
A Meta–Modeling Concept for Embedded RT–Systems Design
�

Benito Liccardi Thomas Maier–Komor Muslim Elkotob
Johann A. Oswald Georg Färber

Institute for Real–Time Computer Systems
Prof. Dr.–Ing. Georg Färber

Technische Universität München, Germany�
Benito.Liccardi,Thomas.Maier–Komor,Muslim.Elkotob,Hans.Oswald,Georg.Faerber � @rcs.ei.tum.de

Abstract

The work in progress presented in the present paper is
focused on the HW/SW Codesign of embedded systems with
a special emphasis on the Bottom–Up design process. A
Meta–Model concept is introduced that gives the ability to
create strict, computable and unambiguous component de-
scription, based on the OMG Standard MOF and the W3C
recommendation XML Schema. The concept is currently be-
ing implemented and verified with a real world embedded
system for medical applications.

1. Introduction

The domain of medium volume systems is character-
ized by a complex heterogeneity of application specific con-
straints. Methodologies that are well understood in the rapid
prototyping or high volume system domain fail in this area,
because of their inflexibility and scarce adaptability.

The key issues for developing these medium volume sys-
tems with a definable time to market is based upon two main
aspects: abstraction in the design process of hardware and
software and reuse of already designed entities with the help
of architecture platforms [6, 13]. While the former is mostly
controlled by a top–down design process, the latter is also
driven by a bottom–up process.

The problem with the bottom–up part is mainly that it
can be characterized as a reverse engineering task. The de-
signer has to acquire knowledge from documents in order
to be able to know if the composition of the selected system
components will fulfill the requirements. This task is not
only error prone but also done from the very beginning in
case some major component substitution will happen. Fig-

�
The work presented in this paper is supported by the Deutsche

Forschungsgemeinschaft as part of a research program on “Embedded Sys-
tems” under Grant Fa 109/12-3.

ure 1 shows the dilemma of the reverse engineering gap dur-
ing the development process.

Chip AManual A Chip BManual B

Designer

Embedded System

creates

Engineering
Process

Components

Requirements

Reverse
Engineering

Process

Knowledge

Components

Engineering
Process

Systems

Knowledge+
Requirements

Reverse
Engineering

Process

?

Components

Requirements

Figure 1. Reverse Engineering Gap

The designer has to cope with informal, uncomputable
and different manual types, that sometimes do not include
all the information that is needed and sometimes even are
not up to date. Additionally complex ICs have fairly exten-
sive manuals, which often lead to conflicts (e.g. double as-
signment of an I/O Pin or an unavailability of HW functions
due to already used timers) and which in turn can cause ex-
pensive redesigns within very late phases of the design pro-
cess.

Thus we developed a Meta–Model called ATLAS (Ar-
chitecture Templates for Embedded Systems Design Meta
Model)1 for describing already existing hardware and soft-
ware components on a very abstract level. This abstraction
level allows us to provide strict, computable and unambigu-
ous component descriptions. The result is that the ability
of composition is realized by well defined semantics of the
components and architectures.

1the Architecture Template will not be described in this paper, but is
built upon the Meta–Model that is introduced in chapter 2

1

Furthermore architecture explorations concerning hard-
ware compositions and software mappings are sped up.

This paper is organized in the following: The next chap-
ter describes the ATLAS Meta–Model. Afterwards the
Meta–Model realization with MOF is explained. Finally,
an example for a DSP based medical embedded system is
given, whose architecture is going to be explored and opti-
mized with the ATLAS concept.

2. ATLAS Meta–Model

The ATLAS Meta–Model defines the uppermost meta
structure for structural and behavioural composition. It is
based upon two definitions, which are represented by two
classes in the Meta–Model. This allows a separated defini-
tion of offered behaviors, required support from other de-
vices and interactions between devices and parts.

2.1. Terminology

Definition 1 (Service) A Service is defined by a functional
behavior specified by a standard, a de-facto-standard, an
in-house standard or by a scientifically well founded tech-
nical domain.

Definition 2 (Entity) An Entity is defined as a structural
composition, e.g. an electronical part, an assembled piece
of hardware, a hardware– or software–IP.

Entities are associated with two sets of Services: require-
ments and provisions. The requirements represent the con-
straints on the environment, Services which are needed for
the Entity in order to work properly. Provisions however,
are Services that are implemented by the Entity instance it-
self and provide the necessary support of other devices. The
provisions are the offered functionalities and behaviors that
can be used by other Entities.

A necessary condition to find matching components is
that the core unit is described in a fashion that includes all
of its communication- and other peripheral-units that are
available. As a result, each of those units is described as
a service (see figure 2). Sometimes however, these units are
only usable mutual exclusive, because they either use a pin
or core-components in common. Further on it might be nec-
essary to attach additional parts to the core-component, in
order to make some unit work (e.g. Ethernet or serial con-
troller, which requires a transceiver).

These constraints can both be modeled very easily using
an association (see figure 2).

2.2. Retrieving

At the design level of a project there are usually some
points that are known beforehand and therefore fixed very

Service
{abstract}

Name : String

Entity
{abstract}

Name : String

0..*

0..*

requires

0..*

0..*

provides

0..*

0..*

dependent

provider
requires

0..*

0..*

dependent

provider
requires

Figure 2. UML-Metamodel of the En-
tity/Service Relationship

early in the design process. This could be the case if there
is already existing experience and knowledge with a special
processor core or by the need of reusing legacy code.

These initially determined Entities serve as starting com-
ponents for the architecture generation. The algorithm
which should be applied by the designer is described by two
strategies:

1. Selected components show their dependencies in form
of required Services. Following, a search can be
started to find Entities, that implement some or all of
these Services. These Entities in turn produce addi-
tional required Services.

2. It is also possible to specify the system, using only Ser-
vices instances in a first step and searching matching
Entities in a second step.

Both strategies can be used mutually in the iterative pro-
cess of searching suited components, which is supported by
the experience of the designer. An application specific op-
timization (e.g. for size - using only SMD-parts; for the op-
eration environment - using only parts suitable for military
or automotive applications) is provided to keep the solution
space manageable.

3. Realization with MOF

Before it is possible to find and retrieve the required
components, the Entities and Services objects have to be
generated according to our Meta–Model.

For this reason we applied MOF (Meta Object Facil-
ity) [12] which is a standard, released by the OMG[2]. In
the MOF Meta–Model we identified similar structures and
methods that we used to describe Entities and Services, as
well as the methods for retrieving the components.

The first tool–support on this topic that we are going to
use is dMOF[7], an OMG Meta Object Facility Implemen-
tation by DSTC[1]. It has been evaluated and it fulfills our
needs for the overall framework.

3.1. Meta Layers

The four layer meta-data architecture of MOF is con-
veyed in the following:

L3 At the uppermost layer we have the MOF Meta–Meta–
Model. A detailed description can be found in [12].

L2 The ATLAS Meta–Model (see figure 2) comprises our
upper-level Services, Entities and interfaces to the sys-
tem. It will be implemented mainly in MODL2.

L1 The model–layer contains the Extensible Markup Lan-
guage (XML) Schema [14, 15, 16] files that define
the document structure of Entities and Services. Ser-
vices that are defined in this layer are e.g. DSP,
DMA, AD, DA, PWM, IrDA, OPAMP, SW–UART,
etc.. These schemas have already been developed and
are currently extended to further Service definitions.
The main focus is to create document structures that
allow the creation of documents conforming to some
standard (e.g. EIA/TIA 232, CAN 2.0B /ISO11898).
For Services which can not directly be mapped to stan-
dards or de-facto standards, we generated a document
structure according to reasonable parameters that are
well understood in the world of embedded systems[8].

L0 This layer contains XML data files-corresponding to
entities which are the real component models. These
XML files conform to the XML Schemas that have
been composed and the files can be either stored in
a database or in a human readable form in the file-
system.

The decision for using XML and all its related applica-
tions in layer L0 through layer L1 is our own choice; the
idea behind this was to make use of the structural and nota-
tional complexity power of XML Schema. The purpose of
the overall integrated ATLAS Meta–Model in layer L2 is to
follow the Meta–Model standard of the OMG.

The current implementation of the dMOF Framework
generates on the one hand IDL Interfaces and the corre-
sponding CORBA server implementation for the metadata
components, and on the other hand XMI Document Type
Definitions (DTD) [11] for the specified MOF Meta–Model.
The problem is, that we shifted our Entity and Service de-
scription one year ago from the less precise DTD to the
more sophisticated and powerful XML Schema descrip-
tions. As a consequence we have a break in the technology

2MODL is the language provided by the dMOF Framework

integration but, concerning the request of proposal of the
OMG (see [3]) this issue is only a matter of the new version
of dMOF.

4 Application Example

For the verification of our Meta–Model we are currently
examining a medical embedded system for objective esti-
mation of human hearing loss, which has been developed at
our institute in cooperation with an industrial partner. The
methods implemented in this system are the distortion prod-
uct otoacoustic emissions (DPOAE) and brainstem evoked
response audiometry (BERA). A detailed description of the
physiological background of the two methods can be found
in [5]. The technical system can be described as the follow-
ing:

Analog Channels3: DPOAEs can be evoked by two inde-
pendent sinusoidal sound sources per ear in both ears
simultaneously. A third sound source per ear should be
used for detailed analysis of DPOAE in normal hearing
subjects. Frequencies between 500 Hz and 8 kHz and
a wide level range between 20 dB and 65 dB SPL must
be applied to process the evoked DPOAE reasonably.
BERA data is recorded by three electrodes attached
to the patient’s head while stimulating the ears with
clicks and white noise respectively. Signal to noise ra-
tio (SNR) is crucial to the processing of all sampled
data.

Digital Channels: Filtered and processed data is trans-
ferred to a host computer by infrared communication,
where the final analyses are done.

The algorithm that has been described in section 2.2 can for
example be applied to one channel in the following way:

1. Entities, e.g. CPU or DSP cores, are instantiated be-
forehand, because each developer has a preferred ar-
chitecture core which he wants to use. The available
tool chain is also a “must” not only a “nice to have”.

2. The analog signals have to be amplified, sampled and
transferred to the execution unit, thus some kind of
OPAmp Service, DA Service and a BUS Service has
to be instantiated (see figure 3).

3. If some entity is found that is able to provide most of
the required services, this entity can be chosen with the
given constraints (area, temperature range, costs per
unit, etc.) by the designer. The chosen entity will then
show:

3A channel is defined as a data– or control link between the embedding
system and a computational unit of the embedded system; in this case e.g.
a microphone and the DSP or the DSP and the Infrared LED

� which kind of services it provides altogether (e.g.
AC’97–link[9]) and

� which kind of services it requires (power supply
service, clock service, capacitance service, etc.)

After the last two steps have been carried out repeatedly,
this process–model leads to a structure of Entities and Ser-
vices which implement the required behavior and function-
ality with the given non–functional constraints.

DSP
ADSP2185

80kB

CODEC
AD1819B

CODEC
AD1819B

CODEC
AD1819B

LM4880 LM4880 LM4880

OPA2340 OPA2340 INA 128U

speaker speaker speaker

mic mic electrode1 electrode2 electrode3

HSDL7001

HSDL 3610

Flash−EPROM
4MB

I/O Interface
xx574
xx245

BUS
Service

OPAmp
Service

DA
Service

Figure 3. DSP system for DPOAE and BERA
measurements

The system in its first version has not yet been explored
automatically. Currently we are generating component de-
scriptions for each Service and Entity which is used in the
system.

In the existing system that we analyzed, we identified
30 different Services. These services provide the needed
knowledge that has been used for the construction of the
first prototype. The chosen components however, offer fur-
ther Services which are not used in this version and are sub-
ject for optimizations.

The following optimization scenarios will be applied to
the first prototype in the future work:

1. One can think of other DSP–Vendors or CODECS
which fulfill the same Services as the existing system.
Concerning the overall number of hardware compo-
nents on the board (without capacitors, resistors etc.)
we will have approximately �����
	������� feasible com-
binations without even modifying the existing struc-
ture. An iterative approach of the algorithm described
in section 2.2 will reduce the amount of combinations
and therefore reduce the solution space.

2. modification of Entities and/or structure in order to
lower the power consumption and reduce the area due
to the fact, that the system should be used in a mobile
headset.

3. moving the current software UART to a hardware solu-
tion due to the fact that the interrupt Service of the DSP
is used very frequently by the communication to the

CODECS and to the UART. The overall DSP utiliza-
tion for the SW UART Service ISR comes to approxi-
mately 4 %, but the worst case response time is ���������
and therefore causes a bottleneck in the run–time sys-
tem of the DSP software.

5 Conclusion and Future Work

The aim of the Meta–Model concept is to close the re-
verse engineering gap and to find bottlenecks in the design
process very early, due to a strict, computable and unam-
biguous description of real components. It will also be pos-
sible to explore some architecture composition either in a
generative or in a very concrete way, without having to cope
with time penalties in the design process.
The concept will also have to be applicable to emerging
CASE standards for embedded systems design as e.g. [10].

References

[1] Distributed Systems Technology Centre (DSTC).
http://www.dstc.com.

[2] Object Management Group. http://www.omg.org.
[3] XMI Production Of XML Schema RFP.

http://www.omg.org/techprocess/meetings/schedule/
XMI Prod. of XML Schema RFP.html.

[4] Analog Devices. Designers’ Reference Manual, 2001.
[5] Association for Research in Otolaryngology (ARO). Hear-

ing Threshold Estimation in Cochlear Hearing Loss Ears
by Means of Weighted Extrapolated DPOAE I/O-Functions,
2002. Posterpresentation 774 of the twenty-fifth annual mid-
winter research meeting.

[6] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly,
and L. Todd. Surviving the SOC Revolution, A Guide
to Platform–Based Design. Kluwer Academic Publishers,
1999.

[7] DSTC Pty Ltd, http://www.dstc.com/Downloads/CORBA/
MOF/dMOF1 1.UserGuide.pdf. dMOF 1.1 User Guide.

[8] P. Horowitz and W. Hill. The Art of Electronics. Cambridge
University Press, 2nd edition, 1999.

[9] AC’97 Component Specification v2.3. http://developer.intel.
com/ial/scalableplatforms/audio/.

[10] Object Management Group (OMG). UML ��� Profile
for Schedulability, Performance, and Time Specification.
http://www.omg.org.

[11] Object Management Group (OMG). XML Metadata Inter-
change (XMI) Specification, 1.1 edition, nov 2000.

[12] Object Management Group (OMG). Meta Object Facility
(MOF) Specification, version 1.3.1 edition, November 2001.

[13] R. Seepold and A. Kunzmann, editors. Reuse Techniques for
VLSI Design. Kluwer Academic Publishers, 1999.

[14] W3C. XML-Schema Part 0: Primer, recommendation edi-
tion, May 2001.

[15] W3C. XML-Schema Part 1: Structures, recommendation
edition, May 2001.

[16] W3C. XML-Schema Part 2: Datatypes, recommendation
edition, May 2001.

