
Abstract

SDL is currently gaining interest as a system level specifica-
tion language for HW/SW codesign. Automated synthesis of SDL in
hardware so far had problems with its efficiency. The investigations
on the resource usage of SDL-to-VHDL designs presented in this
paper identify two key challenges: minimizing the overhead intro-
duced by SDL process infrastructure, and choosing the appropriate
synthesis method. This paper presents a framework for SDL hard-
ware synthesis where VHDL code generation, high-level synthesis
and RT-level synthesis are combined. A configurable run-time envi-
ronment implements services like data handling and message pass-
ing in efficient, hand-coded library components, which take into
account properties of the target architecture. For these components
RT-level synthesis was found to be suitable. The behavior of each
SDL process on the other hand is freely specified by the system
designer. Depending on the type of application, i.e. complex data-
oriented or control-oriented, either high-level synthesis, RT-level
synthesis, or a combination of both can prove to be optimal.

1 Introduction
SDL has recently received increasing attention as a sys-

tem level description language for embedded systems
design. A system modeled in SDL can be analyzed, verified
and simulated at system level. Non-functional requirements
for the next synthesis steps – HW/SW partitioning, code
generation and synthesis – can be specified using language
extensions like the SDL* annotations presented in [10]. In
this context, the generation of the software implementation
(i.e. in C using RTOS-primitives) is already supported by
commercial tools, and is becoming more and more widely
used, while interface generation is still object of further
research [6]. The focus of this paper is on the automated
hardware implementation of SDL system specifications,
which is an essential part of an integrated HW/SW codesign
environment.An efficient system for the automated genera-
tion of hardware from SDL descriptions needs to address the
following concerns:

Minimal restrictions on the SDL specification: While
not all SDL constructs make sense to be implemented in
hardware, it is important that as few constraints as possible
are imposed on the system level description by the imple-
mentation.

Flexible adaptation to a target architecture:The hard-
ware generation has to take into account and make use of the

properties of the target architecture, i.e. RAMs and commu-
nication interfaces. In an efficient design process it must be
possible to separate this from the application itself.

Minimal use of hardware resources:A straightforward
implementation of SDL-processes in hardware, especially
the process infrastructure like message queues, leads to pro-
hibitively large designs (see Section 4). The resource usage
can be minimized using optimized, reusable components
and taking into account the properties of the application and
the target architecture.

1.1 Related Work

SDL is used for hardware design in different application
areas and with different purposes. The distinguishing mark
of the various approaches is the implementation model used.
All of them support only a subset of SDL.

A framework for the automated design of communica-
tion subsystems is presented in [9]. The target architecture
for SDL-processes implemented in hardware is a specialized
protocol automaton, where an ALU, ALU-interface and I/O-
interface are predefined components. Only the execution
and control unit are compiled from the SDL-model. This
work is very specialized and efficient for communication
protocols, but not easily transferable to other applications.

In contrast to this, there are several approaches imple-
menting a more general server model. Here, each SDL pro-
cess is realized in one VHDL entity and its behavior is
translated directly to VHDL. The abstract communication
between the processes has to be mapped to existing inter-
faces and protocols. The SDL-to-VHDL translator presented
in [7] uses a textual implementation description to select
functions from a library of channel and protocol descrip-
tions. In [3], SDL-to-VHDL is embedded in the codesign
environment COSMOS. An SDL description is translated to
an intermediate format. During an interactive refinement
process, the abstract channels of this model are replaced by
protocols, communication units and interfaces from a
library. A large subset of SDL is supported.

In all three approaches, flexible adaptation to the target
architecture is only considered for inter-process communi-
cation. To our knowledge, results concerning synthesis and
resource usage have not been published yet.

1.2 SDL Hardware Synthesis Framework

The SDL hardware synthesis framework presented in
this paper addresses two steps in the design process: The
automatic generation of a VHDL description from the SDL

* This cooperative work is supported by the DFG research program “Rapid
Prototyping of Embedded Systems with Hard Time Constraints” under
grant Ro 1030/4, Fa 109/11-2 and He 1408/4-2.

Mixed Abstraction Level Hardware Synthesis from SDL for Rapid Prototyping*

Frank Slomka
Richard Hofmann

Department of Computer Architecture and
Performance Evaluation

Universität Erlangen-Nürnberg

Oliver Bringmann
Wolfgang Rosenstiel

Department of Computer Engineering
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Annette Muth
Georg Färber

Laboratory for Process Control and
Real-Time Systems

Technische Universität München

model, and the following RT-level or high-level synthesis of
a netlist from the VHDL model. The key concept of our
framework is theconfigurable run-time environment for
the hardware implementation of the SDL system. The term
run-time systemis borrowed from software-based systems,
for like a software run-time system it serves to isolate the
application from the underlying target architecture, like i.e.
the available communication hardware, availability of
RAMs, etc. In the context of an SDL model, it is the behav-
ior of each process that can be separated from the infrastruc-
ture of each process and from the inter-process
communication. For these infrastructure functionalities,
which often cause large overhead and high resource usage,
specialized hand-coded library functions, which are opti-
mized for the target architecture, are used. Another class of
functions of the run-time system are data handling func-
tions, which offer i.e. a design alternative between using
registers or RAM.

In the next step, the synthesis of a netlist from the
VHDL-description, differentsynthesis methodscan be
applied, of course with an impact on the generated VHDL
code, and with different advantages. High-level synthesis
can synthesize timing-free, algorithmic VHDL descriptions.
During high-level synthesis, the sequential timing behavior
is determined and resource sharing is performed automati-
cally, which leads to efficient implementations for SDL pro-
cesses with computation intensive behavior. If the VHDL-
description on the other hand contains cycle-fixed timing
information, it can be synthesized using RT-level synthesis.
RT level synthesis cannot perform resource sharing auto-
matically, but avoids a certain overhead introduced by high-
level synthesis. It is very efficient for small, control-oriented
or communication intensive SDL processes, and for the
architecture dependent functions of the run-time system - all
system parts with with little arithmetic computation. We
offer the use of both synthesis methods in order to combine
the strengths of both.

The different synthesis variants are discussed more
deeply in Section 2. Our SDL hardware synthesis environ-
ment is presented in Section 3. The paper closes with exper-
imental results and conclusions in Section 4 and 5.

2 Synthesis Methods

As mentioned above, our SDL synthesis approach can be
divided into two steps. First, the generation of a VHDL
model from the SDL* system specification, and second, a
mixed abstraction level synthesis methodology for the gen-
erated VHDL model. In this section, the synthesis method-
ology and the reasons for using the mixed abstraction level
synthesis approach are presented in more detail.

The processes of an SDL description are composed of
one or more states. The state transition can contain simple
inter-process communications, complex arithmetic calcula-
tions, or both. In both cases, it can be necessary to introduce
multiple states at RT level for a single SDL transition,
because functional and I/O resources are limited by the tar-
get architecture. E.g., the number of functional resources
restricts the data processing complexity of a single RT state
and the I/O resources restrict the signal width of external or
inter-process data transfers. Hence, one important step
within an SDL synthesis framework is the determination of

the sequential timing behavior of the design. This can be
done explicitly by generating a cycle-fixed VHDL model
directly from the SDL description, or implicitly by applying
a high-level synthesis system to a superstate VHDL model.

The former method requires the fixing of the sequential
timing before synthesis. The generated cycle-fixed VHDL
model can directly be synthesized by an RTL synthesis tool.
This is recommendable, if each SDL transition can be
directly transferred into a single state of the RT VHDL
model or the SDL specification contains little arithmetic
computation. Once the complexity of the SDL transitions
increases, the optimization potential decreases due to the
restrictions of the explicitly fixed schedule and the absent
resource sharing capability at RT level.

The latter method makes use of a superstate VHDL
model. The superstate VHDL model can immediately be
generated from the SDL description, because each SDL
transition can be directly transferred into one VHDL super-
state. Thus, the sequential timing needs not to be fixed
before synthesis, and the following high-level synthesis step
can take advantage of the preserved optimization potential.
Result of high-level synthesis is a VHDL description at RT
level, with a fixed sequential timing and an optimized area
performance product. Especially, resource sharing is per-
formed automatically. Main problem is the inferior result
quality in case of communication intensive specifications as
shown in Section 4. This is caused by the quite direct trans-
formation of the control structures of the input description to
the RT controller during high-level synthesis, which leads to
larger hardware than necessary in cases when a complete
control structure could be scheduled within a single clock
cycle allowing the generation of simpler hardware without
explicit control.

SDL specifications are often composed of several com-
munication intensive parts and several data processing parts.
Therefore, it is obvious to take profit when combining the
strengths of the previously discussed synthesis methods to a
mixed abstraction level synthesis approach. In this
approach, the computation intensive parts are passed to
high-level synthesis and the communication intensive parts
to RT synthesis. An important constraint is that the high-
level part as well as the RT part of the SDL description can
be described using a single VHDL description in order to
allow the simulation of the entire VHDL model. This can be
done by encapsulating the communication intensive parts
into interface procedures or interface components. An inter-
face procedure represents the interface protocol and can be
inline-expanded in order to get a pure high-level description.
In contrast to this, an interface component represents the
protocol at RT or lower level of abstraction and can be
instantiated using simple communication procedures.
Because the interface protocol mainly depends on the target
architecture, scalable and reusable interface components can
be kept in a run-time library and have not to be integrated in
the design before synthesis is completed. The advantage is,
that the interface components have to be synthesized only
once and can be optimized manually, while the synthesis
time can be kept low. Thus, not only different processes but
also process parts can be synthesized separately using RT
level or high-level synthesis tools.

All in all, this approach provides a universal methodol-
ogy for synthesizing general SDL specifications using solely

high-level synthesis, solely RT synthesis, or both. The possi-
bility to apply exclusively high-level or RTL synthesis
allows the handling of pure computation intensive or pure
communication intensive designs, as well.

3 The SDL Hardware Synthesis Environment

3.1 Synthesis Flow

The framework shown in Figure 1 supports all three syn-
thesis methods for implementing SDL processes in VHDL,
as discussed in the previous section. This allows the
designer or an optimization tool to test various implementa-
tion techniques for an application.

Depending on the communication structure of the SDL
specification, the tool generates a VHDL netlist for the
architecture of the entire hardware/software architecture (1).
Defining the length of signal queues and the word width of
the arithmetical unit of the SDL automaton is possible using
language constructs defined in SDL* [10]. Additionally the
hardware/software partitioning can be defined in SDL*.

To synthesize hardware descriptions of the behavior of
the SDL processes, two alternative ways are supported by
the SDL2VHDL tool:

• The tool generates VHDL code at register-transfer-level
(2). In this case the behavioral description of the SDL
process includes the cycle-fixed timing specifications
needed for the hardware implementation. Such a VHDL
description can be synthesized directly to the gate level
by an RTL synthesis tool.

• In contrast to this approach the tool also allows to syn-
thesize a VHDL description without any timing con-
straints (3). Then a high-level synthesis tool is needed, to
calculate the sequential timing behavior of the resulting
hardware architecture.

In our framework the high-level synthesis system
CADDY-II ([1], [2]) is used. CADDY-II generates an appli-
cation specific datapath with its own controller. After high-
level synthesis, the VHDL description of the datapath and
the controller is synthesized to a gate level description. The
approach presented in this paper is not limited to CADDY-
II, which was used as an example high-level synthesis tool.

To experiment with different approaches, it is possible to
generate a VHDL description for CADDY-II together with

inline-expanded communication procedures. On the other
hand, CADDY-II can synthesize a VHDL description with-
out any communication components and integrate the inter-
face components taken after synthesis from the SDL run-
time libraries. In the SDL run-time library, components like
timers and communication mechanisms are predefined at RT
level (see Section 3.4).

In data intensive applications, like i.e. from the telecom-
munication area, often very long arrays are used to describe
the protocol messages. This leads to many registers in the
datapath. The library approach for communication protocols
is used additionally to connect dedicated memory compo-
nents to the data path.

3.2 Structual Synthesis of the SDL System

The SDL2VHDL framework supports the synthesis of
communication structures for the system. In SDL, commu-
nication means sending and receiving signals between pro-
cesses. Each SDL process is represented by its own
hardware module. The module contains the behavioral
description of the SDL process, a hardware interface to the
communication structure, the signal queue, and in some
cases external memory modules for large data segments.

For the implementation of the communication structures
itself, three different approaches are known:
• All processes are connected by a crossbar switch, which

connects each process module with each other [9].
• The structure of the SDL specification is analyzed in

order to connect only communicating processes [8]. This
reduces the resource overhead needed to implement a
full crossbar switch.

• The cheapest approach is to connect all processes by a
bus system [3].
The SDL2VHDL framework supports a flexible way to

select different communication interfaces by using inline-
expandable functions to connect the behavioral description
of one SDL process with predefined and pre-synthesized
protocol interfaces. The selection of different interfaces is
supported at the specification level by SDL*. In addition, all
hardware components needed by software parts of the sys-
tem are also integrated in the structural VHDL description
of the design using the mapping constructs of SDL*.

3.3 Behavioral Synthesis of SDL Processes

As described in Section 3.1, the designer has two options
to generate a VHDL description of the behavioral part of an
SDL process. The first approach is to synthesize an RTL
description for the hardware implementation. To perform
this, we integrated in the tool the technique described by
Glunz [7]. In such an RTL description, each state is
described explicitly by await until construct. Thus, for each
arithmetic operation a separate component and for eachwait
until a separate register is generated by the synthesis tool.

Figure 2 depictss an example SDL process specification.
The states of the EFSM (extended finite state mashine) are
IDLE, SETUPandCONECT* . The process defines a simple
connection setup protocol. After receiving the signalconReq
the process builds a message (3) to setup a connection and

RTL-VHDLRTL-VHDL

Behavioral-
VHDL

Behavioral-
VHDL

Extended-
FSM

Interface-
Protocols

Extended-
FSM

Extended-
FSM

+

VHDL
Structure

RTL-VHDL

Datapath

RTL-VHDL

Controller

CADDY-II

SDL2VHDL

RTL-SYNTHESIS

LIBRARY

Interface-
Protocols

Call

Call

SDL-Processor

Figure 1: SDL Synthesis flow

Call

1 2 3

*Because connect is an SDL keyword the name of the state is CONECT

sends this message to another SDL process. This transition
is labeled with T1. If this process sends a message with the
commandACK the connection is established (T5). To dis-
connect the process may receive the signaldisReq (T2) or a
message with the commandDISCONECT (T3).

Figure 3 shows a VHDL description of this SDL specifi-
cation for the high-level synthesis system CADDY-II. The
synthesis of VHDL code for CADDY-II includes many lan-
guage features of SDL:sending and receiving signals,
enabling conditions, continuous signals, timer and thesave
construct. It is possible to generate a VHDL model includ-
ing or excluding communication functions. The SDL run-
time components can be declared using a pragma construct,
which allows the CADDY-II parser to include all signals
needed by the library components to the port definition of
the VHDL behavioral description. The components can be
instantiated using the corresponding communication func-
tions as illustrated in Figure 3. At the beginning of the pro-
cess, all local variables are defined (variable definition).
After the initialization phase of the system variables, the
code enters an infinitewhile loop. In each iteration of the
loop first the queue is evaluated. If the queue contains a
valid signal the signal is received (reading queue). If the
queue contains no signal acontinuous signalis evaluated.
Sending and receiving signals is supported by abstract
VHDL communication functions (4) as discussed in Section
3.4. The SDL transition executed by the process is selected
dependent on the actual state of the automaton. To support
the serviceconstruct of SDL, all services of a process are
evaluated in a round robin scheme.

In order to synthesize the generated VHDL description,
the CADDY-II VHDL parser extracts for each communica-
tion function (e.g.sendand receive) the sequential timing
and selects the corresponding SDL component. This infor-

mation is used by CADDY-II to integrate the SDL compo-
nent in the synthesized RT datapath. In contrast to this, also
the communication functions or the functional component
description can be inline-expanded in order to apply high-
level synthesis to the entire VHDL model. The different

Process example 1(1)

DCL Id, disId Integer;
DCL message msgType;

REQUEST := 1;
ACK := 1;

DISCONECT := 3;
CONECT

IDLE disReq(disId) mediumInd(message)

mediumInd(message) conReq(Id) disId =Id message!Id = Id

message!cmd = REQUEST message!cmd := REQUEST;
message!id := Id;

message!cmd := DISCONECT;
message!id := Id;

message!cmd = DISCONECT

message!cmd := ACK;
message!id := Id;

mediumReq(message) mediumReq(message) disInd(message!Id)

mediumReq(message) SETUP mediumReq(message)

conInd(message!Id) mediumInd(message) IDLE CONECT IDLE

CONECT IDLE message!Id = Id

message!cmd = ACK

conRes(Id) disInd(Id)

CONECT IDLE

true

false

true

false

true false true
false

true

false

true
false

Figure 2: Example SDL specification

T1
T4 T3T2

T5

Figure 3: VHDL Description for CADDY-II (8-Bit)

-- Generated by SDL2VHDL Version 0.2pre
-- from source rsp99.sdl at 18-Mar-99 9:46:27 AM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE work.sdlRunTime.all;
-- pragma DSL USE work.sdlRunTime.sdlRunTimeLib;

entity fsm is
 port
 (
 clk : in Std_Logic
);
end fsm;

architecture fsm_process_example of fsm is
begin
 someProcess: process
 type Signed_Vector is array(Integer range <>) of Signed(7 downto 0);

variable dataIn : Std_Logic_Vector(7 downto 0);
variable readyIn : Std_Logic;
variable initPhase : Boolean;
variable currentProcessOrServiceId : Integer;
variable transitionPartId : Integer;
variable state_1 : Integer;
variable request_1_i : Signed(7 downto 0);
variable ack_1_i : Signed(7 downto 0);
variable disconect_1_i : Signed(7 downto 0);
variable id_1_i : Signed(7 downto 0);
variable disid_1_i : Signed(7 downto 0);
variable message_1_i : Signed_Vector(0 to 1);

 begin
 initPhase := true; currentProcessOrServiceId := 1;
 transitionPartId := 0; request_1_i := conv_signed(1, 8);
 ack_1_i := conv_signed(1, 8); disconect_1_i := conv_signed(3, 8);
 state_1 := 1;
 someLoop: while true loop
 case transitionPartId is
 when 0 => receive(id_i);
 receive(readyIn, dataIn);
 if readyIn = ‘1’ then
 case dataIn (7 downto 6) is
 when „01“ =>
 case state_1 is
 when 1 => receive(id_1_i);
 message_1_i(0) := request_1_i;
 message_1_i(1) := id_1_i;
 send(„00000000“, „0“, message_1_i(0 to 1));
 state_1 := 3;
 when 2 | 3 => receive(REMOVE, 2);
 when others => null;
 end case;
 when „10“ =>
 case state_1 is
 when 2 => receive(disid_1_i);
 if disid_1_i = id_1_i then
 message_1_i(0) := disconect_1_i;
 message_1_i(1) := id_1_i;
 send(„00000000“, „0“, message_1_i(0 to 1));
 send(„00000000“, „0“, message_1_i(0 to 1));
 state_1 := 1;
 else transitionPartId := 1;
 end if;
 when 1 | 3 => receive(REMOVE, 2);
 when others => null;
 end case;
 when „11“ =>
 case state_1 is
 when 2 => receive(message_1_i(0 to 1));
 if message_1_i(1) = id_1_i then
 if message_1_i(0) = disconect_1_i then
 send(„10000000“, „1“, message_1_i);
 state_1 := 1;
 else transitionPartId := 2;
 end if;
 else transitionPartId := 2;
 end if;
 when 1 => receive(message_1_i(0 to 1));
 if message_1_i(0) = request_1_i then
 message_1_i(0) := ack_1_i ;
 message_1_i(1) := id_1_i;
 send(„00000000“, „0“, message_1_i(0 to 1));
 send(„10000000“, „1“, message_1_i);
 state_1 := 2;
 else state_1 := 1;
 end if;
 when 3 => receive(message_1_i(0 to 1));
 if message_1_i(1) = id_1_i then
 if message_1_i(0) = ack_1_i then
 send(„10000000“, „1“, id_1_i);
 state_1 := 2;
 else transitionPartId := 3;
 end if;
 else transitionPartId := 3;
 end if;
 when others => null;
 end case;
 when others => null;
 end case;
 end if;
 when 1 => state_1 := 2;
 transitionPartId := 0;
 when 2 => transitionPartId := 1;
 when 3 => send(„10000000“, „1“, id_1_i);
 state_1 := 1;
 transitionPartId := 0;
 when others => null;
 end case;
 end loop someLoop;
 end process someProcess;
end fsm_process_example;

variable
definition

initialisa-
tion

T1

T2

T3

T4

T5

reading
queue

to label

to label
to label

to label

from jmp
from jmp

synthesis methods can be chosen by use of VHDL attributes
or command line options of the VHDL parser. So it is possi-
ble, to easily combine the advantages of high-level synthesis
with the advantages of RTL synthesis.

To support a flexible SDL run-time system, the com-
pound data types of SDL, e.g. structs, are not translated to
the corresponding VHDL construct. Eachstructdata type is
translated to a VHDL array. This technique leads to only
two higher order data types in the VHDL behavioral
description: Integer arrays and bit arrays. Using these
arrays, it is possible to send or receive any signal and its
parameters word by word. Another advantage of this
approach is, that it is possible to move large arrays from the
register set of the data path generated by CADDY-II to an
additional external memory. This reduces the number of
gates of the synthesized design.

3.4 Hardware Run-Time Library for SDL

To support the full communication mechanism of SDL
we have defined a set of VHDL communication functions.
The components accessed by the functions are described in
[4]. The realization of the send and receive mechanism is
very close to the mechanism described in [3]. Because we
have mapped all higher data types to arrays, only a small set
of communication procedures is used. The VHDL functions
presented in Figure 4 are sending different commands, e.g.
save, set timer etc., to the library components. This is a very
flexible way because the support of different SDL mecha-
nisms is controlled by allocating parameterized library com-
ponents [4]. In the same way, it is possible to store large
arrays outside the register set in external memories. This
leads to efficient implementations on FPGAs, if fast static
RAM is supported by the hardware.

To automatically select the VHDL function for the dif-
ferent cases of the send parameters, the overloading mecha-
nism of VHDL is used. This is illustrated in Figure 4 only
for several send functions: a function to send just one inte-
ger, a function to send an array of integers, a function to
send an array of bits (for binary or string parameters). With
all these functions it is possible to build three functions for
the sending mechanism.

Each SDL signal contains a header with the type of the
signal, thePid of the send and thePid of the receive process.
Using this approach, it is possible to support SDL constructs
like sender, self and to. Such a library also exists for the
implementation of the send mechanism, the timer functions
(set, reset, now), and for the access to external memories.

If the application contains large arrays these arrays are
located in external memory. The run-time library connects
the algorithmic description of the SDL automaton with this
memory. If the standard memory’s word length is incompat-
ible with the word length of the synthesized datapath, the
memory access function of the run-time library also adapts
the memory corrected by using a parameterized shifter.

4 Experimental Results

To evaluate the resource usage of SDL implementations
in hardware, first a very simple application (“ping-pong”)
was translated to VHDL using the SDL-to-VHDL translator
described in [8]. This application contains a very simple

communication protocol without any arithmetic computa-
tion. In the generated VHDL code, the cycle-fixed timing is
a priori defined. It was synthesized using a commercial RT
synthesis system (RT), fitted to Xilinx FPGA with XACT
and tested on the configurable I/O-processor of the rapid
prototyping environment REAR presented in [5]. The result-
ing CLB usages (RT estimation) for increasing message
sizes and message queue lengths are shown in Figure 5. In
the investigated range of values, the CLB usage increases
linearly. For very small message sizes and queue lengths, the
CLB count of this example is moderate, but increases
greatly with the message size. A much higher impact how-
ever has the parameter queue length: The gradient of the
CLB usage here is more than doubled compared with the
parameter message size.

For the smallest design (message size 0, queue length 0),
a comparison was made between a commercial RT synthesis
system and a commercial high-level synthesis system (HL).
The CLB-usage with high-level synthesis was by factor 9
larger than with RT-level (RT: 34 CLBs, HL: 311 CLBs).
This illustrates the effect of synthesizing communication
intensive, cycle-fixed RT VHDL descriptions without any
arithmetic computation with a high-level synthesis tool.

As a more complex example, parts of a CAN controller

PROCESS
 TYPE Signed_Vector is array(Integer range <>) OF Signed(regWidth-1 downto 0);

 PROCEDURE sendHeader(header : in std_logic_vector; destOut : in std_logic_vector; cont : in std_logic) IS
 BEGIN
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘0’;
 rtss.cmd <= SEND;
 rtss.dest <= destOut;
 rtss.snd <= header;
 rtss.changed <= ‘1’;
 rtss.continue <= ‘1’;
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘1’;
 rtss.changed <= ‘0’;
 rtss.continue <= cont;
 END sendHeader;

 PROCEDURE sendWord (data : in Signed_Vector; cont : in std_logic) IS
 BEGIN
 FOR i IN data’low TO data’high LOOP
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘0’;
 rtss.snd <= Std_Logic_Vector(data(i));
 rtss.changed <= ‘1’;
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘1’;
 rtss.changed <= ‘0’;
 END LOOP;
 rtss.continue <= cont;
 END sendWord;

 PROCEDURE sendBit(data : std_logic_vector) IS
 BEGIN

FOR i IN data’low TO data’length/regWidth LOOP
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘0’;
 rtss.snd <= data(i*regWidth to ((i+1)*regWidth)-1);
 rtss.changed <= ‘1’;
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘1’;
 rtss.changed <= ‘1’;
 END LOOP;

IF data’length-(data’length/regWidth) > 0 THEN
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘0’;

rtss.snd(data’length-(data’length/regWidth)-1downto0) <=data(data’length-(data’length/regWidth)-1downto0);
 rtss.changed <= ‘1’;
 WAIT UNTIL clk’event AND clk = ‘1’ AND rtss.busy = ‘1’;
 rtss.changed <= ‘0’;
 END IF;
 rtss.continue <= ‘0’;
 END sendBit;

 PROCEDURE send(header : in std_logic_vector; dest : in std_logic_vector) IS
 BEGIN
 sendHeader(header, dest, ‘0’);
 END send;

 PROCEDURE send(header : in std_logic_vector; dest : in std_logic_vector; wordData : in Signed_Vector) IS
 BEGIN
 sendHeader(header, dest, ‘1’);
 sendWord(wordData, ‘0’);
 END send;

 PROCEDURE send(header : in std_logic_vector; dest : in std_logic_vector; bitData : std_logic_vector) IS
 BEGIN
 sendHeader(header, dest, ‘1’);
 sendBit(bitData);
 END send;

PROCEDURE send(header : in std_logic_vector; dest : in std_logic_vector; wordData : in Signed_Vector; bitData :
std_logic_vector) IS
 BEGIN
 sendHeader(header, dest, ‘1’);
 sendWord(wordData, ‘1’);
 sendBit(bitData);
 END send;
 BEGIN
 END process;
END rtss;

Figure 4: Library functions for sending signals

were implemented on REAR using the same design flow. In
this SDL model, a processserialization receives a
CAN message and outputs the single message-bits to a sec-
ond processCRC-generation. This process computes
the CRC checksum of the message using a simple iterative
algorithm given in VHDL in a SDL task body. For CAN
messages of the max 83 bit length, the design could not be
fitted on the X4025E FPGA. The results for the minimum
message length of 19 bit are shown in Table 1. For these
experiments, a generic hand-coded HW/SW interface with
time measuring capabilities was used. The results of both
examples show that the message and especially the queue
size have a strong impact on the resources needed to imple-
ment an SDL process. Even a process with nearly no behav-
ioral part (ping-pong) can cause considerable overhead only
due to the message handling implied by the semantics of
SDL. The CRC example supports this: processCRC gen-
eration has a higher computational complexity than
serialization, but handles only small messages (1
bit). Correspondingly, it has a much smaller CLB usage.

In addition to these experiments we have evaluated the
difference of the RT synthesis and the high-level synthesis
for SDL processes. To perform this, we added arithmetical
data operations to the example SDL process shown in Figure
2. In this experiment, the synthesis was performed for the
Altera Flex 10K100 family. The formula given in the SDL
specification was only the addition of a few variables. The
number of variables increases with the number of opera-
tions. The architecture generated for the RT-level synthesis

uses the maximum number of resources to perform paral-
lism. This leads to an implementation with minimal latency
but maximal area. Figure 6 shows the comparison between
the RT-level architecture and the controller synthesized by
CADDY-II. If we only consider an SDL process with no
arithmetical operations the RT-level VHDL code leads to a
better implementation. After adding four integer variables
within three additions, e.g. x = a + b + c + d the area needed
by the controller generated by CADDY-II leads to a smaller
implementation.

5 Conclusions

This paper presented a new approach for hardware syn-
thesis of SDL system specifications and is embedded into
our SDL HW/SW codesign framework. The approach based
on a mixed-abstraction level synthesis approach in order to
combine the advantages of high-level and RT synthesis.
Communication intensive parts are synthesized by RT syn-
thesis and computation intensive parts by high-level synthe-
sis. Furthermore, the possibility to apply exclusively high-
level synthesis or RT synthesis is still supported. Future
work will consider the difference of RT synthesis and high-
level synthesis for the SDL processes in more detail.

6 References

[1] P. Gutberlet, W. Rosenstiel:Timing Preserving Interface
Transformations for the Synthesis of Behavioral VHDL.EURO-
DAC, 1994.

[2] O. Bringmann, W. Rosenstiel:Cross-Level Hierarchical High-Level
Synthesis.Design, Automation, and Test in Europe (D.A.T.E), 1998.

[3] J.M. Daveau, G.F. Marchioro, et. al.:VHDL generation from SDL
specifications. XIII IFIP Conference on Computer Hardware
Description Languages (CHDL ‘97), Toledo, Spain, 1997.

[4] M. Dörfel, F. Slomka, R. Hofmann. A Scalable Hardware Library
for the Rapid Prototyping of SDL Specifications. 10th IEEE
International Workshop on Rapid System Prototyping. 1999.

[5] F. Fischer, T. Kolloch, A. Muth, G. Färber:A Configurable Target
Architecture for Rapid Prototyping High Performance Control
Systems.Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’97), Las Vegas 1997.

[6] F. Fischer, A. Muth, G. Färber: Towards interprocess
communication and interface synthesis for a heterogeneous real-
time rapid prototyping environment.6th International Workshop on
Hardware/Software Co-Design Codes/CASHE ’98, Seattle, USA,
1998.

[7] W. Glunz, T. Kruse, T. Rössel, D. Monjau:Integrating SDL and
VHDL for System-Level Hardware Design.XI IFIP Conference on
Computer Hardware Description Languages (CHDL ‘93), Ottawa,
Canada, 1993.

[8] D. Reichelt:Design and Implementation of a Tool for the Automatic
VHDL Generation from a Annotated SDL System Description.
Diploma Thesis at Department of Computer Architecture and
Peformance Evaluation, Universität Erlangen-Nürnberg, 1998 (in
german).

[9] G. Carle, J. Schiller: Semi-automated Design of High-Performance
Communication Subsystems.31st IEEE Hawaii International
Conference on System Sciences, HICSS 98, Kona, 1998.

[10] S. Spitz, F. Slomka, M. Dörfel:SDL* - An Annotated Specification
Language for Engineering Multimedia Communication Systems.6th
Open Workshop On High Speed Networks, Institut für
Nachrichtenvermittlung und Datenverarbeitung, Universität
Stuttgart, 1997.

flip-flops F+G CLBs

serialization part (pre PPR) 227 359 183

CRC-generation part (pre PPR) 53 105 55

incl. HW/SW interface (pre PPR) 347 707 419

after placing/routing 347 442 420

Table 1: Ressource usage CAN controller example

0 5 10 15 20 25 30
0

50

100

150

200

250

300

0 5 10 15 20
0

100

200

300

400

500

600

700

Resource Usage

Size of SDL message (Bit)

Resource Usage, Message Size 8 Bit

Message Queue Length

CLBs

Figure 5: Resource usage of the “ping-pong” example

302520151050

300

250

200

150

100

50

0
252015105

CLBs

700

600

500

400

300

200

100

0
0

Queue Length 2

Queue Length 1

Queue Length 0

5 10 15 20 25 30 35

500

1500

RTS

HLS

A

#O
Figure 6: Area in dependency of the number of operations

1000

