
Approaches to Handle TLBs in Real-Time Systems Running on State of the
Art Processors

Alexander von B̈ulow J̈urgen Stohr Georg F̈arber
Institute for Real–Time Computer Systems

Prof. Dr.–Ing. Georg F̈arber
Technische Universität München, Germany

{Alexander.Buelow,Juergen.Stohr,Georg.Faerber}@rcs.ei.tum.de

Abstract

State of the art processors like Intel Pentium or AMD
Athlon implement large cache memories. These caches
bridge the gap between the high speed processors and
the comparatively slow main memories. However, for
the use in real–time systems, caches are a source of pre-
dictability problems. A lot of progress has been achieved
to cope with caches in real–time systems to determine
safe and precise bounds of the execution times in the
presence of cache memories. In this paper, we deal with
the Translation-Lookaside Buffers (TLBs). These little
caches are used for the translation of a virtual address
into a physical address. They are accessed each time
when code or data is referenced. We show how mem-
ory layout affects usage of the TLBs and we discuss two
approaches to use them in real-time systems.

1. Introduction

Present-day processors like the AMD Athlon or the
Intel Pentium 4 are not designed to act in hard real-time
systems. They are optimized to deliver a good perfor-
mance in the average case. Nevertheless, there are some
properties which make them interesting for use in real-
time systems: They are very fast in comparison to other
processor architectures, they are cheap in price, the tech-
nological progress goes on rapidly and they are in most
cases downwardly compatible.

In a real-time system the correctness of a result de-
pends on the date at which it is produced. Therefore,
it is essential to know theses dates exactly. In order to
proof the real-time capabilities of a system, one has to
choose an adequate scheduling policy and to perform
a real-time analysis. One determining parameter is the

worst-case execution time (WCET) of each task of the
system. The significant part of the formation of WCETs
on modern processors is wether the corresponding code
and data is in cache when a task is executing.

But not only the code and data caches account for the
WCET, the TLBs also have a non-neglectable influence
on the WCET. They are used to hold the information
needed for address translation. If an access to the TLBs
fails, the result is at least one memory access in addition
to the one needed to access a code or data object, even
if this object is in cache. To compute precise bounds
for the WCET on systems using TLBs, one has to in-
vestigate their behavior during run-time of the real-time
system.

This paper is organized as follows: Section 2 gives
an overview of related work. The next section describes
the scenario we deal with and section 4 gives a short in-
troduction about TLBs. In section 5 we discuss different
approaches to cope with TLBs in the context of real-time
systems and give a short example. Section 6 concludes
the paper.

2. Related Work

To the best of our knowledge, there are not any papers
that deal with the influence of the TLBs on the WCET
explicitely. A framework for data cache analysis with
respect to real-time capabilities is given in [8]. They
investigate techniques like cache partitioning, dynamic
cache locking and static cache analysis for predictabil-
ity of multitasking hard real-time systems. They also
include data TLBs in their research.

Bennet and Audsley discuss virtual memory manage-
ment for real-time systems in [1]. Sebek deals in [6]
with the architecture of cache memories in general and



its influence on real-time systems.
An analytic approach to cache and pipeline analysis

to compute save bounds for the WCET on modern pro-
cessor architectures is pushed by Wilhelmet al. in many
papers. Especially, they model cache behavior for state
of the art processors and investigate the impact of differ-
ent cache architectures on the WCET [3] [5] [7].

In this paper, we want to analyse the impact of main
memory management on the usage of the TLBs. Among
other things, this is very important for algorithms that
rearrange items in memory for an optimal usage of the
processors’ caches (not TLBs) like in [2], [4] and [9].

3. Scenario

The system consists of a set ofN procedures

P = {pi(si, Di) : i = 1...N}

Each procedurepi consists of one code object with size
si in bytes and a setDi of Ki data objects with

Di = {di,k(si,k) : ki = 1...Ki}

where the objectdi,k has the sizesi,k in bytes. The
whole object code of a procedure is referred to as acode
object. Data objectsdi,k are the variables used by the
procedurepi. The stack region that each procedurepi

can have is a data object, too. In general, each task of the
system consists of one or more procedures. The same
applies to the mechanisms of the RTOS (Real-Time Op-
erating System) like the scheduler. The sizes of code and
data objects arealigned, this means, they are rounded up
to the next aligned size, if needed. For example, if the
alignment is four, an object with size six will be handled
like an object with size eight.

Each of these objects can have an arbitrary location
in main memory. This location in main memory prede-
termines its location in cache. The cache is presumed
to be a physically taggedn-set associative cache. Its
cache line size ism and it hasl sets, so its sizes denotes
to s = n · m · l. Parts of the physical address corre-
spond with the set number where a cache line will be
stored in cache. The cache is supposed to have ahar-
vard architecture. This means, it is split into a cache for
instructions and data, respectively.

The memory is divided intopageswith size sp in
bytes. To simplify the discussion, we deal with pages of
one size only. Nevertheless, the approach can be easily
extended to a combination of pages with different sizes.
This is supported to a certain extend by all modern pro-
cessors.

4. Translation Lookaside Buffers

The Translation Lookaside Buffersare little caches
that contain information needed for the translation of a
virtual into a physical address. In general, this infor-
mation consists of entries of tables in memory the pro-
cessor needs to compute the physical address. Figure 1
shows the address translation for an AMD Athlon pro-
cessor and a page sizesp = 4096 Byte.

31 22 21 12 11 0

virtual address

page table

offset

page directory
page

Figure 1: Translation of virtual adresses

In this example, the TLBs must cache the entry of the
page directory and the entry of the page table. Both are
needed for the address translation. This information is
cached in one entry in the TLBs and is sufficient for the
address translation within one page.

The structure of the TLBs is very similar to the struc-
ture of the caches. There are TLBs for accesses to
instructions and for accesses to data, respectively. If
there exists more than one level of cache, there exists
a corresponding level of TLBs, too. Normally, the level
one TLBs are fully-associative caches and the level two
TLBs are set-associative caches. Both dismiss their en-
tries following a LRU strategy.

5. Caches, TLBs, and Memory Layout

One approach to optimize cache usage for real-time
software is to arrange code and data objects in memory
in such a manner that the number of cache misses for an
application is minimized or made more predictable. For
example, such approaches can be found in [2], [4] or [9].
To put one object to a certain set in cache, it is necessary
to put it to a physical address that corresponds with this



set. Figure 2 shows this scenario for a 2-way set asso-
ciative cache. As one can see, a location in memory that

Cache

Main Memory

l*m

TLB

Figure 2: Cache, memory layout and TLBs

corresponds with one set in cache repeats in intervals
of l · m. Let sm be the size of main memory in bytes.
Then, the number of possible locations in memory that
correspond with one set denotes tox = b sm

l·mc.
Everytime software accesses one of these locations,

another entry in the TLBs must be used (assumed that
l · m > sp). That means, if code and data objects are
distributed over a large range in memory, the number of
TLB entries needed by the software will increase. Ev-
ery TLB miss means at least one additional access to
memory. For the system shown in figure 1, there are two
additional misses. These misses influence the execution
time of software in the same way as a conventional cache
miss does.

The relationship between locations in memory and
sets in cache (see figure 2) shows that a good placement
for objects in cache might be a bad placement regarding
the TLBs. From the point of view of the cache, it does
not matter at which of the possible locations an object
actually is. But from the point of view of the TLBs, it is
very important.

Local and Global Optimization We suggest two
approaches to deal with TLBs in real-time systems:

• Local optimization: This means to minimize the
number of TLB entries needed by a single proce-
dure. In general, every procedurepi needs at least
one entry for code and one for data.

• Global optimization: Here, the goal is to mini-
mize the number of TLB entries that are needed for
thewholesystem. It is possible that the number of
TLB entries for a particular procedure increases.

Both approaches can be realized by placing code and
data objects in memory. This should be part of an effort
to optimize cache usage for software.

The local optimization minimizes the number of TLB
entries needed by a single procedure. In the worst case,
the number of possible memory accesses due to a TLB
miss when executing a procedure is at its minimum.
This is useful for procedures that are running very fre-
quently. Another expedient application are interrupt ser-
vice routines that must suffer short delays only.

The global optimization is suitable for systems where
all procedures are running evenly. There is no reason to
optimize the TLB usage of one procedure for the cost to
increase total TLB usage. It is advisable to use global
optimization for systems which get by with TLB en-
tries using global optimization but not local optimiza-
tion. Getting along with the resources is always the best
solution.

Thus, one needs to compute the number of TLB en-
tries needed for global optimization. To do this, one
has to know that the compiler distributes objects accord-
ing to their properties insections. Basically, a section
is a continuous area in memory. There is one section
for code (.text section), one for data (.data section) with
known storage size at compile time, and one for unini-
tialized data (.bss section). There can be more sections,
even user defined ones.

To compute the number of TLBs needed for a fixed
distribution in memory, one needs to know how many
sections are needed and how large each section is. The
size of a section is dependend on the size of the objects
and the distance between the objects within this section.

Let M = {mj : j = 1...J} be theJ sections that
are needed for the real-time system andsmj

the size in
bytes that is needed by sectionmj . The number of TLB
entries needed for global optimization denotes to

nTLB,global =
⌈ 1
sp

J∑
j=1

smj

⌉
If this is lower or equal to the available number of TLB
entries, global optimization is the best choice. If it is
not, local optimization might be the better solution. It
enables the user to optimize critical parts of the system
at the cost of reducing performance for less critical parts.
The number of TLB entries for one procedure in case of
a local optimization can be computed likenTLB,global

if one interpretsM as the set of sections needed by one
procedure andsmj

as the size ofmj per procedure.



A Small Thought Experiment To get an idea of
the possible differences between local and global op-
timization, have a look at this small procedure:p1

has a code size of 5 kB and uses four data objects:
s1,1 = 4 byte, s1,2 = 128 byte, s1,3 = 32 byte and
s1,4 = 1024 byte. The page size is 4 kB. This procedure
needs two entries in the code TLBs. But for the data
TLBs, there are different possible solutions.

Here, it is important to know which section will be
allocated by the compiler for each data object. If, for
example,d1,1 andd1,2 are in the .data section andd1,3

andd1,4 are in the .bss section, it is possible that two
entries in the data TLBs are needed, although the sum
of the sizes of all four data objects is lower than 4 kB.
This is true if the size of each section is greater than
4 kB which can be regarded as the common case for a
real-time system running on state of the art processors.
Keep in mind thatp1 is only a small part of the system.

But it can be worse. If the distance of data objects
in one section is greater than 4 kB in memory, four en-
tries of the data TLB will be required. This can happen
because of a memory layout that optimizes cache usage
but does not take care of the TLB usage.

If using a local optimization, procedurep1 needed
four entries in the TLBs: Two for code and two for data.
This optimization does not provide distributing the data
objects so that more TLB entries are needed. A global
optimization would include all procedures of a system
(not declared in this small example). In this case, six en-
tries in the TLBs could be a good solution if the data ob-
jects of the other procedures fit completely into a mem-
ory range of4 · 4 = 16 kB. Thus, for procedurep1, four
data TLB entries are required instead of two, but from
the point of view of the whole system, this could be a
good solution.

6. Conclusions and Future Work

In this paper, we have shown that the memory layout
of real-time software not only affects the cache usage
but also the usage of the TLBs. These little caches are
not neglectable regarding WCET analysis. The conse-
quences of a TLB miss are rather the same as the conse-
quences of a regular cache miss. A memory layout that
optimizes cache usage can result in many TLB misses,
thus, it has to include an optimization of TLB usage.

Future work will be a deeper investigation of the im-
pacts of TLB misses on the WCET of software. We want
to extend our approach to use different page sizes simul-
taneously.

References

[1] M. D. Bennet and N. C. Audsley. Predictable
and Efficient Virtual Addressing for Safety-Critical
Real-Time Systems. InIn Proc. 13th Euromi-
cro Conference of Real-Time Systems, (ECRTS’01),
Delft, The Netherlands, June 2001.

[2] B. Calder, K. Chandra, S. John, and T. Austin.
Cache-Conscious Data Placement. InProceedings
of the Eighth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (ASPLOS-VIII), San Jose, 1998.

[3] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and Precise WCET Determi-
nation for a Real-Life Processor. InProceedings of
the 1st International Workshop on Embedded Soft-
ware (EMSOFT 2001), pages 469–485, Tahoe City,
CA, USA, October 2001.

[4] Amir H. Hashemi, David R. Kaeli, and Brad Calder.
Efficient Procedure Mapping Using Cache Line
Coloring. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages
171–182, 1997.

[5] Reinhold Heckmann, Marc Langenbach, Stephan
Thesing, and Reinhard Wilhelm. The Influence of
Processor Architecture on the Design and the Re-
sults of WCET Tools. InProceedings of the IEEE,
volume 91, July 2003.

[6] Filip Sebek. Cache memories and real–time sys-
tems. Technical report, Department of Computer
Engineering M̈alardalen University V̈aster̊as, Swe-
den, 2001.

[7] L. Thiele and R. Wilhelm. Design for Timing Pre-
dictabilty. Real-Time Systems, 28:157–177, 2004.

[8] X. Vera, B. Lisper, and J. Xue. Data Caches in
Multitasking Hard Real-Time Systems. InProceed-
ings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS’03), Cancun, Mexico, December 2003.

[9] Alexander von B̈ulow, J̈urgen Stohr, and Georg
Färber. Towards an Efficient Use of Caches in
State of the Art Processors for Real–Time Systems.
In Proceedings of the 16th Euromicro Conference
on Real-Time Systems – Work in Progress Session,
Catania, Italy, June 2004.


