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Abstract
The complexity of today’s models and simulations in computational science
and engineering has dramatically increased and clearly outpaced the boost
in computing power. To cope with this increase in complexity, model order
reduction methods construct low-cost surrogates of large-scale simulations
by incorporating data or additional knowledge of the current problem at
hand. Thus, the problem is not solved in a general, high-dimensional solution
space but in a problem-dependent, low-dimensional subspace, which, at least
approximately, includes the solution. The challenge is now to efficiently
utilize additional knowledge of the problem to find the most appropriate
subspace.

We propose to consider model reduction as a learning task — from avail-
able data or knowledge, we want to learn a good subspace for the current
problem at hand. Therefore, we first introduce a new hierarchy or classifi-
cation of model reduction techniques which reflects this strong relationship
with learning. Second, we tackle the learning problems with new sparse grid
techniques. For example, we introduce a novel sparse grid multigrid method,
we present the first clustering method based on sparse grids, and we discuss
an Offline/Online strategy to solve the classification problem up to 300 times
faster than before. Third, because we consider model reduction as a learning
task, we can now employ learning methods such as our sparse grid techniques
in the context of model reduction. This gives us a variety of new methods in
each class of our model reduction hierarchy.

We demonstrate the advantages of the new model reduction methods on
the basis of various engineering applications reaching from thermal conduc-
tion via car crash to chemical reaction simulations, and we show that our
sparse grid learning techniques enable us to tackle numerous classical learn-
ing problems such as image segmentation and the analysis of flow simulation
data which could not be treated with sparse grids before.
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1. Introduction

Today, numerical simulations have become at least as important as experiments. Such
computer simulations allow researchers to investigate problems that are otherwise either
too costly or simply impractical to address. This new discipline called computational
science and engineering (CSE) can be seen as the third pillar of 21st century science,
besides theoretical analysis and experimentation. It is the combination of these three
approaches that led to the great leaps of science in the past decades [70].

Performing an experiment or computer simulation does not directly lead to scientific
discovery. At first, the result is only data. Answers to posed scientific questions are
found by searching for patterns in the produced data. Some of the greatest discoveries
in history are based on this fundamental interaction between collecting and analyzing
data. Examples are the empirical laws of planetary motion, or the development and
verification of quantum physics [28]. Nowadays, experiments — independent whether
they are performed in our physical world or through a computer simulation — produce
huge amounts of data that cannot be analyzed anymore by humans alone. With machine
learning methods, it is possible to crunch such amounts of data to detect similarities,
extreme outliers, and other significant patterns. For example, in astrophysics, computer-
based data analysis is starting to play a major role [184]. However, the data produced by
computational experiments cannot only be used for scientific discovery but it can also be
used to derive more efficient computer models and numerical methods. In this thesis, we
employ machine learning methods to analyze simulation data but also to derive low-cost
surrogates of large-scale simulations.

A common task in science and engineering is to evaluate input-output problems where
the output of interest is computed from a solution of an input-parametrized partial dif-
ferential equation (PDE). These problems can be solved with classical numerical tech-
niques such as the finite element method, the finite difference method, or the finite
volume method. However, this quickly exhausts today’s computers because either very
high accuracies are required or, even more common, the input-output problem has to be
solved many times in a row as, for example, in the optimization, uncertainty quantifi-
cation, or statistical inverse contexts. Therefore, the aim is to keep the computational
effort to solve the input-output problem low:

1. A first step towards reducing the computational costs is to discretize the PDE not
on an equidistant grid with equal mesh width in all directions, but to employ a
priori grid optimization to derive grids and spaces that are specially constructed for
certain problem classes [171, 195]. If the current problem at hand belongs to such a
problem class where an a priori optimized grid is available and the underlying PDE
is discretized on the optimized grid, then fewer grid points (degrees of freedom)
are sufficient to obtain a solution with similar accuracies as the classical solution.
This leads to a reduction of the complexity of the solution process. That is what
we call a priori model order reduction.

2. The natural next step is to derive solution spaces not for whole problem classes
but only for the particular problem of interest [170, 139]. To derive a space that is



tailored to an input-output problem, the characteristic relationship between inputs
and outputs is learned from data. This data is obtained in a pre-processing step by
solving the problem multiple times for different inputs in the classical way. We call
this a posteriori model order reduction because first the data must be produced
from which then the problem-dependent space is derived.

3. To continue this process, we do not only construct one problem-dependent space
but multiple local spaces, each of them tailored to a specific system behavior.
This can be achieved by analyzing the solution data to discover distinct system
behaviors and to learn from it to construct these multiple local solution spaces.
From these local spaces, an appropriate one is selected for the final approximation.
We call this post analysis model order reduction.

These three model reduction types — a priori, a posteriori, and post analysis —
form our reduced-order model hierarchy. We refer to, e.g., [63, 73] for a more common
hierarchy consisting of projection-based, data-fit, and physics-based reduced models.

Our reduced-order model hierarchy reflects the close relationship between model order
reduction and machine learning. In fact, model order reduction is nothing else than a
learning problem — from the knowledge about the problem, a specific solution space
is derived leading to a reduction of the solution complexity for the current problem or
problem class. In case of a priori model reduction, this relationship is not so clear
because no data is available. Still, from the knowledge of the problem class, the a priori
grid optimization is performed. The other two model reduction types, i.e., a posteriori
and post analysis model order reduction, heavily rely on data to gather information
about the problem and thus are learning problems in the classical sense. A posteriori
model order reduction can be stated as a supervised learning where the relationship
between data points (parameters) and target values (outputs of interest) is learned.
Post analysis model reduction is not only related to supervised learning but also to
unsupervised learning where only the data points (solutions) are given and the hidden
structure (system behavior) has to be discovered to construct multiple local reduced
models.

In this thesis, we focus on grid-based methods to tackle supervised and unsupervised
learning problems. Conventional learning methods represent functions as linear combi-
nations of basis functions centered at the given data points. This automatically adapts
the function representation to the data. However, the computational complexity of such
a function representation grows if the number of data points is increased. Since these
data-based learning methods typically scale quadratically or even worse with the num-
ber of data points, additional approximations are required to tackle large data sets. By
discretizing functions as linear combination of basis functions centered at grid points
rather than at the data points, we obtain learning algorithms that scale only linearly in
the number of data points. To cope with the curse of dimensionality, i.e., the exponential
increase of the number of grid points with the dimension of the data points, we employ
sparse grids [79, 153].

The objective of this thesis is to develop novel sparse-grid-based learning techniques
to tackle supervised and unsupervised learning problems as well as to apply these sparse
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grid learning techniques and other learning methods to a priori, a posteriori, and post
analysis model order reduction. The structure of this thesis reflects our reduced-order
model hierarchy and the thesis’ objectives:

e In Part I we consider a prior:i model order reduction where the underlying PDE
is discretized on a sparse grid. We present a novel multigrid method to efficiently
solve the discretized system and show results for a multi-dimensional convection-
diffusion problem.

e In Part IT we present sparse grid methods to tackle supervised learning problems.
We introduce a classification method based on sparse grid density estimation which
allows us to split the learning procedure into a costly Offline (pre-processing) and a
rapid Online phase (prediction). In addition, we show how to employ ensembles of
sparse grid classifiers and demonstrate that this approach is well-suited for modern
hardware architectures. We then employ the sparse grid methods to derive a pos-
teriori reduced-order models for thermal conduction problems and the simulation
of a heat shield.

e Finally, in Part III we develop two sparse-grid-based clustering (unsupervised
learning) methods — to the author’s knowledge the first clustering methods based
on sparse grids — and employ them to derive post analysis reduced-order models
for the analysis of car crash data. Furthermore, we consider the simulation of an
Ho-Air flame which is a nonlinear problem where post analysis model reduction
greatly improves the accuracy.
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2. Preliminaries

We review several concepts and methods related to data mining, model order reduction,
and sparse grids. Of course, this section is not an exhaustive presentation of these
topics. Its purpose is rather to provide enough background information for the following
sections, to cite literature with more details, and, in particular, to define the notation.

2.1. General Notation of Vectors, Matrices, Sets, and Spaces

We follow the common convention that vectors are bold lower-case letters (e.g., a)
and that matrices are bold upper-case letters (e.g., A). A matrix denoted as A =
[ai,...,ap] has the column vectors aq,...,ap. The i-th component of a vector a is
denoted with a;, the element in the i-th row and the j-th column of a matrix A is A;;.
The j-th component of the i-th column vector in a matrix A = [aq,...,ay| might be
denoted with a; ;, but, to avoid confusion, we always indicate explicitly when we use
this subtle notation. We denote spaces and sets with calligraphic letters (e.g., S,V, D)
except for N' € R which is a scalar value, and the mixed Sobolev space Hﬁlix which is not
denoted as a calligraphic letter even though it is a space. Further notation is introduced
where necessary.

2.2. Learning from Data

Data mining or knowledge discovery is the process of searching for patterns, regularities,
and irregularities in data. It is a very broad task involving many steps reaching from
the initial data pre-processing to the final interpretation of the results [65]. We are only
interested in the learning step where systems are trained on data samples to generalize
to new, unseen samples. In this section, we briefly review supervised and unsupervised
learning problems, and list a few learning methods which are used in the following
sections.

2.2.1. Supervised Learning

Supervised learning constructs a function to map data points onto target values. We
define the supervised learning problem, introduce classification and regression as the two
major supervised learning tasks, discuss non-probabilistic and probabilistic approaches,
and list a few supervised learning methods.

Classification and regression Let ¢ : R — R be an unknown function that has been
sampled at the data points {x1,..., 2y} C R?leading to the target values {y1, ...,y } C
R. Assume the sampling process was disturbed by noise. The unsupervised learning task
is to find a function é: R? — R approximating the unknown function ¢ to make predic-
tions on before unseen samples, i.e., the function ¢ should generalize to new data. The
function ¢ is computed by considering only the training data set

S = {(ml,yz)}f\il C R x R.
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We do not want to interpolate the data in S because we are not interested in exactly
matching the training data. It is more important that ¢ generalizes well to new data
samples. We have a classification problem with & classes if {y1,...,ya} C {1,...,k} and
a regression problem if {yi,...,yy} C R. We distinguish between binary classification
problems where £ = 2 and multi-class classification problems with k£ > 2. In the context
of classification problems, we call the function ¢ a classifier.

We can think of many real-world supervised learning problems [136]. For example,
with document classification, email messages can be filtered for spam and junk emails
[102]. Another example is handwriting recognition where small images have to be classi-
fied into {0,1,...,9} [136]. But supervised learning problems are also found in science,
in particular, in life sciences where, for example, biochemical screenings are replaced
with classifiers [176]. We will consider such a problem in Sec. 7.3.

If we have a classification problem, the quality of a classifier ¢ can be quantified by
the accuracy

S S 16l = ) (1

on a test set T = {(z, y{)}f‘i{ where I is one if the classifier ¢ at @ predicts the correct
class y, and else zero. In case of a regression problem, we can compute the average Lo
or L, error. Because the classifier should be tested on unseen data, the test set is not
used to train the classifier.

Usually, the classifier ¢ depends on parameters which have to be tuned to the data
at hand with the aim to obtain the best performance on new data. For that purpose,
it is common to employ n-fold cross validation where the training data set is split into
n equally sized subsets [28]. The classifier is then trained for different parameters on
the union of n — 1 subsets and validated on the remaining set with, for example, the
accuracy (1). This process is repeated such that each subset becomes the validation
set once. Those parameters are selected for which the classifier performs best on the
validation data sets. To finally assess the quality of the classifier ¢ on new, unseen data,
the accuracy (1) can be computed for a test data set if available for the given problem.

Probabilistic models So far, we considered classification from the classical point of
view where the training data set S is given and the classifier ¢ is constructed to predict
the label y for a new, unseen data point & € R? by é(x) = y. Let us now consider
classification from the Bayesian point of view [136]. Given are the samples {x1,...,z}
of a random variable X, the labels {y1,...,yn} of a random variable Y, and the joint
probability density function p of X and Y. Probabilistic models do not directly determine
the label y € {1,...,k} of a data point € R? but first estimate the posterior class
probabilities p(Y = i|X = «) for each class i € {1,...,k} and then decide how to
label the data point @ [28]. The posterior class probability p(Y = i|X = ) is the
probability that data point @ has label i € {1,...,k}. There are two approaches to
compute these probabilities. Discriminative models directly compute p(Y = i|x) to
estimate the posterior class probability function p(Y = i|x) for each class i € {1,...,k}.

14



Generative models construct p(x|Y = i) to estimate the class-conditional probability
functions p(x|Y = i) and then compute for a data point & € R? with Bayes’ theorem

DX = |V = )p(Y = i)

PO =X = @) = PR =S )

the posterior class probabilities, where p(Y = i) is the estimated prior class probability.
To simplify the notation, we follow [28] and introduce a random variable Y; for each
class i € {1,...,k}, and write (2) as

_ Bel1p -

Models estimating the class-conditional densities p(x|Y;) are called generative models
because synthetic data can be generated by sampling the estimated probability function
p(x|Y;). In the following, we employ probabilistic and non-probabilistic models, as well
as generative and discriminative probabilistic models. We refer to [115, 136, 28] for more
details on the Bayesian statistics point of view on classification in general and for more
details on discriminative and generative models in particular.

Supervised learning methods There is a wide range of supervised learning methods,
see, e.g., [102, 28, 165, 136]. Amongst others, we employ in the following nearest neighbor
classifiers where a new point is classified according to the majority class membership of
its nearest training data points [102]. If the training data set is small, we can simply
iterative over all training data points to find the nearest neighbors. However, if the
training data becomes large, it is worthwhile to first construct a search structure in a
pre-processing step to find nearest neighbors without an exhaustive search of the training
data [28].

We also consider support vector machines (SVM) which map the training data into a
high-dimensional space where they can be separated with hyperplanes even though the
data might not be linearly separable in the original space. Support vector machines rely
heavily on the concept of kernels K : § x & — R. These are functions to which an inner
product space V is associated such that we can write K (x;, x;) = (g9(xi), g(x;))y where
g:S — Vis a function and (-,-)y is the inner product of V. This means that if the
data points enter the learning algorithm only through the inner product (-, )y, we can in
principle consider them in the possibly very high-dimensional space V without explicitly
constructing the representation in V. The advantage is that in a high-dimensional space
V the data points can be represented such that they become separable by a hyperplane
even though this might not be possible in the original space. We refer to [165] for an
extensive study of these kernel properties and the support vector machines, and to [110]
for a widely-used implementation.

In the following, we also frequently use the sparse-grid-based classification and re-
gression method which will be introduced in Sec. 2.4.2. It discretizes the classifier
¢ : RT — {1,...,k} on a sparse grid and thus achieves a computational procedure
which scales only linearly with the number of data points. Thus, it is well-suited for
large data sets.

15
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Figure 1: The two moons data set consists of two interwoven half moons. The k-means method
fails because a straight line cannot separate the two moons, see (b). Spectral clustering
in (c) is able to find clusters with non-convex shape and curvilinear boundaries leading
to a nearly perfect clustering of the two moons. Note that the cluster boundary in (c)
near the right bottom corner of the domain is unspecified because no information is
given in this region.

2.2.2. Unsupervised Learning

Training data of unsupervised learning problems contains only data points and no target
values. The aim is to find the hidden structures in this data. There are three major
unsupervised learning tasks, namely density estimation, clustering, and dimensionality
reduction. We briefly discuss each of them.

Unsupervised learning tasks Given is the training data set

S={xy,...,xy} C R

Note that it does not contain any target values. We distinguish between three unsu-
pervised learning tasks. Density estimation determines the probability density function
of the distribution of the data S, clustering divides the data S into groups of similar
data points with respect to a certain similarity measure, and dimensionality reduction
finds a low-dimensional embedding of S which reflects the structure of the training data
with respect to a certain criterion [28]. Density estimation is the most fundamental one
and it stands out from the other two tasks, as it can be clearly defined without the
context of the application. Clustering and dimensionality reduction require specific and
problem-dependent criteria, and it is hard to assess the quality of the result without
taking the context into account [180].

Convex and non-convex clustering methods Assume we want to cluster the two moons
data set as shown in Fig. 1a into two clusters and suppose the similarity between two
data points is their Euclidean distance. We then expect a clustering method to separate
the two moons.
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The widely-used k-means clustering method partitions the set S into Si, ..., Sg such
that the within-cluster sum of squares is minimized, i.e., the partition Sp,..., Sy is the
result of the optimization problem

k
rgmsinz >l — el (4)

a.
S1500Sk i=1 :I:jESi

where ¢1,...,c; € R? are the means of the points in Sy, ..., Sk, respectively. We also
call ¢; the center of the i-th cluster. The optimization problem (4) is usually solved
with Lloyd’s algorithm [28]. A fundamental problem of k-means clustering is that it is
a convex clustering method and thus can only detect clusters with a convex shape with
respect to the similarity measure. This means, the two moons cannot be separated with
k-means clustering, see Fig. 1b.

So-called non-convex (or nonlinear) clustering methods are required to separate the
two moons. Non-convex methods, e.g., spectral clustering and density-based clustering,
are able to find clusters of arbitrary shape and thus can separate the two moons, see
Fig. 1c. Spectral clustering represents the data as a similarity graph and uses the
eigenvectors of a modified adjacency matrix of the graph to derive the clustering [179].
We extensively deal with spectral clustering in Sec. 10.1. Density-based methods define
a cluster as a dense region (“where many data points are”) surrounded by a region of
low-density (“where few data points are”) and find these high- and low-density regions
by estimating the density function of the data [64]. We discuss a density-based method
with sparse grids in Sec. 10.2.

All these methods have in common that they assign exactly one cluster label to each
data point in S. Even though not of relevance for us, we want to mention that clustering
can also be put into a probabilistic setting where the data points have multiple labels
each associated with a certain probability [28].

Clustering validation Having obtained a clustering of the data points in & with a
clustering method, we want to validate the quality of the cluster assignment. If the
true clustering is known, we can employ so-called external measures to compare the two
cluster assignments. If external information is not available, structural properties such
as compactness and separation of the clusters are determined with so-called internal
measures [127].

Let us first consider an external measure. The adjusted rand index (ARI) is a measure
of the similarity between two cluster assignments [112]. We cannot simply compute the
accuracy (1) as in supervised learning, because we do not know how to match the cluster
labels from the true clustering with the cluster labels obtained by the clustering method.
Hence, the adjusted rand index does not consider each element on its own but counts
correctly clustered pairs of elements. Its range is between -1 and 1 where 1 corresponds
to perfect agreement with the true clustering.

Internal measures do not require external information. They assess the quality of
a clustering based on certain structural properties, see, e.g., [127]. For example, the
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score of the so-called Silhouette index [164] is higher when clusters are dense and well
separated. Similar properties are measured by the Dunn and Davies-Bouldin index
[34, 127]. Unfortunately, all these indices take the distance and cluster shape into account
and thus do not perform well on clusters with non-convex shape. That is why in [173]
a new internal measure called expected density measure is introduced. It also measures
how dense the clusters are but to cope with arbitrary cluster shapes it employs geodesic
distances derived from a similarity graph instead of the Fuclidean distances.

Linear and nonlinear dimensionality reduction Let f : RY — R? be an unknown
function with @’ < d and assume the data in S C R% has been computed by sampling
the function f at the low-dimensional data points 8’ = {z},...,2},;} € R¥. The aim
of dimensionality reduction is to recover the low-dimensional data S’ from the high-
dimensional data & without the function f. This fits to the more general definition of
dimensionality reduction we have given above where we said that the low-dimensional
representation S’ has to contain the relevant information of S. Thus, the function f just
adds unnecessary information which is not important for our purposes. Again, it is hard
to validate the embedding if the context of the application is not known.

With the principal component analysis (PCA) the data in S is transformed into a space
where the first dimension of the representation has the largest possible variance. Thus, it
carries as much of the variability of the data as possible [102, 28]. By considering only the
first d’ < d dimensions of the representation, the number of dimensions can be reduced
but the dimensions with high variability remain. This is a linear approach because the
embedding into the low-dimensional space is a linear transformation. Thus, the function
f has to be (nearly) linear to obtain good results. We defer a detailed discussion to
Sec. 2.3.2. Recently, nonlinear dimensionality reduction methods have been developed
which can cope with nonlinear functions f as well. Most of them are based on similarity
graphs to approximate the low-dimensional, nonlinear manifold induced by the data
in the high-dimensional space R?. We refer to [125] for details and to Sec. 10.1.3 for
examples.

2.3. Model Order Reduction of Parametrized Systems

Many simulations in computational science and engineering are input-output problems
formulated with a state space. For example, consider a thermal conductivity problem.
The inputs are the parameters, e.g., the thermal conductivity coefficient and the thick-
ness of the material, the state is the temperature field, and the output of interest is
the average temperature. Model order reduction approximates such simulations with
low-cost surrogates by solving the problem not in a general, high-dimensional solution
space but in a problem-dependent, low-dimensional subspace. In particular when the
simulation has to be repeated many times, e.g., in optimization, uncertainty quantifica-
tion, or statistical inverse problems, model reduction can lead to tremendous savings in
computational complexity and runtime.

In this section, we formulate these input-output problems and their reduced-order
models, discuss why model order reduction works, and briefly introduce two common
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model order reduction methods.

2.3.1. Reduced-Order Models of Parametrized Systems

We introduce input-output problems in a very general setting and define the notation
for the full-order and reduced-order model.

Input-output problems Consider the input-output problem s : D — U — Y where D
is the parameter domain, U/ the state space, and ) the output space. In most cases,
we are only interested in the output y € ), and therefore the state u(p) € U is just a
means to compute the output y. The state u(p) : @ — R is the solution of a partial
differential equation (PDE) with parameter pu € D and spatial domain Q. To make
the dependence on the parameter and the spatial domain explicit, we sometimes write
u: Q2 xD — R We might add the superscript e to clearly distinguish the “exact”
problem s¢ : D — U€ — Y from its discretized counterpart N suN o Y where
N is the number of degrees of freedom. The discretized PDE underlying sV leads to a
parametrized system of equations

A (1) + F(uV () = 0 (5)

with v (n) € RV and where the matrix A € RV*V corresponds to the linear operators
of the PDE, and the function F': RN — RV to the nonlinear operators. Note that (5)
becomes a system of ordinary differential equations (ODE) if we have a time-dependent
PDE. To evaluate the output function sV (u) = vy, the system (5) is solved for the
parameter g € D to obtain the state vector uV (pn) € RV corresponding to the solution
function u (n) € UN from which then the output y € ) is determined. We call the
input-output problem sV : D — YN — Y the high-fidelity or the full model, and A the
dimension of the model.

Reduced-order models Let us consider our input-output problem s : D — U — Y
in the many-query context where we have to evaluate s for many parameters. For
each parameter we have to solve the system (5) to obtain the output. This becomes
computationally infeasible very soon if the dimension N of the high-fidelity model is
large. We have a similar situation in the real-time context where we need a rapid
respond s(p) to a parameter p. Again, if N is large, the real-time requirements might
not be satisfied.

To reduce the computational complexity and thus the runtime of solving our input-
output problem, we approximate the high-fidelity model NoD s uN - Y with a
reduced-order model s, : D — U, — Y with only n < N degrees of freedom. The
reduced space U, is spanned by the so-called reduced basis. In principle, there are two
points of view why model order reduction is able to construct a reduced model with only
n degrees of freedom leading to a similar input-output response characteristic as the full
model with A degrees of freedom. First, the state solutions are usually not scattered all
over the space UN but form a low-dimensional and smooth manifold

M ={u(p)|p € D}.
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Figure 2: In many cases, the dimension N of the state space U can be reduced because a few
input parameters p lead to a very large and costly state vector w which is in the end
reduced to a small number of outputs y. This suggests that the state vector contains
much more information than is required to compute the output of interest.

Therefore, it is distinctly cheaper to represent a solution u () as an element of span{ M}
than as an element of 4. Thus, the reduced space Uy should be an approximation of
span{M }. This is the motivation given in, e.g., [142]. The second point of view directly
considers the input-output map s : D — U — )Y and argues that the map D — ) is
often much simpler than the state vector w suggests. This is illustrated in Fig. 2. The
few input parameters lead to a very large and costly state vector which is in the end
reduced to only a few outputs. This suggests that the state vector contains much more
information than is required to compute the output of interest [126].

Usually, model order reduction is split into an Offline and an Online phase. In the
Offline phase the reduced-order model is constructed. This might require to solve the
high-fidelity model for several parameters which makes the Offline phase computationally
expensive. In the Online phase, a rapid response s(u) to a parameter p can be provided
by evaluating the reduced-order model instead of the high-fidelity model. It is commonly
assumed that the Online phase is repeated many times to compensate for the costly
Offline phase. In Part I we discuss a priori model order reduction which does not
require this Offline/Online splitting.

2.3.2. Selected Model Reduction Techniques

Proper orthogonal decomposition (POD) and the reduced basis method (RBM) are two
widely-used model reduction methods. We briefly introduce them and discuss their basic
properties.

Model reduction methods In the following, we employ projection-based and data-fit
reduced-order models and methods. Data-fit models are generated by directly learning
the input-output relationship described by s from data with classical learning methods.
For example, the input-output problem from the parameters in D to the outputs in
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Y can be learned with supervised learning methods, cf. Sec. 2.2.1 and [118, 17, 16].
Projection-based methods explicitly construct the reduced space U,, and project onto U,
rather than onto U. We discuss two projection-based methods below.

We can further differentiate between intrusive and non-intrusive methods. Intrusive
methods require knowledge about the underlying governing equations to build a solver
suited for the reduced-order model. This is a severe drawback of intrusive methods
because for many applications the implementation of the solver for the high-fidelity
model is already a challenging task. It cannot be expected to spend the same effort
on building a solver for the reduced-order model. In contrast, non-intrusive methods
only require data which can be obtained from the high-fidelity model solver. But it
also has to be noted that in many practical cases non-intrusive methods achieve lower
accuracies than intrusive methods which is not surprising because less information from
the problem is used.

There are many model reduction methods for parametrized systems, e.g., [142, 26, 170,
83, 66, 135]. For us, proper orthogonal decomposition and the reduced basis method are
the two most important ones. We discuss them in the following two paragraphs.

Proper orthogonal decomposition Proper orthogonal decomposition (POD) is a method
to construct from a set of snapshots S = {w(p1),...,u(pr)} € RY a reduced basis
{vi,...,v,} C RV to span a reduced basis space, see, e.g., [160, 26, 170]. The quality
of the reduced space depends on the set of snapshots S. We do not address this issue of
sampling the high-fidelity model here, but refer to, e.g., [149, 97, 126, 36].

Let r be the dimension of the space span{S} spanned by the snapshots in S. The space
span{vi,...,v,} of dimension n < r spanned by the POD basis vectors {v1,...,v,} C
RV best approximates the space span{S}, i.e., the POD basis solves the minimization

problem
n

M
pmin Z lu(pa) = > (alps) "vg)wj3

i= j=1
Note that the POD basis vectors {vi,...,v,} are orthonormal. The basis vectors
{v1,...,v,} are the left singular vectors of the snapshot matrix U = [u(p1),...,u(pr)] €
RN M corresponding to the largest singular values. If o1 > 09 > --- > 0, > 0 are the

singular values of U, the approximation error of the POD basis representation of the
snapshots is given by

n

M T
>Nl = > (ulp) vvili = ) of. (6)

j= i=1 i=n+1

Even tough (6) only holds for the snapshots in S, it is usually a good indicator for the
error when representing a state vector that is not in S, see, e.g., [123, 124, 117] and
the references therein. POD is the same as PCA, see Sec. 2.2.2, but the name POD is
usually used in the context of model reduction whereas PCA is used in the context of
machine learning and statistics. We follow this convention here as well.

21



The POD method provides us with the basis {vi,...,v,}. POD is usually combined
with Galerkin projection to obtain a reduced solution w,(u) € R™ corresponding to
un(p) € Uy, for a parameter p. Thus, the system (5) becomes

VIAVu, () + VIF (Vg () =0 (7)

where now wu,(p) € R™ has only n components. The columns of the matrix V =
[v1,...,v,] € RV*" are the POD basis vectors. If n < N holds, then the sys-
tem (7) is distinctly faster to solve than the original system (5), even though the
nonlinear term F' might become problematic, see Sec. 12. The Galerkin projection
renders the POD approach into an intrusive method. Note, however, that the re-
duced solution w, (i) = >, Bi(p)v; can also be obtained by computing the coefficients
B(p) = [Bi(p),...,Bu(w)]" € R™ with supervised learning methods leading to a non-
intrusive method, see Sec. 8.2.

Reduced Basis Method The drawback of POD is that M solutions of the high-fidelity
model have to be computed. Furthermore, the SVD of the NV x M snapshot matrix
might become computationally expensive if N or M is large. The reduced basis method
(RBM) follows a different approach and constructs the basis of the reduced space U,
directly from the solutions of the high-fidelity model [142]. This means, the state vector
u,(p) € R™ corresponding to the reduced solution u, (@) € U, is a linear combination

un(p) =) Bici (8)
i=1

of the orthogonal basis {(1,...,¢,} which is obtained by orthogonalizing the solutions
{uN (1), ..., uN (pn)} corresponding to specific parameters {1, ..., ftn }, see [142, 83]
and the references therein.

The linear combination (8) gives a very general idea of RBM. To obtain an efficient
and practical method, we additional assume in the following that a rigorous, sharp, and
efficient a posteriori error estimator &, : D — [0, 00) for a reduced basis space U,, exists
[142]. The estimator &, () gives an upper bound for the error ||u?Y () — w,(p)]| of the
reduced solution u, () € U,, with respect to the high-fidelity solution u () € UV in a
certain norm || - ||. An error estimator is rigorous if it is valid for all parameters and all
dimensions n € N. Furthermore, it has to yield an error bound and not just an indicator.
We call an error estimator sharp if it does not yield a completely over estimated bound
but matches the error closely. And, finally, an error estimator is efficient in the context
of the reduced basis method if it can be evaluated with costs independent from the
dimension A of the full model. One goal of the reduced basis community is to derive
such error estimators for all kind of problems. Still, they are available only for certain
problem classes, see [142, 84, 83, 23, 138, 122, 178, 158] and the references therein.

Based on these error estimators, the reduced basis method constructs the basis vectors
spanning the reduced space with a greedy strategy. The method starts with a set of
parameters P = {p1,...,pup} C D covering the parameter domain D, and a one-
dimensional reduced space U; which is the span of uV (;r) where @ € D is in most cases
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the center of the domain D. For each parameter in g € P the estimated error &;(p) is
computed. Recall that the evaluation costs of &1 are independent from the dimension N/
of the space UV. The solution u”V (u*) for the parameter u* where the error estimator
yields the highest value is computed. The new two-dimensional reduced space Us is
the span of {u" (1), " (1*)}. This process is continued until n basis functions have
been found. The state vectors associated to these basis functions give the basis vectors
for the linear combination (8). Note that the solutions get orthogonalized to ensure a
numerically stable system. Note further that only n solutions of the high-fidelity model
are required. This leads to great savings in the Offline phase of RBM compared to a
POD-based approach.

Of course, the reduced basis for the linear combination (8) can also be constructed
without this greedy approach and without error estimators. For example, we could
randomly select n parameters {p1,...,u,} C D, compute the high-fidelity solutions
{uN (1), ..., uN (pn)} € UV, and orthogonalize them to obtain the final basis functions
and then the basis vectors {(1,...,¢,}. However, a poor selection of the parameters
might lead to poor approximation results with the corresponding reduced basis. This
illustrates that the success of the reduced basis method heavily relies on the rigorous,
sharp, and efficient error estimators as well as on the described greedy strategy to select
the reduced basis vectors.

A solution u,(p) in the reduced basis space U, is computed with Galerkin projection
as in the case of the POD basis in (7). In presence of a nonlinear term F' the same
expensive evaluation as in the case of POD are required, see Sec. 12.

We can summarize that RBM requires only n solutions of the high-fidelity model to
construct U,,, that it includes error estimators, but that its scope is limited because those
error estimators are only available for certain problem classes at the moment. Due to the
Galerkin projection, and because in most cases a sound mathematical understanding and
additional solves are required to derive the error estimators, the reduced basis method
is an intrusive method.

2.4. The Curse of Dimensionality, Sparse Grids, and Adaptivity

Even though the sparse grid idea has already been presented in a three-page article in
[171], the first considerations from a numerical point of view were made in [195] for the
solution of elliptic PDEs of second-order. Nowadays, sparse grids are used for a vari-
ety of applications including, e.g., quadrature, interpolation, data mining, compression,
finance, and uncertainty quantification. We refer to, e.g., [153, 156, 109, 79, 90, 192].

We give a brief overview of sparse grids and in particular define the notation in
Sec. 2.4.1 before we discuss regression and classification with sparse grid functions in
Sec. 2.4.2. In the following, we employ the sparse grid library SG*+ developed by Dirk
Pfliiger [153].
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Figure 3: The hierarchical basis functions for level [ = 1 to I = 3 are shown in (a). If boundary
points are required, level 0 is added. In (b) the so-called modified or nonuniform basis
functions which extrapolate towards the boundary are illustrated [153].

2.4.1. Adaptive Sparse Grids

We introduce the hierarchical basis, hierarchical increments, and sparse grids followed
by remarks on adaptivity, nonuniform basis functions, and coarsening by three.

Hierarchical basis functions We introduce the sparse grid space Vél) of level /¢ cor-

responding to the domain Q = [0,1]? c R? by constructing its basis, the so-called
hierarchical basis. The building block of the hierarchical basis is the one-dimensional
standard hat function ¢ : [—1,1] — R defined as

o) = max (1 - |«],0) . (9)

The one-dimensional hierarchical hat function ¢;; centered at the grid point z;; = i-271
is the result of dilation and translation of ¢,

di(z) = ¢(2'z — ). (10)

The hierarchical basis functions for level [ = 1 to [ = 3 are shown in Fig. 3a. By using a
tensor product approach we can extend the hat function (10) to the d-dimensional case

d
dri(z) = [ b1y, (x;), (11)
j=1

where I = (Iy,...,lg) and © = (i1,...,iq) are multi-indices denoting the level and index,
respectively. The corresponding grid point @ ; = [y, 4, .-, %1,4,]" is the center of the
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support of ¢ ;. The space Hy, of piecewise d-linear functions is spanned by the nodal
point basis

D = {(bk,i |1 € ik} , (12)
with the index set 3
Ik:{ieNd|1§ij<2kj,1§j§d}. (13)

Note that the definition (13) of the index set leads to no points at the boundary of the
domain and thus we have homogeneous boundary conditions. Besides the set (13) we
also introduce the hierarchical increments Wy spanned by

D, = {¢k,i|i € ik},
where
ik:{ieNd|1gz'j<21j,ij§z2N,1§j§d}. (14)
With the component-wise relational operator
I<k: V1<j<d:l; <kj,

and its negation
l-k:+ J1<j5<d:1l; >k,
the space Hy, can be represented as direct sum of hierarchical increments
He =P Wi,
1<k

and has, as well as the hierarchical increments W, tensor product structure. Thus, we
can write them as

d
Wy = ®Wkl and Hy = ®7'~[kz
i=1 i

Three properties of hierarchical basis functions First, the hierarchical basis functions
have tensor product structure because we employed a tensor product to construct the
multi-dimensional basis functions. Second, we can represent a basis function ¢;; from
level [ as linear combination

b1i(2) = 5

see the illustration in Fig. 4. Third, for any k > {

Gri(x) =D Gri(@he) bre(x), (16)

tely,

(D141,2i-1(x) + D141,2i41(x)) + Pri1,2i(x), (15)

as the ¢y, form a nodal basis of Hj,. These are three important properties of hierarchical
basis functions which are needed later for the multigrid method in Sec. 4.
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Figure 4: A basis function of level I (left) can be represented as linear combination of basis
functions of level [ 4+ 1 (right).

Full grids With the hierarchical increment W, we may construct further spaces

V=W

lel

by selecting those hierarchical increments W, with level I in £ € N¢. A function f € V.
can then be represented as a linear combination

flz) = Z apidri(x) = Z Z aiui(T) (17)

(13)eT leL e,

where the set Z contains all level-index pairs (I,4) associated to the levels £ € N¢. We
sometimes abbreviate (17) with f = ). o;¢; where we assume an arbitrary ordering of
the coefficients and basis functions. The coefficients oy ; are the so-called hierarchical
surpluses. The space of piecewise d-linear functions Vy can then be written as

Vo= P w

[t]oo <t

where |l|o is max;|l;|. Because V, = H,, . s, the space V, is not only spanned by
U|l|w§€ <i>l but also by the nodal point basis @(47._.74).

Sparse grids The selection

vih= P w (18)

1|1 <l+d—1

with || =Y, |l;] is called the sparse grid space of level £ and dimension d with respect
to the Lo- and Loo-norm, see [39]. Fig. 5 shows the grid points of the two-dimensional
sparse grid of level three, the grid points of the corresponding hierarchical increments
Wi, and the grid points of the hierarchical subspaces Hy, with |k|; < ¢+ d — 1. The
hierarchical basis of Vél) is given by &, = U\lh <lid-1 ®;. Almost all of the following
sparse grid algorithms work without change on any other subspace selection £, provided
that with k € £ also l € £ holds for all I < k.

Sparse grid functions f € Vél) can be evaluated in O(¢4) because the space Vél) consists
of O(¢%) hierarchical increments and all basis functions of a hierarchical increment have
disjoint support. Thus, only one basis function per hierarchical increment has to be eval-
uated. Algorithms for an evaluation in O(¢%) are available, see, e.g., [153]. Recently, it
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Figure 5: In (a) the grid points corresponding to the hierarchical increments W, of a sparse grid
of level three arranged in the hierarchical scheme are shown. In (b) we plotted the grid
points of the hierarchical subspaces H; and in (c) the corresponding sparse grid.

has been shown, that on modern hardware architectures it is under certain circumstances
faster to iterate over all components of the linear combination f =), a;¢; rather than
to execute the asymptotically optimal but highly recursive evaluation algorithm [107].

The transformation from the function values into the hierarchical coefficients of a
sparse grid space can be achieved with the so-called hierarchisation procedure. It com-
putes the hierarchical coefficients « in (17), i.e., the sparse grid interpolant, in linear
complexity if the function values at the sparse grid points are given, see [39]. Its inverse
operation is called dehierarchisation.

Properties of sparse grids With

olth

Df=—"——
83:l11 .. &rfid

we define the space
H = {f: Q= R|D'f € Ly(Q) il < 2, floa = 0

of functions with bounded weak mixed derivatives up to order two. For a function
fe Hfmx and its interpolant f € Vy in the space of piecewise d-linear functions, we
obtain the asymptotic error

1f (@) = f(2)|z, € Oh) (19)

where hy = 27¢ is the mesh width corresponding to the space V,. The number of
grid points corresponding to the full grid space Vy is in (’)(2&1) and thus affected by
the curse of dimensionality. Now, let us assume we have the sparse grid interpolant
fn € Vél). Compared to the error decay (19) of the full grid space interpolant, the decay
of the asymptotic error of the sparse grid interpolant fy is only slightly deteriorated to
(’)(h?ﬁd_l). However, the number of sparse grid points, and thus the computational
costs, have been significantly reduced to O(2¢04=1). It can be shown that the sparse grid
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Figure 6: The regular grid of level two in (a) is refined to obtain the sparse grid in (b). After
another refinement step, the hierarchical ancestors (gray points) are created in (c)
because most sparse grid algorithms require that the hierarchical ancestors of each
grid point exist [153].

space Vél) is the optimal approximation space for functions in H?ﬂix with respect to the
interpolation error in the Lo- and Loo-norm. We refer to [39] for a detailed derivation of

these error bounds.

Adaptivity If a function f should be interpolated and it is only known that f € H2, |
i.e., that f fulfills the smoothness conditions discussed in the previous paragraph, and no
further information about f is available, then the sparse grid interpolant is the optimal
interpolant with respect to the Ls- and Lo.-norm. However, in many cases, some more
characteristics about f are known. With adaptivity, this knowledge can be used to
influence the structure of the sparse grid to adapt it to the special requirements of a
particular function [39, 153].

Let fn =), i € Vél) be the sparse grid interpolant of f, and assume we want to
refine the sparse grid to get a better approximation of the function f, see Fig. 6. An
adaptivity criterion is required to decide which sparse grid points should be refined. A
simple but very robust and widely-used criterion is based on the hierarchical coefficients
a which refines the grid points corresponding to the coefficients with the largest absolute
values. More sparse grid refinement criteria are discussed in [153, 154, 156]. Since
adaptivity is highly problem-dependent, a good refinement criterion takes the context of
the application into account. However, this also means that for each refinement criterion
a problem can be constructed where it fails. Note that most sparse grid algorithms
require that for each grid point all hierarchical ancestors exist, see Fig. 6.

Boundary treatment and nonuniform basis functions So far we only considered sparse
grids without points at the boundary of the domain [0,1]¢. This is enough for most
applications considered here. However, sparse grids can be easily extended to have grid
points at the boundary by adding a level 0, see Fig. 3a. We refer to [39] and [68] for
more details.

Even though the number of grid points of a sparse grid with boundary points is still
asymptotically in O(2¢¢%~1), the constants in the estimations become huge and thus
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working with these grids becomes soon computationally infeasible in high-dimensional
settings. That is why so-called modified or nonuniform basis functions have been de-
veloped [153]. These basis functions extrapolate towards the boundary and so do not
require boundary points to approximate functions with non-zero values at the boundary.
The hierarchical basis function ¢;; is modified in the following way

1 ifl=1,i=1,
2—9. if 2—(-1)
. o llxe[o’ I if1>1,0=1,
else
i(x) = (20)
. ol 1—4 if 1—2-01 1
z+l-i difzel R T I Y
0 else
Pz - 28 — i) else.

In Fig. 3b we compare the classical (uniform) basis functions with the modified (nonuni-
form) basis functions. We refer to [153] for a detailed discussion. We will clearly indicate
when we use the modified basis functions.

Coarsening by three Usually, sparse grids follow a coarsening by two, i.e., the support
of the one-dimensional hierarchical basis function of level [ is 2 - 27!, However, the
multigrid method in Part I will be developed for sparse grids with a coarsening by three
where the support of the basis function is 2 - 37!. The coarsening by three better fits
to the space-filling curve approach introduced in [41]. The sparse grid theory presented
in [39] also holds for sparse grids with a coarsening by three, only the constants in the
error estimations are changed. If we have a sparse grid with coarsening by three, the
hierarchical basis function (10) is defined as

di(z) = ¢(3'x — ). (21)

The set of indices (14) for the hierarchical increments is changed to
ikz{z‘eNd|1§ij<2%,z’j¢3N,1§j§d}. (22)

A two-dimensional sparse grid of level three with coarsening by three is shown in Fig. 7.
We emphasize again that we employ coarsening by three only in Part I and that all
discussed algorithms are also applicable to sparse grids with coarsening by two.

2.4.2. Regression and Classification with Sparse Grids

We consider supervised learning problems where the function ¢ : R¢ — R, mapping data
points to their target values, is a sparse grid function. The corresponding optimiza-
tion problem is introduced and properties of this sparse-grid-based classification and
regression approach are discussed.
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Figure 7: A coarsening by three leads to a slightly different structure of the sparse grid. We
plot in (a) the grid points corresponding to the hierarchical increments W, of a sparse
grid of level three with coarsening by three arranged in the hierarchical scheme and in
(b) the grid points of the hierarchical subspaces H;. The corresponding sparse grid is
shown in (c).

Supervised learning and sparse grids Consider the supervised learning problem where
we want to construct a function ¢ : R — R from the training data S = {(z;,y;)}M, C
R? x R to predict the target values y for new, unseen data points € R?. In [79] this su-
pervised learning problem is formulated with Tikhonov regularization as an optimization
problem

M
¢ = argmin (1\142((% —f(wz'))2+AHAfH%2> (23)

fevit i=1

where the function ¢ € Vél) is discretized on a sparse grid. If we explicitly represent the
sparse grid function as a linear combination of the hierarchical basis functions in ®, and

the hierarchical coefficients a = [a1, ..., an]T, we can rewrite (23) as
2
| M N N
. 2
arganin | 373 |0 = 3 asouten | MY el (1)
1= Jj= Jj=

and make clear that we are looking for the hierarchical coefficients a defining the function
ce Vél). The first term of (24) ensures closeness of ¢ to the training data and the second
term imposes a certain smoothness on ¢ in order to generalize to new, previously unseen
data. The regularization parameter A can be determined via cross validation and controls
the trade-off between fidelity and smoothness. The optimization problem (24) leads to
a system of linear equations [79]

1 . 1

where Bj; = ¢i(x;), Cij = (Mg, Apj)r,, and y = [yl,...,yM]T. The system (25) is
usually solved with the conjugate gradient (CG) method where only the matrix-vector
product with B, BT, and C is required. We emphasize that the size of the system
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matrix ﬁBBT 4+ AC is only N x N where N is the number of sparse grid points. In
particular, the number of unknowns of (25) does not depend on the number of data
points M.

Regularization operator The regularization operator A is typically V, but simpler and
computationally more efficient choices are possible [153, 154]. For example, in many
situations, the problem (24) can be simplified to

1 M N 2 N
arg min i Z Yi — Zajgbj(mi) + )\Za?-
@ i=1 j=1 j=1

leading to the system of linear equations (25) where the regularization matrix C' is the
identity matrix I. This severely reduces the computational costs of constructing the
function ¢é. With the term oejz we limit the growth of the hierarchical coefficients.
Since the hierarchical coefficients correspond to the second derivative of our sparse grid
function ¢ = ) ; Qj¢j, it imposes smoothness on ¢, see [153] for an extensive study.

Classification problem and sparse grids If we have a binary classification problem,
i.e., the target values in {yi,...,ynr} are either —1 or 1, the class label y of a new data
point € R? is determined by evaluating é(x) and setting

)1, ifé(=) <O,
1 e >o.

The method can also be extended to more than two classes by some workaround which
requires to construct multiple classifiers, see, e.g., [153].
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Part |I.
MOR I: A Priori Model Order
Reduction

Model order reduction constructs a low-dimensional, problem-dependent solution space
U, for input-output problems s : D — U — Y. To achieve this, it is very common to
solve a given problem for selected parameters in a high-dimensional, general space first
and then derive a low-dimensional, problem-dependent space from these solutions. We
will deal extensively with such approaches in Parts II and III. In this part, however,
we do not have a low-dimensional solution space fitted to a particular problem but a
space tailored to a whole problem class. This means the construction of the space does
not take the solutions or data of a particular problem into account but is built only
from theoretic considerations about the problem class. Thus, all information for the
construction of the space is derived before a particular problem of the class has to be
solved, maybe even before a particular problem is known. This is what we call a priori
model order reduction.

Gaussian quadrature is related to this concept. It gives the optimal choice of n sam-
pling points and n quadrature weights for polynomial functions of degree 2n — 1. It
is not necessary to know the specific function which should be integrated. Only the
knowledge that it is in the function class of polynomial functions is required. Sparse
grids follow the same approach. They are an optimal way to discretize functions in
Hﬁlix, i.e., functions with bounded, mixed derivatives up to order two with respect to a

it is

certain norm. Thus, if we have an elliptic PDE with solution function u € Hﬁﬂx,

more efficient with respect to degrees of freedom versus discretization error, to represent
mix
rather than in a general, high-dimensional full grid space V,. Note that it is not neces-
sary to solve the PDE first to determine the sparse grid space Vél). Note further that
with adaptive sparse grids we can soften this a priori approach and incorporate specific
knowledge about our current function. We refer to Sec. 2.4 for more details on sparse

grids and adaptivity.

it in a low-dimensional sparse grid space Vél) corresponding to the function space H?2

The result of a sparse grid discretization and the subsequent Galerkin projection of a
linear, elliptic PDE is a system of linear equations. In this part, we introduce a novel
multigrid method well-suited for sparse grids to solve such systems of equations.

A finite element discretization with sparse grids for elliptic PDEs and the system of
linear equations stemming from the Galerkin projection are introduced in Sec. 3. The
systems of linear equations are usually solved either with preconditioned Krylov or with
multigrid methods. Both of these approaches are able to solve such systems with a
computational complexity scaling only linearly with the number of grid points. Due to
the sparse grid structure and the hierarchical basis underlying sparse grids, however,
most full grid algorithms are not applicable to sparse grid discretizations and thus spe-
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cial algorithms are required. Preconditioned Krylov methods for sparse grids are briefly
discussed in Sec. 3.2. But most preconditioning techniques suitable for sparse grid dis-
cretizations introduce additional costs. Multigrid methods exploit the smoothing effect
of relaxation methods by correcting the solution with approximations on coarse grids.
An overview of multigrid methods for sparse grids is also given in Sec. 3.2 with details in
Sec. 3.3. However, these methods either operate on a simplified discretization or intro-
duce an additional approximation step. Therefore, we present a novel multigrid method
based on an ANOVA-like (Analysis of Variance) decomposition of the sparse grid solu-
tion function in Sec. 4. It can handle the multi-dimensional convection-diffusion equation
discretized on spatially adaptive sparse grids without simplifying the corresponding bi-
linear form and still achieves a linear complexity in the number of sparse grid points.
The core of our multigrid method is the dimension-wise decomposition of the sparse grid
solution function discussed in Sec. 4.1 and the corresponding algorithm to update the
components of the decomposition in Sec. 4.2. We apply the multigrid method to the
multi-dimensional convection-diffusion equation in Sec. 5.

In this part, we consider sparse grids with a coarsening by three, see Fig. 7. This has
mere technical reasons [41]. All the discussed algorithms are also applicable to classical
sparse grids with a coarsening by two.

This multigrid method is the result of a close collaboration with Christoph Zenger.
Furthermore, only due to Stefan Zimmer a reader-friendly exposition of the sometimes
tricky algorithm and a clear notation for the lengthy formulas were found.
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3. Adaptive Sparse Grid Discretization of Elliptic PDEs

We consider elliptic PDEs with spatial domain Q = [0,1]¢ where we are particularly
interested in the case with d > 3. It is not feasible anymore to discretize these equations
with d > 3 on full grids due to the curse of dimensionality. Therefore, we discretize them
on sparse grids. The Galerkin projection onto a sparse grid space and the corresponding
system of linear equations are derived in Sec. 3.1. We briefly discuss related sparse grid
solvers in Sec. 3.2, and develop general concepts of multigrid methods for sparse grids
in Sec. 3.3. We show that the algorithmic challenge is to compute the right-hand sides
of the systems of linear equations when we switch in the grid hierarchy from one grid to
another.

3.1. Elliptic Partial Differential Equations and Sparse Grids

Let © C R? be a domain, V a Hilbert space, V* its dual, ap : ¥V x V — R a bilinear
form, and b : V — R a linear form corresponding to an elliptic second-order PDE with
the linear operator A : V — V*. We may also simply write a if the specific operator A
is not important.

We assume that the operator A can be decomposed into a product of one-dimensional
operators

For example, if we consider Laplace’s equation Au = 0 in Q C R?, we can split the
operator A as follows

A=02 @l @l + 1, ®02, @ Ly, + 1, @1, ®02,,

where Qgi denotes the second derivative operator in direction %, and I, the identity
operator in direction . This means the operator A is split into three summands
A1, Ay, and Az which themselves are tensor products of one-dimensional operators
AW AB AB AW

We want to find the function u€ € V such that

aa(uf,v) = b(v), Yv e V.

We pursue a Ritz-Galerkin approach and employ a sparse grid space Vél) with N grid
points instead of a full grid space V,; with A/ grid points. Thus, our test and ansatz space
is Vél) C VY and we want to find uy € Vél) such that

aa(un,v) = b(v), Y e Vél). (26)

Note that in this case the number of degrees of freedom n of the reduced-order model
is equal to the number of sparse grid points N, cf. Sec. 2.3.1. We obtain the Galerkin
approximation uy by solving the system of linear equations

ap(un,¥) =b(y), VY e ¥, (27)
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where ¥y = &, is the hierarchical basis of the sparse grid space Vél). Note that the ansatz
and test space are equal but we denote a basis function with ¢ and a test function with
1 for an easier exposition. In the following, we may skip the superscript e and N if it is
clear whether we mean u€ or uy.

We could form the system matrix corresponding to (27) and solve the system with
any general purpose solvers. However, this is computationally prohibitive because the
number of sparse grid points N is too large. Therefore, matrix-free solvers have to
be employed. In case of Krylov subspace methods only the matrix-vector product is
required. Multigrid methods relax the equations (27) with, e.g., Jacobi or Gauss-Seidel
relaxation on each grid of the grid hierarchy and thus also do not explicitly form the
system matrix. We refer to Sec. 3.2 for related sparse grid solvers, and to Sec. 3.3 for
details on multigrid methods suited for sparse grid discretizations.

3.2. Sparse Grid Solvers

By using sparse grids instead of full grids in the Galerkin projection (26), orders of
magnitude fewer grid points are necessary to obtain a solution that has a similar accuracy
as the full grid solution. The drawback of sparse grids is their unconventional structure
and the hierarchical basis which render already simple tasks into challenges and lead to
highly involved algorithms.

Preconditioned Krylov subspace methods When Krylov subspace methods such as
the conjugate gradient (CG) method are employed to solve systems such as (27), we
only have to provide the matrix-vector product with the stiffness matrix and do not
have to explicitly assemble the matrix. For the matrix-vector product with the stiffness
matrix stemming from a sparse grid discretization, the so-called UpDown algorithm
can be used [1, 22, 38]. It provides the matrix-vector product in O(d - 2¢ - N) where
N is the number of sparse grid points and d the dimension of the spatial domain €.
The UpDown algorithm uses the so-called unidirectional principle which means that the
multi-dimensional algorithm is composed of algorithms operating only in one direction.
This is possible because it uses grid points to temporarily store intermediate results.
However, the structure of sparse grids does not allow a separate straightforward traversal
of all grid points in each direction [1, 67]. That is why a highly recursive and complicated
traversal through the grid points is necessary. The numerous recursive calls make the
algorithm not only hard to implement but also slow on modern hardware [107]. Finally, in
order to obtain an efficient CG method, appropriate preconditioners have to be applied.
However, this introduces additional costs. Many preconditioning techniques have been
presented [191, 67, 92, 93]. In [191] it is shown for the two-dimensional case that already
the change from the nodal point to the hierarchical basis reduces the condition number
of the system matrix. It is also stated that even though there is also an improvement for
d > 2, it becomes almost negligible. In [92] and in the follow up [93] advanced subspace
splitting techniques for sparse grids are analyzed. They also present numerical results
for the Helmholtz equation. Newer approaches with prewavelets or multilevel frames are
discussed in [67, 101].
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Figure 8: The initial error and the error after one and two steps of a classical iterative method
such as Jacobi or Gauss-Seidel relaxation is shown. The example demonstrates the
smoothing effect of the relaxation method. The axis with the error is scaled in order
to make the smoothing effect more evident.

More recently, algorithms have been presented which achieve a log-linear complexity
for the matrix-vector product with the stiffness matrix for a wavelet basis by exploiting
the tensor product structure of the operators [167, 194]. They are developed and used
in the context of stochastic elliptic problems.

Multigrid principles Besides preconditioned CG, other frequently used efficient meth-
ods to solve large systems of linear equations resulting from a finite element discretiza-
tion are multigrid approaches [31, 99]. Multigrid methods build on two principles: error
smoothing and coarse grid correction. Classical iterative methods, such as Jacobi or
Gauss-Seidel relaxation, require many iterations to remove low-frequency error modes,
i.e., they have a strong smoothing effect on the error. This smoothing effect is exploited
to remove high-frequency components of the error, see Fig. 8. Only low-frequency com-
ponents remain. A smooth quantity on a fine grid can be well approximated on a coarse
grid. Hence, the smooth error term can be transferred to a coarse grid without loss of
essential information. There, however, the smooth error with respect to the fine grid
becomes a high-frequency error with respect to the coarse grid. Thus, just a few relax-
ation sweeps on the coarse grid are necessary to remove the high-frequency error what
was low-frequency error on the fine grid. Since a coarse grid has less grid points than
a fine grid, a smoothing step on the coarse grid is distinctly cheaper than on the fine
grid. This makes it computationally feasible to recursively continue this process on a
whole hierarchy of grids. The so-called multigrid cycle determines the path through this
hierarchy. To achieve optimal performance, i.e., a convergence rate independent of the
mesh width of the finest grid [99], not only the transfer from the fine to the coarse grid
(restriction) and vice versa (prolongation) has to be done properly, but also the smooth-
ing procedure, number of smoothing steps per multigrid cycle, coarse grid operator, and
multigrid cycle have to be chosen adequately [175].

Multigrid methods for sparse grids Multigrid methods have been extensively studied
in the context of sparse grids, see, e.g., [151, 37, 87, 95, 1]. These multigrid methods are
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either used as preconditioners or as real multigrid methods. In [87] the implementation
details of a multigrid preconditioner for finite difference discretizations on sparse grids
are shown. A similar approach for the finite element method is used in [1]. We will
focus on real multigrid schemes as in [150, 151, 37]. Again, the sparse grid structure
makes a straightforward generalization of multigrid methods for full grids impossible.
The difficulty is that the discrete equations from the Galerkin projection onto sparse
grid spaces lead to very cumbersome right-hand sides on the coarse grids which are hard
to compute in an efficient way. Efficient computation means to construct the right-
hand side in O(N) where N is the number of grid points. In [151, 150] the bilinear
form corresponding to the variational problem of the Helmholtz (or Poisson) equation is
modified in such a way that an efficient computation of the right-hand side is possible.
It is then shown that the discretization with the simplified bilinear form converges to
the sparse grid solution. However, this is only demonstrated for the case d < 2. We will
elaborate below on how the bilinear form is simplified and what this exactly means for
the solution. In [37] a similar approach is used for the two-dimensional Poisson equation
with higher order finite elements.

3.3. Multigrid Methods and Sparse Grids

In the previous section we have seen several multigrid methods for sparse grids. They all
rely on the same grid hierarchy which is discussed in this section. To relax the equations
corresponding to the grids of this hierarchy, we introduce a splitting of the sparse grid
space. We then show why it is computationally expensive to compute the right-hand
side when we switch in the grid hierarchy from one grid to another.

Multigrid on sparse grids Consider a sparse grid and its hierarchical subspaces, see
Figures 5 and 7. Clearly, a sparse grid does not have a natural grid hierarchy if we
coarsen in all directions simultaneously as common multigrid methods do. However, if
we consider the hierarchical subspaces in

H={Hp:|kh <l+d—1} (28)

of a sparse grid space Vél), we can think of the grids corresponding to these subspaces
as the coarse grids of a sparse grid. Thus, we define the grid hierarchy of a sparse grid
to consist of the grids of the subspaces in H.

These are full grids where we can employ an ordinary Gauss-Seidel relaxation by
applying the corresponding stencils at the grid points [175]. In order to reach these
grids, we need to allow semi-coarsening which means that we can coarsen and refine in
each direction separately. Such a semi-coarsening allows us to walk through the subspace
scheme of a sparse grid and relax with respect to any subspace. This means that we can
start with, e.g., subspace 7:[(;“7._’ kg) and then decide to coarsen in, say, direction d to end
up in subspace ’;':[(kl7”.7;%,1’“_,/1C .- The so-called multigrid cycle defines the way through
the subspace scheme.
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(a) hierarchical increments (b) Heany (c) 7—AL<2,1)

Figure 9: The direct sum of the hierarchical increments W 1y and W3 1) equals the subspace

’7'-2(2’1) (red). The rest is denoted by ?:[(2,1) (white). Note that we employ sparse grids
with coarsening by three, cf. Sec. 2.4.

Comparison with the combination technique Even though these multigrid methods
relax on full grids only, the finite element solution in the sparse grid space is obtained.
With the so-called combination technique, it is also possible to work only on full grids
and to arrive at a sparse grid solution [104, 94]. It exploits that a sparse grid interpolant

fo=>,0:0; € v}l) of a d-dimensional function f can be represented as the sum

d—1
@ =017 X ). (20)
0

i= U]y =t—i

where f; € H; is the interpolant of f on a full grid with level I = (l1,...,1q), see
[94]. Thus, only the interpolants on coarse full grids have to be constructed to get
the sparse grid interpolant f;. If we carry (29) over to solution functions of PDEs, we
do not discretized the PDE on a sparse grid but compute multiple full grid solutions
and combined them according to (29). There, however, the solution is not the finite
element solution in the sparse grid space but a linear combination of solutions in ordinary
finite element spaces. For selected elliptic model problems it can be shown that the
solution obtained by the combination technique has similar approximation properties as
the sparse grid solution [40, 86]. However, this is not clear in the general case, and that is
why the finite element solution in the sparse grid space is still preferred. Furthermore, it
is hard to extend the combination technique to spatially (locally) adaptive sparse grids.

Relaxation on subspaces Let us now discuss what it means to relax with respect to a
subspace Hy, of a sparse grid space Vél). In Fig. 9, we plot the grid points corresponding
to the subspace 7:[(2,1) of Vél) in two dimensions.

Consider the hierarchical subspaces (28) of a sparse grid space Vél). We split Vél) into
subspaces Hy, and ?:[k such that

VI = Hy @ Hee. (30)
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We know that all subspaces Hy, € H are spanned by a nodal point basis ®y, cf. Sec. 2.4.
Thus, we have a nodal point basis @) of Hy and the basis Uik ®; of Hy, where & is
the basis of the hierarchical increment W,. The basis of 7:[k can be seen as a hierarchical
basis with respect to level k. Following (30), we can then decompose a sparse grid
function u € Vél) into a function @ of the space Hy and a function @ of the space Hy
with

U =10+ u.

Now, when we traverse through the subspaces Hy, € H as prescribed by the multigrid
cycle, we need to form a system of linear equations for each Hy, to perform a Gauss-Seidel
relaxation. Let 7:[k be the current subspace and let ¥y = @k contain the test functions,
then we have to relax the equations

a(u,Yrt) =0, Vit € Uy, (31)

\yith respect to the coefficients oy, ; with ¢ € fk corresponding to the nodal point basis
®p of Hg. We set the bilinear form b on the right-hand side to 0 to simplify matters
here.

Right-hand side Because we have u = @ + @ we can split the equations (31) such that
all coefficients ay,; belonging to ®j, are on the left-hand side

a(l, Yrt) = —a(l, Yrt), Vit € Vy. (32)

We see that the stiffness matrix corresponding to the bilinear form a on the left-hand
side can be easily assembled because @ = ), o ;¢k i is a linear combination of the nodal
point basis ®. However, for the relaxation we also need to have the right-hand side

with @ =) 3 > g idr s leading to

ali, Pre) = > Y awia(bri Pre) , (33)

I~k jc,

which has to be computed whenever we change the current subspace Hy. That the
right-hand side (33) still contains a hierarchical basis has a huge impact on the com-
putational procedure and is the reason why we cannot simply employ any standard
multigrid method. We see that (33) includes a sum over the levels I = k. If we had a
nodal point basis, the support of the test function v, ; would only intersect with the
support of a few basis functions in its neighborhood. However, because we employ hier-
archical (test and) basis functions, the test function 1)y, + reaches to many basis functions
centered all over the domain €). This means, we have to take the value and the hierar-
chical surplus of many basis functions into account and it also means that the stiffness
matrix corresponding to (26) is not sparse. In the following, we introduce a further
decomposition of @, and thus of the right-hand side, such that we are able to provide
(33) efficiently, i.e., without iterating over all basis functions with I > k every time we
need to evaluate the right-hand side a(@, ¥ +).
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4. Multigrid for Adaptive Sparse Grids with ANOVA-like
Decomposition

In this section we present our multigrid method to solve elliptic PDEs discretized on
sparse grids. We have seen that during the change from one grid to another grid in the
grid hierarchy, we have to update the right-hand side of the system of linear equations
corresponding to the Galerkin projection. This update becomes computational very ex-
pensive if not done properly. Our method decomposes the sparse grid solution function
as well as the right-hand side in a dimension-wise fashion to allow an efficient update
when moving from one grid to another. The update procedure reuses components cor-
responding to hierarchically lower sparse grid points and thus avoids recomputing the
components for all grid points. A kind of store and load concept is introduced by hierar-
chising the components if we move upwards in the grid hierarchy and by dehierarchising
them again if we move downwards. This mechanism of exploiting the grid hierarchy in
this way is only possible because of the dimension-wise decomposition.

In the following section we introduce the dimension-wise decomposition of the sparse
grid solution function and show how to evaluate the bilinear form at each component.
In Sec. 4.2 we continue with the COARSEN and REFINE procedures to move to a coarser
and finer grid, respectively. These procedures have to keep the components of the
solution function up-to-date when the grid is changed. Finally, the storage and runtime
complexity of our multigrid algorithm is discussed.

4.1. Dimension-Wise Decomposition of Sparse Grid Functions

In the previous section, we have defined what it means to relax with respect to a sub-
space Hy of a sparse grid space and we have shown that the right-hand side of the
corresponding system of linear equations still depends on an hierarchical representation.
In order to efficiently compute the right-hand side, we have to decompose the sparse
grid function dimension-wise. Previous approaches without such a decomposition, e.g.,
[150, 151, 37, 145, 85], are not applicable to general second-order elliptic PDEs in the
d-dimensional sparse grid case because only parts of the right-hand side can be computed
while traversing through the hierarchical subspace scheme.

In this section, we introduce the dimension-wise decomposition and show how to
compute the bilinear form for each of these components separately. It turns out that
each component can be computed by applying a stencil to specific quantities from the
decomposition.
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Dimension-wise decomposition We consider the dimension-wise decomposition of a
d-dimensional continuous function f,

d d
F@rxa)=F+ ) fuli) + Y Fip @, x,)

J1 J1<j2
d
+ Z fj17j2,j3 (~Tj17«73j2,$j3) T+ (34)
J1<42<j3
+ fjlym:jd (xj17 ) l‘jd),

where f is a constant function, fj, is a one-dimensional function, and so on [88]. This
is a so-called ANOVA-like decomposition, cf. [59, 182, 88, 90]. For a discussion on the
properties of the decomposition, we refer to [88] and the references therein. Similar
decompositions of high-dimensional functions (HDMR) are discussed in [159, 130]

Here we are interested in the decomposition of a sparse grid function u € Vél) with
respect to a subspace Hj. This means, the constant function f in (34) is replaced by
a function @ € Hy as well as all further functions Ujy s Ujy jas - - - are constructed with
respect to ’ﬁk

w(zy, ..., xq) = Z Z ayidri(x)
I<k ijeqy
d
+) > > anidni(e)
. l E . -
" Ljy Ekjl e

V’L’G{l,...,d}\{jl}:ligki

d
+ Z Z Z ayidi(z) (35)

71<j2 lel iEfl
1 >kjbis >Fjy
Vie{l,....d\{j1.j2}:Li <k;

+

+) > i),

>k e,

where the set £ C N contains the levels of the hierarchical increments of the sparse grid
space Vél) . This representation of u is unique because it is only, at first sight, a very
cumbersome way to express the linear combination (17). We can relate the 27 terms
of (35) to the subsets w C {1,...,d}. For instance, we can associate w = {1,2} to the
term of the decomposition which contains the basis functions with I1 > ki, lo > ko and
l; <kjforje{l,...,d}\w. In general, we define the component

ug= > > oidia) (36)

IeL o7
Vicwily>k; (€0
Vido-l, <k;
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Figure 10: The two-dimensional ANOVA-
like decomposition with respect
to 7:[(2’2): The bold cross in-
dicates which hierarchical incre-
ments belong to which compo-
nent ug.

with respect to the subspace H;, and represent the decomposition (35) as

u= Z ug (37)

L‘Jg{l:'--vd}

for a sparse grid function u € Vél) and k € L.

Let u = @ + @ be the splitting with respect to Hj of the previous Sec. 3.3. If we
compare this to the dimension-wise splitting (37), we see that the first component ug of
(37) equals @ and the sum of all other 2¢ — 1 terms of (35) equals @. Thus, we have

i=uh, a= Y uf. (38)
wC{1,...,d},w#0

{0y {1} {2}’ u,{cl’Q}

The hierarchical increments corresponding to the four components wy, *, uy, ~, u

of the decomposition of a two-dimensional sparse grid function u € Vél) are shown
in Fig. 10. The bold cross indicates which hierarchical increments belong to which
component. We see that we obtain a very natural decomposition of the hierarchical
increment scheme. It also fits to the splitting shown in Fig. 9.

Nodal point basis in components Let f € V, be a function with

@) =) onidri(z) (39)

I<k iefl

where the basis functions are the hierarchical basis functions. Because all hierarchical
increments with level I < k are used in (39), we can represent f in a nodal point basis
@, of level k by evaluating the hierarchical basis functions at the grid points, cf (16).
We obtain

F@) =) "> (@)= > | DD aitri(@ry) | drp(x) (40)

I<k Z‘Ei[ tleik I<k ’I:eil

where 7}, contains the indices of the nodal point basis functions in ®y.
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A component uf has l; < k; for all j € {1,...,d} \ w, cf. (36). This means, we can
replace the hierarchical basis functions with the nodal point basis functions in directions
{1,...,d} \ w similar to (40) and obtain

7 lel
YeIk,...ap\w Viewl; >k
Vidw:1; <k;
> ai [ du (@ 1) e, @) 1 Pryp () (41)
it elldi\ jew JelLd)\
new coefficients hierarchical basis nodal point basis

in directions w i girections {1,....,d}\w

where 7, o L= {z € fk|Vj Ew:ij = 1} contains the indices of the nodal point basis
functions. We do not achieve such a clear separation into coefficients and basis functions
as in (40) because we only partially replace the hierarchical basis with a nodal point
basis in the component uy. However, we can move the product with the nodal point
basis functions in front of the sum over all levels because it does not depend on the level

l anymore

up(x) = Z H ¢kj,t; ()

YYYYY dP\w ]6{17’d}\w

Z Z (&7 H ¢lj,ij ($kj,t;) H d)lj,ij (x]) (42)
\ﬁefflf>ki eh Jetl - dp\e Jew
Vidw:l;<k;
With (42) we found a representation of the component u§ with hierarchical basis func-
tions in directions w and nodal point basis functions in directions {1,...,d} \ w.

Bilinear form and components We plug the ANOVA-like decomposition (37) with
respect to the hierarchical subspace Hy, of level k into the Galerkin projection (31) and
obtain
an(u, Yrt) = Z aa(ug, Yrt) =0, Vgt € W, (43)
wC{1,...,d}

where Uj, contains the test functions corresponding to the hierarchical subspace Hp.
With the representation (42) we can write one component of (43) as

(IA(’U]%,¢]¢¢) = Z H aAU) (Qbkj,t;»wkj,tj)

\ Jje{1,....d}\w

Z Zau H ¢zj,ij(fﬁkj,t;)HGAQ)(%@-,WJ-,Q) (44)

lel icT jie{l,...,d}\w JEW
‘v’iEw:li>ki ZEIL J { }\
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where a,(;) is the one-dimensional bilinear form corresponding to the one-dimensional
operator A, see Sec. 3.1. To simplify (44), we define for each test function v, and
for each component uj the ANOVA quantity

ree= > Y oui I bua @) [ aaw @ tr,) - (45)
CleL e je{1,...,d}\w JEw
Vicew:l;>k;
Vigw:l; <k;
The one-dimensional bilinear form a, ) (@k;,¢;, ¥k; ;) With the nodal point basis func-
tions can be computed by applying a one-dimensional stencil %, +,. If we have such a
stencil for each direction j € {1,...,d} \ w where a nodal point basis is used, we can
write (44) as
an(ui, vre) = Q) ok, () (46)
je{1,....d}\w
where the stencil ®j€{17w,d}\w *kj?t]. operates on ry, at the grid point Tk, ¢, In direction
J. We refer with rif to all r, with ¢ € Zi. Note that 7"2 + = u(x,¢) holds.

Equation (46) plays a crucial role in our multigrid method because it allows us to effi-
ciently compute the right-hand side. Recall the splitting u = @+ and the corresponding
right-hand side aa(t,1+) of the Galerkin equations (31). With (38) and (46) we see
that the right-hand side can be computed with a constant number of stencil applications
to the ANOVA quantities r¢ for all w C {1,...,d}. Thus, we need an algorithm to
compute all 7 and to keep them up-to-date during grid traversals.

4.2. Multilevel Algorithm

So far we have seen that we have to provide the values r{ to compute the right-hand
side a(@, ¢ ¢) of the system of linear equations corresponding to the Galerkin projection
into the subspace Hy. We store the values rg and thus need an algorithm to efficiently
update them while moving through the hierarchical subspace scheme. Efficiently means
that we want to exploit the hierarchical structure and that we do not want to compute
everything from scratch, in particular, we do not want to iterate over all grid points
when we change from one grid to another.

In Sec. 4.2.1 we present the in-place storage scheme to store the values r{. The
COARSEN and the REFINE procedures to change to a coarser or finer grid are introduced
in Sec. 4.2.2. These procedures rely on the concept of updating and preserving the
ANOVA quantities during a change from subspace Hj to Hgs. Finally, in Sec. 4.2.3
we show that the runtime and the storage complexity of the COARSEN and REFINE
procedures scale only linearly with the number of grid points.

4.2.1. In-Place Storage Scheme

Our in-place storage scheme stores two values r¢, and 7§, , at the same memory lo-
cation if the corresponding grid points xp; and xp  are equal. Note that for ex-
ample the grid point Ty equals L (ki) (t 3t oo ) but rg, is not equal

w . . . . 't . .
Tt oo i1 skd) (b1 o3t gt ) because the test function in direction d is different.

45



With this in-place storage scheme we have exactly one array of the same size as the

coefficient vector a € R for each w C {1,...,d}. Whereas r¥, with the subscript
level k and subscript index t denotes the value (45), [r]* without the subscripts denotes
the array corresponding to a subset w C {1,...,d}. We always define [r]? = u where

u € RN contains the values of the solution function u¥ at the sparse grid points.

Since we always start at the coarsest subspace 7:[(171,__,,1) all hierarchical coefficients
apq with 1> (1,1,...,1) are zero at the beginning. Hence, all [r] with w C {1,...,d}
are zero. Inhomogeneous Dirichlet boundary conditions might be imposed on ['r]@ =u
step by step as the grid hierarchy is traversed.

4.2.2. Update of ANOVA Quantities and Multilevel Algorithm

Let us consider a coarsening step from Hy to Hp with k = (k1,...,kq) and k' =
(k1,...,k;—1,...,kq). We coarsen in direction d. We assume that the solution function
u is represented as @ + @ with respect to Hy and that the ANOVA quantities Ty are
stored in [r]* for all w C {1,...,d}. Furthermore, we call the grid points corresponding
to Hy, \7:lk/ and Hj the fine and coarse grid points (with respect to level k), respectively.

We want to exploit the hierarchical structure imposed by the hierarchical basis to
update the values in [r]*. This requires two steps. First, the values [r]* are changed at
the coarse grid points to contain rf,. Second, the values [r]“ at the fine grid points are
hierarchised and thus preserved for their later use.

Update at coarse grid points Let us first consider the one-dimensional case where
we change from subspace Hy, to Hj_1. At the coarse grid points we have the ANOVA

quantities
1
Tl;{: t} = Z Z i aA (DL Vit)

>k iEi—l
stored in [r]“. The goal is to compute r,£1_}1 , With respect to test function v, of level
k—1,1ie.,
1
Tl{g }1t Z ZalzaA ¢lu¢k lt)
I>k— I’LEIl
We first have a look at how r,ii}l and r,il} are related. Therefore, we split 7“,{?1,}1 , into two
terms
1
rl }” D arian(Gri Yre-1e) > Y ariaa(bri Pr-1s)- (47)
ZEIk >k ’LGII

The first term includes only basis functions of level k£ and the second term the remaining
ones of level greater than k. The first sum includes only four summands because a test
function of level £ — 1 has overlapping support only with four basis functions of level
k. Note that we employ sparse grids with coarsening by three, see Sec. 2.4. The second
sum is analogous to r,Elt} except that now the test function v¢_; ¢ of level £ — 1 instead
of Yy, 31 of level k is used. However, we can represent a test function of level £ — 1 as a

46



linear combination of test functions of level k as in (15) and as shown in Fig. 4. Putting
all this together, we can rewrite (47) as

Moy = O3t—20A(Pk3t—2, Yh—1,t) + e 3t—10A(Pk,3t—1, Vi—1,t)
+ 0 3t+10A (Dk 3t+1, Vk—1,t) + O 3t420A (Pk 3t 12, Vk—1.t) (48)
1 ({1} {1} 2 ({1} {1}
+ 3 (Tk,3t72 + rk,3t+2) +3 (rk,:}tfl + rk,3t+1) RS
where we have explicitly written the four summands of the first sum and employed the
linear combination (15) to compute the second sum. We emphasize that (48) does not

contain a sum over the levels. This means we can compute the value 7“,{617}1 . by applying

only two stencils: One stencil to @ and one stencil to the 7“,51} stored in [r]{l}, ie.,
= 0 D+S[123 21 {1} 49
[T]kfl,t - [ *oOK koo ]k,3t (U) + g [ ]k,3t [T] . ( )

Whereas the first stencil evaluates the bilinear forms ap which are now additionally
needed on level k£ — 1, the second stencil operates on r,il} stored in [r]11} at the fine grid
points to compute rlgl_}l. The first stencil depends on the current operator A, the second
stencil depends on the test functions and is derived from (15).

We emphasize once more that for this update we do not have to run through all basis
functions with level greater than k, but that we exploit the hierarchical structure of the
hierarchical basis functions by reusing ril} stored in [r]{l} at the fine grid points.

In the multi-dimensional case, we can apply the one-dimensional procedure in each
dimension separately because our basis and test functions as well as our operators have
tensor product structure. This also means that for the update of [r]* in direction 4
we can already use the values [r]“\{i}. Thus, just as in the one-dimensional case, only

one-dimensional stencils are needed to update a multi-dimensional component [r]*.

Preservation at fine grid points In the coarsening step from Hye to Hyr, the values in
[r]“ are updated at the coarse grid points with the one-dimensional stencils to obtain
the ANOVA quantities with respect to level k/. The values in [r]* at the fine grid points
are not needed to relax the equations corresponding to Hys but we want to keep them
because they might be needed later on when we come back to Hy. However, the values
ri stored at the fine grid points depend on coefficients corresponding to hierarchical
increments W; with I < k’. This means, if we relax the equations corresponding to Hiy
and thus change the coefficients, the values r} change too and our stored values in [r]
become obsolete. That is why we do not store rg but the hierarchised counterpart

Pt = > dowi I bk @) [ oaw @y d1,0,) 5 (50)

leL icT jie{l,....d JjEN
viewitor, €0 IELedhw
Vi€{17...,d}\w:li=ki

where 7% has been hierarchised in all directions in {1,...,d} \ w. In Fig. 10 and by
comparing (45) with (50) we clearly see that the hierarchisation removes the dependence
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(a) dehierarchised ANOVA quantity (b) hierarchised ANOVA quantity
b "oh)

Figure 11: Shows the hierarchical increments which are included in rg }é) (red) and those included
in 72&{21}2) (blue). The hierarchised quantity 128}2) depends only on the hierarchical
increments with level two in direction 2 and is thus independent from those with level
one.

on the coefficients a corresponding to basis functions with I; < k; for all j € {1,...,d}\
w. Thus, we can relax the equations corresponding to e and our 75 values stored in
[r]“ at the fine grid points stay valid. To get r¢ in a later relaxation, we only have to
dehierarchise these values again.

Multigrid procedure Algorithm 1 summarizes the steps to keep the values in [r] up-to-
date when coarsening from Hy, to Hyr. It combines the update and the preservation step
of ANOVA quantities developed in the previous two paragraphs. Note that the REFINE
procedure is not explicitly formulated because it is just the inverse of the COARSEN
procedure.

First, the update and preservation step is applied in direction d of the coarsening
step. If d € w then the r includes the bilinear form in direction d and thus the value
in [r]“ has to be updated at the coarse grid points. Nothing has to be done at the fine
grid points because we cannot hierarchise the values [r]* in directions in w. If dd¢w,
then we do not have to update the values [r]* at the coarse grid points because they do
not include a bilinear in that direction but we have to hierarchise them at the fine grid
points.

In all other directions d € {1,...,d} \ {d} the same steps are executed. However,
because we perform the coarsening in direction d we remove grid points of only one level
in direction d. This is not the case for all other dimensions in {1,...,d}\ {d}. There we
have to deal with grid points of different levels, see Fig. 12b and Fig. 12c. We cannot
hierarchise grid points of different levels at once but have to process them level by level.
That is why we introduce an additional loop E/g = k’g, ..., 1 from level k/E to level 1. To
be consistent with this additional loop we have to further split the fine grid points into
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Algorithm 1 coarsen in direction d

1: procedure COARSEN(d)

2 In direction d

3 for w C {1,...,d} do

4 if d € w then compute T

5: Update [r]* with stencils (49) at coarse grid points
6 else if d ¢ w then transform 7§ to 7¢

7 Hierarchise [r]* at fine grid points in direction d

8

9

end if

: end for
10:
11: In all other directions
12: for d e {1,...,d}\ {d} do
13: for k' = ( i,...,k’g,...,kzl) to (k,...,1,...,k)) do
14: for w C{1,...,d} do
15: if d € w then compute T
16: Update [r]* with stencils (49) at grid points C?g
17: else if d ¢ w then transform Ty to 7y
18: Hierarchise [r]* at grid points FE’E in direction d
19: end if
20: end for
21: end for
22: end for

23: end procedure

the sets .7-'% and C% corresponding to the spaces

U Wy, and, U Wy,

=/ =/
I<k,lj=k; l;<kg I<k,l;=k; l;=kq

respectively, see Fig. 12.

4.2.3. Runtime and Storage Complexity

(51)

In this section, we show that the runtime and the storage complexity of the COARSEN
and REFINE procedure is only linear in the number of grid points. Besides that we discuss
how the structure and properties of the ANOVA components allow us to decrease the

storage requirements even further.

Let us first consider the runtime complexity. Executing a multigrid cycle means that
we have to provide the COARSEN and REFINE procedure to go from one grid or subspace
to another, as well as a relaxation method to reduce the residual corresponding to the
current subspace. Both, the grid transfer and the relaxation, influence the runtime of

one multigrid iteration.
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(a) coarse/fine grid points (b) further partition of fine grid  (c) final partition of C3 into Ca
points into Cs and F3 and F»

Figure 12: In (a) we show the fine (green) and coarse (red) grid points for the coarsening step
from H s 2y to Hs1). For the case d € {1,...,d} \ {d} in Alg. 1 we further partition
the fine grid points as shown in (b) and (c).

The relaxation method, e.g., Jacobi or Gauss-Seidel, computes the residual of all
equations corresponding to the current subspace and then updates the solution. Of
course, the computation of the residual is the computationally expensive part, because
the bilinear form aa (u, ¢« ¢) has to be evaluated for every test function, i.e., for every grid
point corresponding to the current subspace Hy.. With the ANOVA-like decomposition
(43), the bilinear form aa (u, vk ¢) is represented as a sum of 2¢ terms associated to the
ANOVA quantities . Each of these 2¢ terms can be evaluated by applying a stencil
of dimension d — |w]| to the corresponding [r]“ where |w| is the cardinality of the set w.
Since there are (|Z|) quantities 7 and a stencil of dimension ¢ needs 3" operations, we
require

(e

=0

operations to evaluate the bilinear form a (u, 1/Jk,t)- Hence, the relaxation on the whole
grid with level k is in O(4¢ - Ni) where Ny = |®k| is the number of test and basis
functions corresponding to the current subspace Hyg, respectively.

The runtime complexity for the COARSEN and REFINE procedure can be determined
by analyzing Alg. 1. In all d directions, we have to update all 2¢ components [r]*.
Depending on whether only a hierarchisation or a real update is needed, only a one- or
two one-dimensional stencils have to be applied at all Ny = Hle (3’“ + 1) grid points.
Except for direction d, the hierarchical structure has to be taken into account which
means we need a loop from level k; to 1. In iteration j only grid points up to level j are

processed which are
(3 +1)-TI (3% +1)
i#d
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grid points. If we consider all j = kg, ..., 1 iterations we obtain

S +1) [ (3% +1) = (2. (37 -1) +k:d> JI (35 +1) <3N,

Jj=1 i#d i#d
processed grid points. Overall, with the update of all 2¢ components [r]* in all d direc-
tions, the COARSEN and REFINE procedure are in O(d - 2% - N},). Hence, their runtime is
only linear in the number of grid points Ng.

The storage requirements are dominated by the ANOVA quantities 7§ rather than

the coefficient vector a. Clearly, no component [r]* stores more values than the sparse

grid corresponding to the space Vﬁ of the solution vector u. Thus, because we have

24 components, we can bound the storage requirements by O(24 - Wél)]). This becomes
computationally infeasible for higher-dimensional problems very soon. However, the
ANOVA-like decomposition (43) of our bilinear form ranks the components with respect
to their importance for the solution, see, e.g., [88, 91] for an in-depth discussion. This
ANOVA property has already been exploited in previous work. The multigrid method
presented in [150] for two-dimensional problems simply ignores the last term r,{cl’Q} of
(43) which tremendously simplifies the multigrid algorithm. For Poisson’s equation in
two dimensions (A = 92 ® I, + I, ® 93,) these terms are zero. For the Helmholtz
equation in two dimensions, it is shown that the solution still converges in a Sobolev
norm even if the term r,gl’Q} is ignored. However, to the author’s knowledge, there are no
such results available for problems in more than two dimensions. That is why we do not
skip whole ANOVA components but only ignore very selected values of the quantities 7.
Instead of allocating memory for 2% sparse grids of level ¢, we use an adaptive storage
scheme where we only store 7, if its absolute value is greater than a threshold.

With a numerical example (Poisson’s equation) we want illustrate the rapid decay of
the quantities rj, and thus the memory savings due to the adaptive storage scheme. Note
that the quantities rg of our ANOVA-like decomposition not only include the solution
u but also the bilinear form as. Hence, we combine the rapid decay of the hierarchical
surpluses with the influence of the bilinear form on them. In Fig. 13 we show how many
more grid points are needed to store all values, including all r{ with w C {1,...,d} as
well as the solution vector w itself, and compare it to the number of grid points of a
sparse grid. The threshold is set to le-14 so that the influence on the solution is below
the discretization error. The result is that only 1.5 to 2.5 times the number of grid points
of a sparse grid have to be kept. Because this holds for different levels ¢ and dimensions
d, we can conclude that in practice the constant 2¢ can be replaced by a small constant
independent of level £ and dimension d.

5. Case Study: Multi-Dimensional Convection-Diffusion
Equation

Finally, in this section, numerical examples are presented to confirm the practicability
of the multigrid method of Sec. 4, as well as the expected multigrid performance. The
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Figure 13: Between 1.5-|V{")| and 2.5- V"] five dim  —8—

grid points are required to store

additional storage

all ANOVA quantities. Thus, 2

empirically, only (’)(|Ve(1)|) grid +
points are needed to store the 15

sparse grid solution u as well as T3 4 5 6
all ANOVA quantities. level

parametrized convection-diffusion equation is solved in a sparse grid space requiring
distinctly fewer degrees of freedom as in a full grid space. We show results for Helmholtz
and convection-diffusion equations on both, regular and adaptively refined sparse grids.
In all examples, we perform two pre- and post-smoothing Gauss-Seidel relaxations and
set the threshold of the adaptive storage scheme to le-14.

5.1. Problem Formulation
We consider boundary value problems
d d
— —_ - - = Q
Z 8331‘ (M” 8xj> + ; Hi &Ti +p f ln

i,j=1
u = g onl,

with domain = (0,1)? and boundary T, g € Ly(T), and f € La(Q). The coefficients
ug- , ,uic, 1 € R are the parameters. We assume the resulting differential equation to be
elliptic. For the variational formulation of the boundary value problem, we need the

bilinear form
a(u,v) :/
Q

and the linear form

pOu v~ o

D St d 52
5 s+ 2 gy (52

i,7=1

b(v) = (f,v)L, = /va dz.

As discussed in Sec. 3.1 we can split the bilinear form (52) into a sum of bilinear forms
which have tensor product structure.

Finally, we have to specify the stencils corresponding to the discretization of the one-
dimensional operators on piecewise linear hat functions. These stencils are required for
the computation (46) of the bilinear from with the ANOVA quantities. Let h; be the
mesh width in direction 4, for the identity operator I, we obtain the stencil

1
ghi[l 4 17,
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Figure 14: The path of the Q-cycle through the hierarchical subspaces is illustrated.

for the convection term 0., the stencil

1
3 [-1 0 1],
and for 831.
1
i [-1 2 -1],
see, e.g., [33].
5.2. Q-Cycle

We need to determine the multigrid cycle and thus the order in which we pass through
the hierarchical scheme. We choose the so-called Q-cycle [151, 37] as shown in Fig. 14.
Note that a Q-cycle can of course also be employed in case of full grids if semi-coarsening
is possible, cf. [175] for a general discussion and [143, 145] for a discussion in the context
of a multigrid method with the hierarchical basis and full grids.

In the d-dimensional case, the Q-cycle can be formulated by a recursive process. It
consists of one-dimensional V-cycles which refine and coarsen only in one direction,
see Alg. 2. The V-cycle moves only to finer grids as long as they exist in the current
hierarchical scheme, i.e., as long as k is in £ in Alg. 2. The Q-cycle then nests the
V-cycles as shown in Alg. 3. The default value for parameter d is the dimension d.
This means, we start a Q-cycle by passing only the number of pre- and post-smoothing
sweeps v. The Q-cycle starts at the coarsest grid, then moves to finer grids, and ends
at the coarsest grid again. Hence, first an approximation on a coarse grid is computed.
It is then used on the next finer grid as a good initial guess. Because of the hierarchical
basis, this can be seen as a kind of full multigrid (FMG) method which is typically the
most efficient multigrid method, see [175, 31].
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Algorithm 2 V-cycle

1: procedure VCYCLE(CZ, g,V)

2 for k = (kq, .. .,k‘J_l, 1,]{3J+1,. .y kq) to (kq, .. "kd—l’gd—l’kd—kl?‘ .. kq) do
3 if(kl,...,kcz—i—l,...,kd)¢£then

4 break

5: end if

6 Call method g v times

7 Refine in direction d

8 end for

9: Call method g v times

10: for k = (k1,..., kci—l’ ki(i, k(i—i—l’ ooy kg) to (K, ... 7kJ—17 2, kci—&-l’ ..y kq) do
11: Coarsen in direction d

12: Call method g v times

13: end for

14: end procedure

Algorithm 3 Q-cycle

1: procedure QCYCLE(v, d = d)

2 if d == 1 then

3 VoycoLE(d, GaussSeidel, v)

4: else

5 VoyoLi(d, QoycLE(y,d — 1), v)
6 end if

7: end procedure

5.3. Numerical Results

We first solve the Helmholtz and convection-diffusion equations on regular sparse grids
and then show results for adaptive sparse grids.

Helmholtz equation As we have argued above in Sec. 4.2.3, the method presented in
[151] cannot cope with all ANOVA components and has therefore already problems to
employ the Q-cycle to compute the solution for the Helmholtz equation Au 4+ pyu = 0 in
only two dimensions. Because our method takes all ANOVA components into account,
we can solve the Helmholtz equation in d dimensions. Let

Au+ pu =0, in €,

53
u=g, onl (53)

be our Helmholtz problem with the parameter and boundary conditions

p=2mvd—1+1, g(x) = exp ((—\/djﬂ + u) xd> Cﬁsin (xjm),
j=1
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(a) solution surface (b) solution surface on adaptive sparse grid

Figure 15: In (a) the surface of the solution of the Helmholtz problem (53) in two dimensions is
shown. The surface of the solution of the convection-diffusion equation (55) in two
dimensions on an adaptively refined sparse grid is plotted in (b).

’ dimension level grid points Table 1: Lists the number of points

d— /—5 3.160 of'sparse grids With coars-

ening by three in dimen-
d= t=6 10,936 sion two, three, and four.
d=3 (=4 12,880 Note that a d-dimensional
d= =5 51,760 sparse grid with coarsening
d=4 (=3 34,912 by three of level ¢ has more
d=4 (=4 180,064 grid points than a sparse

grid with coarsening by two
of the same level and dimen-

sion.
and the solution
d—1
u(x) = exp <<—\/d —1lr+ ,u) xd> H sin(z;m) ,
j=1

see Fig. 15.

In Fig. 16a the behavior of the residual with respect to the number of Q-cycles is shown
for different levels and dimensions. A clear multigrid performance, i.e., convergence
rate independent of the mesh width, can be seen. The residual is reduced below the
discretization error with a fixed number of Q-cycles. We evaluated the obtained solution
function at the grid points of a full grid of level three, determined the maximum error,
and plotted the corresponding curve in Fig. 16b with the expected error rate O(hfﬁd_l),
see Sec. 2.4 and [39]. The numerically obtained error rate (slope) is conform to the
theoretical expected rate. Hence, even though the adaptive storage scheme ignores
selected values of the ANOVA components, they do not deteriorate the accuracy of the
sparse grid solution. Note the translation of the curves for dimensions two, three, and
four in Fig. 16b due to the constants depending on the dimension d, see, again, [39].
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Figure 16: On the left, the residual with respect to the number of Q-cycles for the Helmholtz
problem (53) is plotted. It shows that the convergence rate is independent of the
mesh width. See Tab. 1 for the number of sparse grids. On the right, the correspond-
ing maximum error and the expected asymptotic convergence rate is shown. The
numerically obtained error rate (slope) for dimensions two to four is conform to the
theoretically expected rate.

Convection-diffusion equation Let us now consider the convection-diffusion equation

—Au +100,,u + pu =0, in Q

54
u=g, onl (54)
with Dirichlet boundary conditions and
d—1
p=10vd — 1m, g(x) = u(x) = exp (—\/d — 17Txd> H sin(z;m).
j=1

Again, a convergence rate independent from the mesh width is obtained, see Fig. 17a.
The same holds for the convection diffusion equation

d

—Au + 1028xiu+uu =0, inQ
— (55)

u=g, onl
with
d
A = dn® + 10dr, g(x) =u(x) = H exp (—mz;) ,
j=1
see Fig. 17b. In both cases, the residual is reduced slightly faster for £ = 3 and d = 4
than for other levels and dimensions. The reason is, that ¢ = 3 still describes a rather

coarse grid and is as such not representative. The same can be observed for ¢/ = 3 and
dimension d = 2 and d = 3.
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Figure 17: The convergence curve for the convection-diffusion equation (54) is plotted in (a) and

for equation (55) in (b). The corresponding numbers of sparse grid points are shown
in Tab. 1.

Convection-diffusion equation on adaptive sparse grids As a last example, we con-
sider again the convection-diffusion equation (55) but on spatially refined sparse grids.
In Fig. 15b the solution of the problem corresponding to the equation (55) in two dimen-
sions on an adaptively refined sparse grid is shown. A sparse grid in three dimensions
after one refinement step is plotted in Fig. 18a. The refinement has been determined by
the commonly used surplus-based criterion which refines those grid points which have the
greatest absolute hierarchical coeflicients, see Sec. 2.4. In our example, one refinement
step refines the first two percent of all grid points sorted by their absolute coefficient.
For many sparse grid algorithms it is necessary that for each grid point all hierarchical
ancestors exist, see, e.g., [154, 153]. In our case, the existence of all hierarchical an-
cestors means that we do not have any hanging nodes, i.e., it is guaranteed that every
inner grid point is relaxed at least once during a Q-cycle. Hence, we do not have to care
about a special hanging nodes treatment which is a clear advantage compared to com-
mon multigrid methods, cf., e.g., [175]. In Fig. 18b, the reduction of the residual with
respect to the number of Q-cycles for grids with one, two, and three refinement steps in
three dimensions is shown. Of course, more Q-cycles are needed to reduce the residual
than in the case of regular sparse grids. This can also be observed for other multigrid
methods [175]. The first refinement step adds many rather coarse grid points which have
a big influence on the result. Thus, the residual stays almost constant from iteration
one to iteration two. But already in refinement step two the residual can be distinctly
decreased even though new grid points are still added. This is even more obvious for
refinement step three. Overall, our proposed multigrid method reduces the residual at
an equal rate no matter whether the grid is refined only once or several times.
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(a) adaptive sparse grid

In (a) a refined sparse grid in three dimensions is shown. In (b) the convergence curves
for the convection-diffusion equation (55) in three dimensions on adaptive sparse grids
with one (2,296 points), two (6,840 points), and three (18,696 points) refinement steps
are plotted. The convergence rate does not dependent on the number of refinement

steps.
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6. Remarks

We presented COARSEN and REFINE procedures for a multigrid method to solve multi-
dimensional parametrized second-order elliptic PDEs on spatially adaptive sparse grids.
When we traverse the hierarchical subspace scheme of a sparse grid with these COARSEN
and REFINE procedures, it is guaranteed that we always have a valid system of linear
equations corresponding to the Galerkin projection into the current subspace. Bundling
the COARSEN and REFINE procedures with a multigrid cycle leads to a highly efficient
multigrid method which only needs a fixed number of iterations independent from the
mesh width to solve the problem.

Multigrid methods have to provide a valid system of linear equations at each grid of
the grid hierarchy. This is particularly cumbersome in case of sparse grid discretizations
because the right-hand side of the system of linear equations contains the hierarchical
basis. Our multigrid method splits the right-hand side into multiple more easier man-
ageable components. The key ingredient is the ANOVA-like decomposition of the sparse
grid solution function leading to this component-wise representation of the bilinear form
and the right-hand side. Each component of this representation can be computed by
applying operator-dependent stencils to ANOVA quantities. Thus, the problem has been
reduced from providing the right-hand side to providing the ANOVA quantities. These
ANOVA quantities can be updated while moving through the grid hierarchy without
iterating over all sparse grid points by exploiting the hierarchical structure of the hier-
archical basis. We have shown that the update of the ANOVA components scales only
linearly with the number of grid points and the storage complexity is linear in the num-
ber of grid points as well. Furthermore, by exploiting the structure of the ANOVA-like
decomposition, we can reduce the constants in the complexity estimates even further.

We demonstrated our multigrid method on the multi-dimensional convection-diffusion
equation on regular and spatially adapted sparse grids. The numerical experiments
showed that our method indeed achieves multigrid performance and that the adaptive
storage scheme which skips certain ANOVA quantities can greatly improve the storage
requirements but does not deteriorate the error of the sparse grid solution.

Our multigrid method has to be modified to be applicable to elliptic PDEs with coef-
ficient functions which do not have tensor product structure. Such coefficient functions
lead to operators without tensor product structure and thus the ANOVA quantities can-
not be updated anymore as described in the COARSEN and REFINE procedures. However,
it is not only possible to decompose the solution function but also the coefficient function
leading to two interwoven decompositions. In the general case, where any multigrid cycle
through the hierarchical subspace scheme is allowed, it is not straightforward to carry
our COARSEN and REFINE procedures over to these interwoven decompositions. But if
the multigrid cycle is restricted to run only along the diagonal of the subspace scheme,
many of the ANOVA components become zero and our update principle of the ANOVA
quantities should be applicable again. However, this is part of future research. It is only
clear that “it is not clear yet that it does not work” [42].
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Part II.
MOR II: A Posteriori Model Order

Reduction

In the previous part, we have discussed that sparse grids are, in a certain way, optimal
to discretize functions with bounded, mixed derivatives up to order two. Thus, if the
state variable u®(p) € U® corresponding to our problem s : D — U¢ — ) satisfies this
smoothness assumption, we can discretize u®(p) on a sparse grid and obtain a similar
accuracy as on a full grid but with distinctly fewer degrees of freedom. The knowledge
about the smoothness of u®(u) is determined by theory alone and not by experience in
the form of data.

In this section, we assume our problem defined by the output function s : D - U — )
has already been solved for several parameter configurations in the past. The result is
data. It might contain state vectors u(p) € RV and outputs of interest ye)Y. To
find a more cost-efficient representation of the input-output relationship s, we extract
characteristics of the problem from this data. As laid out in Sec. 2.3, we assume such
a low-cost representation exists. We consider the data as our experience and thus call
this procedure a posteriori model order reduction.

This is the setting of most common model order reduction methods, see Sec. 2.3.2.
For instance, consider projection-based methods, e.g., POD and RBM. There, a set of
snapshots S = {u(p1),...,u(pr)} € RV is computed by solving s : D — U — Y
for a set of parameters P = {p1,...,pupa} C D. The snapshots in S are then used to
construct the reduced space U,, to approximate the space UN . Because n < N, we can
compute a reduced solution u,(u) € U, for a parameter pu € D distinctly faster than
the solution w (1) € U of the full model. This in turn allows us to rapidly evaluate
the (reduced) output function s, : D — U, — ).

In the context of a posteriori model reduction, we cannot only employ projection-
based but also data-fit methods such as interpolation and regression. The parameters
in P = {p1,...,pun} are the interpolation points and depending on whether we want
to interpolate the whole state vector or just the outputs of interest, the snapshots in
{u(pr), ..., u(par)} € RV or the outputs in {s(p1),...,s(par)} € Y become the target
values. Note that if the number of degrees of freedom A of the state variable u/ ()
is very large, the interpolation of the whole state vector u(u) € RN might become
prohibitively expensive, see Sec. 8 for more details.

A posteriori model order reduction is split into an Offline and an Online phase. During
the Offline phase, the data is generated and the reduced model is built. This is usually
very expensive because to obtain the snapshots (data), the problem has to be solved
multiple times in the high-dimensional space UN. The Offline phase can also be seen
as the learning part in the sense that we learn the reduced model from the data. Note
that the Offline phase does not exist in a priori model order reduction, as is discussed in
Part I. In the Online phase, we employ the reduced model to evaluate the input-output
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relationship s : D — U — Y. It is important that we construct the reduced model only
once but then use it over and over again. Thus, we compensate the high pre-processing
or Offline costs by a large number of cheap Online evaluations, see Sec. 2.3.

In principle, the a posteriori model order reduction task is a supervised learning
problem: We learn the input-output relationship s : D — U — Y from pre-computed
data where we consider the parameters in P as data points and the components of the
snapshots or the outputs of interest as target values. The generation of the data and the
training of the classifier or regression function can be considered as the Offline phase,
and the prediction of the target value for a new point as the Online phase. Data-fit
methods implement directly this point of view.

In this part, we discuss how we can employ supervised learning techniques based on
sparse grids for a posteriori model order reduction. We first introduce several novel su-
pervised learning methods based on sparse grids in Sec. 7 and evaluate them on numerous
classical learning problems. We then show how to employ sparse grid interpolation and
sparse grid regression for model order reduction in Sec. 8.
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7. Supervised Learning with Sparse Grids

We start this section on supervised learning with density estimation — a fundamental
unsupervised learning problem of statistics but also a building block for many supervised
learning methods. We employ the sparse grid density estimation method to solve the
classification problem and then discuss ensemble learning methods and AdaBoost in the
context of sparse grids.

7.1. Density Estimation with Adaptive Sparse Grids

Density estimation has always been a very important problem in statistics and data
mining [177]. But lately, there has also been a brisk demand for a reliable and fast
density estimation method in science and engineering applications, not least due to the
recent uncertainty quantification trend in CSE, see, e.g., [4, 9, 6]. Here, we present a
density estimation method based on adaptive sparse grids. It is reliable in the sense that
the parameters do not have to be fine-tuned to obtain good results and it is fast and
applicable to large data sets because it follows a grid-based approach.

Having discussed the sparse grid density estimation method in detail, we introduce
algorithms for standard tasks in the context of density estimation. In particular, we
show how to marginalize and to conditionalize sparse grid density functions and how to
sample from the distribution described by a sparse grid density function.

7.1.1. Grid-Based Density Estimation

Suppose we have a data set S = {x1, ...,z } C R? of samples drawn from an unknown
distribution p(X) of a random variable X. Note that we follow [28] and denote the
distribution of the random variable X with p(X). Density estimation is the construction
of an estimation p of the probability density function p based on the data S. Estimated
density functions can either be used to present, visualize, and retrieve information about
the data at hand [169], or they can be a means for other common tasks of data mining
and statistics such as clustering and classification, see Sec. 7.2 and Sec. 10.2. We refer to
[168, 169] for a thorough and general study on density estimation and its applications.

Parametric and nonparametric density estimation In general, we can distinguish be-
tween parametric and nonparametric density estimation methods. A parametric density
estimation method assumes that the form of the underlying distribution is known and
that only a small number of parameters has to be estimated. Very popular is a “mix-
ture of Gaussians” where a linear combination of Gaussian densities is taken and their
means and (co)variances are estimated with the expectation-maximization (EM) algo-
rithm, see, e.g., [28]. If information about the data is known, for example, its structure
can be described by a superposition of basic density functions, then parametric methods
can approximate the underlying density function with a high accuracy. However, such
information is rarely available.
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We consider nonparametric density estimation. It uses only the given data samples
{x1,...,x)} to estimate the density and it does not require any additional information
about the data. There is a variety of nonparametric density estimation methods, cf. the
survey [114]. Kernel density estimation has become the most widely used method of this
kind. The (one-dimensional) estimator

1 M T — T;
p(x)_M;K< 0_2 )7

is a linear combination of kernel functions K centered at the data points x; € S. The
performance of the estimator depends on the choice of the kernel function K and the
bandwidth o > 0. Whereas usually simply the Gaussian kernel K (z) = (2r)~1/2¢=%"/2
is used, the selection of the bandwidth o is a far more delicate matter. Approaches to
determine a good o reach from rules of thumb to highly sophisticated methods requiring
a good amount of computational effort, see, e.g., [116, 58] and the references therein.
Furthermore, the evaluation of p depends on the number M of (training) data points
S. Thus, in order to evaluate the estimated density function p, all M kernel functions
centered at all data points have to be evaluated. One remedy is to divide the data into
a small number of bins and place a kernel function at each bin. Then the evaluation
of p depends only on the number of bins and not on the number of data points any-
more. However, the number of bins increases exponentially with the dimension of the
data points (curse of dimensionality) and thus this is only feasible in up to, say, four
dimensions.

Grid-based density estimation A promising density estimation method to overcome
these two drawbacks — high sensitivity with respect to parameters and long runtimes
for large data sets — has been introduced in [105]. The idea is to start with a highly-
overfitted guess p. and then use spline smoothing to obtain a smoother and more gen-
eralized approximation p.

Suppose we have an initial guess p, of the density function underlying the data S =
{x1,...,xp}. Following spline smoothing [182], it is then proposed in [105], to look for
P in a function space V such that

p=argmin | (f(z) - p(e))? de -+ MASIE (56)
fev Q
Whereas the left term of (56) ensures that the function p closely fits the initial guess
Pe, the right term ||Af ||%2 is a regularization or penalty term imposing a smoothness
constraint. For example, A might be chosen to be V. The regularization parameter
A > 0 controls the trade-off between fidelity and smoothness. Let d5; be the Dirac delta
function centered on ;. If we set p. = ﬁ Ef\i 1 0, , We obtain after some transformations
(see [105]) the variational equation

| s@i@)ae 2 [ sia)- Ao sz (57)
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for all test functions 1) € V. Of course, other choices for the initial guess p. are possible.
However, here and in the following, we stick to this simple but sufficient choice. With
Galerkin projection, we can find a solution p of the variational problem (57) in a finite-
dimensional space. In [105], the density function p is discretized with basis functions
centered on grid points rather than with kernels centered at data points. However, just
as binning for kernel density estimation, this full grid approach suffers from the curse of
dimensionality: The number of grid points grows exponentially with the dimension of
the data points. That is why we employ sparse grids.

Sparse-grid-based density estimation Let ®, be the set of hierarchical basis functions

of the (adaptive) sparse grid space Vél) of level ¢, cf. Sec. 2.4. We are then looking for

pE Vél) such that

A : 1 <
[, protaaz [ Apta)- Aota)de =373 ota (58)

holds for all ¢ € ®,. Note that we are in the case of Ritz-Galerkin were the ansatz space
is equal to the test space. Because p = Z(l,i) 7 QiP1q 18 a linear combination, we can
write (58) as a system of linear equations

(R+)XC)a =b, (59)

with Rij = (¢i7¢j)L27 Cij = (Agﬁi,Agﬁj)Lz and bi = ﬁzjj\/il ¢i(a3j)7 where we used
an arbitrary ordering of the N sparse grid basis functions ¢;; and the corresponding
coefficients oy ;. Note that a pure theoretical outline of a convergence analysis of a
related approach without adaptive refinements and without a regularization term can
be found in [163].

Just as for the classification problem in Sec. 2.4.2, the matrices R and C' are of size
N x N and the right-hand side b is a vector of size N. Thus, the number of unknowns
does not depend on the number of data points M anymore but only on the number of
grid points N. With sparse grids we ensure that the number of grid points grows only
moderately with the number of dimensions. Employing adaptivity, we can even further
reduce the number of grid points.

Let us have a look at the system (59) from a computational point of view. We solve
the system of linear equations with the conjugate gradient method. Hence, we do not
have to form the matrices R and C but only need to provide the matrix-vector product
with, e.g., the UpDown algorithm, see Sec. 2.4. However, with the same arguments as
for the classification problem, we can replace the matrix C with the identity operator I
and thus the matrix-vector product with C' = I is for free, see Sec. 2.4.2.

7.1.2. Working with Estimated Sparse Grid Density Functions

In the previous section we have seen how to estimate the density function of data S
with sparse grids. However, for many applications it is not enough to just have an

65



estimated density function. In many practical cases, they need to, e.g., conditionalize
the density function or compute the variance. In the following, we present algorithms
to perform such standard operations with sparse grid density functions and show that
their complexity is only linear in the number of grid points.

Expected value and variance Let us first consider the expected value and the variance.
Suppose a random variable X has the sparse grid density function p = Z(z ieT bl €

Vél). ‘We have

1 27! (i+1)27!
/0 x - ¢pi(r)de = /( x - ¢pi(x)de + / x - ¢pi(zr) de

i—1)2-! i2-!

1 1
:6-2_2l-(3i—1)+6-2_2l-(3i+1):z‘-2_2l,

and similarly we obtain

! 1
/ 22 ¢pi(x)de = (i2+) 273
0 ’ 6

These lead to the expected value
A 1 d
B[X] = / zop@)de= 3 o [[i;- 2%, (60)
0 ti)er =1
and, with Var[X] = E[X?] — E[X]?, to the variance
Var[X] = ) oy H ( > 273l — kX2 (61)
(l)ez j=1

It is obvious that the sums in (60) and in (61) are independent of the number of data
points M and can be evaluated in O(N). Thus, they are linear in the number of sparse
grid points.

Marginal and conditional density functions Assume we have estimated the joint prob-

ability function p of two random variables X; and Xs, see Fig. 19. The marginal prob-
ability density function associated with X is

p1(z1) = / p(z1, v) dza.
€2
In case of a sparse grid density function

Plar, ma) = Y onidy, i (21) Py, (2),

(Li)ez

66



2 | 1 ) I 1 20
X, =5
15 | i pra] X1 = 5) 1 15
10 1 5 \ 1 10
5 & 7 L 5
| =
5 [ 1 i 15
10 [py i 1 -10
15 | i i 1 .15
_20 T T T T T T _20
D1

-20 -15 -10 -5 0 5 10 15 20 25

Figure 19: Contour plot of the joint probability density function p and visualization of the
marginal P, pe and conditional p(x2|X; = 5) density functions.

we have the marginal density function associated with X3

pi(z1) = Z 27201, (21), (62)

(1,i)eT

because fol ¢ri(z) de = 27!, Since a d-dimensional sparse grid consists of several d — 1-
dimensional sparse grids [39], the marginal density function p; can be represented with-
out an additional approximation error on a one-dimensional sparse grid. This leads to
significant savings in the number of grid points, cf. the numerical results in Sec. 7.1.4.
This is also crucial if we marginalize in multiple dimensions. There the marginal opera-
tion is repeated several times and in each iteration it becomes cheaper, cf. the sampling
method in the next section. Due to the tensor product approach (11) this procedure
carries over to the d-dimensional case. Note that marginalizing a sparse grid density
function does not depend on the number of data points and is only linear in the number
of grid points.
The conditional probability density function of p given X7 = z is

pw1,22)

p (22| X1 =11) = — .
P (z2|X1 ) p1(w1)

Thus, if we have the estimated sparse grid density function p = Z(l,i) 7 Q,i®1,i, we first
have to construct the marginal density function p; to obtain the conditional density
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function

paXimoy = Y Sifual)y oo, (63)

(L3)eT pi(@1)

Just as in the case of the marginal density functions, we can represent (63) on a one-
dimensional sparse grid without introducing an additional approximation error. The
new coefficients can be easily computed with the marginalize procedure described above.
Again, with the tensor product construction of the hierarchical basis functions, we can
extend the procedure to the d-dimensional case. Furthermore, the procedure is linear in
the number of grid points and does not depend on the number of data points.

Cross Validation The minimization problem (56) depends on the regularization pa-
rameter A which controls the trade-off between fidelity and smoothness. It ensures that
the estimated density function generalizes to new data, i.e., it prevents overfitting. The
numerical experiments in Sec. 7.1.4 confirm that our proposed method is not very sen-
sitive with respect to the regularization parameter and that A = 1075 is a very good
choice in most cases. Of course, the value A = 107 is only a rule of thumb and does
not work for every data set. Therefore, sometimes, it might be worthwhile to tune the
parameter to a particular data set.

From the training data S = {@1,...,x)} we estimate the density function, i.e., we
obtain the hierarchical coefficients «, and test it by computing the residual of the system
of linear equations (59) but with a new right-hand side b7 which has been built by using
the test data in 7. The Lo-norm of the residual

[Ro — b2 (64)

is then the accuracy indicator. Note that we ignore the regularization term C' here. The
residual (64) is a reasonable indicator because if the estimated density function captures
the underlying density function and distribution we should obtain a small value for the
test data as well. If our estimated density does not generalize to the test data then the
value of the residual of the system of linear equation remains high. We compare the
norms of the residuals for different choices of the parameter A and select the one for
which the residual is smallest, i.e., we select the A for which the corresponding estimated
density function generalizes best to the test data.

To reduce variability, the training data S = {1, ..., @} is split into k equally sized
sets to ensure that each sample is used for training and test. Each of these k sets is then
used for testing and the union of the remaining ones for training. This is standard k-fold
cross validation widely used in classification and other data mining tasks, cf. Sec. 2.2.1.

7.1.3. Sampling from Sparse Grid Density Functions

In the previous section, we have discussed several standard methods in the context of
density estimation which operate directly on the estimated density function p and do
not require samples drawn from the distribution p(X). But there are many situations
where samples from p(X) are required such as in the SIR algorithm [9]. That is why we
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present a direct sampling method for sparse grid density functions, discuss its properties,
and give details on the implementation.
This sampling method is the result of many fruitful discussions with Sergio M. Amaral.

Sampling Our task is to draw samples from the distribution p(X) given only the
sparse grid density function p. For instance, we might want to find the expectation
E[f] = [ f(z)p(x) de of a function f with respect to the estimated density p. With
samples {x1,...,x)} drawn from the distribution p(X) we can easily approximate the
expected value by 1/M )" f(x;). Another example where samples are required is the
SIR algorithm which re-weights samples from one distribution to obtain samples from
another one. See [9] where the SIR algorithm is extensively used in connection with
uncertainty quantification.

We have several options to draw samples from the distribution p(X). Following [162],
we distinguish between direct and Markov chain Monte Carlo (MCMC) sampling meth-
ods. The direct methods, e.g., inverse transform, acceptance-rejection, and importance
sampling, usually rely only on the Law of Large Numbers whereas the MCMC ap-
proaches, e.g., Metropolis-Hastings, slice, Gibbs sampling, are based on asymptotic con-
vergence properties of Markov chains. MCMC methods have the severe drawback that
the generated samples are not independent before the Markov chain converged to the
target distribution. It is difficult to assess if an MCMC sampler has already converged
or not. Furthermore, MCMC sampling is inherently sequential and thus hard to paral-
lelize [185]. Therefore, we do not consider MCMC sampling methods here but stick to
direct methods. However, of course, sparse grid density functions are applicable in the
context of MCMC. It is also worth noting that MCMC methods work very well in many
situations and have extended the scope of sampling methods [162].

Acceptance-rejection sampling A common direct sampling method is acceptance-
rejection sampling [28, 162]. Starting with a simple (estimated) density function ¢ from
which we can easily draw samples, we introduce a constant w such that w - g(x) > p(x)
for all  in the domain of § and p. We then draw a sample xy from the distribution
§(X) and a uniformly distributed sample z over [0, w - g(xo)]. The sample x is rejected
if z > p(xg), otherwise it is accepted. As thoroughly discussed in [28], the rejection sam-
pling method leads to a tremendous amount of rejected samples which in turn means
that it becomes very slow if we draw a large number of samples. This can have two
reasons. First, the so-called envelope density g has to approximate the density p rather
well in order to minimize the number of rejected samples, see Fig. 20. However, usually,
we do not know much about the structure of p and thus we cannot easily find an ap-
propriate §. Furthermore, the density ¢ has to be simple enough to allow us to rapidly
draw samples from the corresponding distribution. In [81, 80] the adaptive rejection
sampling method is introduced which automatically constructs an appropriate envelope
density. However, even though this might lead to a good envelope density ¢ in certain
situations, it is still difficult in practical situations where densities usually have multiple
sharp peaks and consist of different modes. The second crucial disadvantage of rejection
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sampling is that the acceptance ratio diminishes exponentially with the dimension. This
is illustrated in [28] on a simple example.

These two drawbacks — hard to find envelope density and curse of dimensionality —
suggest that rejection sampling works well if we need only a small number of samples
but that it reaches its limits soon if large sets of samples are required. In the following,
we develop a direct sampling method for sparse grid density functions which does not
rely on an envelope density and is not so prone to the curse of dimensionality.

Ancestral sampling We can represent a density function p as product of conditionalized
densities

p(w) :p(xla oo 7xd) :pl(l’l)'
p2(w2| Xy = 11)-
p3(x3] X = w2, X1 = 21)- (65)

Pd(za|Xag—1 = xgq-1,..., X1 =21)

where, for example, pa(x2| X1 = x1) is the density p conditionalized at X; = 27 and then
marginalized to Xs. Equation (65) immediately follows from the definition of conditional
probability [121]. With (65) we have decomposed the density function p into a product
of one-dimensional densities. If we assume we can sample from a one-dimensional sparse
grid density function, we can start to sample the marginal density p; and obtain z;
which is the first component of the d-dimensional sample . With x; we conditionalize
p and marginalize to Xo to obtain a one-dimensional density pi(x2|X; = 1) which
we in turn use to sample the second component of . We continue this process until
we have drawn a complete sample & = [z1,...,24]". This decomposition is related to
the so-called ancestral sampling known in the context of graph models, see [28]. The
ingredients for the sampling method are procedures to marginalize and to conditionalize
a sparse grid density function and a method to draw samples from a distribution with a
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one-dimensional sparse grid density function. In the previous section, we have seen how
to marginalize and to conditionalize. Thus, we only have to discuss the one-dimensional
sampling.

Let p be a one-dimensional sparse grid density function. We employ inverse transform
sampling [28] for p and thus have to construct the inverse function F~1 of the cumulative
distribution function (CDF)

In case of sparse grids and the linear hierarchical hat basis, the one-dimensional density
function p is piecewise linear and with it the corresponding distribution function F.
Furthermore, we know that the range and domain of F is [0,1] and that it is strictly
monotone. To find zg € [0,1] such that yo = F/(x), we iterate through the (sparse) grid
points on which F is discretized and determine the two unique grid points x;; and ¢
with F(z;;) <y < F(xg,). With linear interpolation between F(z;;) and F(xy) we
find zg € (214, xk,) With F(xo) = 19, see Fig. 21.

Having now all building blocks together — marginalize, conditionalize, one-dimensional
sampling — we can summarize the multi-dimensional sampling method for sparse grid
density functions in Alg. 4. The method SAMPLEdD is a recursive function which calls
itself d times to generate a sample € R%. Its parameters are the sparse grid function
p represented by the basis ® and the coefficient vector a, the sample point & which will
be filled step by step, and the counter variable ¢ with default value 1. The recursion
terminates when all components are generated, i.e., if i > len(x). Except for the first
component (¢ = 1) we have to conditionalize with respect to the dimensions 1,...,7— 1.
In each call it is enough to conditionalize just with respect to dimension 1 because from
the previous recursive call we already get the d — ¢ 4+ 1-dimensional density function
which is the result of conditionalizing p given X1 = x1,...,X;-1 = ;1. The next step
is to marginalize in all dimensions except 1 to obtain a one-dimensional density and
then to draw the i-th component of & with the one-dimensional sampling method SAM-
PLE1D described above. After that, we perform the recursive call to draw the i + 1-th
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component.

Complexity One call to SAMPLEdD returns a d-dimensional vector  which means we
have drawn one sample from the distribution p(X). To draw M’ samples {x1, ...,z },
we require M’ calls of SAMPLEdD. First, we can execute them in parallel. Second, a call
of SAMPLEdD is not expensive. Even though in each recursive step a conditionalize and
marginalize operation is necessary, they become cheaper and cheaper as the recursion
proceeds because if we are in the i-th step we only have to deal with a d—i+1-dimensional
function. We show that this is indeed the case with the numerical results in the following
section.

Mixing dimensions We are not only interested in the runtime of the sampling method
but also in the quality of the generated samples. Note that, in general, we do not have
quality issues such as MCMC samplers (independence of samples) because we have a
direct sampling method. However, we also have to draw many samples to match the
distribution of the random variable due to the Law of Large Numbers.

The d-dimensional sampling method SAMPLEdD builds on the one-dimensional pro-
cedure SAMPLE1D. As far as SAMPLE1D is concerned, we only have to deal with one-
dimensional piecewise linear functions £ which we can invert without introducing any
additional error. This means that the quality of the one-dimensional samples depends
only on the one-dimensional density function p and its distribution function. In the
case of SAMPLEdD), the one-dimensional density functions are obtained by marginalizing
(MARGTODIM1) and conditionalizing (COND) the joint probability function p. Because
we evaluate the corresponding formulas (62) and (63) exactly, we do not introduce any
additional error there too, cf. Sec. 7.1.2. This shows that we cannot improve the building
blocks SAMPLE1D, COND, and MARGTODIM1 of our sampling method anymore and thus
we have to concentrate on SAMPLEdD itself.

One drawback of SAMPLEdD is that if we introduce a large error in the first component
xyofx =[xq,... ,:rd]T, e.g., because our estimated density function does not fit the data
well, this error is propagated through the rest of the recursive process. It can be observed
that the last component x4 is always the worst. Fortunately, we usually generate not only
one but many samples. To prevent that always the last component is at a disadvantage,
we randomly change the order in which the components z1,...,z4 are generated. This
distributes the error induced by the estimated density function across all components
and generates better samples in average.

7.1.4. Numerical Results

We now evaluate the sparse grid density estimation method and the algorithms intro-
duced in Sec. 7.1.2 and Sec. 7.1.3 on artificial and real-world data sets. In case of the
artificial data sets, we know the exact density function p and thus can compute the
average Lo error

]\;7— S () — ()7, (66)

xzeT
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Algorithm 4 Sampling from sparse grid density functions

1. procedure SAMPLEdD (®, o, @, i =1)

2 if ¢ > len(x) then

3 return x

4 end if

5: if i > 1 then

6 a,® «+ conND(P, a, 1, z[i — 1)) > conditionalize in dimension 1
7 end if

8 &, ® + MARGTODIM1(®, a) > marginalize all dimensions except 1
9: x[i] «+ SAMPLE1ID(®, &) > draw one-dimensional sample
10: @ < SAMPLEdD(®, o, @, i + 1)

11: return x

12: end procedure

where 7 is a test set with |7| = My. Our artificial data sets are sampled in each
direction independently from either a normal distribution with mean 0.4 and standard
deviation 0.1 or a beta distribution with @« = 3 and § = 5. A data set denoted by
“GGBBB” is a five-dimensional data set (d = 5) where the samples in the first two
dimensions are drawn from the normal distribution and in the third, fourth and fifth
from the beta distribution. Besides these very simple data sets, we also consider common
multi-modal benchmarks and real-world data sets where the exact density function is
not always available.

We compare our density estimation method based on sparse grids (SGDE) with the
kernel density estimation (KDE) implemented in the widely-used R package KS [58]
with the Gaussian kernel. Note that we also compared to other KDE implementations
(R KernSmooth, MATLAB KDE Toolbox, and Python SciPy) where we obtained similar
results as with the KS package. Furthermore, the KS package not only implements the
pure KDE method but also includes several improvements. It supports binning in up to
four dimensions (curse of dimensionality) to cope with large data sets and it provides
several kernel bandwidth selection methods of which we employed Hns (normal scale
bandwidth selection method). Even though more sophisticated bandwidth selection
methods exist, Hns turned out to be a good trade-off between run time and accuracy.

Accuracy We show the results for the artificial data sets with dimensions three, four,
five, and six in Fig. 22 and with dimensions eight and nine in Fig. 23. We have
M = 100,000 and M = 500,000 data points. In the three-dimensional and the four-
dimensional case, the test set 7 has to be a full grid with 2° points in each direction due
to constraints of the binned kernel density estimator of the R KS package. In dimensions
> 4 we set T to the first 100,000 points of the low-discrepancy Sobol sequence generated
with the GNU Scientific Library. The regularization parameter A of the SGDE method
to control the smoothness of p is always set to 107°. This emphasizes that the choice
of X is indeed a good rule of thumb. In case of adaptive sparse grids, we start with
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a regular sparse grid of level three and perform five refinement steps. In each step we
refine the 100 grid points with the highest absolute hierarchical coefficient weighted with
the function value at the corresponding grid point [153].

Fig. 22 clearly shows that our method is competitive with KDE even though we keep
the regularization parameter A fixed over all data sets and all dimensions. In eight
out of 13 comparisons with KDE, our SGDE method achieves better results. Note that
because the KS package supports binning only in up to four dimensions, we were not able
to evaluate the kernel density estimator in five and six dimensions with M = 500, 000
sample points, cf. the runtimes in Tab. 2. The plot also shows that the results of our
method are still very good with adaptive sparse grids where we need even fewer (= 5,000)
grid points. Thus, whereas the KDE method has to iterate over all 100,000 or 500,000
samples to evaluate the estimator, our method has to iterate only over ~ 5,000 grid
points which is orders of magnitude less than for KDE.

In the higher-dimensional case in Fig. 23, we show the results only of our method
because KDE becomes computationally very expensive for such higher-dimensional and
large data sets. It is important to emphasize that only because we exchanged the full grid
discretization proposed in [105] with our sparse grid discretization, it is computationally
feasible to handle such higher-dimensional data sets with up to nine dimensions with the
discussed density estimation method. We do not only plot the results with regularization
parameter ) set to 10~ but also for the best choice in {1078, 10°7,..., 1073} with respect
to the error (66). Clearly, the results do not distinctly differ which emphasizes that a
rough choice of A is sufficient if we have large data sets.

Runtime In Tab. 2 we summarize the runtimes in the five- to nine-dimensional settings.
The number of points where we evaluate the estimated density function is always set
to My = 100,000 but the training sample size M varies from 10,000 to 500,000. All
measurements where performed on a system with an Intel Core i7-870 and 8GB RAM.
The parallel version (OpenMP) of SGDE with four threads uses parallelized algorithms
for the matrix-vector product with R of the system of linear equations (59) and a
parallelized sparse grid function evaluation procedure based on the algorithms introduced
in [109, 108]. We split the total runtime into the time spent for solving the system of
linear equations (59) and the time needed to evaluate the estimator p. It is important
to note that a direct comparison of the runtimes of our SGDE implementation in C++
and the KDE implemented in the R KS package is not reasonable because we cannot
compare compiled and interpreted code. However, since we only want to show how the
runtime of each method scales with the number of sample points M, we nevertheless
include the runtimes of R KS in Tab. 2.

As expected, the runtime of KDE increases proportional to the number of sample
points M. This is not the case for SGDE. The evaluation time stays constant, no
matter if we have 10,000 or 500,000 training points. The time to solve the system of
linear equations (59) increases slightly because of the computation of the right-hand side
which depends on the number of data points. Whereas the sample size is increased by
a factor of 50, the runtime to solve the system increases only by a factor of three. The
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Figure 22: Comparison of our density estimation method based on sparse grids (SGDE) and
kernel density estimation (R KS Hns): The numbers (100,000 and 500,000) on the
x axes are the sample sizes (M). The results for the kernel density estimation with
sample size M = 500,000 and dimensions five and six are missing due to very long
computation times.
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Figure 23: Comparison of our SGDE method with optimal parameter A (“best”) and with fixed
parameter A = 1e-05 in up to nine dimensions: The number of sample points M is
set to 500, 000. The optimal choice of A does not distinctly improve the results which
emphasizes that a rough choice of ) is sufficient.

time to solve the system of linear equations is dominated by the algorithm to compute
the matrix-vector product with R. Even though this algorithm scales only linearly in
the number of grid points, it scales in O(Qd) with the dimension d. This explains the
increase of the solution time with the dimension by roughly a factor of two. The increase
of the evaluation time with the number of dimensions is due to the product of the basis
functions (11) and time consuming index lookups. We refer to [109, 108] for an in-
depth analysis of these sparse grid algorithms. Nevertheless, even in nine dimensions
with 500,000 sample points our SGDE method only needs 1,219 seconds on one core to
estimate the density function and evaluate it at 100,000 test points. The parallel version
on four cores takes only 401 seconds.

Cross Validation Even though we have seen that in all examples a very rough choice
of the regularization parameter A\ was sufficient, see Fig. 23, we want to demonstrate
the parameter selection procedure described in Sec. 7.1.2 on a six-dimensional exam-
ple. We performed three-fold cross validation and searched the parameter in the range
[1078,107!] with 10 steps on a logarithmic scale. On the one hand, the results shown
in Fig. 24 underline that we can slightly improve the error by such a cross validation
method and that the accuracy indicator of Sec. 7.1.2 works. On the other hand, the re-
sults emphasize once more that a standard choice (here A = 107°) for the regularization
parameters works very well indeed.

Real-world data sets So far we have evaluated our SGDE method only on artificial
data sets (normal and beta distributions). Here we now consider five multi-modal real-
world data sets from various application areas which are frequently used in the data
mining community. However, because we have real-world data sets we do not know the
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SGDE, single thread SGDE, four threads R KS
d M gp | solve[s] eval[s] total[s| | solve[s] eval[s] total[s] || total[s]
5} 10,000 4230 37 3 40 16 1 17 467
5 | 100,000 4230 50 3 53 18 1 19 4857
5 | 500,000 4285 115 4 119 37 1 38 -
6 10,000 5503 78 5! 83 32 1 33 529
6 | 100,000 5311 95 5 100 36 1 37 6551
6 | 500,000 5198 208 5 213 67 1 68 -
7 | 500,000 6823 394 7 401 128 2 130 -
8 | 500,000 9391 749 11 760 245 4 249 -
9 | 500,000 || 12301 1205 14 1219 397 4 401 -

Table 2: Runtime (in seconds) of the SGDE method for the data sets GGGBB (5 dim.), GG-
BBBB (6 dimensions), GGGBBB (7 dimensions), GGGGBBBB (8 dimensions), and
GGGGGBBBB (9 dimensions) are reported. In contrast to the kernel density estima-
tion, the runtime of our method increases only slightly with the number of samples.

10°

A =le-05 =
107t L cross validation I
Figure 24: Six-dimensional example

to show the effect of
the selection of the reg-
ularization parameter A
with the cross valida-
tion method discussed in
Sec. 7.1.2: The error im-
proves if we employ cross
validation but overall
the standard choice A =

GGGGGG CGGGGBB  GGBBBB  BBBBBB 1075 seems to be suffi-
cient.

error (66)
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data set H dim ‘ M ‘ My ‘ modes H SGDE ‘ R KS (Hns) ‘

old faithful 2 184 46 2 137.64 50.84
iris 4 135 15 3 59.68 35.39
svmguidel 4 3089 | 4000 2 16201.60 16091.76
olives 8 348 88 3 175.06 712.59
codRNA 8 99535 | 1000 2 7474.91 8906.72

Table 3: Log-Likelihood for real-world data sets: The number of modes corresponds to the num-
ber of clusters in the data sets. Overall, our SGDE method performs better than R
KS.

exact density function anymore. Following [172], we split the data sets into a training
set S and test set 7, estimate the density function on the training data, and compute
the log-likelihood of the test data

> log ((=)) .

The log-likelihood of the test samples is then a measure how well our estimated density
function generalizes to before unseen data. In Tab. 3, we compare our SGDE method
with the kernel density estimation of the R KS package. We started with a sparse grid of
level four and performed seven refinement steps where we added 100 grid points in each
step. The regularization parameter A has been determined by cross validation. In three
out of five data sets, SGDE is better than KDE. Both, the codRNA and the olive oil
data set, contain one mode (or cluster) with a very sharp peak. Even though adaptivity
helps a lot, such sharp peaks are hard to catch with a grid-based discretization. That
might be a reason why SGDE does not perform so well for those two data sets. In case
of the olives data set, we find the same effect in the density-based clustering example in
Sec. 10.2.

Marginal density functions We draw 100,000 samples from the distributions listed in
Tab. 4 independently in each dimension and estimate the joint density function with the
R KS package (with binning) and our SGDE method. Thus, we have a four-dimensional
data set with M = 100,000 samples. With the procedure of Sec. 7.1.2 we marginal-
ize the joint density function obtained with our SGDE method such that only one di-
mension remains, see Fig. 25. To cope with the very sharp peaks in the marginalized
density functions, we employ a regular sparse grid of level eight (23,297 grid points)
and allow rougher functions by slightly decreasing the smoothness parameter A to 1076,
Marginalization in case of KDE means that only the kernel in the remaining dimension
is evaluated. In Tab. 5, we compare the error (66) of the marginalized density functions
on a one-dimensional equidistant mesh with 2% points. The SGDE method achieves in
dimension one and three a smaller error than the kernel density estimation. We would
like to emphasize that after marginalization the SGDE method employs only 255 grid
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’ d ‘ Target PDFs (G is Gaussian PDF) ‘ E ‘ Var
1 2G(3,5) + 3G 55) 0.50 | 1.86e-2
7 l l
2 21:10 %Gl(%l(g) Tﬁfl%l(%) ) 0.28 | 3.56e-2
3 o %G(ﬁi%) + 59(1@ g)3 1 0.33 | 8.34¢-2
41 3G(5.5)+ 1 (G4, 55) + G(3,25)) | 0.50 | 3.19e-2

Table 4: Marginalized density functions in dimensions one to four, cf. [132], and the error, ex-

pected value, and variance corresponding to the density functions.

SGDE R KS
d | error (66) ‘ E ‘ Var error (66) ‘ E ‘ Var
1]3.37e-3 | 050 | 1.80e-2 || 3.63e-3 | 0.50 | 1.79¢-2
2 | 4.85e-3 0.29 | 3.40e-2 || 2.58e-3 0.29 | 3.43e-2
3| 7.18e-3 0.33 | 8.32e-2 || 9.31e-3 0.33 | 8.37e-2
4 | 3.35e-3 0.50 | 3.15e-2 || 2.42e-3 0.50 | 3.19e-2

Table 5: Error, expected value, and variance for the marginalized density functions, cf. the exact
PDFs in Tab. 4.

points (one-dimensional sparse grid of level eight). Hence, to evaluate the marginalized
density function we only have to iterate over 255 grid points whereas in the case of
the kernel density estimation we still have to iterate over the kernels centered at all
100,000 samples. We also compute the expected value and the variance as described in
Sec. 7.1.2. For the kernel density estimation the derivation of the corresponding formulas
is straightforward. Both our SGDE method and the kernel density estimation achieve
very good results, see Tab. 5.

Sampling We now do not compare kernel density estimation and our sparse grid density
estimation but acceptance-rejection sampling and our ancestral sampling method. We
draw samples with the acceptance-rejection and ancestral sampling method described
in Sec. 7.1.3. We use the probability density function of the uniform distribution in the
unit cube as envelope density for the acceptance-rejection sampling and we always mix
the start dimension for the ancestral sampling method, cf. the remark in Sec. 7.1.3. We
always perform cross validation to obtain the regularization parameter \.

In Fig. 26 we show 1,000 samples drawn from the distribution corresponding to the
old faithful data set. Our sparse grid density estimation method clearly detects the two
clusters and thus both sampling methods yield samples which fit well to the original
data.

Let us now consider Tab. 6. For each data set, we drew 10,000 samples and computed
the empirical mean m = [f1y, ..., 7Mg)" € R? of the samples and empirical mean m =
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Figure 25: The marginalized density functions corresponding to the four-dimensional data set

generated from the distribution shown in Tab. 4: The data exhibits in every dimension
a very different behavior. Whereas the kernel density estimator tends to oscillate
(dimension one and two), our sparse grid method yields a smoother results.
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Figure 26: With a sparse grid density function (level five with seven refinement steps) for the old
faithful data set, we drew 1,000 samples with ancestral (left) and acceptance-rejection
(right) sampling. Both methods draw samples with good agreement to the original
training data points. However, the samples generated by our ancestral method, better
fit the data. This is confirmed by the results in Tab. 6.

[my,...,mg|l € R? of the training data. The sum of the relative errors

d _~ __
100 ]mz—m,]
— m—— 67
() (67)

™
i=1 v

combines the two vectors 72 and 7. The value (67) can be interpreted as the difference
between the mean of the samples and the training data in percent. We did the same
for the empirical variance and report both values in Tab. 6. In addition, we show the
runtime of the two methods on a single core of an Intel Xeon E5-2670. In almost all
cases, our ancestral sampling method is not only better with respect to the error (67)
corresponding to the empirical mean and the empirical variance but it also distinctly
faster.

In Tab. 7, we show more details on the runtimes of the two methods on one and four
cores. Again, our ancestral sampling method is faster than acceptance-rejection sampling
in all cases. The runtime of the acceptance-rejection sampling method heavily depends
on the generated pseudo-random numbers. Thus the runtimes are nondeterministic
because not always the same amount of samples is rejected. The runtimes and speedups
from one to four cores in Tab. 7 also show that our method can cope with today’s multi-
and many-core systems. Furthermore, the results confirm that our ancestral sampling
method scales only linearly with the number of samples and with the number of grid
points.

7.2. Classification with Density Functions

We present a novel classification method based on sparse grid density estimation. In
contrast to the common classification method based on sparse grid regression which
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ancestral sampling acc-rej sampling

¢ ref  gp mean|[%| var[%] time[s] | mean[%] var[%]| timels]
5 0 129 0.39 0.68 1 0.44 1.15 0
oldfaithful | 5 5 1,736 1.32 4.83 7 1.89  4.63 5
5 7 2,681 0.60 2.99 10 2.25 2.44 12
5 0 769 13.34 24.87 11 12.65 26.10 5
iris| 5 5 5,746 4.23 10.14 59 493 37.68 240
5 7 9,414 3.64 11.02 93 6.28  39.54 286
5 0 769 1.96 48.91 10 10.62  84.18 6
svmguide | 5 5 5,115 0.44 13.28 42 8.33  29.65 141
5 7 8,896 0.74 12.49 67 9.87 34.95 374
5 0 1,471 1.30 51.87 30 1.56 48.48 60
sergio | b5 5 9,967 0.41 27.89 131 1.63 26.96 313
5 7 19,908 0.37  23.55 229 2.22  18.67 497
olives 5 0 6,401 14.00 23.60 357 18.92  26.91 1,966
Vs 5 28,593 9.01 1923 1,625 8.93 16.48 9,152
5 0 6,401 8.35 60.65 372 21.39 122.50 404

codRNA
5 5 36,137 5.47 65.44 1,297 7.57 67.00 6,997

Table 6: Reports the relative difference (percent) between the empirical mean and variance of
the training data and 10,000 drawn samples. The timings (seconds) were performed on
a single core only. In almost all cases the ancestral method is better than acceptance-
rejection sampling with respect to accuracy and runtime.
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one core four cores

£ | ref gp #samples ancs| rej[s] | ancls] rej|s]

1,000 6 15 1 3

5| 5 5,746 10,000 59 240 15 28

iris 100,000 584 674 149 409
1,000 9 17 2 14

5| 7 9,390 10,000 93 286 23 192
100,000 931 3,087 234 927

1,000 4 15 1 5

9| 5,115 10,000 42 141 11 39
svmguide 100,000 413 1,324 105 517
1,000 7 56 1 13

5| 7 8,896 10,000 67 374 17 65
100,000 669 5,296 167 1,462

1,000 13 46 4 12

5| 5 9,967 10,000 131 313 33 129
sergio 100,000 | 1,313 4,363 332 709
1,000 23 74 7 14

51 7 | 20,549 10,000 229 497 58 160
100,000 2,288 6,635 590 2,612

1,000 128 291 35 70

olives | 5| 5 | 28,593 10,000 1,625 9,152 324 1,081
100,000 | 17,207 39,400 | 3,253 30,575

1,000 124 1,582 37 269

codRNA | 5| 5 | 36,137 10,000 | 1,297 6,997 339 1,955
100,000 | 16,499 124,925 | 3,552 13,653

Table 7: Our ancestral sampling method is always faster than acceptance-rejection sampling.
The results also show that our method scales only linearly with the number of samples
and with the number of grid points.
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has been discussed in Sec. 2.4.2, our method can deal with more than two classes in a
natural way and it provides a stochastically motivated confidence value which indicates
how to rate the respond to a new point. Furthermore, the underlying sparse grid density
estimation method introduced in the previous section allows us to split the computational
procedure into an expensive Offline step (pre-processing) in favor of a very fast Online
phase where the actual classification of new points takes place.

7.2.1. Classification with Sparse Grid Density Estimation

We consider the multi-class classification problem as defined in Sec. 2.2.1: We want
to reconstruct the unknown function ¢ : RY — {1,...,k} which assigns class labels
1,...,k to points in the d-dimensional space R?. Given is only the training data S =
{(zs,y:) 1M, CR? x {1,...,k} which might contain noise.

Non-probabilistic and probabilistic approaches to classification with sparse grids
What we call the classical sparse grid classification method employs regression where the
regression function is discretized on a sparse grid. This is a non-probabilistic approach,
i.e., the mapping between data points and class labels is directly determined [115]. In
contrast, we now introduce a probabilistic, generative approach for classification with
sparse grids, cf. Sec. 2.2.1. The method is based on sparse grid density estimation. We
learn the class-conditional' densities p(z|Y;) for each class and uses Bayes’ theorem (3)
to find the posterior class probabilities p(Y;|x). Recall that Y; is the binary random
variable which indicates if we have class i or not, see Sec. 2.2.1. To estimate p(x|Y;), we
split the training data into its classes and estimate the density function for each class
separately. To assign a class label to a new point, we evaluate the estimated density
functions p(x|Y;) at the new point &, compute the posterior density p(Y;|x) with Bayes’
theorem, and respond with the class label associated to the density function which yields
the highest value. In contrast to the naive Bayes classifier, we do not have to invoke the
conditional independence assumption because we estimate the joint probability density
function [102].

Whereas in the classical approach one usually has to distinguish between binary and
multi-class classification problems, our method can cope with more than two classes in
a natural way. We can also derive a natural and stochastically motivated confidence
value: If we assign a label to a data point for which one density function yields a much
higher value than the others, it is very likely that the data point is correctly classified.
In contrast, if several density functions yield about the same value, the data point most
probably lies in a region where different classes overlap and thus the class label cannot
be assigned with high confidence. However, the information that a respond should be
considered more like an educated guess than a founded statement is already valuable
for certain applications, see, e.g., [176]. Furthermore, our classification method has all
advantages of a generative model, e.g., generate new data points, compensate for class
priors, and detect outliers [28, 115].

'Because we directly learn the class-conditional p(z|Y;), this is sometimes called conditional learning
[115].
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Probabilistic, generative sparse grid model for classification We split the training
data set S into k partitions Sy, ..., S, with

S ={(zi, yi) € Slyi = j},
such that the set S; contains all M; pairs (x;,y;) with class label y; = j. We then
construct the estimated probability density functions p(x|Y1),...,p(x|Ys) with the sets
S1,...,8 C S and the sparse grid method described in Sec. 7.1. The prior class proba-
bilities are either simply constants with p(Y;) = 1/M, or are estimated from the fractions

sy = S = T
Colsl Mo

To assign a class label to a new data point @, we evaluate the estimated density functions

p(x|Y1),...,p(x|Yy), and compute with Bayes’ theorem the posterior density

p(Yi|@) oc pa]Y)p(Yi).

Note that we ignore the denominator p(x) in Bayes’ theorem. The classifier ¢ approxi-
mates the unknown function ¢ and is then defined as

¢(x) = argmax p(Y;|x) . (68)
e{l,....k}
We summarize our classification method based on sparse grid density estimation in
four steps:

1. Split the training data set S into its separate classes Si,...,Sk.

2. Construct the estimated the density functions p(x|Y1),...,p(x|Yy) with the data
sets S1,...,SE on a sparse grid with the method discussed in Sec. 7.1.

3. For alli=1,...,k, approximate the prior probability p(Y;) with a constant value
p(Yi) = 1/M or estimate it with p(Y;) = M;/M.

4. Evaluate the classifier (68) to assign a label y € {1,...,k} to a data point x € R?,
i.e.,
y = ¢(x).

Figure 27 shows a contour map of the two estimated density functions p(Yi|x) and
p(Ya|x) corresponding to the two classes of the two moons data set. Since the data
points are equally distributed between the two classes, the priors p(Y1) and p(Y2) have
no influence. Clearly, density function p(Y]|x) evaluates to greater values in those regions
where most data points with label 1 lie than in the rest of the domain. Just as density
function p(Ya|x) yields greater values in the region of class 2. Furthermore, the contour
lines of the two density functions approximate the shape of the boundary of the data
point cluster with label 1 and label 2, respectively. Figure 27 also demonstrates the
confidence value. For example, consider point (0.4,0.5). It lies between the two classes,
thus it is very difficult to assign the correct class to this point. This fact is reflected by
the two density functions. Both functions evaluate to about the same value at (0.4,0.5),
which confirms that we can only make an educated guess but not a profound statement
about the class label of (0.4,0.5).
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Figure 27: The data points of the two moons data set and the contours of the corresponding two
density functions.

Computational costs Let us now have a look at the classification method from a com-
putational point of view. For both, the classification method based on density estimation
as well as the one based on regression, we have to solve k systems of linear equations if
we want to construct a classifier for a problem with & > 2 classes. However, the systems
of linear equations have a crucial difference: Whereas the system matrix R+ AC' for the
density estimation problem consists of the matrices R and C' with dimensions N x NN,
the system matrix ﬁBBT + AC corresponding to the classification method based on
regression includes a matrix B with dimension N x M where M is the number of data
points. Since usually the matrix BB’ is not assembled but only a procedure for the
matrix-vector product with B and B7 is provided, the product with BB still depends
on the number of data points M and thus a matrix-vector product with a vector of size
M has to be performed in each iteration of the CG method, cf. Sec. 2.4.2. This is a severe
drawback of the classification method based on sparse grid regression when it comes to
large data sets. In contrast, the minimization problem corresponding to our classifica-
tion method based on sparse grid density estimation relies on a system matrix which is
independent from the data points. Therefore, the matrix-vector product with the system
matrix is completely decoupled from the number of data points M. Furthermore, we set
the operator C to the identity matrix I, cf. Sec. 2.4.2 and Sec. 7.1.

After having constructed a classifier with the density-based or the regression-based
method we can classify a new point € R? by evaluating k sparse grid functions. Thus,
classifying a new data point with the method based on density estimation has the same
costs as with the method based on regression. Note that evaluating a sparse grid function
is in O(¢4) because basis functions of a hierarchical increment have disjoint support, see
Sec. 2.4.2.
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7.2.2. Offline/Online Splitting

In the following, we describe an Offline/Online splitting of the computational procedure
of the classification method based on sparse grid density estimation. In the Offline
phase, the system matrix R + AI is pre-computed and stored in a decomposed form.
When we get data points in the Online phase, the pre-processed matrix is loaded and
the corresponding system of linear equation is solved in O(N?) instead of in O(N?).
Two matrix decompositions of the system matrix are proposed and their properties in
the context of the classification problem are discussed.

Offline/Online splitting in the context of classification As we have discussed above,
one advantage of our classification method is that the system matrix is truly decoupled
from the number of the training data points M. However, the system matrix R + \I
of the density estimation problem is even independent from the data points themselves.
Whereas an entry B;; of the matrix B in the system matrix ﬁBBT + AC' of the
regression problem is the hierarchical basis function ¢; evaluated at the data point
xj, an entry R;; for the density estimation problem is the Lo dot product of the two
hierarchical basis functions ¢; and ¢; which does not depend on the data points. As
far as the density estimation problem is concerned, the data points influence only the
right-hand side but not the system matrix of the system of linear equations (59). This
allows us to introduce an Offline/Online splitting of the computational procedure. Even
though very common in model order reduction, the data mining community has paid
little attention to such Offline/Online splittings of the computational procedure.

Such an Offline/Online scheme pays off if we compensate the costly Offline phase
by repeating the Online phase many times or if our (real-time) application requires a
classifier immediately after new training data has been provided. Such scenarios can
be found in, e.g., online learning or data stream mining [78, 18, 77]. Another example
is cross validation. There we want to construct a classifier for different regularization
parameters A\ with different training data sets and test them on a test data set. Thus,
we have to construct many classifiers where only the parameter A as well as the training
and test data set change.

Matrix pre-computation Here we want to pre-compute the system matrix R + AI of
the density estimation problem (59). Note that we set the regularization operator C
to the identity matrix I. We would like to emphasize once more that the following
decomposition is not possible in case of the classical sparse grid classification method
based on regression because there the system matrix depends on the data points.

Let Vél) be the sparse grid space of level £ and dimension d spanned by the hierarchical

basis ®,. To explicitly form the matrix R+ A\I corresponding to Vél) we can employ the
already available matrix-vector product procedures by multiplying with the unit vectors.
Especially for higher dimensional data sets, this becomes rather expensive because one
matrix-vector product is in O(2¢N) which is only linear in the number of grid points
N but with the factor 2¢ depending exponentially on the dimension d. Therefore, in
our case, where we want to assemble the system matrix, it is better to follow the naive
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approach where we explicitly compute the Ly dot products of all combinations of the
basis functions. Just as N matrix-vector products with complexity O(2¢N), this scales
also quadratically with the number of grid points N but we do not have the factor 2¢
anymore, see, e.g., [119] for a detailed algorithm.

A key question is how to store the matrix during the Offline phase. We discuss here
an LU decomposition and an eigendecomposition of the system matrix.

LU decomposition Since we want to solve a system of linear equations, an LU decompo-
sition is an obvious choice. Thus, in the Offline phase, we compute the LU decomposition
and store the lower left and upper right triangle matrices. They are then used in the
Online phase to solve the corresponding system of linear equations with backward and
forward substitution which is in O(N?) only. A severe drawback of the LU decomposi-
tion is that we have to fix the regularization parameter A already in the Offline phase
because the decomposition is completely different for R+ A I and R+ Aod with A\ # Ao,
see [50] and the references therein. This is indeed a disadvantage as cross validation with
respect to the regularization parameter A is one key application of such an Offline/Online
splitting. There we have to solve a whole set of systems R+ \1I,..., R+ A\, I where
only the regularization parameters \i, ..., \,, are changed.

However, it has also been shown that the sparse grid density estimation method is
not very sensitive to different parameters A for huge data sets, see Sec. 7.1.4. Since the
LU decomposition is cheaper to compute than the eigendecomposition discussed in the
following paragraph, the LU decomposition might be used in cases where also the costs
of the Offline phase are crucial.

Eigendecomposition If we store the eigendecomposition of the matrix R, we are able
to vary the parameter \, and the Online phase is still in O(N?). Let R = VDVT be the
eigendecomposition of R where V is an orthonormal matrix and D a diagonal matrix.
Such an eigendecomposition exists because R is a Gram matrix with respect to the Lo
dot product and the basis functions in ®, are linearly independent. We store V' and D
in the Offline phase. To construct a classifier in the Online phase, we have to solve the
system of linear equations (R + AI)a = b to obtain the coefficients a, i.e., we have to
compute (R + AI)~1'b. This can be accomplished with the stored matrices V and D as
follows

(R+ M= (VDVT + AsvVT) b=V (D + \I) ' V70,

Because V is orthonormal we have V~! = VT The matrix D+ I is an N x N diagonal
matrix which can be easily inverted in O(N). Therefore, to solve the system (59), we
only have to invert the diagonal matrix D+ AI and perform three matrix-vector products
with NV x N matrices. Hence, the Online phase is still in O(/N?) and we can modify the
parameter X in the Online phase. Note that even though we invert the diagonal matrix
D + M we have not experienced any numerical instabilities for the numerical examples
in Sec. 7.2.3. Computing the eigendecomposition in the Offline phases takes usually
distinctly longer than computing the LU decomposition. Nevertheless, we will always
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employ the eigendecomposition in the following because it gives us greater flexibility
with respect to the regularization parameter .

7.2.3. Numerical Results

In this section, we report on the performance of the proposed classification method based
on sparse grid density estimation. Note that the reported accuracy results do not depend
on whether we use the Offline/Online splitting or not, of course. We compare with the
classification approach based on sparse grid regression. We always employ sparse grids
without basis functions at the boundary because we simply transform the data set into
the [0.1,0.9]¢ cube if necessary [152]. The selection of the regularization parameter \
was performed with five-fold cross validation. To tackle the multi-class classification
problem with the classical approach, we compute a sparse grid regression function for
each class separately as discussed in Sec. 2.4.2. Note that in rare cases our method
can achieve slightly better results for the test data set than for the training set due
to the optimization problem originating from density estimation which does not target
explicitly the classification error.

Regular sparse grids Let us first consider the results with density functions estimated
on regular sparse grids. In Tab. 8, we report the results of the regression-based and
the density-based method on nine data sets. The computations with the density-based
method were performed with the prior p(Y;) = M;/M and p(Y;) = 1/M, respectively.
For all nine data sets, our method achieves competitive results. For six out of the nine
data sets we obtain either 100% test accuracy or a better test accuracy than with the
regression-based approach. For the three other data sets (svmguidel, olives, and shuttle)
the classical approach is only slightly better. These results clearly suggest that the data
sets can be learned with our density-based classification method. Hence, our method
can cope with both artificial (two-moons, 35, and svmguidel) as well as real-world data
sets (old faithful, iris, bupa, olives, shuttle, and oil flow).

In Fig. 28, we show a dimension-wise plot of the iris flower data set. The four-
dimensional data points are projected onto two dimensions each. We also show contour
plots of the three density functions corresponding to the three classes of the data set. If
we compare the dimension-wise plot of the data set with the dimension-wise plots of the
density functions, we see that the density functions evaluate to higher values near the
center of the corresponding class. This visualizes that it is reasonable to use the density
value as a measure of confidence in the membership to its class.

Adaptive sparse grids Let us now come to the results for adaptively refined sparse
grids, see Tab. 9. We employ the standard sparse grid refinement criterion based on
the absolute value of the hierarchical coefficients. We only consider the data sets for
which we did not obtain 100% test accuracy in Tab. 8 and skip the data sets with more
than six dimensions because we will discuss them in the context of the Offline/Online
splitting below. We need distinctly fewer sparse grid points to achieve a better or similar
accuracy if we employ adaptive refinement, i.e., if we adapt the grid to the data set.
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regression-based density-based density-based

p(Ys) = M; /M p(Yi) =1/M
d gp | train[%]  test[%] | train[%] test[%] | train[%]  test|[%)]
two moons 2 17 100.00 100.00 100.00 100.00 100.00 100.00
old faith. 2 17 100.00 97.82 100.00 100.00 100.00 100.00
3 3 351 100.00 100.00 99.50 100.00 99.83 98.52
iris 4 769 100.00 80.00 97.77 93.33 97.77 100.00
svmguidel 4 769 97.24  96.15 96.43 94.55 94.56 95.52
bupa 6 545 79.65 67.27 58.62 56.36 70.68  69.09
olives 8 | 6,401 100.00 100.00 100.00 97.72 97.12 96.59
shuttle 9 | 9,439 99.74  99.64 83.12 83.82 97.67 97.75
oil flow 12 | 3,249 90.06 66.52 85.96 85.73 86.57 86.75

Table 8: Percent of correctly classified data points for the regression-based and our density-based
sparse grid classification method: Results for the density-based method are shown with
prior (p(Y;) = M;/M) and (p(Y;) = 1/M), respectively. Besides the results on the
training and test sets, we also report for each data set the dimension (d) and the
number of grid points (gp). In six out of nine data sets, our density-based method
performs better than the classical, regression-based approach.

density, p(Y;) = M;/M density, p(Y;) = 1/M

d| gp train[%)] test[%] | gp train[%] test[%]
iris 4| 160 96.29 100 | 117 96.29 100
svmguidel 4 | 457 95.01 95.32 | 988 95.24 95.22
bupa 6 | 1,729 71.72 67.27 | 268 71.03 70.90

Table 9: The results for the density-based classification method on adaptive sparse grids are
listed. With adaptive refinement, we achieve similar results as on regular sparse grids
but with distinctly fewer grid points, cf. Tab 8.
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Figure 28: Projection of the iris flower data set onto two dimensions each and the density func-
tions corresponding to the three classes of the data set: All three density functions
evaluate to high values near the center of their corresponding class.
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Overall, we obtain either better or almost as good results as with the classical ap-
proach. And, just as with the classical approach, we can drastically improve the results
using adaptively refined sparse grids.

Offline/Online splitting Finally, we want to report on the runtime of the proposed
method with and without the Offline/Online splitting. We only consider the olives, shut-
tle, and oil flow data sets because only for those the classification took longer than one
second. In Tab. 10, we show the runtime of the regression-based and the density-based
method. In case of the density-based method, we report the runtime without (standard)
and with (pre-computed) Offline/Online splitting. Without the Offline/Online splitting
we did not assemble the system matrix but used the matrix-vector product procedures
in combination with the CG method to solve the system of linear equations. We stopped
either after 50 CG iterations or when the norm of the residual was below 10710,

Let us first compare the runtimes of the regression-based with the density-based
method without Offline/Online splitting. The olives data set is eight-dimensional and
consists of a few data points only. We see hardly a difference in the runtime of the
regression-based and the density-based method. However, the shuttle data set has also
only eight dimensions but about 43,500 data points. Since the complexity of the matrix-
vector product with the system matrix R of the density-based approach is indepen-
dent form the data points, the density-based method is about five times as fast as the
regression-based method where the matrix-vector product depends on the number of
data points. We have the exact opposite situation for the oil flow data which is 12-
dimensional and consists of only a few data points. Since the matrix-vector product
with R is in O(2¢N), the density-based approach is slower. However, in all cases, we
can drastically reduce the runtimes of the density-based method if we switch on the Of-
fline/Online splitting. For all data sets, the density-based method with Offline/Online
splitting is by far the fastest. For the shuttle data set, the construction of the right-hand
side of the system (59) becomes the most expensive part of the computation. The right-
hand side cannot be pre-computed because it involves the data points. Overall, we gain
speed ups of up to 100 compared to the regression-based method and of up to 500 com-
pared to the density-based method without Offline/Online splitting. The measurements
where performed on an Intel Core i7-870 with a single thread only.

7.3. Ensemble Learning with Sparse Grid Classifiers

Let us now return to the classical sparse grid classification method based on regression.
From Sec. 2.4.2 and the comprehensive study in [153], we know that the method can
be greatly enhanced by adaptively refining the underlying sparse grid. The drawback of
adaptive sparse grids is that the corresponding adaptive algorithms are distinctly harder
to implement than their regular counterparts. In particular, to develop an efficient and
parallel implementation, a thorough understanding of the hardware is necessary [108].
That is why we consider here ensemble learning to improve the sparse grid classification
method based on regression without employing adaptive sparse grids. We construct
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regression-based density-based density-based

standard pre-computed
d M | solve[s] total[s] | solve[s] total[s| | solve[s] totals]
olives 8 348 55 55 60 61 <1 <1
shuttle 8 43,500 1,006 1,018 215 242 10 36
oil flow 12 1,318 25 25 567 567 <1 1

Table 10: Runtime in seconds of the regression-based approach and the density-based classifica-
tion method without (standard) and with (pre-computed) Offline/Online splitting are
reported. We split the (Online) runtime in the time spent to solve the system of linear
equations and the total time including all reading, writing and pre-processing of the
data.

several classifiers relying only on regular sparse grids and combine their predictions to
classify a new data point.

7.3.1. Ensemble Learning and AdaBoost

In ensemble learning, multiple classifiers, so-called base or weak learners, form a team.
The individual decisions of the team members are then combined to obtain the final
prediction. Ensembles work well if the base learners are accurate and diverse [55, 100].
A base learner is accurate if it is better than random guessing. Usually, this can be easily
achieved because this is the goal of every classification method. Base learners are diverse
if they make different errors on new data points. We can construct diverse base learners
by training each of them on a different data set. Many strategies exist to construct these
individual training data sets. We consider bagging, stacking, and boosting.

Bagging, stacking, and boosting Let S = {(x;,y:)}}£, C R% x {—1,1} be the training
set of our binary classification problem.

Bagging constructs the training data sets Sy, ..., Sy, for the base learners by drawing
samples randomly with replacement from the original training data set S. The training
sets S1,...,Sy are called bootstrap replicates of the original training set and contain,
on the average, 100 — 100/e ~ 63.2% of the original training set, with several samples
appearing multiple times. The final answer is obtained by a majority vote between the
team members [32].

Stacking is highly related to cross validation where the training data S is partitioned
into subsets S1,...,S8,;, C S and classifiers are trained on each of the subsets and vali-
dated on the remaining ones. In the end, the classifier with the best result is kept and
all others are discarded. Of course, this is very wasteful. Therefore, stacking keeps all
classifiers and combines them in an ensemble [189, 102]. Let g1, ..., g, be the classifiers
trained on the subsets S1,...,S;,. The final classifier is

¢(x) = sign (Z 5i9i($)> ;
i=1
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where the stacking weights {1, ..., Sm} are given by the optimization problem

M m 2
B = arg minz <yz - Z wiQi(@) : (69)
wo= i=1

Note that stacking has also been applied to density estimation in [172].

Boosting also achieves diverse base learners by training them on different data sets.
But in contrast to bagging and stacking, it assigns weights to the data points which
are then gradually adapted during the construction of the base learners such that more
weight is placed on those data points that are hard to classify. The most popular boosting
algorithm is AdaBoost which we discuss in the following paragraph.

AdaBoost AdaBoost has been introduced in [75]. It had a significant impact on the
machine learning community and is ranked as one of the ten most important algorithms
in data mining [190]. There are several versions of AdaBoost, see, e.g., [76]. We restrict
the following discussion to the most common version called AdaBoost.M1, see Alg. 5
AdaBoost produces a sequence of base classifiers g1, ..., gy, which are sequentially
trained on an ever-changing training data set. To accomplish this, a weight w; > 0 is
introduced for each data point in S. These weights have to be taken into account by the
base learners. Initially, all weights are equal and thus the first base learner g; is trained
in the usual manner. However, in the subsequent iterations of AdaBoost, the weights
change such that more weight is placed on data points which are hard to classify. The

final AdaBoost classifier
é(x) = sign (Z 5igi(w)> (70)
i=1

is a linear combination of the base learners g1, ..., g, with coefficients 3y, ..., Bn.

Let us have a closer look at the AdaBoost.M1 algorithm shown in Alg. 5. The weights
are initialized with w; = 1/M. In each iteration, we train a base classifier g; and compute
the weighted classification error

M wil (yi # g5 (2))

err; =
’ Zij\il Wi ’

where I (y; # g; (x;)) is 1 if the data point (x;,y;) is misclassified by g; and else 0. An
error err; greater or equal to 0.5 means that our base learner performs not very good and
thus this is a signal to stop. If the error is below 0.5, we can compute the coefficient 3; to
determine the weight of the decision of g; in the final AdaBoost classifier (70). Figure 29
shows the dependence of the coefficient 5; on the weighted classification error err;. It
follows the intuitive expectation that base learners with a low error should get a high
coefficient and thus a significant vote in the final prediction. In the end of each iteration,
the weights corresponding to the data points are recomputed. If the data point (x;,y;)
has been correctly classified by g;, its weight is reduced, and if it has been misclassified,
it is increased. Note that the weights stay always positive. The loop continues until m
base learners and coefficients have been computed.
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Algorithm 5 AdaBoost.M1 [75]

1: procedure ADABOOST.M1(S, m)
2 Set all weights w; =1/M,i=1,...,M
3: for j=1,...,m do
4 Fit classifier g; to data with weights w1, ..., wy
5 Compute the weighted error
err; S wil (yi # gj(@s))

M
D i1 Wi

6: if err; ¢ (0,0.5) then
7 return ¢(x) = sign [Zi;ll Bigi(a:)]
8: end if
9: Bj < 0.5 log((1 — err;)/err;)
10: Set new weights w;, i =1,..., M
wi e, if y; = gj(a),
W; <—
wi - P, if g # gj(a)
11: end for
12:  return é(z) = sign >0, Big;(x)]

13: end procedure

AdaBoost is a forward-stagewise additive modeling approach with respect to the ex-
ponential loss criterion [102]. In each iteration, a base learner g; with coefficient j; is
added to an expansion

j—1
Cj—1 = E Bigi-
i—1

AdaBoost computes the coefficient 3; such that the loss

M M
D Ly (m) + Bigi(m) = > exp (—yi (&1 (mi) + g5 (i)
i=1 =1

is minimized. The base learners and the coefficients of the previous j—1 iterations are not
modified. This is a completely different approach than for the sparse grid classification
method of Sec. 2.4.2 where all coefficients a7, ..., ay are optimized simultaneously.

AdaBoost, and ensemble learning in general, fits very well to the idea of model order
reduction. Instead of combining many simple basis functions (e.g., linear basis functions
or radial basis functions), a few problem-dependent basis functions (base learners) are
built and then used to form the classifier. This is very similar to model reduction with
POD or the RBM.
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7.3.2. Sparse Grid Base Learners for AdaBoost

We want to employ the sparse grid classification method based on regression to build
the base learners for AdaBoost. In the previous section, we have seen that AdaBoost
computes a weight for each data point which has to be taken into account when con-
structing the base learners. Thus, we cannot use the optimization problem (23) of the
sparse grid classification method of Sec. 2.4.2.

Let w = [wy,...,wy]T be the AdaBoost weights associated to the data points in the
training set S = {(x;, )}, € R? x {~1,1}. To construct a sparse grid base learner

g€ Vél), we change the minimization problem (23) to the weighted minimization problem

M
1
argmin — > w; (f(w:) — v:)” + MASI7, (71)
fEVél) M i=1

We weight the error (f(2;) — y;)? introduced by the data point (a;,y;) with the associ-
ated weight w;. Analogously to the original minimization problem (23), this leads to a
system of linear equations

1 - 1
<MDBB + )\C> o= MBDy, (72)

where the matrix D € RM*M ig g diagonal matrix with the weights wy,...,wys on
the diagonal. All the computational procedures for the matrix-vector product with the
matrices B, BT and C can be reused. The system (72) is not restricted to regular sparse
grids, but can also be employed in locally adaptive settings.

It is not straightforward to employ the sparse grid classification method based on
density estimation to construct the base learners. The corresponding density estimation
minimization problem (58) does not contain the labels y; and thus no error term similar
to (f(z;) — y;)*®. Hence, a simple weighing as in (72) is not possible.

7.3.3. Numerical Results

Sparse grid classifiers can be greatly enhanced if adaptive sparse grids are employed, see
[153, 154, 156, 155]. Instead of having a fixed, regular grid structure, new grid points
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are added in those regions where a higher accuracy is required, i.e., where those data
points are which are hard to classify. Thus, the adaptive refinement of the grid guides the
classification method by forcing it to focus on those problematic data points. However, as
we have argued above, the drawback is that adaptive algorithms are harder to implement
and, in particular, harder to optimize on modern hardware, see the extensive studies in
[109, 108, 107].

With the weights associated to the data points, AdaBoost also guides the classifier by
pointing out the data points on which it should concentrate. This means, with AdaBoost,
we also adapt the classifier to the current problem at hand but we can stay on regular
sparse grids. That is why we want to investigate if we can achieve a similar accuracy
with AdaBoost as with adaptive sparse grids. In the following, we consider runtimes
only on an Intel i7-2600 CPU with four cores. For other architectures, including GPUs
and combinations of CPUs and GPUs, see [106]. We consider two data sets: The five-
dimensional checkerboard with a 3 x --- x 3 pattern and the codRNA data set from a
real-world biochemical application.

Checkerboard The checkerboard consists of 60,000 training and 20,000 test data points.
It has 3° = 243 different areas where the classifier has to jump from 1 to -1 at the borders.
It does not contain any noise and thus we aim for a classification accuracy of one.

We first consider uniform basis functions with grid points at the boundary. In case of
AdaBoost we have three base learner where each of them uses a sparse grid of level six.
Overall, we have ~ 300,000 degrees of freedom (DoFs). We compare AdaBoost with a
classifier on a regular sparse grid of level seven (= 300,000 DoFs) and with a classifier
on an adaptive sparse grid with 14 refinement steps (= 220,000 DoFs). Fig. 30a clearly
shows that even though with the adaptive sparse grid we can learn the data set on
distinctly fewer sparse grid points, it is not competitive in terms of runtime.

Let us now employ nonuniform basis functions, see Sec. 2.4. Nonuniform basis func-
tions allow us to ignore the grid points at the boundary. However, a nested four-way
switch statement is needed inside the innermost loop of the computing kernel [106].
Hence, it is distinctly more expensive to evaluate a nonuniform than a uniform basis
function. With nonuniform basis functions, AdaBoost requires only five base learners
with ~ 61,000 grid points each to achieve the target accuracy of one. For the classifier
on the regular sparse grid, about 590,000 grid points are necessary and in the case of
the adaptive sparse grid we need 25 refinement steps. Due to the expensive evaluation
of nonuniform basis function, the situation has changed completely with respect to the
runtimes. AdaBoost clearly outperforms all other classifiers, see Fig. 30b.

Non-coding RNAs The eight-dimensional codRNA data set is used for computational
pre-screening of RNAs. Non-coding RNAs (ncRNA) are transcripts that have function
without being translated to protein. They are difficult and expensive to detect with
common biochemical screens and thus it is better to first look for ncRNA candidates
computationally, and then verify them biochemically [176]. Because the biochemical
screening is costly, with respect to time and money, a computational method should
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Figure 30: Runtimes of classification with AdaBoost, regular, and adaptive sparse grids for the
five-dimensional checkerboard data set.

minimize the number of false positives, i.e., sequences that are not ncRNA but are
classified as ncRNA by the method. Thus, we are more interested in a high specificity
than in a high sensitivity, where

true positives

sensitivity =
Y true positives + false negatives’

true negatives

specificity = true negatives + false positives’

Just as in [176], we visualize this with a ROC (receiver operating characteristic) curve,
see Fig. 3la. We want our method to have a high specificity and sensitivity, i.e., we
want the curve to be in the top left corner. We compare the AdaBoost approach with
an adaptive sparse grid classifier and a support vector machine (SVM) classifier (libsvim
[49]) used in [176]. The AdaBoost classifier consists of a team of four sparse grid base
learners. For the adaptive sparse grid classifier we performed two refinement steps, and
in each step we refined two grid points. Overall, we obtain with AdaBoost the same result
as with adaptive sparse grids. Both sparse grid approaches are distinctly better than the
SVM classifier. We obtain a similar result with respect to the runtimes, see Fig. 31b.
Note that libsvm is more than 100 times slower (706 seconds) than our approach. It is
not included in the plot because libsvin does not support multi-threading and offers no
vectorization support.
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Figure 31: In (a) the ROC curve obtained using AdaBoost, adaptive sparse grids, and libsvm is

shown. Both sparse grid methods perform better than libsvm. In (b) we illustrate
the runtimes of AdaBoost and the adaptive sparse grid classifier. The runtime of the
SVM classifier is missing because libsvm has no multi-threading and vectorization
support.
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8. Case Study: Thermal Conduction Problem and Heat Shield

In the previous section, we have tackled classical learning problems with supervised
learning methods based on sparse grids. Now, in this section, we employ supervised
learning techniques to construct reduced-order models. We consider two popular thermal
conduction problems: a thermal block and a heat shield. In both problems a block with
a certain geometry and parametrized thermal conductivity properties is heated. We are
then interested in the average temperature in specific parts of the spatial domain Q.

So far, we focused on classification as one form of supervised learning. We had data sets
of the kind {(x;,v:)}M, C R x {1,...,k} where the labels y; € {1,...,k} were discrete
values. Now, we consider interpolation and regression as another form of supervised
learning where the data sets are now subsets of R? x R and thus the labels y; € R are
real numbers.

In Sec. 8.1 we employ sparse grid interpolation to learn the output function s : D — Y
of the thermal block and the heat shield problem. If we do not require the state vector
u (), this is a cheap, simple, and non-intrusive way to compute the output of interest.
It has been shown in [47, 45, 44] that it is computationally feasible to extend this sparse
grid interpolation approach to interpolate not only the output of interest but the whole
state vector. However, the problem with the interpolation method is that it forces
us to compute the snapshots for specific, pre-defined parameters. To be more precise,
we have to provide the snapshots where the parameters coincide with the sparse grid
points. Of course, this limits the scope of the method because in many situations we
are given a set of snapshots and cannot influence for which parameters they have been
computed. Therefore, in Sec. 8.2, we combine POD and sparse grid regression, to handle
pre-computed snapshots for which the parameters do not necessarily have to coincide
with sparse grid points.

8.1. Sparse Grid Interpolation of Output of Interest

We employ sparse grid interpolation to learn the input-output relationship of the problem
s: D —U — Y. We have already discussed that when we solve the problem s : D —
U — Y, we are usually only interested in the output of interest s(u) € ) and not in
the state variable u(u) € U, see Sec. 2.3. Nevertheless, most projection-based model
reduction methods make the detour around the state variable u(p) to compute the
output of interest. We follow a different approach and directly interpolate the function
s : D — Y without explicitly considering the state. Note that this is also the difference to
the sparse grid methods presented in [47, 45, 44], were the full state vector uV () € RV
is interpolated.

Interpolation of output of interest We have D C [0,1]¢ and ) C R. Let Vél) be a
sparse grid space of level £ and dimension d with N grid points. We construct the sparse
grid interpolant sy € Vél) of the full model s with the hierarchisation procedure, see
Sec. 2.4. For higher parameter dimensions (d > 3), this is not feasible with ordinary

tensor product grids, but with sparse grids we can cope with higher dimensions to some
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extent. After this, we only have to evaluate the sparse grid function sy at a parameter
p € D to obtain an approximation of the corresponding output of interest. In particular,
we do not have a Galerkin projection into a space spanned by a reduced basis. Hence,
we do not need to implement a solver for such a projection. This is a clear advantage
over projection-based methods such as RBM and POD because for many (real-world)
applications the implementation of the solver for the high-fidelity solution is a challenge
on its own, let alone the development of a solver for the reduced system. Overall, this
means our method is non-intrusive. We treat the full model sV as a black box and
do not need to know anything about the governing equations?. Of course, this lack of
knowledge comes at a price. Usually, it is distinctly harder to achieve similar accuracies
with non-intrusive as with intrusive methods.

We want to compare the reduced basis method to our sparse grid interpolation with
respect to the number of operations needed for one evaluation of the reduced output func-
tion in the Online phase. For the following problems with d parameters, the reduced
basis method with a reduced basis space of dimension n needs roughly O(n3 + d - n?)
operations, i.e., O(d - n?) to form the d stiffness matrices corresponding to the d param-
eters and O(n?) to solve the corresponding system of linear equations [142]. In case of
our sparse grid method, we only have to evaluate the sparse grid interpolant which is
linear in the number of sparse grid points N. We do not consider Offline costs in detail
here but we want to remark that the construction of a sparse grid interpolant is very
expensive because for each grid point we have to compute the corresponding high-fidelity
solution. However, it is also important to emphasize that the fast construction of the
reduced basis space with the greedy strategy is only possible in very restricted settings
where a posteriori error estimators are available, see Sec. 2.3.2.

We compute the maximum relative output error over a test set 7 C D

|3(p) — sV

Dl
e ] "

where § is either the reduced basis approximation or the sparse grid interpolant.

In the following, we compare our non-intrusive sparse grid interpolation method with
the intrusive reduced basis method on two thermal conduction problems. We refer to
[144, 149, 120] for more examples.

Thermal block The thermal block problem has become a very popular benchmark
problem for model order reduction since it has been used in [142] to demonstrate the
RBM. This is a (steady) heat conduction problem with conductivities as parameters. We
have a square domain 2 = (0, 1) x (0, 1) which is split into k1 x k2 rectangular subdomains
Qi1 =1,...,k - ko with a different thermal conductivity in each subdomain. Thus, a
parameter g = (p1,...,p1q) € D = [0.1,10]¢ is a d-dimensional vector with d = k; - ko.
We consider three different versions of the thermal block with two, four, and eight

2 Additional knowledge about the properties of the problem and the equations can be used to improve
the sparse grid interpolant. For instance, special refinement strategies or transformations might then
be applicable.
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Figure 32: The geometries and surface plots of exemplary solution functions of three versions of
the thermal block problem [149] are shown.

regions, respectively. Their geometry is shown in Fig. 32. The state variable u®(p) is
the temperature which satisfies Laplace’s equation in 2. Following the geometry and
notation in Fig. 32, we impose homogeneous Dirichlet conditions on the top boundary
I'top, homogeneous Neumann conditions on the two sides, and Neumann 1 conditions on
the bottom or base I'p,se. The output of interest

S = [ i de (74)

is the average temperature over the base I'hase. We obtain an approximation uwV (p) of
u®(p) by solving Laplace’s equation for the parameter p in a finite element space uN
with dimension A. The state variable vV (p) is then used to approximate (74) which
we denote with . We refer to [149] for more details on the bilinear forms, involved
spaces, and the finite element approximation.

Let 7 : [0,1]% — [0.1,10]? with

T(p) = [0.1- <£>u1 ...,0.1- <£>M]T. (75)

We do not directly interpolate sV : D — R but & : [0,1] — R with

M) =71 (N (W)
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Figure 33: We plot in (a) the interpolant of the output function of TB2 on the sparse grid of
level 10 and in (b) the same output function but transformed with 7.

The transformation 7 removes the peak of sV near the corner (0.1,0.1,...,0.1), see
Fig. 33. For a motivation and further details on the transformation (75), we refer, again,
to [149].

Let us first consider the thermal block with four subdomains, see Fig. 32b. Thus, we
need a four-dimensional sparse grid to interpolate the transformed output function §V.
In Fig. 34a we compare the sparse grid interpolant with the reduced basis approxima-
tion. The interpolants are computed on regular sparse grids from level four to nine. The
dimensions of the RBM spaces reach from five to 16. In the beginning, the sparse grid
interpolation performs better than the RBM approximation. However, the error of the
sparse grid interpolants decreases slower than the error of the RBM approximation. We
have a very similar situation for the thermal block with eight subdomains, see Fig. 34b.
Overall, if high-fidelity responds are required then the reduced basis method seems to be
a better choice. However, the sparse grid interpolation is well suited if a rough approx-
imation is sufficient. For instance, this is the case for visualization and computational
steering where similar methods have already been successfully employed [47, 45, 44]. We
would like to emphasize once more that our sparse grid interpolation method is non-
intrusive in contrast to the reduced basis method. Especially for applications with a
system of several governing equations usually only a solver for the high-fidelity solution
is available and it is not feasible to add another solver for the reduced basis.

Heat Shield In Fig. 35a we show the geometry of a heat shield. It is a modified version
of the problem introduced in [82]. The domain is given by a square with two holes

Q=10,1] x [0,1]\ (1/8,3/8) x (1/4,3/4)\ (5/8,7/8) x (1/4,3/4).

The domain describes a profile of a heat shield. An air flow runs through the holes and
cools the block. The top, bottom, and right boundaries are insulated (Neumann 0) and
the left boundary is exposed to a high temperature (Dirichlet). The parameters of the
problem are the Biot numbers (thermal conductivities) on the left boundary I'oyt and on
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Figure 34: Comparison of the error of sparse grid interpolation and reduced basis approximation:
For rough approximations the sparse grid interpolant performs slightly better than
the reduced basis method.

the interior boundaries of the holes I';,,. The heat field is defined by the (time-dependent)
heat equation [120]. The output of interest is the average temperature of the block

) = [ (i) da

where u(p) is the solution of the heat equation after sufficiently many time steps, see
Fig. 35b for an example. The parameter domain is D = (0.01,0.001) x (0.5,0.1).

We have a time-dependent problem with two parameters. We can consider time just as
any other parameter and perform the interpolation not on a two-dimensional sparse grid
but on a three-dimensional one. Or we construct a two-dimensional interpolant for each
time step. Both approaches are compared to the reduced basis method in Fig. 36. We
used 1024 time steps with step size 1/64 and adaptive sparse grids with the usual surplus-
based refinement criterion. Again we plot the error (73) versus the number of operations
for one evaluation of the reduced output function in the Online phase. Whereas the
three-dimensional sparse grid interpolant (time-space SG), which incorporates time and
the two parameters at once, clearly performs worse than the reduced basis method, we
obtain competitive results with the separate two-dimensional interpolants for each time
step.

8.2. Regression and Pre-Computed Data Repositories

Now, instead of only interpolating the output of interest, we reconstruct the whole state
vector u(p) € RV for an arbitrary parameter u € D. This is useful, for example, to
visually explore simulation results. Sparse grid interpolation has already been studied in
this context [47, 45, 44]. As mentioned above, a drawback of the interpolation approach
is that the parameters corresponding to snapshots have to coincide with sparse grid
points. The obvious solution is to employ regression instead of interpolation. Whereas
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Figure 35: The heat shield problem: The geometry is sketched in (a) and the surface of a sample
solution is plotted in (b).
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we can simply replace sparse grid interpolation with sparse grid regression if we want to
compute only the output of interest, this is not straightforward if we are interested in
the whole state vector because it becomes computationally infeasible. That is why we
combine POD and sparse grid regression [46].

In the following, we give details on this model reduction method based on sparse grid
regression and POD, show that it indeed can handle pre-computed data repositories,
and, finally, evaluate it on thermal conduction problems.

Pre-computed data repositories Most interpolation methods which are still applicable
in higher-dimensional settings (e.g., kriging, splines) have to solve a system of linear
equations to compute the weights for the basis or kernel functions [102]. In contrast, the
construction of a sparse grid interpolant is linear in the number of sparse grid points,
see Sec. 2.4. That is why it is possible to interpolate not only the output of interest
but the whole state vector, i.e., we construct N sparse grid interpolants, one for each
node of the state vector w(wm). The drawback is that the parameter configurations
(sampling points) have to coincide with the sparse grid points. This means that we

105



have to know the sparse grid points at the time we compute the snapshots. However,
a common scenario is that we already have many snapshots stored in a data repository
and want to explore the corresponding simulation at arbitrary parameter configurations
(visualization, computational steering). An obvious solution is to employ sparse grid
regression instead of sparse grid interpolation. Regression can handle scattered data
points without a pre-defined structure such as a sparse grid. Unfortunately, regression
is distinctly more expensive than interpolation. We have to solve a system of linear
equations with as many unknowns as we have sparse grid points, see Sec. 2.4.2. Thus,
we cannot afford to compute a regression function for each node of the state u(p) € RV,

Regression of POD coefficients To reduce the number of required regression functions,
we first compute a POD basis for our snapshots and then learn the coefficients with
sparse grid regression. We do not use the POD basis for Galerkin projection because we
want to have a non-intrusive method, see Sec. 2.3.2. Similar methods have already been
introduced in [129, 16, 17] with either cubic splines in only one-dimensional settings or
with kernel ridge regression.

Let U € RV*M be the matrix of M snapshots w(g;) with A' nodes each and with
parameters P = {1, ..., uar}. Let V = [v1,...,v,] € RV*" be the first n POD basis
vectors with n < N, see Sec. 2.3.2. We can approximate a snapshot

n
N (i) =D B i,
i=1

as a linear combination of the POD basis vectors [v1, ..., v,] and the coefficients UTV =
[B1,...,8n] € RMxn  Recall that Bi,j is the j-th component of vector 3;. In general, we
can say a solution u(u) is approximated as
n
wN(p) =Y gi(p)vi,
i=1
where the functions g1,...,¢9, : D — R determine the coeflicient of the respective basis
vector v; for a parameter p € D. From the POD of the M snapshots, we can construct
the training data sets
Si = {(IJ'J'?Bi,j) jj\ila
for each function g; and POD basis vector v;. We then approximate g; with sparse grid
regression as discussed in Sec. 2.4.2. Instead of A/, we only have to compute n regression
functions. Of course, we assume the problem has a low-dimensional structure and thus
n < N, see Sec. 2.3.1.

In the Offline phase, we compute the POD of the snapshots w (1), ..., u™N (par)
and the sparse grid regression functions gi,...,g, € Vél) in a sparse grid space with N
basis functions (sparse grid points). In the Online phase, we only have to evaluate the
coefficient functions g1, ..., g, and form the linear combination

wn () = gi(p)vi, (76)
=1
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Figure 37: The eigengap in (a) indicates that 20 and 65 POD modes for the thermalblock with
four and eight parameters, respectively, are a good choice. In (b) we see the average
relative error of the output of interest. The accuracy is sufficient for applications such
as visualization and computational steering.

to get an approximate of u™N (p).

Steady-state heat conduction To evaluate the regression-based model order reduction
method, we again consider the thermal block problem with four and eight parameters
as introduced in the previous section. We compute randomly 2,769 snapshots for the
four-dimensional and 6,401 snapshots for the eight-dimensional problem. Let us first
consider the eigenvalues of the covariance matrix, see Fig. 37a. The clear bend in the
curve at about 20 POD modes for the thermal block problem with four parameters and
at about 65 POD modes for the problem with eight parameters indicates that we should
use 20 and 65 modes, respectively. With these 20 and 65 POD modes, respectively, we
construct the reduced-order model (76) with the procedure described in the previous
paragraph. The corresponding error curves are shown in Fig. 37b. Note that we used
the average instead of the maximum relative output error over a test set 7 because their
are a few outliers which lead to high maximum errors even though most of the solutions
are fine. The regularization parameter A has been chosen with cross validation. For
both problems, the method shows a reasonable error behavior. When we increase the
number of sparse grid points, i.e., the number of operations needed for one evaluation in
the Online phase, the error decreases. The obtained accuracy is competitive with sparse
grid interpolation and sufficient for visualization and computational steering, see [46].
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9. Remarks

Both, the model reduction method based on sparse grid interpolation of the output func-
tion s and the method based on sparse grid regression of the POD coefficient functions,
are non-intrusive, cf. Sec. 2.3.2. Therefore, we can treat the solver for the full model
as black box and do not have to rely on any additional knowledge of the governing
equations.

With the direct interpolation of the output function, we avoided the detour around the
state variable u(p). We only have to evaluate one sparse grid function to compute the
output of interest. Sparse grid interpolation is necessary because we usually have a multi-
dimensional interpolation problem due to multiple parameters g = (p1, ..., uq) € D. We
have seen that even though we have a non-intrusive method, the sparse grid interpolant
of the output function s is competitive with the reduced basis approximation of s if
only a rough response is required. This is the case for visualization, exploration, and
computational steering.

With the regression of the POD coefficients, we can also handle pre-computed data
where the parameter configurations do not necessarily coincide with the sparse grid
points. Because sparse grid regression is distinctly more expensive than interpolation, we
first transform the data into its POD representation and then learn the POD coefficient
functions only. Note that such a transformation is not necessary, if interpolation can
be employed because the construction of a sparse grid interpolant is only linear in the
number of grid points.

Overall, the reduced-order models obtained with our non-intrusive sparse grid methods
have an accuracy sufficient for visualizing and exploring simulations, and we do not have
to know anything about the underlying governing equations or rewrite the full model
solvers.

Besides these applications in the context of model reduction, we considered several
classical problems of supervised learning in Sec. 7, and tackled them with sparse grid
methods.

A fundamental building block for many learning methods is density estimation. We
introduced a sparse grid density estimation method and developed standard algorithms
to work with these sparse grid densities. The results have shown that the method is
not very sensitive to the regularization parameter and that it is well suited for large
data sets. We could easily tackle data sets with up to 500,000 data points in up to
nine dimensions where common implementations of kernel density estimation already
failed. We also introduced a sampling method especially adapted to sparse grid density
functions. With it, we achieved better results than with a standard sampling method
with respect to accuracy and runtime. Overall, we introduced a whole toolbox to work
with sparse grid density functions.

We presented a probabilistic, generative model for classification based on sparse grid
density estimation. Whereas the classification method based on sparse grid regression is
a non-probabilistic approach, i.e., it directly constructs the map from the data points to
the class labels, we learn p(x|Y;) and compute p(Y;|x) with Bayes’ theorem. Synthetic
and real-world data sets have shown that our density-based approach is competitive
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with the classical, non-probabilistic approach with respect to the classification accuracy.
Additionally, the system matrix of the system of linear equations underlying our density-
based approach is independent from the training data points. This allows us to split
the classification procedure into an Offline and an Online phase. With this splitting, we
solve the classification problem in O(N?) rather than in O(N3). In our examples, we
observed speed ups up to 500. Future work might include an extension of the density-
based approach to regression [193] and an Offline/Online splitting of the computational
procedure for adaptive sparse grids.

Due to their dynamic structure, adaptive sparse grids are not only problematic for the
Offline/Online splitting of the density-based classification method but also for modern
hardware [108]. We employed AdaBoost to train sparse grid classifiers on a data set with
dynamic weights and put them into a team. With classifiers on regular sparse grids, the
team achieved a similar classification accuracy as an adaptive sparse grid classifier. The
advantage is that due to the regular sparse grids, the complexity of the implementation
is dramatically reduced and it can be fitted easier to modern hardware leading to a
shorter runtime of the classification process by up to a factor of 2.5.

109



110



Part IlI.
MOR Ill: Post Analysis Model Order

Reduction

So far we discussed a priori and a posteriori model order reduction. In the former, no
data is given and the reduced model is derived from knowledge obtained by theoretic
considerations alone. In the latter, the problem has already been solved for a set of
parameters in the past and the resulting pile of data is used to build a reduced-order
model. We go one step further now: We analyze the data with machine learning methods
first and then construct reduced-order models from the pre-processed data.

The general idea of model reduction is to approximate the solution sub-manifold
{uN ()| € D} with a low-dimensional subspace U, of the high-dimensional space
UV . We have seen many examples where the fundamental assumption that the solution
manifold can be well approximated by the space U,, with only a few dimensions holds.
However, we can also think of as many examples where the solutions corresponding to
the parameters in D are scattered all over UV and model order reduction fails because
the solution manifold has the same dimension as the space UV

Besides these two very extreme cases where model reduction works very well and where
it fails completely, a third alternative is that the solutions for the parameters in D are
indeed distributed all over UV but they form locally low-dimensional clusters. Thus,
if we would try to approximate all of these clusters at once, we would need a reduced
space spanned by many basis vectors even though each cluster considered individually
lies in a low-dimensional space. One example are the trajectories of a time-dependent
problem which pass through many regions of the state space UN but in each region they
form a low-dimensional manifold. Other examples are problems where the parameters
determine the characteristics of the underlying system. For instance, the activation
energy parameter in a chemical reaction simulation decides if the reaction occurs or not.
Depending on that, the solutions certainly occupy different parts of the space UN even
though the solutions corresponding to one specific characteristic behavior of the system
might be approximated well in a low-dimensional subspace. Hence, in the following, to
efficiently treat such problems, we first analyze the data to find out about such local
clusters and then incorporate this information into the reduced-order model. We call
this post analysis model order reduction.

A first step towards this direction is adaptivity. We already have extensively used
this in the form of adaptive sparse grids with the surplus-based refinement criterion in
the previous sections. In the context of model reduction and the reduced basis method
we refer to, e.g., [97, 149, 36| for adaptive and goal-oriented greedy algorithms, and to
[98] for a method to adaptively select the dimension n of the reduced basis space in the
Online phase. In [131] many basis vectors are pre-computed but only a few of those are
selected online. Another approach to exploit the locality of the problem is presented
in [57, 43]. There, a POD basis is built for each cell of the Voronoi tessellation of the
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set of snapshots. These bases are then combined in one global basis to construct the
reduced-order model.

This can be further improved by building not one global but multiple local reduced-
order models and then choosing a suitable one during the Online phase to perform the
actual approximation. Hence, besides a way to construct the local reduced-order models,
we need a strategy to decide which of the local models to use. An easy but very efficient
solution is to decide with respect to the parameter. In [96, 56] the parameter- and
time-domain are split recursively into subdomains and for each subdomain a separate
reduced-order model is built. In the Online phase, when a new parameter is given, the
corresponding subdomain of the parameter- and time-domain is determined, and the
associated reduced-order model is employed for the approximation. A similar approach
is followed in [61] for elliptic and in [60] for parabolic PDEs. All these methods have
in common, that they recursively split the parameter domain and that their selection
procedure relies on the parameter. The recursive splitting of the domain might lead
to a large number of subdomains because a poor division in the beginning cannot be
corrected later on. Furthermore, the parameter is not always a good indicator for the
selection of the local model. This is especially the case for time-dependent problems and
for nonlinear problems during Newton iterations.

In [13] the local reduced-order models are derived from clusters of the set of snap-
shots obtained with k-means and a local model is selected with respect to the current
state vector in the Online phase. Thus, a recursive splitting of the parameter domain
is avoided and the selection procedure does not rely on the parameter anymore. How-
ever, in particular if the number of clusters is large, clustering methods do not always
produce a reasonable and stable cluster assignment compared to, e.g., simply splitting
the parameter- and time-domain. This issue is not addressed in [13] because only up to
four clusters are used. Furthermore, the procedure in [13] to select a local reduced-order
model scales quadratically with the number of clusters. Note that this might be reduced
to a log-linear growth but no details are given in [13]. In [183], the approach in [13] is
extended to allow (costly) updates of the local reduced-order models during the Online
phase. With a somewhat different motivation but also with the idea of local reduced-
order models in mind, interpolated reduced bases are considered in [11] and interpolated
reduced-order models in [128, 10, 54, 141, 12].

Recall that a priori model order reduction does not involve learning from data and
that a posteriori model order reduction can be related to supervised learning. Most of
the post analysis methods group similar snapshots together and derive local reduced-
order models from these groups. This is an unsupervised learning problem. We have
data points and want to cluster them with respect to a certain clustering criterion.
That is why we introduce two non-convex clustering methods based on sparse grids in
the following two sections — the first clustering methods based on sparse grids to the
author’s knowledge. We start with an out-of-sample extension for spectral clustering in
Sec. 10.1 and continue with a density-based clustering method in Sec. 10.2. We discuss
the properties of these two methods and assess both on benchmark and real-world data
mining problems.

Having introduced these two clustering methods, we propose two localization ap-
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proaches in the context of model order reduction. In Sec. 11, a workflow is introduced to
analyze car crash simulation data. Machine learning techniques are employed to quickly
detect simulation runs with exceptional or extreme behavior. For that purpose, we clus-
ter the nodes of the finite element model of the car and use these clusters to spot regions
where the car behaves unusual during the crash. Furthermore, the clusters are the input
for (nonlinear) dimensionality reduction methods to find a low-dimensional embedding
of the data which still reflects the characteristics of the simulation runs. In Sec. 12
we consider nonlinear PDEs and extend the discrete empirical interpolation method
(DEIM) to the localized discrete empirical interpolation method (LDEIM). We cluster
the snapshots corresponding to the nonlinear term to derive local DEIM interpolants.
We employ feature extraction on the state vector to decide which local interpolant to use
during the Online phase. To demonstrate LDEIM, we consider a reacting flow problem.
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10. Unsupervised Learning with Sparse Grids

In this section, we show how to tackle clustering and other unsupervised learning prob-
lems with sparse grid techniques. We present two fundamentally different clustering
methods and demonstrate them on benchmark and real-world problems. In Sec. 10.1 we
start with an out-of-sample extension for spectral clustering. Since the computational
complexity of spectral clustering is in O(M?) where M is the number of data points,
such an extension becomes necessary very soon. We consider image segmentation where
out-of-sample extensions are inevitable. We continue in Sec. 10.2 with a density-based
clustering method. It is especially well suited for large data sets and does not only give a
cluster assignment of the data but also distinguishes between dense (strong) and sparse
(weak) clusters. We discuss this feature and employ it to detect dominating modes in
the crash behavior of cars.

It is important to emphasize that the two clustering methods are not meant to compete
with each other. On the contrary, they have very different properties which, combined,
give a hybrid clustering method as we show in the real-world examples in Sec. 11.

10.1. Sparse-Grid-Based Out-of-Sample Extension for Spectral Clustering

Spectral methods such as Laplacian eigenmaps are among the most popular algorithms
for clustering and dimensionality reduction [24, 125, 179]. However, since the runtime of
these methods usually scales with O(M?3) in the number of data points M and they only
provide a clustering or an embedding of the training data, they become computationally
infeasible for large data sets very soon. Therefore, to deal with data points not included
in the training set, so-called out-of-sample extensions are necessary. In this section, we
propose to use sparse grid functions to approximate the eigenfunctions of the Laplace-
Beltrami operator [147]. This provides us with an explicit mapping between the high-
dimensional data points and their low-dimensional representation which is required to
cluster out-of-sample points.

In Sec. 10.1.1 we briefly present spectral clustering based on Laplacian eigenmaps
as introduced in [24] before we discuss the sparse-grid-based out-of-sample extension
in Sec. 10.1.2. Benchmark problems follow in Sec. 10.1.3 and image segmentation in
Sec. 10.1.4.

10.1.1. Laplacian Eigenmaps and Spectral Clustering

Spectral methods represent the data as a similarity graph and use the eigenvectors of
a modified adjacency matrix of the graph, the so-called graph Laplacian, to derive a
clustering or low-dimensional embedding. They can be seen as relaxed graph partition
algorithms with the objective to minimize the so-called cut (or “flow”) between the
different partitions. Spectral methods have been shown to perform well where other
clustering algorithms such as k-means fail [179].
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Graph Laplacian Let S = {x1,...,x)} C R? be our data set with M data points. We
construct a weighted graph G = (S, £) where the weight ;; > 0 describes the similarity
between the points ; and «;. In many cases, the well-known Gaussian kernel

|2
W'L] = exp <_ sz w]”2> (77)

o2

is used. The matrix W with the weights (77) is the weighted adjacency matrix of the
graph. We define the degree d; of the i-th data point or vertex as d; = Ej Wi; and
the degree matrix D as diagonal matrix with di,...,dy on the diagonal. Since fully
connected graphs become too expensive, other graph types such as e-neighborhood or
nearest neighbor graphs are used. Note, however, that we always assume that the graph
is connected. In the following, the so-called (unnormalized) graph Laplacian

L=D-W (78)

plays a crucial role. It is a discrete approximation of the Laplace-Beltrami operator
corresponding to the manifold described by the data S, see [24] and the references
therein. Extensive studies about the operator L can be found in, e.g., [53, 179]. For us
it is only important that the smallest eigenvalue of L is 0 and that the corresponding
eigenvector is the constant vector 1.

Bipartitioning of graphs The intuition of clustering is that it groups data points into
different clusters according to their similarities. If we are given the data in form of a
weighted graph where the weight of an edge between two vertices corresponds to their
similarity, we have to partition the graph such that the edges connecting the partitions
have a very small weight. Thus, we partition the set of vertices S of our similarity graph
G = (8,€) into two sets A, B C S with AUB =8 and AN B = () where the sum of
weights of the edges connecting the vertices in A to B should be small. More formally,
this means we minimize the cut

caut(A,B)= > Wy (79)
:Z:iEA,CEj eB

Directly minimizing (79) would lead to partitions which just cut off outliers. To avoid
that, we consider the Normalized Cut between A and B,

1 1
Ncut(A, B) = cut(A, B) (vol(A) + vol(B)) , (80)
where vol(A) = >, 4 di is the so-called volume of the set A.

The minimization of Ncut is a well-studied problem. The result is a vector y €
{0,1}M where each component indicates if the corresponding vertex (data point) either
belongs to subset A or B. Unfortunately, the minimization of the Ncut is NP-complete
[181]. However, the minimum of (80) in its relaxed form with y € R™ can be found in
polynomial time by minimizing the Rayleigh quotient

y'Ly
yT' Dy’

(81)
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where the matrix L is the graph Laplacian and D the degree matrix of the underlying
graph. We add the constraint y” D1 = 0 to exclude the constant vector 1 with eigenvalue
0 as solution. Therefore, we have to solve the optimization problem

L

. Yy

arg min . 82
Y y' Dy (82)
yD1=0

If we assume an ascending order of the eigenvalues, the solution to (82) is the eigenvector
to the second eigenvalue of the generalized eigenvalue problem

Ly =+Dy. (83)

Because the eigenvectors computed in (83) are the eigenfunctions of the corresponding
Laplace-Beltrami operator evaluated at the data points in S, this procedure is also called
Laplacian eigenmaps. To finally achieve a partitioning of the graph, we apply k-means
on the components of y and so derive a partitioning of the vertices of the graph into the
subsets A and B.

Clustering and dimensionality reduction It seems strange to solve the relaxed mini-
mization problem (82) only to apply k-means eventually. However, due to the properties
of the graph Laplacian, the components {y1, ...,y } of y exhibit a clearer cluster struc-
ture than the original data points {@1,...,xy} [24]. For example, by first computing
the embedding {y1,...,yn} of the data points {x1,...,xy} of the two moons data set
and then applying k-means, we can separate the two moons whereas this is not possible
if k-means is applied directly to {x1,..., 2}, see Sections 2.2.2 and 10.1.3.

We can also consider the components of y as a low-dimensional embedding of the
points in §. This embedding preserves locality with respect to the similarity measure
defined by the weights W;; in the graph. Thus, if data points x; and x; are similar,
i.e., if the weight of the edge connecting these two points is high, then their respective
embeddings y; and y; should be close together as well. From this point of view, we
compute a low-dimensional representation of the data points in S. Instead of only
the eigenvector yo corresponding to the second smallest eigenvalue of (83), we can also
compute the eigenvectors yo, . .., y,+1 corresponding to the 2nd, ..., r 4+ 1-th eigenvalue,
respectively. Then, the i-th row of the matrix [y, ..., yrt1] € RMXT is an r-dimensional
representation of the data point x;.

Computational procedure and costs Spectral clustering with Laplacian eigenmaps re-
quires us to build a similarity graph of the data and then solve the generalized eigenprob-
lem (83). Whereas constructing a similarity graph is a standard task in data mining and
easily parallelizable, the eigenproblem poses the computationally most expensive part of
the method. It scales in O(M?3). Therefore, large amounts of data cannot be processed
with spectral clustering without further ado.
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Out-of-sample extensions We have already seen that the complexity to solve the eigen-
problem (83) is in O(M?3) where M is the number of data points. In case of spectral
clustering this is particularly unfortunate because there is no natural way to treat out-
of-sample points. This means, we cannot assign data points to clusters if they were not
included in the graph Laplacian L during the computation of the eigenvectors. How-
ever, with so-called out-of-sample extensions, we can learn an explicit map g : R¢ — R”
between data points in R? and their low-dimensional embedding in R”. We can process
large amounts of data by first partitioning the data into a small training data set and a
large test set and computing the Laplacian eigenmaps with the out-of-sample extension
on the training set only. Then, we evaluate ¢ at all points in the test data set. If an
evaluation of g is cheap, this is computationally feasible for large amounts of data.

In [103, 111] extensions based on linear projections are introduced. However, linear
projection leads to poor results for already simple problems such as the Swiss roll ex-
ample, see Sec. 10.1.3. An approach based on polynomials is presented in [157]. This
approach achieves better results than the one based on the linear projection but it is
also distinctly more expensive. If the degree of the polynomials is increased to achieve
a better accuracy, the computational costs become quickly infeasible.

Nystrom-based out-of-sample extension The most common out-of-sample extension
for Laplacian eigenmaps and other spectral methods is based on the Nystrom method
[140, 21]. In the context of machine learning, the Nystrom method first appeared in
[186]. It has been proposed as an out-of-sample extension for spectral methods in [25].
Since then it has been applied to a wide range of problems, see, e.g., [72, 187, 8]. It
is based on the assumption that the similarity measure can be represent as a kernel
function K. These kernel functions are then used to build the Gram matrix for the
given training data. Let yi,...,ya and v1,...,va be the eigenvectors and eigenvalues,
respectively, of the Gram matrix. Then the Nystrom method uses

M
gi(x) = \{YM > yjiK (@), (84)
(2 ]:l

as approximation for the i-th eigenfunction at point . Here y;; is the i-th component of
the j-th eigenvector y;. It has been shown in [25] that this approximation is in essence
the kernel PCA projection [166]. We clearly see that the sum in (84) iterates over all
data points in S. Therefore, we have to run over all data points to obtain the embedding
for an out-of-sample point.

10.1.2. Sparse-Grid-Based Out-of-Sample Extension

In this section we show how to approximate the eigenfunctions of the Laplace-Beltrami
operator with sparse grid functions in Vél). The approximations are computed from the
graph Laplacian L. We derive the corresponding generalized eigenvalue problem and
conclude with remarks on the computational procedure.
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Approximation of eigenfunctions on sparse grids Let S be our data set and f € vé”
be a sparse grid function. We want f(x) = y to be the Laplacian eigenmaps embedding
of the data point «. The function f is a linear combination of the hierarchical basis in

®, with the coefficients o = oy, ..., an]”

N
flx) = Z a;pi(x). (85)

We define the vector f = [f(x1),...,f(xym)]T € RM with the function value f(z;) at
the i-th component. To find the coefficients of (85), we solve the minimization problem

. f'Lf
arg min ————,
etV f'Df
fTD1=0

(86)

where L and D are the graph Laplacian and degree matrix of our similarity graph,
respectively. With the matrix B of Sec. 2.4.2 with entries B;; = ¢;(x;) we have f = Ba
and can rewrite (86) as

. a’BT"LBa (87)
arg min T DT R
revt® o' B'DBa
aTBTD1=0

The minimum of (87) is the function f € Vél) with the coefficient vector v which is the
eigenvector of the second smallest eigenvalue of the generalized eigenproblem

BTLBa =vBTDBa. (88)

Condition of generalized eigenproblem The generalized eigenproblem (88) is called
singular, if
det(BTLB — vyBT"DB) =0

for all values of v [20]. If the matrix B is singular, the eigenproblem (88) is singular as
well. This is indeed the case because with det(B) = 0 and the multiplicativity of the
determinant we obtain

det (BT (L — yvD)B) = det (B”) det (L — vD) det (B) = 0.

However, we really have to gear the data set and the sparse grid to get a singular matrix
B. For example, if there exists a basis function ¢; which evaluates to zero at all data
points, then column ¢ of B contains only zero entries. The eigenproblem solver available
in the GNU Scientific Library does not directly solve (88) but the problem

nBTLBa = vBT' DBa (89)

where v = v/n. A singular problem is signaled with 7 = v = 0 which allows us to catch
these cases [14].
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Even though we can avoid singular eigenproblems, the condition of the problem might
still be bad. Therefore, and to impose a certain smoothness constraint on the solution
function, we add a regularization operator C' to the minimization problem (87) and get

aT(\C + BTLB)a
arg min 90
fng o’BTDBa (90)
aTBT D1=0
and the corresponding eigenproblem
(\C +B"LB) a =vB"DB. (91)

The balance between fidelity and smoothness is controlled with the regularization pa-
rameter A. In the following, the matrix C has either the entries Cy; = (V¢;, Vg;) 2 or
is the identity matrix. We refer to Sec. 2.4.2 for more details and a discussion why these
are good choices for C.

Savings of computational costs Let us first consider the eigenproblem. In the previous
section, we have seen that the computational costs of spectral clustering with Laplacian
eigenmaps scales in O(M?3) because we have to solve an eigenproblem of size M x M.
If we consider the eigenproblem (91) of spectral clustering with the sparse-grid-based
out-of-sample extension, we see that it is of size N x N only where N is the number of
grid points. Thus, the dimension of the eigenproblem is independent from the number
of data points M. This leads to huge savings for large data sets where M > N.

The same holds for the out-of-sample extension. When we compute the cluster as-
signment or the low-dimensional embedding of a data point, we have to evaluate an
approximation of the eigenfunction. Whereas in the case of the Nystréom method (84),
one such function evaluation scales with the number M of data points in the training
data set S, an evaluation of a sparse grid function in Ve(l) is in O(¢), see Sec. 2.4. Since
we are interested in large data sets with M > N and because due to the sparse grid
structure £¢ < N holds, we can cluster an out-of-sample point with the sparse-grid-based
extension faster than with the Nystrom method.

10.1.3. Benchmarks and other Learning Problems

We demonstrate our sparse-grid-based out-of-sample extension on some benchmark ex-
amples. The Laplacian eigenmaps embedding of the data points can be used to compute
a cluster assignment or it can be directly seen as a low-dimensional representation of
the data. We first consider clustering where we approximate the eigenfunctions with the
help of a small training data set and cluster the test or out-of-sample data points with
our out-of-sample extension. We then show that the sparse-grid-based out-of-sample
extension also works for nonlinear dimensionality reduction. With a low-dimensional
embedding we analyze the data of a computational fluid dynamics (CFD) simulation.

In the following, we stick to nearest neighbor graphs and employ our own implemen-
tation based on the Boost graph library. The generalized eigenproblem is solved with
the GNU Scientific Library.
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Figure 38: The surface of the sparse grid approximation (level five) of the second eigenfunction for
the two moons data set is shown in (a). The values of the sparse grid function at the
data points clearly reflect the two clusters. In (b) the mean ARI is plotted versus the
o? of the Gaussian kernel. The eigenfunction was approximated on a two-dimensional
sparse grids of level four, five, and six, respectively.

Two moons data set We generate five training and test sets of the two moons data
set with 500 and 5,000 points each, respectively. We compute an approximation of the
second eigenfunction with the minimization problem (90) for each of the five training
sets and test each on the five test sets. We employ the regularization term C' with
Cij = (V¢4, V)L, corresponding to the Laplacian and set the regularization parameter
A to 0.01. The second eigenfunction is plotted in Fig. 38a. The mean over all ARI values
is shown in Fig. 38b. Recall that an ARI of 1 means perfect clustering. Depending on
the kernel bandwidth of the Gaussian kernel, we obtain an ARI above 0.96 with only
81 sparse grid points. If we increase the number of sparse grid points, we obtain even
better results.

Iris data set Let us consider the four-dimensional iris flower data set. We only use
the 100 data points corresponding to the non-linearly separable classes. Because we
have very few data points we apply ten-fold cross validation. Therefore, the data set is
split into ten randomly chosen subsets with ten points each. We then take the union of
nine subsets as training set and the remaining subset as test set. This is repeated ten
times with each of the subsets used exactly once as test set. In Fig. 39, the mean ARI is
reported for our out-of-sample extension with a sparse grid of level four and the Nystrom
method. The regularization term C' corresponding to the Laplacian with A = 0.0001 is
used. Both methods reach about the same mean ARI for the training set. However, this
is not true for the test data set. Whereas the Nystrom method reaches only a mean ARI
of 0.38, our method performs better and yields 0.45.
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Figure 40: The mean ARI for the oil flow data set is shown to compare the Nystrom method and
our sparse-grid-based extension. Our out-of-sample extension is slightly better than
the Nystrom method.

Oil flow data set The 12-dimensional oil flow data set consists of three classes of fluids
occurring in oil pipelines. We skip the data points corresponding to the “stratified
configuration” because they are scattered into several smaller clusters. We cluster the
two remaining configurations. Overall, we have a training data set of 1,318 points and a
test data set with 687 points. We employ the nonuniform basis functions to resolve the
boundary and to be able to cope with the 12 dimensions. For a regular sparse grid of level
four with N = 3,249 grid points we perform better than the Nystrém method, see Fig. 40.
We achieve about the same accuracy with adaptive sparse grids but with distinctly fewer
grid points. We start with a grid of level two and perform three refinement steps. In
each of them, we refine ten percent of the grid points which are selected with respect to
the common surplus-based adaptivity criterion, see Sec. 2.4. In the end, we have about
1,200 grid points for reasonable kernel bandwidths ¢ € [0.08,0.1] and are still better
than the Nystrom method.
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Figure 41: A popular task of nonlinear dimensionality reduction is to recover the two-dimensional
original data (a) from the three-dimensional Swiss roll data set (b) because common
linear dimensionality reduction methods such as PCA fail (c).

Dimensionality reduction of the Swiss roll Let us now consider nonlinear dimension-
ality reduction with the Laplacian eigenmaps and our sparse-grid-based out-of-sample
extension. The famous Swiss roll data set lies on a two-dimensional sub-manifold in R3.
Two thousand data points {y1,...,ym} C [5,13] x [0.2,0.8] (see Fig. 41a) are trans-
formed into a three-dimensional data set S = {x1,...,xy} C R? (see Fig. 41b) with
the function
Y1 - cos(y1)
fy) = |y -sin(y1)
Y2

The goal is to recover the two-dimensional data points from the three-dimensional data,
i.e., we want to unroll the Swiss roll. In other words, we approximate the inverse function
f~1 of f. It is well known and becomes immediately clear from the function f that this
is not possible with common linear dimensionality reduction methods such as PCA, see
Fig. 41c.

We compute the second and third eigenvector of the eigenproblem (91) where the
underlying similarity graph is constructed from the Swiss roll data set with 2,000
data points. The eigenvectors are the sparse grid coefficients determining the three-
dimensional sparse grid functions fl_ L fz_ 1. R3 — R. These lead to the function

F () = [f:fl(w)] _ [yl] |

fol(m)] Lo

Thus, the two-dimensional embedding of a point & € S is § = f'(x). We plot the
embedding of the training and the test data set of the Swiss roll in Fig. 42. We set the
bandwidth of the Gaussian kernel to 0 = 6 and the regularization parameter A to 0.01
for the sparse grid of level five and to 0.036 for the grid of level six. These parameters
were hand picked. The Laplacian eigenmaps method with our out-of-sample extension
is able to find a valid embedding of the data. We already obtain good results on sparse
grids of level five with 705 grid points only.
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Figure 42: Embedding of three-dimensional Swiss roll data set into two dimensions: Eigenfunc-
tions are approximated on a sparse grid of level five (top) and six (bottom), respec-
tively. Whereas PCA fails for this data set, the Laplacian eigenmaps method with
our out-of-sample extension is able to unroll the Swiss roll.
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Analysis of flow simulation data With the Swiss roll example we have seen that the
Laplacian eigenmaps can indeed detect the structure of the data and that our out-of-
sample extension is able to give us a similar embedding for test data. We now apply
the method to simulation data to gain insight into the behavior and the structure of the
simulation.

We consider a fluid with a certain Reynolds number Re in a cavity where the lid moves
with velocity a [89]. This movement of the lid sets the whole fluid in motion. This can
be simulated with the Navier-Stokes equations. We discretize them on a 64 x 64 (full)
grid and solve them with the method described in [89]. The flow field for a = 0.88 and
Re =912 is shown in Fig. 43.

We compute 500 solution vectors for different Reynolds numbers and lid velocities
and transform them with PCA into a five-dimensional space. These data points S =
{x1,...,2} C RS are the input for the Laplacian eigenmaps method with our out-of-
sample extension. We compute another 5,000 points 7 = {z},..., @), } C R’ as test
data. In Fig. 44 we plot the two-dimensional embedding of the training and the test
data where the eigenfunctions have been approximated on a sparse grid of level four, the
regularization parameter is A = 0.001, and the bandwidth of the kernel is 0> = 60. In
the first row of Fig. 44, we color the data points with respect to the Reynolds number
and in the second row with respect to the lid velocity. It is obvious that dimension one
corresponds to the Reynolds number and dimension two to the lid velocity. Thus, the
Laplacian eigenmaps method detects these two parameters and embeds the simulation
data accordingly. With our sparse-grid-based out-of-sample extension, we are able to
easily embed the 5,000 test points in 7T, see the second column in Fig. 44.

10.1.4. Real-World Example: Image Segmentation

Usually, humans see in a picture more than just pixels. In an image showing a country
landscape, they might recognize the sky, the sun, a meadow, animals, and so on. The
task of image segmentation is to partition the image with respect to these objects.
More precisely, the goal is to group pixels which are similar with respect to a specific
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Figure 44: Two-dimensional embedding of high-dimensional flow field vectors: Each point corre-
sponds to a flow field with a specific Reynolds number and lid velocity. The Laplacian
eigenmaps method arranges the data points such that dimension one is the Reynolds
number and dimension two the lid velocity.
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Figure 45: Five images of the Berkeley segmentation data set 300: The goal is to partition the
images with respect to objects and visual appearance.

similarity measure [71]. In the following, we formulate this clustering problem in the
context of spectral clustering and discuss that an out-of-sample extension is inevitable
because an already small image with 200 x 200 pixels would lead to an eigenproblem of
size 40, 000 x 40,000. We then employ our sparse-grid-based out-of-sample extension to
segment images of the Berkeley image data set [133].

Image segmentation as a clustering problem We follow the approach presented in [72].
The image is reduced to eight colors with minimum variance color quantization available
in MATLAB. For each pixel, a local color histogram with a 5 x 5 window centered at the
pixel is computed. Thus, for the i-th pixel, we have the histogram h; € R® where the
j-th component h; ; of histogram h; is the number of pixels in the 5 x 5 window around
the i-th pixel with color index j after the color quantization. As proposed in [72] the
distance between the i-th and the j-th pixel is given by the x? test

8
2 = lz (hip — hjp)? (92)
o2 — hip =+ hjp
where we replaced zero entries of the histograms with 10719 to avoid divisions by zero.
To employ spectral clustering, we construct a similarity graph of the pixels where the
edge connecting the i-th and j-th pixel has the weight

2
—Xij
Wij = exp ( 02]> . (93)

Note that we only consider colors to define the similarity measure and do not include
information about textures or other properties of the image [71].

The images We consider the images available in the Berkeley Segmentation data set
300 which have also been used for the evaluation in related work [72, 8, 7]. In particular,
we select the elephant (#296059), bird (#42049), pyramids (#260058), surfer (#62096),
and parade (#145086) pictures shown in Fig. 45. Each of them has 481 x 321 pixels.
Without an out-of-sample extension, we would have to solve an eigenproblem of size
154,401 x 154,401. This is clearly computationally infeasible. Therefore, we cluster
with our sparse-grid-based out-of-sample extensions.
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Figure 46: The elephant images segmented with our out-of-sample extension with regular sparse
grids of level four (b) to eight (f): Sparse grids of level four to six are not sufficient to
resolve the cluster boundaries. However, starting with level seven (833 grid points),
we can clearly recognize the sky, the animals, and the steppe [3].

Results with regular sparse grids Besides the number of sparse grid points, the number
of training pixels M should be kept small. Even though the size of the eigenproblem
does not dependent on M, we have to multiply with the graph Laplacian L during
the setup of the matrix BTLB + AC, cf. Sec. 10.1.2 and in particular (91). In the
following examples, only 8,000 randomly selected pixels (about five percent of all pixels)
are put into the training set. The regularization parameter A and the bandwidth of
the Gaussian kernel are hand picked [3]. Let us first consider the elephant image, see
Fig. 46. We set the number of clusters k& to three and approximate the second and third
eigenfunction on regular sparse grids including boundary points of level four to eight.
The final cluster assignment is obtained by evaluating the approximated eigenfunctions
on all pixels. It is clear that sparse grids of level four to six cannot resolve the boundaries
of the clusters. But already with a sparse grid of level seven (833 grid points) we obtain
a reasonable clustering which partitions the image into the sky, the animals, and the
steppe. The segmentation of the other four images is shown in Fig. 47. Recall that we
cluster only with respect to the color. Thus, for example, the pixels corresponding to
the black clothes of the human in the parade picture are in the same cluster as the pixels
corresponding to the black hair, see Figures 47i and 47j. The same is true for the white
strips at the barrier and the white clouds in the sky.

Results with adaptive sparse grids Let us now reduce the number of sparse grid points
with the help of adaptivity. Most images demand a high resolution only near the cluster
boundaries and require only few grid points in regions that are put into one segment. Let
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Figure 47: Segmentations of the five images computed with the sparse-grid-based out-of-sample
extension on regular sparse grids are shown [3].
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(a) elephant, 499 grid points (b)

‘,!«‘,;\f : M{.& o

(d) elephant, 4,180 grid points (e) bird, 2,349 grid points (f) surfer, 2,499 grid points

Figure 48: Elephant, bird, and surfer image segmented with adaptive sparse grids: Already with
~ 500 grid points, we obtain a rough but very cheap segmentation of the images. To
resolve the details, we have to increase the number of sparse grid points. It can be
seen that most grid points are spent near cluster boundaries [3].

us first consider the top row of Fig. 48. It shows the segmentation of the elephant, bird,
and surfer image where we show that only about 500 sparse grid points are necessary
to capture the most important regions of the pictures. With more refinement steps,
we obtain distinctly better results and can resolve most details, see the bottom row
of Fig. 48. The adaptivity criterion leads to many grid points only near the cluster
boundaries and few grid points in homogeneous regions.

10.2. Clustering with Sparse Grid Density Estimation

In this section we develop another clustering method based on sparse grids and on
density estimation. We already mentioned the density-based notion of a cluster in the
preliminaries. According to it a cluster is a dense region (“where many data points are”)
surrounded by a region of low-density (“where few data points are”). With our sparse
grid density estimation method we want to find such regions. We first present the idea
and the computational procedure of the density-based clustering method and then show
some benchmark examples where we compare to other widely-used clustering methods.
Finally, we consider a real-world problem where we cluster the finite element data of car
crash simulations to gain insight into the crash behavior of the vehicle.

10.2.1. Clustering with Estimated Densities

Our method can be considered as a density-based clustering method, cf. Sec. 2.2.2. The
data is represented as a similarity graph. Nonparametric density estimation is employed
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to detect regions of high density. These are then split off from the graph and define
k connected components. These components of the graph represent the cluster centers
and lead to the final cluster assignment.

Clustering algorithm The steps of our density-based clustering method are visualized
for the two moons data set in Fig. 49. In the first step, we compute the estimated
density function p for the data S = {@1, ...,z } with the sparse grid density estimation
method of Sec. 7.1, see Figures 49a and 49b. In step two, we represent the data S as
a similarity graph G = (S,€) with vertices S and edges £. The graph for the two
moons data set is shown in Fig. 49c. Then (step three) we delete all vertices S (i.e.,
data points) of the graph G which lie inside a region of low density. The result is the
graph G = (S’ ,é) = (8\ S, &\ &) which is split into, say, k (connected) components,
each representing a cluster center (a high-density region). The connected components
are shown in Fig. 49d. With these components we can assign cluster labels to the data
points S$=8 \ S remaining in the graph G. To do 8o, we first number the components
with 1,...,k (descending with the number of vertices in the component) and associate
the label j to all data points in component j. Thus, the result of step four is the labels
Yirs- -+ Yiy, € {1,...,k} of the data points in S ={xi,... , i, }- We now can either
stop here and treat the unlabeled data points in S as noise and outliers or we proceed
to the optional step five and train a classifier ¢ on the data

{(@iy, Yiy )y - - - (fBiM,yiM)}~

We can employ any classification method to construct ¢, cf. Sec. 2.2.1. We summarize
the algorithm to cluster the data S = {x1,..., 2} in the following five steps:

1. Construct a similarity graph G = (S, &) to represent the data points in S.
2. Employ sparse-grid-based density estimation to compute probability density func-
tion p.

3. Create graph G=(S8¢&) = (S \S, £\ E) with k (connected) components by deleting
vertices S and related edges £ at which the estimated density function p evaluates
to values below threshold e.

4. Depending on their component, assign labels y;,,... 4, € {1,...,k} to the re-

maining vertices (i.e., data points) in & = {®;,, ...,z }.

5. Optional: Train classifier ¢ on data S with labels Yiy» - - -+ Yip, and obtain labels for
the data points in S.

Implementation details We refer to Sec. 7.1 for details on step one and the sparse
grid density estimation method. Note that the sparse grid density estimation method is
well-suited for large data sets. In step two, we have to build a similarity graph from the
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Figure 49: Our density-based clustering method estimates the density function (b) to split the
similarity graph (c) of the data into connected components (d). These components
correspond to the clusters (e) of the data.

data in §. In the following, this is always a nearest neighbor graph with the Euclidean
distance as similarity measure. This means, we compute the Euclidean distances between
the data points and connect the data points with their [ € N nearest neighbors. This
is a standard task in machine learning and therefore such procedures are available in
many libraries. Our implementation is based on the Boost graph library. Even though
the construction of the graph is in O(M?), it can be easily parallelized, which makes
processing of large amounts of data feasible. To determine connected components of the
graph G in step three, we again use the routines available in the Boost graph library. For
the classification in step five, we stick to a simple but very fast nearest neighbor classifier
based on the approximated nearest neighbors library ANN. We tested more sophisticated
classification approaches such as SVM (libsvm) and sparse-grid-based classification, but
even though the nearest neighbor classifier did not always give the best result, it always
worked well enough for our examples and it did not require to fine-tune parameters.

The threshold parameter Our density-based clustering method can be tuned with a
couple of parameters. We have the parameters for the density estimation, e.g., the level
of the sparse grid and the regularization parameter A. We refer to Sec. 7.1 for details
on them. Then, we need to decide on the number of neighbors [ of the nearest neighbor
graph. We show with the examples below that a reasonable guess of [ is usually sufficient.
Finally, the threshold € has to be chosen. It controls what we consider to be a region
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Figure 50: This simple example demonstrates the effect of the threshold € on the clustering. If
the threshold is set too low (b) we may miss clusters consisting of many points, if it is
set too high (f) we may not be able to capture clusters with just a few points. Note
that we only plotted every tenth point of the data set in order to make the symbols
better legible.

of low and high density. We demonstrate its effect on the clustering result with the
example shown in Fig. 50. In Fig. 50a we plotted the estimated density function of a
data set with three clusters. We clearly see that the density function yields higher values
near the two clusters on the left than near the cluster on the right. This means, the two
clusters on the left are denser or stronger than the one on the right. In Fig. 50d, we
plotted the number of connected components of the similarity graph versus the threshold
e. If we choose the threshold too low (< 0.2), the two strong clusters on the left are not
separated, see Fig. 50b. The reason is that the estimated density function is still above
the threshold between the two clusters. If we set the threshold too high (> 0.4) then
we miss the weak cluster on the right because the density function is not high enough
there, see Fig. 50f. However, we also have a large region between 0.2 and 0.4 where our
method correctly predicts three clusters. Of course, there might be some outliers as in
Fig. 50e.

Indicator for the number of clusters If we are looking for a specific number k& of
clusters in our data set, we can tune € so that our method indeed gives us k clusters. If
we do not know the number of clusters, we can plot the number of components versus
the threshold as in Fig. 50d, and search for flat regions in the graph. A flat region means
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dbased clustering k-means || SC || DBSCAN
€ l A level ARI ARI ARI ARI
3S || 0.15 | 10 | 1e-05 | 7 with b. | 1.00 0.26 1.00 1.00
3Snoise || 0.17 | 13 | 1e-05 | 7 with b. | 0.73 0.31 0.87 0.73
olives || 0.02 | 5 | 1le-10 | 5 w/out b. | 0.97 0.32 0.69 0.62

Table 11: The table lists the ARI (adjusted rand index) of the cluster assignments obtained by
our proposed method, k-means, spectral clustering, and DBSCAN. ARI of 1 means
perfect clustering. Note that we employed a sparse grid without boundary points for
the olives data set.

that the number of cluster centers stays constant for a wide range of the threshold which
in turn means that the cluster centers have to correspond to very distinctive peaks in the
estimated density function. The number of distinctive peaks is usually a good indicator
for the number of clusters. We used this indicator in [29] where we also compared it to
other heuristics.

10.2.2. Benchmark Problems

To assess our density-based clustering method, we apply it to several benchmark ex-
amples and compare the results with the cluster assignments obtained with k-means,
spectral clustering (without an out-of-sample extension), and DBSCAN. Note that DB-
SCAN is also a density-based clustering method whereas k-means (convex method) and
spectral clustering (see Sec. 10.1) pursue a very different approach. We used the scikit-
learn implementation of these methods. For all of these methods, several parameters
have to be tuned. We determined the parameter configurations by running each method
for a reasonable range of parameters and kept the ones where the method yielded the
best result. For details on the parameters and the parameter selection procedure, we
refer to [148]. In Tab. 11 we show the ARI of the obtained cluster assignments for the
3S, 3Snoise, and olives data sets.

The 3S data set is a three-dimensional data set containing 625 points of three spheres
of different sizes. The spheres are tangled with each other and thus the three clusters
(three spheres) cannot be linearly separated. That is why k-means fails completely to
detect the three clusters. All other methods can perfectly learn the data set, i.e., they
achieve an ARI of 1.0. The 3Snoise data set is in principle the 3S data set but with
distinctly more noise. This leads to a clear decrease in the ARI corresponding to spectral
clustering, DBSCAN, and our density-based method. Still, our method is as good as
DBSCAN.

The eight-dimensional olives data set is another famous benchmark problem where
fatty acids of Italian olive oils (572 data points) have to be clustered according to the
region of Italy where they come from. The number of clusters is three, i.e., the oils come
from three different regions. Our density-based clustering method achieves an ARI of
0.97 which is distinctly better than 0.69 of spectral clustering and 0.62 of DBSCAN. The
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Figure 51: The number of connected compo-
nents of the similarity graph of the
olives data set versus the thresh-
old e: It shows that our density-
based method correctly predicts
three clusters at a very narrow
range around € ~ 0.02. This indi- ‘ ‘ ‘
cates that one cluster is very weak 0.04 0.08 0.12
and thus hard to capture. threshold €

#components
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reasons why our method performs so well here is that the data contains one very weak
cluster which is found by our method. We accomplished that by setting the regularization
parameter A of the density estimation method to only 10~!°. Therefore, we almost over-
fitted the density function to our data but we also captured all the tiny details. Then,
we plotted the number of connected components versus the threshold, see Fig. 51. The
plot clearly shows that our method correctly predicts three clusters in a very narrow
range near € ~ 0.02 only. As we have discussed above, this means that the value of the
estimated density function at one cluster is very low compared to the other two clusters.
This indicates that one of the three clusters is very weak.

10.2.3. Real-World Example: Analysis of Car Crash Data

In automotive industry, virtual product development and numerical computer simula-
tions play a crucial role. We consider car crash tests where it is of particular advantage
if the crash can be simulated rather than to build a prototype and conduct a live test. It
requires accurate finite element models and robust solvers to compute solutions reflect-
ing the physical behavior of the car during the crash. Just as the beams and parts of the
car are crushed in reality so are the nodes of the finite element model moved accordingly
in the simulation. The result of a simulation run is a huge pile of data. Only after a
careful analysis, one is able to draw conclusions about the crash behavior of the car.
Our task is to find groups of nodes with similar moving patterns and moving intensity.
This helps to quickly spot parts of the car which behave unexpectedly. Furthermore, to
detect noise, we distinguish between weak and strong clusters.

Let us consider a finite element model of a Chevrolet C2500 pick-up truck with M =
65,975 nodes, see Fig. 52. Let x! € R3 be the position of the i-th node at time step
t. We compute the displacement d; = wﬁ” — acﬁl € R3 between the beginning of the
simulation (¢1) and the end of the crash (¢17) for all i = 1,..., M. The displacements
are then put into our data set S = {di,...,dy}. Note that we consider here a single
simulation. Later, in Sec. 11, we cluster the nodes of many simulation runs at once.

Four beams At first, we cluster only the &~ 7,000 nodes of four beams in the front of
the car model, see Fig. 52. These beams distinctly influence the whole crash behavior.
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beam 1

beam 2

beam 3

beam 4

Figure 52: The Chevrolet C2500 pick-up truck from below and the beams number 1 to 4 in the
front of the car: The displacement of these four beams is responsible for the crash
behavior of the whole car.
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Figure 53: The plots show the cluster assignments of the four selected beams (b)-(e) with respect
to different thresholds € (a).

For the density estimation we employ a sparse grid of level five with boundary points
(1,505 grid points) and set the regularization parameter A to our standard choice 1072,
cf. Sec. 7.1. Note that we have distinctly fewer grid points than data points. The number
of nearest neighbors of the similarity graph is set to 10. Whereas the clustering result
is fairly stable with respect to these parameters and thus no special tuning is necessary,
the threshold € can heavily influence the cluster assignment. We plot the number of
components for a wide range [0.01,0.25] of the threshold € in Fig. 53a and observe
four intervals [0.08,0.11], [0.14,0.16], [0.19,0.21], and [0.22,0.25] where the curve is flat.
These regions correspond to six, five, three, and two components, respectively. Hence,
our method predicts between six and two clusters for a threshold e € [0.01,0.25]. The
intervals are marked by circles in Fig. 53a.

The four cluster assignments corresponding to those four intervals are plotted in Fig-
ures 53b to 53e. Overall, we see that for small € we have many clusters in the front of
the beams, but if we increase ¢, they disappear. This suggests that the clusters in the
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front are not very strong. Even though the estimated density function has local maxima
there, they are rather low compared to other local maxima of the function. Thus, if
we set the threshold too high, we cannot capture them anymore, cf. Fig. 50. We have
the opposite situation for the clusters in the rear where we can only separate the peaks
corresponding to the clusters after we have increased the threshold to at least 0.15. This
explains why new clusters appear from Figures 53b to 53c. The clusters in the rear seem
to be more stable than the clusters in the front. They can be observed only after € is set
above 0.1 and remain until the end of the range of the threshold parameter.

This information helps to analyze the crash from an automotive engineering point of
view. On the one hand, we only have weak clusters in the front and thus more or less
noise. We do not find distinct moving patterns there. This means, we cannot expect
to predict how the beams are crushed in the front. On the other hand, in the rear, we
find quite strong clusters and thus the crash behavior can be predicted quite well there.
Such information might help to make design decision on the material properties [29]. By
visualizing the four beams at all time steps during the crash, we can gain similar insight
into the behavior of the crash. However, this is more tedious than to run our clustering
algorithm.

Whole car We now cluster all M = 65,975 nodes of the car model. In the case of the
four beams, we could observe two effects in the crash behavior. We had weak clusters
in the front, and strong clusters in the rear. When we cluster the whole car, we can
expect to have many of these effects leading to many different clusters scattered all over
the model. Therefore, we need a sparse grid with many grid points to capture all the
peaks corresponding to these clusters. We set the sparse grid level to nine (18,943 grid
points) without grid points at the boundary. We do not need boundary points because
we have so many noisy points and outliers that nothing important is happening near
the boundary. Note that we still have fewer grid points than data points as was also
the case when we clustered the nodes of the four beams in the previous paragraph. As
we have so many data points and expect many sharp peaks, we set the regularization
parameter A to 1078 to better fit the data. All other parameters are kept as in the case
of the four beams.

We plot the number of components versus the threshold in Fig. 54a. Because the curve
wobbles around heavily, we cannot easily recognize a flat region. Therefore, we also plot
the moving average of the previous ten points and find a flat region near ¢ = 0.2. We
plot the cluster assignment of the nodes of the four beams in Fig. 54a. It consists of
three clusters and a few obviously not correctly clustered points. The clustering we find
if we cluster the whole car with all 65,975 points is very similar to the one where we
cluster the four parts only.

Runtime The clusterings were performed on an Intel Core i7 870 with 8GB RAM
on which the clustering of all nodes took 37 seconds. Thus, an interactive analysis of
crash data with our clustering method on a common desktop machine is feasible. The
computationally most expensive part of the clustering procedure is to construct the
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Figure 54: In (a) we show the number of components versus the threshold e for the whole car,
and in (b) the clustering of the four beams with threshold € = 0.2.

similarity graph and to estimate the density function. If we only change the threshold e,
we do not have to recompute the graph or the density function. Therefore, a new cluster
assignment can be obtained and visualized within a few seconds. This allows us to
quickly investigate cluster assignments corresponding to different threshold parameters
which is especially useful to analyze the crash behavior of the model.

137



11. Case Study: Car Crash Simulation — Clustering of Nodes

In Sec. 10.2.3 we have already seen that the analysis of car crash simulation data is
a challenging machine learning problem. We have shown how information about the
crash behavior of a car can be extracted from the data of one simulation run with our
density-based clustering method. This is certainly an interesting machine learning task
in the context of simulation data analysis, however, we go one step further now.

The design process of a car usually does not involve only one simulation run but many
runs with different design parameters, e.g., materials, plate thicknesses, or positions of
bevel seams. One is then interested in assessing the different design parameters with
respect to specific objectives such as the intrusion of the fire wall into the passenger
compartment. Of course, every simulation run could be analyzed on its own, but this is
a very tedious task. A natural step is to automatize this process with machine learning
methods. Therefore, the goal is now to detect simulation runs with exceptional or
extreme behavior from a whole bunch of simulation runs and to relate their behavior to
the parameters.

To foster research in that direction, the German Federal Ministry of Education and
Research (BMBF) funded the SIMDATA-NL project with the aim to create and im-
plement such a workflow based on clustering and nonlinear machine learning methods
[29]. The SIMDATA-NL project is a research consortia of academic groups and in-
dustry partners. Five German universities and research groups are involved: Institute
for Numerical Simulation®, U Bonn; Scientific Computing Group*, TUM; Mathematical
Statistics Group®, TUM; Numerical Analysis of Partial Differential Equations Research
Group®, TU Berlin; and Fraunhofer SCAI”. The industry partners Audi®, PDTec?, and
Volkswagen!? provide car crash models and data to test and validate the algorithms and
methods.

In the following, we first introduce the SIMDATA-NL workflow, discuss what role
clustering of nodes plays during the workflow, and present results for data of a frontal
crash of the Chevrolet pick-up truck we have already seen in Sec. 10.2.3 and of a Ford
Taurus.

11.1. The SIMDATA-NL Simulation Data Analysis Workflow

The following workflow has been developed as part of the SIMDATA-NL project. We
present the workflow, show in detail how to simultaneously cluster the nodes of many
simulation runs at once, and propose an evaluation criterion for the obtained cluster
assignments.

3http://wissrech.ins.uni-bonn.de/main/
*http://wwwb.in.tum.de/
Shttp://www-m4.ma.tum.de/
Shttp://page.math.tu-berlin.de/~garcke/
"http://www.scai.fraunhofer.de/
Shttp://www.audi.com/
“http://www.pdtec.de/
POhttp://www.volkswagen.com/
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Figure 55: The SIMDATA-NL workflow for the analysis of car crash simulation data consists of
a clustering and a nonlinear dimensionality reduction step [29].

SIMDATA-NL workflow The goal of the SIMDATA-NL workflow is to analyze simu-
lation data with machine learning techniques in order to detect trends in the simulation
runs (e.g., clusters, bifurcations), to find simulation runs with an exceptional behavior
(e.g., outliers), and to map specific crash behavior to parameter configurations (e.g., slow
variables). Of course, this is not the first attempt to automatically analyze car crash
simulation data. In [2, 113] the focus is on linear (PCA) and nonlinear dimensionality
reduction (diffusion maps). Clustering with k-means is treated in [174, 134].

Figure 55 illustrates the three steps of the SIMDATA-NL workflow. Input is the data
stemming from computer simulations of car crash tests which have been performed for
different parameter configurations. The crash is simulated with the LS-DYNA software
which represents a car as a finite element model. For each simulation run and each
time step, we obtain a vector with the displacements of the finite element nodes. We
assume the data has already been cleaned and pre-processed accordingly, i.e., there are
no missing or invalid values, there are no double records, and the data is available in
a format which can be processed easily. In the first step (clustering), nodes of the car
model with similar moving behavior during the crash are grouped together into clusters.
These clusters reflect the characteristics of the crash of all simulation runs. By clustering
the nodes, we can easily spot regions where the car is deformed most or at which point
in time a specific beam starts to bend. Additionally, the clustering can also be seen as
a pre-processing step for the dimensionality reduction in step two of the workflow. The
crash data exhibits many effects simultaneously. Applying the nonlinear dimensionality
reduction methods not on the nodes of the whole car but on each cluster separately
allows us to obtain more detailed information about the crash. In the final step, the
reduced data for each cluster is, for example, visualized to detect so-called slow variables
which can be mapped onto the parameters. This reveals which parameters are important
with respect to the bending behavior of the beams. The reduced data also quickly allows
us to determine outliers. The workflow has been applied to a Chevrolet pick-up truck in
[29]. Note that even though this workflow is only considered in the context of car crash
simulation data here and in [29], it can be applied to other simulation data as well. In
the following, we do not process the whole SIMDATA-NL workflow but consider only
step number one where we cluster the nodes of the simulations.

Clustering of nodes Let X*(u) € RV*3 be the simulation run with parameter g € D
at time step ¢t € R. The i-th row of X*(u) contains the position of the i-th node in R3.
Let

X1 () = XY () — X" (1) € RV (94)
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denote the matrix of the displacements with respect to two time steps t;,¢t; € R. We
have M simulation runs and thus M matrices X% (p1),..., X% (ups). We derive
two different data sets for the clustering. In the first data set S;ﬁ;i, we only keep the
maximum displacements, i.e.,

tit;

Smax = { |:ma'X {X;{7tj (ul)a oo 7Xlt1i’tj (IJ‘M)} ’
sty o tisti

max {Xl2 (1), -, X5 (uM)}, (95)
~ s ~ 4. T

max {Xltg’tj(ul), e ,Xlté’tj (HM)}} [l=1,... ,N} CR3.

The data set Sfﬁ;f){ is a subset of R3 and contains N/ points. For the second data set é{{? ,

we compute the Euclidean norm of the rows of each matrix X% (uy),..., Xtk (puyy)
and obtain the vectors d'ti (1), ..., d"" (uyr) € RV, The data set S'"' is then defined
as

4 e e T
Shiti {[df“tﬂ (1), -y (par) | |1 =1,... ,/\/} CRM (96)

where, for example, dfi’tj (p1) is the I-th component of d'% (u1). Thus, we obtain a data
set with V' points and each data point is in RM. If it does not matter or if it is clear
from the context if we mean Sfﬁ;i or Séﬁct] , we simply write S%% or even S instead.

Having constructed either (95) or (96), the data set is clustered into k subsets Si, . . ., Sg.
The finite element model of the car is already divided into so-called parts, i.e., a partition
of the set S is already given. These parts are defined by the engineering process and
do not take the behavior of the crash into account. Compared to them, the clustering
has two main advantages. First, the number of clusters can be freely chosen whereas
the number of parts is fixed. Second, the nodes of one part might show a very different
bending behavior. For example in a frontal crash a beam reaching all over the car is
certainly more crushed in the front than in the rear of the car. The clustering allows
us to further divide such parts into multiple clusters or merge a couple of smaller parts
together.

Finally, we emphasize that clustering the data sets (95) and (96) is very different from
the clustering task in Sec. 10.2.3. Whereas in Sec. 10.2.3 the nodes of only one simulation
run were clustered, we consider now all simulation runs at once. Thus, the clustering
reflects the crash behavior of all simulation runs with all parameter configurations.

Evaluation of clustering results in the context of the SIMDATA-NL workflow The
purpose of the clustering in the SIMDATA-NL workflow is on the one hand to obtain a
partition of the model to derive information about the crash behavior and on the other
hand to provide the input data for the dimensionality reduction methods. These two
objectives also determine how we assess the quality of a clustering Si“tj Ve ,S,t;’tj of the
car model.

We first check by visual inspection if the nodes in one cluster Slt "% Show the same

moving pattern. Therefore, we plot the positions of the nodes and color them according
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to their cluster assignments. With this simple criterion, we can quickly decide if a
clustering is reasonable and if it captures the crash behavior.

Besides this qualitative criterion, we also want to have a quantitative one. Recall
that the SIMDATA-NL workflow contains a dimensionality reduction step where a low-
dimensional embedding of the displacements is constructed. The embedding is obtained
with nonlinear dimensionality reduction methods to achieve reduced data with a low
dimension but which still contains the relevant information of the crash. However, the
nonlinear dimensionality reduction methods are not directly applied to all data points
at once but to each cluster separately.

Now, let S=S1W--- WS, =S W--- WS, be two different clusterings. We compare
the two clusterings by computing the reconstruction error corresponding to Sy, ..., Sk
and S7,...,S;. Using the example of the Chevrolet pick-up truck, it is shown in [29]
that a good clustering with respect to the POD reconstruction error is also a good clus-
tering with respect to the reconstruction error obtained with a nonlinear dimensionality
reduction method. Hence, we leave the nonlinear dimensionality reduction methods to
the respective partners in the SIMDATA-NL project and consider only POD here. The
reconstruction procedure based on POD is summarized in Alg. 6. The data points in S
are clustered into Sy, ..., Sk. For each cluster S;, the data matrix Titlrain containing the
displacements of the nodes corresponding to the cluster S; is created. A POD basis V; is
constructed and the test data matrix T is reconstructed with T2 = V;(V;TTtest),
All matrices T test ., T}f“ are combined in one matrix 7. With T and T' test we

compute the error
2
3N 7
UD Y- (ﬁj.est - Tjggst)
3N 2
7l j=1 > im1 T3

(97)

The same procedure but with nonlinear dimensionality reduction methods is used in [29].

11.2. Chevrolet C2500 Pick-Up Truck

A frontal crash of a Chevrolet C2500 pick-up truck is analyzed with the clustering step of
the SIMDATA-NL workflow. We consider simulation runs with large parameter changes
leading to simulation data with distinct characteristics. First, it is shown that our
sparse-grid-based clustering methods yield a cluster assignment reflecting the behavior
of the car during the crash whereas k-means fails. Second, the clustered crash data is
reconstructed with the procedure described in Alg. 6 to demonstrate that the clustering
of the nodes indeed improves the reconstruction error.

Chevrolet C2500 pick-up truck We consider here the frontal crash of a Chevrolet
C2500 pick-up truck, see Fig. 57. A finite element model of the truck is available from
the National Crash Analysis Center'! (NCAC). If we ignore the obstacle, the model
consists of 65,975 finite element nodes and 239 parts. For the SIMDATA-NL project,

Hhttp://www.ncac.gwu.edu/
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Algorithm 6 Reconstruction of car crash data with POD

1: procedure RECONPOD(n, k, M, S, T, X (1), ..., X (par))

2 initialize Tt Ttest ¢ RINXITI with zeros

3 cluster data in S into Sy,...,Sk

4: derive clustering J1, ..., Ji of set {1,...,3N} according to clustering S, ..., Sk
5

6

7

fori=1:kdo }
form matrices * X (u;) with rows of X (p;) with indices in J; for j = 1,..., M
let NV; = |S;| and assemble matrix

Kialm) o " Xia(par)
T, = : - : c R3NixM
Xnis(wr) .o X s(p)
store the columns of T; with indices in {1,...,3N}\ T in T rain
9: store the columns of T; with indices in 7 in T}
10: compute n POD basis vectors V' € R¥ViX" for data in TitlraLin
11: compute Tt = V;(V,I'Ttest)
12: store rows of Tt T in rows of T, T**S' with indices in J;
13: end for

14: return Ttest rtest

15: end procedure

the Fraunhofer SCAI'? computed 126 simulation runs where nine parameters were varied.
These parameters correspond to the plate thicknesses of specific beams. Each of the 126
simulation runs consists of 17 time steps. At time step t3 the truck hits the obstacle,
at step t7 the crash has happened and the rebound starts. In the following, we restrict
ourselves to the displacements from time step t3 to t4, from t¢g to t7, and from ¢ to tq7.

Even though the car model consists of 239 parts, especially four beams determine the
crash behavior of the truck. These four beams are shown in Figures 57e and 57f. In
Fig. 58 the four beams are plotted again but for three different simulation runs at the
last time step, i.e., after the crash. In the rear (left), a different bending behavior in each
simulation run can be recognized. This shows that our data exhibits phenomena such as
buckling and high sensitivity to parameter changes and it also shows that a clustering
of the nodes is badly needed because the nodes in the rear of the parts behave very
differently from the nodes in the front.

We employ the clustering methods introduce in Sections 10.1 and 10.2, and com-
pare with k-means. With k-means, we cluster the set é{l(fj and with the density-based
clustering method the set Sﬂ’uf)i The density function for the density-based clustering
method is estimated on a sparse grid of level six (3,713 grid points). The number of
neighbors for the nearest neighbor similarity graph, the threshold e, and the regular-
ization parameter A for the density estimation method are all determined with respect

2http://www.scai.fraunhofer.de

142



le+00
g
S le01
s
o le-02 ¢
=
'§ 1e-03 ¢
-Té le0a | ] Figure 56: The 30 largest singular values of
5 b the data matrix corresponding to
c le-05 ‘ ‘ ‘ ‘ ‘ Ste:tr: The first seven principal
5 10 15 20 25 30 components contain most of the
number of singular value information in S’¢;7.

to the exponential density measure, see Sec. 2.2.2. For the spectral clustering with the
sparse-grid-based out-of-sample extension, the data points in Sé{l? are projected onto
the first seven principal components. Figure 56 shows the normalized singular values
corresponding to the data matrix of Sk It is clear that the first seven components
capture most information of the data. A sparse grid of level four (799 grid points) is used
for the out-of-sample extension. The regularization parameter and the bandwidth of the

kernel for the graph are determined with respect to the exponential density measure.

Clustering of four beams Let us first have a look at four longitudinal chassis beams
of the truck, see Figures 57e and 57f. As already discussed above, these beams are
essential for the crash behavior. With 6,674 nodes they contain more than ten percent
of the nodes of the whole truck. Our density-based clustering method predicts eight
clusters. This is verified by a statistical method in [29]. Recall that in Sec. 10.2.3 our
density-based method predicted between two and six clusters but for a single simulation
run and thus for a different data set.

The cluster assignment of the nodes of the four beams for S, S%-%7 and St17 is
shown in Fig. 59. The parameters for the spectral and density-based clustering were
determined for each data set individually, see above. In case of spectral clustering, an
eigenproblem of size 799 x 799 instead of 6,674 x 6,674 was solved due to our sparse-
grid-based out-of-sample extension with level four (799 grid points). We approximated
the first seven eigenvectors.

Let us first consider the results for the displacements from time step ¢3 to 4. The
cluster assignments yielded by spectral and density-based clustering look very similar.
Both find one big cluster in the rear and many rather small clusters in the front. This
suggests that all nodes from the rear of the beams behave similar from time step t3 to t4.
Indeed, this fits to what we mentioned above, namely, that at time step ¢4 the obstacle
is hit and the front of the car is crushed. In contrast, k-means divides the rear of the
beams further and thus its cluster assignment does not capture this behavior. Let us
now come to time steps tg and t7. There we have the opposite situation. Only the rear
of the beams is crushed. This is reflected in the cluster assignments. We have multiple
clusters in the rear but only very few in the front. All clustering methods were able
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(¢) t1, Truck, aerial view (d) ti7, Truck, aerial view

(e) t1, four beams, aerial view (f) ti7, four beams, aerial view
Figure 57: The Chevrolet C2500 pick-up truck before and after the crash: Figures (e) and (f)

show the position of the four beams with respect to the truck. We refer to Fig. 58 for
enlarged plots of the beams.

AT
..:v'-,rv"ﬂ"

) simulation run one ) simulation run two ) simulation run three

D

Figure 58: Four specific beams of the Chevrolet truck after the crash for three different simulation
runs: A different bending behavior in the rear can be recognized. This demonstrates
that the parts given by the engineering process are not a good partition of the nodes
of the car model with respect to the crash behavior.
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Figure 59: Shows the cluster assignments of the nodes of the four beams obtained with the k-
means method, spectral clustering with our sparse-grid-based out-of-sample extension,
and our density-based clustering method [29]. From ¢3 to t4 only the front of the beams
is crushed. This is recognized by spectral and density-based clustering. From tg to
t7 only the rear of the beam bends but the front does not distinctly change anymore.
Thus, many clusters are found in the rear but only one cluster in the front. Both
of these effects are reflected in the clustering of the displacements from time step ¢;
to t17.
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Figure 60: Comparison of cluster methods with respect to the reconstruction error of the dis-
placements: On the left, the reconstruction error corresponding to the four beams is
shown, and on the right, the reconstruction error for the whole truck. As we increase
the number of clusters the reconstruction error gets reduced.

to detect this behavior. Finally, if we consider the displacements from time step 1 to
time step t17, the whole crash should be captured in the cluster assignment. Indeed, all
methods have multiple clusters in the rear and in the front and only one cluster in the
middle. This is in good agreement with what we have seen so far where the front got
crushed from time step t3 to t4, and the rear from tg to t7.

With the procedure in Alg. 6 we compute the reconstruction error (97) of the dis-
placements of the nodes of the four beams from time step tg to t7 for different numbers
of POD basis vectors, see Tab. 12. We report results for one, four, and eight clusters.
Let us first consider four clusters where we compare the error corresponding to the four
parts of the beams with the error corresponding to the cluster assignment obtained with
k-means, spectral clustering, and density-based clustering. Recall that the four beams
correspond to four parts of the car model. In most cases, spectral clustering gives the
best results. However, just reconstructing each part separately is almost as good. Now,
as we said above, one advantage of the clustering is that we can easily increase the
number of clusters. Therefore, let us consider the results with eight clusters. Spectral
clustering with the sparse-grid-based out-of-sample extension clearly outperforms the
other clustering methods. In Fig. 60a the results are summarized. Fig. 60a also confirms
that the separation into multiple clusters is worthwhile because the reconstruction error
is highest with only one cluster, can be reduced if we have four clusters, and gets even
better with eight clusters.

Clustering of the whole truck Let us now consider the whole truck. The corresponding
reconstruction errors are shown in Tab. 13. Our density-based clustering method predicts
17 clusters. We cluster all 65,975 finite element nodes into 17, 50, 100, and 239 clusters.
Recall that the truck has 239 parts. With the sparse-grid-based out-of-sample extension,
we had to solve an eigenproblem with size 799 x 799 instead of one with size 65,975 x
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65,975. We approximated the first 30 eigenvectors. In Tab. 13, we see that the spectral
method works well for a small number of clusters, whereas k-means seems to be a good
choice if we have a large number of clusters. It is known that spectral clustering might
not perform well if many clusters are sought. Even though there is no solution working in
all settings, there are a couple possibilities and workarounds, see, e.g., [8]. The density-
based method does not perform very well at all. The results are summarized in Fig. 60b.
Again, clustering does distinctly improve the reconstruction error. We also see that the
clustering gives better results than the parts.

11.3. Ford Taurus

A frontal crash of a Ford Taurus is simulated. A car model with more than ten times
as many nodes as in the Chevrolet truck model is used. The simulation runs are com-
puted for only slightly different parameters leading to data where it is hard to detect
characteristics. We show that our algorithms can still cope with this large data set by
analyzing the corresponding simulation data with our clustering methods.

Ford Taurus The finite element model of the Ford Taurus is also available from the
National Crash Analysis Center (NCAC), see Fig. 61. It has 874,728 nodes which form
741 parts. The Fraunhofer SCAI computed 251 simulation runs with minor changes in
the parameters. Each simulation run consists of 152 time steps. We are interested in
time step t75 and thus in the data set S'!75. Time step t75 is after the frontal crash
but before the rebound. Just as for the truck, we can identify 19 important parts, see
Figures 61e and 61f.

We compare k-means, spectral, and density-based clustering. The k-means method is
directly applied to the set 851112575, the density-based method to Siitts  The density is es-
timated on a sparse grid of level eight. All other parameters are determined with respect
to the exponential density measure. For the spectral clustering, the data Sélll’ct” is again
projected onto the first seven principal components. They contain enough information
for a good clustering. The out-of-sample extension approximates the eigenfunctions on
sparse grids of level four. The other parameters are found with the exponential density
measure.

Clustering of 19 selected parts Let us first consider the nodes of the 19 parts shown
in Figures 6le and 61f. These parts are essential for the crash behavior of the car.
Our density-based clustering predicts 22 clusters. We compare the reconstruction error
corresponding to the cluster assignments obtained with k-means, spectral clustering, and
density-based clustering in Tab. 14. We only show the results for up to nine POD modes.
Since the parameters of the simulation runs differ only slightly, the snapshots are very
similar, and we achieve already very high accuracies with only nine POD modes. Clearly,
in case of 19 clusters, the 19 parts perform best. If we increase the number of clusters
to 22, as predicted by the density-based method, our density-based method performs
best compared to spectral clustering and k-means. This is again summarized in Fig. 62a
where we again see that first clustering and then reconstructing each cluster individually
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(a) t1, Taurus, side view (b) t1s2, Taurus, side view

(c) t1, Taurus, aerial view (d) t1s2, Taurus, aerial view

(e) t1, 19 important parts, aerial view (f) t1s2, 19 important parts, aerial view

Figure 61: The Ford Taurus before and after the crash.
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1 cluster 19 clusters 22 clusters
- k-means spectral parts | k-means spectral dbased

1.33e-06 | 1.03e-06 1.08e-06 8.23e-07 | 1.03e-06 1.07e-06 8.78e-07
7.46e-07 | 5.79e-07 6.83e-07 4.89e-07 | 5.70e-07 6.80e-07 4.83e-07
5.67e-07 | 3.89e-07 5.04e-07 3.16e-07 | 3.81e-07 5.01e-07 3.23e-07
4.83e-07 | 2.88e-07 4.02e-07 2.44e-07 | 2.83e-07 4.00e-07 2.25e-07
3.62e-07 | 2.21e-07 3.22e-07 1.77e-07 | 2.16e-07 3.21e-07 1.66e-07
3.36e-07 | 1.66e-07 2.69e-07 1.36e-07 | 1.64e-07 2.64e-07 1.35e-07
2.89e-07 | 1.34e-07 2.42e-07 1.12e-07 | 1.31e-07 2.34e-07 1.10e-07
2.75e-07 | 1.12e-07 2.04e-07 9.31e-08 | 1.10e-07 2.02e-07 9.89e-08
2.43e-07 | 9.37e-08 1.75e-07 8.04e-08 | 9.29¢-08 1.75e-07 8.82e-08

© 00O U W ]S

Table 14: Reconstruction error of the displacements of 19 parts of the Ford Taurus with n POD
modes: For 19 clusters, the parts are the best clustering of the nodes. However, for 22
clusters, the number predicted by our density-based method, the density-based method
performs best.

gives distinctly better results than just reconstructing all 19 parts at once. Fig. 62a also
shows that the cluster assignment obtained with the density-based clustering leads to
the lowest reconstruction error.

Clustering the whole Ford Taurus We now cluster all 874,728 nodes of the Ford
Taurus. It is not reasonable to cluster all nodes in one step because the data exhibits
many overlapping effects. Therefore, we introduce a two-step hybrid clustering scheme
where we merge density-based clustering with spectral clustering.

In the first step, the nodes of the Taurus are grouped into only a few clusters with the
density-based method. As we have discussed in Sec. 10.2, the density-based clustering
is well suited for large data sets. For the Taurus, the method predicts only 17 clusters.
Hence, the method predicts fewer clusters for the whole car than for the 19 parts. This
is not unusual because it only means that this is a distinctly rougher clustering than we
have obtained for the 19 parts. Therefore, in the second step, each of these 17 clusters
is further divided into 10 clusters by the spectral clustering method with our out-of-
sample extension. In total, we obtain 170 clusters. Again, all parameters are selected
with respect to the exponential density measure.

We report the reconstruction errors of the Taurus data for several cluster assignments
in Tab. 15. The results for the hybrid method are slightly worse than the ones for the
k-means method. However, we also see that first clustering and then reconstructing is
again better in terms of accuracy than reconstructing the whole car at once. This is
also verified in Fig. 62b. As we increase the number of clusters, the reconstruction error
decreases.
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Figure 62: Reconstruction error of the displacements of the Ford Taurus for different clustering
methods: In (a) only the 19 important parts are reconstructed where the density-
based method gives the best results. In (b) the reconstruction error corresponding to
the whole car is shown where k-means performs best.

1 cluster 17 clusters 170 clusters 741 clusters
n - k-means  dbased | k-means hybrid | k-means parts
1| 2.01le-06 | 1.07e-06 1.11e-06 | 8.30e-07 9.49¢-07 | 6.73e-07 6.27e-07
2 | 1.07e-06 | 7.61e-07 8.37e-07 | 5.41e-07 5.83e-07 | 3.82e-07 3.62e-07
3| 8.02e-07 | 6.19e-07 6.39¢-07 | 3.82e-07 4.46e-07 | 2.49e-07 2.26e-07
4| 7.39e-07 | 5.13e-07 5.31e-07 | 2.93e-07 3.64e-07 | 1.80e-07 1.59e-07
51 6.74e-07 | 4.35e-07 4.80e-07 | 2.43e-07 3.08e-07 | 1.42e-07 1.19e-07
6 | 6.34e-07 | 3.79e-07 4.27e-07 | 2.06e-07 2.63e-07 | 1.16e-07 9.67e-08
7 1 5.94e-07 | 3.37e-07 3.92e-07 | 1.78e-07 2.30e-07 | 9.72e-08 7.89e-08
8 | 5.78¢-07 | 3.01e-07 3.61e-07 | 1.59e-07 2.01e-07 | 8.32e-08 6.69e-08
9 | 5.45e-07 | 2.74e-07 3.25e-07 | 1.42e-07 1.78e-07 | 7.30e-08 5.65e-08

Table 15: Reconstruction error of the displacements of the whole Ford Taurus with n POD modes:
In the hybrid method, each cluster obtained with the density-based method is again
clustered with spectral clustering. In most cases, k-means is better than the other
clustering methods.
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Figure 63: Shown are the mass fractions of Hy (fuel), O2 (oxidizer), and HyO (product) and the
temperature of the high-fidelity model solutions with pre-exponential factor 7.775-10'2
and activation energy 5.5 - 103.

12. Case Study: Reacting Flow — Clustering of Snapshots

We consider a model of a steady premixed Ho-Air flame underlying the one-step reaction
mechanism
2H5 + Oy — 2H50

where Hy is the fuel, Oy the oxidizer, and HyO the product, see Fig. 63. The evolution of
the flame is given by a nonlinear advection-diffusion-reaction equation [35]. It gives rise
to a computationally expensive simulation and that is why we want to develop a reduced-
order model based on POD. In Sec. 2.3.2 it was already mentioned that POD-Galerkin
reduced-order models for nonlinear PDEs include at least one step which scales with
the dimension A of the full model. That is why in [35] the so-called discrete empirical
interpolation method (DEIM) is employed. In this section, we replace DEIM with the
localized discrete empirical interpolation method (LDEIM). It clusters the (nonlinear)
snapshots and computes a local DEIM approximation for each cluster.

We briefly recapitulate DEIM, identify its limitations, and so motivate the develop-
ment of LDEIM. We discuss LDEIM in a general setting and then introduce a specific
variant. Finally, our method is demonstrated on the reacting flow example. Note that we
cannot cover all aspects of LDEIM here. We refer to [146] for more LDEIM variants, de-
tailed descriptions of the involved machine learning task, and further applications. The
LDEIM method has been developed in close collaboration with Daniel Butnaru [44].
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12.1. POD-DEIM-Galerkin Reduced-Order Models

We discuss POD-Galerkin in the context of nonlinear PDEs, illustrate the arising prob-
lems, and quickly recapitulate the DEIM method. The section is closed with a paragraph
on the limitations of DEIM that motivates the development of the localized DEIM.

POD-Galerkin Consider a discrete system of nonlinear equations
Au(p) + F(u(p)) =0 (98)

stemming from the discretization of a parametrized nonlinear PDE. It consists of the
linear operator A € RV*V and the nonlinear term F : RN — RV with F(u(p)) =
[F(u1(p)), ..., Fun(w))]?. The Jacobian of the system (98) is given by

J(u(p)) = A+ Jr(u(p)),

where Jp(u(p)) = diag{F'(u1(p)), ..., F'(up(p))} € RV*N because F is evaluated at
u(p) component-wise. With the POD basis V' € RV*™ computed from the snapshots
in {w(p1),...,u(pr)} we obtain the POD-Galerkin reduced-order system

VITAVa(p) + VIF(Va(u) =0, (99)

where Vu(p) replaces the state vector u(p). In the same way as (99), we can derive
the reduced Jacobian.

From (99) it becomes clear that the reduced linear operator A=VTAV € R™" can
be pre-computed in the Offline phase but that this is not possible for the nonlinear term.
Thus, the nonlinear term F' has to be evaluated at all N' components of w(pu) when the
system (99) is solved in the Online phase. This quickly becomes the dominating part of
the solution time of a POD-Galerkin reduced-order system.

Discrete empirical interpolation method When POD-Galerkin is applied to nonlinear
PDEs with a general nonlinearity, it still requires computations that scale with the
dimension of the high-fidelity model. Many solutions have been proposed to overcome
this drawback of POD-Galerkin, see, e.g., [161, 15, 83, 23, 48]. Here we consider the
discrete empirical interpolation method (DEIM) introduced in [51].

Let F' be the nonlinear term and S = {F(u(p1)), ..., F(u(par))} be the set of nonlin-
ear snapshots. A POD basis Q = [q1,...,qm] € RN X" ig computed from the nonlinear
snapshots in §. DEIM combines projection and interpolation to approximate F' in the
space spanned by @, i.e., the coefficients p(p) € R™ have to be determined from the
system F'(u(p)) =~ Qp(w). Unfortunately, the system F(u(p)) ~ Qp(p) is overdeter-
mined and thus DEIM selects only m rows of @ to compute the coefficients. Therefore,
a matrix P = [ep,,...,ep, ] € RV*™ is introduced, where e,, is the p;-th column of
the identity matrix. The interpolation points p1,...,p, are selected with a greedy al-
gorithm. Assuming P7Q is nonsingular, the coefficients p(u) can be determined from
PTF(u(p)) = (PTQ)p(p) leading to

F(u(p) = Q(PTQ) P F(u(p)). (100)
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Figure 64: Depending on the parameter g, the function g* has a sharp peak in one of the four
corners of the spatial domain.

The approximation Q(PT Q)" PTF(u(u)) interpolates the function F' at the interpo-
lation indices p1,...,pm given in P because

PT(Q(PTQ) 'PTF(u(p))) = (PTQ)(PTQ) ' PTF(u(p)) = P F(u(p)).

Thus, we can speak of a DEIM interpolant which we denote with a tuple (Q, P). Overall,
we obtain the POD-DEIM-Galerkin reduced-order system

VTAV a(u) + VIQPTQ) "' PTF(Via(w) = 0, (101)

and the reduced Jacobian

Jr(a(p) =V AV +VIQ(PTQ)! Jp(P"Va(n) P'V, . (102)

With POD-DEIM-Galerkin the nonlinear term F has to be evaluated at m components
only. Just as n < N for POD we assume m < N for DEIM and thus expect savings in
computational costs. We refer to [51] for more details on DEIM.

Limitations of POD-DEIM-Galerkin reduced-order models DEIM approximates the
nonlinear term F' in the subspace spanned by Q = [q1,...,qm]. If the behavior of F
changes heavily when evaluated at different state vectors, the number m of basis vectors
has to be large to accurately approximate F' in all situations. We demonstrate this on
an interpolation example.

Consider the spatial domain = [0,1]® and the parameter domain D = [0, 1]?. We
define the function ¢' : @ x D — R as

! (103)
[0 —20) 099 1 )P+ ((1—22) - (0.9 15— D2 0.2

such that the parameter g = (u1, u2) controls the gradient of the peak near the corner
(1,1) of the spatial domain Q. Furthermore, let us consider the function

g (@ p) =g (5 p) + g' (1 — 21,1 — @951 — pua, 1 — pag) (104)
+ g (1= m1, 2051 — g, p2) + g (w1, 1 — @95 01, 1 — o).

g (z; p) = 7

155



o —©-one peak (gl) i © one peak (gl)
3]
10" 4 —*—four peaks (g4) i T:é 1073 I *  four peaks (g4)f
>
_1 -
B 10 (\\\,\q E "
= 510 ¢
7] S o
_~N10 3 c%
-9
o B 10 |
& 107 IS,
©
- e -12|
107 £ 10
c
-5 -15
10 : ‘ ‘ 10 ‘ : :
10 15 20 25 30 0 50 100 150 200 250
DEIM interpolation points number of singular value
(a) error (b) singular values

Figure 65: In (a) the average Ly error is plotted versus the number m of DEIM interpolation
points corresponding to the function with one (g') and four (g?) peaks, respectively.
The more peaks, the worse the result. This is reflect in the decay of the singular
values shown in (b).

The parameter g of g* controls the gradient of the peaks in all four corners, i.e., de-
pending on the parameter g, the function g* has a sharp peak in one of the four corners
of €, see Fig. 64. The functions g' and g* are discretized on a 20 x 20 equidistant grid
in © and we randomly sample them on a 25 x 25 equidistant grid in D. From these 625
snapshots, the DEIM basis Q = [q1, . .., qy] is built. In Fig. 65 the average Ly error of
the approximations over a set of test samples {1, ...,y } is shown. The results for
g* are distinctly worse than for g'. This is reflected in the slower decay of the singular
values of the snapshot matrix corresponding to ¢*. Even though ¢* is just a sum of g'
functions, and, depending on the parameter w, only one of the summands determines
the behavior of g%, we still get worse results than for g'. The reason is that the DEIM
basis has to be able to approximate all four peaks. It cannot focus on only one (local)
peak as is possible when we consider one ¢! function only. This also means that if we
choose the parameter p = (0.1,0.9) which leads to only one sharp peak of g* near the
corner (0.1,0.9) of Q, just a few of the DEIM basis vectors are relevant for the approxi-
mation and all others are ignored. This is a clear waste of resources and motivates our
development of the localized discrete empirical interpolation method.

12.2. Localized Discrete Empirical Interpolation Method

For all parameters p in the parameter domain D, DEIM approximates the nonlinear term
on the same subspace. Our localized discrete empirical interpolation method (LDEIM)
computes several local DEIM interpolants, each of them adapted to only a particular
region of characteristic system behavior. The two building blocks of LDEIM are the
construction of the local subspace and the selection procedure to choose a good local
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subspace for the approximation of the nonlinear term.

In this section, we introduce the idea of LDEIM in a general setting, match clustering
and classification tasks to its two building blocks, and make some considerations about
the error and the computational costs.

LDEIM In the Offline phase, LDEIM clusters the nonlinear snapshots in & into k sub-
sets S = S1W- - - WSy, Snapshots should be grouped together if they can be approximated
well by the same set of DEIM basis vectors and interpolation points. For each subset S;
a DEIM interpolant (Q;, P;) is constructed. Thus, each interpolant (Q;, P;) is adapted
to the snapshots in the corresponding set S; only and does not need to capture the
behavior of all other snapshots in S. The partition of S into the subsets S1,...,S is a
clustering task. Input is the set S, output the subsets Sy, ..., Sk.

Also in the Offline phase, a classifier ¢ : 2 — {1,...,k} is constructed. With ¢
a local DEIM interpolant (Q;, P;) is selected with respect to the indicator z € Z in
the Online phase. The indicator z has to contain enough information about F'(u(mu))
to select a good local DEIM interpolant and it has to be cheap to compute. Many
different indicators are possible. For example, a simple indicator z is the parameter
p. However, we do not pursue this approach further but refer to [146, 44]. Here we
derive the indicator z directly from F'(u(p)) via feature extraction or feature selection,
see Sec. 12.3. The construction of the classifier is a supervised learning task. Inputs
are the partition § = §; W .-+ W S and the indicators {z1,...,z)} corresponding to
the nonlinear snapshots in S§. Output is the classifier ¢. We employ nearest neighbor
classifiers because they can track curved classification boundaries and are very cheap
to evaluate. This is crucial for us because we have to evaluate the classifier during the
Online phase.

The POD-LDEIM-Galerkin reduced-order model is

C

VIAVa(p) + VI Qu) (P Q) PiyF(Va(w) = 0 (105)
instead of (101), and the reduced Jacobian is now
Tr(a(p) = VI AV + VT Q) (P Q) " Jr (P, Va(w) PY,V . (106)

The DEIM basis @ and the matrix P depend through the classifier ¢ on the indicator z
and thus on the nonlinear term F evaluated at w(p).

Instead of one VQ(PTQ)™! matrix, we now pre-compute i = 1,...,k matrices
VQ;(PFQ;)~! from which one is picked according to the classifier é in the Online
phase. The DEIM approximation is fully decoupled from the POD projection of the
state. Hence, switching from one DEIM interpolant to another does not influence the
POD basis V. Note that switching between local reduced-order models is not always
that straightforward [96, 56].

Error bounds and computational costs In [51, 188, 52|, error bounds for DEIM are
introduced. In principle, they can be carried over to LDEIM because after having selected

157



a local DEIM interpolant, we just have a classical DEIM approximation where these error
bounds hold.

Compared to DEIM, the Offline phase of LDEIM is more expensive because we first
have to cluster the set S, then construct multiple DEIM interpolants, and finally train
the classifier ¢. However, in the context of model reduction, we always assume we can
cope with an expensive Offline phase in favor of a very cheap Online phase.

In the Online phase, the only additional costs incurred by LDEIM compared to DEIM
are the evaluation costs of the classifier é¢. To evaluate ¢, the indicator z has to be
computed first. We show in the next section that z can be computed without additional
evaluations of the nonlinear term F'. The evaluation of ¢ itself is very cheap because we
have a nearest neighbor classifier. The costs neither depend on the number of snapshots
M nor on the number of clusters k.

12.3. Feature Extraction for State-Based LDEIM

In many localization approaches in the context of model reduction, the local reduced-
order model is selected with respect to the parameter or time step [62, 60, 61, 56, 96]. In
terms of the previous section, this would mean to set the indicator z to the parameter p
and to construct a classifier ¢ : D — {1,..., k} with domain D. In contrast, our method
computes the indicator as a low-dimensional representation of F'(u(p)) with feature
selection. Thus, the indicator is directly derived from F'(wu(p)) without the detour
around the parameter p. To clearly distinguish the approach presented here from the
two LDEIM variants which we have developed in [146, 44], we might sometimes call it
state-based LDEIM.

First, the advantages of our state-based LDEIM compared to other localization ap-
proaches with a selection procedure based on the parameter are discussed. Then, a
low-dimensional representation of F(u(u)) is developed.

Limitations of parameter-based selection procedures In Sec. 12.2 we have seen that
we need a classifier ¢ : Z — {1,...,k} to determine a local DEIM interpolant (Q;, P;)
in the Online phase of LDEIM. We mentioned the common choice, where the local
interpolant or reduced-order model is selected with respect to the parameter p of the
system. In terms of LDEIM, this would mean the indicator z of F'(u(u)) is the parameter
p and the domain Z of the classifier ¢ is set to the parameter domain D. We do not want
to discuss such an approach with all its details here but we want to show why setting
z = p might not always be a good choice.

When we employ DEIM or LDEIM, we have to deal with a system of nonlinear equa-
tions. Such nonlinear systems are usually solved with the Newton method. A parameter-
based selection procedure picks a local DEIM interpolant (Q;, P;) depending on the
parameter p before the first Newton iteration starts. Since z = p is constant during
all forthcoming iterations, the local DEIM interpolant is never switched. In contrast,
in case of the state-based LDEIM, the indicator z is computed from F'(w(p)) which
constantly changes during Newton iterations. Thus, even though the parameter p is
fixed, the indicator z is updated. Therefore, if the classifier ¢ is evaluated after each
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Newton iteration, we might get different local DEIM approximations in each iteration.
This means that the state-based LDEIM can switch the local interpolant during Newton
iterations whereas parameter-based procedures keep one local DEIM interpolant fixed
until convergence.

Low-dimensional representation Suppose our discrete system of nonlinear equations
(105) is solved with the Newton method and @/ (p) is the reduced state vector after
the j-th Newton iteration. Our task is to train the classifier ¢ on points {z1,...,zn}
corresponding to the snapshots in S = Sy W --- W Sy, such that we can decide with z/
corresponding to F(V@/ () to which subset Sy, . .., Sk the vector F(V @’ (u)) belongs.
This gives us the index of the local DEIM interpolant for the DEIM approximation in
the j + 1-th Newton iteration.

Of course, we could simply train a classifier ¢ : RN — {1,...,k} on the snapshots &
and evaluate it at F'(V@’(u)). This would certainly work, but it is too expensive. We
would have to evaluate the nonlinear term F' at all N' components. Hence, we are looking
for a more cost-efficient representation of F(V@/(u)). Consider the map F : R® — R™
where F(@/(p)) behaves similar to F(Va(u)) but with 7 < A. The function F
evaluated at the reduced state vector becomes our indicator, i.e., z/ = F (@ (u)). With
F(@/(u)) we represent the high-dimensional vector F(V4@/(u)) in a low-dimensional
space R™ but F(/ (p)) still has to contain the relevant information to classify the vector
F(V4@/ () correctly. It is important that the purpose of F'(@7 (1)) is not to approximate
F(V4(p)) but only to indicate which local DEIM interpolant to choose. We have to be
able to rapidly compute the low-dimensional representation z/ of F(V@/(u)) because
the computation is performed during the Online phase, maybe even in each Newton
iteration.

Recently, many linear and nonlinear dimensionality reduction methods have been pre-
sented, see the survey [125]. In principle, all of them could be employed to compute
the indicator. However, we employ two maps F based on DEIM. Let (Qg, P,) be the
(global) DEIM approximation computed from the set of nonlinear snapshots S with m
DEIM basis vectors and interpolation points. What we call the DEIM-based feature
extraction is defined as

Fp(@ (w) = (P} Qq) "' P/ F(V& (n)) (107)
and the point-based feature extraction as
Fp(@ (n)) = P/ F(V&/ (). (108)

The DEIM-based feature extraction (108) maps the nonlinear term evaluated at the
state vector @/ (u) at the m coefficients of its DEIM representation. The coefficients are
a good representation of F(V@/(u)) because of the POD basis underlying the DEIM
basis vectors. The point-based feature extraction (108) is motivated by the DEIM greedy
algorithm. This algorithm selects those components of F' that play a crucial role in the
behavior of the nonlinear term. The point-based feature extraction does not require
the matrix-vector product with (PgT Q,)~! € R™™ as does the DEIM-based feature
extraction.
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Efficient computation of the indicator The two low-dimensional representations (107)
and (108) lead to a classifier ¢ : R™ — {1,..., k} with domain R™. To check in the On-
line phase if switching the local DEIM interpolant after the j-th Newton iteration is
appropriate, the indicator 2/ is computed either with (107) or (108) and then the classi-
fier ¢ is evaluated at z7. In contrast to parameter-based selection procedures where the
indicator is simply the parameter, the evaluation of the map (107) or (108) introduces
additional costs. Since m is usually even smaller than the number m of DEIM interpo-
lation points, we ignore the costs of the matrix-vector product with (PgT Q,) ! e RTxm
in case of DEIM-based feature extraction. However, the additional evaluation of F' at
7 might become quite high. Therefore, we do not evaluate F' to compute 27 but in-
terpolate it at the required components with the local DEIM interpolant of the j-th
Newton iteration. Thus, for each local DEIM interpolant (Q;, P;), we additionally store
the matrix
WP = (P/Qy) ' P/ Qi(P/Q;) " e R™*™ (109)
if we employ the DEIM-based feature extraction (107), and the matrix
W = PjQi(PlQi) ™ e R™*™ (110)

in case of the point-based feature extraction (108). Suppose we have the local DEIM
interpolant (Q;, P;) in the j-th Newton iteration. Then we store the vector

I =PF(Vd (). (111)

This vector is used for the DEIM approximation in the j-th Newton iteration but it is
also used to approximate F' at the /m components required by the feature extraction to
compute z7. Thus, the indicator 27 is computed by multiplying the vector fj with the
matrix (109) or (110), respectively.

We emphasize that this allows us to compute the indicator without additional evalu-
ations of the nonlinear term F'. The approximation error incurred by this interpolation
does not effect the DEIM approximation in the j + 1-th Newton iteration. It only in-
fluences the selection procedure. However, we will show in Sec. 12.5 that this leads to
insignificant differences.

12.4. Offline and Online Procedure of LDEIM

The computational procedure of LDEIM in general and of the state-based LDEIM in
particular is decomposed into an Offline phase where the local DEIM interpolants are
constructed and into an Online phase where a local interpolant is selected depending on
the indicator. In this section, we discuss the two phases in detail.

Offline phase In the first step of the Offline phase, the local DEIM interpolants are
constructed, and in the second step, the classifier ¢ is trained on the clustered snapshot
data.

In Alg. 7 the clustering procedure is summarized. Inputs are the number m of local
DEIM basis vectors and interpolation points, the dimension m of the low-dimensional
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Algorithm 7 Construction procedure of LDEIM

1: procedure CONLDEIM (m, m, k, S, F, V)
2 S e AF(VTu(p)),- -, E(V (i)
3 (S1,...,8k) < k-MEANS(S, k, || - ||2)

4 (Qg, Py) <+ DEIM(S, m)

5: [ < empty list
6
7
8
9

fort:=1:kdo . .
S, = (F ()| F(Vu(u,) € S}
(U;, P;) + DEIM(S;, m)
: W; « depending on F' store either matrix (109) or (110)

10: ! < append ((U;, P;), W;) to list [
11: end for
12: [ < append (U, P,) to list [
13: ¢ ¢ train classifier on Sy x {1} U--- U Sy, x {k}
14: return [
15: end procedure

representation, the number of clusters k, the set of nonlinear snapshots S, the feature
extraction F', and the POD basis V. The snapshots in S are transformed into their low-
dimensional representation and are then stored in S. The data in S is then clustered
with k-means with respect to the Euclidean norm. We emphasize that it is distinctly
cheaper to cluster the low-dimensional points in & € R™ than the high-dimensional
snapshots in & € RV as is done in [13]. The result is a partition of S = S;¥- - - ¥ S), and
S =81 W...S into k subsets. For each subset S;, a local DEIM interpolant (Q;, P;) is
built and the matrix W; is constructed. The local interpolants (Q1, P1),. .., (Qk, Pk),
the corresponding matrices Wi, . .., Wy, and the global DEIM interpolant (Qg, P,) are
stored in the list [. Finally, a nearest neighbor classifier ¢ is trained on the set

Sy x{1}U---US, x {k} CR™ x {1,...,k}.

The k-means clustering method (Lloyd’s algorithm) is initialized with a random cluster
assignment. Because k-means finds only local optima, the initial clustering influences
the final cluster assignment. To cope with this nondeterministic behavior, we split of a
small test data set of S and repeat the whole construction procedure in Alg. 7 several
times. In the end, the clustering leading to the smallest DEIM residual on the test data
is chosen.

Online phase During the Online phase, a local DEIM interpolant for the j + 1-th
Newton iteration is selected with respect to the indicator z/ computed from F(V @/ (p)).

Consider Alg. 8. Input are the POD basis V', the nonlinear term F', the list [ obtained
with Alg. 7, the classifier ¢, the index i/ € {1,...,k} of the local DEIM interpolant
in the j-th Newton iteration, the state vector @/(u), and the vector fj containing the
components of F(V@/(u)) corresponding to the interpolation points defined by P;;,
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Algorithm 8 Selection procedure of LDEIM

1: procedure SELLDEIM(V, F, I, ¢, i/, 4’ (), fj)
2 2 Wl'jfj

3 T e(27)

4 I PyF(Vad ()

5

6

. return (/11 fi+1)
: end procedure

see (111). With the matrix W, contained in the list I, the indicator 27 is computed
with the vector fj . With the indicator 27, the classifier ¢ can be evaluated to get the
index /1! of the local DEIM interpolant for the j 4+ 1-th Newton iteration. Finally, the
nonlinear term is evaluated at the interpolation points defined by P;;+1 and stored in
f7*1. Returned are the index i7*! and the vector fiT1.

We make two remarks on the Online phase. First, if the Newton method has not
converged after a couple of iterations, we switch to the classical DEIM approximation
with m basis vectors and m interpolation points. This is only necessary in exceptional
cases, e.g., when we constantly switch back and forth between two local interpolants.
Second, to ensure a smooth transition when we switch from one local interpolant to
another, we oversample the local DEIM interpolants by employing the interpolation
points corresponding to both clusters [196]. Note that we oversample only in the first
iteration after a switch.

12.5. Simulation of an H,-Air Flame

In this section, we finally consider the reacting flow example of an Hso-Air flame. We
briefly describe the problem, discuss the POD-DEIM-Galerkin reduced-order model pre-
sented in [35], and then derive the LDEIM reduced-order model. We close the section
with numerical results.

The Hs-Air flame model The chemistry behind the reacting flow is modeled by a
one-step reaction
2H9 + O9 — 2H20,

where Hy is the fuel, Og the oxidizer, and HoO the product, see Fig. 63. If we assume
a constant and uniform pressure, a constant and divergence-free velocity field, as well
as constant, equal, and uniform molecular diffusivities for all species and temperature,
the evolution of the flame in a domain © C R? with boundary I' is described by the
nonlinear advection-diffusion-reaction equation

kAu —vVu + f(u,pu) =0 in (112)

where u = [up,, u0,, uH,0, 1]’ contains the mass fractions of the species Ha, Oz, HoO
and the temperature T, and f is the nonlinear source term. The geometry of  is
shown in Fig. 66. The constants x = 2.0cm?/sec and v = 50cm/sec are the molecular
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diffusivity and the velocity of the velocity field in x; direction, respectively. With the
notation of Fig. 66, we have homogeneous Dirichlet boundary conditions on the mass
fractions on I'y and I's, and homogeneous Neumann conditions on temperature and mass
fractions on I'y, I's, and I's. We have Dirichlet conditions on I'y with up, = 0.0282, up, =
0.2259, ug,0 = 0, ur = 950K, and on I'1,I's with ur = 300K.

The nonlinear term f = [fu,, fo,, fi,0, fr]’ has the components

2
w; PUH, PUO, 2 .
i(u, ) = —v; | — — — -, = Hy, O, H,O
il ) = —v <P><7~UH2) <w02>mexp< LUT) B R (VE)
fT(uay') = fH20(u7P’)n

where p7 is the pre-exponential factor, us is the activation energy, v; is the respective
stoichiometric coefficient, wp,,wo,, and wp,o are the molecular weights 2.016, 31.9,
and 18gr/mol, respectively. The constant p = 1.39 - 1073gr/cm?® is the density of the
mixture, ¢ = 8.314472 J/(mol K) is the universal gas constant, and n = 9,800K is the
heat of reaction. The parameter g = (u1, p2) can vary within the parameter domain
D =[55-1011.5-10% x [1.5-10'3,9.5 - 103] C R2. All constants are set to the same
values as in [35], only the parameter domain D was slightly extended to allow a larger
variation of the solutions.

Equation (112) is discretized with finite differences on an equidistant 73 x 37, leading
to the system of nonlinear algebraic equations

Au+ F(u,pn) =0 (114)

with V' = 10,804 degrees of freedom. The matrix A € RV*V corresponds to the linear
operators and the function F : RV — RV to the nonlinear function f in (112). The
state vector u = [um,, U0,, UH,0, uT]T e RV contains the mass fractions of the species
and the temperature at the grid points. The nonlinear system (114) is solved with the
Newton method.

Reduced-order model for reacting flow In [35] the POD-DEIM-Galerkin reduced-

order model

VIiAu +VTAVa + VIQ(PTQ) 'F(PTa + P'Va,u) =0
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Figure 67: In (a) the accuracy comparison of DEIM and LDEIM is shown. In (b) the effect of
the two feature extraction methods Fp and Fp with and without interpolation (40
POD modes, 20 DEIM modes) is illustrated.

is introduced. The vector @ € RV is the arithmetic mean of the set of snapshots
{w(p1),. .., u(par)}, the POD basis V€ RV*™ is computed from {u(g;) —ﬁ}jj\il. The
DEIM interpolant (Q, P) is built from the set S = {F(w(p1), 1), ..., F(u(par), par) }-
The snapshots are computed for the parameters on an equidistant 50 x 50 grid in D.

Numerical results Let us now employ LDEIM instead of DEIM. We solve the POD-
LDEIM-Galerkin system for parameters on the equidistant 24 x 24 grid in D and compute
the average relative error to the full model solutions. The results are shown in Fig. 67.
We have n = 40 POD modes, k = 15 clusters, and the dimension of the low-dimensional
representation is set to m = 5. With LDEIM we achieve an about two orders of magni-
tude better result than with the classical DEIM, see Fig. 67a. In Fig. 67b we compare
the two maps Fp and Fp with and without interpolating the required components of
F with the matrices (109) and (110), respectively. No large difference between the two
feature extraction methods can be seen, and there is no significant loss of accuracy if we
interpolate the values of F' at the points required by the feature extraction instead of
directly evaluating F'.

In Fig. 68 we show the results of LDEIM with point-based feature extraction with
interpolation when we fix the number of POD and DEIM modes, and only vary the
number of clusters. Consider for example Fig. 68a where we plot the error curve for 40
POD and 20 DEIM modes. Increasing the number of clusters leads to a higher accuracy.
However, if we have 40 instead of 20 DEIM modes, more than three clusters do not lead
to an improvement. The reason is that even though the DEIM approximation gets more
and more accurate as we increase the clusters, the POD basis is fixed and thus limits
the overall accuracy. We want to emphasize that a large number of clusters does not
deteriorate the accuracy, as is for example the case in other approaches [146]. Hence,
the clustering of the low-dimensional representation leads to a stable cluster assignment
here.
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Figure 68: The number of POD/DEIM modes is fixed and the number of clusters is varied. In-
creasing the number of clusters does improve the accuracy up to where POD becomes
the limiting factor for the overall result.

Let us finally have a look at the runtimes in Tab. 16. We show the average relative
error and the runtimes of the state-based LDEIM with 40 POD and 10 DEIM modes for
the two feature extraction methods Fpp and Fp. The computations were performed five
times and the average runtime is reported. All runtimes are normalized with respect to
the runtime for only one cluster for the respective feature extraction method without
the interpolation procedure described in Sec. 12.3. Table 16 shows clearly that if we
increase the number of clusters, the runtime increases only slightly. Notice the worst
case reported in Tab. 16 where the runtime for 1 to 100 clusters increases by a factor
of 1.5 only. Furthermore, the errors confirm once more that a large number of clusters
does not lead to an unstable clustering.
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Fp w/out interp | Fp w/out interp | Fp with interp | Fp with interp
k error time error time error time error time

11 9.26e-05 1.000 | 9.26e-05 1.000 | 9.26e-05 1.014 | 9.26e-05 1.037
10 | 2.90e-06 1.371 | 5.53e-06 1.289 | 2.20e-06 1.179 | 4.87e-06 1.231
20 | 9.19e-07 1.194 | 1.46e-06 1.071 | 9.96e-07 1.176 | 3.50e-06 1.102
30 | 4.92e-07 1.205 | 9.82e-07 1.343 | 5.21e-07 1.097 | 8.40e-07 1.257
40 | 2.87e-07 1.108 | 5.35e-07 1.125 | 3.32e-07 1.214 | 7.05e-07 1.189
50 | 2.33e-07 1.198 | 5.61e-07 1.290 | 2.06e-07 1.183 | 6.90e-07 1.161
60 | 2.04e-07 1.144 | 3.44e-07 1.143 | 2.01e-07 1.243 | 4.06e-07 1.164
70 | 2.15e-07 1.011 | 2.25e-07 1.148 | 1.98e-07 1.113 | 1.04e-06 1.325
80 | 4.02e-07 1.078 | 2.09e-07 1.303 | 1.58e-07 1.199 | 1.01e-06 1.384
90 | 2.03e-07 1.441 | 2.11e-07 1.238 | 2.41e-07 1.195 | 1.37e-06 1.419
100 | 1.39e-07 1.094 | 5.37e-07 1.144 | 1.18e-07 1.181 | 1.29e-06 1.524

Table 16: State-based LDEIM with 40 POD and 10 DEIM modes for our two feature extraction
methods with up to 100 clusters: The runtimes only slightly increase when we increase
the number of clusters. The reported errors confirm that the clustering does not get
unstable as we increase the number of clusters.
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13. Remarks

Common a posteriori model order reduction methods build reduced-order models from
the set of snapshots S = {w(p1),...,u(par)}. In contrast, post analysis model order
reduction discussed in this part, first analyzes the data in S with learning methods and
then does not construct only one global but multiple local reduced-order models from
the pre-processed data. Unsupervised learning methods such as clustering play a crucial
role to derive the local reduced-order models.

Two sparse-grid-based clustering methods were introduced. We presented an out-of-
sample extension with sparse grids for spectral clustering and a density-based clustering
method where the estimated density function is approximated on a sparse grid. All of
our clustering methods are able to find clusters with a non-convex shape.

Spectral clustering methods perform well in many situations but the time to solve the
underlying eigenproblem usually grows with O(M?3) in the number of data points M.
This makes so-called out-of-sample extensions necessary. These are maps from the high-
dimensional ambient space where the data points come from, into a low-dimensional
latent space which corresponds to the cluster assignment. We constructed such a map
by approximating the eigenfunctions of the Laplace-Beltrami operator with sparse grid
functions. These sparse grid functions can be evaluated at any data point to rapidly
obtain the cluster assignment of large data sets. Furthermore, if the out-of-sample
extension is constructed, the eigenproblem does not depend on the number of data points
anymore but only on the number of sparse grid points. We applied spectral clustering
with our sparse-grid-based out-of-sample extension to various benchmark examples and
demonstrated that it achieves higher accuracies than the widely-used Nystrom-based
out-of-sample extension. Furthermore, we combined spectral clustering and our out-of-
sample extension to a nonlinear dimensionality reduction method and analyzed snapshots
of a flow simulation data where two parameters were varied. The embedding of the data
reflected the two parameters. Finally, the out-of-sample extension was applied to image
segmentation where we have shown that only a few sparse grid points are necessary to
obtain a reasonable segmentation of an image.

We continued with our density-based clustering method. It splits the similarity graph
constructed from the given data points into components by removing vertices of the
graph in low-density regions. These low-density regions are found with the help of
an estimated density function discretized on a sparse grid. The method is well-suited
for large data sets because the similarity graph can be constructed in parallel and the
runtime of the sparse-grid-based density estimation method does only slightly depend
on the number of data points. Furthermore, our density-based clustering method allows
us to distinguish between weak and strong clusters and it includes an indicator for the
number of clusters. We demonstrated the method and its properties on benchmark and
real-world examples.

Having introduced these two clustering methods, we considered two post analysis
model order reductions methods. In the SIMDATA-NL workflow the nodes of large
finite element models are clustered and for each cluster a local reduced-order model is
computed. In contrast, the localized discrete empirical interpolation method clusters the
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snapshots to construct local interpolants for the approximation of the nonlinear term in
reduced-order models of nonlinear PDEs.

The SIMDATA-NL workflow has been developed to analyze car crash simulation data.
Its two core steps are clustering and nonlinear dimensionality reduction. We focused on
the clustering step. The purpose of the clustering is twofold. It should give insight into
the crash behavior of the car and the cluster assignment is the input for the successive
dimensionality reduction step in the workflow. We analyzed a frontal crash of a Chevro-
let pick-up truck and of a Ford Taurus. The nodes of the finite element models of the
car were clustered with k-means and our two sparse-grid-based clustering methods. We
plotted the cluster assignments and observed that our density-based method and spec-
tral clustering with our out-of-sample extension captured all bending patterns during the
crash whereas k-means was not able to find these details in all cases. To quantitatively
assess the quality of the clustering we built a local POD reduced-order model for each
cluster separately and reconstructed the simulation data. First, the results confirmed
that our sparse-grid-based methods perform better than k-means in many situations,
and, second, they clearly showed that first dividing the model into clusters and then
locally reconstructing each cluster on its own gives distinctly better results than to re-
construct the whole car model at once. This supports the SIMDATA-NL workflow where
the nonlinear dimensionality reduction methods are applied to each cluster separately.

The localized discrete empirical interpolation method (LDEIM) was developed to ap-
proximate nonlinear terms in reduced-order models of nonlinear PDEs. Instead of the
nodes of the finite element model as in the SIMDATA-NL workflow, LDEIM clusters
the snapshots and constructs a separate interpolant for each cluster in the Offline phase.
Each of these local interpolants is adapted to only a certain region in state space and
thus to a specific system behavior. Depending on the current state of the system, one
of the interpolants is selected for the actual approximation of the nonlinear term in the
Online phase. The state of the system is described by an indicator which is obtained
from the nonlinear term with feature extraction. The LDEIM method employs cluster-
ing to partition the set of snapshots, and classification to choose an appropriate local
interpolant. We applied our localized discrete empirical interpolation method to a re-
acting flow simulation of an He-Air lame where LDEIM achieved accuracies about two
orders of magnitude better than DEIM.
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14. Conclusions and Future Work

We presented a reduced-order model hierarchy that reflects the close relationship of
model order reduction and machine learning. Following this hierarchy, we introduced
sparse grid learning methods, employed them for model order reduction, and applied the
derived methods to various applications. The objective was to develop novel sparse grid
learning techniques and to show that combining classical machine learning with model
order reduction leads to improved methods with respect to accuracy, runtime, or scope.

Our model reduction hierarchy consists of three levels corresponding to Parts I-III.
In Part I the focus was on a priori model order reduction where the problem is solved
in a space that is tailored to a whole problem class. We considered sparse grid spaces
and developed a multigrid method to solve PDEs discretized on sparse grids. Methods
for a posteriori model order reduction were the topic of Part II. From given data
(snapshots), we learned the input-output relationship corresponding to the parameters
and the outputs of interest as defined by our problem with regression and classification
methods based on sparse grids. The result was a non-intrusive model reduction method
which was competitive to the reduced basis method for our examples but which does
not require to adapt the underlying solvers. Finally, in Part III we introduced two post
analysis model reduction methods which first analyze the given data with unsupervised
learning methods, e.g., clustering methods, and then build multiple local reduced-order
models, each of them tailored to a specific system behavior.

Across Parts I-1I1 we developed supervised and unsupervised sparse grid learning
methods for classification, regression, clustering, (nonlinear) dimensionality reduction,
and probability density estimation. Besides applications from computational science
and engineering, our learning methods were also applied to classical learning problems
such as the analysis of simulation data, image segmentation, biochemical screenings, and
sampling from estimated density functions.

The main contributions of this thesis can be summarized as follows:

e With the multigrid method developed in Sec. 4 it is computationally feasible to
solve the multi-dimensional convection-diffusion equation on sparse grids without
additional approximates of, e.g., the bilinear forms of the operators. Furthermore,
due to the underlying ANOVA-like decomposition of the solution function, the
multigrid algorithm allows to coarsen and refine in each direction independently
and still provides a valid system of equations for each grid of the sparse grid
hierarchy.

e The probability density estimation method based on sparse grids as introduced in
Sec. 7.1 makes processing of large data sets possible. To extend the scope of the
density estimation method we presented algorithms to marginalize, conditionalize,
and sample sparse grid density functions, and which scale only linearly in the
number of data points.

e Based on the sparse grid density estimation method, we developed a probabilistic,
generative classification method in Sec. 7.2 with an Offline/Online splitting to
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significantly reduce the runtime of the prediction for new, previously unseen data.

e Multiple sparse grid classifiers were put together into a team or ensemble in Sec. 7.3.
The ensemble of classifiers achieved similar accuracies as an adaptive sparse grid
classifier but with a reduced runtime because regular sparse grids were sufficient.

e Two clustering methods based on sparse were introduced in Sections 10.1 and 10.2.
Both are non-convex clustering methods allowing arbitrary cluster shapes. In the
presented examples, we achieved excellent accuracies with our methods compared
to standard clustering approaches. To the author’s knowledge, these are the first
clustering methods based on sparse grids. This means that now all major tasks in
machine learning — classification, regression, clustering, density estimation, and
dimensionality reduction — can be performed with sparse grid methods.

e Finally, in Sections 11 and 12, post analysis model reduction approaches for the
analysis of car crash data and for the approximation of nonlinear functions were
introduced. Both are based on clustering methods to adapt the local reduced
models to specific system behaviors.

The possibilities for future research in the topics discussed in this thesis are manifold.
Maybe one of the first questions that might be posed is how to continue the model
reduction hierarchy after post analysis model reduction? It is evident that from a prior:
to post analysis methods the costs of the Offline phase have dramatically increased. It
is not clear if a further increase in Offline costs can be still compensated by even lower
Online costs. At least limitations in the scope of such methods are to be expected. Model
order reduction approaches that have not been covered here are multi-fidelity approaches
where low-, medium-, and high-fidelity models are combined. We also did not cover
models that are updated in the Online phase. We refer to, e.g., [137, 5, 30, 63, 183] for
more details on these approaches.

We summarize a couple of more concrete topics of future research. These include
a sparse grid multigrid method for elliptic PDEs with variable coefficients, i.e., with
coefficients that are functions and that do not have tensor product structure. This
has been an open problem in the context of sparse grids for a long time now, but no
satisfying answer has been found yet [150, 1]. Our multigrid approach based on the
ANOVA-like decomposition might be a starting point in that direction. Besides that,
it would be interesting to investigate to what extent the classification method based on
sparse grid density estimation with the Offline/Online splitting is capable to perform
Online learning, i.e., learning from data streams. We have only considered the density-
based method for classification. An extension to regression has already been presented
in [193]. However, thorough study has not been done yet. Finally, it has only been
demonstrated on toy examples so far (Burgers’ equation) that the localized discrete
empirical interpolation method (LDEIM) is well-suited for time-dependent problems
where the trajectories show a cyclic behavior in the state space. A real-world example
is required to confirm the advantages of (state-based) LDEIM compared to parameter-
based localization approaches.
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A. Data Sets

3S [148], three dimensions, three classes
Three-dimensional extension of the two moons data set. Three partial spheres are inter-
woven.

3Snoise [148], three dimensions, three classes
Similar to the 3S data set but it contains more noise.

Berkeley Segmentation Data set [133]
Contains 300 example pictures for image segmentation.

bupa [19], six dimensions, two classes
The data set describes liver disorders. A widely-used benchmark data set in data mining.

checkerboard [153], two or more dimensions, two classes
Data points generated with 3 x 3 checker board pattern in two dimensions. Straightfor-
ward generalizes to d dimensions possible.

codRNA [176], eight dimensions, two classes

Non-coding RNAs (ncRNA) are transcripts that have function without being translated
to protein. This data set is used to a train classifier for computational pre-screening of
RNAs.

fluid [89], five dimensions
Each data points corresponds to a solution of the Navier-Stokes equations for the driven
cavity example.

iris  [69], four dimensions, three classes
A famous benchmark data set for classification and clustering. It describes three species
of Iris flowers.

oil flow [27], 12 dimensions, two or three classes

A pipeline usually contains a mixture of oil, water, and gas. The data points reflect mea-
surements taken from a pipeline where the fractions of the three substances correspond
to three classes.

old faithful [28], two dimensions, two classes
Contains measurements of the eruption of the Old Faithful geyser.

olive [197], eight dimensions, three classes
Data points correspond to fatty acids of Italian olive oils coming from three different
regions of Italy.
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sergio [9], five dimensions
The data set is the result of measurements for uncertainty analysis of multidisciplinary
systems. Provided by Sergio Amaral.

shuttle [79], nine dimensions, two classes

The data points are the configurations of shuttles during start procedure. Note that this
is not the original shuttle data set as can be found in, e.g., the UCI Machine Learning
Repository. It is the modified version as described in [79].

svmguidel [110], four dimensions, two classes
Benchmark data set used for the libsvm library.

Swiss roll  [24], three dimensions
It contains the data points of a Swiss roll. It is used in dimensionality reduction to
embed the data points in a two-dimensional space.

two moons [74], two dimensions, two classes
A common benchmark data set containing two interwoven moons.

B. Software

ANN A library that contains data structures to compute approximated nearest neigh-
bors.
http://www.cs.umd.edu/ mount/ANN/

BOOST This C++ template library contains a rich collection of routines covering a
broad range of applications. We use the Boost Graph Library.
http://www.boost.org/

GSL The GNU Scientific Library provides routines for many numerical methods.
http://www.gnu.org/software/gsl/

libsvm A fast implementation of support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvin/

LS-DYNA Fraunhofer SCAI used this software to simulate the car crash tests.
http://www.lstc.com/products/ls-dyna

LS-PrePost Software to visualize and explore simulation data.
http://www.lstc.com/Ispp/
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MATLAB We use MATLAB and its toolboxes for a variety of tasks.
http://www.mathworks.com/

R The R programming language and the corresponding CRAN software repository is
popular in statistics.

http://r-project.org/

SGT™" The sparse grid library has been developed by Dirk Pfliiger [153]. It contains
sparse grid routines for data mining tasks (classification based on sparse grid regression)
and several numeric methods for solving PDEs.

http://wwwb.in.tum.de/SGpp

scikit-learn A Python library that implements many machine learning methods from
classification to clustering.
http://scikit-learn.org/
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