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Abstract

Vision based recognition systems learn the appearance of given objects using images.
These objects can be recognised and localised in other images after camera motion and
illumination changes. The goal of this work is to improve the ability of such systems
to recognise objects after illumination changes. Recognition systems usually reduce the
amount of image data used for recognition by detecting interest points: small character-
istic image patches. Most interest point detectors are sensitive to illumination changes.
[llumination invariant interest point detection would increase the proportion of points
which are redetected after illumination changes and it would decrease the proportion of
false points. It would hence improve the performance of recognition systems.

Several new interest point detectors with higher stability under illumination changes are
developed in this work. They are based on the Harris detector, which is often used because
of its stability under viewpoint changes. Four new detectors are developed for grey value
images. They all adapt detection to the local lighting intensity using different principles:
local normalisation, homomorphic processing, local threshold adaptation and local clus-
tering. Two new detectors are developed for colour images. The first one adapts detection
to local lighting intensity and colour with homomorphic processing. The second detector
is based on an invariant colour space. It fully eliminates light intensity influence and it
locally compensates light colour. In addition, an appropriate demosaicing method and a
preprocessing based on the Nagao filter are presented, in order to reduce the influence of
noise and colour artifacts on the colour detectors.

Detection stability is evaluated for all new detectors and for the existing Harris detector
on image series acquired under varying illumination. The new detectors are more stable
than the Harris detector for scenes with complex 3D geometry, for non—uniform lighting
and for complex illumination changes such as light source movement. The best results are
obtained with the homomorphic detectors and, if the scene has good colour edges, with the
detector based on the invariant colour space. A robust state of the art recognition system
is also developed and used to evaluate the detectors in a practical application. Systems
using colour information perform better than systems based on grey values. For grey value
images, the new homomorphic detector improves recognition performances for complex
objects or it increases the system efficiency, depending on the chosen thresholding method.
For colour systems, the new detectors achieve higher performance improvements than for
grey value systems. The detector based on the invariant colour space achieves the best
recognition performances if the object contains good colour edges. The homomorphic
colour detector also performs very well and is suitable for all kinds of objects. The
developed algorithms improve hence detection stability and recognition performances.

x1
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1 Introduction

[Mumination has a strong influence on images. As a consequence, images of the same scene
under different illuminations can be very dissimilar, especially when the scene is non—
uniformly lighted. Illumination changes are compensated naturally by eyes and neurons
in humans and animals, but they are not easy to handle with camera and computer for
machine vision applications. This sensitivity to illumination changes makes the use of
machine vision difficult in normal, everyday environments.

[llumination variations are natural and occur frequently. For example, intensity and
wavelength composition of sunlight vary with weather and with time of day. Due to earth
rotation, sunlight direction also changes during the day. Rooms generally have more than
one light source: several lamps, windows and doors. As a consequence, lighting also varies
for indoor applications. Last, changes of the camera parameters like aperture, shutter time
and white balance influence images in a similar way to illumination changes, because
camera parameters are optimised to counterbalance part of the illumination influence. In
short, lighting cannot be controlled in normal environments. Therefore vision applications
must deal with illumination changes.

Many machine vision applications are based on detecting interest points in the current
image and matching those to a model. The aim of this work is to increase the robustness
of such applications under illumination changes. Among the various applications using
interest points, recognition tasks are the special focus of this work. To achieve higher
robustness to illumination changes, new interest point detectors allowing a better rede-
tection of the interest points after a variation of the illumination conditions are developed
and evaluated. After a more detailed description of the motivation, a summary of the
contributions as well as the outline of this thesis are presented.

1.1 Motivation

This work is focused on an important topic in machine vision: recognition tasks. These
find applications in different domains such as for example robotics, human—machine in-
terface, augmented and virtual reality. Most current recognition methods are based on
detecting and matching interest points. Interest points are also used in many other
machine vision applications, for example: tracking, content—based image retrieval, reg-
istration, 3D-reconstruction and wide baseline stereo. This work is of interest for these
applications as well although illumination invariance generally plays a less essential role
for these than for recognition tasks.
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Figure 1.1: Overview of a general object recognition system

Interest points are small characteristic image patches that contain more scene information
than other patches. For example, interest points can be corners, dark blobs on a bright
background, edge parts with a local curvature maximum. Figure 1.1 shows the overview of
a general recognition system using interest points. After detection, the interest points are
characterised with descriptors. They are stored together with the descriptors in a database
(or model) during the learning phase. During the recognition phase, they are matched to
the interest points which are stored in the database by comparing the descriptors. The
matches are then used for recognition and localisation. The first three steps (interest
point detection, characterisation, and matching) are necessary for all applications based
on interest points. Interest point detection reduces the amount of processed data and
consequently the computational costs: typically, 50 to 1000 interest points are processed
instead of 640 x 480 = 307200 pixels. Interest points are local features, i.e. they depend
only on a small image part. This has some advantages compared to features computed on
large image patches or the whole image such as edges or histograms. For example, changes
of the observed scene, occlusions and non—uniform lighting can be handled more easily.
They result in the loss of some interest points, which can be easily dealt with by robust
recognition algorithms, such as the generalised Hough transform described in [Hou62,
Bal81] or RANSAC described in [FB81]. Features depending on large image patches
must be recognised with partial information, which is more difficult (see for example
[Das02]). Interest points correspond to local scene features, so that scene geometry can
be used as additional cue for recognition and localisation. These advantages result in a
wide use of interest points in current machine vision applications.

A stable interest point detection is important because interest points and their descriptors
are the only image information used for matching and recognition: ideally the same points
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with the same descriptors should be detected in both learning and recognition phases. In
practise, enough points must be redetected and matched for a reliable application. Robust
recognition methods allow to deal with false and missing matches. They are nevertheless
more efficient and more accurate with fewer misdetections. Misdetections can be caused
among others by: noise, illumination changes, changes of camera parameters, limited
changes in viewpoint (due to a movement of the camera or of the object), limited changes
in the scene due to occlusions. The stability of existing interest point detectors under
viewpoint changes, noise and simple changes of the camera parameters has been investi-
gated and improved for example in [SMB00, MTS*05]. This thesis deals with stability
under illumination changes. This is important for recognition tasks because learning and
recognition phases take place at different time instants. Therefore, illumination variations
are very likely to happen, due to a change or a movement of the light source or to a change
of the camera parameters.

Many interest point detectors have been developed using various principles, however al-
most all are sensitive to local image contrast (see subsection 2.2.1). Therefore detection
is sensitive to illumination changes. To overcome this sensitivity, as many interest points
as possible are usually detected to ensure a minimum number of correct interest points.
The use of illumination invariant descriptors helps reducing the number of false matches.
When a minimum number of correct matches are found, the right solution can be ob-
tained with robust recognition algorithms. A more stable interest point detection would
reduce the number of false interest points, hence reducing the complexity of matching
and of recognition. In addition, recognition accuracy would increase because matching
and recognition algorithms are faster and more accurate when the number of false inter-
est points and of false matches decreases. There are many different methods to extract
illumination invariant image features but surprisingly few illumination invariant interest
point detectors. Therefore, in this thesis, principles used to extract illumination invariant
features are adapted and applied to interest point detection. The stability of the new
interest point detectors is evaluated on images series showing scenes under different il-
luminations. The new detectors are also evaluated in a practical object recognition and
localisation application in chapter 5. The aim and the contributions of this work are
summarised in the next section.

1.2 Main contributions

To improve the ability of machine vision applications to deal with illumination changes,
several new illumination invariant interest point detectors are developed and evaluated.
These new detectors should be as robust to noise and to viewpoint changes as the existing
detectors. They should be stable when the type, intensity, position, orientation and
number of the light sources change. They should not require any user interaction such as
manual white balancing. They should only use a single image for illumination invariant
interest point detection: no additional optical filter, no special hardware and no analysis
of image sequences should be used.
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To achieve these goals, an existing interest point detector is enhanced: the Harris detector.
This algorithm is popular because of its good stability under viewpoint changes. The
influence of illumination on the Harris detector is first modelled. This is then used to
design the new illumination invariant detectors.

Four new detectors are developed for grey value images. They all adapt detection to the
local lighting intensity. Hence, non uniform lighting and unsharp shadow and shading
effects can be better handled. All detectors are based on different principles: local nor-
malisation, homomorphic processing, threshold adaptation and threshold selection using
clustering. For all detectors, an implementation which is robust to noise is proposed.

Two new detectors are developed for colour images. In comparison to the grey value
detectors, they are slower but they can compensate illumination influence more accurately.
The first detector compensates local illumination intensity and colour with homomorphic
processing. The second detector is based on an invariant colour space. It fully eliminates
all intensity, shadow and shading effects and it locally compensates light colour. To reduce
the noise influence on the detectors, a robust implementation, special preprocessing and
special demosaicing are presented.

The stability of the new detectors and of the current Harris detectors are evaluated and
compared to each others on real image sequences acquired under illumination changes.
The type, number, position and orientation of the light sources are varied. Several scenes
are used, with different 3D geometry properties and different reflectance properties. Last,
a state of the art object recognition and localisation application is developed and used
to evaluate the influence of interest point detection in a real application. The system
performances are evaluated for different objects, different viewpoints and different illu-
minations. These thorough evaluations show that more interest points are redetected
and less false interest points are detected with the new detectors and that this improves
recognition and localisation results for scenes with complex 3D geometry and for complex
illumination changes.

1.3 Outline of the thesis

Chapter 2 begins with the description of the image formation models for grey value and for
colour images. These are used to describe illumination influence in the rest of this work.
An overview of the existing detectors is then given and the Harris detector is presented
in more detail. Finally, related work is presented: illumination invariant algorithms for
interest point detection and for other machine vision tasks.

In chapter 3, the illumination influence on the Harris detector is derived and the instability
of this detector under illumination changes is illustrated. All four new detectors for grey
value images are then described. A method is presented, which discards false interest
points caused by saturation in the images. Finally, the stability of the interest point
detectors under illumination changes is evaluated using image sequences acquired under
varying illumination.
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Chapter 4 deals with interest point detection using colour images. The illumination in-
fluence on colour derivatives and on the colour Harris detector are shown. The robust
invariant Harris detector is then presented in more details: it is the only existing illu-
mination invariant version of the Harris detector. Next, the two illumination invariant
detectors developed in this work for colour images are described. To reduce the influence
of colour artifacts and of noise on detection, an appropriate demosaicing method and a
preprocessing algorithm are proposed. Finally, the stability of the colour detectors are
compared to each others and to the best grey value detector with the same evaluation
framework as in chapter 3.

Chapter 5 presents the developed recognition and localisation system. All system blocks
are explained in details: stereo reconstruction, characterisation of interest points with
descriptors, matching between current interest points and database, and the recognition
and localisation algorithm. State of the art and robust methods are used for all system
blocks. Last, the influence of interest point detection on the recognition and localisation
performances is evaluated. For this, a database of 10 objects and many test images
involving illumination and viewpoint changes are used.

Chapter 6 closes the thesis with a summary of the achieved work and suggestions for
further research.



2 State of the art and related work

This chapter gives an overview of the related work. First, the image formation model is
presented and used to derive the illumination influence on grey value and on colour images
in section 2.1. The overview of the existing interest point detectors in subsection 2.2.1
shows that most detectors are sensitive to image contrast, hence motivating this work.
The Harris detector and its extension for colour images are then explained in details in
subsections 2.2.2 and 2.2.3 as the detectors developed in this thesis are based on them.
Finally, an overview of the state of the art methods for dealing with illumination changes
in machine vision is given in subsection 2.3.1 for grey value images and in subsection 2.3.2
for colour images. This chapter is summarised in section 2.4.

2.1 Image formation model

The illumination influence on images is derived from the dichromatic image formation
model described in [Sha85]. The measured pixel values depend on the spectrum and
direction of the incident light, on the spectral and geometrical properties of the scene and
on the viewing angle and the spectral sensitivity of the camera, as illustrated in fig. 2.1.
This is described by the following formula:

I = my(n,e) /A FINeMN) (M)A + ma(n, e, v) /A FNeMNes(VdA for j = R, G, B.

(2.1)
CT C% and CP are the red, green and blue values of the considered pixel. A denotes the
wavelength. The first term of the sum models body (or Lambertian) reflection, while the
second term models surface (or specular) reflection. my(n,e) and m,(n, e, v) express the
geometric dependencies of both terms as a function of the light direction e, of the surface
normal n at the considered scene point and of the viewing direction v. f/(\) (j = R, G, B)
models the spectral sensitivities of the camera channels. e()) is the spectrum of the
incident light. ¢,(A) and c¢s(\) are the surface albedo and the Fresnel reflectance, which
model the spectral scene properties. ¢s(A) is usually considered to have a constant value ¢
for all wavelengths: this is called the neutral interface reflection (NIR) model in [LBS90].
This means that specular reflections have the same colour as the incident light. For
monochrome cameras, the same formula is used with a single intensity channel 1. As
explained for example in [Tec01], fZ()\) is in general a much broader filter than ff(\),
f¢(A\) and fB(N). In this work, grey value images are acquired using the Y channel of a
colour camera. It can be easily shown that the resulting sensitivity f/(\) = f¥(\) is a

weighted sum of the f7(\): here f1(\) = 0.3f%(\) +0.59f%(\) + 0.11fB(\) (see [Tec01]).
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Figure 2.1: The different elements of the image formation model.

Although all elements in eq. (2.1) may vary from one pixel to another, some assumptions
can be made concerning their spatial variations. The camera sensitivities f7(\) can be
assumed to remain constant for all pixels. The geometric and the reflection terms my,
ms, ¢, and ¢s may vary abruptly from one pixel to another (high spatial frequencies) as
a consequence of the 3D geometry and texture of the scene. On the contrary, the illumi-
nation spectrum e(A) is usually assumed to vary slowly, which means it stays constant
in small image neighbourhoods. This assumption is necessary to enable the distinction
between illumination influence and texture in the scene. It is true if a single light source
illuminates the scene and if shadows are considered to change only light intensity. In that
case e(\) can be written as e e(\) where e is the light intensity and é(\) is the normalised
spectrum (with norm equal to 1). Shadows are modelled by allowing illumination inten-
sity e to vary abruptly between pixels. The influences of shadows (e) and of shading (m;)
or specularities (m;) are similar and can be grouped into light intensity factors i, = e m,
and is = emg. €(\) can be assumed to stay constant in the whole image in the case
of a single light source. However, this does not model accurately inter—reflections in the
scene and scenes lighted by several light sources. More accurate models are presented for
example in [Ris01] or in [FHDO02]: shadows are lighted by ambient light which results from
inter-reflections, hence they may have a different colour from direct light. As explained
in [XEO1], ambient light has the same spectrum as direct light only when the chromatic
average of the scene reflectances is nearly grey (similar for all wavelengths), otherwise
shadows are “coloured”. Coloured shadows are not taken into account in this work be-
cause they only occur rarely in indoor images. To reduce the approximation error caused
by coloured shadows or by multiple light sources, small neighbourhoods should be used
during image processing: this allows the model to tolerate more spatial variations of the
illumination spectrum.

Changes of the camera parameters can be modelled like illumination changes as they affect
images similarly. Aperture and shutter time influence light intensity and white balancing
affect light colour. Their influence is identical for all pixels (no spatial variations).



2 State of the art and related work

The dichromatic image formation model is used to model illumination influence on colour
and on grey value images. A further approximation is necessary to handle illumina-
tion colour changes (changes of the illumination spectrum) more easily. The colour filters
f7(\) are assumed to be narrow band filters, so that they can be modelled by Dirac deltas:
I\ = fA(V)d(A— V) for j = R, G, B. If the camera filters are not narrow—band filters,
spectral sharpening can be applied as described in [FDF94]: a linear transformation is es-
timated that results into new colour channels for which the narrow—band filter assumption
is fulfilled. Using this approximation and the NIR assumption, eq. (2.1) becomes:

C7 = emy(n, e) fF(N)e(N)ey(N) + emy(n, e, v)e, ff(N)e(V) forj=R G B. (22)

The influence of light intensity and spectrum are separated with: e(\) = ee()), where e
and e(\) are illumination intensity and normalised illumination spectrum. This equation
can be reformulated as:

9 =i Lid +i,I7 for j = R,G, B, (2.3)
where i, = emy(n, e), i, = ecomy(n,e,v), L7 = fi(M)e(N) and ¢, = ¢;(N). i, models
shadows and shading. 7, models shadows and specularities. 7, and 7, also model changes
of the shutter time or aperture of the camera. They may vary abruptly between pixels and
are identical for all channels. L’ models illumination colour as well as white balancing and
is assumed to stay constant in small image neighbourhoods. cg models scene texture and
can vary freely. For two images of the same scene under different illuminations, 7, and
change for example when the light source moves, and L’ changes if the illumination colour
changes. If the scene is assumed Lambertian, the second term of the sum disappears. This
yields:

C7 =iyL’¢) for j=R,G,B. (2.4)

ip, L7 and ¢ have the same properties as for eq. (2.3). This model is often named the
diagonal model, because the illumination influence is modelled by a diagonal matrix if
colour values are written as vectors:

CE WLl 0 0 el
ce | = 0 L% 0 & . (2.5)
CB 0 0 4LP cB

If specularities are considered as in eq. (2.3), the model is named diagonal with translation.

When grey value images are used, this model is applied to the grey value channel I, with
L' = L and ¢! = ¢,. The distinction between a light intensity change (parameters 7, and
is) and a light colour change (parameter L/ = L) disappears because the image has only
a single channel. Equation (2.3) can be simplified to:

I = ayey + ag, (2.6)

where a;, = i, and ay = i,L. ¢, models the scene texture and can vary freely from one
pixel to another. a;, and a; model the illumination factors and the camera parameters for
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body and surface reflections. Both parameters must be assumed to vary slowly from one
pixel to another otherwise no distinction between light and texture influence would be
possible. This is a coarse approximation of reality which is necessary because little infor-
mation is available. As a consequence, specular highlights, shadows and shading effects
are not modelled accurately (their influence may vary freely in real images). Furthermore,
changes of illumination colour cannot be handled correctly, because the intensity channel
cannot be modelled properly as narrow—band filter. Therefore, eq. (2.6) is not accurate in
neighbourhoods containing several colours. Any illumination change is modelled simply
by a variation of both illumination factors a, and as. Like for colour images, the second
term of the sum disappears for Lambertian scenes:

I = apCp. (27)

ap has the same properties as in eq. (2.6).

In the case illumination colour does not change or white balancing is used to counter-
balance such a change, a model similar to eq. (2.3) can be derived from the dichromatic
reflection model (eq. (2.1)) without using the narrow—band colour filter approximation.
The details of this derivation are not given here because illumination colour changes are
allowed in this work and no white balancing is applied (see subsection 2.3.2 for expla-
nations). The reader should refer to [GS99] for more details. The model is given as a
comparison to the used model (eq. (2.3)):

C? =iy +i,8 for j=R,G,B, (2.8)

with o/ = [, f/(A)e(N)e(A)dX and 8 = [, f/(A)e(A)dX. Only 4, and i, are allowed to
change when the illuminant changes. All elements of the equation vary freely from one
pixel to another. The illuminant is assumed to be white (same energy in all wavelengths)
as a result of white balancing. In comparison to eq. (2.3), the light colour term (L7)
disappears and the narrow—band filter assumption is not used.

When the colour filters cannot be modelled as narrow—band filters and when light colour
varies, a full affine transformation can be used to model illumination influence as ex-
plained in [HS97, SH97]. For this, the scene reflectance is approximated with several
basis reflectance functions S;(A). In most cases three functions are enough: ¢,(x,y, ) =

2321 o;(z,y)S;(N). Using eq. (2.1) for a Lambertian surface yields:

CR g1
CG =A 02 s (29)
CB 03

with Ay, = [ mpe(N)f¥(X)S;(A\)dA. The affine transformation modelled by matrix A
models the whole illumination influence and is assumed to stay constant in small image
neighbourhoods. Shadows are therefore not modelled accurately. Shading is only modelled
correctly for scenes with smooth underlying 3D surface. In comparison to the used model
(see eq. (2.5)), the non—diagonal terms are not zero to model the correlation between the
image channels. To consider specularities, a translation can be added as in [MMGO02]. The
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diagonal model and the full affine model have been compared in [GMD*97, MMGO02]. In
[GMD™97], the diagonal model is found to be the best compromise between complexity
and modelling accuracy on small neighbourhoods. In [MMGO02], the full affine model
is found to be necessary for modelling large flat outdoors scenes. For indoor scenes, the
diagonal model is found sufficient in [MMGO02]. Therefore, the diagonal model of egs. (2.3)
and (2.4) is used in this work.

2.2 Interest point detection

After an overview of the existing interest point detectors in subsection 2.2.1, the Harris
detectors for grey value images and for colour images are presented in more details in
subsections 2.2.2 and 2.2.3 as this work is based on them.

2.2.1 State of the art

As pointed out in chapter 1, interest points are used in many machine vision applications
like object recognition, mobile robot localisation, 3D-reconstruction, tracking, content—
based image retrieval... As a consequence, numerous interest point detectors were designed
based on various principles and on various definitions. An exhaustive overview of the
existing algorithms would go beyond the scope of this section, so a short overview of the
different types of interest point detectors is given.

A first detector group is based on the first order image derivatives. In [MS98] and [LE04],
an edge map is computed in a first step. Junctions and corners are then found in the edge
map using local curvature in [MS98] or a geometric wedge—based junction description in
[LEO4]. In [LZ03], a fast method for detecting interest points by means of symmetries in
the gradient is presented. A general definition of interest point is used in [LZ03], hence
not only corners and junctions are detected, but also blobs and more general textured
neighbourhoods. In the Harris detector in [HS88], a “cornerness” function is computed
using the first order derivatives to select image neighbourhoods with enough gradient
in two perpendicular directions. Like in [LZ03], a general definition of interest point is
used. The Harris detector is a widely used interest point detector. Its stability under
viewpoint changes is improved in [SMBO00]. It is also extended to process colour images in
[Gou00] and to become invariant to scale changes in [Bau00, Duf01, MS04] or to general
viewpoint changes in [MS04]. In [vdWO05], the principle is used to design illumination
invariant interest point detectors for colour images (see subsection 2.3.2 for more detail).

Another group of algorithms uses second order image derivatives to detect blobs. This
interest point definition is well suited to achieve scale invariance. In [Lin98|, blobs are
detected in scale-space using the Laplacian operator or the determinant of the Hessian
matrix. This Hessian detector is extended in [MTS*05] to achieve affine invariance. In
[Low04], the Laplacian operator is replaced by a difference of Gaussians operator, as it
leads to a faster implementation. Another scale-invariant detector based on both first and

10
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second order derivatives is presented in [Lin98] to detect junctions using the curvature of
level curves in areas with sufficient gradient.

Another group of methods uses directly the pixel values. In [SB97], [KBO1] and [RT01],
the detection is based on the local pixel value distribution. In [SB97], the number of pixels
having a similar grey value to the centre pixel are counted. The neighbourhoods where
this number is minimised are selected as interest points. In [KB01], the local entropy
is estimated to select complex, hence characteristic image neighbourhoods. For both
methods, a general definition of interest point is used. The method in [KB01] is also scale
invariant. In [RT01], colour distributions are used to detect corners and junctions based
on a geometric wedge—based description. In [Tuy00] and [MCUPO02], image regions with
similar grey values and a high contrast to the other pixels (the background) are detected.
In [Tuy00], local grey value extrema are chosen to initialise regions. These regions are
grown until the contrast between region and background is maximum. In [MCUPO02], an
algorithm similar to watershed is used to generate all regions resulting from binarisation
with all possible thresholds. The maximally stable regions (the regions with the highest
contrast to the background) are selected.

Last, several detectors are based on special image processing techniques. In [STL103],
an interest point detector using wavelet decomposition is described. A mathematical
morphology algorithm for corner detection is presented in [Lag98]. Neuronal modelling of
cortical cells is used to design an interest point detector in [WL97]. Interest points can also
be detected through saliency mechanisms inspired by the human visual system: several
multi-scale cues (for example intensity contrast, edges, cornerness, motion, symmetries,
colour contrast) are merged in a saliency map and interest points are detected using
centre-surround operators in [LM99, TT04]. In [Kov03], the phase of the different Fourier
components is used to detect corners.

The responses of all methods using first or second order derivatives are sensitive to local
image contrast and hence to illumination changes (see section 2.1). The only exception is
the method in [LZ03] because symmetries can be detected using only gradient orientation.
The authors advise however to take gradient magnitude into account too, to reduce noise
sensitivity. Some of the detectors, for example in [HS88, Lin98, Low04], are based on
local extrema of the detector response. These are stable under illumination changes.
Nevertheless, a threshold must be applied to reduce noise sensitivity. This thresholding
step is sensitive to illumination changes. For the detectors based directly on the pixel
values, the methods in [Tuy00] and [MCUPO02] are robust to illumination changes as
they detect all local extrema: the region size is used as a detection criterion to reduce
noise sensitivity. In [RT01], robustness to contrast changes is achieved by using a non—
linear distances in the CIELAB colour space. Yet it is not completely invariant to
illumination changes and it is also very computation intensive. The last method invariant
to illumination changes is presented in [Kov03]: it considers only phase information.
Nonetheless, its high computing time limits its usability.

As a conclusion, all existing interest point detectors except the methods in [Tuy00] and
[MCUPO02] are either sensitive to image contrast or too computation intensive for a wide

11
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use. Both methods in [Tuy00] and [MCUPO02| detect free form homogeneous regions with
a high contrast to the background. They are sensitive to blur, as shown in [MTS*05].
Hence, the goal of this work is to design an illumination invariant algorithm which also
detects a different kind of interest points such as corners and junctions. As mentioned
in [MTST05], complementary interest point detectors based on different definitions and
principles are useful to adapt to the specific application and to the associated image type.

Instead of designing a new illumination invariant detector, an existing detector can be
improved by applying it on illumination invariant information like in [vdW05]. The Harris
detector is chosen as basis for this work. It is complementary to the detectors in [Tuy00]
and [MCUPO02] because it detects corners, junctions, blobs and general form interest
points using gradient information. Scale and affine invariant versions are presented in
[Bau00, Duf01, MS04] and a version for colour images is given in [Gou00]. It is shown in
[SMBO00, VLO1, Lil03, MTS*05] to be more stable than many other interest point detectors
under viewpoint and illumination changes, blur and camera noise. The detected interest
points can be optimally retrieved after a limited camera motion, as proved in [ST94].
They are also shown to possess high information content in [SMBO00] and high saliency in
[HLS02]. As a consequence, the Harris detector is widely used in various applications such
as navigation in [Duf01], mobile robot localisation in [DM02, KSOKO00], content-based
image retrieval in [SM97], object and face recognition in [CJ02, OI96, WBO01], tracking
in [ST94], extrinsic camera calibration in [ZDFL95], wide baseline stereo in [Bau00], 3D
reconstruction in [VLO1], structure from motion in [MBO1]... The Harris detector is hence
a good basis for developing an illumination invariant interest point detector.

In the next subsections, the Harris detector and its extension to process colour images
are explained in details and the implementation used in this work is described.

2.2.2 The Harris detector

The Harris detector? is based on a general definition of interest points introduced by
Moravec in [Mor79]: interest points are image neighbourhoods in which texture changes

significantly in all directions. Texture changes are measured with the sum of squared
differences (SSD):

SSD(x,y,00,6,) = > [(u,0) = I(u+ 6s,v + )], (2.10)
(u,0)EW (z,y)

(x,y) is the current pixel. (d,,d,) is the displacement vector. I(u,v) is the grey value
of pixel (u,v). W(x,y) is the neighbourhood centred around (z,y). Interest points are
neighbourhoods for which this measure is high enough for all displacement vectors.

Harris shows in [HS88] how these interest points can be detected with a matrix repre-
senting the local statistics of the image derivatives. It is faster because the SSD must not
be computed for several displacement vectors. The improvement proposed in [SMBO0O]

D It is also named sometimes the Plessey detector.
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is used in this work, as it yields more stability under viewpoint changes. The matrix is
defined for each pixel as:

2
M = Gow) @ { (f}y {f;ﬁ } | (2.11)
G(opr) is a Gaussian with standard deviation o, and ® is the convolution operator. The
first derivatives I, and I, are estimated by convolving the grey value image / with the
derivatives of a Gaussian with standard deviation 4.4, to reduce noise and aliasing effects:
I, = Gy(Oderiv) ® I and I, = Gy(0deriv) @ 1. Tgeriv adjusts the amount of noise reduction
during derivative estimation. In this work, cge.;, = 1.2. If M has two small eigenvalues,
texture does not change in any direction: the image neighbourhood is homogeneous. If
M has one small and one high eigenvalue, texture changes only in one direction: the
neighbourhood is located near an edge. If M has two high eigenvalues, texture changes
significantly in two perpendicular directions: the neighbourhood is eligible as interest
point. o), parametrises the neighbourhood size. In this work, o, is set to 3.0, which
corresponds to a circular neighbourhood with a diameter of approximately 18 pixels.

The “cornerness” function C'F allows detection without calculating the eigenvalues:
CF = det(M) — atrace’(M). (2.12)

« is related to the minimum ratio allowed between the two eigenvalues. Harris suggested
in [HS88]: 0.04 < a < 0.06. Here, o is set to 0.06. C'F takes values near 0 in homogeneous
regions, negative values near edges and high values near potential interest points. Hence,
the interest points are the local maxima of C'F' above a user—defined threshold 7" (7" > 0).
Some authors, for example in [VL0O1, ST94], favour the use of the eigenvalues for detection.
In [CJ02], a new normalised detection function taking values between 0 and 1 and based
on the eigenvalues is introduced. The cornerness function C'F' achieves faster processing
and as well lower sensitivity to noise and aliasing: less noise-induced interest points are
detected near edges when C'F' is used. It is hence used in this work.

The Harris detector is summarised in the following:

1. Compute the image derivatives I, and I, with derivative of Gaussian filters: I, =
G:U(Uderiv) ® I and [y = Gy(aderiv) ® 1.

2. Compute the structure matrix M with eq. (2.11).
3. Compute the cornerness function C'F according to eq. (2.12).
4. (z,y) is an interest point:
o if it is a local maximum of the cornerness function C'F'
e and if CF(z,y) > T (T > 0).

The calculation of matrix M is the most computation intensive step of the detector. After
the convolution of the image I with the derivatives of a Gaussian, the three different matrix
elements are calculated by convolving (I,)?, (I,)? and I,.I, with a Gaussian. As all involved
kernels are separable, convolutions are performed as two sequential 1D convolutions along
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lines and along columns. The derivative of Gaussian filters  original
are implemented straightforwardly since o4, is small, which picture
results in a small convolution kernel. For the Gaussian filter

(for which o), = 3.0), the recursive implementation proposed

by Deriche in [Der93] is used because it reduces the number

of performed operations. The filter of order 4 is chosen to

obtain good approximation quality. The convolution can be  pgder
performed with approximately 64 instead of 72 operations per extensions
pixel. To reduce border effects during convolution, the values

at the image boundaries are exten'dec.l as sh9wn in fig. 2.2 Figure 2.2: Border  han-
and the interest points detected within the image border? dling for
are discarded. convolution.

The result of the Harris detector is illustrated in fig. 2.3. The

interest points are indicated by circles of radius 30j; to show the considered neighbour-
hood. It can be seen that the interest points have a general form: corners, blobs, X
junctions, T junctions, etc. are detected. The image was acquired with a colour cam-
era. The grey value image is obtained as the Y channel of the YUV colour space:
Y =0.3CE +0.59C% +0.11CP (see [Tec01]), where C*,C% and CP are the R, G and
B channels of the camera. The threshold is chosen to detect approximately 100 interest
points. With this implementation, the Harris detector needs approximately 412ms for an
image with 640 x 480 pixels on a AMD Athlon XP 2200+ computer with 1800MHz and
with 256KB cache.

2.2.3 Extension of the Harris detector for colour images

To take into account colour information, the Harris detector must merge the information
of several image channels. Several adaptation principles are compared in [Ki03]: applying
the Harris detector to each channel separately and merging the interest points, combining
the channel derivatives in the structure matrix M like in [Gou00], or reducing colour
space dimensionality through local thresholding as in [TY96] before applying the Harris
detector for grey value images. The adaptation of the Harris detector in [Gou00] achieves
the best stability. Using the Di Zenzo colour gradient, the different channel derivatives
are combined in the structure matrix according to:

il
cics (G ] : (2.13)

where CF C% and CP are the three image channels. As shown in [Ki03], it corresponds
to using the SSD on colour images with:

SSD(x,y,6,,6,) = Y > [ (uv) = CUu+ b0+ 6,)) (2.14)

J=R,G,B (u,v)eW (z,y)

M:G(O'M)® Z

j=R,G,B

2) The border has a width of 30y, + 1 = 10 pixels, corresponding to half the width of a Gaussian kernel.
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Figure 2.3: Detection example with the Harris detector.

Figure 2.4: Detection example with the Harris detector for colour images.
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The cornerness function is then calculated with eq. (2.12) and with a = 0.06. The interest
points are obtained as before by local maxima detection and thresholding.

The filtering and the border handling are implemented like for the grey value Harris
detector. The results are shown in fig. 2.4 on the same scene as in fig. 2.3. The threshold
is set to detect 100 interest points like for fig. 2.3. Most interest points are detected by
both grey value and colour detectors. However, the colour detector selects more interest
points near edges between areas with different colours. The colour Harris detector needs
681ms for an image with 640 x 480 pixels on the same computer as in subsection 2.2.2.
It is 1.66 times the computation time required by the original Harris detector, due to the
calculation of six derivative images for the three channels instead of two derivative images
for grey values.

2.3 Handling illumination variations

As explained in the introduction, illumination variations are natural and have to be
handled by machine vision algorithms. This section gives an overview of the state of
the art methods to handle illumination changes for grey value images in subsection 2.3.1
and for colour images in subsection 2.3.2. A complete overview is given in the context
of interest point detection. In addition, the different principles which are used in other
machine vision applications and which could be adapted to interest point detection are
presented.

2.3.1 Grey value image processing

As explained in section 2.1, illumination influence can be modelled by a local affine
transformation of the grey values (eq. (2.6)) or by a local multiplicative transformation
(eq. (2.7)) if the scene is Lambertian. The first part of this subsection explains how illu-
mination changes are compensated for interest point detection. The second part gives an
overview of principles to handle illumination changes in other machine vision tasks.

Interest point detection

As pointed out in subsection 2.2.1, the response of most interest point detectors is sensitive
to local contrast and hence to illumination variations. Most of the time, this sensitivity is
reduced by detecting local extrema of the detector response because those are not affected
by illumination influence (local affine transformations of the grey values). Nonetheless,
thresholding is necessary to avoid detecting interest points in homogeneous areas or near
straight edges due to noise. Two exceptions are the methods in [Tuy00] and [MCUP02]: all
extrema are selected, and the size of the detected region is used as a detection criterion to
reduce noise sensitivity. This principle can however not be applied to other detectors. As
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shown in [Duf01], the selection of local maxima with a fixed threshold provides enough
stability in applications where illumination changes are limited, when a low detection
threshold is used.

To increase stability when stronger illumination changes occur, the detection threshold
is adapted to the overall image contrast. In [SMB00], the used threshold T is
proportional to the maximum detector response: 7' = 0.01 max(C'F’). Alternatively, the
N local maxima with the highest responses are selected in [Tuy00, MBO01]. This threshold
adaptation allows to compensate global illumination changes: illumination changes which
influence all image pixels equally such as a change of light intensity or of the camera
shutter time. It is shown in [Fai03a] that the selection of the N best points allows a more
stable detection under illumination changes. The choice of a thresholding method depends
however mainly on the application, as explained in [MBO01]. With a detection threshold,
the number of interest points varies with scene content. As a drawback, the application
can become unreliable on simple scenes, for which few interest points are detected. On the
other hand, the detection of IV interest points results in the detection of noise-induced
interest points in simple images. Both thresholding methods only compensate global
grey value transformations. Therefore, current grey value interest point detectors cannot
compensate illumination influence, as this varies in the image (see section 2.1).

Other machine vision tasks

As explained in chapter 1, recognition systems usually detect many interest points and
characterise them with illumination invariant descriptors for the matching. Descriptors
are computed in small image neighbourhoods so an affine transformation of the grey
values models illumination changes accurately (see section 2.1). This affine transfor-
mation is usually compensated by a normalisation of the pixel values or of the
descriptor values. For this, the mean and the standard deviation of the grey values
in the neighbourhood are widely used. This can be performed in an explicit normalisa-
tion step like in [MTST05] or implicitly, for example with the normalised crosscorrelation
in [KBO1, VL01, WBO01, ZDFL95, MBO1]. In [Sch97], three image characteristics are
compared regarding their suitability for local normalisation: mean and standard devia-
tion, minimum and maximum pixel values, as well as energy (defined as the sum of the
squared pixel values). The local energy achieves the best results because the descriptors
are less noise sensitive. Last, the descriptors can be normalised in a postprocessing step
for example with the gradient magnitude in [Low04, MS04, Duf01].

Homomorphic processing is another well-known technique to suppress illumination
influence for Lambertian scenes (see for example [GW92]). The local multiplicative model
in eq. (2.7) is used. In a first step, the logarithm of the image is taken. Hence, the
illumination influence becomes additive. The illumination influence is assumed to be a
low frequency signal so it can be suppressed through linear high pass filtering. Finally
the exponential of the image is taken if required. Homomorphic processing can be used to
enhance non uniformly lighted images as shown in [Smi99]. A current application using
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homomorphic processing for illumination invariance is motion detection in [TAMOO0].

Another machine vision domain in which illumination influence plays an important role is
segmentation. Interest point detection can be interpreted as a binarisation (segmentation
into two classes) of the detector response. To handle illumination influence in binari-
sation, the threshold is adapted based on the image histogram or on some other image
characteristics such as its information content...An overview and a comparison of such
adaptive thresholding methods is given for example in [SS04]. As told in the first part
of this subsection, some methods exist to adapt the detection threshold to the overall
image contrast for interest point detection. Yet local contrast changes cannot be han-
dled accurately. Hence local adaptive thresholding is of particular interest for this
work. Two overviews of such methods are given in [TJ95, SS04]. For most algorithms,
a threshold is computed for each pixel depending on some characteristics of the pixel
values in the neighbourhood. Alternatively, the image can be divided into several non—
overlapping windows and the threshold is computed in each of these windows. As less
information is available in a local window than in a whole image, only simple methods
can be used to adapt or compute the threshold. The threshold is adapted with for ex-
ample mean (or weighted mean), standard deviation, local minimum and maximum pixel
values... Some methods also apply simple clustering methods like the Otsu method in
the considered neighbourhoods. For document binarisation, local adaptive thresholding
outperforms global thresholding, especially for non—uniformly lighted images as shown in
[TJ95].

The last principle presented in this subsection is an interesting and promising technique,
which is however not suitable in this work. A model of the illumination influence is
learnt from several images of the scene lighted from different directions. This allows to
learn the shadows and shading effects and hence leads to a more accurate model than the
local affine model of eq. (2.6). In this work, illumination invariance should be obtained
from a single image, so the method cannot be applied. Furthermore this method is better
suited for large image patches or whole objects. It is used for tracking in [HB9S8| or for
object recognition in [Neu01].

2.3.2 Colour image processing

Image formation can be more accurately modelled for colour images than for grey value
images, as shown in section 2.1. Illumination also has a higher influence on colour val-
ues, especially when light colour changes. Colour is a distinctive information which is
important for many applications, especially for visualisation and recognition tasks. As
a consequence, many algorithms exist to compute illumination invariant colour values,
based on the different image formation models presented in section 2.1. Many algorithms
aim at illumination invariant colour values or at modelling human colour perception.
Such methods are not presented here as this work aims at illumination invariant filter-
ing of colour images. As in subsection 2.3.1, the first part gives a complete overview of
methods to handle illumination changes for interest point detection and the second part
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presents related methods to handle illumination changes in other machine vision applica-
tions. Last, a short overview of automatic white balancing is given to explain why white
balancing is not applied as preprocessing in this work.

Interest point detection

Only few interest point detectors are based on colour information as texture information
is almost fully contained in intensity images. As a consequence, grey value detectors are
often applied even when colour descriptors are used for subsequent matching, for example
in [Tuy00, NG98, Bau00].

In [Gou00], the Harris detector is extended to compute the structure matrix based on
colour images (see also subsection 2.2.3). The author does not give any associated thresh-
olding method, but the same thresholding algorithms as for the grey value Harris
detector can be applied to adapt to the overall image contrast: the detection threshold
can be set proportional to the maximum cornerness value or the N local maxima with
the highest cornerness value can be selected (see subsection 2.3.1). As for the grey value
detector, the resulting method is sensitive to illumination changes causing local changes.

In [vdW05, vdWGGO5], colour invariant and quasi-invariant derivatives are de-
signed and applied to the colour Harris detector, as well as to the extraction of other
features like edges, motion, circles. .. All methods are based on the image formation model
of eq. (2.8), therefore white balancing is required before detection. In [vdWGGO05], quasi-
invariant methods are presented. They allow to detect features caused only by the scene
reflectance as they are not influenced by shadow—shading or specularity edges. They are
computed by projecting the colour derivatives on an invariant plane (for the shadow-—
shading quasi-invariant) or line (for the shadow—shading—specular quasi-invariant) of the
colour space. They are very robust to noise compared to illumination invariant colour fea-
tures. Nevertheless, the derivatives and cornerness values vary when illumination varies,
so they cannot be used in this work. In [vdWO05] robust invariant detectors are pre-
sented: the edge and cornerness quasi—invariants are normalised to become invariant to
illumination changes. This results however also in more noise sensitivity. Robustness
is increased through a weighting function designed to counterbalance noise effects. The
resulting interest point detectors are only tested on a few images in [vdWO05]. The main
drawback of these two algorithms is the necessity of white balancing before detection.
Existing automatic white balancing methods are indeed not reliable on real images, as
shown in [Bar99, FBM98]. The shadow-shading invariant Harris detector is compared to
the detectors developed in this work in chapter 4.

Colour—-based detectors may also use different principles than the Harris detector. In
[TTO04], a detector inspired by the human visual attention mechanism is presented. It
uses centre—surround operators and several cues including colour to detect salient neigh-
bourhoods. The colour cues are invariant to shadows, to shading and to light colour
changes because the RGB values are converted to the m space (see [GS99]) before in-
terest point detection. The m space is experimentally shown in [TT04] to provide better
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illumination invariance than the normalised colour space rgb or the comprehensive image
normalisation presented in [FSC98]. These colour spaces are described more precisely
in the second part of this subsection. The resulting interest point detector is however
not completely invariant to illumination changes as other cues, for example intensity con-
trast, are also considered during detection. In [RT01], corners and junctions are detected
using the CIELAB colour space and a wedge—based interest point description. As
it is not only based on chrominance but also on intensity, the detector is not invariant
to illumination changes. Robustness is however achieved through the use of non-linear
functions.

In [MKKO00], invariant colour descriptors are designed. They require at least two dis-
tinct colours in the used neighbourhood. Bicolour neighbourhoods are detected based on
colour segmentation in RGB space. This segmentation also reduces noise sensitiv-
ity. No geometry information and a randomised grid are used to generate the analysed
neighbourhoods, so the detected bicolour windows have no specific location in the image.
As a result of this geometric instability, they can only be used for pure recognition tasks
but not for localisation.

Other machine vision tasks

The easiest way to compensate illumination variations is to extend the methods for grey
value images by applying them to every channel. This results in the diagonal image
formation model with translation of eq. (2.3), with the supplementary assumption that
shadow, shading and specularity effects are constant in the considered neighbourhood.
This method is often applied to compute colour descriptors of interest points for illumina-
tion invariant matching. The neighbourhood is normalised for each colour channel
separately using for example minimum and maximum pixel values, mean and standard
deviation or median values in [Gou00]. The normalisation can be performed on the pixel
values as preprocessing step as in [OMC03, Bau00, Gou00] or the descriptor values can
be normalised as in [MMG99]. If the scene is Lambertian, the local affine transformation
becomes a local multiplicative transformation, which can also be corrected by normal-
isation. In [GMD™'97], C7/mean(C?) for j = R, G, B is found to provide a good local
image normalisation as a preprocessing before interest point detection and matching. In
[NB96], a new colour ratio for object recognition is introduced: (€7 — C3)/(CY + C3) for
j = R,G,B. It is an approximation of the invariant ratio C{ / Cg which reduces noise
sensitivity and avoids ill-posed computation for dark pixels. ¢ and CJ (j = R, G, B)
are the pixel values on the two sides of the considered colour edge. Edges and colour
values are obtained through segmentation in RGB space. Local normalisation can also be
applied based on the affine model of eq. (2.9). In that case, the colour filters of the sensor
are not assumed to be narrow-band. It is used to obtain normalised histogram moments
for object recognition in [HS97], normalised mean values in [SH97] and corrected colour
values and normalised moments in [LWMO02]. The normalisation and the computation of
basis reflectance functions for eq. (2.9) are based on eigenvalue decomposition. All these
methods based on local normalisation cannot compensate accurately shadows, shading
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and specularities because their influence is assumed to stay constant in the considered
image neighbourhood. Light colour changes, on the other hand, are correctly handled.

Homomorphic processing can also be applied to colour images. Like for grey value
image processing, it can correct a local multiplicative transformation. As a consequence,
homomorphic processing handles the diagonal model of eq. (2.4), with the supplemen-
tary assumption that shadow and shading influences are constant in the neighbourhood.
[llumination colour changes are compensated accurately. For example, homomorphic
processing is applied in [LYHTO02] to robustly detect changes in colour image sequences
despite simultaneous illumination variations. In [FF95], it is used to obtain illumination
invariant features for subsequent histogram—based object recognition.

Ratios between colour channels correct all shadow and shading effects accurately, as
all channels are affected identically according to the model of eq. (2.3). Colour spaces are
often based on such colour ratios to separate intensity and chrominance information. For
example, the rgh colour space (r = C®/(C + C% + CP), similar formulae for g and b)
compensates shadows and shading for Lambertian scenes. The rgb space is widely used in
machine vision, for example in [XE01, FSC98, DWL98, GS99, MKKO00]. HSI is another

G_CB min(CE,CE,CB
CR:/E’(GC)+(CC’R_)03) and S =1— C‘f(fi-d—cc—&-bc‘;) are both

invariant to shadow and shading effects, as shown in [GS99]. It is also proved in [GS99]
that H is invariant to specularities when the illumination colour is white (i.e. equal en-
ergy in all wavelengths). Perceptive colour spaces such as CIELAB achieve invariance to
shadows and shading as well, but they require more complex transformations. They are
therefore only used when human-like colour perception must be achieved. In addition to
shadows and shading, light colour must also be compensated. It can be performed
on the whole image through automatic white balancing like in [DWL98, FSC98, CBS03|.
In [DWLI8, FSC98|, simple white balancing methods similar to the grey—world algorithm
are applied on the whole image. In [FSC98], the steps for shadow—shading correction and
for light colour correction are iterated to provide a comprehensive image normalisation. In
[CBS03], a complex illuminant colour estimation is presented and is shown to provide bet-
ter results than the grey—world algorithm. Alternatively, the illuminant colour can also be
compensated locally as in [GS99, NG98, MKKO00, XE01]. In [XEO01], light colour is explic-
itly estimated by tracking illuminant colour in an image sequence. This cannot be applied
in this work as the algorithm should work on a single image. In [GS99, NG98, MKKO00],
the rgb colour space is improved to implicitly correct local light colour. It is named the m

space in [GS99]: m! = g—f;g—i,
1 2
pixels. m? and m? are defined similarly for Cf/C® and CB/C%. Those colour ratios
are invariant to shadows, shading and light colour for Lambertian scenes according to
the image formation model of eq. (2.3) (see [GS99]). In [NG9S8|, an approximation for
these ratios is introduced to reduce noise sensitivity and ill-posed computation in dark

. 1G/R _ cg/ef
areas: ¢ = goyclrogTer

achieved in a preprocessing step as in [FSC98, CBS03] where the pixel values are nor-

malised before image processing. Alternatively, it is performed during feature extraction
in [NG98, GS99, MKK00, DWL98, XE01]. These methods are used in various applica-

popular colour space. H = arctan (

where C7 and CJ are the colour values of two neighbouring

(similar definition for /%), Illumination invariance can be
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tions, for example tracking in [XE01, CBS03], histogram-based or geometry—based object
recognition in [GS99, NG98, DWLIS|, segmentation in [GSS98]... A last method to com-
pute invariants to shadows, shading and light colour is based on ratios and on derivatives
in both image and wavelength dimensions. It is described in [GvdBSGO1]. It is used
for example to detect edges in [GDvdBT99]. Its main drawback is the requirement of a
calibrated camera to define derivative filters in the wavelength dimension.

Invariant colour features based on ratios are sensitive to noise especially in dark areas,
because the division emphasises noise. In addition, a ratio is not defined when the divisor
is zero. For that reason, better behaved approximations are introduced in [NB96, NG98|.
For segmentation, clusters with a given form in RGB space (for example a plane or a line)
can be searched instead of point-like clusters in invariant spaces as in [Sto00, FCF96].
This principle can however not be applied in this work, because interest point detection is
performed even for colour information with a single channel: the cornerness function. In
[GS04], noise statistics of the invariants are taken into account during histogram construc-
tion for object recognition to counterbalance the higher noise sensitivity in dark areas.
Similarly, in [Sto00], noise statistics are considered to set the detection threshold for colour
edge detection. In [vdWGGO05], quasi—invariant derivatives are defined to robustly detect
features depending only on object reflectance. As explained in the first part of this subsec-
tion, they cannot be used for detection because the quasi-invariant derivatives vary when
illumination changes. Therefore, in [vdWO05], a robust method to compute real invariants
from these quasi—invariants is presented. It is based on a weighting function designed
using the noise statistics to reduce noise sensitivity. In addition to photon and electronic
noise, colour artifacts may appear, mainly in the vicinity of colour edges. This is caused
by chromatic aberrations of the optics, by demosaicing (if a single—chip colour camera is
used) or by misregistration of the sensor chips (if a multi—chip colour camera is used),
as explained in [BMCF02b]. For that reason, segmentation is applied as a preprocessing
step to reduce noise and to suppress artifacts in [BMCF02b, MKKO00].

Finally, in [FHDO02], coloured shadows are estimated: two light colours are compen-
sated, for direct and for ambient lighting. The colour values are projected on a camera
specific line to yield a grey value image which is invariant to coloured shadows, to shading
and to light colour changes for Lambertian scenes. This projection can be used to detect
invariant features or as in [FHDO02] as a preprocessing to remove shadows. It requires
a calibrated camera or several images taken in the environment. Coloured shadows are
more important for images of outdoor scenes, as explained in [Ris01]. In addition, ambient
light are not well approximated by a Planckian light source for indoor scenes, because it
results only from inter-reflections in the scene and not from sky and clouds. Therefore,
coloured shadows are not compensated in this work.

Light colour estimation and automatic white balancing

Light colour has a strong influence on colour values. Therefore, many algorithms for
automatic white balancing exist, mostly for visualisation or colour management purposes.
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When colour images are processed, white balancing may be required as a preprocessing
step like in [vdWO05], or light colour can be compensated implicitly by the invariants like
in [GS99]. A short overview over automatic white balancing algorithms is given here.

The simplest white balancing algorithms are based on assumptions inspired by the colour
constancy mechanism of the human visual system: the grey—world and the white—
patch algorithms. The grey—world algorithm assumes the average reflectance in the
scene to be grey, so the average colour value in the image should be grey after white balanc-
ing. Therefore, all channels are normalised by their average values: C? — C7 /mean(C7)
for j = R,G,B. This algorithm is the basis of the retinex algorithm by Land. The
retinex algorithm can be applied on the whole image or locally, using for example a
centre-surround operator as in [Lan86]. When the grey—world algorithm is applied locally,
homogeneous areas become grey as explained in [GMD*97, RJW02]. For visualisation
applications, this can be corrected through scale selection and recolouration as proposed
in [RJW02]. The white patch algorithm assumes the lightest pixels in the scene to have
the same colour as the light source: either the light source is visible in the scene, or it
is reflected by a white surface (which, of all surfaces, reflects the most energy), or the
lightest pixels are a specular highlight, which according to the NIR assumption has the
same colour as the illuminant (see section 2.1). The human visual system uses a mixture
of both grey—world and white—patch hypotheses. Such a combination of both algorithms
is achieved for example in [RGMO03].

More advanced colour constancy algorithms often use statistical knowledge on the
expected colours. An overview and a comparison of automatic white balancing methods
on synthetic and on real images is given in [BMCF02a, BMCF02b]. Automatic white
balancing methods are shown to be less reliable on real images. The simple white—patch
algorithm provides surprisingly good results on real images, so it provides the best com-
promise between performance and complexity according to [BMCF02b]. Other recent
colour constancy algorithms are based on physics to model specularities exactly. They
use highlights to estimate light colour like for example in [TNI03]. Statistics based meth-
ods like the ones analysed in [BMCF02a] require a scene with many distinct colours,
whereas physics based methods like in [TNI03] require surfaces with a single colour. Both
principles can be combined, for example in [FS01].

Some machine vision applications assume a perfect correction of the light colour in a
preprocessing step, for example in [vdW05]. However, current automatic white balancing
methods are shown to work unreliably on real images in [BMCF02b]. In [Bar99, FBMO9S|,
the reliability of current colour constancy algorithms is tested in the context of histogram
based object recognition. This shows that a preprocessing with automatic white balancing
methods improves recognition results. However, the conclusion in [Bar99, FBM9S]| is
that automatic colour constancy is not good enough yet. As colour constancy
in the human visual system is known to be imperfect, the authors raise the question
whether human colour constancy would be good enough for machine vision applications.
In [CBS03], it is shown that a normal colour constancy algorithm does not perform well
enough for their object tracking application. They design a special method based on
Bayesian inference and on learning the object appearance under several illuminants. Their
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method cannot be used in this work as it should work on a single image. In [XE01], white
balancing is based on tracking the light colour in an image sequence. It is therefore
not suitable for this work. In [OMCO03], the use of white balancing as preprocessing is
questioned. In their application, scenes are matched using interest points and a simple
local photometric normalisation. Colour constancy is performed as a postprocessing step,
based on the matched neighbourhoods.

As a consequence, the illumination invariant interest point detectors developed in this
work for colour images will compensate light colour implicitly like in [OMCO03] or [GS99]
to avoid any unreliability caused by automatic white balancing. The stability of the
invariant detector described in [vdW05] which requires white balancing will be compared
to the detectors developed in this work.

2.4 Summary

In the first part of this chapter, the dichromatic image formation model is presented and
simplified to obtain the diagonal model with translation (eq. (2.3)), which is the model
used in this work. It describes the influence of shadows and shading, of specularities
and of light colour on colour images. A similar model is derived for grey value images
(eq. (2.6)). The assumptions and the limitations of both models are also presented.

The second part of this chapter gives an overview of the existing interest point detectors.
Most detectors are sensitive to the local image contrast and therefore to illumination
variations. This motivates this work, in which illumination invariant versions of the
Harris detector for grey value and for colour images are developed. The Harris detector
is the basis for this work because it is stable under viewpoint changes and because it is
used in numerous applications. Its principle and its implementation are described in more
details in subsections 2.2.2 and 2.2.3.

Finally, an overview of methods to handle illumination changes for interest point detection
and for other machine vision applications is given. For grey value images, the existing
interest point detectors adapt the detection threshold to the overall image contrast. This
is however not enough to handle illumination changes, as the contrast may change locally
due to shadow or shading effects. Such local changes are handled in other machine vision
applications by local normalisation, homomorphic processing or local adaptive thresh-
olding. For colour images, interest point detectors invariant to shadows, shading and
specularities are presented in [vdWO05]. They require however white balanced images.
As current automatic white balancing methods are not reliable on real images, colour
interest point detectors are developed in this work that do not require any white balanc-
ing. Illumination changes can be handled in machine vision applications by using one of
the numerous illumination invariant colour spaces. Alternatively local normalisation and
homomorphic processing can be applied. Noise sensitivity is also handled in this work
because the existing invariants emphasise noise in dark areas and because current cameras
produce colour artifacts near edges.
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In this chapter, the developed illumination invariant detectors for grey value images are
presented and their performances are evaluated and compared. After a reminder of the
image formation model for grey value images and of the Harris detector, the illumination
influence on the Harris detector is derived in section 3.1. Next, the four developed detec-
tors and their implementation are explained: they are based on local normalisation (sec-
tion 3.2), on homomorphic processing (section 3.3), on local threshold adaptation (section
3.4) and on local clustering (section 3.5). To reduce the influence of specular highlights,
interest points detected near saturated image areas are filtered out as described in section
3.6. Evaluation framework and evaluation criteria are described in section 3.7. Finally
the comparison results are given in section 3.8. Section 3.9 summarises the chapter.

3.1 lllumination influence on the Harris detector

First, the image formation model for grey value images and the Harris detector are sum-
marised. More details are given in section 2.1 and in subsection 2.2.2. The illumination
influence on grey value images is modelled by a local affine transformation:

I = apep + ag, (3.1)

where [ is the pixel grey value and ¢, is the scene reflectance. a;, and a, model the
illumination influence on body and surface reflections. Both a; and as are assumed to
stay constant in small neighbourhoods. As a result of this assumption, the influence
of light colour and of sharp shadow, shading and specularity patterns is not modelled
accurately. These inaccuracies are necessary because the image only has a single channel.
Modelling inaccuracies can be reduced by decreasing the size of the neighbourhoods on
which a, and a4 are assumed to be constant. If the scene is assumed to be Lambertian,
the image formation model becomes a local multiplicative model:

I = ayCyp, (32)
where I, a;, and ¢, have the same properties as in eq. (3.1).

The Harris detector is based on following structure matrix:

M = G(oy) ® [ (]f}j (f;yf)g } ’ (3.3)
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which represents the local statistics of the image derivatives I, and I,. G(oy) is a
Gaussian with standard deviation ;. ® represents convolution. I, and I, are obtained
by convolving image I with derivatives of Gaussian with standard deviation og4epiv: 15/ =
Go/y(Tderiv) ® I. The cornerness function C'F' is computed from matrix M with:

CF = det(M) — atrace®(M). (3.4)

The interest points are the local maxima of C'F" above detection threshold T' (7" > 0). To
adapt detection to the overall image contrast, T can be set proportional to the maximum
of the cornerness function, or the N interest points with the highest cornerness values
can be selected. The processing time of the Harris detector is approximately 412ms for
an image with 640 x 480 pixels (see subsection 2.2.2 for more details).

In the image formation model of eq. (3.1), the illumination influence on grey values is
modelled by locally constant factors a, and a,. As a consequence, the image derivatives
I, and I, are influenced by the multiplicative illumination factor as:

I, = aycy, and I, = aycy,, (3.5)

where ¢, and ¢, are the derivatives of the scene reflectance ¢,. The structure matrix M is
hence influenced by factor a,2, because a; is assumed to be constant on the neighbourhood
considered for the convolution with G(o/). As a result, the illumination influence on
cornerness function C'F is the local multiplicative factor ay*:

CF(I) = a,*CF(cp). (3.6)

ap? stays constant in image neighbourhoods, so the local maxima of the cornerness function
are stable under illumination changes. Nevertheless, the detection threshold 7" should be
adapted to the local illumination factor for illumination invariant detection: a,* may vary
between distant pixels, especially for non uniformly lighted scenes.

Figure 3.1 shows that the Harris detector cannot compensate complex illumination changes,
even if the detection threshold is adapted to the overall image contrast. The left image
is illuminated by neon lamps. The right image shows the same scene lighted by sunlight.
The detection threshold is set for each image such that approximately N interest points
are detected (N = 100). Only 46.1% of the interest points in the left image are redetected
in the right image. 51.6% of the interest points in the right image do not correspond to
any interest point of the left image. Such interest points without any correspondence in
the reference image (here the left image) are named false positives. They may produce
false matches in applications. Therefore, detection is stable when a high proportion of
interest points are redetected and when the proportion of false matches is low. To improve
the detection stability under complex illumination changes, new interest point detectors
are developed in this thesis, that adapt detection to the local lighting conditions.

3.2 Local normalisation

As explained in subsection 2.3.1, one popular principle to handle locally varying illumina-
tion conditions is local normalisation. The Harris detector is composed of several steps,
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Figure 3.1: Detection example for the Harris detector with selection of the N best points
(N = 100). The images show the same scene under two different illuminations.
46.1% of the interest points of the left image are redetected in the right image.
51.6% of the interest points in the right image are false positives: they do not
correspond to any interest points of the left image. Both images are gamma
corrected for visualisation (y = 1.4).

so normalisation could be performed on the derivatives, on the elements of matrix M or
on the cornerness function C'F'. A normalisation of the cornerness function is equivalent
to an adaptation of the detection threshold like the method presented in section 3.4. It
is therefore not used here. Derivative normalisation induces less computation than the
normalisation of the elements of M because two derivatives are normalised instead of
three distinct elements. In addition, the noise introduced by normalisation is reduced by
the convolution with the Gaussian G(oj) in eq. (3.3). A last alternative consists in a
local grey value normalisation in a preprocessing step as proposed for colour images in
[GMD'197]. Preliminary tests performed in this work showed that local derivative nor-
malisation is better suited for interest point detection than local grey value normalisation.
The Harris detector is indeed sensitive to the artifacts introduced near edges by local grey
value normalisation (see [GMD™97] for an illustration of these artifacts on colour images).
As a conclusion, normalisation is performed on the derivatives.

The neighbourhood size used for normalisation must be chosen. To reduce the inaccuracies
of the image formation model, the neighbourhood size should be as small as possible. On
the other hand, normalisation amplifies image noise more strongly when it is performed on
smaller neighbourhoods. Therefore, a compromise is necessary. To reduce the number of
parameters, the same pixels are used for both derivative computation and normalisation.
This is realised with the normalised convolution proposed in [Sch97].

Next, the characteristics used for normalisation must be chosen. Three local normal-
isations based on minimum and maximum grey values, on mean and variance and on
energy are compared in [Sch97]. The normalisation using local energy shows the best
behaviour, because the normalised features are less sensitive to noise, especially for small
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size neighbourhoods and for images with homogeneous areas. The behaviour of normali-
sation in homogeneous areas is of particular interest here because the cornerness function
is computed for all pixels. If the local normalisation amplifies image noise strongly in
homogeneous areas as is the case when local minimum and maximum values or when
local standard deviation are used, noise-induced hence unstable interest points are de-
tected in those areas. For the same reason, normalisation based on gradient values as
in [Low04, MS04, Duf01] is not used here. As a conclusion, normalisation is performed
with local energy here. A drawback is that it cannot compensate the local affine model
of eq. (3.1) but only the local multiplicative model of eq. (3.2): this is shown in eq. (3.9).

To summarise, the normalised convolution using local energy is used to compute illumi-
nation invariant derivatives for the Harris detector. It is defined in [Sch97] by:

> jew L@+ i,y + j)kernel(i, j)
\/Z(i’j)ew I(x+1i,y+ j)Q\/Z(i’j)GW kernel(i, j)?
I(x,y) represents the image grey values. output(x,y) is the result of normalised convolu-
tion. kernel is the convolution kernel, here the derivative of Gaussian kernels. W is the

window associated with kernel. In [Sch97], several kernels with different sizes are com-
bined for object recognition. Here, only the two derivation kernels in x and y directions

output(z,y) = (3.7)

are used. Both have the same weighting factor \/ > i.jyew kernel(i, j)? as they are related
by a 90° rotation. Therefore, the division by the kernel energy in eq. (3.7) is superfluous
and can be suppressed. This results in:

Z(i,j)eW I(IE +1,y+ j)k‘ernel(i,j)
Ve Ity + )2
The illumination parameter a; in eq. (3.2) is assumed constant on the considered neigh-

bourhood W. As a consequence, the result of normalised convolution using local energies
is not influenced by local lighting conditions for Lambertian scenes:

output(z,y) = : (3.8)

D jyew @e(® + 1,y + j)kernel(i, j)
Ve el +iy -+ )2

ap Z(m)ew ez + i,y + j)kernel(i, 5)
\/ab2 Z(i,j)eW cy(w 41,y + j)?

> ijyew oo(T + i,y + j)kernel(i, j)

= . (3.9)
\/Z(i,j)EW ez +1i,y+j)°

The local affine model of eq. (3.1) cannot be handled by the energy normalised convolu-
tion. Using the invariant derivatives computed by energy normalised convolution in the
Harris detector results in an invariant cornerness function. Therefore, thresholding with a
user—defined threshold leads to illumination invariant interest point detection. Figure 3.2

output(x,y) =
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Figure 3.2: Suppression of the illumination influence on the derivatives with energy nor-

malisation. Left: grey value image. Middle: gradient \/IxQ—l—IyQ. Right:

energy normalised gradient. The gradient images are scaled between 0 and
255 using minimum and maximum gradient values. The grey value image is
gamma corrected (y = 1.3).

illustrates how the local lighting conditions are compensated using energy normalisation.
The energy normalised gradient has similar values in both shadows and directly lighted
areas, which is not the case for the normal gradient. A drawback is the noise amplification
in dark areas, which is visible in the shadows in fig. 3.2.

The resulting detection algorithm is summarised here:
1. Compute the image derivatives I, and I, using the derivatives of Gaussian.

2. Compute the local energies E(z,y) = > yew [(z + 4,y + 7)2.

3. Normalise the derivatives with the local energies: I,/vE and I,/VE.

4. Compute the structure matrix M according to eq. (3.3) with the normalised deriva-
tives.

5. Compute the cornerness function C'F' according to eq. (3.4).
6. (z,y) is an interest point:
e if it is a local maximum of the cornerness function C'F’
e and if CF(z,y) > T (T > 0).

The window for energy summation should have the same size as the derivation kernels
(here 7 = 604eriv). T is a user—defined threshold. It should be set to obtain an appro-
priate number of interest points. The normalised derivatives can be re—used to compute
descriptors: with one step, both interest point detection and characterisation become in-
variant. This method is called Normalised Harris Detector (N-HD) in the following. The
algorithm can be easily extended to other Harris detector versions, in particular to the
scale or viewpoint invariant versions in [MS04]. The principle can also be applied to other
detectors based on first or second order image derivatives (see subsection 2.2.1).
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3 Illumination invariant interest point detection for grey value images

Figure 3.3: Detection example for the energy normalised Harris detector (7" = 0.05). The
same images as in fig. 3.1 are used. 76.1% of the interest points of the left image
are redetected in the right image. 26.5% of the interest points in the right
image are false positives. Both images are gamma corrected for visualisation

(v=1.4).

The convolutions with the derivatives of Gaussian and with the Gaussian are implemented
as explained in subsection 2.2.2. To compute the local energies E(z,y), the first step is
to compute the square of the grey values. A box filter is then applied on the squared
grey values. The box filter should have the same size W as the derivation kernels. It is
implemented as two sequential 1D convolutions along lines and along columns because
the kernel is separable. In addition, all pixels in the window contribute with the same
weight to the local energy. Therefore, a recursive implementation can be used to reduce
computational costs. For 1D convolution, the value of a pixel output(x) is computed from
the value of its neighbour output(xz — 1) using only one addition and one substraction:

N
output(x) = Z input(xz + i) = output(z — 1) + input(x + N) — input(x — 1 — N),
i=—N

where 2N + 1 is the size of window W.

The results of the energy normalised Harris detector are illustrated in fig. 3.3. The same
images as in fig. 3.1 are used to allow a better comparison to the Harris detector (HD).
With N-HD, the interest points are not only detected in the areas with the highest local
contrast. N-HD achieves a higher detection stability than the Harris detector on this
example. 76.1% of the interest points of the left image are redetected after the illumination
change. Only 26.5% of the interest points in the right image are false positives. With
the proposed implementation, N-HD requires 480ms processing time for an image with
640 x 480 pixels (see subsection 2.2.2 for details on the computer): it is 1.17 times the
processing time of HD.
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3.3 Homomorphic Harris detector
3.3 Homomorphic Harris detector

The next developed invariant detector is based on homomorphic processing, which allows
to compensate locally varying illumination conditions for Lambertian scenes. The illu-
mination influence on grey values can be modelled with a local multiplicative factor (see
eq. (3.2)). The illumination factor a; is assumed to stay constant in small neighbour-
hoods. By taking the logarithm of the grey value image (which is positive), homomorphic
processing transforms the multiplicative model into an additive one:

In/ =Ina, + Inc,. (3.10)

The illumination influence In a; can be assumed to stay constant in small neighbourhoods,
while grey values In I and reflectance Inc¢, vary freely. As a consequence, illumination
invariant information can be obtained by applying a linear high—pass filter on In /.

Therefore, homomorphic processing yields illumination invariant image derivatives:

Olnl I, apco+apc,  Cpy olnl I,
=—=————~— and ==~ —.
ox 1 ayCp Cp Jy I Cp

(3.11)

This approximation is valid because the illumination factor a; is constant in small neigh-
bourhoods, so its derivatives are approximately zero: ay, ~ ap, = 0. I, I, and ¢, ¢y, are
the derivatives of the image and of the scene reflectance. Like in section 3.2, illumination
invariant interest point detection can be achieved by thresholding with a user—defined
threshold when the Harris detector is based on these invariant derivatives. As can be
seen from eq. (3.11), the invariant derivatives obtained by homomorphic processing can
be interpreted as derivatives normalised with the local mean values: I,/I and I,/I, where
I is the mean value on the neighbourhood used for derivative computation.

If implemented in a straightforward manner, the dark image areas cannot be handled
properly with homomorphic processing. The noise influence is indeed strongly amplified,
as the divisor in eq. (3.11) takes values near zero. Additionally pixels with a grey value
equal to zero cannot be handled, as their logarithm is not defined. The use of In(141(z, y))
instead of In I(x,y) proved experimentally to be a good work around for both problems.
In bright regions, adding 1 to the grey values has a negligible effect on the derivatives. In
dark regions, it actually helps to reduce noise influence. In addition, In(1+ I(z,y)) takes
only positive values like a natural grey value image. Depending on the amount of noise
introduced by the camera, it may be necessary to further attenuate noise in dark image
areas. Otherwise, noise-induced hence unstable interest points may be detected in dark
homogeneous image areas. Here, a simple 3 x 3 box filter is applied in dark areas: all pixels
with a grey value smaller than threshold V' are replaced by the mean value in their 3 x 3
neighbourhood. V' was chosen experimentally to be 3. This threshold and if necessary the
preprocessing filter should be adapted to the camera noise. Fig. 3.4 illustrates on a non—
uniformly lighted scene how the illumination influence on the derivatives is suppressed
by homomorphic processing and how noise effects in dark regions are reduced by the
presented implementation. The standard gradient is very low in shadows. As shown
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3 Illumination invariant interest point detection for grey value images

Figure 3.4: Suppression of the illumination influence on the derivatives with homomorphic
processing. Top left: grey value image. Top right: gradient /I, + [yg.
Middle left: gradient of In/. Middle right: gradient of In(1 + /) with the
proposed preprocessing. Bottom left: detail of the gradient of In /. Bottom
right: detail of the gradient of In(1 + I) with the proposed preprocessing.
Gradient images are scaled between 0 and 255 using minimum and maximum
gradient values. The grey value image is gamma corrected (y = 1.3).
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3.3 Homomorphic Harris detector

on the middle images, homomorphic processing compensates this effect. The proposed
preprocessing reduces efficiently noise in the dark image areas as shown in the bottom
images: the gradient is less influenced by noise in the black stripes and wheels of the
“Tigerente” figurine.

The Harris detector based on homomorphic processing is summarised here:

1. Preprocess the dark image areas if necessary. For example, preprocess all pixels
having a grey value smaller than V' = 3 with a 3 x 3 box filter.

2. Take the logarithm of the preprocessed image with: L = In(1 + I).

3. Compute the invariant derivatives by convolving the logarithm image with the
derivative of Gaussian filters: L, = G(0deriv) ® L and L, = Gy(0geriv) ® L.

4. Compute the structure matrix M with eq. (3.3) and with the invariant derivatives
L, and L,.

5. Compute the cornerness function C'F' with eq. (3.4).

6. (z,y) is an interest point:
e if it is a local maximum of the cornerness function C'F'
e and if CF(z,y) >T (T > 0).

This algorithm is named homomorphic Harris detector (H-HD) in the following. As in
section 3.2, the user—defined threshold 7" should be set to get an appropriate number of
interest points. The obtained invariant derivatives can be re—used to compute invariant
descriptors. The algorithm can be easily extended to other Harris detector versions, in
particular to the scale or viewpoint invariant versions presented in [MS04]. Homomorphic
processing can also be used to reduce illumination influence on other detectors if these
are based on high—pass filtering. In that case, it should be reminded that the inaccuracies
of the image formation model increase with the size of the considered neighbourhood.

The convolution with the derivatives of Gaussian and with the Gaussian is implemented
as in subsection 2.2.2. The box filter for the preprocessing of dark areas is implemented
straightforwardly as the neighbourhood is small (3 x 3). In addition, only few dark pixels
are processed. Therefore, a complex implementation like recursive or sequential processing
as in section 3.2 would not bring any advantage.

The results of the homomorphic Harris detector are illustrated in fig. 3.5 on the same
images as in fig. 3.1. Like for N-HD, the interest points are not only detected in the areas
with the highest local contrast. The detection stability is increased in comparison to the
Harris detector (HD): 74.1% of the interest points of the left image are redetected in the
right image. 27.1% of the points in the right image are false positives. The detection
stability is similar to the stability of N-HD for this image pair. With the proposed
implementation, H-HD requires 457ms for an image with 640 x 480 pixels (see subsection
2.2.2 for details on the computer): that is 1.11 times the processing time of HD.
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3 Illumination invariant interest point detection for grey value images

Figure 3.5: Detection example for the homomorphic Harris detector (7' = 107°). The
same images as in fig. 3.1 are used. 74.1% of the interest points of the left image
are redetected in the right image. 27.1% of the interest points in the right
image are false positives. Both images are gamma corrected for visualisation

(v=14).

3.4 Local threshold adaptation

The next detector is based on local adaptive thresholding. It is shown in [TJ95] that even
simple local adaptive thresholding methods achieve better binarisation results than global
thresholding, in particular for non—uniformly lighted images. This principle is therefore

adapted to interest point detection here.

As shown in eq. (3.6), the cornerness function
CF is influenced by the local multiplicative il-
lumination factor a,* if the image is influenced
according to the local affine model: I = ayc;, + as
(eq. (3.1)). @ is assumed to stay constant in
small image neighbourhoods. Therefore its influ-
ence can be compensated with local image char-
acteristics like mean, median. .. The evaluation
of local thresholding methods in [TJ95] shows
that even a simple threshold adaptation with lo-
cal mean and standard deviation as in [Nib86]
compensates well local contrast changes. The
used characteristic is calculated directly from the
cornerness function C'F' to reduce estimation er-
rors on the local contrast factor a*. The local
mean of the cornerness function is a simple char-
acteristic, but it is sufficient to compensate the
local multiplicative illumination factor. This is
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Figure 3.6: Behaviour of the ratio
CF/CF in an image series
of a scene under different
illuminations.

shown in fig. 3.6: the ratio between the cornerness value CF and its local mean CF
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3.4 Local threshold adaptation

Figure 3.7: Grey value image and corresponding local standard deviation of C'F' estimated
on a 15 x 15 window. The grey value image is gamma corrected (y = 1.3).
For better visualisation, the logarithm of the local standard deviation of C'F’
is shown after normalisation between 0 and 255.

stays constant under illumination changes for textured areas. This adaptation is however
sensitive to noise in homogeneous areas as shown in fig. 3.6: the ratio C F//C'F is not con-
stant for pixels in homogeneous areas. These variations occur because CF and C'F both
have very small values. Using both local mean and local standard deviation to adapt the
threshold as in [Nib86] did not bring any advantages in preliminary experiments compared
to only using the local mean.

To avoid detecting noise-induced interest points in homogeneous areas, a step is added
to the filter in which textured areas are detected. This allows to switch off interest point
detection in homogeneous areas. The spatial variations of C'F" are higher in textured areas
than in homogeneous areas. Therefore, textured areas can be detected by thresholding the
local standard deviation of C'F": as shown in fig. 3.7, the local standard deviation of C'F
is higher in textured areas than in homogeneous areas. As the local mean of C'F' is used
to adapt the detection threshold, the local standard deviation of C'F' can be computed
quickly.

Fig. 3.7 shows that the standard deviation of C'F' in homogeneous areas varies with the
grey values: the standard deviation is higher on the white wall than on the grey door or
in the shadow areas in the shelf. Hence, the threshold for the detection of textured areas
depends on the illumination intensity. This is due to the main noise source in modern
cameras: photon noise. Photon noise can be approximated by a multiplicative noise with
a standard deviation proportional to the square root of the grey values. As a result, the
noise on C'F’ in homogeneous is also approximately multiplicative. This can be verified
on image series taken with a constant setup (same camera position and parameters, same
scene and same illumination): noise is the only source for pixel changes between two
images of the series. Calculating the standard deviation of C'F' over such an image series
gives an estimation of the noise standard deviation on C'F'. This is calculated for each

pixel with: ¢(CF) = \/Zﬁle(CFn — CF)?/(N — 1), where CF, is the cornerness value
of the considered pixel for image n of the series, IV is the number of images in the series
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3 Illumination invariant interest point detection for grey value images
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Figure 3.8: Mean and standard deviation of the noise on |C'F|. The same scene as in
fig. 3.7 is used. The 2D histogram is shown on the left. For better visualisation,
false colour are used. Dark blue indicates empty histogram cells, yellow to
red indicates a high number of samples. A line is fitted for the pixels in
homogeneous areas (for which |[CF| is low). The corresponding mean and
standard deviation images are shown on the right.

and CF is the mean of C'F over the image series for the considered pixel. Mean and
standard deviation are estimated here for |C'F|, because it avoids negative cornerness
values and simplifies the analysis. The result is shown in fig. 3.8. For better visualisation,
the logarithm of both mean and standard deviation of |C'F| is used. As can be seen, the
relation between the logarithm of the mean and the logarithm of the standard deviation
is linear. The relation is different for homogeneous and for textured areas (i.e. for low and
for high |C'F| values). For the homogeneous areas (selected here by manually thresholding
|C'F), aline with a slope of 0.907 can be fitted to the histogram data. Similar results are
obtained for different scenes. Therefore, the standard deviation of |C'F| is approximately
proportional to its mean. This shows that the noise on C'F' is approximately multiplicative.

If |CF| is transformed with the logarithm, this multiplicative noise is transformed to
an additive noise. The standard deviation of the noise on In(|C'F|) is approximately
constant, as shown in fig. 3.9. Noise has different influences on In(|C'F'|) in homogeneous
and in textured areas. The noise influence is the smallest in textured areas: the standard
deviation of In(|C'F|) is almost zero in these areas. In homogeneous areas, the standard
deviation of In(|C'F|) is between 0.2 and 0.6. Finally, the standard deviation of In(|C'F|) is
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standard deviation(In(ICFl))

mean(In(ICFl))

Figure 3.9: Mean and standard deviation of the noise on In(|C'F|). The same scene as in
fig. 3.7 is used. The 2D histogram is shown on the left. For better visualisation,
false colour are used. Dark blue indicates empty histogram cells, yellow to red
indicates a high number of samples. The corresponding mean and standard
deviation images are shown on the right.

the highest (approximately 1.1) in areas with a small grey value gradient, like the unsharp
shadow produced by the lamp on the wall. In these areas, the cornerness function is
indeed more sensitive to noise due to the existence of a gradient. As a conclusion, the
noise standard deviation on In(|CF|) does not depend on the illumination conditions.

Therefore, textured areas can be detected using a fixed threshold on the standard deviation
of In(|C'FY).

In the detector, the standard deviation of In(|C'F|) is estimated in image neighbourhoods
because a single image is available. The result of such an estimation is shown on the left of
fig. 3.10. The spatial standard deviation takes the lowest values in homogeneous areas. Its
highest values are at the transition between homogeneous and textured areas. Due to the
logarithm transformation, the peaks of In(|C F'|) near edges and interest points are flatter
than for |C'F|. This leads to moderate values of the spatial standard deviation in textured
areas. The detection of textured areas by thresholding the spatial standard deviation of
In(|CFY) is illustrated in fig. 3.10. The threshold is set to 1.4 based on the histogram of
fig. 3.9. The detection of textured areas using In(|CF|) is not affected by illumination
conditions as the standard deviation of In(|C'F|) is constant for all homogeneous areas.
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3 Illumination invariant interest point detection for grey value images

Figure 3.10: Detection of the textured areas by thresholding the local standard deviation
of In(|C'F|) estimated on a 21 x 21 neighbourhood. Left: standard deviation
normalised between 0 and 255. Right: detection result. Homogeneous areas
are indicated in black. For visualisation, the grey values are gamma corrected

(v=14).

Textured areas are detected by thresholding the local standard deviation o(x, y) of In(|CF).
The local mean u(x,y) of In(|C'F|), which is needed to estimate o(z,y), is used to adapt
the detection threshold to the local lighting conditions. As the logarithm is used and
the illumination factor on C'F' is multiplicative, the local threshold adaptation is per-
formed with an addition: In(|CF|) > T + p. This is illumination invariant because
both In(|C'F|) and p are influenced by the same additive illumination term. According
to eq. (3.6), CF(I) = a,*CF(c), where a; is constant in image neighbourhoods. In
addition, a, > 0 because it is the illumination factor on the grey values. Therefore,
In(|CF(I)|) = 4In(ap) + In(|CF(cp)|). As In(ap) is constant on the neighbourhood used
to compute the mean p, u(I) = 41n(ay) + p(cy).

The proposed interest point detection method is summarised by:
1. Compute C'F with egs. (3.3) and (3.4) and compute In(|CF|).
2. Compute the local mean p and the local standard deviation o of In(|C'FY).
3. (z,y) is an interest point:
e if it is a local maximum of the cornerness function with C'F' > 0,
e and if 0 > T}, (step a: detection of textured areas)
e and if In(|CF|) > p+ Ts. (step b: local adaptive thresholding)

This algorithm is referred to as the Adaptive Threshold Harris Detector (AT-HD) in the
following. It is equivalent to a local normalisation of C'F' with an additional detection of
textured areas. It can compensate the full affine image formation model of eq. (3.1). It
has three parameters: threshold T} for the detection of the textured area, threshold 75 for
the illumination invariant selection of the interest points and the size W of the window
used for estimating the local mean p and standard deviation o.
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3.4 Local threshold adaptation

Threshold T; should be adjusted to the noise level noise std. deviation on textured areas
on C'F. It depends on the camera and on the pa-
rameters geriy, o and «in egs. (3.3) and (3.4). To
set T, the histogram of the standard deviation of
In(|CF]) on an image series taken with a constant
setup can be used, as it represents the noise influ- i chosen threshold
ence. The histogram is obtained like for fig. 3.9, ex- ¢
cept that a 1D histogram of the standard deviation ‘ : ‘ S
is computed instead of a 2D histogram of mean and 0 0.4 0.8 1.2 1.6
standard deviation. This is shown in fig. 3.11. Asin standard deviation of In(ICFl) ¢
fig. 3.9, the histogram contains several peaks: the
first one corresponds to textured areas and the sec-
ond one to homogeneous areas. In addition, higher
values of o occur in areas with a small gradient (ar-
eas where the grey values change slowly) in which
noise effects are amplified. Here T is set to 1.4. The size W of the window used to
compute p and o should be chosen such that the local spatial standard deviation o in ho-
mogeneous areas matches the noise standard deviation estimated in fig. 3.11. This makes
sure that the threshold chosen according to fig. 3.11 is also valid for the spatial standard
deviation o. For this, several window sizes are tested and the results are compared to the
histogram in fig. 3.11. It delivers typically a range for the window size: here, windows of
sizes 15 x 15 to 23 x 23. As shown in fig. 3.10, the estimated spatial standard deviation
o is the largest at the transition between homogeneous and textured areas and decreases
in textured areas because the peaks in In(|C'F|) are flatter than in C'F. Therefore, if
the window size for the estimation of ¢ is too small, only the transition areas between
homogeneous and textured areas are selected as texture by thresholding. Therefore, the
window size should be chosen big enough to detect the complete textured areas. The
thresholding of ¢ is tested on the window sizes selected in the previous step (here 15 x 15
to 23 x 23) with the chosen threshold 77. The best compromise between consistency to
noise standard deviation and thresholding performance is chosen. In this work, W is set
to 21 x 21. W depends on the parameters 4., and oy of eq. (3.3) and on 7. The last
parameter is threshold 75, for adaptive thresholding. It must be positive. Like for the
detectors N-HD and H-HD presented in sections 3.2 and 3.3, it should be set by the user
to get an appropriate number of interest points.

noise std. deviation
on homogeneous areas

noise std. deviation
on areas with small gradient

Figure 3.11: Histogram of the noise
standard deviation on

In(|CF)).

The convolution with the derivatives of Gaussian and with the Gaussian is implemented
as described in subsection 2.2.2. To handle areas with very small cornerness values, the
logarithm is replaced by the following function:

~ | In(e) if |CF| <e
f(CFl) —{ W(|CF|) i |CF|> e

where € is set to 107!2. The local mean and standard deviation of In(|C'F|) are computed
using a recursive and sequential implementation of the box filter like for the local energy
computation in section 3.2. The window size W for estimating p and o only has a minimal
influence on the computation time of the detector thanks to the recursive implementation:
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3 Illumination invariant interest point detection for grey value images

Figure 3.12: Detection example for the Harris detector with local adaptive thresholding
(Tp = 2). The same images as in fig. 3.1 are used. 62.8% of the interest
points of the left image are redetected in the right image. 39.1% of the
interest points in the right image are false positives. Both images are gamma
corrected for visualisation (y = 1.4).

after initialisation, the box filter only requires one addition and one substraction per pixel
instead of W additions.

The results of the AT-HD algorithm are illustrated in fig. 3.12 on the same images as in
fig. 3.1. The detection stability is increased in comparison to the Harris detector (HD):
62.8% of the interest points of the left image are redetected in the right image and 39.1%
of the interest points in the right image are false positives. The detection stability with
AT-HD is lower than with N-HD and H-HD for this image pair. As shown in fig. 3.12, the
distance between neighbouring interest points is larger for AT-HD than for the preceding
detectors. This is due to the large neighbourhood used for threshold adaptation. The
higher sensitivity to noise in nearly homogeneous areas is also visible: some interest points
are detected in the background in both images. Those interest points are not only caused
by noise as small gradient exists in their neighbourhood. They are however unstable.
With the proposed implementation, AT-HD requires 583ms for an image with 640 x 480
pixels (see subsection 2.2.2 for details on the computer), that is 1.42 times the processing
time of HD.

3.5 Local clustering

The last method developed to improve the stability of the Harris detector under illumina-
tion changes is also based on local adaptive thresholding. Instead of adapting the threshold
to the lighting conditions with a local characteristic like in section 3.4, the threshold is
computed based on local clustering of the cornerness function C'F. This algorithm is sim-
ilar to the method in [ETMO1], which is one of the best performing binarisation methods
in the comparison presented in [TJ95].
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3.5 Local clustering

The algorithm in [ETM91] computes a local threshold by
applying the Otsu clustering method presented in [Ots79] on
image neighbourhoods. Clustering results in an automatic
division of the image pixels into several classes or clusters. 1T —
In this work and in [ETMO1], the pixels are divided into two 11 . '
classes: object and background. In this work, object cor- 11 e
responds to areas in which interest points can be detected
(textured areas) and background corresponds to homoge- S RN IR (A
neous areas. Clustering provides an optimal threshold to pixels are delimited with dotted lines
separate the two classes. To save execution time, the dis-
cretisation shown in fig. 3.13 is adopted: pixels in the large
window L are considered for clustering, and the threshold
is applied to the small neighbourhood S. This is performed
for all small neighbourhoods S in the image (indicated by squares delimited with thick
black lines in fig. 3.13).

Figure 3.13: Discretisation
for the local
thresholding.

Almost all clustering methods model each class with a Gaussian distribution. To achieve
a better fulfilment of this condition, the logarithm of |C'F| is used. The cornerness values
C'F are too much spread out for being accurately modelled with a Gaussian. Histograms
of In(|C'FJ) in 40 x 40 image windows are shown in fig. 3.14 for a homogeneous and a
textured area. Fig. 3.14 shows that the histogram for the textured patch has two distinct
clusters. The cornerness values in homogeneous areas and the cornerness values near
edges can be modelled as two classes with low and high mean values. The histogram for
the homogeneous patch has only one cluster: only one class is visible.

histogram of In(ICFl) histogram of In(ICFl)
in a 40x40 homogeneous area in a 40x40 textured area

o T T

-65 -55 -45 -35 =25 -13 -9 -5 -1 3

I |II IIII+I|

Figure 3.14: Histogram of In(|C'F|) in homogeneous and textured image patches. The cor-
responding image patches are shown on the top left corner of the histograms.

In this work, a faster method than the Otsu method is used: the k-means algorithm. Both
methods optimise the same criterion to find the two classes and the optimal threshold,
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3 Illumination invariant interest point detection for grey value images

but the k—means finds iteratively the best threshold near an initial user—defined threshold.
The Otsu method on the contrary performs an exhaustive search, which requires more
computing time. The k—means finds only a local optimum if the initial threshold is too
far from the real global optimum. The k-means for two classes is named ISODATA.
It was presented by Ridler and Calvard in [RC78]. The classes are represented by two
Gaussian distributions with different means and with the same standard deviation. As
visible in fig. 3.14, the two classes do not have the same standard deviation. Therefore, the
threshold obtained with the ISODATA algorithm will not be optimal. Other clustering
methods can handle classes with different standard deviations, for example the method by
Kittler and Illingworth in [KI86]. This method estimates more parameters for the classes.
Therefore, it requires more computation time and is more probable of overfitting the data
when applied on a small image window instead of a whole image. To avoid overfitting,
the ISODATA algorithm is used in this work, even if it does not work optimally.

The ISODATA algorithm works according to the following scheme:
1. The current threshold is initialised with the initial threshold: T¢wrrent = Tnit,

2. Using the current threshold T ¢"  the pixels are separated into two classes. The
means of both classes p!°? and p"9" are computed (ule® < phioh).

3. The threshold is updated as the average of those means: 7™ = (plow 4 pioh) /2.

Tcurrent —

4. Steps 2 and 3 are repeated with T until all pixels belong to a single
class or until the threshold stops changing: |T¢“"¢" — T"%| < ¢ where € is user—
defined.

The performance of the ISODATA algorithm depends on the initial threshold. As pro-
posed in [RC78], the mean of the data is used for initialisation. To reduce the computation
time, the mean of In(|C'F|) over the whole image is used to initialise the ISODATA al-
gorithm for all considered neighbourhoods L. Although it represents the global lighting
conditions, a consistent convergence of the ISODATA algorithm has been obtained for
all tested images. For interest point detection, significant local maxima of C'F' in tex-
tured areas are searched. Therefore, it should be first verified that the area is textured.
Histogram of homogeneous areas like in the left part of fig. 3.14 have a single peak. The
ISODATA algorithm may deliver two classes with two close mean values, because the sum
of two Gaussians is a single peak when the means are close enough. Alternatively, one of
the two classes may be empty. As a consequence, interest points are only detected when
no class is empty and when the two classes have distant means: p9" — p°v > T|. The
results of the ISODATA algorithm on In(|C'F|) are illustrated in fig. 3.15 on the scene of
fig. 3.10. The textured areas are reliably detected with the used threshold 77 = 2.5. The
coarse discretisation by neighbourhoods S and L is visible. In the detected textured areas,
significant local maxima correspond to interest points. The class with the higher mean
represents the pixels near edges. Therefore ;"9" is used to compute the local threshold.
Similarly to the AT-HD method described in section 3.4, all local maxima of C'F' such
that In(|CF|) > phh 4+ T, are detected.

Like for AT-HD, interest point detection depends only on In(|C'F|). The illumination
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3.5 Local clustering

Figure 3.15: Results of the ISODATA algorithm on 25 x 25 neighbourhoods (L) of
In(|CF]). The small neighbourhood S is 5 x 5 wide. Left: low cluster mean
pow . Middle: high cluster mean p"*". Both images are scaled with the same
parameters for visualisation. The areas with constant grey value are areas
for which the high cluster contains no pixel. Right: detected textured area.
Homogeneous areas are indicated in black. 77 is set to 2.5 for the detection
of textured areas with p 9% — plow > T,

influence on In(|C'F|) is a local additive term according to the used image formation
model: In(|CF(I)]) =41n(ay) +In(|CF(cp)|). In(ap) is assumed to stay constant in image
neighbourhoods (see section 3.4 for more details). As In(ap) is constant on neighbourhood
L, both cluster mean values are translated by 4In(ay): p®(I) = pl*“(cy) + 41n(ap) and
pi9h (1) = ph9h (cy) + 41n(ap). Therefore, the detection of textured areas by thresholding
phih — plow s invariant to illumination changes: ph(I) — plow(I) = phi9t(c,) — plov(cp).
The selection of the significant interest points with In(|CF(I)|) > pMh(I) + T is also
invariant to illumination changes because it is equivalent to In(|CF(cp)|) > p"9"(cp) + Ts.
Due to the higher computational cost, a coarser discretisation is used than for the other
developed detectors. The clustering step makes this method more flexible than the other
detectors. In theory, more complex models could be handled than the simple additive
model on In(|C'F|). Therefore areas where the assumptions of the image formation model
(eq. (3.1)) are not completely fulfilled can be better handled than with the other detec-
tors developed in this work. On the other hand, clustering requires the use of larger
neighbourhoods in comparison to the other detectors: this increases modelling errors.

The detection algorithm is summarised in the following:
1. Compute C'F' with egs. (3.3) and (3.4) and compute In(|C'FY).

2. Apply the ISODATA clustering algorithm to In(|C'F’|) using all pixels in the large
neighbourhoods L (see fig. 3.13) to obtain u'* and p"9".

3. In all small neighbourhoods S, (z,y) is an interest point:
e if it is a local maximum of the cornerness function with C'F' > 0,
e and if pM9h — pylow > T, (step a: detection of textured areas)

e and if no cluster is empty, (step a: detection of textured areas)
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3 Illumination invariant interest point detection for grey value images

e and if In(|CF|) > pM9" + Ty, (step b: local adaptive thresholding)

This method is referred to as the Local ISODATA Harris Detector (LI-HD) in the fol-
lowing.

The LI-HD algorithm has five parameters. Two parameters have only a small influence
on stability: the size of the small neighbourhood S and the threshold € used to detect the
convergence of the ISODATA algorithm (see the description of the ISODATA algorithm).
Both should be set to obtain a reasonable computing time. Here ¢ = 0.1 and a small
neighbourhood S of size 5 x 5 are used. The size of the large neighbourhood L depends
on the Gaussian used to calculate CF (o) in eq. (3.3)). If the neighbourhood L is too
small, the clustering does not work because not enough data are available. Therefore, L
should be chosen experimentally such that each cluster (homogeneous areas for u!°* and
textured areas for p9") has enough samples. In this work, L is set to 25 x 25. Threshold
T; depends on the parameters in eq. (3.3) and on the camera noise, because stronger
noise and smaller g, or oy result in higher p!?. T} represents the required signal to
noise ratio between cornerness values in homogeneous and in textured areas. To select
Ty in this work, the distance p 9" — (! was calculated on several image patches. Ty is
chosen to reduce the detection of interest points in areas having a small gradient as they
are more sensitive to noise (see section 3.4). As shown in fig. 3.15, the cluster with the
high cornerness values is empty in most homogeneous areas. Therefore if the maximum
number of interest points should be detected for the application, 7} can be set to 0. Its
value only has a limited influence on detection stability. In this work, 77 = 2.5 is used.
T, allows to control the density of detected interest points in textured areas. It should be
defined by the user to get an appropriate number of interest points.

The convolution with the derivatives of Gaussian and with the Gaussian kernel is im-
plemented as described in subsection 2.2.2. To compute In(|C'F|), the same method as
in section 3.4 is used. The ISODATA algorithm is implemented straightforwardly as in
[Par93]. No optimisation such as recursive implementation is performed: the comput-
ing time reduction would be small because the iterations of the ISODATA algorithm use
different thresholds even for neighbouring pixels.

The results of the LI-HD are illustrated in fig. 3.16 on the same images as in fig. 3.1. Due
to the large neighbourhood used to adapt the threshold, neighbouring interest points are
farther away from each other than for HD, N-HD and H-HD. Unstable interest points
are detected in areas of the background with weak texture like with AT-HD. 54.2% of the
interest points in the left image are redetected after illumination change. 44.8% of the
interest points in the right image are false positives. The detection stability of the LI-HD
is better than the stability of the Harris detector for this image pair. It is similar to the
stability of AT-HD and slightly lower than the stability of N-HD and H-HD. With the
proposed implementation, LI-HD requires 664ms for an image with 640 x 480 pixels (see
subsection 2.2.2 for details on the computer): that is 1.61 times the processing time of

HD.

44



3.6 Handling of saturated areas

Figure 3.16: Detection example for the local ISODATA Harris detector (T; = 0.5). The
same images as in fig. 3.1 are used. 54.2% of the interest points of the left
image are redetected in the right image. 44.8% of the interest points in
the right image are false positives. Both images are gamma corrected for
visualisation (v = 1.4).

3.6 Handling of saturated areas

Images of standard CCD or CMOS cameras contain areas with saturated pixel values,
because of the high dynamics of light intensity. This is caused by visible light sources, for
example the windows in fig. 3.17, or by specular highlights, for example on the posters
in fig. 3.17. In those saturated areas, texture information is partially or completely lost,
therefore no reliable detection can be done. Discretisation effects are emphasised at the
border between saturated and non-saturated areas. This leads to the detection of interest
points caused by aliasing artifacts as shown on the windows in the bottom left image of
fig. 3.17. If “true” interest points are detected near these areas, they cannot be matched
reliably because part of the image information in the interest point neighbourhood misses.
For those reasons, saturated areas are detected and the interest points detected in their
vicinity are discarded. This reduces false interest point candidates for matching. It is
also important for the comparison between different detectors in section 3.7. Detection
unstability near or in saturated areas is caused solely by image data. It is therefore
independent of the used detector. In practise, the number of interest points affected by
saturated areas is however random and could therefore distort the comparison results.

The detection and handling of saturated areas is identical for all detectors. A colour
camera is used for image acquisition in this work. Hence, saturated pixels are detected
by thresholding the R, G and B channels. They are stored in a saturation map S:

S(x,y) = { 1 if R(x,y) = 255 or G(x,y) = 255 or B(z,y) = 255

0 otherwise
This thresholding is illustrated on the top left image in fig. 3.17. To avoid detection
of interest points near saturated areas, the saturation map S is dilated with a simple

for all pixels (z,y).
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Figure 3.17: Detection and handling of the saturated areas. Top left: detected saturation
map S. Top right: Saturation map after dilatation S’. Bottom left: inter-
est points detected with the Harris detector. Bottom right: interest points
detected with the Harris detector and handling of saturated areas. For both
images, the 100 best interest points are detected.

7 x 7 square mask. The mask size must be adapted to the size o,; of the neighbourhood
considered for interest point detection (see eq. (3.3)). This dilatation is implemented
with a 7 x 7 box filter followed by thresholding. S is a binary image, so the result of the
convolution with the box filter is strictly positive if and only if one or more pixels in the
neighbourhood defined by the kernel is equal to one. Similarly, the result of a dilatation
on a binary image is one if and only if one or more pixel in the structuring element is equal
to one. Hence, the dilatation with a 7 X 7 square structuring element is implemented by:

1. Filter the binary saturation map S with a 7 x 7 box filter. It results in the grey
value image Spoq.

2. Binarise the result Sy, to get the final binary saturation map S’ with:
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1 if Spow(z,9) >0

0 otherwise for all pixels (z,y).

S'(z,y) = {

The resulting saturation map S’ is illustrated on the top right image of fig. 3.17. All
interest points detected in the areas marked by one in the dilated saturation map S’
are discarded. The box filter is implemented sequentially and recursively as described in
section 3.2. As illustrated in the bottom of fig. 3.17, no interest points are detected in
the vicinity of saturated areas when this handling of saturated areas is applied.

3.7 Comparison framework

The stability of the developed detectors under illumination changes is evaluated and
the detectors are compared to each others as well as to the original Harris detector.
This section presents the comparison framework. The criteria used to measure detection
stability are presented in subsection 3.7.1 after an overview of criteria used in similar
works. The compared detectors and the detection parameters are given in subsection
3.7.2. Finally the image data are presented in subsection 3.7.3.

3.7.1 Quantitative evaluation of the detection stability

Most authors compare their interest point detector to other detectors with a simple visual
comparison on a few test images, for example in [SB97, vdW05, Kov03]. One of the first
comparisons based on quantitative evaluation of interest point detection is presented in
[SMBO00]. The stability of several interest point detectors is estimated using image series
showing the same scene under different changes of imaging conditions (noise, camera
movement and lighting conditions). In each series, one image is chosen as reference image
and the interest points detected in this image are considered to be the “ground truth”. A
stable detector would detect interest points corresponding to the same scene points as the
reference interest points in all other images. Therefore, detection stability is measured
with the repeatability rate, which is defined for image 7 as:

| Ri(e)]

it (3.12)

ri(e) =

|R;(€)| is the number of reference interest points redetected in image i. ny is the number
of reference points visible in the current image (the reference image is assumed to have
number one) and n; is the number of interest points in the current image ¢ visible in
the reference image. This visibility test is necessary when the camera is moved, as the
scene visible in both images may be partly different due to occlusion. To compute | R;(€)],
the geometric transformation between both images is estimated and the reference interest
points are projected in image i. A reference point is considered redetected if an interest
point is detected in image ¢ in a disc of radius € centred on the projection of the reference
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point. The repeatability rate takes values in [0,1]. High stability is indicated by high
repeatability rate.

The repeatability rate is adopted in other works to assess detection stability, for example
in [STLT03, VLO1]. It has also been extended or modified to assess other characteristics
of interest point detectors. In [MS04, MTS*05], the repeatability rate is used to com-
pare affine invariant interest point detectors. In order to better evaluate the invariance
to affine image transformations, a reference interest point is considered redetected only
if the neighbourhood estimated by the detectors on image ¢ and the projection of the
neighbourhood of the reference interest point have a minimum surface overlap of 40%.
In [Gou00], a second measure is added to the repeatability rate to evaluate detection ac-
curacy. Instead of only counting the number of redetected points, the distances between
the projections of the redetected reference points and the corresponding points detected
in image ¢ are accumulated. Smaller values indicate a more accurate redetection.

The repeatability rate has one main drawback: it only considers the redetected interest
points (the true positives), but it does not take into account the number of false positives,
which are the interest points detected in the current image which do not correspond
to any reference interest point. Therefore, decreasing the detection threshold to obtain
more interest points generally increases the repeatability rate, even though the number
of noise sensitive and unstable interest points is increased. Therefore other measures are
used in [CJ02, MMO1] to assess both false positives and true positives. This is realised
by considering the variation of the number of detected interest points between images.
Ideally, this number should not vary. In addition, the repeatability rate is replaced by
the true positive rate (redetection rate) in [CJ02]. This is the ratio of the number of
redetected reference interest points to the number of reference interest points visible in
the current image: |R;(€)|/ny with the notations of eq. (3.12). In [MMO1], the detected
interest points are compared to a ground truth based on human judgement: the reference
image is replaced by a man—-made map of “true” interest points in the scene.

Finally, interest point detection is in general only an intermediate step in an application
and it is most of the time followed by matching. Therefore, matching scores can also be
used as a criterion to compare interest point detectors, like for example in [MTS*05] or in
[GMD™97]. Such an application—based evaluation is performed in chapter 5 of this thesis.

To take into account both true positives and false positives, redetection and false positive
rates are used in this work to evaluate the interest point detectors, like in [CJ02]. The
ground truth is the interest points detected in a reference image, as it results in a better
estimation of detection stability than a man—made interest point map. As explained in
section 3.6, no detection is performed in detected saturated areas. Therefore saturated
areas must be taken into account to estimate redetection and false positive rates. This
yields a fairer comparison between detectors as discussed in section 3.6. This is performed
similarly to the visibility test in the repeatability test. The redetection rate 7/(¢) and the
false positive rate fp;(e) for the current image i are defined by:

(3.13)
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|R;(€)| is the number of reference interest points redetected in image i like in eq. (3.12).
n) is the number of reference points which do not project in a saturated area in image i.
n; is the number of detected interest points in image ¢ which do not project in a saturated
area in the reference image. This work is focused on illumination changes. Therefore, the
images used for comparison present the same scene under different illumination conditions.
There is no camera movement, so the projection between reference and current images
is the identity transformation: corresponding pixels have the same coordinates in both
images. Each reference point is therefore considered redetected if any interest point is
detected in the current image 7 in a disc of radius € centred on the reference point. To
take into account noise influence on the position of the interest points, € is set to 1.5: all
points detected in the 3 x 3 neighbourhood of a reference interest point contributes to
|R;(€)|. Redetection and false positive rates sums up to one only when n} = n}. This is
only the case when a constant number of interest points is detected per image and when
the images contain no saturated areas.

3.7.2 Compared interest point detectors

The performances of all developed interest point detectors are evaluated. In addition they
are compared to an existing interest point detector: the Harris detector. This allows to
evaluate the stability improvement yielded by the different developed methods, because
all evaluated detectors are built on the same principle and only the adaptation of detection
to the lighting conditions is different. No other exiting interest point detector is included
in the evaluation because it is shown in [MTST05] that interest points based on different
principles have different performances on different image types (structured or textured
images, ...). This makes the comparison of detectors built on different principles as in
[MTS*05] difficult.

As explained in subsection 2.3.1, the detection with the Harris detector can be adapted to
the global lighting conditions by either selecting the N interest points with the highest cor-
nerness values or by using a detection threshold proportional to the maximum cornerness
value in the image. It is shown in [Fai03a] that the selection of the N best interest points
yields more stability under illumination changes. Therefore, the Harris detector used for
comparison to the developed methods selects the N points with the highest cornerness
values. An overview of the five interest point detectors is given in table 3.1.

detector name abbreviation ‘ description | computing time
Harris detector HD section 2.2.2 412 ms
energy normalised Harris detector N-HD section 3.2 480 ms
homomorphic Harris detector H-HD section 3.3 457 ms
adaptive threshold Harris detector AT-HD section 3.4 583 ms
local ISODATA Harris detector LI-HD section 3.5 664 ms

Table 3.1: Overview of the evaluated interest point detectors.
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For all detectors, the handling of saturated areas described in section 3.6 is applied.
The following parameters are used for all detectors to compute the cornerness values:
Oderiv = 1.2, oy = 3 and o = 0.06. All parameters of the developed methods are set to
the values given in the corresponding sections, except the user—defined thresholds which
control the number of detected interest points. These thresholds are set to avoid detecting
noise-induced interest points and to detect enough interest points on all used scenes. As
the used scenes have different complexities, a compromise must be found. The user—
defined threshold has however for all developed methods only a limited influence on the
detection stability. For HD, N = 100 interest points are detected. For N-HD, T" is set to
0.05. For H-HD, T is set to 107°. For AT-HD, T} is set to 2. For LI-HD, T is set to
0.5. Those values are used for all experiments presented in section 3.8.

3.7.3 Image data set

Several image series are used to evaluate detection stability under illumination changes.
Each series shows one scene under different illumination conditions. The images are
acquired with a BASLER A302fc colour CCD camera. No gamma correction and no
white balancing is performed. Gain and brightness (multiplicative gain and additive
offset applied to the electric signal before A/D conversion in the camera) are set to the
values given by the manufacturer as it is the optimal operating point of the electronics:
it minimises electronic noise and it maximises linearity between light and pixel values.
Only aperture and shutter time of the camera are changed. Those two parameters are set
manually to avoid large saturated areas in the images and to obtain the best possible pixel
value histogram. Some large dark areas may however appear in some images as a result of
the sensor linearity, especially when the illumination is not diffuse as it leads to very dark
shadows. The raw camera signal is used and demosaiced with the algorithm in [LT03], as
explained in chapter 4. The grey value images are obtained as the Y component of the
YUV colour space: Y = 0.3C% 4 0.59C% + 0.11C® (see [Tec01]). This results in images
equivalent to images acquired directly with a one-channel CCD camera. The advantage
is that the detectors based on colour information presented in chapter 4 can be evaluated
on the same image data. In each series, one image is chosen as reference image to compute
redetection and false positive rates as given in subsection 3.7.1.

The first image series on which the detectors are evaluated are images series with simple
illumination changes. The variation is the same for all pixels in the image. As a result, the
original Harris detector can compensate these illumination changes. All detectors should
therefore reach good detection stability. In the first image series, there is no illumination
variation at all. Noise is the only cause for pixel value variations. The second image
series is lighted with neon lamps. Therefore pixel variations are caused by neon lamp
flickering and by noise. For both series, the choice of the reference image is not important
because all images are very similar. The first image is therefore chosen as reference. In
the last series, the shutter time of the camera is linearly increased while the aperture
stays constant. The reference image is the image in the middle of the series to test the
stability for both intensity increase and decrease. These three image series show the same
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Figure 3.18: Two images of the series with shutter time variations. For visualisation, the
images are gamma corrected (y = 1.4).

scene. Two images of the intensity variation series are shown in fig. 3.18. For these three
series, the scene geometrical and reflectance properties are not important as they have no
influence on the pixel variations under these simple illumination changes.

The other image series present scenes under complex illumination changes. The illuminant
type is varied. Realistic illuminants are used: natural light, neon lamps and tungsten
halogen lamps. For the tungsten halogen lamps, umbrellas can be added to obtain a more
diffuse light. Natural light is approximately white with the fixed white balancing settings
of the camera, while neon lamps produce yellow light and tungsten lamps produce red
light. Position, orientation and number of light source(s) are also changed in the series.
The image with the “best” lighting conditions is selected manually as the reference image
in each series: it is the image with the most uniform lighting. For complex illumination
changes, scene properties have a big influence on the changes in the images. In scenes with
complex 3D geometry, the influence of shadows and shading is higher than in scenes with
simple geometry (fr example planar scenes). Similarly the reflectance properties of the
scene are important as they influence the amount of specular effects in the image. Indeed,
specularities cannot be compensated by N-HD and by H-HD because both methods are
based on the local multiplicative image formation model of eq. (3.2). The detectors have
been tested on scenes with various properties. Two realistic scene types are used. First,
typical indoor scenes are used, showing places in our laboratory. Second, typical scenes
for object recognition are also used, showing one or a few objects in foreground with an
approximately homogeneous background. Detection stability is similar for these two scene
types. It depends much more on the object or place properties (such as simple/complex
3D geometry or diffuse/specular surfaces) than on the scene type. Scenes with similar
properties result in similar detection stability. Therefore typical image series have been
selected out of all acquired series and series with redundant results are not presented in
this thesis. For each of the selected series, the reference image and two characteristic
images are shown in fig. 3.19. The first three series (nesquik, paper and calender) present
structured scenes with decreasing 3D complexities and specular surfaces. The next two
series (shelves and rabbit) show scenes with complex 3D geometry and diffuse surfaces.
Their reflectance is however more complex so that they are textured scenes (they have
many interest points with similar cornerness values). The shelves series also presents the
effect of shadows: most images contain many sharp or soft shadows.

ol
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nesquik series

paper series

calendar series

rabbit series

Figure 3.19: Sample images of the series with complex illumination variations. For all

image series, the reference image of the series is shown on the left.
visualisation, the images are gamma corrected (y = 1.4).
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3.8 Detector evaluation and comparison

The results of the detector evaluation are presented in this section. In subsection 3.8.1, the
detectors are evaluated on image series with simple illumination changes. In subsection
3.8.2, the results for the image series with complex illumination changes are presented.
Finally, a conclusion is given in subsection 3.8.3.

3.8.1 Simple illumination changes

Image series with noise as only source for pixel variations
| HD | N-HD | H-HD | AT-HD | LI- HD
0.983 | 0.974 | 0.980 | 0.933 0.923

mean redetection rate
mean false positive rate

0.0247 | 0.0279 | 0.0388 | 0.0647 | 0.0787

Image series with neon flickering as main source for pixel variations
\ HD \ N-HD \ H-HD \ AT-HD \ LI- HD
0.971 | 0.977 | 0.989 | 0.942 | 0.936

mean redetection rate

mean false positive rate | 0.0542 | 0.0133 | 0.0506 | 0.0670 | 0.0554

Table 3.2: Evaluation results for the series with small illumination changes. In the first
series, no illumination changes occur so that noise is the only source for pixel
variations. In the second series, neon flickering is the main source for pixel
variations. The mean rates for the whole series are given (50 images). The
scene is shown in fig. 3.18.

The evaluation results for the image series with simple illumination changes are shown
in table 3.2 and in fig. 3.20. In the first series, no illumination change occurs. Noise is
the only source for pixel variations. The mean redetection and false positive rates for all
tested detectors are given in the top of table 3.2. HD, N-HD and H-HD all have similar
stability. The small differences of redetection and false positive rates for these three
detectors are not significant. AT-HD and LI-HD have a slightly smaller stability for this
scene. The detection thresholds have been selected based on many images. The lower
stability of AT-HD and LI-HD are caused by a mismatch between detection threshold
(Ty) and scene content. Many interest points have a similar cornerness value and the
detection threshold selects only part of these similar interest points. As a result, small
changes of the cornerness values due for example to noise influence the redetection of
many interest points, decreasing hence detection stability. When the AT-HD and the LI-
HD detectors are evaluated on similar image series with other scenes, redetection rates
are in the range [0.95,0.97] and false positive rates are in the range [0.02,0.06], like for
the other three detectors.

93



3 Illumination invariant interest point detection for grey value images

Image series with varying shutter time
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Figure 3.20: Evaluation results for the series with shutter time variations. Redetection
rates are indicated with straight lines. False positive rates are indicated with
dashed lines. The mean grey value for the images varies from 14.5 on the left
for image 1 to 66.8 on the right for image 18. The scene is shown in fig. 3.18.

The second image series shows the same scene illuminated by neon lamps. Neon lamp
flickering is the main source for illumination changes. The results are given in the bottom
of table 3.2. As before, HD, N-HD and H-HD have similar stability and AT-HP and
LI-HD have slightly lower stability due to the used threshold (the same scene is used).
The mean redetection rates and the mean repeatability rates are similar for both series
shown in table 3.2. This shows that neon flickering is well compensated by all detectors.
For comparison, when a fixed threshold is used for the original Harris detector, the mean
repeatability rate is 0.933 and the mean false positive rate is 0.0640 (the threshold has
been chosen manually to obtain 100 interest points in the reference image).

The last image series with simple illumination changes shows the same scene under varying
illumination intensity. This is obtained by varying the camera shutter time. The results
are presented in fig. 3.20. The stabilities of all detectors are in the same range. The
differences in repeatability and false positive rates are caused mainly by the threshold
values. When HD is applied with N = 200, the curves for the repeatability and false
positive rates are between the curves for N-HD and H-HD. This shows that HD, N-HD
and H-HD have similar stability. Like for the first two other series, AT-HD and LI-
HD have slightly lower stability due to the chosen detection threshold. Fig. 3.20 shows
that all developed detectors (N-HD, H-HD, AT-HD and LI-HD) are less stable in dark
images: the redetection rates decrease for images with low mean grey values (small image
numbers). Those detectors are all more sensitive to noise in dark images because the
values used to adapt the detection to the local illumination conditions (for example the
local grey value energy or the local mean cornerness value) are low, hence noise sensitive.
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Figure 3.21: Evaluation results for the nesquik series (see fig. 3.19). The redetection rate
is given in the left diagram and the false positive rate is given in the right

diagram. The illumination type for every images is indicated at the top of
the diagram.

As a consequence, the adaptation process is more sensitive to noise. Similar results are
obtained on other scenes, as shown for example in [Fai03a, Fai03b, Fai04b].

All illumination changes handled in this subsection are simple illumination changes, which
have the same influence on all pixels. Therefore, the original Harris detector can compen-
sate these changes when the threshold is adapted using the maximum cornerness value
or when the N interest points with the highest cornerness values are selected. It is shown
here that the interest point detectors developed in this work achieve similar stability. The
noise sensitivity of the new detectors is slightly higher on dark images than for the Harris
detector. In addition, the results for AT-HD and LI-HD shows that detection stability is
slightly decreased when detection threshold and scene content mismatch.

3.8.2 Complex illumination changes

The evaluation results for all detectors under complex illumination changes are presented
in this subsection. Sample images of the series are shown in fig. 3.19. Type, number,
position and orientation of the light sources vary from one image to another (see subsection
3.7.3). The reference image is selected manually and is approximately uniformly lighted.

Typical results for a standard scene are presented in fig. 3.21. As explained in subsection
3.7.3, the scene properties have a strong influence on detection stability. This scene has
a 3D geometry of middle complexity. The object reflectance is structured and it contains
both Lambertian and specular components (see fig. 3.19). As shown in fig. 3.21, HD
yields the lowest stability: it has the lowest redetection rate and the highest false positive
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rate for most images. The detected interest points are indeed located in the areas with
the highest local contrast. The position of these areas in the scene varies due mainly to
changes of the light source position and orientation. A local adaptation of the detection to
the lighting conditions improves detection stability: all developed detectors achieve better
results. N-HD and H-HD provide the best stability. Their performance is similar. AT—
HD and LI-HD also have similar performances. Their stability is lower than the stability
of N-HD and H-HD. For the new detectors, unstability is mainly caused by specular
highlights, which have a high cornerness and change position when the light source or
the camera moves. The filtering of saturated areas suppresses some of those interest
points, but not all specular highlights are saturated. Fig. 3.21 also shows that a change
of the illuminant type has a stronger influence on the image and hence on the detection
stability than a movement of the light source or a different number of light sources. This
can be explained by two effects. First, a change of the illumination colour cannot be
compensated correctly for grey values especially when the neighbourhood contains more
than one colour. In addition, the illumination properties (diffuse or directed light...)
have a strong influence on shadows: diffuse illumination reduces the contrast between
shadows and directly lighted areas, so it prevents strong spatial variations of the light
intensity in the scene. The difference between diffuse and point light source illumination
is visible in fig. 3.19 for the shelves series. The most diffuse illumination is achieved here
with neon lamps or sunlight depending on the time of day.

To verify that the developed detectors better compensate local lighting changes (in oppo-
sition to global lighting changes which have a similar influence on all pixels), the following
complexity measure C'M is introduced:

L—m I
OM(I1, 1) = CM (I, ) = o(=— . - H2y . (3.14)
1 2

CM (I, I3) characterises the complexity of the illumination variation between the two
grey value images I; and I,. Both images should show the same scene like in the used
image series. u; and o; are the mean and standard deviation of the grey values of image I;.
(I; — p;) /oy is image I; after zero-normalisation: the mean of the grey values becomes zero
and their standard deviation becomes one. This normalisation compensates the global
illumination influence: I = ayc,+as where a;, and a, are identical for all pixels (see section
3.1). CM is the standard deviation o of the difference between the two zero—normalised
images. If images I; and I5 are related by a global lighting change, the difference between
the zeronormalised images is approximately zero and CM = 0. Hence, C'M indicates if
an adaptation to the overall lighting condition is enough for a stable detection.

The stability of HD should decrease when C'M increases. For the image series with varying
shutter time in fig. 3.20, the complexity measure C'M between two images takes values
of about 0.05 as a result of noise and saturation. The redetection and the false positive
rates for the nesquik series (see fig. 3.21) are presented as a function of the complexity
measure between reference image and current image in fig. 3.22. C'M varies between 0
and 1.5 for this series. This proves the necessity to consider the local lighting conditions
for complex lighting changes. Fig. 3.22 shows that the stability of the developed detectors
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Figure 3.22: Evaluation results for the nesquik series (cf. fig. 3.19) depending on the com-
plexity measure C'M. The redetection rate is given in the left diagram and
the false positive rate is given in the right diagram.

decreases less strongly than the stability of the original Harris detector (HD) when C'M
increases. Therefore, the developed detectors achieve a better compensation of the local

lighting conditions. The developed detectors are hence more useful for complexer lighting
changes. As before, H-HD and N-HD achieve the best results.

The detection stability increases for all detectors when the scene 3D geometry is simpler.
This is shown in fig. 3.23 which presents the evaluation results for a rectangular object
(paper series) and for a planar object (calendar series). For all detectors, the redetection
rate is higher for paper than for nesquik and for calendar than for paper. The false
positive rate is also smaller for paper than for nesquik and for calendar than for paper.
The reason for this is that shadows and shading have less influence: the orientation of
the surface normals varies less (see eq. (2.1)) and there are less shadows. As a result,
the stability increase yielded by the developed detectors in comparison to HD is smaller
for simpler 3D geometry, as shown in fig. 3.23. For simple 3D geometry, the illumination
influence becomes similar for all pixels. This leads to a better performance of HD. The
stability of the developed detectors also increases because they only compensate shadows
and shading with slow spatial variations (a, and as in eq. (3.1) are assumed to vary
slowly). For scenes with large planar surfaces, large specular areas may appear for some
illumination directions as shown for the right image of paper in fig. 3.19. These large
specular areas may prevent the redetection of interest points, as shown by the drop in
the redetection rate for the paper series for images 27 to 29 and for the calendar series
for images 1, 4 and 11 to 14. N-HD and H-HD are particularly sensitive to such large
specular areas as they do not compensate specularities: almost no interest points are
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Figure 3.23: Evaluation results for the paper series (top) and for the calendar series (bot-
tom) (see fig. 3.19 for sample images). The redetection rate is given in the
left diagram and the false positive rate is given in the right diagram. The
illumination type for every images is indicated at the top of the diagrams.
The same legend is used in both diagrams.
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detected in specular areas. AT-HD and LI-HD detect a reduced number of interest
points, so redetection is less influenced. On the other hand, they detect interest points at
the border of specular areas when the spatial transition is abrupt enough and when the
grey values in the specular areas are not saturated. As a result, HD, AT-HD and LI-HD
have a higher false positive rate than N-HD and H-HD when large specular areas occur.
For these two scenes with simple 3D geometry, N-HD and H-HD achieve slightly better
stability than HD, AT-HD and LI-HD which perform similarly.

The results of the detectors for textured scenes are presented in fig. 3.24. In both scenes,
the reflectance is more complex than for the previous scenes, as shown in fig. 3.19. As a
consequence, many interest points have similar cornerness values. This reduces detection
stability: for all detectors, the repeatability rate for the rabbit and shelves series is smaller
than for the nesquik, paper and calendar series. The false positive rate is also higher. A
higher stability could be reached by adapting the detection threshold to the scene content.
The rabbit series has a 3D geometry of similar complexity to the nesquik series. The scene
is also less specular. The main causes for unstability are hence self-similarity in the object
texture and shadow and shading effects which cannot be completely corrected. Like for
the previous series, N-HD and H-HD yield the most stable detection. AT-HD, LI-HD
and HD all achieve similar stability. The shelves scene has the most complex 3D geometry.
As a consequence, shadow and shading effects have higher influence. This is particularly
visible when the scene is lighted with tungsten lamps as they provide a less diffuse light.
As a result, many sharp shadows appear in the image and some shading edges have high
contrast. This is visible on the right image of the shelves series in fig. 3.19. This results
in lower stability for all detectors because corners are detected near shading or shadow
edges, which change with the light source position and orientation. The stability of the
developed detectors is better than the stability of HD because at least the slowly varying
part of shadows and shading can be compensated. The achieved detection stability is
however low. To compensate sharp shadow or shading edges, colour images are required
as explained in section 2.1. For the shelves series, N-HD and H-HD perform best, followed
by AT-HD and LI-HD. HD achieves the worst stability.

3.8.3 Conclusion

All tested detectors (HD, N-HD, H-HD, AT-HD and LI-HD) yield similar high stability
when illumination changes affect all pixels identically. This occurs for all kinds of scenes
under simple illumination changes and for scenes with planar geometry under all illumina-
tion changes. For complex illumination changes and scenes with moderate or complex 3D
geometry, the developed detectors (N-HD, H-HD, AT-HD and LI-HD) are more stable
than the original Harris detector (HD) because they can better compensate shadow and
shading effects. In addition, the stability improvement increases when the scene geometry
or the illumination changes become complexer. The best stability is obtained by N-HD
and H-HD, which both have similar performances. As H-HD is faster than N-HD, H—
HD should be preferred. AT-HD and LI-HD both have similar performances and yield
the second best stability. AT-HD is less computation intensive than LI-HD and should
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Figure 3.24: Evaluation results for the rabbit and for the shelves series (cf. fig. 3.19). The
redetection rate is given in the left diagram and the false positive rate is given
in the right diagram. The illumination type for every images is indicated at
the top of the diagram. The same legend is used in both diagrams.
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3.9 Summary

therefore be favoured. The interest points detected with AT-HD are farther away from
each other and more uniformly distributed in the image than with H-HD or N-HD. The
behaviour of AT-HD and LI-HD in specular areas is also different from the one of H-HD
and N-HD. Therefore AT-HD could be interesting for some applications, for example
localisation (see chapter 5), even though its processing time is longer and even though it
provides less stable interest points than H-HD or N-HD.

The developed detectors remain sensitive to sharp shadow patterns and to highly con-
trasted shading edges, as only shadow and shading components with low spatial fre-
quencies can be modelled and corrected with a single grey value image (see section 2.1).
Therefore, diffuse light yields better stability. High frequency shadow and shading com-
ponents can be compensated when colour images are used. Such methods are presented
in chapter 4. Specularity is a further phenomenon which is not accurately handled by
the developed detectors. When specular areas occur due for example to planar surfaces,
the redetection rate for N-HD and H-HD decreases because less interest points are de-
tected. AT-HD and LI-HD achieve better redetection rates but detect on the other
hand more false positives near specular patterns. Specularities have a smaller influence
on stability than sharp shadow or shading edges because they only appear for a narrow
range of the angle between camera and light direction. If necessary for the application,
specularities can be detected or reduced using polarising filters or using several images
as in [LLK'02]. Several techniques also exist to correct specular areas, for example in
[BSCBO00, TLQS03, TI03]. Finally, the user—defined threshold influences stability for all
detectors. Many interest points in the image may have similar cornerness values, espe-
cially in textured scenes. If the threshold selects only part of those, stability decreases as
detection becomes noise sensitive. This could be enhanced by automatically adapting the
detection threshold to scene content. These topics should be object of further research.

3.9 Summary

After a reminder of the image formation model and of the Harris detector for grey value
images, the illumination influence on interest point detection is derived. Four new de-
tectors are presented which are based on the Harris detector and which achieve a better
adaptation of the detection to the local lighting conditions. The first detector, N-HD, is
based on a local normalisation of the derivatives using the grey value energy. The second
detector, H-HD, uses the principle of homomorphic processing to compute illumination
invariant derivatives. The third detector, AT-HD, performs local adaptive thresholding.
The threshold is adapted using the local mean of the cornerness values. To reduce noise
sensitivity, textured areas are detected using the local standard deviation of the corner-
ness values and detection is switched off in homogeneous areas. The last detector, LI-HD,
also applies local adaptive thresholding. The threshold is computed based on local clus-
tering of the cornerness values with the ISODATA algorithm. The obtained cluster means
enable texture detection, hence reducing noise sensitivity. N-HD and H-HD are based on
the local multiplicative image formation model, whereas AT-HD and LI-HD are based
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3 Illumination invariant interest point detection for grey value images

on the local affine image formation model. The principles of N-HD and of H-HD can
be easily adapted to increase the stability of the other interest point detectors based on
first or second derivatives. In addition, the invariant derivatives obtained by N-HD and
H-HD can be re—used to compute invariant descriptors of the interest points.

The four detectors developed in this work are evaluated and compared to each other
and to the original Harris detector (HD) on image series showing a scene under different
illuminations. For the original Harris detector, the N interest points with the highest
cornerness values are selected to adapt the detection to the overall image contrast. The
detection stability is assessed with the redetection rate and the false positive rate. For
simple illumination changes which induce the same grey value transformation for all pixels,
an adaptation to the overall image contrast is sufficient to compensate the illumination
changes. All developed detectors (N-HD, H-HD, AT-HD and LI-HD) achieve similar
stability to the original Harris detector (HD). Complex illumination variations, for which
position, orientation, type and number of light sources are changed, require on the other
hand an adaptation to local lighting conditions. For such image series, all developed
detectors achieve higher stability than the original Harris detector. The stability im-
provement is higher for complexer illumination change (for example when the illuminant
type is changed) and for complexer 3D scene geometry. The best results are obtained
by H-HD. AT-HD may also be interesting for some applications because it provides a
more uniform distribution of the interest points in the image. All developed detectors
remain sensitive to sharp shadow or shading edges as these are not modelled accurately
by the image formation model. This is handled in the next chapter using colour images.
In addition, the stability of the developed detectors is influenced by specularities and by
the choice of the detection threshold. This should be object of further research.
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4 Illumination invariant interest point
detection for colour images

This chapter presents the developed illumination invariant interest point detectors for
colour images. As explained in the previous chapters, colour information is advantageous
for illumination invariance because shadows, shading and variations of the light colour can
be more accurately modelled than with grey value information. Current colour cameras
introduce colour artifacts in images, especially near edges. In this work a single chip
colour camera is used. Therefore, in section 4.1, an appropriate demosaicing algorithm is
selected, that reduces the amount of colour artifacts. This algorithm is applied to acquire
all images used in this work. Next, the image formation model and the Harris detector
for colour images are recalled and the illumination influence on the detector is discussed
in section 4.2. The invariant detector introduced in [vdWO05] is explained in more details
in section 4.3. The two developed detectors are then presented: the colour homomorphic
detector in section 4.4 and the m space detector in section 4.5. A preprocessing method
is introduced in section 4.6 to reduce the influence of noise and artifacts on the m space
detector. Next, the comparison framework is explained in section 4.7 and the results are
presented in section 4.8. Finally, a summary of the chapter is given in section 4.9.

4.1 Colour image acquisition and demosaicing

As explained in subsection 2.3.2, current colour cameras introduce
colour artifacts in images, especially near edges. The main source
of colour artifacts is the camera sensor itself. If a multi—chip
camera is used, colour artifacts occur when the sensor chips are
misregistered. Most digital colour cameras are however based on
a single CCD or CMOS sensor chip combined with a colour filter
array (CFA): each pixel measures only one of the RGB colours.
The most popular CFA is the Bayer CFA presented in [Bay76]
and shown in fig. 4.1. Using a single chip with a CFA allows
to reduce the camera cost. The spatial resolution of the human Fi 411 B

. . . . . ) igure 4.1: Bayer
eye is lower for colour information than for intensity information. CFA.
Therefore, the perceived quality is similar for both single chip and
multi—chip cameras. This is the reason for the wide use of single chip cameras. In this
work as well, a single chip camera is used. The sparsely sampled colour information must
be interpolated to obtain a full resolution image with three colour values per pixel. This

63
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demosaiced demosaiced demosaiced original demosaiced demosaiced original
RGB RGB hue hue RGB saturation saturation
Zipper effect Hue artifacts Saturation artifacts

Figure 4.2: Illustration of typical demosaicing artifacts on simulated CFA images. For a
better visualisation of hue and saturation artifacts, hue H and saturation S
components of the HSI colour space are given for the demosaiced image and
for the original three channel image. H and S are scaled between 0 and 255.

is named demosaicing, because CFA are also named mosaic filters. Many demosaicing
algorithms exist (see the overview in subsection 4.1.1). Nonetheless, even recent methods
are prone to interpolation errors which result in colour artifacts in the images. Typical
demosaicing artifacts are shown in fig. 4.2: “zipper” effects, wrong colour hue and wrong
colour saturation.

The demosaicing method has a strong influence on the quality of the resulting colour
information. Hence, it influences the quality of colour gradient and of colour interest
point detectors. This is illustrated in fig. 4.3 for the m space colour gradient. The m space
gradient is only sensitive to chrominance (see section 4.5). It visualises hence very well
the influence of colour artifacts. Fig. 4.3 shows that the gradient is better estimated after
the complex demosaicing algorithm described in [LT03] than after a simple demosaicing
algorithm (bilinear interpolation): image (d) contains less false edges and less edges with
wrong colours than image (c). Colour gradient is used for interest point detection and
also to compute interest point descriptors for the matching (see chapter 5). The reduction
of colour artifacts is hence important for the whole application. Several demosaicing
algorithms are compared in order to find the algorithm best suited for this work.

The previous comparisons between demosaicing methods, for example in [LT03, RSBS02,
Had04], aim at reconstructing visually pleasing images, so their evaluation criteria are,
in addition to Mean Squared Error (MSE) in RGB space, visual inspection and measures
based on human perception like AEY,. Here, the quality of colour information for interest
point detection is important. The colour Harris detector and the homomorphic colour
detector both use the RGB values directly. The robust invariant Harris detector and the m
space Harris detector are based on chrominance only. None of the previously used criteria
can evaluate chrominance quality alone. For that reason, the comparison results in [LT03,
RSBS02, Had04] cannot be used to select the most appropriate demosaicing algorithm
in this work. The comparison in subsection 4.1.2 is based on colour spaces HSI and Irb
for two reasons: these allow to evaluate chrominance quality and they describe colour
information intuitively. Performance differences in coloured, textured and homogeneous
areas are emphasised to better characterise the demosaicing results.
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(c) (d)

Figure 4.3: Influence of demosaicing on the colour gradient of a simulated CFA image.
(a) original three channel image. (b) m space gradient of the original image.
(c) m space gradient of the image demosaiced with bilinear interpolation.
(d) m space gradient of the image demosaiced with the method in [LT03].
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After an overview of the existing demosaicing algorithms, the principles of evaluated
methods are introduced in subsection 4.1.1. Subsection 4.1.2 presents the comparison
framework and the results. Finally, the demosaicing algorithm is selected in subsection
4.1.3. Comparisons of the same demosaicing methods with a more general background
than interest point detection and additional comparison criteria can be found in [Fai04a,
Fai05al. To simplify explanations and formulae, the red, green and blue values of a pixel
are represented by R, G and B in this section instead of C®, C“ and C? as in the rest of
the thesis.

4.1.1 Presentation of the demosaicing algorithms
Overview of the existing demosaicing algorithms

The simplest demosaicing algorithm consists of a separate bilinear interpolation of the
three channels. The obtained images are blurry and contain many artifacts as shown in
figs. 4.9 (a) and 4.10 (a). Demosaicing quality can be improved by enlarging the consid-
ered neighbourhood. In addition, gradient information can be taken into account to adapt
the used neighbourhood to image content, as in [HA97]. This reduces artifacts because
interpolation is performed along rather than across edges. Finally, many algorithms use
the high inter—channel correlation to constrain the interpolation process: either the colour
differences R — G and B — G as in [Fre88| or the colour ratios R/G and B/G as in [Cox87]
are assumed to remain constant in small neighbourhoods. These principles improve de-
mosaicing at a moderate complexity increase. A good overview and comparison of state
of the art demosaicing methods is given in [RSBS02]. In this section, the best two state
of the art methods are compared. The median based postprocessing (MBP) in [Fre88§]
enforces high inter—channel correlation to reduce artifacts after a first demosaicing step.
The adaptive colour plane interpolation (ACPI) in [HA97] takes inter—channel correlation
into account and uses gradients to select between horizontal and vertical interpolation.

The most interesting recently developed algorithms can be divided into three categories.
The algorithms of the first category apply the same principles as ACPI but provide more
powerful and flexible methods to adapt the neighbourhood used for interpolation. In the
Weighted Adaptive Colour Plane Interpolation (WACPI) in [LT03] and in the first step of
[Kim99], each direction contributes to interpolation with a weight which is proportional
to the gradient inverse. In [RS03], the weights depend on the similarity to the centre pixel
after a first demosaicing step. WACPI also improves the framework to estimate R and B
channels. This enhances chrominance quality, so WACPI is evaluated in this work.

The second category of methods locally selects between horizontal and vertical interpo-
lation like in ACPI, based on more complex criteria than gradients. In [HP03], image
homogeneity in CIELAB colour space is used. In [OWO04], the variation of R/G and B/G
colour ratios and the response to the Harris detector are used. These complex measures
cannot be estimated directly from the CFA sampled images, so one horizontally interpo-
lated image and one vertically interpolated image are generated first. The local direction
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4.1 Colour image acquisition and demosaicing

selection is performed subsequently to generate a final image. This results in a high
computing time, even when direction selection is only performed in textured areas as in
[OWO04]. For that reason, these methods are not evaluated here.

The last category of methods works similarly to MBP. After a first demosaicing step,
the result is postprocessed to enforce one or more constraints, hence reducing artifacts.
In the second step of [Kim99], the locally constant colour ratio assumption is enforced
using an adaptive neighbourhood. In [GAMO02] a compromise between the following two
constraints is reached: locally constant colour differences and fidelity to sampled data.
These methods did not yield any significant enhancement over MBP in preliminary tests.
They are therefore not evaluated here.

Median Based Postprocessing (MBP and EMBP)

MBP reduces demosaicing artifacts by enforcing high inter—
channel correlation. It is presented in details in [Fre88]. Af-
ter a first demosaicing step, the difference images 6 = R — G
and 0p = B — (G are median filtered. The image is then recon-
structed using the filtered difference images 0%, 0 and the CFA
sampled data. For example, at a sampled G pixel, (R',G’, B") =
(0 + G, G, 85+ G). The algorithm works similarly at sampled R
and B pixels. The kernel proposed in [Fre88] is used for median
filtering, because it achieves a good compromise between result-
ing image quality and computing time. The kernel is shown in
fig. 4.4: the value of the centre pixel is replaced by the median of
the nine pixels indicated in grey. Demosaicing results are shown in figs. 4.9 (b) and 4.10
(b). Pixels with wrong intensity and wrong saturation appear near colour edges with low
inter—channel correlation such as red/white edges.

Figure 4.4: Kernel for
median fil-
tering.

To avoid these artifacts due to contradictions between the high inter—channel correlation
model and the sampled data, the Enhanced Median Based Postprocessing (EMBP) is
used in [HP03, LT03]. Sampled values are also changed in EMBP. The reconstruction step
becomes the same for all pixels: (R',G',B') = (0 + G',(R — 0 + B — %) /2,0 + G').
The implementation proposed in [LT03] is chosen here. Already processed pixels are
used to filter following pixels for a faster diffusion of the postprocessing. In addition,
only areas with sufficient gradient are postprocessed, because homogeneous areas are less
prone to artifacts. Results are presented in figs. 4.9 (¢) and 4.10 (c). For the comparison
in subsection 4.1.2, MBP and EMBP are applied after the WACPI method (see [LT03])
to obtain the best possible results.

Adaptive Colour Plane Interpolation (ACPI)

ACPI is a state of the art method using gradient information and inter—channel corre-
lation. It is presented in details in [HA97, RSBS02]. As the Bayer CFA contains twice
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as many G pixels as R or B pixels, the G channel is interpolated first and is used to
interpolate R and B channels in a second step. Figure 4.5 presents the G channel interpo-
lation: the interpolation is performed in the direction of the minimum gradient. To take
the inter—channel correlation into account, gradients and interpolated G values depend on
the laplacian of the R (or B) channel. Similarly, interpolated R and B values depend on
the laplacian of the interpolated G channel. Gradients are only used to interpolate R(B)
values at B(R) pixels, for which four R(B) neighbours exist. The demosaicing results are
illustrated in figs. 4.9 (d) and 4.10 (d).

Compute the horizontal and the vertical gradients:
R1 H = |G4— G6| + |R5 — R3 + R5 — RT|
G2 V =|G2 - G8| + |R5 — R1 + R5 — R9|
If H >V, interpolate along the vertical direction:
R3 G4 R5 G6 R7 G5=(G2+G8)/2+ (R5— R1+ R5— R9)/4
else if V' > H, interpolate along the horizontal direction:
G8 G5 = (G4 + G6)/2+ (R5 — R3 + R5 — R7)/4
else use both direction:
R9 G5 =(G2+G8+ G4+ G6)/4+ (AR5 — R1 — R9 — R3 — R7)/8

Figure 4.5: Interpolation of the G value at a sampled R pixel with ACPI. G values at
sampled B pixels are interpolated similarly.

Weighted Adaptive Colour Plane Interpolation (WACPI)

WACPI is based on the same principles as ACPIL. G val-
ues are estimated first. Gradients and interpolated val-
ues depend on the laplacian of the other colour channels,
like in ACPI. WACPI provides a more flexible framework
to adapt the interpolation neighbourhood to the image.
Four directions (instead of two) are considered as shown
in fig. 4.6, which enhances the performance near slanted
edges and corners (see figs. 4.9 (e) and 4.10 (e)). The
contributions of every direction to the interpolation of G
values are weighted by the gradient inverses before they
are summed up and normalised:

Figure 4.6: WACPI directions

and neighbour-
G — e ft Gleft + Qright Gm’ght + Qyp Gup + Qdown Gdown hood shown in
- : fig. 4.7.

e ft + Qright + Qlyp + Qdown

The formulae for aj.s and éleft are given in fig. 4.7 as an example for all «; and éz
As can be seen, the contributions to the interpolation G, are the same as for ACPL. On
the other hand, the gradients are estimated on a larger neighbourhood to compute the
weights a;. The constant additive term in the denominator of «; avoids division by zero
in homogeneous areas. The interpolation of the R and B channels is also improved in
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comparison to ACPI: the gradient based neighbourhood adaptation is performed for the
interpolation of all R and B values. To achieve this, R (or B) values at sampled B (or
R) pixels are interpolated first. After this step, sampled G pixels have two sampled R
(or B) neighbours and two interpolated R (or B) neighbours. As a consequence, the
neighbourhood adaptation framework can also be applied to those pixels in a second step.
The reader should refer to [LT03] for the complete algorithm description. The results are
shown in figs. 4.9 (e) and 4.10 (e).

Gl G2 Giest = G5+ (R6— R4)/2
G3| R4 [G5[R6 |67 B 1
Qleft = L+ 1GT—C as_ G 1|+ 1G2=GI[+|G9—G]
G8 G9 +|G7— G5| + |G5 — G3| + |R6 — R4| + 3

Figure 4.7: Weight and contribution of the left direction (see fig. 4.6) to the interpolation
of the G value at pixel position R6.

4.1.2 Comparison of the demosaicing algorithms

The demosaicing algorithms are evaluated on simulated CFA sampled images by com-
parison with the original three channel images. 24 images of the Kodak colour image
database are used. These images depict scenes of various content, like for example land-
scapes, persons, natural and man-made objects, as can be seen in fig. 4.8.

Figure 4.8: Five images of the Kodak colour image database.

The demosaicing results are illustrated in figs. 4.9 and 4.10 to show the different artifacts.
The figures show one colourful area and one textured area of the Small Lighthouse image,
a downsampled version of one of the Kodak database images used in many articles, for
example in [Kim99, LT03]. The chosen areas illustrate best the results. For better visual
analysis and understanding of the results, hue H, saturation S and intensity I components
are also shown, as HSI is an intuitive colour space. The theoretical ranges of hue [—m, 7]
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4 Illumination invariant interest point detection for colour images

()

bilinear MBP EMBP ACPI WACPI original

RGB

Figure 4.9: Demosaicing results for a colourful detail of the Small Lighthouse image show-
ing a buoy. For better visualisation, H, S and I components are displayed.

and of saturation [0, 1] are mapped to [0,255]. Bilinear interpolation produces blurred
images and artifacts known as "zipper” effects near edges (see figs. 4.9 (a) and 4.10
(a)). For ACPI and WACPI, colour artifacts appear, especially near slanted edges or
corners as shown in fig. 4.10. MBP and EMBP correct these artifacts (see fig. 4.10) but
introduce new artifacts near colour edges (see fig. 4.9). MBP generates outliers with wrong
intensity and wrong saturation, whereas EMBP generates areas with wrong saturation.
In addition, MBP reconstructs hue more accurately than EMBP in colourful areas (see
fig 4.9). WACPI achieves the best reconstruction of the colourful detail, whereas MBP
and EMBP achieve the best reconstruction of the textured detail. As far as complexity is
concerned, ACPI, WACPI, MBP (+WACPI) and EMBP (+WACPI) require on average
over all images 2, 8.5, 20 and 14 times as much processing time as bilinear interpolation.

Two detectors presented in this work are based directly on the RGB values and two detec-
tors are based on chrominance information. Therefore, as explained in the introduction
in this section, the demosaicing quality is evaluated using three colour spaces: RGB, HSI
and Irb. The transformation from the RGB colour space to HSI and Irb is given for
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4.1 Colour image acquisition and demosaicing

(b)
bilinear MBP ACPI WACPI original

Figure 4.10: Demosaicing results for a textured detail of the Small Lighthouse image show-
ing roofs. For better visualisation, H, S and I components are displayed.

example in [GS99]:

H arctan ;/g(_%__@ I (R+G+ B)/3
S 1= 1-min(RGB)/I | and | 7 | = R/I (4.1)
I (R+G+DB)/3 b B/I

Demosaicing quality is evaluated using the Mean Square Error (MSE) between the orig-
inal three channel image and the demosaiced image in RGB, HSI and Irb colour spaces.
The MSE in RGB space also allows comparison with previous evaluations like in [LT03,
RSBS02]. H, S, r and b are scaled by 100 before computing the MSE, so that their order
of magnitude is similar to the one of I, R, G, and B. To avoid numerical unstabilities,
S, r and b are only computed for sufficiently bright pixels (here detected as I > 0.9).
Similarly H is only estimated for significantly coloured pixels (here detected as S > 0.1).
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Algorithm Teztured areas Homogeneous areas Entire images

RGB  HSI rb RGB HSI rb RGB HSI rb

215 21.1 1.40 14.1 900 .0545 104 10.7 .669
bilinear 87.1 966 1.57 5.64 .0549 0587 42.0 .460 748
222 95.4 15.1 6.14 108 45.9

38.1 3.10 394 4.85 370 0245 20.1 1.79 202
ACPI 24.9 268 319 2.60 0223 .0232 13.2 141 .168
33.6 15.8 4.52 1.89 18.4 8.46

23.6 163 .232| 3.44 273 0178 | 12.4 936 118
WACPI 133  .187 .210| 1.71 .0173 .0180 | 7.22 .0959 .108
21.6 9.44 3.52 1.35 11.7 2.08

252  1.62  .249 4.01 .269 .0206 12.6 .814 120
MBP 9.93 .19 212 1.91 .0204 0212 | 5.18 0976  .106
18.4 8.13 3.67 1.49 9.72 4.20

29.7 2.30 543 3.51 281 .0201 14.4 1.09 245
EMBP 18.1 264 283 1.79 .0182 0188 8.57 124 134
24.0 9.64 3.58 1.36 12.1 2.07

Table 4.1: Demosaicing performance in textured areas, in homogeneous areas and in entire
images. The average MSE over 24 images of the Kodak database is given for
RGB, HSI and Irb spaces. For each detector, each row presents a channel (top
row for R, H and r, middle row for G, S and b and last row for B and I). As
I is the same in HSI and Irb, the MSE for I is only given for HSI. The best
performance for each component is indicated in boldface.

To avoid the influence of border effects, a three pixel wide image border is left out during
MSE computation. The demosaicing performance depends on image content. Therefore
the average MSE over all 24 images of the Kodak database is used. The results are pre-
sented in table 4.1. The performance differences in textured and homogeneous areas is
emphasised (texture is detected by thresholding the response of a Laplacian filter on the
original image).

For all demosaicing algorithms, the G channel is better estimated than R and B chan-
nels because there are sampled twice as often. Bilinear interpolation, which does not use
gradients and inter—channel correlation, yields by far the worst results. Despite its low
complexity, ACPI allows significant enhancement, proving the strength of the used prin-
ciples. WACPI and MBP perform best. The quality of the colour ratios and of saturation
are on average comparable for both algorithms (see MSE for r, b, S). MBP improves
texture estimation (see MSE for R, G, B and I) and reduces hue artifacts (see MSE for
H). On the other hand, its performance in homogeneous areas is worse. This is mostly
due to its higher sensitivity to the inaccuracy of the high inter-channel correlation model
(constant colour differences in a neighbourhood) in coloured areas. Even low contrast
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4.1 Colour image acquisition and demosaicing

ACPI WACPI MBP EMBP
RGB HSI rb | RGB HSI rb RGB  HSI rb RGB HSI b

30.8 215 747 | 19.2 1.12 435 | 282 .817 452 | 27.2 1.06 .806
196 .756 .598 | 10.7 .5b84 409 | 11.3 .524 .407 | 158 759 484
276 128 18.8 7.75 19.2  8.99 21.0  7.95

Table 4.2: Demosaicing performances in coloured areas (with S > 0.3). As in table 4.1,
the average MSE over all 24 images is given in RGB, HSI and Irb colour spaces.
The results for the bilinear interpolation are omitted, as it yields by far the
worst results in table 4.1.

edges in coloured areas may result in pixels with wrong intensity and saturation. As
mentioned in the overview in subsection 4.1.1, the recent methods similar to MBP in
[Kim99, GAMO2] do not significantly reduce this sensitivity to model inaccuracy. The
overall performance of EMBP is moderate. It better estimates homogeneous areas than
MBP, but achieves poor chrominance quality compared to WACPI and MBP.

Table 4.2 presents the demosaicing performances in coloured image areas. Coloured areas
are detected by thresholding the saturation component: S > 0.3. They are particularly
interesting for this work because the m space detector and the robust invariant detector
are only sensitive to chrominance (see sections 4.3 and 4.5). WACPI and MBP perform
best. In comparison to table 4.1, MBP shows the maximal performance drop, especially
for the estimation of texture (see MSE for R, G, B and I). In coloured areas, WACPI
achieves the best texture estimation. MBP’s higher sensitivity to the model inaccuracy
is also shown by a higher number of negative (hence invalid) interpolated values: if these
are not corrected to 0, the average MSE for all 24 entire images for example for  becomes
0.441 for WACPI and 0.965 for MBP.

4.1.3 Selection of the most appropriate demosaicing method

To summarise the evaluation results, WACPI and MBP achieve the best results. WACPI
performs better than MBP in coloured and in homogeneous areas. MBP better recon-
structs texture and hue than WACPI. As a consequence, MBP is better on images with
fine textures (for example landscapes or natural objects), while WACPI is better on im-
ages of man—made objects and on close—ups. In this work, a good reconstruction of
coloured areas is important because the robust invariant detector and the m space detec-
tor are only sensitive to colour edges. Therefore, WACPI is chosen for demosaicing. In
addition, recognition tasks deal often with images of man—made objects, which are better
reconstructed with WACPI than with MBP. Last, WACPI is faster. If a short computing
time is important for the application, ACPI is also interesting because it achieves a good
compromise between computing time and demosaicing quality.
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4 Illumination invariant interest point detection for colour images

" o)

= -J

Figure 4.11: Influence of white balancing on demosaicing results. Left column: no white
balancing is applied before demosaicing. Right column: white balancing
(white patch algorithm explained in section 4.3) is applied before demosaic-
ing. Top row: demosaicing results. Bottom row: m space gradients computed
on the demosaiced images. These gradients allow a better visualisation of
colour artifacts. Colour images are gamma corrected for better visualisation
(v = 1.5). Gradients images are scaled between 0 and 255.
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4.2 Image formation model and Harris detector for colour images

For all methods, demosaicing quality is lower in coloured areas because inter—correlation
between channels is lower in these areas. As a consequence, white balancing should be
performed before demosaicing: this reduces the size of coloured areas in the image and
hence increases demosaicing quality. Fig. 4.11 shows how white balancing reduces the for-
mation of colour artifacts during demosaicing. The left row presents a demosaiced image
detail. The right row presents the same image detail, but white balancing is performed
before demosaicing. No ground truth exists for the image, therefore demosaicing quality
can only be assessed by visual inspection. For better visualisation of the demosaicing
quality, the m space gradient images (see section 4.5) are shown. As the m space gradient
is only sensitive to chrominance, the colour artifacts are more easily visible. When white
balancing is applied before demosaicing, all shadow or shading edges have less colour ar-
tifacts (the m space gradient is lower). Colour edges also have a more homogeneous hue
(the colour of the m space gradient varies less along a colour edge). Finally the gradient
image looks less noisy. All these observations show that less colour artifacts are intro-
duced when white balancing is performed before demosaicing. In this work, automatic
white balancing is only applied for the robust invariant detector and for one version of
the m space detector. The other detectors do not require white balancing.

4.2 Image formation model and Harris detector for
colour images

This section begins with a reminder of the image formation model and of the Harris

detector for colour images. More details can be found in sections 2.1 and 2.2.3. The

chosen image formation model for colour images is described by the following formula:
CI =iyLic] +i, L0 for j=R,G,B. (4.2)

C%, C% and CP are the red, green and blue values of the considered pixel. ¢ represents
scene reflectance. i, models shadows and shading. i, models shadows and specularities.
In contrary to the image formation model for grey value images, 7, and ¢, must not be
assumed to vary slowly from one pixel to another: they vary freely. L’ represents illumi-
nant colour and is assumed to vary slowly between pixels. In comparison to the image
formation model for grey value images, shadows, shading, specularities and illumination
colour are more accurately modelled. The image formation model for colour images can
also be expressed in vector—-matrix form, in which case the model is named diagonal with
translation:

Ccr LR 0 0 cft LR
cC¢ | =i | 0 LY 0 & | +i | LY . (4.3)
Cch 0 0 L»P cB LB
For Lambertian scenes, the model is simplified to a diagonal model:
' o Ccr L% 0 0 cff
C? =il for j=R,G,B, or C¢ | =dq| 0 LY 0 & ] (4.4)
ch 0 o0 L»P cB

75



4 IMlumination invariant interest point detection for colour images

ip, L’ and ¢ have the same properties as in eq. (4.2).

The Harris detector is extended to work on colour images in [Gou00]. The information
from all colour channels is merged into the structure matrix according to:

CH? CIiCy
M=Gloy)® Y {é%)v i} } (4.5)
j=R,G,B Ty Y

C7 and Cg are the derivatives of channel CV. They are obtained by convolving each channel
/y = Gm/y(aderiv)®cj
for j = R,G,B. G(oy) is a Gaussian with standard deviation o,;. The cornerness
function is then computed with:

with a derivative of Gaussian filter with standard deviation o e, : Ci

CF = det(M) — a trace?(M). (4.6)

The interest points are the local maxima of C'F' above detection threshold T'. Like for grey
value images, detection is adapted to the overall image contrast when 7' is proportional
to the maximum cornerness value in the image or when the N interest points with the
highest cornerness values are selected. With the described implementation, the colour
Harris detector needs 681ms for an image with 640 x 480 pixels (see subsection 2.2.2 for

more details), that is 1.66 times the processing time of the grey value Harris detector
(HD).

The illumination influence on the colour detector is complexer than for grey value images
because the image formation model is more accurate. With the used model in eq. (4.2),
the derivatives of each channel are composed of a sum:

Ci =iy, e +i,Lc]_+is, L7 for j=R,G,B. (4.7)

fr is the derivative of signal f in x direction (for f = CY, i, c{;, is). This formula is obtained
by considering that L7 varies slowly from one pixel to another. Therefore the derivative
of L7 can be approximated by 0. A similar formula can be obtained for the derivative in
y direction. Even when 7, and 7, are assumed to vary slowly between neighbouring pixels
(hence iy, = i, ~ 0), the illumination influence on each channel is still different due to
the light colour represented by L7:

Ci=i,Lic] forj=R,G,B.

As a consequence, no simple formula can describe the illumination influence on the cor-
nerness function as is the case for grey value images. The reason is the more accurate
image formation model. It is however clear that an adaptation of the detection threshold
to the overall image contrast is insufficient for stable interest point detection under illu-
mination changes. This is shown in fig. 4.12. The same scene is depicted in both images.
On the left, it is lighted by neon lamps suspended from the ceiling and directed towards
the floor. On the right, it is lighted by tungsten halogen spot lamps directed towards
the scene. No automatic white balancing is used. A fixed white balancing is applied
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4.2 Image formation model and Harris detector for colour images

Figure 4.12: Detection example for the colour Harris detector with selection of the N
best points (N = 100). The images show the same scene under two different
illuminations. They are gamma corrected for better visualisation (y = 1.5).
28.0% of the interest points of the left image are redetected in the right
image. 71.7% of the interest points in the right image are false positives.

for visualisation to reduce the otherwise greenish hue of the images. This fixed white
balancing counterbalances the different channel sensitivities and is generally performed
in the camera hardware. Here, the red and the blue channels are both scaled with 1.3.
These factors transform sunlight to white illumination. Neon and tungsten lamps result
in yellow and red images respectively, as seen in fig. 4.12. Like with the original Harris
detector for grey value images, interest points are detected mainly in areas with high local
contrast. Detection stability is low because these areas move when illumination changes.
Only 28.0% of the interest points of the left image are redetected in the right image.
71.7% of the interest points in the right image are false positives. For comparison, the
stability of the grey value detectors on this image pair are given at image 26 in the shelves
series in fig. 3.24.

Like in chapter 3, new interest point detectors are developed in this chapter. They adapt
detection to the local lighting conditions. For this, principles used in other machine vision
applications are adapted and applied to interest point detection. The overview in sub-
section 2.3.2 shows that three principles are interesting for interest point detection: local
normalisation, homomorphic processing and the use of an illumination invariant colour
space. In comparison to the developed detectors for grey value images, no detector based
on local threshold adaptation is presented. This has two reasons. First, no simple formula
can describe illumination influence on the cornerness function for the colour Harris detec-
tor, as shown before. Second, the grey value detectors based on local normalisation N-HD
and on homomorphic processing H-HD both achieve a higher stability than the detectors
based on local adaptive thresholding (AT-HD and LI-HD) (cf. section 3.8). N-HD and
H-HD have similar stability, but H-HD is faster. As a result, the first developed colour
interest point detector is based on homomorphic processing. No detector based on local
normalisation is presented as it would achieve similar stability. The colour homomorphic
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4 IMlumination invariant interest point detection for colour images

Harris detector is based on the assumption that shadow and shading influence i, varies
slowly between neighbouring pixels (see section 4.4). Therefore, the second developed
interest point detector is based on the m space: an illumination invariant colour space
which compensates completely shadow and shading influence. Both detectors implicitly
correct illumination colour, so no white balancing is required as preprocessing (see sub-
section 2.3.2 for explanations). Both detectors assume a Lambertian scene. No detector
compensating specularities in colour images is presented in this thesis. The main reason
is that an accurate estimation of the illumination colour is necessary to compensate the
specular reflection term i,L7. As explained in subsection 2.3.2, no automatic method to
estimate the illuminant colour is reliable enough. Before presenting the new detectors,
the robust invariant interest point detector introduced in [vdWO05] is explained in details,
as a comparison.

4.3 Robust invariant interest point detector

Most existing illumination invariant colour features are very sensitive to noise and arti-
facts, especially in dark and non—coloured areas. In [vdWO05], several methods to compute
structure matrix M in eq. (4.5) are introduced, depending on the desired degree of in-
variance and of robustness to noise. These methods are based on the image formation
model presented in eq. (4.2), in which i, i5 are assumed to vary freely. White balancing
is required as preprocessing. As a consequence, L’ is constant for all pixels and for all
images. This is the main difference between the robust invariant interest point detector
and the detectors developed in this thesis.

The first method provides a quasi—invariant structure matrix M. This matrix does not
respond to shadow and shading edges or to shadow, shading and specularity edges, de-
pending on the chosen degree of quasi-invariance. This means that the matrix elements
are only different from zero for material edges (caused by ¢]). The matrix elements for
material edges are however influenced by shadows, shading and specularities. The advan-
tage of the quasi-invariant structure matrix is its high robustness to noise and artifacts.
It is however not sufficient for stability under illumination changes because the values
in the structure matrix are influenced by illumination. This illumination influence can
be suppressed by normalisation. This yields the full invariant structure matrix. Like for
the quasi-invariants, the matrix can be invariant to shadows and shading or to shad-
ows, shading and specularities. This invariant matrix provides in theory stable detection
under illumination changes, but it is very sensitive to noise. Therefore a last method
is proposed, which yields the robust invariant structure matrix. In comparison to the
invariant matrix, some weighting is performed to reduce noise influence. As before, the
robust invariant matrix can be invariant to shadows and shading or to shadows, shading
and specularities. The robust invariant structure matrix is of particular interest for this
work because such a compromise between noise sensitivity and invariance to illumination
changes could yield higher stability for interest point detection. Several feature detectors
based on structure matrix M are presented in [vdWO05], among others the colour Harris
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4.3 Robust invariant interest point detector

detector. The stability of the resulting applications is however not evaluated in [vdW05].
It is simply illustrated on an example. Therefore the robust invariant Harris detector is
evaluated and compared to the developed detectors in section 4.8.

As explained in subsection 2.3.2, the main drawback of this detector is the requirement for
white balancing: no existing automatic white balancing method is robust on real images
(see [BMCF02b]). Manual white balancing is used in the applications shown in [vdW05].
In this work, on the contrary, no manual interaction should be required. As a consequence,
an automatic white balancing method is applied. Based on the comparison between white
balancing methods in [BMCF02b], the white—patch algorithm is used as preprocessing for
the robust invariant detector. The robust invariant to shadows, shading and specularities
relies strongly on the estimated illuminant colour (L%, L% LP). To reduce unstability
caused by misestimation of the illuminant colour to a minimum, only the robust invariant
to shadows and shading is considered in this work.

The chosen automatic white balancing algorithm is the white—patch algorithm. It is
applied before demosaicing to reduce the formation of colour artifacts (see section 4.1).
The illuminant colour is assumed to be the same for all pixels. It is estimated from
the average value of brightest pixels in the image. The brightest pixels in the image
are assumed to be produced by either the light source, reflection on a white surface or
specular highlights (see also subsection 2.3.2). If the light source is visible in the image
and the pixel values are not saturated, the pixel values are clearly equal to the illuminant
colour. If the pixels are reflected by a white surface, c{, =1 for j = R,G, B, hence
CI =y J +i,L7 = (i + i) L7 for j = R, G, B. In the case of a specular highlight, i, is
much bigger than 4, hence C7 ~ i,L7. Therefore, in all three cases, the RGB values are
proportional to the light colour: CV = i L’ for j = R, G, B and where i is an intensity
factor. Therefore, the white patch algorithm works as indicated in the following:

1. Compute the intensity image: I = Cf 4+ C% 4+ CB

2. Select the brightest non—saturated pixels: all pixels (z,y) such that C?(z,y) < 255
for j = R, G, B and such that I(x,y) > amax(I) where « is a user—defined threshold
(v = 0.7 in this work).

3. Compute the average RGB value of the selected pixels: A7 = % Zfil C9(z;,y;) for
j=R,G,B. (x;,y;) for i =1...N are the coordinates of the selected pixels.

4. Correct the illuminant colour by weighting two image channels, for example red and
blue channels with:
A% B AC

R _ R G _ G B
C’wb—FC’, Cop=0C", Cwb—ﬁ(],

where CE  C% and CB, are the channels of the white balanced image.

After this correction, the average of the brightest pixels of the white balanced image is:
(ﬁ—i AR ACG 3—(; AB) = A% (1,1,1), which corresponds to white. In the used implemen-
tation, the two channels with the smallest A’ values are corrected because the resulting
white balanced images look more natural than when two fixed channels are corrected.
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The robust invariant structure matrix is given by:

G(U]L{)®(S$j)2 G(UIVI)(X)ng ngj

= Glom)®@w G(opm)Qw.
M= Z Glorn) &S 5C7 G(aM)g(sgﬂﬁ ; (4.8)
J=R.G.B G(U]\/I)(X)w G(U]y{)@’w

where G(0y) is a Gaussian with standard deviation oy like in eq. (4.5). S¢/ and S?fj
are the quasi—invariant derivatives of channel j in x and y directions. They are computed
with: = o s
CrOR4CCCC4+CP OB -
0 OO Y% O G for j= R,G, B. (4.9)
CE +C¢" +CB

CY is the derivative of C? in x direction and it is obtained by convolving C? with a
derivative of Gaussian filter with standard deviation cgeri: C) = Go(0gerin) ® C7. CI is
obtained by convolving C7 with a Gaussian of standard deviation ge,i: C7 = G (Cderiv) ®
Ci. S¢7 is computed with a similar formula, replacing C4 by CJ. Finally, w combines
normalisation and noise reducing weighting in one step:

S¢ =i~

w=CR + ¢+ OB, (4.10)

Those formulae, which define the robust shadow—shading invariant structure matrix, are
explained in [vdWO05]. The cornerness function is then computed using eq. (4.6) and the
interest points are the local maxima of the cornerness function above the user—defined
threshold 7' (T" > 0). The convolution with the Gaussian and derivatives of Gaussian
filters are implemented as indicated in subsection 2.2.2. Y

The gradient obtained with the robust shadow—shading invariant method is illustrated
and compared to the m space gradient in fig. 4.16 (b). The influence of shading is well
compensated, for example on the box in the top left image part. The shadow and shading
edges are also well suppressed: only edges between differently coloured areas are present.
The high noise sensitivity is visible, especially in dark areas. The results of the robust
invariant Harris detector (RI-HD) are illustrated in fig. 4.13. The same images as in
fig. 4.12 are used. The white patch algorithm is applied before demosaicing. Weaknesses
of automatic white balancing are visible in fig. 4.13: corresponding pixels in the two
images have similar but not identical colour because some areas are influenced by several
light sources. In the right image, the background is lighted by halogen lamps and by
some sunlight entering the room despite the closed blinds. As a result, the background
appears blue after white balancing. RI-HD is not sensitive to intensity edges. Therefore,
less interest points are detected than with the colour Harris detector. The interest points
are detected near colour edges. Some false interest points are also detected in very dark
areas (on black objects or in shadows) or because of colour artifacts. This is caused by the
high sensitivity of RI-HD to noise in dark areas and to colour artifacts. In comparison
to the colour Harris detector, a more stable detection is achieved because illumination
influence is better compensated. In fig. 4.13, 35.7% of the interest points in the left image

D' T would like to thank Joost van de Weijer for his help for the implementation of the robust invariant
Harris detector (RI-HD).
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4.4 Homomorphic colour interest point detector

Figure 4.13: Detection example for the robust invariant Harris detector (7= 10~7). The
same images as in fig. 4.12 are used. White balancing is applied as required by
the RI-HD. 35.7% of the interest points of the left image are redetected in the
right image. 68.2% of the interest points in the right image are false positives.
Both images are gamma corrected for better visualisation (v = 1.5).

are redetected in the right image. 68.2% of the interest points in the right image are false
positives. On this example, the stability increase is not as high as expected because of
the detector sensitivity to noise and colour artifacts. With the described implementation,
RI-HD requires 1151ms (+ approximately 10ms for white balancing) for an image with
640 x 480 pixels (see subsection 2.2.2 for details on the computer), this is 2.82 times the
processing time of HD and 1.70 times the processing time of C-HD.

4.4 Homomorphic colour interest point detector

Homomorphic processing is often used to compensate illumination influence in colour
images for machine vision application, as seen in subsection 2.3.2. It extends a principle
used for grey value images to colour images by processing each channel separately.

Homomorphic processing is designed for Lambertian reflection. It is based on the image
formation model of eq. (4.4): C7 = iy Lic] for j = R, G, B. A further restriction is applied:
both light colour L’ and intensity factor i, are assumed to vary slowly between pixels.
The first step of homomorphic processing is to take the logarithm of each channel:

InC? =Ini, +InL? +1In¢) for j=R,G,B. (4.11)

The illumination influence on In C7 is additive. Ini, and In L7 are assumed to vary slowly
between pixels: they are constant in small image neighbourhoods. On the contrary, In C?
and lncg both vary freely. As a consequence, applying a linear high-pass filter to In C?
provides illumination invariant information. The derivatives of each channel are therefore

81



4 IMlumination invariant interest point detection for colour images

illumination invariant:

mCi i iy e i ic v Lid
OmC7 G _ el tilaG tilia, G, ¢ . pop (4.12)
ax CJ ibLJC; Cg,

f. denotes here the derivative of signal f in z direction (for f = i, L7, c]). This approx-
imation is based on the fact that light colour L’ and intensity factor 4, are assumed to
vary slowly between pixels, hence 4y, ~ 0 and L? ~ 0. The derivative in y direction obeys
a similar equation. Eq. (4.12) proves that homomorphic processing on colour images can
compensate both light colour influence and intensity factor for channel derivatives. Like
for grey value images, the derivatives resulting from homomorphic processing can be in-
terpreted as derivatives which are normalised channel-wise with the local mean values:
i /E for j = R, G, B, where C7 is the mean value of channel j on the neighbourhood
used for derivative estimation (see eq. (4.12)).

For interest point detection, the invariant derivatives are merged into the structure matrix
with eq. (4.5). Last, the cornerness function C'F' is computed using eq. (4.6). The
interest points are the local maxima of C'F' with a cornerness value above the user—defined
detection threshold. As the channel derivatives are invariant to light colour, shadows and
shading, the structure matrix M and the cornerness function C'F' are also invariant to
light colour, shadows and shading. The homomorphic colour Harris detector is therefore
stable under illumination changes for Lambertian scenes. Shadow and shading factors
are assumed to vary slowly in space like for the grey value detectors. The homomorphic
colour Harris detector has an advantage over the homomorphic Harris detector (H-HD):
light colour is better corrected, because light colour cannot be accurately modelled for
grey value images.

Like for H-HD, the logarithm of the image channels cannot be implemented straightfor-
wardly for two reasons. First, the noise influence on the derivatives would be too strong in
dark areas. Second, the logarithm is not defined for pixels with a value equal to zero. The
implementation described in section 3.3 for the grey value detector achieves a good com-
promise between invariance and noise sensitivity. Therefore, this implementation is also
used for the colour detector. The logarithm of the channels is computed with In(C7 + 1)
instead of In C7. In addition, dark pixels are preprocessed with a 3 x 3 box filter applied
channel-wise. If CV is smaller than a user—defined threshold V, its value is replaced by
the mean value in their 3 x 3 neighbourhood. This process is repeated for each channel:
j = R,G, B. Like for the grey value images, V is set to 3. This preprocessing and the
threshold V' should be adapted to the camera noise.

Fig. 4.14 shows how the illumination influence on the colour gradient is compensated with
homomorphic processing. In comparison to the normal colour gradient, edges in brightly
lighted image areas and in shadow areas have similar values. The implicit compensation
of the illuminant colour is visible: for example, shadow and shading edges appear grey
or black. The noise amplification in dark areas is also visible, for example in the shad-
ows. The homomorphic gradient is compared to the m space gradient and to the robust
invariant gradient in fig. 4.16: the homomorphic gradient is less sensitive to noise but it
cannot suppress sharp shadow or shading edges.
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4.4 Homomorphic colour interest point detector

Figure 4.14: Suppression of the illumination influence on colour derivatives with ho-
momorphic processing. Left: colour image. Middle: colour gradient

\/C’;{Z —1—052 for j = R,G,B. Right: colour gradient with homomorphic
processing. The gradient images are scaled between 0 and 255 (the maxi-

mum and minimum gradient values over all pixels and all channels are used).
The colour image is gamma corrected (v = 1.4).

The homomorphic colour Harris detector is summarised in the following:
1. For each channel j = R, G, B:

a) Preprocess the dark areas of the channel if necessary. For example, preprocess
all pixels with channel value CV smaller than V = 3 with a 3 x 3 box filter.

b) Take the logarithm of the preprocessed channel with: L7 = In(1 + CY).

¢) Compute the invariant derivatives by convolving the logarithm of the prepro-
cessed channels with the derivatives of Gaussian filters: L) = G(0gerin) @ L7
and Lg = Gy(Oderiv) ® L7.

2. Combine the invariant derivatives L] and L{/ for j = R,G, B into the structure
matrix M with eq. (4.5).

3. Compute the cornerness function C'F with eq. (4.6).

4. (z,y) is an interest point:
e if it is a local maximum of the cornerness function C'F'
o and if CF(z,y) > T (T > 0).

This algorithm is named the homomorphic colour Harris detector (HC-HD). Like for the
grey value detector, the preprocessing should be adapted to the amount of noise in the
image. The user—defined threshold T should be set to detect an appropriate number of
interest points. The invariant channel derivatives can be re—used during the computation
of illumination invariant descriptors. The algorithm could be easily extended to other
versions of the Harris detector, for example to the scale or affine invariant detectors, and
to other interest point detectors based on high—pass filtering. It should be however kept in
mind that the approximation of shadow and shading factors by a signal with low spatial
frequencies becomes worse when larger neighbourhoods are considered.
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4 Illumination invariant interest point detection for colour images

Figure 4.15: Detection example for the homomorphic colour Harris detector (7" = 107%).
The same images as in fig. 4.12 are used. 41.0% of the interest points of the
left image are redetected in the right image. 65.0% of the interest points
in the right image are false positives. Both images are gamma corrected for
better visualisation (y = 1.5).

The convolutions with the Gaussian and the derivatives of Gaussian filters are imple-
mented as indicated in subsection 2.2.2. The preprocessing with the box filter is imple-
mented like for the grey value detector H-HD. This is described in section 3.3.

The stability of the homomorphic colour Harris detector is illustrated in fig. 4.15 on
the same images as in fig. 4.12. No automatic white balancing is applied. HC-HD is
sensitive to intensity and colour edges, therefore more interest points are detected than
with RI-HD. In comparison to C-HD, interest points are detected in all image areas,
independently of the local contrast. This results in a higher detection stability: 41% of
the interest points in the left image are redetected in the right image. 65% of the interest
points in the right image are false positives. Fig. 4.15 also shows that HC-HD is less
sensitive to noise than RI-HD because both intensity and chrominance informations are
used for detection. With the described implementation, HC-HD requires 826ms for an
image with 640 x 480 pixels (see subsection 2.2.2 for details on the computer), this is 2.01
times the processing time of HD and 1.21 times the processing time of C-HD.

4.5 M space interest point detector

Sharp shadow and shading edges are one source of unstability for the interest point de-
tectors presented in chapter 3, because illumination influence is assumed to vary slowly
between pixels for all these detectors. The homomorphic colour Harris detector (HC—
HD) uses the same assumption. Sharp shadow and shading edges can be compensated
for colour images as explained in subsection 2.3.2. For this, the image formation model of
eq. (4.2) or eq. (4.4) is used without any restricting assumption on the intensity factors
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1, and i,. Specularities are not compensated here. This corresponds to the model of
eq. (4.4): ¢V =iyLic] for j = R, G, B. The intensity factor i, affects all colour channels
identically. It can be suppressed by building ratios between colour. This principle is used
by many invariant colour spaces (cf. subsection 2.3.2). In addition to compensating all
shadow and shading edges, the interest point detector should also be invariant to illu-
mination colour without any prior manual white balancing. Among all invariant colour
features that provide these properties, the m space is particularly interesting because it
is based on a local implicit compensation of light colour. The other invariant features
use more or less elaborate automatic white balancing methods and correct illumination
colour globally: the same correction is applied to all pixels. The m space is therefore more
flexible and can better handle scenes lighted by more than one light source.

The m space is used in [GS99, NG98, MKKO00, TT04]. Its invariance properties are
presented in details in [GS99]. It is shown to provide good illumination invariance in the
context of interest point detection in [TT04]. Shadow and shading effects are suppressed
by building ratios between colour channels. Hence, also sharp shadow or shading edges
disappear. Light colour is assumed to vary slowly and it is therefore compensated using
neighbouring pixel values. The m space components are defined by:

. CR(iUhyl) CG(I2,y2) - CR(Ilayl) CB($27’1J2) M — CB(%;Z/l) CG(J:vaQ)
- ) 2 — ) 3 — .
CG(z1,y1) CF(x2,92) CB(z1,p1) CF(z2,y2) C%(x1, 1) 03(372(7 Y2) )
4.13
(z1,71) and (x9,y2) are two neighbouring pixels. These components are invariant to light
colour L7 and intensity factor i, for Lambertian scenes:

my

— in(w1, y1) L (w1, yn)ef (w1, 9n) in(@o, y2) LO (22, y) ey (w2, 42)  cff(1,11) ¢ (22, 12)
1 — = N - .
Zb(ﬂfbyl)LG(lUl,yl)CE(fl?hyl) Zb(-fz,yQ)LR(ﬂ?z,yQ)CbR(@,yz) CbG(iEl,?/l) CbR(ZEQ(, 92))
4.14

Eq. (4.14) is true because light colour is assumed to vary slowly between pixels, so that
Li(x1,31) = L/ (x4, ys) for j = R, G, B. The invariance of my and ms is derived similarly.
Eq. (4.14) shows that the m space components are equal to one except near edges between
areas with different colours because pixels (z1,y;) and (x2, y2) must have different colours.
All intensity edges, including shadow and shading effects, are suppressed.

When the logarithmic m space is used, multiplications and divisions are transformed to
additions and substractions. This results in faster computation. In addition, the robust
implementation developed for the homomorphic detectors (H-HD and HC-HD) can be
used to reduce noise sensitivity. The transformation from the RGB space is given by:

Inm; = (InC¥(xy,91) — InC% 1, 11)) — (InC(xg,y5) — In C% (4, 112)). (4.15)

Inms and Inmg are obtained similarly. The components of the logarithmic m space are
equal to zero except when (z1,7;) and (z9,y2) have different colours. Eq. (4.14) shows
that the invariance properties of the m space are true as long as the two pixels (z1,y;)
and (z9,y9) are in the neighbourhood of each other, because the restricting factor for
the invariance properties is the spatial variation of light colour (L%, LY, L?). Therefore
any high-pass linear filtering of InC” — InC* with j # k yields illumination invariant

85



4 IMlumination invariant interest point detection for colour images

information. As a result, the derivatives of InC* —In C% InC*—In C® and InCEZ —In C¢
are invariant to shadows, to shading and to light colour for matte surfaces. This is used
here for illumination invariant interest point detection.

Like for the homomorphic detectors, noise sensitivity is an important topic, especially
in the dark image areas. To reduce noise influence and to handle pixels with one of the
channel values equal to zero, In(C? + 1) is used instead of In C? to compute the channel
logarithm. As explained in subsection 2.3.2, colour features based on channel ratios
are very sensitive to noise and to colour artifacts. As colour artifacts occur especially
near edges, they influence detection stability strongly because the Harris detector is very
sensitive to noise near edges. Hence, interest point detector based on chrominance (m
space detector and RI-HD) are more sensitive to colour artifacts than detectors based on
the full colour information (C-HD and HC-HD). In this thesis, the WACPI demosaicing
algorithm is applied to reduce the formation of colour artifacts (see section 4.1). In
addition, special preprocessing is introduced in section 4.6 to further reduce the remaining
colour artifacts. Two versions of the m space detector are compared in this thesis. The
first one uses the simple preprocessing applied for HC-HD (box filtering for dark pixels,
see section 4.4). To reduce colour artifacts, automatic white balancing is applied before
demosaicing (see section 4.1). The second version uses the special preprocessing presented
in section 4.6 (no white balancing is applied).

Fig. 4.16 illustrates how the illumination influence on the colour gradient is compensated
by the invariant algorithms presented in this chapter. The two versions of the m space
are used, to show the influence of the preprocessing on the results. For all algorithms, the
gradient has similar values in both bright and dark image areas. This means that the low
frequency intensity influence is well compensated. The homomorphic algorithm cannot
suppress high frequency intensity influence: the sharp shadow and shading edges appear
grey, like intensity edges. The m space and the robust invariant algorithms attenuate
well shadow and shading edges. Those are however not completely suppressed, due to
unmodelled effects like specularities, colour artifacts and coloured shadows. The m space
and the robust invariant algorithms are both more noise sensitive than the homomorphic
algorithm in dark areas. The edges do not have the same colour in m space and robust
invariant images because both algorithms rely on different principles to compensate light
colour. For both images (b) and (d), automatic white balancing is applied before demo-
saicing to reduce the formation of colour artifacts. As a result, the shadow edges are less
visible in images (b) and (d) than in image (e). On the other hand, the preprocessing
applied in image (e) reduces best the noise and colour artifact influence in dark areas.
The robust invariant detector (image (b)) is more influenced by noise and artifacts in
dark areas than the developed m space gradient (images (d) and (e)).

For better visualisation of the preprocessing influence, fig. 4.17 shows an enlarged part of
the m space gradient images of fig. 4.16. The shadow edge in the top part of the image
is more visible when no white balancing is applied. On the other hand, the preprocessing
method of section 4.6 reduces well the influence of noise and colour artifacts in dark
areas (especially on the black stripes of the object). Without accurate demosaicing and
without preprocessing, the m space is not stable enough for any application, as shown in
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4.5 M space interest point detector

Figure 4.16: Suppression of the illumination influence on colour derivatives. (a) colour
image (gamma corrected). (b) robust invariant gradient (see section 4.3).
(¢) homomorphic colour gradient. (d) m space gradient with preprocessing
as for HC-HD and with white balancing before demosaicing. (e) m space
gradient with the preprocessing designed in section 4.6). Gradient images
are scaled between 0 and 255 (the maximum and minimum values over all
pixels and all channels are used).
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Figure 4.17: Influence of the preprocessing on the m space for a detail of the gradient
images in fig. 4.16. Left: m space gradient with preprocessing as for HC-HD
and with white balancing before demosaicing. Right: m space gradient with
the preprocessing designed in section 4.6.

preliminary work described in [Mar02].

Noise influence can be further reduced by taking into account only the two least noisy
components of the logarithmic m space in the structure matrix M. The same interest
points are detected as with three components because of the high correlation between
colour channels. This also reduces computation time, as four derivatives instead of six
are computed. In current cameras, the green channel has typically the lowest noise and
the blue channel has typically the highest noise. This is caused by colour filter width
and by sensor chip sensitivity. As a result, the pixel values in the green channel are
generally the highest hence the most reliable, and the pixel values in the blue channel
are the lowest hence the least reliable. In addition, most current single chip cameras use
the Bayer pattern, in which the green channel is sampled twice as often as the red and
the blue channels. Therefore green values are less affected by demosaicing artifacts (see
section 4.1). To summarise, the green channel is the least noisy channel in current colour
images. The two least noisy channels in the logarithmic m space are therefore Inm; and
Inms. In experimental evaluations, the two channel m space detector achieved similar
stability than the three channel m space detector, independently of the colours present in
the scene. As a result, only the two channel m space detector is evaluated in section 4.8.

The m space Harris detector (MS-HD) is the only detector developed in this thesis which
is invariant to all shadow or shading edges. It has the same invariance properties as the
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robust invariant Harris detector (RI-HD) (see section 4.3), but no prior white balancing is
required. Light colour is locally corrected with the m space which is a further advantage
because scenes lighted by several light sources with different colours (for example sunlight
and lamps) are better handled. The m space Harris detector stays however sensitive to
edges caused by coloured shadows. The MS-HD algorithm is described by:

1. Apply preprocessing to reduce noise (same method as for HC-HD or method pre-
sented in section 4.6).

2. Perform the logarithmic transformation with: I/ = In(1 4+ CV) for j = R, G, B.

3. Convolve (1% —1%) and (I — %) with the derivative of Gaussian filters: (I —[%), =
G (Cderiv) @ (I' = 1¢) and (I' — 19), = Gy (Cderiv) @ (I' — 1€) for i = R, B.

4. Compute the illumination invariant structure matrix with:

M=Gloe 3 |, %ula)x =00 S (4.16)

i i 2
i=R,B - G)l' (l - lG)y (l - lG)y

5. Compute the cornerness function C'F with eq. (4.6).

6. (z,y) is an interest point:
o if it is a local maximum of the cornerness function C'F'
e and if CF(z,y) > T (T > 0).

The detection threshold T" should be set to detect an appropriate number of interest point.
If the three m space channels are used, one term is added to the sum in eq. (4.16) for
the chrominance channel [® — [ Like RI-HD, MS-HD is only sensitive to chrominance.
Therefore, interest points are only detected near boundaries between areas of different
colours. As a consequence, MS—HD is also inappropriate when the images do not contain
enough colour information. The invariant derivatives computed in step 3 of the MS—
HD can be used to compute illumination invariant descriptors. The principle can be
easily extended to other versions of the Harris detector, like the scale or affine invariant
detectors, and also to other interest point detectors based on first or second derivatives.

The preprocessing method and its implementation are discussed in sections 4.4 and 4.6.
The convolutions with the Gaussian and with the derivative of Gaussian filters are imple-
mented as described in subsection 2.2.2.

The results of the m space Harris detectors are illustrated in fig. 4.18 on the same images as
in fig. 4.12. The top images show the results for the MS-HD with the same preprocessing
as the HC-HD and with white balancing before demosaicing. The bottom images show the
results for the MS-HD with the preprocessing presented in section 4.6. This preprocessing
attenuates colour artifacts, therefore no white balancing is performed before demosaicing.
MS—HD is only sensitive to chrominance. As a result, less interest points are detected
than with C-HD or HC-HD and these interest points are located near colour edges. Some
false positives are detected in dark areas or near shadow or shading edges due to noise and
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Figure 4.18: Detection example for the m space Harris detector (T' = 107°) on the same
images as in fig. 4.12. Top: detection results with white balancing before
demosaicing and with the same preprocessing as HC-HD. 52.8% of the in-
terest points of the left image are redetected in the right image. 63.6% of
the interest points in the right image are false positives. Bottom: detection
results with the preprocessing of section 4.6 (no white balancing). 57.8% of
the interest points of the left image are redetected in the right image. 57.7%
of the interest points in the right image are false positives. All images are
gamma corrected for better visualisation (y = 1.5).
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colour artifacts. The preprocessing of section 4.6 reduces the sensitivity of the MS-HD to
noise and colour artifacts: less false positives are detected. Both versions of the MS-HD
are less noise sensitive than the RI-HD. With white balancing and preprocessing like for
the HC-HD, 52.8% of the interest points in the left image are redetected in the right
image and 63.6% of the interest points in the right image are false positives. With the
preprocessing of section 4.6, 57.8% of the interest points in the left image are redetected
in the right image and 57.7% of the interest points in the right image are false positives.
Of all presented detectors, the MS—-HD with the preprocessing of section 4.6 achieves
the best stability on this image pair. Nevertheless, no perfect compensation of the local
illumination conditions is achieved. With the described implementation, MS—HD requires
858ms for an image with 640 x 480 pixels if three chrominance channels are used, this
is 2.08 times the processing time of HD and 1.26 times the processing time of C-HD. If
only two chrominance channels are used, MS-HD requires 706ms, this is 1.71 times the
processing time of HD and 1.04 times the processing time of C-HD (see subsection 2.2.2
for details on the computer).

4.6 Preprocessing for the M space detector

Even if the formation of colour artifacts can be reduced with accurate demosaicing, colour
artifacts are not completely suppressed. Artifacts also occur when images are acquired
with multi—chip cameras, due to misregistration of the chips (see [BMCF02b]). Last,
colour artifacts may be caused by chromatic aberration of the camera optics. This means
that the lens have different refracting indexes for different wavelengths. The focal length
is hence slightly different for each colour channel, which results in colour artifacts near
edges. Preprocessing should thus reduce both noise and colour artifacts. Colour artifacts
are colour outliers: isolated pixels with a different colour from the neighbouring pixels.
Edges should also be preserved to obtain stable interest point detection. Preprocessing
has hence three goals: noise reduction, colour outlier elimination and edge preservation.
The preprocessing for the homomorphic colour Harris detector does not fulfil these con-
ditions: it only reduces noise in dark areas. Therefore several algorithms are presented
and compared here to find the most appropriate preprocessing for the m space detector.

For grey value images, median filtering is often used for edge preserving smoothing. The
extension of median filtering to colour images is not straightforward. If median filtering
is applied to each channel separately (named marginal processing), colour artifacts may
appear near edges because edges are not constrained to occur at the same pixels for
all channels during filtering. Therefore, vector processing is better: pixel values are
considered as colour vectors C = (C®,CY CP). Vector median filtering requires first the
definition of a distance between colour vectors. The median value is the colour vector
with the minimum cumulated distance to all other pixels in the filter kernel:

N
Cmedian = ]rr%lnN(Zl HC] - ClH)
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C; = (CE,CY,CP) is the colour value of pixel i and {Cj,...Cy} represents all pixels in
the filter kernel. ||C; — C;|| is the chosen distance between C; and C;. Several colour
median filters are compared for example in [KAO01]. Colour median filters have the draw-
back of being computation intensive because the distance between every pixels in the filter
kernel must be computed. The vector median filter based on the L; norm is evaluated
here. The L; norm is defined as: ||C; — Cy|| = |CF — Cff| + |CF — CF| + |CP — CP|. A
3 x 3 kernel is used keep computing time small. The vector median filter requires 202ms
for an image with 640 x 480 pixels on the computer described in subsection 2.2.2.

Edge preserving smoothing can also be achieved with bilateral filtering (see [TM98]).
Bilateral filtering only uses pixels which are in the neighbourhood of each other and
which have similar grey or colour values. As a result, the image is smoothed while edges
are preserved. Bilateral filtering is applied in [TA02] to reduce noise influence on interest
point detection. The Gaussian bilateral filter is evaluated here. Like for the vector median
filter, kernel pixels are represented with subscript i € [1, N]. The currently filtered pixel
has subscript 7. The standard Gaussian filter is defined by following weights:

N
1 ...
G, = Ee_d(“’O)Q/QUQ with @ € [1,N] and k= ZGZ"
=1

d(i,ip) is the Euclidian distance between kernel pixel i and the currently filtered pixel
9. o is the filter standard deviation and k is the normalisation factor. With the same
notations, the bilateral Gaussian filter is defined by following weights:

N
GA(C) = gye e it k(€)= 30 Gi(O).
s(C;, C;,) is the similarity between the value C; of kernel pixel i and the value C;, of the
currently filtered pixel ig. oy is the standard deviation for pixel similarity. In contrary
to the standard Gaussian filter, the weights of the bilateral Gaussian filter depends on
the pixel values C. Hence, the kernel weights are calculated for each pixel separately.
This results in high computing time. The similarity measure s must be chosen adequately
to attenuate noise and colour artifacts. The distance between the two C¢ values is
used: 5(Cyy, C;) = CZ — CF, because texture is more accurately reconstructed in the
G channel (see section 4.1). In order to keep computing time small, a small spatial
standard deviation is chosen: ¢ = 1, and the kernel weights are computed with a look—up
table. A high similarity standard deviation is chosen to filter colour outliers: o, = 30.
The bilateral Gaussian filter requires 853ms for an image with 640 x 480 pixels on the
computer described in subsection 2.2.2.

Last, segmentation of the RGB values can also be applied in order to reduce noise and
colour artifacts as in [BMCF02b, MKKO00]. Pixel values are replaced by the mean values
of their class. This reduces the number of possible pixel values, hence decreasing noise
and artifacts while preserving edges. The results depend however strongly on the chosen
number of classes. The Nagao filter in [NM79] is an edge preserving smoothing filter for
grey value images. It is based on a principle similar to segmentation and does not require

92



4.6 Preprocessing for the M space detector

Figure 4.19: The nine neighbourhoods used in the original Nagao filter are shown in grey.
The currently processed pixel is indicated with a cross.

Figure 4.20: The nine neighbourhoods used in the simplified Nagao filter are shown in
grey. The currently processed pixel is indicated with a cross.

any parameter. Nine neighbourhoods containing the currently filtered pixel are consid-
ered, as shown in fig. 4.19. The neighbourhood with the smallest variance is selected. All
pixels within this neighbourhood are assumed to belong to the same class because of the
small variance. The value of the currently filtered pixel is replaced by the mean value in
this selected neighbourhood. The Nagao filter performs therefore a spatially constrained
local segmentation. To adapt this filter to colour images, the cumulated variance for
all channels is computed in the neighbourhoods: 02 = ¢% + 0% + 0%. In addition, the
simplified neighbourhoods shown in fig. 4.20 are used. All neighbourhoods in fig. 4.20
have the same form so means and variances can be computed in a preliminary step with
a 3 x 3 box filter. This results in a very fast preprocessing because the box filter can be
implemented as two sequential recursive one dimensional filters (see section 3.2). This
simplification results in a slightly worse texture preservation, but the resulting image is
good enough for this work. The simplified Nagao filter requires 430ms for an image with
640 x 480 pixels on the computer described in subsection 2.2.2.

The results of the vector median filter, of the bilateral Gaussian filter and of the simplified
Nagao filter are shown in fig. 4.21 on an enlarged image detail. The hue component of
the image detail is also shown in fig. 4.21, because it allows a good visualisation of colour
artifacts. All preprocessing methods attenuate colour outliers. The bilateral Gaussian
filter produces a blurred image due to the high similarity standard deviation o4. The
similarity standard deviation cannot be decreased because colour outliers are not atten-
uated otherwise. The bilateral filter is indeed optimal for noise reduction with texture
preservation, but not for outlier attenuation. Due to its very high computing time and to
this blurring, the bilateral filtering will not be used as preprocessing. Both vector median
and simplified Nagao filters suppress completely outliers. They also sharpen edges. The
simplified Nagao filter does not preserve texture as well as the median filter: small details
are attenuated. On the other hand, the median filter does not smooth as well as the
simplified Nagao filter. These properties of both filters are also shown on the m space
gradient in fig. 4.22: the simplified Nagao filter smooths more in homogeneous areas and
attenuates more outliers, while the vector median filter preserves better image texture. In
comparison to the m space gradient obtained without preprocessing, the colour of the gra-
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Figure 4.21: Results of the preprocessing methods on an enlarged image detail. Top:
gamma corrected image detail (7 = 2). Bottom: normalised hue component.
The theoretical range of hue [—m, 7] is mapped to [0,255]. Therefore, 0 and
255 encode similar hues.

dient along edges is more homogeneous (see the long green edge in fig. 4.22) and the noise
in nearly homogeneous areas is reduced. The simplified Nagao filter attenuates better
noise and colour outliers than the vector median filter. The obtained gradient is accurate,
even though texture is less preserved than with median filtering. As a consequence, the
simplified Nagao filter is chosen as preprocessing method in this work.

4.7 Comparison framework

The developed interest point detectors are evaluated and compared to each other and
to state of the art detectors. The comparison framework is similar to the one in section
3.7. The detection stability is evaluated on image series showing scenes under different
illumination conditions. A reference image is chosen in each series. The interest points
detected in reference and in current images are compared to evaluate detection stability
with redetection rate and false positive rate (defined in subsection 3.7.1). A reference
interest point is considered redetected if an interest point is detected in its 3 x 3 neigh-
bourhood in the current image. The saturated areas are handled as described in section
3.6. An overview of the compared detectors and their parameters is given in subsection
4.7.1. The used image series are presented in subsection 4.7.2.
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N0 preprocessing vector median simplified Nagao

Figure 4.22: Influence of the two best preprocessing methods on the m space gradient. The
gradient images are scaled between 0 and 255 (the maximum and minimum
values over all pixels and all channels are used). The image in 4.21 is a part
of this image (the letter N).

4.7.1 Compared interest point detectors

The performance of the new detectors developed in this chapter are evaluated: the colour
homomorphic Harris detector (HC-HD) and the two proposed versions of the m space
Harris detector. In the first version, automatic white balancing is applied before demo-
saicing to reduce the formation of colour artifacts and the simple preprocessing of HC-HD
is applied in step 1 of the MS-HD. It is named here m space Harris detector with white
balancing (MS-HD+WB). In the second version, the Nagao preprocessing chosen in sec-
tion 4.6 is applied in step 1 of the MS-HD and no automatic white balancing is applied.
It is named m space Harris detector with Nagao preprocessing (MS-HD+N). For both
versions, only 2 chrominance channels are used. In addition, they are compared to two
existing interest point detectors for colour images: the colour Harris detector (C-HD)
in [Gou00] and the robust invariant Harris detector (RI-HD) in [vdW05]. C-HD adapts
detection to the overall image contrast by selecting the IV interest points with the highest
cornerness values. By including C-HD in the comparison, the stability increase yielded
by the new detectors can be assessed. RI-HD has similar invariance properties to those of
the m space Harris detector (MS—HD). A comparison between RI-HD and MS-HD eval-
uates noise sensitivity and white balancing influence on detection stability. Last, the best
algorithm developed for grey value images (cf. chapter 3) is included in the comparison to
assess the utility of colour information for interest point detection. It is the homomorphic
Harris detector (H-HD). An overview of the 6 compared detectors is given in table 4.3.

For all methods, saturated areas are handled as described in section 3.6. The following
parameters are used to compute the cornerness function for all detectors: cgeriv = 1.2,
ov = 3 and a = 0.06. As in chapter 3, each detector applies the same user—defined
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detector name

‘ abbreviation ‘ description

computing time

colour Harris detector C-HD section 2.2.3 681 ms
robust invariant Harris detector RI-HD section 4.3 1161 ms
homomorphic Harris detector H-HD section 3.3 457 ms
homomorphic colour Harris detector HC-HD section 4.4 826 ms
o s‘pace Harrls det(?ctor MS-HD+WB | section 4.5 716 ms
with white balancing

P Space Harris detectgr MS-HD+N section 4.5 1136 ms

with Nagao preprocessing

Table 4.3: Overview of the evaluated interest point detectors.

detection threshold for all images. This detection threshold is chosen manually as a
compromise for all scenes. For C-HD, N = 100 interest points are detected. For RI-HD,
T is set to 1077, For H-HD, T is set to 107° like in chapter 3. For HC-HD, T is set to
10~%. For MS-HD+WB and MS-HD-+N, T is set to 107°. All other parameters values
are given in the respective algorithm descriptions.

4.7.2 Image data set

Several image series are used to evaluate the detector stability under illumination changes.
Each series shows one scene under different illumination conditions. The images are
acquired as described in more details in subsection 3.7.3. The BASLER A302fc colour
CCD camera is used, without gamma correction or white balancing. Gain and brightness
are set to the values given by the manufacturer. Only aperture and shutter time are set
manually for each image. The raw camera signal is demosaiced with WACPI (see [LT03])
for all images, as explained in section 4.1. For RI-HD and MS-HD+WB, white balancing
with the white patch algorithm is applied before demosaicing.

Like in chapter 3, the detectors are first compared on image series with simple illumination
changes. In these series, all pixels are influenced identically by the illumination change.
As a result, a simple adaptation to the overall lighting conditions as performed by the
C-HD is sufficient for stable detection. These series allow to assess the noise sensitivity of
the developed detectors. The same series as in chapter 3 are used and the same reference
image is chosen. For the first series, no illumination changes occur. Noise is the only
source for pixel variations. In the second image series, pixel values are influenced by neon
lamp flickering. Finally, the third image series is obtained by varying the camera shutter
time. All three series show the same scene, which is illustrated in fig. 4.23.

The detectors are also evaluated on image series showing scenes under complex illumina-
tion changes. Type, number, position and orientation of the light source(s) are changed.
Realistic illuminants and scenes are used (see subsection 3.7.3 for more details). Like in
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Figure 4.23: Two images of the series with shutter time variations. For visualisation, the
images are gamma corrected (y = 1.4).

chapter 3, the reference image is chosen manually: it is the image with the most uniform
illumination. The evaluation has been performed on many series showing different kind
of scenes (same image data as in chapter 3). As in chapter 3, the stability of the detectors
is similar for scenes with similar properties (simple or complex 3D geometry, textured
or structured reflectance, diffuse or specular surface, saliency of the colour information).
Therefore, the results are given in section 4.8 for typical image series which have bee
selected out of all acquired image series. Series with redundant results are not presented.
The reference image and two sample images of each selected series are shown in fig. 4.24.
The first image series is the shelves series, which is also used in chapter 3. It has a complex
3D geometry and hence is strongly influenced by shadows and shading. Its reflectance is
rather complex too. The next image series is the box series. It shows detection stability
on a scene with simple 3D geometry and structured reflectance. In addition, the object
is very specular. The next two objects shows how the presence of colour and intensity
edges in the object reflectance influences detection. The giraffe series contains an object
with only colour edges, whereas the scene in the box?2 series contains very salient intensity
edges. The last two series rabbit and snoopy show detection stability on textured objects
(objects for which many interest points are similar).

4.8 Detector evaluation and comparison

The evaluation and comparison results are presented in this section. In subsection 4.8.1,
the results for the image series with simple illumination changes are presented. Subsection
4.8.2 gives the results for the image series with complex illumination changes are presented.
Finally, a conclusion closes the evaluation in subsection 4.8.3.

4.8.1 Simple illumination changes

The evaluation results for image series with simple illumination changes are given in table
4.4 and in fig. 4.25. In the first image series (top of table 4.4), noise is the only source for
pixel variations. Hence the detector sensitivity to noise can be assessed. C-HD, H-HD and
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shelves series
| : ol

bozr series

giraffe series
i

boz2 series

rabbit series

snoopy series

Figure 4.24: Sample images of the series with complex illumination variations. For all
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image series, the reference image of the series is shown on the left. For visu-
alisation, the images are gamma corrected (v = 1.4). For better visualisation
of the colours, manual white balancing has been applied to all middle images.



4.8 Detector evaluation and comparison

Image series with noise as only source for pixel variations

| C-HD | H-HD | HC-HD | RI-HD | MS-HD+WB | MS-HD+N

mean redetection rate

0.0005 | 0.0388 | 0.0320 | 0.165 0.154 0.0982

0.974 | 0.980 | 0.964 | 0.836 0.870 0.933

mean false positive rate

Image series with neon flickering as main source for pixel variations

| C-HD | H-HD | HC-HD | RI-HD | MS-HD+WB | MS-HD+N

mean redetection rate

0.950 | 0.989 | 0.970 | 0.920 0.887 0.932
0.0283 | 0.0506 | 0.0465 | 0.118 0.104 0.108

mean false positive rate

Table 4.4: Evaluation results for the series with small illumination changes. In the first se-
ries, no illumination changes occur: noise is the only source for pixel variations.
In the second series, neon flickering is the main source for pixel variations. The
mean rates for the whole series are given (50 images).

HC-HD all have similar stability. The detectors based only on chrominance information
(RI-HD, MS-HD+WB and MS-HD+N) are less stable: their redetection rates are lower
and their false positive rates are higher. This is caused by the higher sensitivity of
chrominance to noise and colour artifacts. The Nagao preprocessing increases stability:
MS-HD+N is more stable than RI-HD and MS-HD-+WB. RI-HD achieves the lowest
stability because it is very noise sensitive in dark image areas such as here the shadows
and the black binders in the shelf (see fig. 4.23). This noise sensitivity is also visible in
fig. 4.13: many false positives are detected by RI-HD in dark image areas.

The results of the second series are presented at the bottom of table 4.4. Pixel variations
are caused by neon lamp flickering and noise. All detectors can compensate accurately this
illumination change. Only the stability of C-HD decreases slightly. Neon lamps produce
a more uniform lighting in this series than sunlight in the previous series. As a result,
shadows and dark objects appear less dark in the images. This leads to a higher stability
for RI-HD and MS-HD+WB. As before, the detectors using intensity (C-HD, H-HD
and HC-HD) are more stable than the detectors based only on chrominance (RI-HD,
MS-HD+WB and MS-HD+N), because they are less noise sensitive.

Fig. 4.25 shows the result for the series with varying shutter time. Illumination intensity
varies identically for all pixels. Like in the previous series, the highest stability is obtained
by the detectors using intensity (C-HD, H-HD and HC-HD). The results of H-HD and
HC-HD are similar. Both are slightly less stable than C-HD for the darkest images
(smallest image numbers) because the local adaptation to lighting conditions increases
noise sensitivity in dark areas. RI-HD, MS-HD+WB and MS-HD+N are all less stable
than C-HD, H-HD and HC-HD, especially for darker images: redetection rate is smaller
and false positive rate is higher. Like in the first image series, RI-HD achieves the lowest
stability due to its high noise sensitivity in dark image areas. The implementation of MS—
HD+WB and MS-HD+N, using In(C? + 1) and preprocessing to reduce noise influence,
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Image series with varying shutter time

—=-C-HD

1| —*—RI-HD
H-HD

—4—HC-HD

1| ——MS-HD+N

I o e MS-HD+WB

redetection and false positive rates
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10 15
image number

Figure 4.25: Evaluation results for the series with increasing shutter time. Darker images
have smaller image numbers. Redetection rates are indicated with straight
lines. False positive rates are indicated with dashed lines.

makes both detectors more robust to noise than RI-HD. The Nagao preprocessing reduces
very well noise sensitivity: MS-HD+N is more stable than MS-HD+WB and RI-HD.

For every images series in this subsection, all image pixels are influenced identically by the
illumination variations. Therefore, all detectors, even the simple C-HD, can compensate
the illumination changes: all detectors achieve high stability on all series. The results show
that the detectors based only on chrominance (RI-HD, MS-HD+WB and MS-HD-+N) are
less stable than the detectors using also intensity (C—-HD, H-HD and HC-HD), especially
when the image contains dark areas. This is caused by the noise sensitivity of chrominance
for dark pixel values. RI-HD is the least stable detector in the presence of dark areas.
Stability can be increased with a robust implementation like in MS-HD+WB. The Nagao
preprocessing is particularly efficient to increase stability because it reduces noise and
colour artifacts: MS-HD+N reaches higher redetection rates and lower false positive
rates than MS-HD+WB and RI-HD. H-HD and HC-HD both have similar stability to
C-HD. They are slightly less stable than C-HD for very dark images due to the local
adaptation to the lighting conditions.

4.8.2 Complex illumination changes

This subsection presents the detector stability under complex illumination changes. Type,
number, position and orientation of the light source(s) are varied. The used series are
described in subsection 4.7.2. Further results are given in [Fai05b]. The main motivation
for interest point detection with colour information is the higher accuracy of the image
formation model for colour images. Light colour changes, shadow and shading effects can
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Figure 4.26: Evaluation results for the shelves series (Fig. 4.24 shows images 13, 7 and
28). The redetection rate is given in the left diagram and the false positive
rate is given in the right diagram. The illumination type is indicated at the
top of the diagram.

hence be better compensated. Therefore, the stability under tungsten lamps or after a
change of illuminant type are of special interest here: this results in the most complex
influences in images.

The scene of the shelves series has a complex 3D geometry. Shadow and shading effects
have hence a strong influence on the images. The evaluation results are presented in
fig. 4.26 (see fig. 3.24 for the stability of the grey value detectors). MS-HD+N achieves
the best overall stability. All detectors achieve similar redetection and false positive rates
when the illuminant type stays similar (here neon lamps and neon + sun). MS-HD+N
is more stable than the other detectors when the illuminant type changes (sunlight or
tungsten lamps): it has either a higher redetection rate or a lower false positive rate or
both. MS-HD+WB achieves the second best stability. It is less stable than MS-HD+N,
especially under tungsten lamps because it is more sensitive to noise in dark areas. RI-HD
achieves the second worst stability because many false positives are detected in dark areas
like shadows (see also fig. 4.13). To conclude, invariance to sharp shadow and shading
edges increases detection stability on this series, when the implementation is robust to
noise and colour artifacts. H-HD and HC-HD achieve very similar stability. This shows
that light colour does not influence much detection stability (the main difference between
HC-HD and H-HD is a better compensation of light colour). C-HD is the least stable
because it only adapts detection to the overall illumination intensity. Interest points are
hence detected in the areas with the highest local contrast. These areas change position
under complex lighting changes.

The detection stability for a scene with simple 3D geometry is shown in fig. 4.27. The
scene contains a rectangular box and is lighted by a single illuminant type (the detector
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-8-C-HD
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: H-HD
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redetection and false positive rates
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Figure 4.27: Evaluation results for the box series (fig. 4.24 shows images 1, 3 and 11). The
redetection and false positive rates are indicated by continuous and dotted
curve. The scene is lighted by tungsten lamps for all images.

stabilities stay similar when the illuminant type is changed). All detectors achieve similar
and good stability because illumination influence is smaller than for scenes with complex
geometry. For all detectors, the stability for the box series is higher than for scenes with
complex 3D geometry like the shelves series. The higher noise sensitivity of RI-HD and
MS-HD+WB in the presence of very dark shadows is visible for images 8 to 16: RI-HD
and MS-HD+WB have higher false positive rates than the other detectors. This noise
sensitivity is further increased because the automatic white balancing algorithm fails on
some of those images, leading to a higher amount of colour artifacts. As a conclusion, like
in chapter 3, simple detectors (here C-HD or grey value detectors) are sufficient for stable
detection on such scenes with simple 3D geometry, because all detectors achieve similar
stability. In addition, the effect of specularities is visible in images 2 to 5 and in image
20, which all contain large specular areas: all detectors have lower redetection rate and
higher false positive rates for these images, because none can compensate specularities.

Fig. 4.28 shows how the presence of chrominance and intensity edges in the scene influences
detection stability. As a result, the most appropriate detector depends on scene content.
The giraffe series (top of fig. 4.28) displays an object with only coloured reflectance edges.
In addition, the intensity difference between the two main colours (yellow and orange) is
small. Hence, the most prominent intensity edges are due to specularities, shadow and
shading effects. As a result, H-HD achieves the worst results because it uses only intensity
information. C—HD achieves the second worst stability because detection is only adapted
to the overall lighting intensity. HC-HD achieves a good stability increase in comparison
to H-HD and C-HD because it uses colour information and adapts detection to the
local lighting conditions. The best stability is reached by MS-HD+N, MS-HD+WB and
RI-HD. All three achieve similar redetection and false positive rates. MS-HD+WB and
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Figure 4.28: Evaluation results for the giraffe and boz2 series (fig. 4.24 shows images 2,
8, 16 for giraffe and images 20, 15, 6 for bozx2). The redetection and false
positive rates are indicated by continuous and dotted curve (left and right
diagrams for giraffe). The illumination type is indicated at the top of the
diagram. The same legend as in fig. 4.25 is used.
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RI-HD perform as well as MS-HD+N because the image does not contain very dark areas
in which they are noise sensitive. On the other hand, in the box2 series, intensity edges are
more prominent than colour edges: most object boundaries in the scene are enhanced by
strong intensity edges, like in a drawing. As a result, detectors based only on chrominance
(MS-HD+N, MS-HD+WB and RI-HD) are less stable than detectors using intensity (H-
HD, C-HD and HC-HD). This is emphasised by the simple 3D scene geometry: shadow
and shading effects have only a small influence on the images. As a result, H-HD and
HC-HD achieve both the highest stability, while MS-HD+N, MS-HD+WB and RI-HD
have the lowest stability. To summarise, chrominance based detectors (MS-HD+N, MS—
HD+WB and RI-HD) require good colour edges in the reflectance for detection stability,
while intensity based detectors (H-HD) require good intensity edges in the reflectance.

Fig. 4.29 presents detection stability for textured scenes. The rabbit series (top of fig. 4.29)
shows an object with 3D geometry of middle complexity and coloured textured reflectance.
RI-HD and MS-HD-+WB achieve the best stability. This has two reasons. First, the im-
ages do not contain any dark areas in which RI-HD and MS-HD+WB are noise sensitive.
Second, the Nagao preprocessing distorts the fine texture on the object. As a result, MS—
HD+N achieves lower stability than RI-HD and MS-HD+WB. For such a scene with
fine texture, another preprocessing which better preserves texture would be preferable.
The stability of H-HD and HC-HD is similar and only slightly lower than the stability of
RI-HD and MS-HD+WB. For this scene, detectors based solely on chrominance are only
slightly more stable, because of the object reflectance: the object contains many colour
interest points with similar cornerness values, which results in lower detection stability for
all detectors. The snoopy series shows another textured object. Main parts of the object
do not contain any colour edges and the intensity information is more textured than the
colour information. The detectors based only on chrominance (MS-HD+N, MS-HD+WB
and RI-HD) are in most images more stable than the detectors using intensity (H-HD
and HC-HD). This shows that many colour edges are not necessary for good stability of
chrominance based detectors. Few stable interest points can be more useful than many
unstable interest points. Due to the presence of dark areas, RI-HD achieves clearly lower
stability than MS-HD+N and MS-HD+WB. Under tungsten lamps, MS-HD-+N is more
stable than MS-HD+WB because the dark areas lead to high false positive rates for MS—
HD+WB. On the other hand, under the more uniform lighting of neon lamps or sunlight,
MS-HD+WB performs better than MS-HD+N because of the texture distortion by the
Nagao preprocessing. H-HD and HC-HD achieve lower stability because intensity is more
textured than colour information in this scene (more similar interest points).

4.8.3 Conclusion

All detectors have similar and best stability for structured scenes with simple 3D geometry
or for simple illumination changes. C-HD is however not stable enough under complex
lighting changes. Adapting detection to the local lighting conditions with H-HD or HC-
HD increases stability for complex lighting changes. When the scene reflectance contains
colour edges with low intensity contrast (here in the giraffe series), HC-HD performs
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Figure 4.29: Evaluation results for the rabbit and snoopy series (fig. 4.24 shows images 2,
7, 16 for rabbit and images 10, 6, 28 for snoopy). The redetection and false
positive rates are given in the left and right diagrams. The illumination type
is indicated at the top of the diagram. For better legibility, the results of
C-HD are not given (it achieves the worst stability).
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better than H-HD. In general however, H-HD and HC-HD achieve the same stability,
so H-HD should be preferred because it is faster. The other detectors (RI-HD, MS-
HD+WB and MS-HD+N) are based only on chrominance and are invariant to all shadow
and shading effects. As a result, they are in general more stable than C-HD, H-HD and
HC-HD under complex illumination changes, especially for complex 3D scene geometry
and when the illuminant type varies. Chrominance is less robust to noise than intensity.
RI-HD, MS-HD+WB and MS-HD+N are therefore more noise sensitive than the other
detectors, particularly in dark image areas. RI-HD is the most noise sensitive: it detects
many false positives in dark areas. Thanks to its robust implementation, MS-HD+WB is
less noise sensitive. MS-HD+N is the least noise sensitive of all three chrominance based
detectors because the Nagao preprocessing attenuates noise and colour artifacts. The
Nagao preprocessing distorts however textures, so that MS-HD+WB is more stable than
MS-HD-+N for scenes with fine texture. RI-HD, MS-HD+WB and MS-HD+N require
stable colour edges in the scene for stable detection. Scene content should therefore
influence the choice of the interest point detector. A grey value detector, like H-HD, is
the best choice when intensity is the most prominent image information and when scene
geometry and changes are of medium complexity. MS-HD+N is most appropriate for
structured scenes with stable colour edges, complex geometry and for complex lighting
changes. MS-HD+WRB is the best choice for textured scenes with stable colour edges,
complex geometry and complex lighting changes.

All detectors, especially the chrominance based detectors, are sensitive to colour artifacts.
This could be enhanced by better demosaicing methods. Alternatively, a more powerful
preprocessing method than the Nagao filter could be applied to achieve better texture
preservation while still attenuating colour artifacts and noise. Finally, better camera
hardware could increase chrominance quality. The X3 technology by Foveon Inc. (see
[Fov06]) is particularly promising for the reduction of colour artifacts because it sam-
ples all three colour channels for every pixel with a single CMOS sensor. Chrominance
is inherently noise sensitive in dark areas. More elaborate preprocessing of dark areas
could enhance detection stability of the m space Harris detector. Alternatively, dark ar-
eas could for example be postprocessed like the saturated areas. Like for the grey value
detectors, the user—defined detection threshold influences detection stability, especially for
textured scenes (scenes with many similar interest points). Automatic threshold adapta-
tion to scene content would therefore enhance stability. Finally, all developed detectors
are sensitive to specular effects. The shadow—shading—specular robust invariant detec-
tor presented in [vdWO05] compensates specularities in addition to shadows and shading.
It is however like RI-HD sensitive to noise and to the accuracy of the automatic white
balancing method. If necessary, specular effects could be detected or reduced with polar-
ising filters or using several images as shown in [LLK'02|. Specular highlights can also

be removed using image inpainting as in [BSCBO0O0] or based on the dichromatic image
formation model as in [TLQS03, TI03].
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4.9 Summary

This chapter deals with illumination invariant interest point detection using colour images.
First, several demosaicing methods are compared to find an algorithm that induces only
few colour artifacts in the colour images: the algorithm in [LT03]. The image formation
model and the Harris detector for colour images are then reviewed and the illumination
influence on the detector is derived. Next, the only existing illumination invariant de-
tector is described: the robust invariant Harris detector (RI-HD). RI-HD is invariant to
shadow and shading and it requires white balancing. The two developed detectors are
then presented. The first detector is the homomorphic colour Harris detector (HC-HD).
It adapts detection to the local lighting conditions similarly to the homomorphic Harris
detector for grey value images (H-HD). Slowly varying components of shadows, shading
and of illuminant colour are compensated. The second detector is based on the m space,
an invariant colour space which is based on chrominance and which is fully invariant to
shadows and shading. Light colour is locally compensated so that no white balancing is
necessary. The m space Harris detector (MS-HD) detects less interest points than detec-
tors using intensity because it only responds to colour edges. Chrominance information is
sensitive to noise and to colour artifacts induced by image acquisition. Therefore, a special
preprocessing is introduced for MS—-HD, which is based on the Nagao filter. It reduces well
noise and artifacts. The resulting detector is named MS-HD+Nagao (MS-HD+N). The
preprocessing distorts however texture. Therefore a second version of the MS-HD is eval-
uated, in which the formation of colour artifacts is reduced by applying automatic white
balancing before demosaicing. This is the MS-HD+white balancing (MS-HD+WB).

All colour detectors and the best grey value detector (H-HD) are evaluated and compared
on realistic image series showing a scene under different illuminations. The colour Harris
detector (C-HD) is the least stable under complex illumination changes. Stability is
increased with H-HD and HC-HD. They achieve similar stability on most scenes. H-HD
is thus better because it is faster. HC-HD performs better when the scene reflectance
has only colour edges with little intensity contrast. The detectors based on chrominance
(RI-HD, MS-HD+WB and MS-HD+N) are more stable than the other detectors for
scenes with complex 3D geometry and for complex lighting changes, especially when the
illuminant type varies. They require stable colour edges for stable detection. As a result,
the most appropriate detector depends on scene content. RI-HD, MS-HD+WB and MS—
HD+N are sensitive to noise and colour artifacts in dark image areas. RI-HD is the most
sensitive: it detects many false positives in dark areas. The best stability among RI-HD,
MS-HD+WB and MS-HD-+N is obtained by MS-HD+N for structured scenes and by
MS-HD+WB for textured scenes. All tested detectors are sensitive to specularities. The
stability of all colour detectors could be further increased through automatic thresholding,
better demosaicing, better preprocessing or postprocessing or better camera hardware.
This should be subject to further research.
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5 Application to a recognition task

In this chapter, an object recognition and localisation system is developed. It is used to
illustrate and evaluate the influence of interest point detectors in applications. Illumina-
tion invariance is of special interest for recognition tasks because learning and recognition
phases take place at distant time instants: illumination changes are therefore very prob-
able. After the system overview in section 5.1, each section presents one of the system
blocks. In section 5.2, the descriptors for interest point characterisation are described.
Section 5.3 presents how the interest point 3D positions are estimated with stereo vision.
The matching strategy is described in section 5.4. Finally, the recognition and localisa-
tion algorithm is explained in section 5.5. The influence of the interest point detector
on the recognition system is then evaluated in an application. The evaluation framework
is described in section 5.6. Recognition results are presented in section 5.7. Section 5.8
summarises the chapter.

5.1 System overview

The goal of the system is to recognise learnt objects and to estimate the camera pose®
for the current image. The application is kept small because the aim is to evaluate the
influence of interest point detection on a recognition system. The database is composed
of 10 objects. The objects should be recognised independently of illumination conditions.
Limited camera motion should also be handled: objects should be recognised from sim-
ilar but distinct viewpoints. The system has three degrees of freedom: translation in a
horizontal plane and rotation about the vertical axis. The image plane is approximately
vertical. This is illustrated in fig. 5.1. The camera moves hence with a constant height
from the floor and its optical axis is parallel to the floor. This is realised by fixing the
camera on a tripod with a pan rotation unit. During the learning phase, the database is
built with one image of each object. Many test images taken from different viewpoints
and under different illuminations are then used to evaluate the influence of interest point
detection on recognition. Image data are presented in more details in section 5.6. The 3D
position of the interest points is estimated in order to simplify localisation. This is per-
formed with stereo vision because this requires only cameras and is sufficiently accurate.
Two cameras are hence mounted next to each other on the tripod.

An overview of the whole recognition system is given in fig. 5.2. One of the interest point
detectors presented in chapters 3 and 4 is applied on the image of the left camera. The

1) Camera pose denotes camera position and orientation.
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Figure 5.1: Degrees of freedom of the recognition system. The two translation directions
and the rotation are indicated in green.

pixel values in the interest point neighbourhood are then used to compute a descriptor for
each point. These descriptors characterise the interest points and are used for matching.
They are described in details in section 5.2. Next, the 3D positions of the interest points
are reconstructed with stereo vision: for each interest point, a corresponding point is
found in the right image. The displacement between the two corresponding points is used
to estimate the interest point 3D position. Stereo processing is explained in section 5.3.
During the learning phase, the interest points are stored together with their descriptors
and 3D positions in the database. This is performed for each object. The database is
implemented straightforwardly because it is small. During the recognition phase, the
interest points in the current image? are matched to the interest points stored in the
database. For this, 3D positions and descriptors are used: two interest points are only
matched if their descriptors are similar and if a displacement between their two positions is
possible. The matching strategy is described in section 5.4. The obtained matches are used
by the recognition and localisation algorithm, which merges the information of all matches
to estimate the object viewed in the current image and the camera pose. Localisation
is based on the 3D positions of the interest points and assumes rigid body motion. The
uncertainty of the interest point positions is taken into account to enhance recognition
and localisation results. The recognition and localisation algorithm is described in section
5.5. The different system blocks all apply state of the art algorithms, except the interest
point detectors which are new (cf. chapters 3 and 4) because the topic of this thesis is
illumination invariant interest point detection.

2) In fact, an image pair is required because of stereo vision. The right image is only used for 3D
reconstruction (see fig. 5.2). For simplicity, image denotes in this chapter the left image of the image
pair together with the 3D positions of the interest points, except in the context of stereo vision.
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Figure 5.2: Overview of the recognition system
5.2 Interest point characterisation

In subsection 5.2.1, after a short overview of the existing descriptors, the most appropriate
algorithm for the developed recognition system is chosen: the SIFT descriptor described
in [Low04]. This algorithm and its implementation are described in more details in sub-
section 5.2.2.

5.2.1 Choice of the descriptor algorithm

After detection with one of the algorithms described in chapters 3 and 4, each interest
point is characterised by a descriptor. This descriptor encodes texture information in the
neighbourhood defined by the interest point. It is used to constrain matching: only similar
interest points are matched. The similarity of two interest points is obtained by comparing
their descriptors. As a consequence, descriptors should be discriminative, i.e. contain
characteristic texture information, in order to reduce the number of false matches. As
stated in section 5.1, the objects should be recognised under illumination changes and
limited viewpoint changes. The influence of such changes on the descriptors should hence
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5.2 Interest point characterisation

be small. [llumination influence is described in chapter 2. Limited viewpoint changes can
be approximated by local affine transformations in the interest point neighbourhoods,
as explained in [Tuy00]. A last requirement for the descriptors is compactness. This is
however not essential here because the application handles a small database.

The simplest method to build a descriptor is to store all pixel values in the interest
point neighbourhood. In that case, interest points are compared with a correlation mea-
sure, such as normalised crosscorrelation, sum of squared differences or sum of absolute
differences. Descriptor dimensionality can be reduced by applying principal component
analysis on the descriptor set like in [SD99, LPF04]. Illumination influence can be sup-
pressed by normalising the pixel values in the neighbourhood with one of the methods
presented in subsection 2.3.1. Similarly, viewpoint changes can only be compensated if
the local affine transformation is corrected beforehand. Such a viewpoint correction is
described for example in [MS04, Tuy00, MCUPO02]. Another possibility to handle view-
point changes is to store several descriptors for each interest point, each corresponding to
a different viewpoint, like in [LPF04]. This descriptor form is however most of the time
used in applications where the viewpoint does not change much, for example stereo vision
in [VLO1] or tracking in [DMO02, SD99).

Another popular descriptor form is based on moments. Moments encode the spatial dis-
tribution of the pixel values. They represent texture very compactly. For example, in
[Tuy00], the whole neighbourhood is described by 18 or 9 moment invariants, depending
on the chosen degree of invariance. Invariance to illumination changes is obtained for
example by moment normalisation in [MMG99, Tuy00, MCUPO02]. Invariance to rotation
in the image plane can be achieved by selecting only some of the moments (cf. [Tuy00]).
If invariance to full affine transformation is necessary, viewpoint changes must be com-
pensated beforehand, for example like in [Tuy00, MCUP02].

Decomposition of the pixel values using several filters, for example derivative filters, is
another popular method to compute descriptors. The filters can be applied to a single
neighbourhood point as in [SM97, MS04] or to several neighbourhood points as in [CJ02].
Filter based descriptors are compact: descriptors in [MGDP00, SM97, MS04] are com-
posed of 8 to 12 invariants. Like for moments, invariance to illumination changes can be
achieved by normalising the filter responses as in [SM97]. Alternatively, the image neigh-
bourhoods can be normalised before filtering as in [MGDPO00]. Invariance to rotation in
the image plane can be obtained by steering the filters in the direction of the highest
gradient as in [FA91, CJ02, MS04]. Another solution consists in computing rotational
invariants by combining the response to several filters like in [SM97, MGDPO00]. For fur-
ther invariance to viewpoint changes, multi-scale descriptors can be used like in [SM97]
or viewpoint changes can be compensated before descriptor computation as in [MS04].

Last, texture can be represented with histograms. The most popular histogram based
descriptor is the SIFT descriptor: a multi-dimensional histogram of gradient values (see
[Low04]). The first two histogram dimensions are the image directions x and y. This
encodes the spatial distribution of the texture. The third dimension is gradient direction.
The compactness of this descriptor depends on the number of bins in each direction. In
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5 Application to a recognition task

[Low04, MS05], 4 x 4 x 8 descriptors are used. Illumination invariance is obtained by
normalising the descriptors. Rotation in the image plane are compensated by steering the
descriptor in the direction of the highest gradient. Scale invariance is achieved by adapting
neighbourhood size to image content. Further mechanisms (weighting and interpolation)
make the descriptors robust to the remaining geometric transformation. More elaborate
versions of the SIFT descriptors are presented in [MSO05].

In [MS05], existing descriptors are compared to each other. The descriptors are evaluated
on several image series with viewpoint changes, simple illumination changes, image blur
and JPEG compression artifacts. Comparison criterion is matching quality. The SIFT
descriptor reaches the best performance. This proves the robustness of this detector to
viewpoint, noise and simple illumination changes. Its higher dimensionality makes it also
more discriminative than smaller descriptors based on moments or filters. Smaller SIFT
descriptors (2x2x8) also achieve higher robustness and better matching quality than filter
based descriptors, as shown in [Kra05]. Last, SIF'T descriptors simplify matching because
the similarity between interest points is simply the Euclidian distance between descriptors.
Other descriptors such as the filter based descriptors requires weighted distances like the
Mahalanobis distance (see [SM97]). Therefore SIFT descriptors are used in this work
to characterise the detected interest points. They are computed from gradients. They
can therefore re—use the invariant derivatives computed by some of the developed interest
point detectors (N-HD, H-HD, RI-HD, HC-HD and MS-HD). The algorithm and its
implementation are described in more detail in subsection 5.2.2.

5.2.2 SIFT descriptors

As explained in the overview of subsection 5.2.1, SIF'T descriptors represent texture with
a three dimensional gradient histogram. This process is illustrated in fig. 5.3. The original
algorithm described in [Low04] is used here. The three histogram dimensions are image
directions = and y, and gradient orientation #. Gradient magnitude is accumulated in
the histogram bins: each bin (x;,y;,0) (represented by a red arrow in the right part
of fig. 5.3) is the sum of the gradient magnitudes of all pixels contained in the image
area represented by (z;,y;) with gradient orientation corresponding to 6. In fig. 5.3, the
image area for each bin contains 4 x 4 pixels and is indicated with bold lines. There are
4 image areas, each with 4 different gradient directions (delimited with dashed lines in
fig. 5.3), which corresponds to a descriptor with 2 x 2 x 4 = 16 bins. The number of
bins per direction should be chosen as a compromise between discriminative power and
compactness. The database in this application is small, therefore small descriptors are
discriminative enough: descriptors of size 2 x 2 x 4 are used. This discretisation is shown
in fig. 5.3: the spatial bins represent the upper left, upper right, lower left and lower right
neighbourhood parts and the gradient orientations are left, right, up and down.

To achieve invariance to scale changes and rotation in the image plan, neighbourhood size
and orientation are adapted to image content in [Low04]. In this application, only limited
viewpoint changes occur and there is no rotation in the image plane. Therefore, the

112



5.2 Interest point characterisation

Y y
8 L N BN B O I I
L R R Y I I I X
RN N AN
A 1 A d 0 .
RN =N
—F T —| - T T = “ >
I N T
Ly |y ~ g
vy ~ - VI v E 'e N
VY| Y h N[N A N
X X
image gradients 2x2x4 descriptor

Figure 5.3: SIFT descriptor overview. Right: the image gradient for each pixel in the
considered neighbourhood is represented by a red arrow. The arrow indicates
gradient magnitude and direction. Left: each red arrow visualises one de-
scriptor bin. In this descriptor, each image direction (z and y) is represented
with two intervals and gradient orientation € is represented by four intervals,
leading to 16 bins. Each bin contains the sum of the gradient magnitudes
of all pixels in the corresponding image area (delimited with bold lines) with
corresponding gradient orientation (delimited with dashed lines).

neighbourhood is not adapted to image content here: the inherent robustness of the SIFT
descriptors to viewpoint changes is sufficient. The neighbourhood size for characterisation
should be related to the neighbourhood size for interest point detection. A Gaussian
filtering with standard deviation o,; = 3 is used for interest point detection. Hence,
a 15 x 15 square neighbourhood is used for descriptor computation: it contains most
pixels that were taken into account for interest point detection. The SIFT descriptor
is designed to be robust to limited viewpoint changes. This principle is inspired from
neural mechanisms in the human brain (see [Low04]). To achieve robustness, histogram
bins should be chosen big enough. In addition, the histogram is filled using trilinear
interpolation: each pixel influences 2 bins per direction. This reduces viewpoint influence
because viewpoint changes smoothly modify the descriptors. Finally, gradient magnitudes
are weighted with a Gaussian to decrease the influence of pixels at the neighbourhood
border and to reduce the influence of inaccurate interest point detection. Like in [Low04],
the standard deviation of the weighting Gaussian o, is half the width of the considered
neighbourhood. o, is therefore set to 7.5.

Robustness to illumination changes is achieved by normalising the vectors representing
the descriptors to unit length. Bins are proportional to sums of gradients. If illumination
influence is assumed constant in the considered neighbourhoods as in eq. (2.6), this nor-
malisation completely compensates illumination changes. Some of the developed interest
point detectors are based on invariant gradients (N-HD, H-HD, RI-HD, HC-HD and
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5 Application to a recognition task

MS-HD). When those detectors are applied, the derivatives are re-used to compute the
descriptors. In that case, no normalisation is performed. To achieve further robustness to
specularities and saturation, a second step is applied in [Low04]: the normalised descrip-
tors are thresholded so that no bin value is bigger than 0.2, and they are subsequently
renormalised. This reduces the influence of strong gradients which are most of the time
caused by specularities or saturation. This second step is not performed here: the han-
dling of saturated areas during interest point detection already prevents the detection of
interest points near saturated areas and near most specular highlights. The descriptors
described in [Low04] use grey value images. For colour images, one SIFT descriptor is
computed for each channel using the channel gradients. In that case, the normalisation
compensates not only the influence of slowly varying shadows and shading but also the
influence of the illuminant colour.

SIFT descriptors are computed for each interest point according to the following:

1. For each pixel (z,y) in the 15 x 15 neighbourhood around interest point (z;p, yrp)
and for each channel:

a) Compute gradient magnitude g and gradient orientation 6 from the image
derivatives I, and I,,.

_ (e—z7p)?+(y—yrp)?
2

b) Multiply gradient magnitude with the Gaussian: ¢ = ge 20w
where o, = 7.5.

¢) Compute the two gradient orientation bins to increment ¢; and 6 and the

interpolation weights w(f;) and w(fy): w(f;) =1 — ”;2:%"1"

d) Compute the two horizontal direction bins to increment z; and xs and the
interpolation weights w(z1) and w(zy): w(x;)) = 1 —

|z—x;]
lza—z1]”
the leftmost or rightmost border, only one bin x; and its weight w(z;) are

computed.

If (z,y) is in

e) Compute the two vertical direction bins to increment y; and yo and the inter-

polation weights w(y;) and w(ys): w(y;) =1— % If (x,y) is on the upper

or lower border, only one bin y; and its weight w(y;) are computed.
f) Increment all selected bins with: ¢’ w(6;) w(x;) w(yx) where 4,5,k =1 or 2.
2. If required, normalise the descriptor channelwise to unit length.

Here, the descriptor has only 4 possible gradient orientations: 6; is either 0°, 90°, 180°
or 270°. Similarly, z; and y, are either -3.75 or +3.75 because there are 2 cells per
image direction and the neighbourhood is 15 pixels wide. The Gaussian weighting and
the interpolation weighting for x and y directions are implemented as look—up tables
because image coordinates x and y are discrete. Gradient orientation 6 can take any
value. The weights w(6;) are therefore computed online. The descriptor computation
requires approximately 0.06ms per interest point for grey value systems and 0.18ms per
interest point for colour systems on the computer described in subsection 2.2.2.
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Figure 5.4: Perspective camera model.

5.3 Stereo reconstruction

The interest point 3D positions are reconstructed using stereo vision. This 3D information
is used for matching and for recognition and localisation. Stereo vision is chosen because it
is a reliable and cheap method to reconstruct 3D information for image points. Only two
cameras are needed: no additional sensor such as a laser range finder and no additional
light source (for 3D reconstruction using structured light) is necessary. The principles
of stereo vision are explained in subsection 5.3.1. The two steps of stereo reconstruction
are then described in more detail: subsection 5.3.2 explains how reliable correspondences
between the two images are found and subsection 5.3.3 describes how this is used to
estimate the 3D position of the interest points.

5.3.1 Principles of stereo vision

To reconstruct 3D scene geometry, a mathematical model describing the geometry of
image formation is necessary. Here, the perspective camera model® is used (see for

3) This model is also named pinhole camera model.
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Figure 5.5: Stereo vision and epipolar geometry.

example [TV98]). This model is shown in fig. 5.4. The perspective camera model describes
mathematically how a 3D point P is projected into a corresponding image point p. From
a geometric point of view, the image point p is the intersection of line (O P) with the
image plane. This can be described with linear algebra. If the coordinates of point P are
(X,Y, Z)T in the camera coordinate system (O XY Z ), the coordinates of image point p
in the image coordinate system (oZ ¥) are given by:

()-5(%)

This projection is followed by a discretisation step, in which the continuous image coor-
dinates (z,y)" are transformed into discrete pixel coordinates (Zpiz, Ypiz)? with:

T Y

Tpig = — + 0, and  Ypiyz = — + 0. (5.2)

Sz Sy
s, and s, are the pixel sizes in horizontal and vertical directions. o, and o, are the
distances between image borders and the projection o of the optical centre in the image
plane. The lens might cause radial distortion which can be corrected beforehand. This is
handled in more detail in subsection 5.3.3.

For stereo vision, two cameras are used. 3D geometry can be reconstructed for scene
points visible by both cameras. Therefore both cameras are directed in similar directions.
The geometry of stereo vision is named epipolar geometry. It is shown in fig. 5.5. One
coordinate system is associated to each camera: here, (O, X I3 ?L 7 1) for the left camera
and (Og X R VR 7 r) for the right camera. The two coordinate systems are related by
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5.3 Stereo reconstruction

a rotation and a translation. One camera is chosen as reference and the 3D positions
are estimated in its coordinate system. Here, the left camera is the reference. The
transformation between both coordinate systems is described by:

Xr X
ve | =R || vi | -¢t]. (5.3)
Zr Zr,

(X1,Yy, Zp)T and (Xg, Yg, Zg)T are the coordinates of scene point P in the left and the
right camera coordinate systems. Rotation matrix R and translation vector t represent
the transformation between both coordinate systems. Scene point P is projected in both
image planes according to the perspective camera model. The intersection of line (O, P)
with the left camera image plane defines py. The intersection of line (Og P) with the
right camera image plane defines pg. The plane (O Og P) is named epipolar plane. It
intersects both image planes in two lines named epipolar lines. As shown in fig. 5.5,
the projection of line (Of P) in the right image is the epipolar line. The position of
pr on the epipolar line depends on the distance between Oy and P. Stereo vision uses
this property to estimate 3D information. Here, the stereo system is calibrated with a
commercial software: the small vision system (see [SRI02, SRI03]). All system parameters
are obtained: the intrinsic parameters f, s;, sy, 05, 0, for both cameras and the extrinsic
parameters R,t. A simple geometric stereo vision algorithm can therefore be applied,
which is based only on egs. (5.1), (5.2) and (5.3).

To reconstruct the 3D position of image point py in the reference image (here the left
image), line (O, pr) is projected in the right image to obtain the epipolar line. A corre-
sponding point pg is searched in the right image along this epipolar line. The intersection
of lines (O pr) and (Og pr) gives scene point P, i.e. the 3D position of image point py.
Stereo vision can therefore be divided into two steps. First, corresponding points must be
found in the images. The search is constrained using epipolar geometry. Minimum and
maximum Zj, coordinates are used to further reduce the search area in the right image,
as shown in fig. 5.5. This is explained in subsection 5.3.2. Once the two corresponding
points are obtained, the intersection of lines (Op pr) and (Og pr) is estimated. A simple
geometric method is used. It is described in subsection 5.3.3.

5.3.2 Finding correspondences

To reconstruct interest point positions, correspondences must be found in the right image
for all interest points detected in the left image. The same algorithm is performed for each
interest point independently. In a first step, a search area is determined in the right image
based on epipolar geometry. Next, the most similar point in this search area is determined
using the method presented in [Hub04]. Sum of Absolute Differences (SAD) in a 16 x 16
neighbourhood centred on the interest point is applied to measure similarity. Finally,
correspondence uniqueness is tested with a criterion developed in [St601]. 3D geometry
is only reconstructed for unique correspondences to obtain only reliable 3D information.
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The first step determines the search area. As shown in [Hub04], constraining the search
area with epipolar geometry increases correspondence reliability. The method described
in subsection 5.3.1 and illustrated in fig. 5.5 is applied. The search area is defined by the
epipolar line and by a valid range [Znin, Zmaz) for the Z;, coordinate. This defines points
Pmin a0d Prge in fig. 5.5. The valid range should be adapted to the application. In the
object recognition system, the objects are placed near the camera. The valid range is set
to [30cm, 2.5m] here. The following procedure is used to compute ppin and ppaz:

1. Compute the coordinates of the interest point py, in the image coordinate system of
the left camera using eq. (5.2).

2. Compute the 3D positions of points P(Z,;,) and P(Z,,4;) in the left camera coor-
dinate system using eq. (5.1) with Z = Z,,;, and Z,4z.

3. Transform the coordinates in the right camera coordinate system using eq. (5.3).

4. Project the scene points P(Zi,) and P(Z,,4,) in the image plane of the right camera
using eq. (5.1). This gives image points i, and ppae-

5. Compute the coordinates of p,,i, and pe. in the pixel coordinate system of the
right camera using eq. (5.2).

This is illustrated in fig. 5.6. The epipolar lines are almost horizontal because the used
cameras are approximately in a parallel configuration: both image planes are approxi-
mately coplanar (see [TV98]). To account for calibration errors and for radial distortion,
the line segment [pin Pmaz| 1S extended vertically to define the search area. The search
area is defined as all pixels (z,y) such that |y — yepi| < d where (2, yepi) is a point of the
epipolar segment [ppin Dmaz)- d is a distance threshold (in pixels). It should be adapted
to the calibration accuracy and to the lens radial distortion. Here, d is set to 5 pixels.

Once the search area is defined, the similarity between the interest point and all points in
the search area is computed. The point with the highest similarity is the corresponding
point. The two cameras used for stereo are close to each other and the images are taken
at the same time instant. Therefore, viewpoint and illumination do not change much
between left and right images. As a result, a simple correlation measure is sufficient to
estimate the similarity of neighbourhoods. Similarity must be computed efficiently be-
cause it is performed for all interest points and all points in the corresponding search
areas. Here, the method presented in [Hub04] is used: it implements in software the
real-time correspondence framework developed in [St601] and it extends the framework
for stereo vision. Similarity is computed with the Sum of Absolute Differences (SAD)
between the 16 x 16 grey value neighbourhoods around two points. SAD is chosen be-
cause of its speed. It is implemented efficiently using MMX assembler commands. The
correspondences found between the images of fig. 5.6 are shown in fig. 5.7. On this small
example, all correspondences are correct.

The search area may contain several points similar to the interest point when the in-
terest point texture is not specific enough. In that case, a wrong correspondence may
be chosen because of noise or viewpoint and illumination influence. To prevent such
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Left image showing the detected interest points

Right image showing the corresponding epipolar lines

Figure 5.6: Search areas for stereo vision. The epipolar segments [pyin Pmaz) are indicated
in the right image for all interest points of the left image.

Figure 5.7: Correspondences between two stereo images. The correspondences are indi-
cated by line segments between corresponding points. Both images are super-
posed for visualisation. Only the relevant image part is shown.
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Figure 5.8: 3D Reconstruction of a scene point.

errors, correspondence uniqueness is tested. 3D information is only reconstructed for
unique correspondences. The interest points failing the uniqueness test are discarded.
For this, the SAD values of the maximum and of the second maximum in the search area
are compared to each other: if the difference between both SAD values is high enough
(SAD(max) — SAD(second max) > t, t is a user—defined threshold), the correspondence
is considered unique. This simple uniqueness measure is compared to other uniqueness
measures in [St601]. It is shown to be effective and more robust to the choice of the
user—defined threshold ¢ than the other measures. t is set to 20 here. All reliable corre-
spondences are given to the next module: the 3D reconstruction.

5.3.3 3D reconstruction

As explained in subsection 5.3.1, the 3D position of scene point P is reconstructed with
a simple geometric method, given its projections in both images p; and pgr. The scene
point is the intersection of the two lines (O pr) and (Ogpgr) (see fig. 5.5). In practise,
these two lines do not intersect because the estimated positions of p;, and pr and the
calibration are not accurate enough. Therefore the estimated 3D point P’ is the point
with minimum distance to these two lines. For this, the vector @ perpendicular to both
lines is used. The line segment parallel to @ with one endpoint on each line is determined.
The scene point P’ is the midpoint of this segment (see [TV98]). This is illustrated in
fig. 5.8.

Computations are performed in the left camera coordinate system. The equation of line
(Oppr) is x = apL where x = (2,y,2)T represents a scene point in the left camera
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5.3 Stereo reconstruction
coordinate system. py, = (1, vz, f1)? is the image point py, in the left camera coordinate
system. xj and y; are obtained from pixel coordinates using eq. (5.2). Similarly, the
equation of line (Og pg) in the left camera coordinate system is x = b RT pgr +t. Rotation
matrix R and translation vector t represent the transformation between both camera
coordinate systems (see eq. (5.3)). pr = (Zr,Yr, fr)! represents image point pr in the
right camera coordinate system. Vector w is perpendicular to both lines. Its coordinates
in the left camera coordinate system are given by:

W = pr, X RT Pr, (54)

where X represents vector product. The line segment parallel to @ and with endpoints
on lines (O, pr) and (Og pr) is therefore obtained by solving following equation:

apL+cw=bRTpgr +t. (5.5)

Once a,b and ¢ are obtained, the coordinates of scene point P’ are given by:

P' =apL + gw. (5.6)
P’ contains the 3D coordinates of the current interest point in the left camera coordinate
system. More details can be found in [TV98|. As explained before, the two lines (Of, pr)
and (Ogpr) do not intersect because the coordinates of p; and pr and the system pa-
rameters are only known inaccurately. The 3D reconstruction precision can therefore be
increased with better estimates of p; and pgr or better calibration. Here, two problems
are handled. First, the 2D position of pg is improved using subpixel correspondence.
Second, the radial distortion caused by the lens is corrected to model the cameras more
accurately. These two steps are described in the following paragraphs.

As explained in subsection 5.3.2, the pixel with the maximum similarity to the interest
point py, is the corresponding point pg used for reconstruction. Pixel positions are discrete,
hence inaccurate. This can be improved with subpixel correspondence. The simplest
method for that is to use the similarity values of the pixels around the determined point
pr. The similarity measure reaches a maximum for pg. If the similarity measure is well
behaved, the similarity measure can be modelled as a paraboloid in the neighbourhood
of pg. In practise, it works for most pixels. A paraboloid is fitted to the SAD values
of pr and of its eight neighbours using least square estimation. The peak position of
the estimated paraboloid is obtained by setting the paraboloid derivatives in x and y
directions to 0. The whole process is described in details in [Gon03]. It yields coordinates
for pr with subpixel accuracy. On some neighbourhoods, paraboloid estimation fails. In
such a case, subpixel coordinates are computed for x and y directions separately. For
this, a 1D parabola is fitted to the SAD values of pg and of its two neighbours in the
considered direction z or y. The subpixel coordinates are computed like before by setting
the derivative of the obtained parabola to 0. This 1D method is less accurate than the
2D method and is therefore only used in the case the 2D method fails. The 1D method
always converges. As a result, subpixel correspondences can always be obtained.
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5 Application to a recognition task

Camera lenses may induce geometric distortions. These can be modelled as radial distor-
tions with following equations:

v =x4(1+rr?) and y=yq(1+ rr?). (5.7)

x and y are the undistorted coordinates in the image coordinate system. x4 and y,; are
the distorted coordinates in the image coordinate system and r? = z42 + y42. K is the
distortion parameter. Radial distortions are caused by the lens. They occur hence between
the projection in the image plane described by eq. (5.1) and the image discretisation
in eq. (5.2). As a result, the undistorted coordinates (z,y) verify eq. (5.1). They are
distorted by the lens according to eq. (5.7). Subsequently the distorted coordinates (4, yq)
are discretised according to eq. (5.2). Further details can be found in [TV98]. The used
commercial calibration software estimates the x; value (see [SRI02, SRI03]). The influence
of k1 is hence corrected before 3D reconstruction. This proved experimentally to increase
reconstruction accuracy.

The 3D reconstruction is summarised in the following:

1. Compute subpixel correspondences for the correspondences obtained with the method
of subsection 5.3.2.

2. Transform the pixel coordinates of p;, and pg in image coordinates with eq. (5.2).
3. Correct radial distortion with eq. (5.7).

4. Compute w with eq. (5.4) and solve the system of eq. (5.5).

5. Compute the 3D position of the interest point with eq. (5.6).

The whole process (correspondence finding and 3D reconstruction) provides reliable es-
timates of the interest point 3D positions. It requires approximately 0.5ms per interest
point on the computer described in subsection 2.2.2. The accuracy decreases however
when interest points are further away from the cameras, like for all stereo reconstruction
algorithms. The uncertainty of the 3D information is therefore modelled for matching
and for localisation, as explained in sections 5.4 and 5.5.

5.4 Matching

Once the interest points are characterised with descriptors and 3D positions, the whole
information extraction process is finished. The interest points are stored in the database
with descriptors and 3D positions during the learning phase. During the recognition
phase, the current interest points are matched to the database interest points. The
resulting list of matches between current image points and database points is then used
for recognition and localisation. As the database is small here, matching is implemented
straightforwardly. The database is a list of interest points. Each current interest point
is compared to all database interest points to verify if a match should be created. Such
an exhaustive search is impossible for bigger databases. In that case, the number of
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5.4 Matching

comparisons must be reduced, for example by indexing. Such techniques can be found
for example in [Low04, NeuOl]. To increase the efficiency and accuracy of recognition
and localisation, the resulting match list should contain as many true matches as possible
and as few false matches as possible. This is shown for the RANSAC algorithm® in
[VLO1]. Several matching strategies are presented in [VLO1] to eliminate false matches
while keeping true matches in the case of uncalibrated stereo. Three of these strategies are
applied in this work. First, image information is used: only interest points with similar
descriptors are matched, as explained in subsection 5.4.1. Second, geometric information
is considered. The recognition system has only three degrees of freedom (cf. section
5.1). This constraint is used to verify if the displacement between the two interest point
3D positions is possible. This is described in subsection 5.4.2. Finally, subsection 5.4.3
presents match list constraints: only a given number of matches is allowed per interest
point and matching must be symmetric (i.e. the same matches should be obtained if the
roles of current image and database image are interchanged).

5.4.1 Descriptor similarity constraint

The first constraint regards image information: current interest point and database inter-
est point in a match must have similar neighbourhoods. As explained in section 5.2, the
similarity between two interest points can be estimated by the euclidian distance between
their two descriptors. Therefore, if the current interest point p and the database interest
point ppp are characterised by descriptors D and Dpg, a match between p and ppp is
valid if: ||D —Dpg|| < Diim. ||D —Dpgl| is the euclidian distance between vectors D and
Dpg. Dy is the similarity threshold. Thresholding the similarity is a simple solution
to verify match validity. It is sufficient for the small recognition system developed in this
chapter. For bigger systems, more complex criteria may be necessary (see for example
[Low04]). Dy, should be small enough to prevent false matches. On the other hand, it
should be high enough to match interest points corresponding to the same scene point
seen from a different viewpoint and under different illumination. Hence, a compromise
between both conditions must be found.

The similarity threshold Dy, is selected before the recognition phase using two histograms
which correspond to the two conditions. This is illustrated in fig. 5.9. The first histogram
shows the distribution of the distances between descriptors representing different scene
points (hence false matches). This is obtained by comparing the descriptors of the different
interest points detected in one image. The second histogram shows the distribution of the
distances between descriptors representing the same scene point under different viewing
conditions (hence true matches). Ideally different viewpoints and different illuminations
should be used. True matches are necessary to build this histogram. This is difficult to
obtain when viewpoint changes. This is however easily obtained for illumination changes.
Image series like the ones presented in sections 3.7 and 4.7 can be used: they show the
same scene under different illuminations. Corresponding interest points have identical

4) RANSAC is a robust estimation method which is often applied for recognition and localisation.
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Figure 5.9: Histograms of the descriptor distances for different scene points (top) and for
the same scene point under different illuminations (bottom). H-HD is used for
interest point detection. The descriptors are computed as described in section
5.2 using the homomorphic derivatives. The histograms are built using several
images of the database objects.

pixel coordinates. For simplicity, the second histogram is built only with interest points
viewed under different illuminations here. As can be seen in fig. 5.9, distances are sig-
nificantly higher for different scene points than for the same scene point under different
illuminations. The threshold Dy;,, should be chosen between the two histogram peaks to
reach a compromise between both conditions. A sufficient number of interest points must
be used to build representative histograms. The histograms and the obtained threshold
do not vary much with scene content when enough interest points are used. In this work,
the histograms are built from a representative subset, which contains 200 images showing
each database object under all used illuminants.

Fig. 5.10 shows how the two histograms can be used to select the threshold. If two
interest points have a distance smaller than the threshold, the match is valid. Otherwise,
the match is rejected. The threshold divides each histogram into two surfaces. For the
distances between different points (top histogram), the histogram part to the left of the
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Figure 5.10: Selection of the threshold Dy;,,.
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Figure 5.11: Threshold selection for the descriptors based on homomorphic grey value
descriptors.
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5 Application to a recognition task

threshold represents the percentage of false matches (false decision). The part to the right
represents the percentage of true negatives (correct decision). For the distances for the
same scene point, the histogram part to the left of the threshold represents the percentage
of true matches (correct decision), while the part to the right represents the percentage
of false negatives (false decision). A good threshold achieves a high percentage of correct
decisions in both histograms. Therefore, the criterion for threshold selection is the sum of
the two hatched areas in fig. 5.10. Maximising this criterion maximises both percentages
of correct decisions. Before computing the criterion, the histograms are normalised so
that the sum of their bins is 1 because both histograms are built with a different number
of distances. After this normalisation, the sum of both hatched surfaces takes values
between 1 and 2. The similarity threshold is the value for which the criterion reaches its
maximum. The curve obtained for the histograms of fig. 5.9 is shown in fig. 5.11. The
optimal threshold is Dy;,,, = 3.3. To obtain a good threshold, a representative image subset
must be used to build the histograms (with images of different objects). The thresholds
obtained for the different descriptors used in this thesis are given in table 5.1.

derivatives used by the descriptor ‘ optimal threshold
standard grey value derivatives 0.51
energy normalised grey value derivatives 20.5
homomorphic grey value derivatives 3.3
standard colour derivatives 0.94
robust invariant derivatives 1.05
homomorphic colour derivatives 5.3
3 channel m space derivatives + white balancing 3.5
3 channel m space derivatives + Nagao 3.6
2 channel m space derivatives + white balancing 1.9
2 channel m space derivatives + Nagao 2.1

Table 5.1: Thresholds for the different descriptor types.

5.4.2 Geometric constraints

The developed recognition system has only three degrees of freedom as described in section
5.1 and in fig. 5.1: the camera (or equivalently the object) is only translated horizontally
and rotated about the vertical axis. Both translation and rotation components displace
the scene points in a horizontal plane. Therefore, corresponding interest points have
the same height from the ground. As shown in fig. 5.4, height is represented by the Y
coordinate in the camera coordinate system. As a result, database and current interest
points in a match ppp and p should have the same vertical 3D coordinate Y. Notice
that this constraint is different from having the same vertical image coordinate y because
the vertical image coordinate y depends on the distance between camera and object (see
eq. (5.1)). In preliminary work described in [Web05], this constraint was implemented
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5.4 Matching

with: |Ypp —Y| < Yiim. Yiim is a user—defined threshold necessary to take into account 3D
reconstruction inaccuracy. Nonetheless, the inaccuracy of stereo reconstruction increases
when scene points are further away from the camera. Therefore, the geometric constraint
in this work takes into account the stereo reconstruction uncertainty, using a statistical
model of uncertainties and the theory of uncertainty propagation presented in [Siv96].

The cameras used here for stereo reconstruction have almost a parallel configuration (see
section 5.3). Stereo reconstruction is much simpler for exact parallel configuration, as
shown in [TV98]. Therefore, the camera system is approximated by an ideal system
with parallel configuration to compute reconstruction uncertainties. This means that the
rotation matrix R between both cameras in eq. (5.3) becomes the identity matrix Id. The
translation becomes here a horizontal translation along the X axis: t = (tx,0,0)7. With
this ideal system, the 3D coordinates (X,Y, Z)T of a scene point are reconstructed with:

X ¢ Iy, ¢ Ty,

X X
Y | = m yo | = i yr | - (5.8)
Z fr Jr

(x,yr) and (xg,yr) are the coordinates of the two corresponding points in the left and
right image coordinate systems. Detailed explanations can be found in [TV98]. d =
xr, — rr is named disparity. Stereo reconstruction depends hence on four parameters:
translation tx, disparity d, interest point position (x, yr,) and focal length f1,. Calibration
errors are not considered here. Therefore, the two uncertainty sources are disparity d and
interest point 2D position (xp,yr). Disparity uncertainty is caused by inaccurate stereo
correspondences. Interest point position uncertainty occurs because the image positions
of current interest point and database interest point may not correspond exactly.

Measurement errors are approximated here with Gaussians. A measured value u is rep-
resented by: % + o,, where u is the estimated value of v and o, is the standard deviation
of the Gaussian modelling the errors in the measurement of u. When several measure-
ments u,...,w are combined with function f(u,...,w) to obtain x = f(u,...,w), the
uncertainty on x can be estimated by:

(of 2 of 2
UIQ—(%Uu) ++<%O—w) , (59)

if the uncertainties in u, . . . , w are random, independent of each others and relatively small
(see [Siv96]). Of/0u,...,0f /0w are the partial derivatives of f with respect to u, ..., w.
Here, the measured values are disparity d and interest point positions z; and yr. The
errors on these measurements are assumed small, random and independent of each others.
For matching, the uncertainty on the 3D coordinate Y = tx y;/d is evaluated depending
on the uncertainty on disparity d and interest point position (xr,yr). This yields:

2
tx 9

tx? tx? Y?
X X 5,2 = 0i + 2 0y, (5.10)

vt = Lol ot =

The uncertainty on z;, is not needed to estimate oy. For matching, the current interest
point p and the database interest point ppg are constrained to have the same Y coordinate.
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5 Application to a recognition task

For this, the difference éy = Ypp —Y is considered. The match is only valid if dy is within
the bounds of reconstruction uncertainty. Using eq. (5.9), the uncertainty of dy is given
by:

05,2 = Oy, ,” + 0y2, (5.11)

where oy, .2 and oy? are obtained with eq. (5.10). A match is valid if =305, < 0y =
Ypg — Y < 30s,. 305, is used because it corresponds to 99.7% of the surface of the
Gaussian with standard deviation oy, .

A summary of the geometric constraint is given in the following:

1. Estimate the disparity d for both interest points p and ppg and for an ideal parallel
camera configuration using eqs. (5.3) and (5.1) with R = Id and t = (¢x,0,0)”.

2. Compute the uncertainties on the Y coordinates oy and oy,,, with eq. (5.10).
3. Compute 6y = Ypp — Y and o5, with eq. (5.11).
4. The match between p and ppp is valid if =305, < dy < 305,

The uncertainty for disparity o, and interest point position o,, are parameters of the
matching algorithm. They are set here to: o4 = s, and o,, = 2s,, which corresponds to
uncertainties of 1 and 2 pixels. The interest point position uncertainty is bigger than the
disparity uncertainty because the Harris detector is known to be geometrically inaccurate.

5.4.3 Match list constraints

The first two matching constraints deal with image similarity and 3D geometry. They
consider only the two interest points in a match. The last two constraints deal on the
contrary with the match list. They are related to the matching algorithm itself.

As explained in section 5.1, the database contains in this simple application one image
per object. The current image is matched to each database image, as this is equivalent
to matching the current image to each object. The similarity between current image
and each database object is subsequently computed by the recognition and localisation
algorithm, based on the matches. To keep the whole computation cost small, at most
one match is created for each current interest point and for each object. This limits
the number of matches that are processed during recognition and localisation. Matching
quality is shown in [VLO1] to increase if only the best match of each interest point is
used: some true matches may be discarded but the number of suppressed false matches
is much higher, resulting on the whole in higher match reliability. The best match is here
the match with the highest descriptor similarity. The geometric constraint (Y =~ Ypp)
is not considered to select the best match as the accuracy of stereo reconstruction is
low. To summarise, each current interest point is compared to all interest points of the
considered database image. The match validity is verified using both descriptor similarity
and geometric constraints. The valid match with the best descriptor similarity is added
to the match list. Alternatively, the N best matches can be added in the match list. This
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5.5 Recognition and localisation

is interesting when the image contains repetitive patterns because many interest points
are similar. In this application, it does not change matching results significantly. It is
therefore not used. A last alternative is to allow one best match per interest point for the
whole database. This is not used here as it may lead to an insufficient number of matches
for objects with little texture and hence to a recognition failure.

The second constraint applied to the match list is symmetry. This constraint is shown in
[VLO1] to improve matching quality. It means that the same match list should be obtained
when the roles of current image and database image are interchanged. For each database
image, only the best match is created for each current interest point. Symmetric matching
implies hence that the current interest point is also the best match of the database interest
point. To implement the symmetry constraint, the current image is first matched to the
considered database image. The interest points of the database image are then matched
to the current image. Matches which are not contained in both lists are discarded. This
process eliminates mainly false matches occurring when new image information appears
after camera movement. The interest points detected in those new areas have no true
correspondence in the database image, but they may have valid matches. As a result,
several matches involve the same database interest point. The influence of the symmetry
constraint is shown in fig. 5.12.

The matching process for each database image is summarised in the following:
1. For each current interest point:
a) For each interest point in the database image:

i. If both descriptor similarity and geometric constraints (see subsections
5.4.1 and 5.4.2) are satisfied:

A. Check if this is the best match for the current interest point using
descriptor similarity.

b) Add the best match for the current interest point to the match list if it exists.

2. Check the match list symmetry by interchanging the roles of database and current
images. Discard asymmetric matches.

This process is repeated for each database image. Matching results are shown in fig. 5.12.
The processing time of the matching algorithm varies a lot depending on the data. To
match 100 current interest points to 100 database interest points, 0.4ms to 1.4ms are
required on the computer described in subsection 2.2.2.

5.5 Recognition and localisation

Matching delivers a match list for each database object. The recognition and localisa-
tion algorithm merges the information of these matches to verify if the image contains a
database object and to determine the camera pose of the current image. Some matches
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Best matches without symmetry constraint

Best matches with symmetry constraint

Figure 5.12: Influence of the symmetry constraint on the matching process. Descriptor
similarity constraint and geometric constraint are used in both examples.
White balancing is applied for visualisation. The interest points are obtained
with the HC-HD. The cup on the left side is the database image. The
symmetry constraint suppresses matches which involved the same database
points several times, for example on snow flakes and the lower cup border.
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may be false and some matches may miss. Hence, a robust recognition and localisation
algorithm is necessary. The two most popular algorithms for this are the generalised
Hough transform described in [Hou62, Bal81] and RANSAC described in [FB81].

5.5.1 Choice of the recognition and localisation algorithm

Generalised Hough transform and RANSAC both test many object and pose hypotheses
obtained from the matches and select the best pose hypothesis. The Hough transform
clusters all obtained hypotheses in an accumulator representing the object and pose space.
The maximum in the accumulator is the best hypothesis: the object and pose with the
highest number of consistent matches. The Hough transform is used for example in
[Web05, SLLO1a] for mobile robot localisation and in [O1s97, Ols01, Low04] for object
recognition. The RANSAC algorithm tests a random hypothesis subset. The subset size
depends on the false match probability. The quality of each object and pose hypothesis is
evaluated: for example the number of consistent matches can be used. If the quality is high
enough, the algorithm stops successfully. If no hypothesis in the subset is good enough,
recognition fails. RANSAC is used for example in [SLLO02] for mobile robot localisation
and in [VLO1, Tuy00] to estimate epipolar geometry. RANSAC is less computation and
memory intensive than the Hough transform when there are few false matches. On the
contrary, the Hough transform is more robust in the presence of many false matches.
Several variants of the Hough transform have been designed to reduce its computing time
or its memory requirement. An overview is given in [Ols97]. In [Ols01], a hybrid algorithm
is presented, which combines advantages of both Hough transform and RANSAC.

This chapter evaluates the influence of interest point stability on recognition and local-
isation. The Hough transform is interesting for this evaluation because analysing the
accumulators gives information about the percentage of false matches. As a consequence,
the generalised Hough transform is used for recognition and localisation here. One ac-
cumulator is associated to each object in the database. All accumulators are filled using
the pose hypotheses generated from the match list. This is presented in more detail
in subsection 5.5.2. This accumulator filling algorithm is enhanced in subsection 5.5.3
to take geometric uncertainties into account. Finally, the content of the accumulator is
interpreted to verify if one database object is contained in the current image. This is
explained in subsection 5.5.4.

5.5.2 Filling the accumulators

One accumulator is created for each database object. Each object is considered inde-
pendently of the others. The accumulator represents the pose space, i.e. all theoretically
possible camera poses. It is discretised into bins, similarly to a histogram. To fill the
accumulator, the matches are used to generate all possible pose hypotheses. The bins
corresponding to the generated pose hypotheses are incremented. The accumulator rep-
resents hence the distribution of the pose hypotheses in the pose space. The maximum
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Figure 5.13: Used coordinate systems and estimated localisation parameters.

in the accumulator is the best pose hypothesis as it is supported by the highest number
of matches. The Hough transform is hence similar to voting.

In this application, three degrees of freedom are allowed. Therefore, three parameters de-
scribe camera pose: 6 for the rotation about the vertical axis and Ty, T for the horizontal
translation. This is illustrated in fig. 5.13. The 3D positions of the database interest point
(XPB YyDPB ZPBYT and of the current interest point (X,Y, Z)T are related by:

XDB cos) 0 —sinb X Tx
Yo | = o0 1 0 Y |+ o |. (5.12)
ZPB sinf 0 cosd Z T,

The rotation angle 6 is defined here about the vertical axis pointing up (i.e. opposite to 17)
Each match between database and current image provides only two equations, because
YPB =Y (see eq. (5.12))%. The system has three degrees of freedom, so a match pair is
necessary to obtain a pose hypothesis. The accumulator is filled here using match pairs,
because this simplifies uncertainty consideration in subsection 5.5.3. Another solution
would consist in filling the accumulators with curves corresponding to single matches.

A match pair provides an overdetermined nonlinear equation system:

XDPB — cos X, —sinf Z, + Tx
ZPB —ginf X, + cosO Z, + Ty
XPB = cos Xy, —sinf Z, + Tx
ZPB =sin Xy, + cos0 Zy, + Ty

(5.13)

5 YPB =Y is used to constrain matching (see subsection 5.4.2).
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where ((XP2,Y,PB, ZPP)T (X, Yy, Z2)T) and ((XPP,Y,P2, ZPP)T, (X,, Vi, Z)T) repre-
sent the 3D positions of the points in the two matches. Using eq. (5.13), cos# and sin 6
can be computed. This yields # and a condition on the match pair (for cos? #+sin? 6 = 1):

(¢ = _ (XPE_XPP) (Xa=X,)+(ZPE-2PP) (Za—2)
¢ =cost= b (Xa_Xb)b2+(Za—Zb)2b ’
G — gin g = E2P=ZPP) (Xa=X0)=(XPP—XPP) (Za=2)

(Xa=Xp)?*+(Za=21)? (5.14)
0 = arctan S/C

(XDF = XPP2+ (207 = 270 = (X = X0)* + (Za — 20)?

From a geometrical point of view, 6 is the angle between segment [PPZ PPB] from the
database image and segment [P, P;] from the current image. P, and PPP are the 3D
points represented by (X;,Y;, Z;)T and (XPB, VB ZPP)T for i = a or b. The condition
on the match pair constrains the length of segments [PPZ PPP| and [P, P to be equal.
In practise, this constraint is implemented with:

i < A = (X7 = X7V (27 = 27°)) — (Xa=X0)* +(Za=2)?) < Diim, (5.15)

where Ay;,, is a distance threshold. Once 6 is known, T'x and T are easily obtained with:

_ vDB _ . ; . — XDB _ . .
{Tx—Xi cosf X; +sinf Z;, = X! CX;,+57Z Cwherei—aorb.  (5.16)

Ty =2PP —sin0 X; —cos0 Z; = ZPP — S X, — C Z;

From a geometrical point of view, translation (Tx,T7) is obtained as the vector between

PPB and P; after correction of the rotation (i = a or b). In practise, a more accurate

solution is obtained with the mean over both matches a and b:

{ Tx = (XPB+ XPB) /2 —C(Xo+ Xp) /24 S (Zo+ Zs)/2

Ty = (ZPP + ZPP) )2 = S (Xo + X0) /2 — C (Za + Zb) /2 (5.17)

To conclude, an overview of a simple accumulator filling algorithm is given in the following:
1. For all matches a = 1 to N,aecn
- For all matches b = a to Nyaich
a. Compute A with eq. (5.15).
b. If eq. (5.15) is verified (distance condition on the match pair):
i. Compute C' = cosf and S = sin @ with eq. (5.14).
ii. Compute 6 with eq. (5.14).
iii. If —90° < 6 < 90°:
A. Compute Tx, T with eq. (5.17).

B. Increment the accumulator bin corresponding to 6, T, T by 1.
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In step iii, pose hypotheses for which the estimated angle is bigger than 90° or smaller
than —90° are discarded, because such rotation is impossible: a completely different part
of the object would be visible. This simple algorithm is enhanced in subsection 5.5.3
to take uncertainties into account. In order to reduce the required memory space, two
accumulators are used. One 1D accumulator represents rotation parameter 6. The second
accumulator is a 2D accumulator representing translation T'x,T,. This does not decrease
much the localisation performance because rotation and translation parameters are well
correlated: different angles 6 correspond to different translation parameters Ty, T,. This
reduces well memory requirements: only Br, X Br, + By bins are required instead of
Br, x By, X By, where B; is the number of bins for dimension ¢ = T'x,7T or 6. This
modifies only slightly the algorithm: step B is replaced by “Increment the accumulator
bin corresponding to # and the accumulator bin corresponding to T'x, T by 17.

5.5.3 Taking uncertainties into account

Only geometric information is directly taken into account for accumulator filling. Image
information is used indirectly by means of the matches. Stereo reconstruction is less
accurate for points situated far away from the camera. In addition, the Harris detector
is known to be geometrically inaccurate. Therefore the simple algorithm filling algorithm
in subsection 5.5.2 is enhanced here to take these geometric uncertainties into account.
This improves both recognition and localisation performances.

Uncertainty is modelled and propagated like in subsection 5.4.2 for matching. The stereo
system is approximated by a parallel configuration. For each 3D point, two uncertainty
factors are considered: uncertainty of the interest point position in the image (z,y) and
uncertainty of the disparity d for stereo reconstruction. These uncertainty factors are
modelled by Gaussians with mean equal to 0 and with small variances. They are assumed
to be independent of each other. Therefore, the uncertainty propagation framework of
subsection 5.4.2 can be used. If several measurements u, . .., w are combined with function
f(u,...,w) to obtain z = f(u,...,w), the uncertainty on z is estimated with:

o (0F N L (of Y
0, = ((9u au> + +(8w O’w) ) (5.18)

This framework is applied to T'x,T7 and 6. These depend on the X and Z coordinates
of four points PPP PPB P, and P,. According to eq. (5.8), X depends on horizontal
image position x and on disparity d and Z depends only on disparity d. The uncertainty

is modelled with the same variances o, and o4 for all four points. This yields:

b oTx *  0Tx * BTX2+8TX2 2 aTX2+ 8TX2+8TX2+8TX2 2
x 8zDB " 9zPB " 9z, " Bx, )" " \8dDE " 9aPB " ad,  ddy )¢
Tz > 0Tz > 0Tz° 0Tz° Tz > 0Tz * 0Tz> 0Tz”
2 _ 2 2
oTz = (aanB 0:0F oz, " om, )" T \@a0E T35 T84, T oa, )7
gt _ (00 F. 90 % 00% 907\ o (90 % 9 2+ﬁ2+ﬁ202<519)
7 \0«DB T 9uPB T 0w, Oz, )" T \0dDE " 9dPB " Bd, " od, )V
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The complete formulae can be easily derived from egs. (5.14) and (5.17). To take uncer-
tainties into account, the accumulator filling is performed using a Gaussian with variance
computed with eq. (5.19) instead of incrementing one single bin for 6 or for T'x,T,. The
Gaussian is not normalised: for example G(z) = exp(—(x — 0)?/0?) for angle hypoth-
esis f. This ensures that the bin values in the accumulator corresponds better to the
number of match pairs consistent with the pose hypothesis. This improves recognition
and localisation in practise because the influence of false hypotheses with low uncertainty
is decreased. Each accumulator bin also stores the number of votes, i.e. the number of
times it has been updated. This number represents exactly the number of match pairs
consistent with this pose, and is used for recognition.

If the uncertainty on @ is high, the uncertainty on T, T is also high because Tx and
Tz depend on cosf and sinf (see eq. (5.17)). This is used as an additional filter: only
the pose hypotheses with an angle uncertainty oy smaller than oy, are used to update
the accumulators. The threshold oy, is set here to 18°. This discards match pairs
for which the size of segments [PP? PPB] and [P, B] is too small to reliably estimate
0 (see subsection 5.5.2). Last, the uncertainties are taken into account for the match
pair constraint in eq. (5.15). The threshold Ay, is set to Ay, = 304, similarly to the
geometric constraint for matching in subsection 5.4.2. o is obtained like the uncertainties
on rotation and translation with:

L (DA BN 0N 9AT\ , (AT 0AP oA A%\
o8 = dxbB dxDB ox, oxy, O ddbB odpB od, od, 7
(5.20)

The resulting accumulator filling algorithm is recapitulated in the following:
1. For all matches a = 1 to Naten
- For all matches b = a to N,aich
a. Compute distance threshold Ay, = 304, where o, is given by eq. (5.20).
b. If eq. (5.15) is verified (distance condition on the match pair):
i. Compute C' = cosf and S = sin§ with eq. (5.14).
ii. Compute 6 with eq. (5.14) and oy with eq. (5.19).
iii. If —90° < 0 < 90° and if 0y < 0y, = 18°
A. Compute T, Ty with eq. (5.17) and or,, o1, with eq. (5.19).

B. Update the angle accumulator using the Gaussian centred on 6 with
standard deviation oy, and the translation accumulator using the
Gaussian centred on Ty, T with standard deviations or, , o7, .

All changed steps of the simple accumulator filling algorithm are indicated in boldface.
The uncertainty for disparity o4 and interest point position o, are set here to: o4 = s,/2
and 0, = s,, which corresponds to uncertainties of half a pixel and one pixel. The interest
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point position uncertainty is bigger than the disparity uncertainty because of the geomet-
ric inaccuracy of the Harris detector. The accumulator size and discretisation must be
adapted to the application. Only limited viewpoint are handled. In addition, the distance
between camera and scene is small. Hence, small camera motions induce significant view-
point changes. The translation accumulators cover the interval [—1m, 1m] x [—1m, 1m]
with bins of size lemx1lcm. The rotation accumulators cover the interval [—180°, 180°]
with bins of size 1°. Accumulator filling is illustrated in fig. 5.14. The effect of false
matches is visible on the accumulators: two peaks are obtained. The estimated pose
parameters correspond to the manually estimated parameters. As shown in [Web05], this
algorithm can also be used for mobile robot localisation. The processing time for accumu-
lator filling varies strongly. Less than 1ms to a few ms are required when the two images
show different objects. Several hundreds of ms are required when the two images show
the same object. When approximately 100 interest points are detected for both objects,
accumulator filling requires about 200ms on the computer presented in subsection 2.2.2.

5.5.4 Interpreting the accumulators

Once all accumulators are filled, these are interpreted to verify if a database object is
contained in the current image and to estimate the pose parameters. This is performed
in two steps: first the best pose hypothesis is obtained for each object, then the quality
of the object and pose hypotheses is evaluated. Recognition is based on this quality.

The bin with the maximum value in each accumulator provides the best pose hypoth-
esis for each object. This is performed for both rotation and translation accumulators.
To reduce the influence of pose space discretisation, the peak position is interpolated.
Similarly to the subpixel stereo correspondences, a paraboloid is fitted to the bin values
around the maximum in the translation accumulator and a parabola is fitted to the bin
values around the maximum in the rotation accumulator. The interpolated peak position
is obtained by setting the derivatives of the fitted curves to zero. More detail is given in
subsection 5.3.3.

Once a best pose is obtained for each object, the quality of these hypotheses is evaluated.
When two images of the same object are matched, many matches are obtained and the
accumulators have one distinct peak like in fig. 5.14. On the contrary, when two images
of different objects are matched, few matches are obtained and the accumulators are
empty or contain few hypotheses with only few votes. This is illustrated in fig. 5.15.
In comparison to fig. 5.14, a similar number of matches is obtained although a much
higher number of interest points are detected. The peak has only 4 votes in fig. 5.15, in
comparison to 38 votes in fig. 5.14. Therefore, two criteria based on the number of votes
are used to evaluate the quality of a pose hypothesis. A threshold is defined for each
criterion. An object is only recognised if both thresholds are exceeded.

The first criterion is simply the number of votes that contributed to the pose hypothesis.
The number of votes is influenced by the number of interest points detected in the current
image. Therefore, hypothesis quality is evaluated by comparing all hypotheses to each
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interest points in the database angle accumulator

T

[ T
—180° 0° 180°
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Figure 5.14: Example of accumulator filling (uncertainties are considered). In the trans-
lation accumulator, white represents 0 and black represents the maximum
accumulator value. White balancing is used for visualisation only. The
interest point detector is HC-HD. The database image is described by 39
interest points. The current image is described with 28 points. 18 matches
are obtained. The peaks in both accumulators have 38 votes. The estimated
parameters are § = —42.7°, Ty = —0.505m and Tz = 0.299m. A manual
localisation leads to # = —51°, Ty = —0.546m and 7% = 0.371m.

others. This comparison is based on the assumption that a single database object is
visible in the image. The object and pose hypotheses with the highest number of votes
and with the second highest number of votes are determined. If a database object is
contained in the current image, the number of votes of the best hypothesis should be
notably higher than the number of votes of the second best hypothesis. The quality
threshold therefore depends on the number of votes of the second best hypothesis. In
addition to this condition, a minimum number of votes is necessary to obtain a good
object and pose hypothesis. As a result, the quality of the best pose hypothesis is verified
with: Nyaw > Niim = a (Nopgmaz + 1), where Ny and Nopgimas is the number of votes of
the best and of the second best hypotheses. Nojgmaz + 1 is used to handle the case when
Nonamaz = 0. a has been chosen experimentally here: a = 2 when grey value images or
two channel images (for the 2 channel M space Harris detector) are used and a = 3 when
three channel images are used.
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interest points in the database angle accumulator
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Figure 5.15: Example of accumulator filling for images of two different objects. White
balancing is used for visualisation only. The interest point detector is the
HC-HD. The database image is characterised by 188 interest points. The
current image is characterised by 230 points. 19 matches are obtained. The
peaks in both accumulators have 4 votes.

The second criterion is the percentage of match pairs that contributed to the pose hy-
pothesis. It is named here match consistency. Unlike the first criterion, quality is not
evaluated with a comparison between different object hypotheses. Match consistency is
computed for each object separately. It is the percentage of votes that contributed to the
best hypothesis relatively to the number of match pairs, which is the maximum possible
number of votes. If N,,qn matches are obtained, Npateh (Nmaten — 1)/2 distinet match
pairs exist. Therefore, match consistency is defined as:

2 Nvotes
mc = ) 5.21
Nmatch (Nmatch - 1) ( )
where Nyoes is the number of votes that contributed to the best hypothesis. Match con-
sistency depends on the percentage of false matches which result in false pose hypotheses.
It is also influenced by the percentage of invalid match pairs (match pairs for which
|A| > Ay, O 09 > 0pim, see subsection 5.5.3). Here, the threshold mcy;,, has been set

138



5.6 Evaluation framework

experimentally to 0.25: 25% of the distinct match pairs should contribute to the peak in
the accumulator.

To conclude, the accumulator interpretation is summarised in the following:
1. For each database object:

a) Determine the bins with the maximum value in rotation and translation accu-
mulators and their corresponding number of votes.

b) Interpolate the peak position to obtain the best pose hypothesis.

2. Determine the object and pose hypotheses with the highest and second highest
number of votes N0 and Noydmaz-

3. If Nmax > Nlim = @(Nanmax + 1)

a) Compute the match consistency mc of the best object and pose hypothesis
with eq. (5.21).

b) If me > mcym,
i. The result of the algorithm is the best object and pose hypothesis.
4. In all other cases, no object is recognised.

The interpretation is based on the assumption that a single database object is contained
in the image. The algorithm should hence be modified if several database objects can
be present. For example, the number of votes of each best pose hypothesis could be
compared to the number of votes of second best pose hypothesis for the same object.

5.6 Evaluation framework

The goal of this chapter is to evaluate the influence of interest point detectors in a recog-
nition application. Several detectors are compared to each others using the presented
recognition and localisation system. A database of 10 objects is created. The recogni-
tion and localisation performances are evaluated with test images of those objects under
different illuminations and viewed from different viewpoints. The evaluation criteria are
introduced in subsection 5.6.1. An overview of the evaluated detectors is given in subsec-
tion 5.6.2. Finally, object database and test images are presented in subsection 5.6.3.

5.6.1 Evaluation criteria

The first two evaluation criteria are recognition rate and localisation accuracy. They
characterise the quality of recognition and localisation. To compute both criteria, the
results of the system are compared to a manual solution. The manual pose is obtained
from manual point matches between the two left images of current and database stereo
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images. The 3D position of these manual points is reconstructed as described in section
5.3. Accumulators are filled using the 3D positions and the manual matches as explained
in subsection 5.5.3. The manual pose is the accumulator maximum (see subsection 5.5.4).
The manual poses are therefore obtained with the developed recognition and localisation
system, except that interest point detection and matching are performed manually. The
recognition rate is the ratio between the number of correctly recognised objects and the
number of test images. Localisation accuracy is computed with:

(0—0mp  (Ix—T§)  (Tz-13)

2 2 2
Sy STy ST,

localisation accuracy = \/ (5.22)

where (0,Tx,Tz) and (0™,T%,T7") are the system and the manual poses. sy, sr, and
st, are the sizes of the accumulator bins in the three dimensions 0, Tx and Ty (here, 1°
and lem). Localisation accuracy is only computed if the object is correctly recognised.

The third evaluation criterion is match consistency mc defined in eq. (5.21) of subsection
5.5.4. It characterises the proportion of pose hypotheses consistent with the best hypoth-
esis in the accumulators. It is therefore influenced by the percentage of false matches.
In addition, it also depends on the percentage of invalid or uncertain match pairs (see
eq. (5.15) and oy < 0y, in subsection 5.5.3). The next criterion is the deviation from the
highest peak in the accumulators. The accumulators are similar to histograms. Therefore,
deviation from the peak is computed with:

S0 ace(b) dist(b, bmaz)?
> ace(b)

where acc(b) represents the value of accumulator bin b. B is the number of accumulator
bins. dist(b, b™*") is the distance between the current accumulator bin b and the bin with
the maximum value b™**. The pose space is represented by two accumulators: one for
rotation and one for translation. The pose deviation is therefore computed with:

(5.23)

deviation =

SO0 accy(b) disty (b, by )? . SOPT acer (b) disty (b, bper)?
25:01 aCC@<b) 21];351 aCCT(b)

- { disty (b, boe)? = (6% — gma)2 /52
distr (b, bp)? = (T — T)2 s, + (T4 = T3 sk,

deviation =

(5.24)

accy and accy represent rotation and translation accumulators. (6°,7%,T%) is the pose
corresponding with bin b. (0™, T T7**) is the best pose hypothesis. sy, sy, and s,
are the sizes of the accumulator bins in the three dimensions 6, Tx and 7. The pose
deviation is similar to match consistency because it is influenced by false pose hypotheses.
It depends additionally on the distances between false pose hypotheses and the best
pose hypothesis as well as on geometric uncertainties. Both match consistency and pose
deviation are only computed when the object is correctly recognised.

These four criteria all evaluate the performance of the whole system. Three further criteria
are added, which are focused on the suitability of interest point detection for recognition
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and localisation. The first criterion is the percentage of characterised points, i.e. points
for which a descriptor and 3D position exist. As explained in section 5.3, 3D position
is only estimated if the stereo correspondence is unique. Therefore the percentage of
characterised interest points depends on the uniqueness of the interest point textures in
their neighbourhoods, i.e. on their information content. It is computed with:

number of characterised interest points

(5.25)

ercentage of characterised points =
P & P number of detected interest points

The next criterion is the percentage of matched interest points. It is related to detection
stability between two images of an object. It is also influenced by the stability and the
discriminative power of the descriptors. The percentage of matched interest points is:

number of matches

percentage of matched points = (5.26)

number of detected interest points

It is only computed when two images of the same object are matched. Finally, the
last criterion is the percentage of consistent points. It is computed similarly to match
consistency (see eq. (5.21)), but uses the number of interest points detected in the current
image. Only one match is allowed per interest point, so the maximum number of possible
matches between two images of the same object is the number of interest points. A match
pair is necessary to compute a pose hypothesis. Therefore the percentage of consistent
points is approximated as the square root of point consistency:

2 Nvotes
Npoints (Npoints - 1)

percentage of consistent points = \/ (5.27)

where Nyotes is the number of votes for the best pose hypothesis and Nppinss is the number
of interest points detected in the current image pair. This criterion is only computed
when two images of the same object are matched.

5.6.2 Compared interest point detectors

The evaluation cannot be performed for all developed interest point detectors. A few
detectors for grey value images and for colour images are selected. This is explained in
this subsection.

Four detectors for grey value images are selected. The homomorphic Harris detector (H-
HD) is chosen because it achieves the highest stability in chapter 3. In addition, the
locally adaptive thresholding Harris detector (AT-HD) is evaluated. It achieves lower
stability than H-HD, but it yields a more homogeneous distribution of the interest points
in the image and the distances between interest points are bigger. This is interesting
for localisation. The standard Harris detector (HD) is used as reference for state of
the art detectors. Like in chapter 3, for HD, the N interest points with the highest
cornerness values are selected. This adapts detection to the global lighting conditions. The
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detection of a fixed number of interest points leads to good recognition and localisation
performances. Therefore, a variant of the homomorphic Harris detector is introduced
here, for which the N best interest points are selected (H-HD+NBP). For all detectors,
the same detection thresholds as in chapter 3 are used for all images. For H-HD, T is set
to 107°. For AT-HD, T} is set to 2. For HD and H-HD+NBP, N = 100 interest points
are detected. The other parameters are set as given in the algorithm descriptions.

Five colour detectors are selected. The standard colour Harris detector (C-HD) is used
as reference for the existing colour interest point detectors. Like for the grey value variant
(HD), the N best points are selected. The homomorphic colour Harris detector (HC-HD)
is also evaluated. Last, three detectors based on chrominance are selected. Prelimi-
nary tests showed that using three channels enhances recognition and localisation results.
Therefore, the three channel versions of the M Space Harris detector are evaluated here for
the two preprocessing methods: with white balancing before demosaicing (3MS-HD+WB)
and with Nagao preprocessing (3MS-HD-+N). The two channel M Space Harris detector
with Nagao preprocessing (2MS-HD+N) is also evaluated to show the performance gain
with the third chrominance channel. The results of the robust invariant Harris detector
(RI-HD) are very similar to the 3SMS-HD+WB, but RI-HD requires a longer processing
time. Its results are therefore not included here. The same detection thresholds as in
chapter 4 are used. For C-HD, N = 100 interest points are detected. For HC-HD, T is
set to 1074, For 2MS-HD+N, 3MS-HD+N and 3MS-HD+WB, T is set to 107°.

Following detectors are based on invariant derivatives: H-HD, H-HD+NBP, HC-HD,
2MS-HD+N, 3MS-HD+N and 3MS-HD+WB. The invariant derivatives are re—used to
compute the descriptors. For HD, AT-HD and C-HD, the descriptors are computed from
standard derivatives and they are normalised as indicated in section 5.2 to compensate
illumination influence. All parameters for stereo reconstruction, matching and recognition
are set as given in sections 5.3, 5.4 and 5.5.

5.6.3 Object database and test images

The image acquisition framework (camera type, camera parameters, demosaicing algo-
rithm and computation of grey value images) described in subsection 3.7.3 is used. The
database is created with one image for each of the 10 different objects. The objects have
different reflection properties (Lambertian or specular reflection), different reflectance
properties (structured or textured reflectance) and different 3D geometry (simple or com-
plex 3D geometry). The images used for database creation are shown in fig. 5.16. Objects
4, 5 and 6 have more specular reflections than the others. Objects 3, 6, 8 and 9 have tex-
tured reflectances (i.e. many similar interest points), whereas the others have structured
reflectances. Objects 4, 5, 7, 8, and 10 have simpler 3D geometry than the other objects.
All database images have an approximately homogeneous illumination.

The test images show these 10 objects from different viewpoints and under different
illuminations. For each object, 5 different viewpoints and 20 different illuminations are
used during image acquisition, leading to 100 images per object: 1 database image and
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(10)

Figure 5.16: Images used to create the database. Manual white balancing has been applied
for visualisation. The object numbers are given under the images.
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Figure 5.17: The five different poses for the test images of object 10. Manual white bal-
ancing has been applied for visualisation.

99 test images. The camera system is placed on a tripod with pan rotation unit as
described in section 5.1 to limit camera motion to the three degrees of freedom of the
system. The camera system is rotated around the object or translated in front of the
object. The used viewpoints differ from one object to another. All manually estimated
rotation angles are in the interval [—51°,70°]. All manually estimated translations are
in the interval [—0.6m, 0.8m] x [—0.1m, 0.4m]. This is illustrated for database object 10
in fig. 5.17. For illumination, three neon lamps fixed to the ceiling and directed towards
the floor and three tungsten halogen lamps placed on tripods and directed towards the
object are used. For the tungsten halogen lamps, umbrellas can be added to obtain a
more diffuse light. The different light sources are all placed at different positions in the
room. To generate the test images, the number and type of turned on light sources is
varied, with the constraint that only one illuminant type is used per image (i.e. no image
is lighted simultaneously by neon and tungsten halogen lamps). This is illustrated for
database object 10 in fig. 5.18. All test images are simple images showing one object in
front of a non—cluttered background.

In addition, 100 test images showing an object not contained in the database are also used,
in order to test the system response to a “false” object. The 100 images are obtained by
varying illumination and viewpoints. Some of them are shown in fig. 5.19. This object
has a simple geometry, which increases the chance that it is mistaken for another object
or part of another object. These test images have been used to set thresholds a and
mcy;,, for accumulator interpretation in subsection 5.5.4. Both thresholds are set such
that no object is recognised on “false” object images. As a result, for all test images,
either the object is correctly recognised, or no object is recognised. This allows a better
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Figure 5.18: Three different illuminations for the test images of object 10. No white
balancing is applied.

Figure 5.19: Three different test images showing an object not contained in the database.
No white balancing is applied.

comparability of the systems based on the different interest points.

5.7 Results

In this section, the evaluation results are presented for the recognition and localisation
system combined with the interest point detectors selected in subsection 5.6.2. In subsec-
tion 5.7.1, the recognition and localisation quality is evaluated. Subsection 5.7.2 presents
the suitability of the detectors for recognition and localisation. Finally, a conclusion is
given in subsection 5.7.3.

5.7.1 Recognition and localisation quality

Recognition and localisation quality is evaluated with the first four criteria presented
in subsection 5.6.1: recognition rate, pose accuracy, match consistency and deviation.
The recognition rate gives the percentage of correctly recognised objects. Pose accuracy
compares the pose computed by the system to a manual solution. The last two criteria
evaluate the quality of the recognition and localisation process by estimating the propor-
tion of false pose hypotheses and their deviation from the determined pose. First, the
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mean results for the whole database are presented. This is followed by a more detailed
analysis where the results are given depending on the database objects.

Mean recognition and localisation performances for the whole database

The mean values of the four criteria over all objects and all test images are given in
table 5.2. On the whole, the performance differences between the different systems are
rather small, because robust algorithms are used for stereo reconstruction, matching,
recognition and localisation and because the descriptors are invariant to illumination and
viewpoint changes. Therefore, even if interest point detection is influenced by illumina-
tion or viewpoint changes, the obtained object and pose hypothesis is stable. All tested
systems achieve recognition rates of about 90% and localisation accuracies of about 3 (this
corresponds to an accuracy of a few degrees and a few centimetres in this application).

detector type recognition  localisation mgtch con deviation
rate accuracy sistency

HD 0.961 2.799 0.664 33.3
H-HD 0.919 3.06 0.658 33.1
AT-HD 0.859 4.99 0.709 29.6
H-HD+NBP 0.966 2,77 0.644 35.1
C-HD 0.936 2.76 0.687 32.7
HC-HD 0.966 2.59 0.680 32.0
2MS-HD+N 0.890 3.35 0.676 32.0
3MS-HD+N 0.955 2.34 0.689 32.1
3MS-HD+WB 0.977 2.82 0.684 32.0

Table 5.2: Recognition and localisation performances for the different detectors. The top
of the table presents the results for the grey value detectors and the bottom
presents the results for colour detectors. The mean value for all objects and for

all test images is given. The best performance for each criterion is indicated in
boldface.

Of all systems based on grey value detectors, H-HD+NBP and HD achieves the best over-
all performance. Their recognition rate and localisation accuracy are higher than H-HD
and AT-HD, while match consistency and deviation are only slightly worse. The detection
of a constant number of interest points has a positive influence on the robust recognition
system, because it ensures enough matches and votes even on difficult test images. This
effect is better visible in the analysis of recognition and localisation quality depending on
the database objects. These higher recognition and localisation performances are obtained
at the cost of more false hypotheses: both match consistency and deviation are worse for
H-HD+NBP than for H-HD and both H-HD and AT-HD achieve better deviation than
HD and H-HD+NBP. H-HD+NBP performs better than HD, which shows that adapting
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interest point detection to the local lighting conditions improves recognition and locali-
sation. The distances between interest points are bigger for AT-HD than for the other
detectors (see section 3.4). As a result, AT-HD detects the smallest number of interest
points in an image and it achieves the worst recognition and localisation performances.
However, the higher distance between interest points improves the quality of the matches:
AT-HD achieves the best match consistency and the lowest deviation of all systems. Less
match pairs are discarded and the hypotheses are more accurate (see section 5.5).

Systems based on colour detectors achieve on the whole better performances than systems
based on grey value detectors. They have similar or slightly better recognition rates and
localisation accuracy, better match consistency and better deviation. This shows that the
use of colour information reduces the proportion of false hypotheses. The 2MS-HD+N
achieves the worst performance of all colour systems. Only two chrominance channels
are used for detection and for descriptors, hence fewer interest points are detected and
matched than with other detectors. This results, like for AT-HD and H-HD, into low
recognition and localisation performances. Using all three chrominance channels improve
well the results: both 3SMS-HD-+N and 3MS-HD+WB achieve the best overall perfor-
mance of all tested systems. While SMS-HD+N achieves the best localisation accuracy,
3MS-HD+WB obtains the best recognition rate. HC-HD also achieves very good perfor-
mances. Although both H-HD and HC-HD have similar stability (see chapter 4), HC-HD
reaches better recognition and localisation quality: it has better results than H-HD for
all four criteria. On the contrary, the use of colour information for the standard Harris
detector does not enhance much the results. C—HD even achieves a lower recognition rate
than HD. This shows that the compensation of illumination influence is more important
for colour images than for grey value images.

Recognition and localisation performances depending on the database objects

The recognition rate and the mean localisation accuracy are given for each database object
in fig. 5.20. The performances may vary strongly from one object to another. Objects
4 and 7 are the easiest objects to recognise and localise because their 3D geometry is
simple and their reflectance is structured (see fig. 5.16). All algorithms achieve very good
recognition and localisation for these objects. The performance differences between the
systems occur for “difficult” objects. Objects are difficult to recognise when many interest
points have similar texture, such as objects 6, 8 and 9, and because of their complex 3D
geometry (objects 1, 2, 6, 9). Object 6 is also difficult to handle with grey value detectors
as the coloured texture has low intensity edges. For these “difficult” objects, HD and
H-HD+NBP achieve the best performances of all grey value systems. Colour informa-
tion helps handling such objects: 3MS-HD+WB, 3SMS-HD+N and HC-HD achieve good
performances. C—HD also performs well, except for object 6. Localisation accuracy is in-
fluenced by the 3D geometry of the object. All algorithms localise accurately objects with
approximately planar surfaces, like objects 4, 5, 7, 8 and 10. Round or complex objects
like objects 1, 2, 6 and 9 are more difficult to localise because perspective distortion and
geometrically inaccurate interest point detection have a stronger influence on the pose
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Figure 5.20: Recognition rate and localisation accuracy for the different detectors. For
better legibility, the results of 2MS-HD+N are not included, as it achieves
worse results than the other colour detectors. For each object, the mean
value over all test images is shown. The objects are presented in fig. 5.16.
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Figure 5.21: Number of votes for the best pose hypothesis for the different detectors. Asin
fig. 5.20, the results of the 2MS-HD+N are not included for better legibility.
For each object, the mean value over all test images is shown. The objects
are presented in fig. 5.16.

hypotheses. 3SMS-HD+N and HC-HD achieve the best accuracy for these objects.

The correlation between the number of votes for the best pose hypothesis and recognition
and localisation performance is illustrated in fig. 5.21. The objects for which the number
of votes are low correspond to the objects for which recognition and localisation is difficult:
objects 1, 2, 6, 8 and 9. Systems using colour detectors achieve a higher number of votes
and also better recognition and localisation results than grey value systems. AT-HD has
the smallest number of votes and the lowest recognition and localisation performances.
This shows that a higher number of votes enhances the accuracy of the object and pose
hypothesis. Only a sufficient number of votes is necessary: for object 4, H-HD and
HC-HD have a much higher number of votes than the other algorithms but all algorithms
achieve the same high performances. This explains why the detection of a fixed number of
interest points like in HD and H-HD-+NBP enhances recognition and localisation quality:
it ensures a sufficient number of votes for all images.

Mean matching consistency and mean deviation are shown for each database object in
fig. 5.22. Like in fig. 5.20, the performances vary a lot between objects. The two easiest
objects are objects 4 and 7: the simple geometry and the structured reflectance result in
few false pose hypotheses for all systems (high matching consistency and low deviation).
Objects 3 and 6 are difficult objects for both matching consistency and deviation. Many
false hypotheses are generated because geometry is relatively complex and reflectances are
textured. Object 3 shows that good recognition and localisation results can be achieved
when enough hypotheses are generated (see fig. 5.20). For objects 1 and 2, a high pro-
portion of false hypotheses is generated (i.e. match consistency is low). Nonetheless,
deviation is relatively good. This occurs because detection and matching are relatively
stable but localisation is imprecise. On the contrary, objects 8 and 9 have good match
consistency but relatively bad deviation. This is caused by a high proportion of false
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Figure 5.22: Matching consistency and deviation for the different detectors. Asin fig. 5.20,

150

the results of the 2MS-HD+N are not included for better legibility. For
each object, the mean value over all test images is shown. The objects are
presented in fig. 5.16.



5.7 Results

matches. AT-HD and 3MS-HD-+N achieve the best overall performances in fig. 5.22.
Hence, they would be the most appropriate detectors for less robust recognition and lo-
calisation methods. Finally, H-HD performs better than H-HD+NBP for all difficult
objects: the good recognition and localisation performances of H-HD+NBP are achieved
at the cost of more false hypotheses which are well handled by the robust recognition and
localisation algorithm.

5.7.2 Detector suitability for recognition and localisation

The suitability of the interest point detectors for recognition and localisation are evalu-
ated using the last three criteria presented in subsection 5.6.1: percentage of characterised
points, percentage of matched points and percentage of consistent points. The first cri-
terion is related to the uniqueness of the interest point in its neighbourhood, hence to
its information content. The second criterion is related to detection stability and to the
discriminative power and the stability of the descriptors. Finally the last criterion esti-
mates the percentage of interest points that contributed to the best pose hypothesis. The
mean results for the whole database are presented in a first part. After that, the detector
suitability is shown depending on the database objects.

Mean detector suitability for the whole database

The mean values of the three criteria over all test images and all database objects are
given in table 5.3. The percentage of points that are passed from one system block to
the next decreases continuously. Matching eliminates the highest proportion of points:
only approximately 50% of the characterised points are matched. Due to the successive
eliminations, the differences between the systems become smaller for the percentage of
consistent points.

H-HD achieves the best performances of all tested systems. It has the highest percentages
of characterised, matched and consistent points. Therefore, it is the most efficient detector
for recognition and localisation: most of the detected, characterised and matched points
contribute to recognition and localisation. The detection of a fixed number of interest
points, on the contrary, results in a high proportion of “false” points (see the results of HD
and H-HD+NBP). This occurs especially when the number of detected interest points
is too high for the image content. More details about this are given in the analysis of
detector suitability depending on the database objects.

Colour interest point detectors have on the whole a smaller percentage of characterised
points. This is particularly visible for 3MS-HD+N. This is due to the stereo reconstruction
system which uses only grey values. As a result, some colour interest points are not
reconstructed because the intensity contrast in their neighbourhood is too small. This
could be improved by considering the full colour signal during stereo reconstruction. The
percentage of consistent points is similar for systems based on colour detectors and on grey
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percentage of percentage of percentage of

detector type characterised points matched points consistent points
HD 0.757 0.377 0.192
H-HD 0.837 0.449 0.218
AT-HD 0.806 0.355 0.183
H-HD+NBP 0.749 0.363 0.176
C-HD 0.756 0.366 0.190
HC-HD 0.802 0.410 0.210
2MS-HD+N 0.806 0.385 0.186
3MS-HD+N 0.768 0.385 0.195
3MS-HD+WB 0.822 0.397 0.203

Table 5.3: Detector suitability for recognition and localisation. The top of the table
presents the results for the grey detectors and the bottom presents the results
for colour detectors. The mean value for all objects and for all test images is
given. For information, the mean number of detected interest points for all
objects and all test images is approximately 100 for HD, H-HD, H-HD+NBP,
C-HD and 2MS-HD+N, approximately 130 for HC-HD and 3MS-HD+N and
40 for AT-HD. The best performance for each criterion is indicated in boldface.

value detectors, even though less interest points are characterised (see the results of H-
HD and HC-HD). This shows that colour information enhances matching, recognition and
localisation (see also subsection 5.7.1). The use of a third chrominance channel in 3MS-
HD+N also reduces the proportion of false matches in comparison to 2MS-HD+N, because
the percentage of consistent points is higher for 3MS-HD+N while both systems have the
same percentage of matched points. 3MS-HD+WB achieves a slightly better suitability
than 3MS-HD+N because only few images contain very dark image areas and many
images contain fine texture. HC-HD is the most suitable colour interest point detector
for the current recognition and localisation system. The performance of chrominance
based detectors (3MS-HD+N and 3MS-HD+WB) could however improve much if stereo
reconstruction considered the full colour signal.

Detector suitability depending on the database objects

The mean values for all three criteria are shown in fig. 5.23 for each database object. The
performances vary strongly between objects. The performance differences between the
different systems are the smallest for the percentage of consistent points and the biggest
for the percentage of characterised points. This shows that the robust recognition and
localisation system discards false interest points and false matches successfully.

The percentage of characterised points is related to the information content of the detected
interest points. The three detectors HD, H-HD+NBP and C-HD achieve all very similar
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Suitability of the grey value detectors for recognition and localisation
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Figure 5.23: Detector suitability for recognition and localisation. As in fig. 5.20, the re-
sults of the 2MS-HD+N are not included for better legibility. For each object,
the mean value over all test images is shown. The objects are presented in
fig. 5.16.
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performances which vary strongly between objects, because they detect a fixed number of
interest points per image. As a result, many interest points with little information content
are detected in images with little texture, for example for object 2. The performances of
the other detectors vary less between objects, as the number of interest points is better
adapted to image content. Objects 6, 7 and 8 contains many edges with high chrominance
contrast but low intensity contrast (see fig. 5.16). This results in a low percentage of
characterised points for the detectors based on colour, especially for 3MS-HD+N.

The performance differences between the systems are smaller for the percentage of matched
points than for the percentage of characterised points. This shows that the interest points
with little information content are successfully discarded by stereo reconstruction. H-HD
achieves the best performance for almost all objects. All algorithms reach good results for
objects 4 and 7, because these have simple 3D geometry and structured reflectance. Ob-
jects 3, 6, 8 and 9 are on the contrary more difficult to handle for all algorithms because
of textured reflectance, complex 3D geometry or texture with low intensity contrast (see
fig. 5.16). HD, H-HD+NBP and C-HD achieve low performance for object 2 because the
number of detected interest points is too high for the image content.

The mean percentages of consistent points vary between objects like the mean percentages
of matched points. This shows that only few false matches are obtained. As before, objects
with simple 3D geometry and structured reflectances are easier to handle. H-HD, HC-
HD, 3MS-HD+N and 3MS-HD+WB achieve the best performances for most objects.
The compensation of illumination influence during interest point detection and the use
of a fixed detection threshold makes therefore recognition and localisation more efficient.
A high discrepancy between image content and the chosen number of detected interest
point reduces strongly the suitability of HD, H-HD+NBP and C-HD for image 2. AT-HD
achieves higher match consistency than the other systems for all objects but its percentage
of consistent points is similar to the percentages of the other systems. Therefore, its good
performances in match consistency and deviation are not due to higher stability of the
interest points but only to the higher distances between these, which improves the quality
of the generated pose hypotheses.

5.7.3 Conclusion

The developed recognition and localisation system is composed of several blocks, such as
stereo reconstruction or matching, that use robust methods to discard unreliable and false
interest points. The performance differences between all tested systems are small, which
shows that false points are successfully eliminated. Performances may vary strongly from
one object to another. Objects with simple 3D geometry and structured reflectance are
well handled by all systems. Performance differences between systems occur for objects
with complex 3D geometry or with textured reflectance (i.e. which contain many sim-
ilar interest points). The used stereo algorithm is based on grey values. This has the
drawback that valid colour interest points with low intensity contrast are discarded. In
spite of that, systems based on colour detectors achieve better recognition and localisa-
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tion quality. In particular, less false hypotheses are generated. The results show that
a sufficient number of votes for the best object and pose hypothesis is necessary for re-
liable recognition and accurate localisation. As a consequence, the detection of a fixed
number of interest points like in HD, H-HD+NBP and C-HD improves recognition and
localisation at the cost of more false points and more false hypotheses, because it ensures
a sufficient number of votes even on difficult images. False points and false hypotheses
reduce the efficiency of the robust system but the quality of the results stays good. The
compensation of local lighting conditions during interest point detection improves recog-
nition and localisation performances. It also reduces the proportion of false object and
pose hypotheses. Last, it increases the system efficiency: less false points are detected.
The compensation of illumination influence is particularly important for systems using
colour images. H-HD+NBP achieve the best recognition and localisation performances
of all systems based on grey value detectors. The grey value detectors using a detection
threshold, H-HD and AT-HD, do not detect enough interest points on difficult test im-
ages. This reduces their recognition and localisation performances. On the other hand,
H-HD achieves the best efficiency (less false points are detected). AT-HD has the lowest
proportion of false pose hypotheses, because the high distance between the interest points
improves hypothesis accuracy. 3MS-HD+N, 3MS-HD+WB and HC-HD achieve the best
overall performances of all systems based on colour detectors. 3MS-HD+N achieves the
best accuracy and 3MS-HD+WB achieves the best recognition rate. Both generate less
false hypotheses than HC-HD, but they require enough chrominance edges in the scene.
HC-HD achieves very good overall results and is suitable for all scenes.

To increase the proportion of characterised colour interest points, the stereo algorithm
should consider the full colour signal. This would improve the recognition and localisation
performance of HC-HD, 3MS-HD+WB and 3MS-HD+N. A sufficient number of votes
for the best object and pose hypothesis is necessary for reliable recognition and accurate
localisation. A better adaptation of the interest point detection threshold to scene content
would therefore enhance both system efficiency and recognition and localisation quality.
Alternatively, the best interest points could be taken into account one after the other until
an object and pose hypothesis of sufficient quality is obtained or until recognition fails.
Weighting the votes depending on interest point quality could also enhance recognition
and localisation quality. Interest point quality could be given for example by their corner-
ness value. To reduce the number of false matches caused by texture with similar points,
the uniqueness of interest points in the image could be estimated. Interest points with
low uniqueness value could be discarded or the votes could be weighted by the uniqueness
values. Finally the accuracy of interest point detection could be improved for example us-
ing subpixel interest point detection. This would improve localisation accuracy, especially
for objects with complex 3D geometry.
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5.8 Summary

In this chapter, a state of the art recognition system is developed and used to evaluate the
influence of interest point detection on recognition. An object database is created with one
image per object. The system can recognise these objects after limited viewpoint changes
and after illumination changes. It also estimates the camera motion. After interest point
detection, the 3D positions of the points are reconstructed with stereo reconstruction.
Interest points for which stereo correspondence is not unique are discarded so that only
reliable information is passed to the next system block. The SIFT descriptors are used
to characterise the texture in the interest point neighbourhoods. They are invariant
to local illumination changes and robust to perspective transformations. Hence they
measure the similarity of two interest points even if viewpoint and illumination changes.
The SIFT descriptors and the 3D positions are used to match the interest points in the
current image to the interest points in the database. To reduce the number of false
matches, the match list contains only one best match per interest point and database
object. It is also constrained to be symmetric, i.e. the same list is obtained if the roles of
current and database images are interchanged. Finally, the generalised Hough transform
merges the information of the matches for recognition and localisation. It takes geometric
uncertainties into account. One best pose hypothesis is determined for each object. If
the quality of the best object and pose hypothesis is sufficient, the corresponding object
is recognised. Otherwise, no object is recognised.

The performances of the recognition system is evaluated for different interest point de-
tectors. Many test images are used. They show the database objects under varying
illumination and from different viewpoints. Evaluation criteria measure recognition and
localisation performance, the proportion of false pose hypotheses and the proportion of
false interest points. All tested systems perform similarly good on objects with simple 3D
geometry and structured reflectance. The performance differences occur for objects with
complex 3D geometry or with textured reflectance. Systems based on colour information
achieve better recognition and localisation results and generate a smaller proportion of
false hypotheses. The compensation of illumination influence during interest point de-
tection increases recognition and localisation quality and reduces the proportion of false
interest points. This effect is particularly strong for colour images. A sufficient number of
votes for the best object and pose hypothesis is necessary for reliable recognition and ac-
curate localisation. As a result, the detection of a fixed number of interest points improves
recognition and localisation with the robust system, at the cost of more false points and
more false hypotheses. This is especially useful for grey value systems, as colour systems
detect and match in general more interest points. Hence, the H-HD system with selection
of the NV best points performs best of all grey value systems. For colour systems, HC-HD
3MS-HD+WB and 3MS-HD+N perform best. Recognition and localisation could be im-
proved with a better adaptation of the number of interest points to image content. The
recognition system could be further enhanced with a stereo algorithm using colour infor-
mation, with weighting of the votes by interest point quality and with subpixel interest
point detection.
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A summary of the work and of the results is given in section 6.1. Suggestions for further
research are given in section 6.2.

6.1 Summary

This work aims at improving the ability of machine vision systems to deal with illumi-
nation changes. It is focused on recognition tasks, for which invariance to illumination
changes is particularly important. The first step of most state of the art recognition
systems is to reduce the amount of processed data by detecting interest points: small
characteristic image patches. Most interest point detectors are sensitive to illumination
changes. As a result, only some of the interest points are redetected when the scene is
viewed from a similar viewpoint under different illumination. To handle this problem,
the matching between the current interest points and the interest points in the system
database is based on information which is invariant to viewpoint and illumination changes.
In addition, robust recognition methods are used to reduce the influence of false matches
on the results. A more stable interest point detection would improve recognition perfor-
mances, even for robust systems. Therefore, in this work, several interest point detectors
with increased stability under illumination changes are developed and evaluated in a re-
alistic application. These new detectors do not require any manual white balancing or
additional information to handle illumination changes.

The developed algorithms all enhance a very popular interest point detector: the Harris
detector (HD). This algorithm is based on the grey value derivatives. It is particularly
stable under viewpoint changes. The first step of this work is to model the influence of
illumination on the Harris detector. This shows that the stability of the Harris detector
under illumination changes can be enhanced by locally adapting detection to the light
intensity. Four detectors are developed, that uses different principles to perform this
local adaptation. The first detector is the energy normalised Harris detector (N-HD).
It normalises the image derivatives with the local grey value energies before detection.
The second detector is the homomorphic Harris detector (H-HD). It uses homomorphic
processing to eliminate the influence of local lighting conditions on the derivatives. The
third detector is based on locally adaptive thresholding (AT-HD): the detection threshold
is adapted for each pixel using the local mean of the detector response. For AT-HD,
interest point detection is only performed in the detected textured image areas, in order
to reduce noise influence. The last detector locally adapts the detection threshold based
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on a local clustering of the detector response with the ISODATA algorithm (LI-HD). The
stability of these four detectors and of the Harris detector are evaluated on image series
acquired under varying illumination. The four new detectors achieve better stability
for scenes with complex 3D geometry and for complex illumination changes (i.e. when
illuminant type or position varies). The best results are obtained by H-HD and AT-HD.
H-HD is fast and the most stable, but AT-HD achieves a more uniform interest point
distribution in the image.

Some elements of the illumination influence, such as light colour, shadow or shading, can
be modelled more accurately with colour images than with grey value images. The colour
Harris detector (C-HD) [Gou00] extends the principle of the Harris detector to colour
images. This makes the use of colour information very interesting for illumination invari-
ant interest point detection. An illumination invariant colour Harris detector is presented
in [vdWO05]: the robust invariant Harris detector (RI-HD). This detector is invariant to
shadow and shading effects but illuminant colour must be corrected beforehand. In this
work, two invariant colour interest point detectors are developed which automatically cor-
rect illuminant colour. The homomorphic colour Harris detector (HC-HD) extends the
principle of H-HD to colour images: this locally eliminates the influence of light colour
and light intensity. The second detector is the m space Harris detector (MS-HD). It is
based on chrominances, so it can fully eliminate shadow and shading influence. In ad-
dition, illuminant colour is locally compensated. Chrominance is sensitive to noise and
to colour artifacts introduced by image acquisition. Therefore, a preprocessing method
based on the Nagao filter is introduced to reduce both noise and artifact influence on the
MS-HD. In addition, a demosaicing method which reduces colour artifact formation is
applied for image acquisition for all detectors. The stability of all colour detectors under
illumination changes is evaluated like for the grey-value detectors. MS-HD is the most
stable detector for scenes with clear chrominance edges, especially when 3D geometry is
complex. It can be combined with the Nagao preprocessing to reduce noise sensitivity
in dark image areas. It is however not suitable for scenes with few or no chrominance
information. In that case, HC-HD and H-HD are the most stable.

Finally, a state of the art recognition system is developed in order to estimate the influ-
ence of interest point detection in an application. A database of 10 objects is created.
The system recognises these objects after limited camera motion and after illumination
changes. It also estimates the camera motion. After interest point detection, the 3D
positions of the interest points are computed with stereo reconstruction. Only interest
points with unique stereo correspondences are kept. This filters out interest points which
are not characteristic enough. The remaining interest points are characterised with SIFT
descriptors [Low04]. These invariant descriptors are used to match current interest points
to the most similar database interest points. The number of false matches is further
reduced by verifying that the 3D positions of the two points in a match are compatible
with the system degrees of freedom. In addition, the match list is constrained to be sym-
metric: the same list is obtained if current image and database image are interchanged.
Last, the generalised Hough transform is used to robustly estimate an object and camera
motion hypothesis. The algorithm is enhanced by taking geometric uncertainties into
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account. The final recognition result is based on the quality of the object and camera
motion hypothesis. The new detectors improve recognition and localisation results for
objects with complex 3D geometry or with textured reflectance (i.e. with many similar
interest points). They reduce the number of false interest points, which increases the
system efficiency. The best results are obtained with systems using colour information.
HC-HD, MS-HD+WB and MS-HD+N perform best: MS-HD+N is the most accurate,
MS-HD+WB has the highest recognition rate, HC-HD is very good and suitable for all
kind of scenes. For grey value systems, the best recognition results are obtained by H-HD
combined with the selection of the N best interest points and the smallest proportion of
false interest points is reached by H-HD combined with a fixed detection threshold.

6.2 Further research

The developed interest point detectors improve detection stability, recognition and lo-
calisation. Illumination influence is however not completely eliminated. This work also
showed further problems which would be interesting to solve. These problems are sum-
marised in the following and solutions are suggested.

Shadow and shading effects with sharp edges cannot be compensated using a single grey
value image. As a result, all developed grey value interest point detectors only handle
slowly varying shadow and shading effects. Shadow and shading effects with sharp edges
can be compensated with colour images, for example with MS—HD. This work shows that
this full elimination of shadow and shading effects enhances detection stability, recogni-
tion and localisation but it is only suitable for scenes with good chrominance edges. It
would therefore be interesting to compensate all shadow and shading effects for grey value
detectors. Shading effects could be handled by taking into account the 3D geometry of
the interest point neighbourhood. To handle both shadow and shading effects, several
images of the scene under different illuminants could be used to learn an illumination
model of the scene or to filter interest points caused by shadow or shading effects. Such
methods are used for example in [HB98, Neu01].

None of the developed interest point detectors compensates specularities. The handling
of saturated image areas (see section 3.6) reduces the influence of specular highlights but
it does not solve the problem of specular reflections which do not result in saturated pixel
values. Specular effects can be reduced or detected with optical polarising filters (see
[LLK*02]), using two or more images of the scene as in [LLK"02] or using a single white
balanced colour image as in [T103]. If an accurate estimate of the light colour is available,
colour features which are invariant to specularities can be used for interest point detection
(see [GS99, vdWO05]). Last, specular highlights can be corrected in a preprocessing step
with image inpainting as in [BSCB00, TLQS03, TI03].

The interest point detectors based on chrominance information are sensitive to noise in
dark image areas and to colour artifacts introduced by image acquisition. Colour artifacts
could be reduced with better camera hardware. The X3 technology by Foveon Inc. (see
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[Fov06]) is particularly interesting because three colour channels are acquired simultane-
ously for all pixels with a single CMOS chip. Alternatively, demosaicing algorithms could
be improved. Constraining the edges of all colour channels to occur at the same image po-
sitions are very promising to reduce colour artifacts. Better preprocessing methods than
the Nagao filter proposed in chapter 4 could be designed. In particular, better texture
preservation would be desirable. Last, noise influence in dark areas could be reduced by
discarding chrominance interest points detected near dark areas, like for saturated areas
(see section 3.6).

Chrominance based interest point detection, for example with MS—HD, achieves the high-
est stability but it requires good chrominance edges in the scene. In addition, chrominance
is more noisy than intensity information. The combination of chrominance and intensity
information for interest point detection could therefore achieve good stability on all kind
of scenes. MS-HD+N and H-HD achieved the best stability in this work. These detectors
could be combined for example by adding their responses before interest point detection.
Alternatively the best interest points of both detectors could be used for recognition.

Stability evaluations in chapters 3 and 4 and evaluation of recognition results in chapter 5
all showed the importance of adapting the number of interest points to scene content. A
too low detection threshold decreases detector stability, system efficiency and localisation
accuracy. If the detection threshold is too high, not enough interest points are detected
for reliable recognition and localisation. Adapting the detection threshold to the scene is
hence a promising further research topic. This could be realised by automatically selecting
the threshold using for example the histogram of the detector response. Alternatively,
the recognition algorithm could take the best interest points sequentially into account
until a reliable object and pose hypothesis is obtained or until recognition fails. Last,
the influence of the matches on the recognition system could be weighted by the interest
point quality, based for example on the detector response or on their uniqueness. This
would reduce the influence of false matches on localisation accuracy.

Finally, the influence of interest point detection could be evaluated in different or more
complex applications. First, it would be interesting to know if a stereo algorithm using
the full colour information enhances the performances of systems based on colour interest
point detectors. The influence of the different detectors could also be tested in more
complex recognition applications: for example for a bigger database, for images with
cluttered background or with several database objects, and for objects with more complex
3D geometry or for more complex lighting changes. Finally, interest points are not only
used for recognition, but also for further machine vision applications: for example tracking,
3D reconstruction, wide baseline stereo, registration and content—based image retrieval. It
would therefore be interesting to evaluate if the new detectors improve the performances
of other machine vision tasks.
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