
Hardware Accelerated Texture Extraction for a
Photo-Realistic Predictive Display

Tim Burkert, Jan Leupold, Georg Passig

Institute for Real-Time Computer Systems
Technische Universität München, D-80333 Munich, Germany

Email: tim.burkert@rcs.ei.tum.de

Abstract

Predictive displays have proven their suitability to
compensate time delays in the visual feedback of
teleoperation applications. The presented work de-
scribes aphoto-realisticpredictive display that re-
lies on a 3D polygonal scene model and camera
images. Photo-realism is obtained using computer
graphics techniques, especially the mapping of tex-
tures acquired from camera images. This work is
focused on the extraction and processing of these
textures. They are acquired by assigning areas of
camera images to polygons of the scene. Occlu-
sions in the scene are determined and marked in
the textures. Artifacts due to inaccurately localized
cameras are removed by discarding uncertain color
information. Unknown areas in the textures are fi-
nally filled by interpolation. The algorithms are per-
formed as much as possible directly on the graphics
card for acceleration.

1 Introduction

The effect of time delay in the control loop between
the operator and a robot is a well known problem in
telemanipulation scenarios [6]. Lane et al. [11] veri-
fied in a case study that time delays greater than one
second significantly decrease the operator’s perfor-
mance. But even lower lags of about 300 msec al-
ready lead to a “move and wait” strategy [5].

Among other approaches, like for example semi-
autonomous tele-operators [12], predictive displays
are considered as a viable method to compensate
time delays [1]. Several variations of predictive
displays have been suggested, which superimpose
computer graphics on camera images (augmented
reality) [10, 13], or completely replace them by syn-
thetic images (virtual reality) [4, 7].

In this work the latter approach is used for the
proposed predictive display. A geometric scene
model of the robot and its environment is acquired
[2] and continuously updated. A predicted view
of the scene is generated from this model and pre-
sented to the operator with no noticeable time delay.

Photo-realismis required for immersive telepres-
ence applications. To achieve photo-realism, com-
puter graphics techniques, especially the mapping
of textures acquired from camera images, are used.
This paper is focused on the extraction and pro-
cessing of these textures. They are acquired by as-
signing areas of camera images to polygons of the
scene. Occlusions in the scene are determined and
marked in the textures. Artifacts due to inaccurately
localized cameras and model inherent inaccuracies
are removed by discarding uncertain color informa-
tion. Unknown areas in the textures are finally filled
by interpolation.

Another photo-realistic display that is focused on
an image-based approach with uncalibrated and a-
priori unknown setup is for example proposed in
[8]. Carranza et al. extract textures for 3D-video
of human actors [3]. Artifacts are removed off-line
by checking the visibility of vertices from several
slightly displaced views.

Section 2 introduces the embedding telemanipu-
lation scenario. The process of texture extraction is
explained in section 3. The paper closes with results
in section 4 and a conclusion in section 5.

2 Embedding System

2.1 Overview

The presented work is part of a teleoperation sce-
nario as illustrated in figure 1. A human operator
controls a far-off robotic manipulator to fulfill a cer-
tain task. A straightforward implementation is to

VMV 2003 Munich, Germany, November 19–21, 2003



videobased

aquisition
model

local
scenemodel

co
m

m
un

ic
at

io
n 

ne
tw

or
kprediction

realistic

operator
commands commands

headposition
camera images

photo−

synthetic
images

teleoperator

Figure 1: Teleoperation scenario with a photo-
realistic predictive display

measure actions of the operator, such as motions of
his hand and head by pose-tracking devices. These
actions are mapped into commands that are trans-
mitted over the communication network and are ex-
ecuted by the robot. To give visual feedback of the
robot, its environment, and the execution of the is-
sued commands to the operator, video images are
captured by cameras on the robot. These images
are sent back over the network. Both transmissions
involve a delay composed of network latency and
data transmission time. The effect for the operator
is a noticeable time delay between his actions and
a visible change in the remote scene. To compen-
sate this delay a predictive display is used. Instead
of camera images, a synthetic view of the remote
scene is displayed to the operator. This synthetic
view simulates the view of the remote scene as it
would look like after the execution of the command.

2.2 Scene Model

The proposed predictive display relies on a polygo-
nal 3D model of the remote scene, as well as infor-
mation about the kinematics and dynamics of the
robotic manipulator.

Two scene models are used that represent the en-
vironment of the robot at different points in time.
The process of texture extraction relies on the modelMt that corresponds to the remote scene at the time
the camera image was taken. The display for the
operator is based on a second modelMd. The ver-
tices inMd represent the predicted scene based on
the operator’s head and hand position.

3 Texture Extraction

The measured position and orientation of the op-
erator‘s head define his current viewpoint inMd.

The actual rendering of the predicted scene is per-
formed using a standard rendering algorithm with
texture mapping. Since the textures are extracted
from camera images they implicitly contain scene
lighting. The following subsections are focused on
the acquisition of these textures.

Processing of textures involves highly paralleliz-
able computations. In contrast to the CPU, the
Graphics Processing Unit(GPU) is optimized for
such operations. Not even by using architecture ex-
tentions like MMX, ISSE or 3Dnow! the CPU can
reach similar throughput. Above all, handling tex-
tures on the CPU leads to heavy transfer of image
data across the AGP which then easily becomes a
bottleneck. Therefore all described algorithms are
designed to run as far as possible directly on the
graphics card for acceleration.

A drawback of execution on the GPU is that
possible operations are limited to those offered by
the API, here OpenGL. The following subsections
show how the aspired tasks can be realized in spite
of this restriction.

Texture extraction is performed periodically to
cope with illumination changes. The necessary in-
put data is:� the camera image� the corresponding scene modelMt� the intrinsic camera parametersCt(x; y; sx; sy; f)� the camera position and orientationPt
3.1 Extraction of Perspective Textures

Figure 2: Camera image with overlaid scene model

In a first step the camera image is copied into the
framebuffer. Now areas in the camera image are as-

666



signed to polygons. UsingCt andPt the projection(x; y) of each vertex ofMt is calculated (fig. 2).
Based on these image coordinates a bounding

box is constructed for every polygon. This rectan-
gle contains all color information for this polygon
available in the camera image. It is now stored as a
texture (glCopyTexImage2D). Giving the offset(xo; yo) of the bounding box relative to the image
origin, the normalized texture coordinates (u, v, w,
q) of a vertex can be calculated byu = xtxsx + x � xotx (1)v = ytysy + y � yoty (2)w = 0 (3)q = zf (4)

with tx; ty being the texture size in pixels. q con-
tains the perspective distortion of the camera pro-
jection for correct interpolation across the texture
during rendering.

3.2 Occlusion Handling

Figure 3: Rendered image from different viewpoint
without prior occlusion detection

So far all parts of the camera image within the
projection of the corresponding polygon were used
as texture. But what happens if parts of this polygon
are occluded by others? Simply using the method
described before, areas in the image that belong
to the occluder will appear in the occludee’s tex-
ture. While rendering new synthetic views the oc-
cluder’s surface appears copied onto the polygon

farther away (fig. 3). To avoid such artifacts, parts
of the textures that actually belong to other poly-
gons are marked as invalid in the alpha channel.
Valid texels are coded with an alpha value of 1 and
invalid texels with 0.

alpha=0Z(Pixel) > Z(Buffer)?

More pixels?

More polygons?yes

no

yes

no

no

yes

Set all alpha values to 1

Choose first polygon

Render polygon

Copy camera image to backbuffer

Protect RGB values against writing

Render scene

Protect depth buffer against writing

Choose first pixel

Reset alpha values to 1

Save clipped area as texture

Figure 4: Occlusion detection

The depth buffer of a 3D hardware offers the
functionality necessary to realize this on the graph-
ics card. The algorithm is implemented as follows.

As mentioned before the camera image is loaded
into the graphics memory, to be precise it is loaded
into the color buffer. Now the color buffer is pro-
tected against writing and the whole scene is ren-
dered. As a result the depth information for each
pixel is calculated and stored in the depth buffer.
For the following steps the depth buffer is also pro-
tected against writing. The alpha value for every
pixel is initialized to 1, marking every pixel as valid.

In a next pass every polygon is rendered sepa-

666



rately once again. This time the determined depth
for each pixel is compared to the stored depth value.
A stored depth value smaller than the one of the
polygon indicates that this part of the polygon is
occluded by another one. Therefore the alpha value
for such pixels is changed to 0. The content of the
previously determined bounding box is stored as a
texture including the alpha values. After resetting
all alpha values to 1 the next polygon is processed.

For all rendering passesCt is used for projection.
Figure 4 summarizes the presented method.

3.3 Removing Artifacts

In the previous sections a perfect camera registra-
tion and a perfectly modeled remote environment
were assumed. In reality the camera position will
usually not be known precisely enough. In addition
the model is always an approximation. Therefore
some pixels in the camera image may be assigned
to inappropriate polygons. This leads to artifacts
while rendering the scene. For polygons that have
a common edge the artifacts are hardly noticeable,
because they are next to each other from every point
of view. But when occlusions occur, some color
information may happen to appear at a completely
wrong position when viewed from a different point
of view during rendering. Wrong color information
in the occludingpolygon is not very eye-catching,
because it always appears at polygon borders. But
within theoccludedpolygon wrong color informa-
tion can appear anywhere. This is especially dis-
turbing when a completely different color is dis-
played within a regularly textured area (fig. 5).

Figure 5: Artifacts in rendered image

Figure 6: Artifacts removed by enlarging occlu-
sions

Therefore a method for removing artifacts by dis-
carding uncertain color information is used. Such
artifacts always occur next to areas that were
marked as occluded (see sec. 3.2). The solution is to
enlarge the detected occlusions (fig. 6) which corre-
sponds to a manipulation of the alpha mask. This
mask is scaled down by the factor of two in both
dimensions using bilinear interpolation offered by
texture mapping. Four texels are merged to one, re-
sulting in� � 34 if at least one original texel was
occluded. The new mask is again enlarged to the
original size. Since again bilinear interpolation is
employed, all texels that were influenced by at least
one occluded texel satisfy� � 1516 . These texels are
then set to� = 0. The maximumenlargement is
1!16 texels for a single occluded texel. To achieve
wider enlargement the algorithm is repeated several
times always using the determined alpha mask as
new input. An example is shown in figure 7. The
resulting alpha mask is fused with the color texture
for further processing.

Figure 7: Progressive enlargement of occluded ar-
eas

Very small textures are excluded from occlusion
enlargement. They may otherwise lose their whole
color information.

666



3.4 Normalization

Simply saving the textures perspectively distorted
together with the their texture coordinates results in
two problems.

First, subsequent camera images are usually not
recorded from the same point of view. What per-
spective should be used if two textures for a poly-
gon are to be merged (see sec. 3.5)?

Secondly, the position of the camera relative to
the polygon also specifies the size of the textures.
This can lead to very large textures even for small
polygons when the camera is close to them. This
must be avoided because of limited texture memory.

As a solution the distorted textures are only
stored temporarily. Each perspective texture is pro-
jected onto its polygon from a point of view in the
normal direction towards the polygon with the per-
spective correction as described in 3.1. Figure 8 il-
lustrates this mapping. Orthogonal projection does

v

u
perspective texture

orthogonal texture

v

u

Figure 8: Texture normalization

not change the length ratios. This leads to the re-
sulting view being directly proportional to the poly-
gon’s size. The resulting reprojected textures for
one polygon will always have the same shape and
size no matter from where the camera image was
taken. These orthogonal views are now stored as
textures. Since there is no more perspective dis-
tortion in the normalized textures, the texture co-
ordinates can be reduced to(u; v) for further pro-
cessing. A maximum size for textures is defined to
avoid memory overflow. Every texture larger than

this threshold is scaled to the maximum size.

3.5 Texture Fusion

Whenever a new camera image is transmitted from
the robot to the operator, the new color information
has to be merged with the textures extracted from
previous pictures. First the stored texture is used to
render the polygon from an orthogonal view. While
rendering the texture alpha values are tested so that
only valid pixels are drawn. Then a normalized

��
��
��

��
��
��

����
����
����
����

old color information

new color information

no color information

v

u

v

u

v

u

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

new textureold texture

merged texture

Figure 9: Texture fusion

temporary texture is extracted from the new cam-
era image as previously described. This texture is
now employed to render the polygon in a second
pass while testing the alpha values once again. The
resulting texture is stored again for rendering syn-
thetic views. It contains all color information from
the current camera image plus the holes filled as far
as possible with old information (see fig. 9).

3.6 Hole Filling

Even after texture extraction and fusion from many
camera images there may always be parts of poly-
gons that have never been seen. Handling of arti-
facts reduces the available color information even
more. Such disturbing “holes” in the textures must
be hidden from the operator. They are therefore
filled by interpolating the color information from
their borders. This operation is not available in
OpenGL. It is reproduced as follows.

First for every polygon a texture pyramid is built.
In each step the side lengths are divided by two.
The alpha-value of the subsequent step is calculated
from the four involved texels by

666



�i+1 = � 1; for
P3j=0 �i;j > 00; for
P3j=0 �i;j = 0 (5)

The color ist only defined for�i+1 = 1 and is de-
termined byCi+1 = P3j=0 �i;jCi;jP3j=0 �i;j (6)

This yields an interpolation of onlyvalid texel
colors. The resulting texture is the input for the next
interpolation until the result only contains one pixel
(fig. 10, left). This texel is the interpolation of all
valid texels1.

x2

+

x2

+

x2

+

/2

/2

/2

Figure 10: Texture pyramid, left: construction,
right: collapse

1It is not really thebilinear interpolation ofall valid texels.

Figure 11: Subsampling of a texture

The equations above can not directly be mapped
to OpenGL commands, because in the graphics
pipeline the interpolation occursbefore the alpha
test. Therefore during interpolation it is not pos-
sible to distinguish between valid and invalid tex-
els. Instead the texture is subsampled four times,
so that each resulting subtexture contains one of the
texels to interpolate for the corresponding texel of
the next step (fig. 11). The weighted interpolation
is then performed using theNVIDIA register com-
biners[9].

Once all subtextures are available the pyramid is
collapsed (fig. 10, right). The smallest texture (1x1
texel) is enlarged to 2x2 texels. All valid texels of
the next step (2x2) overwrite the content of this tex-
ture. The result is enlarged to 4x4 texels and so on
until the original size is reached.

4 Experiments

4.1 Setup

For the measurement of the operator’s movements,
the information of anAscension Flock of Birdsmag-
netic sensor system is used. Sensors are mounted in
a gripper and on theSony HMD800head-mounted
display that shows the currently predicted view. The
position of the user‘s hand controls a 7-joint modu-
lar robotic system in an anthropomorph, right-hand
configuration. A pan-tilt unit completes the me-
chanic system. TwoSony DFW-V500firewire cam-
eras provide the required images. The camera sys-
tem can also be mounted on a tripod to allow trans-
lational movements. Latencies of the transmission
channel are simulated by adding a delay to the uni-
directional control flow from the tracking system to
the manipulator and the pan-tilt head.

The computer graphics calculations are per-
formed on a standard PC with anAMD AthlonPro-
cessor with 1GHz and 512MB DDR-RAM. The

666



graphics card is based on anNVIDIA Geforce 4
Ti4600 Processorwith 128MB memory. OpenGL
1.3 is used as graphics API on a Linux system.

4.2 Results

Photo-realistic scene prediction without noticeable
time delay can already be shown in the system when
the display is based on a manually acquired model
(like the model in fig. 14). Most of the algorithms
concerning memory and calculation intensive tex-
tures are executed directly on the graphics hard-
ware. That way reasonable execution times are
achieved even on consumer graphics cards. The
predicted scene is rendered with about 100 frames
per second. The time for extracting textures de-
pends on the model. For the example scene with
about 2,000 polygons the average processing time
is 500ms. The maximum texture size is set to
256 x 256 texels with 32 bit per texel. In fig-
ure 5 artifacts due to modeling errors were shown.
Using hole filling for the occluded areas leads to
even more disturbing artifacts (fig. 12). If hole fill-
ing is performed after the occlusions were enlarged
(fig. 6), the color interpolation gives the desired re-
sults (fig. 13).

Figure 12: Hole filling without removing artifacts

An example of scene prediction after texture ex-
traction from two images is shown in figure 14 (here
without hole filling). For the overlapping areas of
the two camera images texture fusion was applied.

Figure 15 shows a predicted view after 20 cam-
era images were processed. As an example of a
change in the scene the robot arm has been moved,
as commanded by the operator. Tests of a real tele-

Figure 13: Hole filling after removing artifacts

Figure 14: Scene prediction with textures from two
camera images

manipulation scenario were successfully conducted
as shown in figure 16 from the operator’s point of
view.

5 Conclusion and Future Work

This paper described the concept and an implemen-
tation of hardware accelerated texture extraction for
a photo-realistic predictive display. Fast process-
ing and rendering is possible even on low-cost 3D
graphics cards using OpenGL.

A method for facilitating texture update in par-
allel to rendering is already developed and imple-
mented. Closed-loop interaction with continuous
texture update will be shown once the implemen-
tation of the two model states is finished.

A vendor-independent solution for the weighted
interpolation using a fragment program is in
progress.

666



Figure 15: Densely textured scene prediction with
changed model (robot arm moved)

Figure 16: Grasping an object from the operator’s
point of view

6 Acknowledgement

This work was supported in part by the German Re-
search Foundation (DFG) within the Collaborative
Research Centre SFB 453 on “High-Fidelity Telep-
resence and Teleaction”.

References

[1] Antal K. Bejczy, Steven Venema, and Won S.
Kim. Role of computer graphics in space
telerobotics: Preview and predictive displays.
In Cooperative Intelligent Robotics in Space,
volume 1387 ofProceedings of the SPIE,
pages 365–377, November 1990.

[2] T. Burkert, J. Leupold, and G. Passig. Model
Acquisition from Stereo Vision for Photo-

Realistic Scene Prediction. Third IEEE In-
ternational Conference on Humanoid Robots,
October 2003.

[3] J. Carranza, C. Theobalt, M. A. Magnor, and
H. Seidel. Free-viewpoint video of human ac-
tors. InSIGGRAPH 03 Conf. Proc., 2003.

[4] Kostas Daniilidis and Christopher Geyer. Om-
nidirectional Vision: Theory and Algorithms.
In Proc. 15th Int. Conf. on Pattern Recogni-
tion, volume 1, pages 89–96, 2000.

[5] Stephen R. Ellis, Mark J. Young, and
Bernard D. Adelstein. Discrimination of
changes in latency during head movement.
In 8th International Conference on Human-
Computer Interaction (HCI’99), 1999.

[6] William R. Ferrell. Remote manipulation with
transmission delay. InIEEE Transactions in
Human Factors in Electronics, 6(1), 1965.

[7] G. Hirzinger, B. Brunner, J. Dietrich, and
J. Heindl. ROTEX – The First Remotely Con-
trolled Robot in Space. InProc. IEEE Int.
Conf. on Robotics and Automation (ICRA’94).

[8] Martin Jägersand. Image-based predictive
display for high d.o.f. uncalibrated tele-
manipulation using affine and intensity sub-
space models.Advanced Robotics, 14(8):683–
701, February 2001.

[9] Mark J. Kilgard. NVIDIA OpenGL Extension
Specifications. NVIDIA Corporation, 2003.

[10] Won S. Kim. Virtual Reality Calibration and
Preview/Predictive Displays for Telerobotics.
Presence, 5(2):173–189, 1996.

[11] J. C. Lane, C. R. Carignan, B. R. Sullivan,
D. L. Akin, T. Hunt, and R. Cohen. Effects
of time delay on telerobotic control of neu-
tral buoyancy vehicles. InProc. IEEE Int.
Conf. on Robotics and Automation (ICRA’02),
Washington, 2002.

[12] Matthew R. Stein.Behaviour-Based Control
for Time-Delayed Teleoperation. Dissertation,
University of Pennsylvania, 1994.

[13] G. Thomas, T. Blackmon, M. Sims, and
D. Rasmussen. Video engraving for virtual en-
vironments.Electronic Imaging, 1997.

666


