
Towards a Component-based System Architecture
for Autonomous Mobile Robots�

Stefan A. Blum
Institute for Real-Time Computer Systems

Technische Universität München
Munich, Germany

Stefan.Blum@rcs.ei.tum.de

ABSTRACT
This paper presents the component-based system architec-
ture OSCAR (Operating System for the Control of Au-
tonomous Robots), a general purpose control system for the
exploration of indoor environments with an autonomous
mobile robot. The requirements and basic concepts of
the proposed architecture are discussed and compared with
other existing systems. OSCAR relies on efficient com-
munication structures employing the CORBA middle-ware
standard. Basic insights about the applied component con-
cept are given. A behavior-based coordination mecha-
nism is adopted for sequential control. In an example sce-
nario, the mobile robot MARVIN is employed to explore a
doorway using geometric object descriptions for retrieving
topological and symbolic information of the environment.

KEY WORDS
Intelligent system architecture, behavior-based robotics,
mobile robot, component-ware

1. Introduction

Information processing in autonomous mobile robots com-
prehends perception of the environment with partial con-
sideration of a-priori knowledge to generate reasonable ac-
tions within a given task. It is easy to argue that informa-
tion processing is hardly done in a single monolithic block.
Sensor data may be obtained from several sensor devices in
parallel and may be processed in several ways (e.g. feature
extraction from camera images). A mobile robot may have
several computers on-board that permit distribution of pro-
cesses. Furthermore, modularity supports the development
of algorithms in developer teams and facilitates testing. It is
needless to say that these criterions leads to software archi-
tectures. Arkin [1] further specifies timelineness in devel-
opment (e.g. provided using specialized tools), niche tar-
getability, robustness regarding exceptions of components,
run-time flexibility and reconfigurability as well as perfor-
mance effectiveness.�The work presented in this paper was supported by theDeutsche
Forschungsgemeinschaftas part of the projectExploration von In-
nenräumen mit optischen Sensoren auf mehreren, aufgabengerechten Ab-
straktionsebenen(Fa109/14).

Software Engineering aspects, particularly the encap-
sulation and reusability aspect lead to component-based
systems [2]. This paper describes the system architecture
OSCAR [3, 4] that is developed for the autonomous mobile
robot MARVIN at the Institute for Real-Time Computer
Systems (RCS). OSCAR was designed from a defined sys-
tem structure for the exploration of indoor environments.
OSCAR is currently further developed with the goal to sup-
port a wide range of different component types.

The remainder of the paper is structured as follows:
Section 2 gives an overview about related work, Section 3
describes the overall system structure OSCAR is embedded
in. In Section 4 we present the component-base architec-
ture in detail. In Section 5 the behavior-based approach to
coordinate the robot’s behavior is described. An applica-
tion example is provided in Section 6. The paper concludes
with our perspectives about future work in Section 7.

2. Related Work

By inspecting intelligent (mobile) robot systems one will
find in most cases a software architecture which defines a
more or less restrictive framework for mapping of function-
ality. Unfortunately is the term “architecture” often used
in several different ways: it may describe the chosen ap-
proach to control the robot (deliberative, behavior-based
or hybrid) [1] or relate to how algorithms have to be in-
tegrated and focuses more on communication issues (see
e.g. [5, 6]).

Since the variety of architectures is wide, we have
chosen to mention only a small subset: In [7] RCS (Real-
time Control System) is proposed as a reference architec-
ture for intelligent systems. RCS consists of hierarchi-
cally layered processing nodes with a strong distribution
of deliberative and reactive functionality. A similar archi-
tecture called TCA (Task Control Architecture) [8] intro-
duces a system that is able to handle information process-
ing in tasks. TCA provides a high-level method for passing
messages between distributed systems and capabilities to
schedule tasks and manage their resources. Saphira [9],
with its C-like programming language COLBERT [10],
provides a flexible “interface” for task composition on a
middle level of abstraction.



Behavior-based control mechanisms, first introduced
in [11], find their representative in several software archi-
tectures: In [12] a schema-based behavior coordination ap-
proach is proposed. BERRA [13] is a behavior-based ar-
chitecture for service robots integrating a human-computer
interface in its deliberative planner. In [14] an architecture
is described in which behavior modules are controlled by
an arbiter deploying a real-time operating system. A sim-
ilar approach provides the DD-Designer environment for
behavior engineering for RoboCup mobile platforms [15].
The related Dual Dynamics architecture includes a frame-
work for a specification-centered design approach.

Mobility [16] is a commercial available system that
is shipped with RWI robot platforms and supports unfor-
tunately only a certain class of robots. Beyond it, compo-
nent software [2] is not yet available for robotic systems
since there is no standardization for domain-specific inter-
faces. Another problem is that the term “component” is not
restrictly defined [17]. We adopt the definition provided
in [2].

3. System Structure

Overview For the exploration of indoor environments,
a general purpose system structure was defined for the
autonomous robot MARVIN (Figure 1). MARVIN is
equipped with four PCs running under the Linux operat-
ing system. As actuators, the robot utilizes the platform
Labmate (TRC) and an AMTEC camera head. We employ
two b/w CCD cameras and a 360 degree laser range scanner
from Accurange as sensors. Additionally, a hardware board
to calculate optic flow vectors in real-time is available.

The system structure (Figure 1) defines different pro-
cessing units as the basic elements. We distinguishphys-
ical sensors, logical sensors, interpretation modules, inte-
gration modulesandactuator modules. As a global data
base, we employGEM (Generalized Environmental Model,
see below) [18]. Data stored in GEM can be accessed by
GEM access modulesthat serve as local data caches. Con-
sequently, the different processing units are organized hier-
archically in several layers. Within the sensor and interpre-
tation layer, a hierarchy of processing units is also possible.

Information processing in the system structure can be
described as follows: Sensor raw data is handled by physi-
cal sensors. Logical sensors extract and abstract featuresin
a way that interpretation modules can interpret it employ-
ing GEM access modules for obtaining model data. As a
result, e.g. different object and localization hypothesesare
generated that may be fused in integration modules, that
themself supply GEM with new achieved environmental in-
formation. Sequential control and activation, deactivation
and configuration is performed by the coordination layer.
A coordination modulecontrols the available actuators that
are encapsulated byactuator modules.

A key design decision is to unify all involved process-
ing units as much as possible, i.e. to share common inter-
faces for data flow and configuration. This is also associ-

ated with standardized data formats (see Section 4.). Al-
though this may cause some overhead, the unification strat-
egy is the only possibility to benefit from component-based
systems.

This concept makes the system employable for differ-
ent devices and robots by exchanging physical sensor and
actuator modules. In general, the design turns the system
structure into a highly scalable architecture that supports
exchanging modules with same functions, but different im-
plementations, processing speed, accuracy, etc.

Generalized Environmental Model GEM serves as
object-oriented environmental model in the OSCAR sys-
tem architecture. GEM offers the possibility to store envi-
ronmental features in several levels of abstraction: single
features such as a wall-floor line or a single surface may
be stored as well as complex objects in boundary repre-
sentation(B-Rep.). GEM supports data access with access
modules (see below) for any applied sensor. Hereby, the
referring sensor model also is retained. Prediction e.g. of
visible features by executing az-buffering algorithm is as
well supported as indexing in a context of generation of
hypotheses.

Data access is possible on world, object and feature
level, whereby the abstraction levelworld itself is stored as
a topological graph containingislands of geometric models
referred to asgeometric islandsin the following. Nodes of
the graph point to mission relevant world positions within
geometric islands, edges are attributed with a sequence of
instructions for passing them. Depending on the target be-
ing in the same geometric island, driving instructions range
from cartesian way points to qualitative behaviors. A geo-
metric island consequently contains at least one node, but
normally several nodes. New geometric islands are gen-
erated, if a driving path’ geometric confidence is below a
certain threshold and must therefore be described topolog-
ically.

Objects and features may be stored in a hierarchical
order, i.e. objects generally can encompass member objects
and features may be aggregated to more complex ones re-
spectively. The applied storing form also takes modeling
of possible degrees of freedom into account. GEM may
be pre-loaded with already achieved environmental infor-
mation before a mission is performed. A generic mission
expert supplies GEM with mission relevant object models.
GEM consequently is in charge of providing the persistence
of environmental information for future (service) tasks of
the mobile robot.

4. Communication Issues and Component-
based Framework

4.1 Communication

The communication issue is one of the most crucial top-
ics related to distributed system architectures. While some



topological
graph

islands of

geometric

models

objects

sensor layer

integration modules

layer
interpretation

interpretation results

generalized
environmental model

explored

environment

actuator
module 1

actuator
module A

module 2
access

access
module 1

access
module G

interpretation
module 1

interpretation
module 2

interpretation
module M

logical
sensor L sensor 1

physical

logical
sensor 2

logical
sensor 1

physical
sensor P

coordination module

coordination/integration layer

Figure 1. System structure

architectures come with their own communication layer
(see e.g. [19]), OSCAR fully relies on the middle-ware
standard CORBA 2.3 [20] specified by the OMG (Object
Management Group) consortium. The benefits of CORBA
are – besides the incorporation of the object-oriented de-
sign paradigm to the client-server approach – its interoper-
ability, scalability and independence of programming lan-
guage and hardware platform. This simplifies the portation
to e.g. a real-time operating system in the future. As im-
plementation, we employ Orbacus from IONA Technolo-
gies [21] that incorporates a full support for threaded appli-
cations. Performance measurements related to data trans-
port can be found in [4].

4.2 Data Flow

In the following, two different data categories are applied:
Cuesare data that are mainly processed by components (see
below), i.e. in the hierarchical architecture (Figure 1), cues
are streaming from the physical sensors to the integration
modules. Consequently, cues emcompass sensor raw data,
extracted features, hypotheses, etc. Cues are container-like
typed data and contain always a sequence of timestamps
to monitor e.g. the point in time of their generation or fu-
sion with other cues. Moreover, the cue type is defined
in CORBA IDL and therefore is easy to standardize. Cue
flow is realized between two components using the pull
(data flow by request) or the push (automatic data flow)
paradigm. In contrary,configuration datais used to (re-
)configure components. A configuration data is a pair of
a token and a numeric or string value. Thus, configura-
tion data is specific for particular components. Data flow

from/to GEM, data flow inside the coordination layer as
well as control flow to the actuator modules is standardized
using specialized interfaces.

4.3 OSCAR Components

Within the OSCAR context, a component is defined as the
smallest data processing unit. All unit types defined in Sec-
tion 3. are therefore mapped in components. For the devel-
oper’s perspective, a component defines a lean application
programming interface (API) that is realized with an ab-
stract C++ class. To implement a component, several vir-
tual methods have to be overridden: the main information
processing (Stepmethod) and actions to be performed for
reconfiguration, activation and deactivation, etc. Further-
more, a component can allocate input and output channels.
A specific channel is needed for each different cue type.
Besides pull and push, it is possible to access cues with
a timestamp as index and chronologically ordered arrays
of cues. Non-blocking triggering of cue processing from
lower-level components is also supported.

The OSCAR framework specifies different compo-
nent types for processing units in the system’s hierarchy,
whereby only the amount of interfaces provided is con-
cerned: physical sensor do not provide input channel fa-
cilities as well as integration modules and behavior com-
ponents do not provide output channel facilities; behavior
components, integration and interpretation modules may
employ an interface to GEM access modules.



Component Embedding The granularity of a compo-
nent, i.e. the “amount” of data processing algorithms has to
be determined considering the trade-off between reusabil-
ity and the possibility to be distributed on the one hand
side and the time and memory consuming overhead caused
by data copying, communication, thread or process context
switch on the other side. The design of the OSCAR frame-
work tries to introduce a possibility to keep this overhead
small in a way that fine-grained components are possible.

A single component may run in two different modes:
continuous modemeans that the component is actively in-
voking its cue processing methodStepperiodically, while
single-step modeleads to a reactive behavior where cue
processing is only performed if the component is triggered
from “outside”. Thus the single-step mode induces a syn-
chronous coupling of components, where the continuous
mode may lead to an asynchronous delivery of cues. The
implementation of both modes and the form of cue flow
(pull/push) as well as the storage of a limited amount of
cues to keep track of the history make a buffering of cues
in communication channels necessary. Furthermore, those
buffers have the meaning of a local cache, e.g. if a com-
ponent performs fusion of cues over time. Since cue data
flow in a channel may underlay a 1-n or n-1 connection
relationship (for pull and push resp.), in some cases a dou-
ble buffering of cues prevents the loss of data especially if
cues are processed with strong different time rates. This
necessity leads to a more or less tight coupling between
components.

Module Framework Tighter coupled components can
be composed to component agglomerations with respect of
certain constraints. Emerging component agglomerations
are referred from now on asmodules1. Within a module
the following rules have to be considered:� Since a module is embedded in a single process, all

components must be runnable device-constrained on
the same host.� Processing within a module always is synchronous,
i.e. only up to one component is running in contin-
uous mode, all other are deactivated or are running in
single-step mode.� Either the application of pull or push cue transport
mechanism is allowed.

A component is always embedded in a module. Within the
OSCAR framework components may be instantiated sev-
eral times in different modules e.g. for parallel processing.
The module infrastructure also takes care of cue buffering.
Therefore, private and public accessible ring buffers are
implemented. For specific internal cue channels, the ring
buffer may be left out to avoid cue copying. For the distri-
bution of components to modules, it also has to be consid-

1The term module is used in another sense as for interpretation, inte-
gration or actuator module in Section 3..

ered that avoiding communication overhead in larger mod-
ules induces to longer responding times of data requested
to be processed. In contrary, older cues can be requested ad
hoc, since the module consists of two threads.

Realization of modules and components As stated be-
fore, an OSCAR module runs in one process. Since the
composition of components in modules is not defined at
compile time, modules employ a dynamic plugin concept
relying on the dynamic linking librarylibdl. Therefore
components as well as cue type stubs and skeletons are only
available as shared objects.

4.4 Meta-Infrastructure

OSCAR that can been seen as an abstract operating system
provides an assemblage of meta-infrastructure. A boot rou-
tine starts and configures all modules, related components
are registered in a centralized registry. Monitors installed
on each PC hosting a OSCAR module keep the related pro-
cesses under surveillance. Components may be exchanged
at run-time, if e.g. a component run into an error state.

From the developers point of view, several facilities
are provided for analyzing, component testing and debug-
ging purposes including generic cue loggers and a simula-
tion environment.

5. Behavior-based Coordination

One goal that the OSCAR architecture tries to consider is
the possibility to design the overall behavior of a mobile
robot for a given task by defining elementary behaviors.
An elementary behavior depends on a set of given physi-
cal and logical sensors, interpretation and integration mod-
ules and actuator configurations. The connection struc-
ture of sensor, interpretation and integration components
together with cue and configuration flow emerges from the
employed behavior components for a scenario. This ap-
proach is therefore behavior specification-centered, in con-
trary to most architectures that define their system struc-
ture by parsing a configuration file that contains a list of
processing units (see e.g. [13]).

For behavior coordination, we apply the dynamic ap-
proach defined by Steinhage and Bergener [22]. Hereby,
pairwise relationships (inhibition and requirement) be-
tween each two elementary behaviors can be defined. Both
relationships are coded in twon � n matrices, wheren
is the number of elementary behaviors. The activation of
each elementary behavior is controlled by a set of differen-
tial equations evaluating both matrices and considering the
individual context for a each behavior.

In our architecture, each behavior is encapsulated in
a behavior component. Every behavior component is con-
trolled by the arbitration module that implements the inte-
gration of the differential equations. Additionally, a finite
automaton is in charge of sequential control.



6. Application Example

x

y

z
yx

Figure 2. Scenario: Doorway and structure of the model to
be explored

As an use-case of OSCAR, we have realized the scenario
exploration of a doorway(Figure 2). Hereby the goal is to
detect the doors of the doorway and register them with their
room number in GEM. Thereby a node in the topological
graph is to be created at every door. Apart from a geometric
description of the object class door, which is registered a-
priori in the model, the robot has no information about its
environment. (After the exploration, the robot should be
able to accept a room number as input and drive directly to
it.)

The typical sequence of action to register an instance
of the object “door” in the model is executed as fol-
lows: First, the mobile platform is searching a wall con-
sidering line segments extracted from range data from the
panoramic laser scanner[23]. When a wall was detected,
the platform is following the wall creating a temporary lo-
cal map where static and moving obstacles sensed with the
laser and an optic flow sensor[24] are stored. The map is
also applied to determine possible movements of the plat-
form. Moreover, the laser line segments are used to predict
possible vertical video line segments [25] to detect doors.
When a door is detected, the inaccurate relative coordinates
of the door are used to determine a position for the mobile
robot to localize the door correctly. This position is targeted
and the coordinates of the door are determined correctly.
Then the robot is moving in front of the door and reads the
door plate using optical character recognition. The coordi-
nates of the door and the room number are stored together
with the position of the robot determined by the odometry
in GEM.

For the realization we have defined the follow-
ing behaviors: search wall, follow wall,
detect doors, localize door, tar-
get goal point, read door plate and up-
date model.

As described above, each applied elementary behav-
ior depends on a certain set of components. Components
may depend recursively on other components. Figure 3
shows the used components with the related cue flow for
our design (Configuration flow is not considered.). Com-
ponents inside dashed line limited region are composed
within a module. Of course, the unification of cue process-
ing components makes the agglomeration of components

DoorDetect

CameraHead

Platform

EdgeDetect

search_wall

follow_wall

detect_door

target_goal_point

localize_door

read_door_plate

update_model

FG (half)Odometry FG (full) FG (quarter) LaserPoints OpticFlow

LaserOfsFuse

DoorLocDoorInt

LaserLines

Physical Sensor Layer

Integration Layer

Coordination Layer

Interpretation Layer

Actuator Layer

s_w f_w d_d tgp l_d rdp u_m

Arbitration Module

State Change

A
ctivation

C
ontext

Finite Automaton

RoomNrOcr

Logical Sensor Layer

Figure 3. Applied component configuration

not residing in the same layer feasible.
The tic box array shows the dependencies of the be-

haviors: E.g. the behaviordetect door depends on
the DoorDetect component in the interpretation layer.
TheDoorDetect component depends itself on the logi-
cal sensor componentsEdgeDetect andLaserLines
etc. Furthermore, inhibition and requirement relationships
are stored in the arbitration module. The activation of
the behaviordetect door requires the behaviorfol-
low wall (marked as circle in the matrix of the arbitration
module) and inhibits the behaviortarget goal point
(marked as cross).

The sequential control is fulfilled using a finite au-
tomaton. Hereby, exception handling (e.g. if a door could
not been localized) is also considered. State changes are
induced from components in the integration, interpreta-
tion and sensor layer and forwarded as contexts to the ar-
bitration module. Note that the application the arbitra-
tion module reduces the number of required states. E.g.
it is not necessary to insert a state forupdate model
since this behavior only can be activated when the behav-
ior read door plate was active. Another advantage is
hereby that updating the model is done while the robot is
about to follow the wall again, i.e. parallel execution of
behaviors is possible which cannot easily be implemented
using only a state automaton.

7. Conclusion and Future Work

We have presented the system architecture OSCAR for au-
tonomous mobile systems. The outlay of the architecture



proposes a definition for domain-specific interfaces for data
processing and behavior units. The related framework pro-
vides efficient embedding structures for components and
takes care for all communication issues. Although the ar-
chitecture is still under development and only a few com-
ponents are available, we are confident that more compo-
nents will emerge by realizing more use-cases also for other
robotic platforms. Beyond it, we hope that a larger amount
of components will emerge when OSCAR will be utilized
by several institutes [26].

Besides, future work will include an automated map-
ping of components regarding load balancing issues. Fur-
thermore, a formalism is to be specified to define explo-
ration and service tasks even beyond behavior composition
level. Therefore, an elimination of the still hard-wired fi-
nite automaton is considered.

References

[1] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[2] Clemens Szyperski.Component Software, Beyond Object-
Oriented Programming. Addison-Wesley Publishing Com-
pany, 1997.

[3] Stefan Blum, Tobias Einsele, Alexa Hauck, Norbert O.
Stöffler, Georg Färber, Thorsten Schmitt, Christoph Zierl,
and Bernd Radig. Eine konfigurierbare Systemarchitek-
tur zur geometrisch-topologischen Exploration von In-
nenräumen. InAutonome Mobile Systeme, Informatik ak-
tuell, pages 378–387. Springer-Verlag, November 1999.

[4] Stefan Blum. OSCAR - Eine Systemarchitektur für den au-
tonomen, mobilen Roboter MARVIN. InAutonome Mo-
bile Systeme, Informatik aktuell, pages 218–230. Springer-
Verlag, November 2000.

[5] M. Klupsch. Object-Oriented Representation of Time-
Varying Data Sequences in Multiagent Systems. In N.C.
Callaos, editor,International Conference on Information
Systems Analysis and Synthesis (ISAS’98), pages 833–839,
Orlando, FL, USA, 1998. International Institute of Informat-
ics and Systemics (IIIS).

[6] C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and
R. Wörtz. Integrating Vision Based Behaviours with an
Autonomous Robot. InInternational Conference on Vision
Systems (ICVS), volume 1542 ofLecture Notes in Computer
Science. Springer-Verlag, 1999.

[7] J. S. Albus and A. M. Meystel. A Reference Model Archi-
tecture for Design and Implementation of Intelligent Control
in Large and Complex systems.Int. J. of Intelligent Control
and Sytems, 1(1):15–30, 1996.

[8] Reid Simmons. An architecture for coordinating planning,
sensing, and action. InProc. of the DAPRA workshop, pages
292–297, 1990.

[9] K. Konolige and K. Myers. The saphira architecture for au-
tonomous mobile robots. Artifical Intelligence Center, SRI
International, Menlo Park, California, 1996.

[10] Kurt Konolige. COLBERT: A Language for Reactive Con-
trol in Saphira. InGerman Conference on Artificial Intell-
gence, Freiburg, 1997.

[11] R. A. Brooks. A Robust Layered Control System For a Mo-
bile Robot. IEEE Journal of Robotics and Automatisation,
RA-2, No. 1:14–23, 1986.

[12] R. C. Arkin. Motor schema-based mobile robot navigation.
International Journal of Robotics Research, 8(4), 1989.

[13] M. Lindström, A. Orebäck, and H.I. Christensen. Berra - a
behaviour based robot architecture. InProc. IEEE Int. Conf.
on Robotics and Automation (ICRA’00), San Francisco, CA,
USA, 2000.

[14] Thomas Bergener and Axel Steinhage. An Architecture
for Behavioral Organization using Dynamical Systems. In
C. Wilke, S. Altmeyer, and T. Martinetz, editors,Third
German Workshop on Artificial Life. Verlag Harri Deutsch,
1998.

[15] Ansgar Bredenfeld and Giovanni Indiveri. Robot behav-
ior engineering using DD-designer. InProc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’01), Seoul,
Korea, May 2001.

[16] Real World Interfaces, Inc. Mobility.
http://www.rwii.com/rwi/softwaremobility.html, 1998.

[17] Manfred Broy, Anton Deimel, Juergen Henn, Kai
Koskimies, Frantisek Plasil, Gustav Pomberger, Wolfgang
Pree, Michael Stal, and Clemens Szyperski. What charac-
terizes a (software) component?Software Concept & Tools,
19:49–56, 1998.

[18] A. Hauck and N. O. Stöffler. A Hierarchic World Model
Supporting Video-based Localization, Exploration and Ob-
ject Identification. InProc. 2nd Asian Conf. on Computer
Vision (ACCV’95), volume 3, pages 176–180, 1995.

[19] C. Fedor. TCX - An Interprocess Communication System
for Building Robotic Architectures. Carnegie Mellon Uni-
versity, Pittsburg, Pennsylvania, 1993.

[20] OMG. CORBA/IIOP 2.3 specification.
http://www.omg.org/corba, 1998.

[21] Object Oriented Concepts. Orbacus.
http://www.ooc.com/ob/.

[22] A. Steinhage and T. Bergener. Dynamical Systems for
the Behavioral Organization of an Anthropomorphic Mo-
bile Robot. InFrom animals to animats 5: Proceedings of
the Fifth International Conference on Simulation of Adap-
tive Behavior, pages 147–152. MIT Press, 1998.

[23] T. Einsele. Real-Time Self-Localization in Unknown Indoor
Environments using a Panorama Laser Range Finder. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS’97), pages 697–703, Grenoble, France, Septem-
ber 1997.

[24] Norbert O. Stöffler and Georg Färber. An Image Process-
ing Board with an MPEG Processor and Additional Confi-
dence Calculation for Fast and Robust Optic Flow Genera-
tion in Real Environments. InProc. Int. Conf. on Advanced
Robotics (ICAR’97), pages 845–850, Monterey, CA, USA,
July 1997.

[25] G. Magin and C. Robl. A Single Processor Real-Time
Edge-Line Extraction System for Feature Tracking. InIAPR
Workshop on Machine Vision Applications (IAPR MVA’96),
1996.

[26] Stefan Blum. OSCAR-Homepage. http://www.oscar-
net.org.


