadow- and nonshadow-pixels using the ZNCC. The
advantage of ZNCC is light invariance, so that only differences in texture cause significant changes
in its value. The refinement stage verifies if there are significant changes through textures and not
through illumination. Although the ZNCC is light invariant, image noise (texture changes) influ-
ences the ZNCC and causes an offset. This offset� can be determined while learning the back-
ground model or can be considered by the thresholdtℎZNCC . Similar to the NCC, a pixel is a
shadow candidate if the ZNCC in the neighborhood is close to the learned initial value and the en-
ergyETx,y of the template is lower than the energy of the backgroundEBx,y. But contrary to the
NCC,EZTx,y andEZBx,y represent only the energy of the textures from the background and the
template. Hence, the energy of texture from a valid foreground pixel can be lower than the energy
of texture from background. This is the case for large homogenous objects like cars. A pixel must
then be a shadow candidate if the energyEZTx,y is approximately equal to the energyEZBx,y

(see Eq. 15).

∣ZNCCx,y − (1.0− �)∣ ≤ tℎZNCC and

∣EZBx,y − EZTx,y∣ ≤ tℎcomp and (15)

ETx,y < EBx,y

3.5. Active Light Adaptation
Background models based on Kalman filtering can follow slow illumination changes in the back-
ground. However, when foreground objects cover the background, illumination changes in the back-
ground cannot be detected. Furthermore, sudden illumination changes cannot be respected by the
background because depending on the chosen threshold sudden illumination changes cannot be
classified as valid foreground or illumination changes. So there is a need to modify the background,
taking illumination changes into account. Therefore, we subdivide every new image intom subim-
ages at each positionpx(m) andpy(m) fitting the whole image and calculate their mean gray values
(see Eq. 16).

�(m, t) =
1

J ⋅ I

J/2
∑

j=−J/2

I/2
∑

i=−I/2

I(px(m) + j, py(m) + i, t) (16)

Here,J andI are the subimage sizes. The global illumination changeΔ(t) can now be detected
by calculating the median of all local illumination changes�(m, t):

Δ(t) = median
m

�(m, t) (17)

with

�(m, t) = �(m, t)− �(m, t− 1) (18)

Because small illumination changes are adapted by the background model, we decided to use simple
thresholding in order to avoid modifying the background model too frequently.

Δ(t) =

{

0, if Δ(t) < tℎΔ

Δ(t), if Δ(t) ≥ tℎΔ
(19)
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Fig. 9: Parallelization concept of the object detecting algorithm. Each input frame is subdivided into
n-frames and the same number of concurrent threads is generated to extract road users. The results
are then merged by the thread interpolation.

Finally, Eq. 7 for system state prediction is modified to overcome illumination changes and to
update the background.

[

Ĩx,y(t)
˜̇
Ix,y(t)

]

= S ⋅

[

Îx,y(t− 1)
ˆ̇
Ix,y(t− 1)

]

+

[

Δ(t)
0

]

(20)

Using this approach, the background model can account for slow as well as for sudden illumination
changes.

3.6. Parallelization

For all our proposed techniques, it may be seen that different pixels may be processed in parallel.
In other words, image rectification, the background estimator, the shadow detector as well as the
illumination compensation can all be run in parallel on a multi-core CPU. As mentioned before,
our algorithms have to work in real-time and hence such parallelization is highly desirable. This is
useful for speeding up the system for time critical tasks like detection of traffic participants. The
original image returned by the camera subsystem is divided inton subimages and the same number
of threads is generated to run on a multi-core platform. After processing each image the results from
all threads must be merged and interpolated (e.g., when an object being detected is split across two
or more subimages) for further object detection and classification algorithms. Fig. 9 illustrates our
realized parallelization technique.

3.7. Collision Risk Prediction

In this section, we briefly describe our algorithm that predicts the collision risk of approaching
objects with the car door. The algorithm generates information that serves as an input for the door
collision avoidance planner. The prediction of potential collisions is based on actual object positions
in image data and on recognizing if there are objects with dangerous trajectories.

The ambiance besides the door is subdivided into three danger-zones: in a red, in a yellow and in a
green danger-zone. These danger zones define the potential collision risk of objects located in one of
these zones and allow risk prediction of approaching objects in advance (see Fig. 10, left). In other
words, the collision risk of an approaching road user depends on its presences in one of these three
danger-zones. Objects moving in the green zone will not collide while collisions are highly probable
for objects located in the red zone. The width of the red zone is equal to the maximum workspace
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Fig. 10: Left:) Danger-zones next to the car and trajectories of objects used to predict the risk of
collisions. Right:) Examples of detected objects and predicted risk of potential collisions.

of the car door. Objects within the yellow-zone do not directly cause a collision, but may move into
the red-zone and need hence to be indicated as a potential risk. The size of the green zone and of
the yellow zone can be specified during car manufacturing, and the corresponding areas in images
can be determined by intrinsic and extrinsic camera calibration. For these reasons, the location of
extracted objects – here the lowest point of an object (see Fig. 10, left) – their approximate distance
from the car and their presences in one of these zones can be obtained from image data only. So,
the proposed algorithm is suitable for distinguishing between objects that pass the door very closely
and objects passing within a suitable large distance.

To increase the robustness of risk prediction, the algorithm also estimates the trajectory of de-
tected objects by tracking the object’s positions. A trajectory is computed using a quadratic func-
tion and the vertex of the parabola is determined. The location of the vertex in one of these zones
additionally defines the collision risk for an approaching object. Trajectory estimation prevents un-
detected, potential collisions for objects in the green zone. Such objects may move into the red zone
and may be classified as hazard-free if only their actual positions are used.

Finally, the algorithm generates three types of messages for the door collision avoidance planner
(see Fig. 1): One message that indicates a collision and leads to a door lock, one that indicates a low
weighted collision (for objects in the yellow zone) allowing only slow door operations and one for
no collision. Fig. 10 illustrates examples of extracted objects and their predicted collisions. Since
the proposed algorithm distinguishes between objects thatpass the door very closely and objects
that pass the door in a suitable large distance, car door users are able to open the door while parking
in a busy street when there are no objects potentially colliding with the car door. However, if there
are objects passing the car very closely, one may not be able to open a car door.

4. EXPERIMENTAL RESULTS

To verify and to evaluate our approach, we conducted experiments in complex environments con-
taining weak and strong shadows as well as small differencesbetween foreground and background
scenes using an omnidirectional vision system (ODVS). Image rectification was used to transform
the captured images into panoramic images of size480× 204 pixels. Images from the ODVS were
used to test the algorithm under various conditions (dark and light regions, image noise and different
resolutions due to image rectification and interpolation).We also conducted experiments to test the
algorithm in terms of fast and slow illumination changes andpresent its performance in the presence
of heavy snow. Similar to all image processing algorithms using off-the-shelf CMOS cameras, the
performance drastically decreases for dark scenarios, andthe algorithm does not work in absolute
darkness.
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Fig. 11: Left: Number of image pixels containing foregroundrelative to the total number of image
pixels. Middle: Quality differences using SAD and averaging. Right: Quality of the obtained back-
ground images for different numbers of training images fromthe initialization process started at
different frames of the trainings sequence.

4.1. Background Initialization
In this section, we present our results on background initialization. We introduce the background
qualityQ to compare and to evaluate different methods for backgroundinitialization (see Eq. 21).
The background quality is defined as the ratio between the number of correctly extracted background
pixelsNBackground and the number of ground truth pixelNGroundtrutℎ. A valid background pixel
pbi is a pixel that have a maximum differenced = ∣pbi − pbgi∣ ≤ THRES ∀i ∈ [1, n] to the
corresponding ground truth background pixelpbgi, whereTHRES = 5 for our application.

Qbackground =
NBackground

NGroundtrutℎ
(21)

Additionally, we generated trainings sequences from real life parking scenarios with many non
stationary foreground objects to evaluate the applicability of the background initialization in busy-
street scenarios. Fig. 11 (left) illustrates the percentages of foreground pixels in frames from a
chosen initialization sequence. Due to the large field of view of the camera, such a high number of
foreground objects in images is quite common for busy-street scenarios. The background image is
estimated using a block similarity matrix (SM) (see Section3.1), whose entries are determined by
calculating the similarity between the pixels (in a block) for each pair of frames. To speed up the
execution time, averaging instead of SAD for block differencing was used. However, the quality of
our initialized background image is lower compared to the background image based on SAD (see
Fig. 11), middle, but experiments demonstrated a fast adaptation of wrongly initialized background
pixels.

Fig. 11, right, compares our method for background initialization to the median-based [Jacques
et al. 2005] and to the kalman-based [Ridder et al. 1995] initialization. Our initialization process
started at different frames of the trainings sequence for a different numberN of input images. The
comparison demonstrates that at least 40 images are enough for SM-based background initialization
compared to other methods where more training images are needed for better initialization results.
Thereby, the challenge for the other methods is the large number of pixels containing foreground
content for more than the half of input frames.

We also conducted experiments to determine the performanceof background-initialization in the
presence of heavy snow. Fig. 12 illustrates training imagesof a snowy scenario (with highlighted
snowflakes) and the resulted initialized background images. Simulations demonstrated the same
performance for rainy scenarios. So, the proposed background initialization is mostly robust against
heavy snow and heavy rain.

4.2. Detection of Shadow Pixel Candidates

To detect small differences in intensity between foreground and background objects, the threshold
tℎbg (see Eq. (9)) must be low. An experimentally obtained value was tℎbg ≥ 5 that allows the
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Fig. 12: Training images of a snowy scenario (highlighted snowflakes) and initialized background
image.

detection of small intensity differences, but still many shadow pixels and noise are detected. Fig. 13
illustrates the result of foreground detection (BG/FG) forone pixel over time using NCC and ZNCC.
NCC was useful to pre-estimate shadow pixels, but valid foreground pixels are often misclassified
as shadow pixels that can be seen on the noisy characteristicfor the foreground (BG/FG NCC).
ZNCC overcomes these limitations by taking textural changes into account, so that foreground
pixels are not misclassified as background. The result is a smoother characteristic of the foreground/
background characteristic (BG/FG ZNCC).

Fig. 14 compares our results of shadow detection to the shadow detection algorithm proposed
by [Ridder et al. 1995]. Ridderet al. assume, that weak shadows have the same characteristic as
illumination changes that may be adapted into the background. Therefore, their algorithm automat-
ically increases the threshold for foreground detection using the variance (see Fig. 14, variance) of
the estimated background values over time. The threshold ishigh if the variance of the estimated
background values (e.g. caused by shadows) is high. However, pixels from small foreground objects
– such as motorbikes – that are classified as background also cause a high variance and might be
suppressed (see frames 160-175).

Strong shadows cannot be identified as they are detected as foreground. Once detected as fore-
ground it is impossible to differentiate between shadow andforeground (see frames 115-130). In-
creasing the threshold up to15 may suppress strong shadows, but foreground objects with small
differences to the background may be suppressed as well. Shadow detection based on NCC and
shadow refinement based on ZNCC allows the use of a small threshold to extract foreground ob-
jects (see Fig. 14, ZNCC) and is suitable to eliminate strongshadow borders.

4.3. Illumination Changes and Background Adaptation

Fig. 15 illustrates our experiments with various illumination changes. The reference characteristic
of the background is presented in Fig. 15(a) and various characteristics of the background disturbed
by illumination changes Fig. 15(b). The background model accounts for slow illumination changes
even if the background was covered for a short time interval and illumination changes were not to
large (see Fig. 15(b), frames0 − 100). Sudden illumination changes, which are larger thantℎbg,
cause wrong foreground information (see frames (280 - 310) and (380 - 400)). Lastly, figure (15(c))
demonstrates that detected illumination changes can successfully be compensated if they are ac-
counted for by the background model (see Eq. (20)).

We also conducted experiments to find the optimal number of search windows (NoW) for detect-
ing global illumination changes. The number of search windows must be chosen so that influence
of illumination changes caused by foreground objects is minimized (see Eq. (17)). We generated
a test profile of illumination changes (IC) and tracked it by detecting illumination changes with
different numbers of search windows. Experiments showed that at least 60 search windows were
necessary to track the light profile sufficiently. The main problem of less then 60 search windows
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Fig. 15: (a) One pixel and the detected foreground over time (reference). (b) Misclassification of
foreground pixels caused by fast and slow illuminations changes. (c) Adaptation of fast and slow
illumination changes.

is the high influence of lighting changes caused by foreground objects. The influence of foreground
objects is almost suppressed using90 NoW. Our measurements of tracking the test profile using
different numbers of search windows illustrates Fig. 16. Wealso derived from our experiments that
one search window should not be smaller than(15 × 15) pixels due to the increased influence of
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Fig. 16:Left: Illumination changes, Right: Frames 40 - 100. The more number ofsearch windows (NoW) can
be used for detecting illumination changes(IC), the better is the detection result. Good results give a NoW of
60 - 90.

image noise from smaller window size. An offset less than 2 (less thantℎΔ) in tracking the profile
was tolerable and automatically adapted by the background model.

4.4. Validation of Foreground Pixels

Not all detected foreground pixels need to be valid (true positives = t.p.), i.e., there might also
be false positives. For example, shadow pixels are often misclassified as valid foreground (false
positives = f.p.). On the other hand, pixels having small differences to background can falsely be
classified as background pixels (f.n., false negatives). Fig. 17 illustrates an example of a typical
road scenario containing both true and false positives as well as false negatives. We also evaluated
our algorithm in terms of false negative, true positive and false positive detection rates under var-
ious conditions like diffused light, direct sunlight and indoor conditions and compared the results
obtained with a perfect detection. These results are shown in Table II, where the percentages were
computed based on≈200 test images. Shadow pixels in images with sunlit scenarios can easily be
misclassified as valid foreground pixels. In general, smallobjects like motorbikes are also extracted
in sunlit scenarios even when they are far away from the car: but only 76% of their pixels are clas-
sified as valid foreground. Clearly, such regions may consist of only 20 pixels – and approximately
five pixels of such objects not being classified as valid foreground resutls in a false negative rate of
25%. The false negative rates drastically decrease when such objects approach to the car. High false
negative rates may lead to collision warnings due to bad collision prediction for objects far away
from the car, but the prediction becomes more precise when such objects approach the car. Good
detection rates were achieved for large foreground objectsin all tested scenarios.

Fig. 18 illustrates the detection of a simulated object surrounded by snow flakes in a snowy sce-
nario. The snowflakes are detected as small, rapidly moving objects and are removed using median
filtering [Massey and Bender 1996]. Fig. 18, right, illustrates the result for objects in snowy scenar-
ios with removed snow flakes: Large snowflakes close to the camera overlapping the boundary of
objects cannot be removed using median-filtering and may lead to a wrong estimation of the object
position in images. However, tracking the object over long image sequences or using cameras with
high frame rates overcomes this limitation. Since snowflakes move very fast, the number of images
in a huge data set containing inaccuracies in object detection caused by snowflakes or heavy rain is
small.

4.5. Computation Time and Parallelization

We chose a complex indoor environment with three walking people, shadow effects and some illu-
mination changes (switching light on/off) to measure the execution time of the proposed algorithm.
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Fig. 17: Left: Detected pixels of a foreground
object. Right: Examples of true positives and
false negative pixels in an detected foreground
object.

Scenario Obj. Size t.p. f.n. f.p.

Diffuse light small 85% 15% 2%
large 95% 5% 3%

Sunlight small 76% 24% 7%
large 93% 7% 10%

Indoor cond. small 90% 10% 1%
large 97% 3% 4%

Table II: Overview of our validation results:
Percentages of true positive, false negative and
false positive pixels in foreground regions.

Fig. 18: Left: Simulated foreground object with extracted snowflakes. Right: Removed snowflakes
using median-filtering and remaining disturbances at the detected object.

time Averaging Similarity Decomp. Total Time
t0 ≈ 2.7 ms - - 2.7 ms
t1 ≈ 2.7 ms ≈ 0.2ms - 2.9 ms
t2 ≈ 2.7 ms ≈ 0.4ms - 3.1 ms
t39 ≈ 2.7 ms ≈ 8.2 ms - 10.9 ms
t40 ≈ 2.7 ms ≈ 9.0 ms - 11.7 ms
t41 - - ≈ 412 ms 412 ms

Table III: This table illustrates the computation time on anAMD Phenom 9650 quad-core CPU at
2.54 GHz for background initialization.

We use about 400 test images of this data set and calculated the mean execution time as well as
the standard deviation (Std. Dev.). Table III gives an overview of the execution times for our back-
ground initialization algorithm (see Section 3.1) usingN = 40 input frames with size480× 204.
We also conduct experiments to determine the execution timefor position determination, trajectory
estimation and risk prediction. Therefore, we chose a scenario containing five small and large ap-
proaching objects: The execution times for all objects was≈ 2ms using a single core. Table IV, left
demonstrates the execution times for rectification, background modeling as well as shadow detec-
tion, illumination changes and collision detection using asingle core of a 2.54 GHz AMD Phenom
9650 quad-core CPU. As discussed in Section 3.6, we parallelized our object detection algorithm
using multithreading on the quad-core CPU and measured the execution times for the same test data
set. The image was divided inton subimages, each of that was processed by a different concurrent
thread. The result of all threads is then merged using small thread called interpolation. Clearly, as
the total computation time will be decreased with increasing number of threads, the time for merg-
ing and interpolation increased. Table IV, right gives an overview of the measured times. Table IV
also illustrates the performance (throughput) in frames per second (fps) of the proposed algorithm.
Fig. 19 illustrates the single computation time for each processing step as well as the overall compu-
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Mean Time (1 core) Std. Dev. Image Size 2 cores 4 cores
Rectification ≈ 3.6 ms 0.7 ms 640× 480 ≈ 1.9 ms ≈ 1.0 ms
Background ≈ 30.1 ms 1.2 ms 480× 204 ≈ 15.1 ms ≈ 7.5 ms
Shadow Dect ≈ 24.1 ms 2.3 ms ” ≈ 12.2 ms ≈ 6.3 ms
Ill. Comp ≈ 10.4 ms 1.6 ms ” ≈ 5.6 ms ≈ 2.8 ms
Interpolation 0.0 ms 0.0 ms ” ≈ 2.0 ms ≈ 2.2 ms
Collision Prediction ≈ 2.0 ms ” ≈ 2.0 ms ≈ 2.0 ms
Total Time 70.2 ms ” 38.8 ms 21.8 ms
Throughput 14.25 fps ” 25.77 fps 45.87 fps

Table IV: This table illustrates the computation time on a 2.54 GHz AMD Phenom 9650 quad-core
CPU for the non parallelized algorithm (left), the parallelized algorithm (right) and the achieved
throughput in frames per second [fps] using 1-4 cores.
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Fig. 19: Estimation of computation time using
more than 4 cores (without collision predic-
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objects depending on the frame rate.

tation time for more than 4 cores. This estimation is based onour measurements for 1, 2 and 4 cores
on the quad-core CPU and is extrapolated up to 16 cores. Due tothe increasing time for merging
and interpolation the results of all threads there is no appreciable speed up using more than 16 cores.

In Fig. 20, we present our results on object detection and risk prediction using different sized
objects and frame rates. We refer object detection and risk prediction as detection and compared
the results with perfect detection. Detection rates for fast objects might not be sufficient for cam-
eras with low frame rates due to poor risk prediction results. This can be explained due too large
distances between one object in consecutive frames: Since their positions are used for trajectory es-
timation, the trajectories cannot sufficiently be estimated for fast moving objects, in particular when
an object is not detected. Higher frame rates overcome this limitation due to smaller differences
in object position for consecutive frames. On the contrary,slow objects result in good detection
rates independent of the chosen frame rate. Finally, we evaluated our proposed method using var-
ious scenarios and compare our approach with other well known algorithm described in Section
1.1. Fig. 21 illustrates one of our evaluated scenarios containing up to 500 test frames. Difficul-
ties of this scenario are a less textured environment as wellas weak and strong shadows induced
by different lighting sources. While the approach in [Ridderet al. 1995] modeled the background
well, shadow detection failed in some cases. Similarly, while the shadow detector in [Jacques et al.
2005] performed well, the background model has some limitations. One limitation is that once the
background is learned the background is not updated, which results in many noisy foreground pix-
els caused by illumination changes etc. The combination of both algorithms and the modification
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Original image sequence.

Less noise in background modeling [Ridder et al. 1995], but detected strong shadows pixels.

There is a good shadow detection in [Jacques et al. 2005], but still imagenoise.

Our approach with proposed shadow and foreground detection. Noiseas well as shadows can be better
suppressed.

Fig. 21: Evaluation of our approach with different background models and shadow detection algo-
rithms.

of the shadow detector as well as the light compensation led to a powerful background estimator
that resulted in better foreground detection on grayscale images, when compared with state of the
art techniques (see Fig. 21). Fig. 22 illustrates two parking scenarios and detected road users like
bicycles, motorbikes, cars and people walking close to the car. The images in the first row illustrate
detected objects in a normal street parking scenario with oncoming traffic, whereas the images in
the second row illustrate road participants detected in a two-lane one-way street parking scenario.
It can be shown, that fast moving, small objects like motorbikes are also detected, although they
are relatively far away from the car (see Fig. 22, 2. row, middle). Risk prediction is performed with
using the image positions of extracted objects in one of the danger-zones and their trajectories. The
prediction result is displayed in the image.

5. POTENTIAL IMPLEMENTATION ON AN FPGA

Robust detection of fast moving objects like cars or cycles is a prerequisite for safe door operations.
Cars driving at13.89m/s (about50km/ℎ) move approximately0.5m between two frames tracked
with cameras having frame rates of 30 fps and have to be detected within two or three frames.
The most time-critical part of our system is the background estimation and foreground detection
algorithm: Therefore, we introduced a parallelization scheme in Section 3.6 to guarantee real-time
foreground detection within 33ms (=̂ 30 fps) for panoramic images with a resolution of480× 204
pixels. For our implementation, we used a quad-core CPU and obtained a maximum throughput
of ≈ 45 fps. However, the core-based implementation provides only a throughput of 84 fps (see
Fig. 19) for images with resolutions of480 × 204 pixels. Furthermore, this throughput drastically
decreases when the image resolution increases. On the otherhand, high-resolution cameras with
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Fig. 22: Detected traffic participants and road users in a normal street (top) and in a two-lane one-
way street (bottom).

frame rates of 80-120 fps would lead to a faster and more precise detection of traffic participants
and are therefore highly recommended. For this reason, we introduce a potential implementation
of the foreground detection algorithm on an FPGA to guarantee real-time foreground detection for
high-resolution high-frame rate cameras. The parallelization scheme presented in Section 3.6 allows
to port the algorithm onto small form-factor embedded systems – e.g., on low-power, cost-effective
FPGA’s or cameras with FPGA’s integrated within the package.

In our setup, we use firewire-cameras that are suitable for stream-based FPGA implementations.
However, high parallelization concepts may be preferred asimage rectification, background ini-
tialization and shadow detection require information fromneighboring pixels – e.g., information
from pixels from the following two or three rows. But this information is normally not available
for stream-based implementations. In the following sections, we propose an exemplary, highly par-
allel implementation of the foreground detection algorithm for FPGA-based embedded systems to
guarantee real-time foreground detection for high-resolution high-frame rate cameras within at least
33ms.

5.1. Background Initialization

The initialization of the background as presented in Section 3.1 is the first stage for foreground
detection. The background is initialized by choosing the pixels that contain background in a train-
ing sequence ofn frames. For each pixel positionpi, a similarity matrix is computed containing
absolute, mean-based block differences. Background pixels are selected within a matrix decom-
position stage and the initial background value is calculated using median filtering. Fig. 23 illus-
trates a FPGA-based hardware-architecture for backgroundinitialization for one pixel positionpi.
Thereby, letpi, i ∈ [1, .., N × M ] be pixels of original images with sizeN ×M , pri be pixels of
rectified/transformed images andpbi be pixels used for background initialization. Original images
are transformed into rectified images as a first step. For eachpixel positionpi in original images,
a Look-Up-Table (LUT) is provided that may be stored in the external memory of the embedded
system. The LUT may be obtained by camera calibration (see Section 2.1) and contains the pixel po-
sitionspL1..pLn in original images whose intensity values are used for bicubic interpolation within
the hardware-blockInterpolation. The resulting intensity value is stored at pixel positionpri in a
rectified image (see blockRectification). The hardware moduleBackground Initializationrealizes
the background initialization. Block-based averaging (see hardware blockMean) requiring intensity
values from neighboring pixelspr1..prm may be used to build the similarity matrix on that back-
ground pixel selection is based. For each pixel position in aframe of the training sequence, the
hardware blockMeancomputes the average ofm intensity values and stores the result�m(pi) in
a buffer. Based on the mean-values�m(pi), the entries of the similarity matrixdj,m(pi) are com-
puted with the blockSimilarityand the results may be stored in an external memory.Similarityalso
provides a signalcontrol to select the values needed for similarity matrix computation. Finally, the
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Fig. 23: Hardware architecture for background-initialization.

hardware blockMatrix Decompositionis a realization of the decomposition algorithm proposed by
Farin et al. [Farin et al. 2003] and selects the pixels of the training sequence that relate to back-
ground. The final intensity value of the background may be computed within the hardware module
Medianand serves as initialization for the Kalman-based background model.

5.2. Realization of the Object Detection Algorithm

In this section, we describe the hardware architecture for the proposed background estimation and
object detection algorithm (see Section 3). Fig. 24 illustrates a potential implementation of back-
ground estimation and foreground detection for one pixel position pri. The architecture consists
of two hardware modules,Dynamic Background EstimationandShadow Detection. The hardware
blocksRectificationpresented in Section 5.1 may also be used to transform pixelspi from original
images into pixelspri that serve as input for the foreground detection module. Thesystem state of

the background modulêIpri(t) and ˆ̇Ipri(t) for each pixel positionpri may be stored in an external
memory and is initialized with the background valuepbi.

The hardware-blockSystem State Predictionconsiders global illumination changesΔpri(t) (see
Section 3.5) and predicts the next system state to determinewhetherpri belongs to foreground or to
background (see blockFG BG). The system state is updated using the hardware blockSystem State
Updateby choosing different Kalman-gainsk1, 2 depending on a detected foreground or back-
ground pixel. BlockFG BGalso generates a signalcontrol that activates and deactivates the blocks
NCC/ZNCCand Shadow Classificationwithin the moduleShadow Detection. Shadow detection
is not required for background pixels, and hence the blocksNCC/ZNCCandShadow Classification
may be deactivated when a background pixel is identified. TheblockNCC/ZNCCconsists of a hard-
ware realization for NCC and ZNCC computation and calculates the energy-valuesETpri, EBpri,
EZTpri andEZBpri. NCC and ZNCC computation is based on image blocks containing the pixel
pr1..prm in an actual frames and on the corresponding image blocks in the background image (sys-
tem stateŝIpr1..Îprm) whereaspri represents the center of each image block (see Section 3.3).Block
Shadow Classificationrepresents a hardware-realization of the shadow classification algorithm (see
Eq. 15) and distinguishes between shadow pixels or valid foreground pixels. This block also gener-
ates a control signalclassto specify the value of the output pixel positionpFGi that indicates the
background estimation and foreground detection result – e.g., 0 for background and shadow and
255 for valid foreground. The result is then stored in an external memory as an image that serves as
an input for further processing stages like collision risk prediction.
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Fig. 24: Hardware architecture of the background-estimation and foreground detection algorithm.

6. CONCLUDING REMARKS
In this paper, we presented algorithms for robust background estimation and foreground detection
in gray scale images captured by omnidirectional cameras embedded inside a smart car door. The
focus lay in modifying and developing algorithms for fast object detection to quickly detect fast ap-
proaching objects for safe door operations. In this implementation, we achieved a throughput of at
least 30 frames per second using a quad-core CPU. The proposed algorithm initially estimates back-
ground images even from scenarios in which no empty background is available during initialization.
Foreground is segmented based on the recorded background image and based on Kalman-filtering
as a next stage. Shadow pixel candidates are determined using NCC, and a refinement is carried
out using ZNCC to distinguish between foreground pixels with small differences from background
or shadow pixels. In order to reduce the influence of illumination changes that cause foreground
detection to fail, illumination changes were detected by local search windows and compensated
for by updating the background model. The proposed algorithms were successfully implemented to
track objects like walking humans, motorbikes, bicycles and cars. They were parallelized to obtain
attractive speedups on multi-core processors. Finally, they were evaluated against other state-of-
the-art methods and showed enhanced foreground detection in our setting. We briefly described an
algorithm to predict the risk of collisions and to block the car door in case of a collision. How-
ever, further studies on optimally selecting the differentparameters associated with the algorithms
are necessary to make them work better in a wide variety of traffic scenarios and lighting conditions
such as heavy rain or snow. Another interesting direction toexplore would be to implement our algo-
rithms on small form-factor embedded platforms (e.g., onesmade up of a heterogeneous collection
of reconfigurable and general-purpose processors) which blend well with a standard automotive
electronics setup. Therefore, we presented an implementation scheme to port the time-critical back-
ground initialization and foreground detection algorithms onto a low-power, cost-effective FPGA.
Such platforms might also lead to more efficient/fast implementations and therefore better reaction
times for the smart door due to a higher throughput compared to multi-core-based solutions.
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