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Abstract

Multiprocessor systems based on the Intel SMP or the
AMD NUMA (Non-Uniform Memory Access) architecture
are not designed to act as real-time systems. These systems
deliver a high computing power in the average case, but
rarely appearing worst case execution times (WCETs) are
not considered at all. One main source of unpredictability
of execution times in these systems is the memory system.
It is composed of the caches and the main memory. The
caches bridge the gap between the very fast processors and
the comparatively slow main memory. In SMP systems, the
processors share one main memory and compete for each
other when accessing it. In NUMA systems, each processor
has its own physical memory area, but if a task wants to
access data in another than the own memory area, access
times increase. As a result of these architectures, execution
times of software can vary in a broad range. In this paper,
we present a tool chain to utilize the cache memory system
for real-time software. Further on, we propose an algo-
rithm to place items in memory to improve predictability of
WCETs. We present case studies to prove the benefits of our
concepts.

1 Introduction

Modern multiprocessor systems based on commercial
off-the-shelf (COTS) components are not designed to act as
real-time systems. They are optimized to deliver a good per-
formance in the average case, worst case scenarios are not
taken into account. Nevertheless, there are many properties
which make them interesting for use in real-time systems:
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they are very fast compared to other processor architectures,
they are cheap, the technological progress goes on rapidly,
and they are in most cases downwardly compatible.

One source of varying execution times of software is the
memory system. It consists of the cache subsystem and the
connection of the processors and peripheral devices to the
memory. There are big differences in execution times de-
pending on whether code and data are in cache or if they
have to be fetched from memory. An access to memory is
not only much slower than an access to the cache, it can
also be enlarged by a concurring access to memory from
another processor or a peripheral device. These delays can
be long and their behaviour is hard to predict. The results
are varying execution times of software. They depend on
whether the needed data is in cache and whether a write
back to memory is needed before some data can be loaded
into the cache. The methods presented in this paper aim
to reduce these effects and to cope with them to improve
predictability for real-time software.

Cache memory is divided into several levels (usually
two) which differ in size and access time. The fastest cache
is the level one (L1) cache, which is split into a cache for
code (instruction cache) and one for data (data cache), both
are equal in size. Usually, the second level cache (L2) is a
unified cache, that means, the whole size can be used for
code and data simultaneously. The cache is organized as a
N set associativecache, that means, each set in cache con-
tainsN cache lines. The decision, what cache line has to be
displaced within a set is transparent for software. Normally,
apseudo least recently used (PLRU)algorithm is used. The
arrangement of code and data in main memory corresponds
directly with the arrangement in cache. Parts of the phys-
ical address in memory correspond with the set number in
cache. For more detailed information regarding the build up
of caches in state of the art processors see [13].

In this paper, we examine the influence of main mem-
ory arrangement of code and data on the execution time



of software. On the one hand, we consider the timing be-
haviour of software that runs completely in the caches, on
the other hand, we investigate the effects of other proces-
sors and peripheral devices that access the memory in paral-
lel. We present methods to place code and data of real-time
software in main memory in such a way that displacements
in cache occur in a predictable manner. That means, we
know which cache lines will be displaced during run-time
and what kind of displacement will happen.

There are displacements that need a write-back of data
to main memory and others that need an invalidation of a
cache line only. The process of displacement works trans-
parently for software. The only way to cope with this is
to analyse the software to be able to foresee which kind of
displacement will happen.

Our methods reduce the influence of competing memory
accesses from several processors working in parallel signif-
icantly. Furthermore, our scheme of memory arrangement
enables to lock certain code or data items in cache though
this feature is not supported in hardware by the processors
we are dealing with. We consider theTranslation Looka-
side Buffers (TLB)that are needed for the translation of a
virtual address into a physical address. These little caches
also have an appreciable influence on the execution time of
software.

The paper is organized as follows: section 2 gives an
overview of current work. Section 3 deals with a memory
division for multiprocessor systems which is part of our ap-
proach. In section 4 we present our approach to arrange
real-time software in main memory. Section 5 presents a
tool chain which implements our concepts and section 6
gives some results to show the benefits of our approach.
Section 7 concludes the paper.

2 Current Approaches

Liedtke and Ḧartig describe in [7] a method to partition
the cache among different tasks. The operating system con-
trols the allocation between tasks and cache portions. They
use the memory management unit mechanisms to imple-
ment their system. They do not consider different data items
or multiprocessor systems.

Scḧonberg investigates in [11] the influence of PCI-Bus
transfers on the execution time of software. He introduces
aslowdown factorto describe these effects.

Petrank and Rawitz showed in [8] that the problem to
find an optimal placement of contents in a cache memory
in the sense that it minimizes the number of cache misses
is NP-hard. The consequence is to find algorithms that op-
timize another target but the minimization of cache misses.
They propose to investigate different application scenarios
and to develop heuristics to achieve an optimal cache be-
haviour for these scenarios.

Hashemiet al. present in [6] an approach to optimize in-
struction cache usage. The optimization takes place at com-
pile time. The method is based on a weighted call graph
which represents the call structure and call frequency of the
software. Additionally, it takes the procedure size, cache
size and cache line size into account. This approach works
for direct mapped and set associative caches. It can be ex-
tended to deal with basic blocks instead of procedures.

Calderet al. present in [4] an approach based on the one
in [6] to place data in cache with the aim to minimize the
number of cache misses. This approach considers data on
stack, global data, and dynamically allocated data.

Petters states in [9] that due to the complexity of modern
processors it is impossible to get precise execution times
without measuring them on the target system. He proposes
a measurement approach for processors of the AMD Athlon
and Intel Pentium family.

Cache locking techniques and their benefits are dis-
cussed in [3] [5] [10]. One approach is to lock the contents
in cache for the whole lifetime of the system (static cache
locking) or to change the mapping dynamically (dynamic
cache locking).

Our approach for memory optimization presented in sub-
section 4.1 extends the approaches presented in [4] and [6]
to consider the features of the cache implementation of the
x86 processors. It enables the feature ofcache locking
though not supported in hardware by these processors. Ad-
ditionally, it deals with the TLBs and multiple real-time pro-
cessors working in parallel.

3 Memory Organisation

In order to perform hard real-time tasks in parallel to a
general purpose operating system (GPOS), we developed
the RECOMS (Realtime with Commercial off-the- Shelf
Multiprocessor Systems) Software Architecture [12]. Fig-
ure 1 shows the memory management of the RECOMS
Software Architecture. This is part of our approach to ar-
range code and data of real-time software in memory.

The CPUs of a multiprocessor system are divided into
two groups: one CPU is called theGeneral Purpose Unit
(GPU), the other CPUs are called theReal-Time Units
(RTUs). The GPOS is executed on the GPU exclusively.
Thus, all tasks belonging to the GPOS are executed on the
GPU. Furthermore, all interrupts that are needed by the
GPOS are routed to the GPU. All real-time tasks are exe-
cuted on the RTUs. Interrupts of peripheral devices served
by real-time handlers are routed to the RTU that executes
the corresponding real-time handler.

Real-time tasks and real-time interrupt handlers are
bound to a specific RTU statically. The methods used for the
assignment of a real-time task to a particular RTU depend
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Figure 1. Memory division

on the resource requirements of that task. These approaches
are not the scope of this paper.

Each CPU gets its own portion ofphysicalmemory. In
NUMA systems, the portions of memory that every proces-
sor gets assigned to are equal to its physical memory. Code
and data of tasks that are running on a particular CPU are
assigned to the memory region of that processor. They run
all in the same address space and privilege level of the pro-
cessor. There are shared memory regions for data exchange
between tasks. They can be used for tasks on the same pro-
cessor or for tasks on different processors. Details of the
handling of shared memory regions are given in section 4.

This memory architecture separates the GPOS from the
RTOS (Real Time Operating System) and binds them to
specific processors. Since the GPOS is not executed on
the RTUs, there are no displacements in the caches and the
TLBs that are caused by non real-time software. Addition-
ally, the partitioning of memory avoids cache displacements
caused bycache snooping. This software transparent tech-
nique keeps the caches of all processors in a system in a
consistent state. That means, if a processor writes to a mem-
ory location which is in the cache of another processor, the
corresponding cache line of this processor has to be reread
to be consistent with the new state in memory.

4 Arrangement of Code and Data in Memory

Modern processors feature a huge cache memory which
speeds up the execution of software. However, for real-time
systems, these caches are a source of unpredictability. If the
needed code or data is not in cache, the processor must fetch
it from main memory. An access to main memory not only
lasts much longer than an access to cache, it also competes
against peripheral devices that want to transfer data from or
to main memory.

Our goal is to keep as much as possible real-time code
and data in cache to avoid accesses to main memory. If the
real-time software is larger than the cache, the consequen-
tial cache displacements should be predictable. We have to
know where in cache they occur and what kind of displace-
ment it is. First of all, we define the scenario to investigate:

Scenario. The real-time system consists of a set of
tasks T = {τi : i = 1 . . . N}. Each taskτi =
{Pk(Ak, Sk), D(dl) : k = 1 . . .K} consists of procedures
Pk with the attributesAk = {ro, rw, locked} and the size
Sk in bytes, whereD = {dl(Al, Sl) : l = 1 . . . L} denotes
the data used byτi together with their attributesAl and size
Sl. The number of bytesb needed by each item denotes to
bx = Sx + (Sx mod a) whena is the alignment (usually
four bytes). The total number of cache lines needed by this
system is

Ctotal =
N∑

n=1

1
clsize

(
K∑

k=1

bk +
L∑

l=1

bl

)

whereclsize denotes the size of a cache line in bytes. In
the following, we refer to anitem as an element ofτi.

The cache we consider is aN-set associative cachewith
m bytes per cache line ands sets. Thus, the sizeS of the
cache denotes tos ∗ N ∗ m bytes.

Attributes. The first step is to assign an attribute to every
item in memory. Attributes can be eitherread-only (ro),
read-write (rw)or locked. Code is alwaysread-only, that
means, during lifetime, it is never modified. Therefore, if
an displacement occurs, we know there will be no write-
back operation to memory. Data objects can beread-write,
that means, they will be modified during lifetime and must
be written back to memory if displaced. The third attribute
lockedmeans that this item must never be displaced from
cache.

When arranging all items in cache, only items with the
same attribute may share one set. Thus, we are able to
predict if the displacement of a certain item has a write-
back operation as consequence or not. Additionally, we are
able to lock some items in cache though this is not sup-
ported in hardware by processors of the AMD Athlon or
AMD Opteron family.

Multiprocessor Systems and TLBs. In multiprocessor
systems, there is the need to keep the caches of the differ-
ent processors in a coherent state. This need arises when
these processors share the same memory regions. They im-
plement acache snoopingprotocol in hardware which au-
tomatically updates the caches of the processors. To avoid
displacements from cache caused bycache snooping, it is
important that every processor works on its own physical
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address space. This is realized by our scheme of memory
division (see section 3). In a NUMA architecture, each pro-
cessor has its own physical memory and its own physical
connection to it. Thus, to avoidcache snoopingeffects,
software must be placed into the local memory of that pro-
cessor where it is executed on.

When arranging the items in main memory, one has to
take care of the TLBs. These little buffers work as caches
for the information needed for the translation from a vir-
tual to a physical address. They are build up similar to the
caches. It is important not to spread out the items in mem-
ory that belong together like for example the code of a task
and its data. This would generate additional TLB misses,
that are accesses to main memory. A more detailed descrip-
tion of how this works is given in section 4.1.

Shared Memory Areas. Another important thing to men-
tion is memory space that it used for exchanging data be-
tween tasks that run on different processors. These memory
areas can causecache snoopingeffects as described above.
For example, one task on processor A wants to transfer data
items to another task running on processor B. The assump-
tion is, that the read and write accesses of the two tasks are
synchronized, but this is a suitable account for a scenario
like this. Now, there are two possible solutions to this prob-
lem:

• The first is to make the memory area used for this
transmissionuncacheable, that means, this location
will not be cached at all. The advantage is that no
cache snoopingeffects occur. It does not matter where
in memory this area is located. The disadvantage is,
that the processor has to access memory for each item
and there is no prefetch effect like loading a whole
cache line at once. This method makes sense if small
data items have to be transferred.

• The second solution is to make the shared memory area
write-through. That means, all read and write accesses
are cached, but the write accesses are not only to the
cache but also to main memory simultaneously. This
is useful for processor A because it makes no sense
to store data in cache exclusively that should be read
by a task running on another processor. For processor
B that runs the reading task, there is no disadvantage:
the data to read is always new from the point of view
of the cache. Thus, cache misses on this processor are
unavoidable. But these misses are more predictable,
because they occur exactly at the point of time the data
is written or read and they last only the duration of
one memory access. Otherwise, these misses would
be produced by thecache snoopingprotocol and would
last two memory access, one for the write-back of pro-
cessor A and one to read the data. This would impli-

cate much more unpredictability. The performance op-
timizing feature ofwrite-combining(that is, to merge
several write accesses to one access) is also supported
when usingwrite-through. This method makes sense
if a larger quantity of data items has to be transferred.
The shared memory area should be located in the mem-
ory area of one of the processors.

It depends on the scenario which solution is the best. It is
also possible to combine these methods for different com-
munication relations in one real-time system.

4.1 Memory Management

In the previous subsection, we defined the scenario to
consider and the problems we have to deal with. In this
subsection, we describe our approach to arrange code and
data of real-time software in memory. All these steps take
place before the real-time system starts to work. There is
no dynamic memory allocation pretended. The approach
can be subdivided into the following steps:

• First of all, one has to analyse the real-time software
to determine all items and their size. This includes the
real-time operating system.

• Then, an attribute has to be assigned to each of the
items using the following scheme:

– Code items are alwaysread-only, that means,
they are never modified during lifetime. This as-
sumption is reasonable for real-time software be-
cause the execution time of self-modifying code
is very hard to predict and it lowers the perfor-
mance of the processor.

– Data items can be eitherread-onlyor read-write.
If they are modified during lifetime, they are
read-write, otherwise they areread-only. The
decision, which attribute is suitable for a certain
data item is made by the programmer.

– A special data item is the stack. Each task of
the real-time system has got its own stack which
is used to store temporary data or to deliver data
for function calls. This data item is alwaysread-
write.

– A special attribute islocked: it can be assigned to
each item and indicates that this item must never
be displaced from cache. This is useful for small
items of very time critical tasks like for example
interrupt service routines.

• Now, the items have to be arranged in main memory
in that way, that only items with equal attributes share
one set in cache.
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• It is important to always take a subset of items that
belong together (τi). These items should be positioned
near to each other in main memory. The reason for this
are the TLBs, that can address a certain area (page) of
memory with one entry. It is advantageous to place the
items of eachτi in one page. Thus, additional memory
accesses due to TLB misses can be avoided.

• The final step is to place the data areas that should be
used for data exchange between different tasks. These
areas are allocated once during the initialization of the
real-time system and can be placed in areas with the
attributeread-write.

The realization of this approach for multiprocessor systems
based on commercial off-the shelf components is the topic
of the next section. Before that, we want to give an example
of how this algorithm works.

An Example. Consider the code shown in figure 2: this
task implements the bubblesort-algorithm. The data that

unsigned long a[LENGTH];

void task1( void ) {
unsigned int n,i,interchanged,help;

/* initialize data array */
for (i=0; i<LENGTH; i++)

a[i] = LENGTH-i;

/* bubblesort */
n = LENGTH-1;
do {

interchanged = 0;
i = 0;
do {

if (a[i] > a[i+1]) {
help = a[i+1];
a[i+1] = a[i];
a[i] = help;
interchanged = 1;

}
i++;

}
while (i < n);

}
while (!interchanged);

}

Figure 2. Bubblesort algorithm

should be sorted is located in the arraya which is of size
LENGTH · 4 bytes (4 bytes is the size ofunsigned long
when using gcc 3.3.2 on an IA32 architecture).

There is a single taskτ1 = {Pk(Ak, Sk), D(dl) : k =
1, l = 1 . . . 5} with P1 = (ro, 154 bytes) and the data
items D(d1(rw, LENGTH · 4 bytes), d2 = d3 = d4 =
d5(rw, 4 bytes)). The154byte code size can be obtained
from tools likeobjdump. The data itemsd2−d5 aren, i,

interchanged andhelp . The attributes of the items are
assigned according to the scheme given in the paragraph
before: code is alwaysread-only(ro), the data itemd1 con-
tains the unsorted data at the beginning of the algorithm and
the sorted data at the end, so it must beread-write(rw). The
other data items (d2−d5) are local variables of the task and
thus on the stack, which is alwaysread-write.

To arrange these items in memory,d1 is placed
to a free region in memory considering the alignment
(start address mod m = 0). Then, the stack of this task
(the place whered2 . . . d5 exist) is positioned so that no dis-
placements withd1 can occur. Ifsum =

∑5
i=2 di fits into

one cache line (in this examplem >= 16 bytes) it is placed
into one set just behind the last set ofd1. Thus, it is ensured
that a miss ind1 will not generate a miss ind2 . . . d5.

5 Tool Chain

As mentioned in the previous section, code and data of
real-time software have to be put at specific physical ad-
dresses. Therewith, it is possible to map these items to ded-
icated sets in cache.

In order to arrange the items, we developed the tools
rcmc (RECOMS Colored Module Creator)andmmo (Mem-
ory Management Optimizer). Both tools use the ELF (Exe-
cutable and Linkable Format) object code as input, there is
no need for source code annotations or to recompile existing
real-time software.

input files

analyze

merge

main memoryparsed

create

layoutdata

Real−Time
Operating System RT−Application RT−Application

RECOMS
Module

RCMC

MMO

Layouted Real−Time System

Figure 3. The RECOMS tool chain

The tool chain we use to create a rearranged binary is
shown in figure 3. First of all, the object code has to be
generated by a compiler. After that, the generated object
files (RT-Applications and Real-Time Operating System)
are parsed for the code (in form of functions) and data (in
the form of single variables, data structures and stack us-
age). Then, the object files are merged to one all-embracing
object file byrcmc (RECOMS Module in figure 3). The
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relevant information like for example the dependencies of
the items and their sizes, are forwarded tommo, which gen-
erates the layout that is used for the memory arrangement.
Now, rcmccreates a new object file using the memory lay-
out given bymmo. In the next step, the binary code and data
items are loaded into the memory areas of the RTUs. A new
memory management driver developed by us ensures that
the binary items are loaded to the correct addresses. After
that, the real-time application can be started.

5.1 Rearranging an Object File

To rearrange functions and data within an ELF object
file, the following information is needed from this file:

Sections: Binary code and data of real-time applications
are grouped into sections. Without any restrictions, bi-
nary data can only be moved within a section.

Symbols: Symbols specify the offsets of items within an
object file.

Relocation Entries: Relocation is the process of connect-
ing symbolic references with symbolic definitions.
This allows executable and shared object files to hold
the right information for the executable image of a
process. Relocation entries are the references that are
needed for this.

Relative Addressing: These are the positions of jumps and
function calls relative to an offset.

Functions: A function is a piece of binary code which can
be seen as an individual object. In particular, a function
has a dedicated entry and terminates with areturn or
jump instruction.

Variables: This is the information about the position and
size of each variable that is used by functions that are
defined in the object file.

If a function or variable should be moved to a new posi-
tion, the following steps have to be performed: first of all,
the area where the binary data should be stored has to be
cleared. This is done by moving the overlapping functions
or variables to the end of the respective section. If the sec-
tion has got initialized data, the binary data is copied to the
new position. After that, the values of the symbol of the
function or data being moved have to be adapted. At last,
the relative addresses of code which uses the moved binary
data as target have to be adjusted.

This concept of moving function and variables within an
object file leads to the following advantages:

• The semantics of the code is not modified. No instruc-
tions or variables are added or removed. Thus, if a

piece of code works correctly, the rearranged version
will also do.

• The information needed for moving functions and vari-
ables can be gathered from the object file. There is no
need for additional source code annotations.

• Existing tool chains for developing software can be
used further on, as the rearrangement only depends on
the object code.

• In contrast to reprogramming the Memory Manage-
ment Unit, this method is more fine-grained.

When the arrangement of functions and variables has fin-
ished, the resulting binary islinked to a specific virtual ad-
dress. This address is obtained from our memory manage-
ment and ensures a correct mapping of the binary code to
physical addresses. Remaining dependencies are solved by
using alinker script. After the linking process, the binary
data is extracted from the object file and copied to the ob-
tained virtual addresses. Then, the memory needed for sec-
tions containing uninitialized data is allocated. If everything
is set up correctly, the real-time applications are started.

Memory Driver. The range of physical main memory
where the application will be executed is managed by a spe-
cial memory driver. This driver takes control of a certain
amount of memory space that is used for real-time purposes
exclusively. This driver manages the memory allocations
for all items and also manages memory areas used for inter-
process communication mechanisms like shared memory.
The same applies to stack regions, that means, regions in
memory that are used as stack for particular tasks.

6 Case Studies

In this section, we want to present results we achieved by
examining the run-time behaviour of software that runs on
multiprocessor systems based on commercial off-the shelf
components. On the one hand, these results show the need
for a suitable memory management for real-time systems.
They motivate our approach to arrange items in memory and
they show the benefits of this approach. On the other hand,
it is necessary to have a tool chain like the one we presented
in section 5 to get accurate results on the computer systems
we used for our research.

We did the studies on two different computer systems
(see figure 5): the first is a dual AMD Athlon SMP com-
puter where each processor runs with 1533 MHz. It is
equipped with 512 MB DDR-RAM. The second is a quad
AMD Opteron system that features the NUMA architecture.
Here, each processor runs with 1800 MHz and each of the
four nodes is equipped with 2 GB DDR-RAM.
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The four processors of the AMD Opteron system are
connected via hypertransport links. Accesses to peripheral
devices that are connected to the PCI-X bus must all tunnel
through the GPU or RTU 2, respectively.

The processors of the AMD Athlon system are con-
nected via the host bus and the north bridge (NB) to main
memory. The PCI-bus is connected via the north bridge,
too. That means, if a processor and a PCI-device want to
access main memory simultaneously, they interfere at the
north bridge. The same applies to two concurrent accesses
of the processors: they also interfere at the north bridge.

The caches of both processor architectures are very sim-
ilar. Both have 128 kB of L1 cache, that are split into 64 kB
instruction cache and 64 kB data cache (harvard architec-
ture). The L2 cache is a unified cache on both architectures.
They only differ in size: the AMD Athlon is equipped with
256 kB of L2 cache, the AMD Opteron with 1024 kB. The
cache line size is 64 Byte for both caches on both architec-
tures. The L1 cache is 2-way set associative, the L2 cache
8-way set associative on both architectures.

Measuring Execution Times. Our approach to determine
execution times on modern processors is like the method-
ology presented by Petters in [9]. We use thetime stamp
counter(TSC) of these processors. This is a register, that
is increased by one with each clock cycle of the processor.
The execution time of a piece of code is the difference be-
tween two time stamps taken at the beginning and the end
of the code sequence. We make sure that all instructions
are executed before taking the time stamps to be more ac-
curate. We have the possibility to invalidate the caches and
the TLBs before a new measurement. It is possible to fill
the caches with data that has to be written back when dis-
placed later on, or with data that needs no write-back opera-
tion. Additionally, it is possible to invalidate the instruction
cache only, the data cache only, or both.

The objective is to investigate the effects of the caches
and the TLBs on execution times of software. Thus, it is
possible to bound the worst case execution time of a piece of
code with respect to the architecture of the processor. This
is not necessarily the overall WCET, because the WCET is
not only dependend on the processor, but also on the activity
of peripheral devices.

We are able to measure on several processors in paral-
lel which offers the opportunity to investigate the effects of
concurring memory accesses of different RTUs. Addition-
ally, we use theperformance monitoring counters(PMCs)
to study the processes within the processor and to control
our results. For example, the PMCs allow to count the num-
ber of L1 cache misses, L2 cache misses or TLB misses.
Four events can be counted simultaneously. For more de-
tails on the TSC and the PMCs and the overall processor
architecture refer to [1] and [2].

In the following paragraphs, we give results concerning
the impact of memory management on the execution time
of software. We give no depiction of how to determine the
WCET of software. These studies account for our approach
to arrange items in memory.

Different Levels of Cache. The caches are composed of
two levels, the L1 cache and the L2 cache (see section 1).
From the point of view of WCET analysis, it is important to
know, how long it takes to access L1 cache compared to L2
cache. Figure 4 shows the memory subsystem.

L1−Cache Victim Buffer

L2−Cache

Main Memory

Figure 4. The memory subsystem

Between the L1 cache and the L2 cache, there is avictim
buffer that holds some cache lines that were evicted from
L1 cache. This buffer is written back to L2 cache if there is
some idle time. Otherwise, it is written back before a cache
line from L1 cache can be evicted. Our measurements show,
that for the AMD Athlon and the Opteron system, there is
nearly no difference in execution time when code and data
are in L1 cache or L2 cache. The influence of the victim
buffer is negligible on both systems.

That means, it does not matter in which level of cache an
item is, the access time is nearly the same. The difference
is in a magnitude of only 10-20 processor cycles. This fact
simplifies the memory arrangement and thus WCET analy-
sis, because you can treat the caches as if it wasonecache.
Concerning the feature of cache locking, this property is ir-
relevant, because items are always locked in L1 cache.

Displacements from Cache We did some research about
the characteristics of displacements from cache to main
memory. There are two possible scenarios: cache lines can
be replaced without anywrite access to memory. Or, if
some contents was modified, one write access for the mod-
ified cache line is necessary. We studied these scenarios
on both computer systems. The measurements were taken
withoutany disturbances from other devices.

On the AMD Athlon system, the difference in run-time
between displacements with write-back and those with-
out write-back ranges between 9% and 18%. On the
AMD Opteron, this difference ranges from 50% for small
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amounts of data (16 kB in this case) and about 5% for big
amounts of data (bigger than the whole cache).

The read access for a new cache line and the write access
for the old cache line proceed in parallel. The possibility to
get a worst case situation, that is, the read access is delayed
because of a write access, is smaller for large amounts of
data than for small amounts of data. This doesnot mean
that there are different execution times in the worst case de-
pending on the amount of data. Thus, the longest delays
we can determine have to be taken into account for WCET
analysis.

These results emphasize the need to know, if a write-
back is needed for a certain cache line or not.

Concurrent Accesses of Different Processors.One of
the key characteristics of our approach to arrange items in
memory is to separate code and data that is executed from
different RTUs. Thus, unwanted und unpredictable dis-
placements caused bycache snoopingare avoided.
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Figure 5. NUMA and SMP architecture

In SMP systems, the processors compete for each other
when accessing physical memory in parallel (see figure 5).
It is difficult to determine the impact of this competition on
the execution time of software. Mostly, it depends on the
synchronism of the concurring accesses. We did many mea-
surements to get an order of magnitude of how this conflict
affects the execution time of software. In the average case,
we got an extension of about 10% of the execution times.
But in worst case scenarios, we measured a run-time exten-
sion up to 100%. These numbers show, that the increase of
execution times of software can vary within a large range.

These times are nearly impossible to predict for a WCET
analysis, thus, always the worst case has to be taken into
account. To improve this situation, it is possible to put all
tasks that frequently need memory accesses on one RTU.
Other tasks that fit into the cache can be put to another RTU
to avoid collisions. Another solution is to lock small tasks
into the cache.

Further on, we measured the execution times for the con-
current access of an identical area in memory and we had
an increase of execution time up to 370%. This number
stresses the need to avoid this scenario where possible. It
is only necessary for memory areas that are needed for the
exchange of data between tasks (see section 4). This exper-
iment shows the influence ofcache snoopingon the execu-
tion times.

Accessing Different Memory Regions. In NUMA sys-
tems, the situation is different. Each processor has got its
own physical memory. Thus, if software is running in paral-
lel on different processors, there are no conflicts concerning
memory accesses. An interesting question is, how long last
memory accesses from one processor to the local memory
of another processor. This scenario occurs when a trans-
fer of data between tasks running on different processors is
needed.

Table 1 shows the results we got when measuring the
time that is needed to transfer 64 kB of data to different
nodes. The setup of the system is shown in figure 5. These
measurements were taken without any activity of the PCI-X
buses.

target
source RTU 1 RTU 2 RTU 3
RTU 1 83µs 110µs 97µs
RTU 2 110µs 83µs 97µs
RTU 3 97µs 97µs 83µs

Table 1. Access times of different nodes

The results in table 1 show, that there are noticeable dif-
ferences in access times depending on the source and the
target node. An access from node one to node two involves
an increase in execution time of 32.53%, compared to the
access time to local memory. From node one to node three,
there is an increase of 16.87%. The increase when changing
the direction of the access remains constant. The increase
for accesses from node three to node two and to node one is
the same. This is also true for greater amounts of data.

We did the same measurements with concurring memory
accesses from other processors. For example, accesses from
node one to node three and vice versa in parallel. There was
no noticeable difference in run-time. This is a consequence
of the hypertransport protocol which defines two indepen-
dent data streams per link.

Concerning our approach of memory arrangement, it can
be useful to take a memory area on node three to share data
between tasks running on node one and node two. Assumed
that there is no need to use this area on node three, this is a
suitable solution. When exchanging data between adjacent
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nodes, one has to choose the memory of one of the two
nodes.

6.1 Experimental Results

On the one hand, the time that is needed for a memory
access depends on the underlying hardware, that is bus sys-
tems, the memory controller and the kind of memory itself
(e.g. SRAM, DDR RAM). On the other hand, it depends on
the connection of other processors or peripheral devices to
the memory and the activity of these devices.

Here, we want to present some results to compare the
run-time of software when it is arranged in cache with the
run-time when it has to access memory. To give an order of
magnitude of the impact of concurrent memory accesses on
the run-time of software, we performed random hard disk
and ethernet activity in parallel to the execution of a task.
These results should point out the complexity and the di-
mension of uncontrolled memory accesses. These measure-
ments were taken on the AMD Athlon system. Experiments
on the AMD Opteron system show similar results.

Figure 6. Run-time without displacements

Figure 6 shows the execution time of the first loop
of the bubble-sort algorithm shown in figure 2 with
LENGTH=8192. That means, an array of 32 kB is loaded
into the data cache. In this case, the task was executed in
cache without any displacements. This is the best case for
real-time software. Remarkable is the very small jitter.

In contrast to this, figure 7 shows the same scenario, but
this time, the code and data of the first loop has to be loaded
from main memory first. Additionally, there are random
memory accesses of peripheral devices in parallel. At ran-
dom means, the highest value we measured is not necessar-
ily the WCET of this task. Bounding the WCET in cases
like that is not the scope of this paper.

Table 2 summarizes the results. One can see, if there are

Figure 7. Run-time with concurrent accesses

Scenario min. time max. time run-time
variation

Best Case 85.80µs 86.15µs 0.4%
Displacements 204.68µs 286.59µs 40%

with delays

Table 2. Summary of results

memory accesses in parallel, execution times of software
vary in a broad range. Here, there is an increase in execution
time of factor 3.33 compared to the best case scenario. Ad-
ditionally to this, the run-time variation, which is a quantity
for the predictability of execution times, increases by factor
one hundred.

These results further stress the need to keep code and
data in cache where possible. This does not only accelerate
software execution, it makes run-times predictable. This is
of great importance for real-time systems.

6.2 Conclusions

The case studies and experiments we presented in this
section render the great impact of memory accesses on the
execution time of software. The best case for real-time soft-
ware is to fit into the caches. Thus, execution times are
predictable and programm execution is as fast as possible.
Our results show, that the two levels of cache on modern
processors can nearly behave as one cache which simplifies
the memory arrangement.

These results point up the benefits of cache locking.
Tasks that run in cache suffer no extension of their run-time
by memory accesses and are thus predictable and fast. This
feature is very useful for static WCET analysis.

The analysis of the impact of displacements from the
cache on execution times of software show that there are
big differences depending on the situation. It is necessary to
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distinguish between displacements with and without write-
back operation. This is what our approach enables the sys-
tem designer.

In addition to that, it is important to know what is hap-
pening around the processor during a memory access. Con-
curring accesses from further processors or even periph-
eral devices can extend access times for real-time software
tremendously. Furthermore, the actual effects are nearly im-
possible to predict and thus one has to account for the worst
case. Our research showed, that this worst case situation
rarely appears, so this is a source of overestimation of com-
putation time needed for a real-time task. In addition, this
worst case situation is hard to adjust, so it is very difficult to
determine a safe WCET for this. Our approach of memory
arrangement enables the system designer to avoid situations
like this where possible.

7 Summary and Future Work

In this paper, we presented an approach to arrange code
and data of real-time software in memory. This approach
aims to improve the speed and predictability of execution
times of real-time software. The background of this work
is the intention to be able to use the computation power of
modern commercial off-the shelf computers for real-time
systems. We presented a tool chain which implements our
approach of memory arrangement. These tools are based
on standard open source software and only need the object
code as input.

Our case studies in section 6 showed the importance of a
suitable memory management for real-time systems. They
show the benefits of our approach, but they also show its
limits. It is important to know the kind of displacement
from cache (with or without write-back operation). Further-
more, it is important to know what is happening in parallel
to memory accesses. The memory division for multiproces-
sor systems presented in section 3 enables the programmer
of real-time software to control this up to a certain limit.

Another feature of our approach is the ability to lock cer-
tain code and data items in cache. Our case studies showed
the benefits of this feature. Therewith, execution times of
software are nearly constant and thus predictable.

In the future, we want to investigate different kinds of
real-time applications to find suitable heuristics on how
to arrange them best in memory. Furthermore, we want
to delve into the characteristics of concurrent memory ac-
cesses in SMP and NUMA systems to find new methods of
how to allocate processors for different tasks.

In the near future, new computer systems that combine
SMP and NUMA systems will appear on the market. So it
is important to do further research work on this field.
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