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Abstract. Archives are used in Multi-Objective Evolutionary Algorithms to es-
tablish elitism. Depending on the optimization problem, an unconstrained archive
may grow to an immense size. With the growing number of nondominated solu-
tions in the archive, testing a new solution for nondominance against this archive
becomes the main bottleneck during optimization. As a remedy to this problem,
we will propose a new data structure on the basis of Binary Decision Diagrams
(BDDs) that permits a nondominance test with a runtime that is independent from
the archive size. For this purpose, the region in the objective space weakly dom-
inated by the solutions in the archive is represented by a BDD. We will present
the algorithms for constructing the BDD as well as the nondominance test. More-
over, experimental results from using this symbolic data structure will show the
efficiency of our approach in test cases where many candidates have to be tested
but only few have to be added to the archive.

1 Introduction

Multi-Objective Evolutionary Algorithms [1, 2] using elitism to prevent nondominated
solutions from being deleted during generations can be proven to converge to the true
Pareto front [3]. Moreover, elitism increases the probability of creating better offspring
[1]. Hence, keeping nondominated solutions in an archive A is an important issue in
multi-objective optimization. In general there are two strategies for handling archives:
(1) using so called constrained archives requires a method for limiting the number
of nondominated solutions in the archive. (2) so called unconstrained archives, i.e.,
archives for storing an unlimited number of nondominated solutions, rely on efficient
data structures. Constrained archives are afflicted with the problem of shrinking the
Pareto front or oscillating between different approximations of the Pareto front [4]. On
the other hand, keeping an archive dominant-free has a large influence on the computa-
tional complexity of the optimization and, thus, narrowing the benefits from using huge
or even unconstrained archives.

As a remedy to this problem, several data structures have been proposed in the re-
cent years. Most of these data structures are tree-based [4–6]. Unfortunately, the worst
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2. RELATED WORK

case behavior of the nondominance test using these data structures is similar to the com-
plexity of using linear lists, i.e., a new solution, called candidate, has to be compared
with each solution already in the archive A resulting in |A| comparisons. In this paper,
we will present a novel data structure on the basis of Binary Decision Diagrams (BDDs)
[7]. Instead of explicitly storing all members in the archive, we encode the region in the
objective space weakly dominated by the nondominated solutions as a BDD. A new
solution can be tested for nondominance by traversing the BDD. This operation returns
a value true or false and is independent from the archive size, thus allowing a faster
nondominance test than any up to now reported archive data structure.

The rest of the paper is organized as follows: Section 2 discusses data structures
for archive representation and Section 3 will formally state the problem this paper is
dedicated to. In Section 4 our novel symbolic data structure based on BDDs together
with the most important algorithms will be presented. First experimental results from
comparing our symbolic representation with a linear list data structure will be discussed
in Section 5 before we conclude the paper in Section 6.

2 Related Work

While implementing an archive A as linear list requires in the worst case |A| tests to
check the nondominance of a candidate resulting in a complexity of O(|A| · m) in a
m-dimensional objective space, tree-like data structures showed improved runtimes: In
[6], Mostaghim and Teich proposed the use of so called quad trees (cf. [8]). A quad tree
is a tree-based data structure where each node has at most 2m successors where m is the
number of objectives. A new vector can be inserted in the quad tree if it is not dominated
by any node in the tree. Therefore, a nondominance test is done against the root. If it
is not dominated by the root it will be tested against all nodes in the k-th subtree of
the root. Here, k is the binary encoding of the ≥-relation of the vector’s components
to the root’s components. The dominance test is recursive, i.e., the new solution is next
tested against the root of the k-th subtree. If the k-th subtree does not exist the new
vector will be inserted. A more sophisticated algorithms is needed in order to keep the
data structure dominant-free, e.g., if the new solution dominates nodes already in the
quad tree. Mostaghim and Teich present experimental results from a comparison of
quad trees with linear lists. As a result quad trees outperform linear lists in case of large
populations and small archives.

In [5], Schütze proposed the use of a data structure based on m-ary trees, called
dominance decision trees, as well as algorithms to test for dominance and tree update.
Each node has at most m successors where again m is the number of objectives. For the
k-th successor of a given node the following properties hold: The first k − 1 objectives
fulfill the ≤-relation between the k-th successor and the node. The k-th objective of the
k-th successor is greater than the k-th objective of the given node. In [5], several ex-
perimental results from comparing dominance decision trees with quad trees and linear
lists are presented. In many cases, the dominance decision tree outperforms the linear
list and quad trees. Considering problem instances with more than three objectives, the
quad trees perform better.
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3. PROBLEM FORMULATION

Both data structures have some common disadvantages: The worst case computa-
tion time is similar to the case using linear lists, i.e., O(|A| ·m). This is due to the fact
that the depth of the trees depends on the order in which nondominated candidates are
added to the archive.

A combination of two new data structures, called dominated trees and nondomi-
nated trees, avoids the above mentioned problem and was proposed by Fieldsend et al.
[4]. Both data structures are based on the notion of so called composite points where
each composite point represents a set of so called constituent points with a maximum
cardinality m, where m is the number of objectives. Composite points can be con-
structed from a set of vectors by successively determining the maximum (minimum) for
each dimension (starting with the first objective) and removing the corresponding vector
(a constituent point) from the set. Having m objectives, a maximum of m constituent
points contribute to a composite point. Dominated trees allow an efficient nondomi-
nance check whereas nondominated trees permit an efficient computation of dominated
points. In the best case, the nondominance test using dominated trees can be done in
log2(|A|/m) comparisons between the candidate and the composite points with |A| be-
ing the cardinality of the archive. However, in general k additional tests with individual
solutions in the archive are required, leading to a complexity ofO(log2(|A|/m)+k m).
Hence, the computational complexity is still dependent on the archive size |A|. Before
we will present our approach for a nondominance test that is independent from the
archive size through representing the region in the objective space weakly dominated
by the solutions in the archive by binary decision diagrams, we first will start with a
formal introduction to the problem.

3 Problem Formulation

Given the following multi-objective optimization problem:1

min f : X ⊂ Rn → Rm (1)

The goal in multi-objective optimization is to find all Pareto-optimal solutions Xp ⊆ X
[9]. A solution x1 is said to be Pareto-optimal if it is not dominated by any solution
x2 ∈ X .

Definition 1 (Pareto dominance (cf. [10])). For any two solutions x1 and x2,

x2 � x1 (x2 dominates x1) if ∀i : fi(x2) ≤ fi(x1) ∧ ∃i : fi(x2) < fi(x1)
x2 � x1 (x2 weakly dominates x1) if ∀i : fi(x2) ≤ fi(x1)
x2 ∼ x1 (x2 is indifferent to x1) if ∀i : fi(x2) = fi(x1)
x2 ‖ x1 (x2 is incomparable to x1) if ∃i, j : fi(x2) > fi(x1) ∧ fj(x2) < fj(x1).

The so called Pareto-optimal front is given by Yp = f(Xp) = {y | y = f(x) ∧ x ∈
Xp}. Thus the goal in multi-objective optimization can also be stated as: Sort out the
nondominated objective vectors y ∈ Yp from a set of all objective vectors Y = f(X) =

1 Without loss of generality, we consider minimization problems in this paper.
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{y | y = f(x)∧x ∈ X}. X is called the decision space. Y is called the objective space.
In the following, we will limit our discussion to the objective space.

This so called nondominance problem can be divided into two classes (cf. [5]): The
static nondominance problem is to find the subset of nondominated solutions Yp in a
given set Y [11]. The dynamic nondominance problem arises during the archive update
in Multi-Objective Evolutionary Algorithms: Given a dominant-free archive A ⊆ Y
and a sequence of candidate solutions (y1, y2, . . . , yl). Each candidate solution in this
sequence has to be tested for nondominance against the solution in A. If a candidate
solution yi is not weakly dominated by any solution in the archive, yi has to be added
to A. In addition, if yi dominates solutions from the archive, these solutions have to be
removed from the archive keeping it dominant-free.

The most intuitive solution for the dynamic nondominance problem is using a linear
list as data structure. In that case, the computational complexity of testing whether a
candidate is weakly dominated is linear in the size of the archive, i.e., O(|A| · m).
Removing dominated solutions from A has the same complexity as well.

In the following, we will show how to use Binary Decision Diagrams (BDDs) as
data structure to represent the region in the objective space weakly dominated by the
solutions in the archive. However, by using BDDs we will not substitute the linear list
but rather give a support to it. A Binary Decision Diagram (BDD) is a data structure that
can be used to represent Boolean functions [7, 12]. By extending the linear list archive
with BDDs, the costs for adding a new candidate increase. On the other hand, the test if
a candidate is weakly dominated by a solution in the archive and whether it should be
added to the archive is independent from the archive size.

4 Using BDDs for a fast Nondominance Test

In addition to save the nondominated solutions y ∈ A in the linear, we encode the region
that is weakly dominated by these solutions in a single BDD. To test a candidate vector
for weak dominance, the binary encoding of its objective values is used to traverse this
BDD. This traversal returns true, i.e., the BDD is satisfied, if the candidate solution is
weakly dominated by at least one solution in the archive A. Otherwise, the traversal
returns false.

A BDD is a data structure to represent Boolean functions as rooted directed acyclic
graphs. Each node in the BDD has either exactly two or none successor. Nodes without
successors are called terminal nodes and are labeled true or false. All other nodes are
called decision nodes and are labeled with a binary variable x of the Boolean function.
One edge from the node to one of its successors is labeled 0, the other edge connecting
the second successor is labeled 1. This labeling corresponds to the assignment to x.
Hence, a path from the root of the BDD to a terminal node is an assignment to the
variables of the Boolean function. Moreover, the label of the terminal node determines
if the Boolean function is satisfied (true) or not satisfied (false) under the given variable
assignment. On each path from the root to one terminal node each variable appears at
most once. The corresponding BDD of the Boolean function (x0 ∧ x1 ∧ x2) ∨ (x0 ∧
x1) ∨ (x1 ∧ x2) is shown in Figure 1.

4



4. USING BDDS FOR A FAST NONDOMINANCE TEST

Fig. 1. A Binary Decision Diagram (BDD) of the Boolean function (x0 ∧x1 ∧x2)∨ (x0 ∧x1)∨
(x1 ∧ x2). A dotted (solid) edge corresponds the case where the decision variable is 0 (1). The
variable order is (x0, x1, x2).

To clarify the goal of our methodology we assume the example from Figure 2.
Given is a three-dimensional problem (x, y, z) in which the values are natural num-
bers in the range from 0 to 15. Therefore, for each dimension exactly four binary
variables are needed to encode a natural number, i.e., for the dimension x we have
x3, x2, x1, x0 where x3 is the most significant bit and x0 the least significant bit. For
the set A = {(15, 12, 4), (6, 12, 8), (2, 2, 14), (2, 5, 13)} of nondominated solutions
the BDD is given in Figure 2. To test if a candidate vector is weakly dominated by any
vector from A we have to use its binary representation to traverse the BDD. For in-
stance the binary representation of the candidate vector v = (8, 12, 8) is (x0 = 0, x1 =
0, x2 = 0, x3 = 1, y0 = 0, y1 = 0, y2 = 1, y3 = 1, z0 = 0, z1 = 0, z2 = 0, z3 = 1)
and by traversing the BDD with that assignment the result is true which means that v
is weakly dominated by some vector in A.

By using BDDs, it is mandatory that the objective values are encoded by a binary
representation. Although our methodology does not limit the objective values to be
natural numbers, we will assume that the objective space is given by Y ⊂ N0

m. Ad-
ditionally it is recommended that the upper and lower bounds for the values in each
dimension are known, such that the minimal number of variables can be used in the
BDD. With the known upper bound hii and lower bound loi for the values in each
dimension i ∈ {1, ...,m} the number of required binary variables is given by:

m∑
i=1

dlog2(hii − loi + 1)e (2)

Before each objective value is converted to its binary representation, it is normalized by
subtracting the corresponding lower bound. To decrease the number of required binary
variables even more, all objective values occurring in the i-th dimension are divided
by their greatest common divisor. An effect on the number of required binary variables
will only take place if the greatest common divisor is greater than 1.

Using the binary encoding of the objective values, we start to construct the Binary
Decision Diagram which encodes the region in the objective space weakly dominated
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4. USING BDDS FOR A FAST NONDOMINANCE TEST

Fig. 2. An example of the BDD that represents the weakly dominated space in a three-dimensional
(x, y, z) problem. The variable order is (x3, x0, x1, x2, y3, y2, y0, y1, z0, z1, z2, z3). A dotted
(solid) edge corresponds the case where the decision variable is 0 (1).
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4. USING BDDS FOR A FAST NONDOMINANCE TEST

Algorithm 1 The function bdd greater&equal constructs a BDD with the variables
vari[ki − 1], . . . , vari[0]. The BDD is satisfied, i.e., it returns true, if a binary encoded
objective value assigned to the variables vari[ki−1], . . . , vari[0] is greater than or equal
to the given constant value represented by a binary number ci = (ci[ki − 1], . . . , ci[0]).
Otherwise, it will return false. If vari = (vari[ki − 1], . . . , vari[0]) is a list of vari-
ables with the length ki, the first element vari[0] is the least significant bit and the last
element vari[ki − 1] is the most significant bit.
The algorithm operates from the least to the most significant bit. The if-condition de-
termines whether the k-th position of ci is 1 or 0. If the if-condition is true and ci[k] is
1, it is mandatory that the corresponding variable vari[k] is also 1 in order to fulfill the
greater or equal condition. Therefore, the variable is appended by a logical AND (∧). If
ci[k] is 0 a 1 for the corresponding variable vari[k] fulfills the greater or equal condition
albeit the variable assignment of the less significant bits. Therefore, the variable in the
else-branch is appended by a logical OR (∨).

bdd greater&equal(vari, ci)
{

bdd b = true;

for(k = 0; k < ki; k++){
if(ci[k] == 1) {

b = b ∧ vari[k];
} else {

b = b ∨ vari[k];
}

}

return b;
}

by the archive A. In the following, we assume that we use ki variables to encode the
i-th objective value. We start by introducing an algorithm that constructs a BDD with ki

binary variables vari[ki−1], . . . , vari[0]. This BDD returns true if the binary encoding
of the i-th objective value of a candidate solution is assigned to the variables vari and
the value is greater than or equal to a given constant value represented by the binary
number ci[ki − 1], . . . , ci[0]. Otherwise, it will return false. One can think of ci being
the i-th objective value of a solution stored in the archive. That means the BDD covers
the statement

2ki−1vari[ki − 1] + · · ·+ 20vari[0] ≥ 2ki−1ci[ki − 1] + · · ·+ 20ci[0].

The construction of this BDD is shown in Algorithm 1.
By Definition 1, a solution x1 is weakly dominated by a solution x2 if ∀i : fi(x2) ≤

fi(x1). For a given solution x2 it is possible to construct a BDD that returns true if a
candidate solution x1 is weakly dominated by x2. Otherwise, it will return false. As
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4. USING BDDS FOR A FAST NONDOMINANCE TEST

Algorithm 2 The function bdd weakdominated constructs a BDD that returns true if the
binary encodings of the objective values f(x1) of a candidate solution x1 are assigned
to var = (var0, . . . , varm−1) and x1 is weakly dominated by x2 with its objective
values f(x2) = c = (c0, . . . , cm−1). Otherwise, it will return false. m is the number of
objectives.
In particular, weak dominance is detected if the candidate vector is greater or equal to c
in all m dimensions. Therefore, the greater or equal condition has to be fulfilled in each
dimension. This is reached by appending the single dimension conditions with a logical
AND (∧).

bdd weakdominated(var, c)
{

bdd b = true;

for(i = 0; i < m; i++){
b = b ∧ bdd greater&equal(vari, ci);

}
return b;

}

we are only interested in improving the set of solutions in the archive A, dominated
and moreover weakly dominated candidate vectors can be disregarded. The binary en-
coding of f(x2) is given by c = (c0, . . . , cm−1) with m being the number of ob-
jectives and ci = (ci[ki − 1], . . . , ci[0]). The BDD is constructed with the variables
var = (var0, . . . , varm−1) which are the binary encodings of the m objective values
where vari = (vari[ki − 1], . . . , vari[0]). Following Definition 1, if all values fi(x1)
are greater than or equal to the objective values fi(x2) for each dimension x1 is weakly
dominated by x2. For this reason the BDDs constructed by the bdd greater&equal func-
tion from Algorithm 1 have to be connected by applying the logical AND operation.
This is shown in Algorithm 2.

Finally, we can construct a BDD that will validate if a candidate solution x1 is
weakly dominated by any solution in the archive A. This can be easily done by combin-
ing the BDDs constructed by Algorithm 2. For each solution in the archive A a BDD
is created by Algorithm 2 and connected by a logical OR (see Algorithm 3). If the re-
sulting BDD is interpreted as the entire region in the objective space that is weakly
dominated by the solutions in the archive, the OR operation is equivalent to a union
of the regions weakly dominated by each solution. Note that the weakly dominated re-
gion can only grow monotonously in the dynamic nondominance problem. Thus, we
do not need to remove any solutions from the BDD even if they are dominated by new
candidate solutions. This is illustrated in Figure 3.

With the ability to iteratively add new solutions to our BDD archive, it is possible to
test any candidate solution x1 if it is weakly dominated by any solution in the archive.
If the BDD is satisfied by the assignment the variables of the binary encoding of the
objective values f(x1), x1 is weakly dominated by at least one solution in the archive
A. Testing the satisfiability of a BDD is done by traversing it with the given variable
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f 2

f 1

(a)

v

f 2

f 1

(b)

w

Fig. 3. Objective space with two dimensions. The entire weakly dominated region is built by the
union of the regions weakly dominated by each solution vector in the archive. (a) A new candidate
solution v incomparable to any other solution in the archive is added. (b) A new candidate solution
w which dominates solutions in the archive is added. Note that the dominated solutions need not
be removed from the BDD.

assignment. As in BDDs each variable from the root to terminal node appears at most
once, the costs of this operation are linear related to the number of used variables. As
the number of used variables only depends on the number of objectives (m) and the
ranges of the objective values, this test has a computational complexity O(m) which
is independent from the number of solutions in the archive A. On the other hand, the
size of the BDD can grow exponentially in the worst case. But even if it does not, we
should expect that constructing the BDD or adding solutions to the BDD will be a time
consuming operation. Algorithm 3 shows the two main functions for the BDD archive,
i.e., adding and testing a candidate solution with its objective values represented by the
vector v = (v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]).

The BDD archive only encodes the region weakly dominated by the solutions in
the archive. There is no easy way to extract the solutions y ∈ A from the BDD. Thus,
it can not completely replace the data structure for storing the solutions. Hence, the
BDD gives support to the archive in determining whether a candidate solution should
be added or not, and this independently from the archive size. As adding solutions to
the BDD causes runtimes much greater than adding solution to a linear list, the rate
between added and denied candidates should be small.

In our experiments, we extended a linear list archive by our BDD data structure in
such a way, that for each candidate solution a test for weak dominance is carried out
with the BDD archive. If the candidate solution is weakly dominated, it is rejected. If
the candidate solution is incomparable to or dominates solutions in the archive, it has
to be added to the linear list as well as to the BDD archive. Furthermore, the dominated
solutions have to be removed from the linear list archive.

5 Experimental Results

In this section, we will present experimental results from using our BDD archive in
combination with a linear list archive. One of the key factors for the success of the
BDD archive implementation is the performance of the used BDD library. The chosen
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Algorithm 3 The main functions that are provided by the BDD archive. var is contain-
ing the lists of variables for each dimension. The region that is weakly dominated by
the archive A is encoded in the BDD b.
Adding a new nondominated vector equals a union on the weak dominated region.
Therefore, new weak dominated regions are added by applying a logical OR where
v = (v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]) corresponds the added candidate
vector.
By traversing the BDD with a binary representation of the candidate vector v =
(v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]) weak dominance is detected by a
resulting true. Otherwise, the traversal returns false.

var;
bdd b=false;

add(v){
b = b ∨ bdd weakdominated(var, v);

}

is weakdominated(v){
return b.traverse(v);

}

library for the tests is Buddy 2.4 [13]. In order to create appropriate test functions, we
use adapted versions of some DTLZ functions from [14] (compare Table 1).

First, we will analyze how the size of the archive affects the size of the BDD fo-
cusing on the dynamic variable reordering. The reorder algorithm we used is called
Sifting [15] and is activated each time the BDD size doubles. Figure 4 shows that dy-
namic variable reordering has a huge effect on the BDD archive. By using the reorder
algorithm the size of the BDD is halved, but it even has a bigger effect on the runtime.
The reordering algorithm itself is time consuming. It can be recognized in Figure 4 on
the right as a vertical characteristic. On the other hand, the runtime of the reordering
algorithm is just a fraction of the whole runtime. This is due to the minimization of the
BDD size. Thus, it is recommended to use dynamic variable reordering, which is also
used in all following test cases.

In the following all four test functions were used and an appropriate average was
calculated over 100 test runs. Figure 5 shows that the BDDs in our test cases are never
growing exponentially. The difference in BDD size and time consumption is insignif-
icant between the four test functions as they are all in the same order of magnitude.
With a growing archive the size of the BDDs shows in fact an increase that is similar
to the logarithmic function. Adding solutions to the archive seems to be a constant time
operation independent of the archive size if the curves are considered as linear.

In many cases an increasing number of variables in a BDD leads to a growth of the
BDD. In our test cases the number of variables increases if the range of one dimen-
sion increases or if the number of dimensions is increased. Therefore, we examined the
effect of additional bits for the encoding of the objective values. For this purpose, the
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Test Function 1 (TF1)
min f1(z) = 1

2
(1 + g(zm))z1z2 · · · zm−1

min f2(z) = 1
2
(1 + g(zm))z1z2 · · · (1− zm−1)

...
...

min fm−1(z) = 1
2
(1 + g(zm))z1(1− z2)

min fm(z) = 1
2
(1 + g(zm))(1− z1)

Test Function 2 (TF2)
min f1(z) = (1 + g(zm))cos(z1π/2) · · · cos(xm−2π/2)cos(xm−1π/2)
min f2(z) = (1 + g(zm))cos(z1π/2) · · · cos(xm−2π/2)sin(xm−1π/2)
min f3(z) = (1 + g(zm))cos(z1π/2) · · · sin(xm−2π/2)
...

...
min fm(z) = (1 + g(zm))sin(x1π/2)

Test Function 3 (TF3)
min f1(z) = (1 + g(zm))(1− cos(z1π/2) · · · cos(xm−2π/2)cos(xm−1π/2))
min f2(z) = (1 + g(zm))(1− cos(z1π/2) · · · cos(xm−2π/2)sin(xm−1π/2))
min f3(z) = (1 + g(zm))(1− cos(z1π/2) · · · sin(xm−2π/2))
...

...
min fm(z) = (1 + g(zm))(1− sin(x1π/2))

Test Function 4 (TF4)
min f1(z) = z1

min f2(z) = z2

...
...

min fm−1(z) = zm−1

min fm(z) = 2m−
Pm−1

i=1 [ fi(z)
1+g(zm)

(1 + sin(3πfi(z)))]/m

where z = (z1, · · · , zm) and 0 ≤ zi ≤ 1, i = 1, · · · , m
and g(zm) = zm · r

Table 1. The used test functions are based on the DTLZ test functions from [14]: Test function
1 (based on DTLZ1) converges to a linear front, test function 2 (based on DTLZ2) to a sphere,
test function 3 (based on DTLZ2) to an inverse sphere, and test function 4 (based on DTLZ7)
has a disconnected set of Pareto-optimal regions. With the random values z1, · · · , zm the func-
tions construct vectors in a m-dimensional space. By scaling the objectives fi(z) as needed and
rounding them to integers appropriate test cases are generated. The function g(zm) determines
the distance of the generated vectors to the Pareto-optimal front. It is scaled with the factor r.
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Fig. 4. Example with m = 3, r = 10−2 and 10 bit encoding per dimension. 10, 000 nondom-
inated solutions from TF1 were added iteratively to the BDD archive. The figures illustrate the
size of the BDD and the time consumption with and without dynamic variable reordering.
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Fig. 5. Example with m = 3, r = 10−2 and 10 bit encoding per dimension. 10, 000 nondom-
inated solutions from all test functions were added iteratively to the BDD archive. The figures
illustrate the size of the BDD and the time required to fill the archive. The vertical bars indicate
the standard deviation for 100 runs.

m bits per dimension TF1 time[s] TF2 time[s] TF3 time[s] TF4 time[s]
3 9 3.87 (0.02) 4.41 (0.04) 4.43 (0.04) 4.15 (0.03)

3 12 12.3 (0.98) 12.9 (0.54) 12.4 (0.23) 13.2 (0.43)

3 15 18.08 (1.69) 20.55 (1.13) 20.47 (0.83) 21.36 (0.70)

m bits per dimension TF1 size[nodes] TF2 size[nodes] TF3 size[nodes] TF4 size[nodes]
3 9 8875 (124) 10829 (88) 10729 (138) 7034 (58)

3 12 32646 (213) 35639 (143) 34765 (184) 30892 (299)

3 15 59167 (363) 62569 (301) 61479 (236) 58427 (224)

Table 2. Example with m = 3, r = 10−2, the number of bits per dimension is varied. The
number of variables in the BDD is increasing from 27 over 36 to 45. The time consumption and
BDD size are listed for adding 2, 500 nondominated solutions from all test functions to the BDD
archive. The small numbers indicate the standard deviation for 100 runs.
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5. EXPERIMENTAL RESULTS

test functions were analogous scaled. Table 2 shows the increases in size and time con-
sumption. In our testcases the growth of time consumption and BDD size were linear
in the number of variables of the BDD, if the number of dimensions is kept constant.

To test which effect will take place with a growing number of dimensions, test
cases with a constant number of BDD variables were created. Table 3 shows that an
increasing number of dimensions leads to additional runtime and an increased BDD
size. Therefore, a constant number of variable is not a guarantee for a constant time
consumption and BDD size. Hence, a growing number of dimensions leads to a worse
than linear growth of time consumption and BDD size.

m bits per dimension TF1 time[s] TF2 time[s] TF3 time[s] TF4 time[s]
2 18 7.9 (0.81) 7.7 (0.77) 7.5 (0.50) 5.7 (1.03)

3 12 12.3 (0.98) 12.9 (0.54) 12.4 (0.23) 13.2 (0.43)

4 9 23.6 (0.92) 25.1 (2.02) 17.5 (0.92) 21.7 (0.93)

m bits per dimension TF1 size[nodes] TF2 size[nodes] TF3 size[nodes] TF4 size[nodes]
2 18 15593 (576) 14861 (174) 14709 (98) 12535 (143)

3 12 32646 (213) 35639 (143) 34765 (184) 30892 (299)

4 9 64929 (761) 91755 (1456) 79888 (1468) 74875 (940)

Table 3. Example with r = 10−2, the number of dimensions m and the the number of bits per
dimension was scaled so that the number of variables in the BDD is constantly 36. The time
consumption and BDD size are listed for adding 2, 500 nondominated solutions from all test
functions to the BDD archive. The small numbers indicate the standard deviation for 100 runs.

In the next test, we compared the performance of a simple linear list archive with a
linear list archive extended by our BDD archive. As all test functions had similar traits
for the BDD archive, all following test cases are based on TF1. The test is separated
in adding nondominated solutions to an empty archive and testing random candidate
solutions for weak dominance with the filled archive. Although it is known that the
added solutions are nondominated, a test for weak dominance is needed before they
can be added to the linear list archive. In Figure 6 this is illustrated in comparison to
the archive size. As expected, Figure 6 shows that filling the archive is much slower
in the case when using the BDD archive extension. However, using the BDD archive
extension, also the check for weak dominance turned out to be a constant time operation
for our test case, i.e., it is in fact independent of the archive size.

Finally, we created a dynamic nondominance problem with TF1. The used number
of dimensions is three while 10 bits for each dimension are used to encode the binary
values. With the factor r, the quality of the adopted optimization algorithm is biased.
One million candidate solutions are created and iteratively added to both variants of the
archive. Figure 7 shows the result. In both cases the BDD extended linear list archive
turns out to be the better solution for the chosen test cases on long term run. The reason
is that the archive is getting fuller and the weak dominance test is getting more expen-
sive if the simple linear list archive is used. On the other hand, the number of added
solutions to the archive decreases. In the case that r is 10−1 the archive grows slower
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Fig. 6. Example with m = 3, r = 10−2 and 10 bit encoding per dimension. The used test
function is TF1. The archive size is varied. The left figure illustrates the time consumption for
filling the archive, the right figure illustrates the time consumption for testing 100, 000 candidate
solutions for weak dominance. The used archives are a simple linear list archive and a linear list
archive extended by our BDD archive.

compared to the value r = 10−2 and the gain of the BDD extended archive is not so
clear. But with a growing number of candidate solutions it should get more distinct.

6 Conclusions

In this paper, we have shown that extending an archive by a BDD representation of the
region weakly dominated by the solutions in the archive can improve the runtime behav-
ior in the dynamic nondominance problem as it occurs in Multi-Objective Evolutionary
Algorithms using archives to establish elitism. Using our symbolic representation, the
nondominance test of a candidate is independent from the size of the archive. On the
other hand, adding new candidates to the archive is more costly, than using other data
structures. Our experimental results have shown that using our proposed nondominance
test in case of many candidate tests but only few archive updates clearly outperforms an
archive based on a linear list.

In future work, we will combine our symbolic data structure with quad trees [6]
and dominance decision trees [5] and integrate it in a Multi-Objective Evolutionary
Algorithm.
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