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Abstract

This paper describes a PC-based vision system that can
be used to detect moving objects from a mobile robot. An
image processing board equipped with an MPEG motion es-
timation processor calculates a sparse but robust optic flow
in real-time. An algorithm to evaluate this kind of optic flow
has been realized in software. It determines relevant motion
parameters and a simple scene interpretation in terms of
moving object regions. The image processing board and the
algorithm are presented in some detail; the performance of
the system is demonstrated by experiments.

1. Introduction

Figure 1. MARVIN

Using our experimen-
tal robot MARVIN (Mobile
Autonomous Robot with
VIsion-based Navigation,
see Fig.1), we are currently
working on the autono-
mous exploration of office-
type environments. Primar-
ily vision is used to build
3D world models [2]. Im-
portant cues to the interpre-
tation of an observed scene
can be obtained by the eval-
uation of motion. Moving
objects (typically people in
the above-mentioned envi-
ronment) have to be distin-
guished from static parts of
the scene on the one hand and have to be taken into account
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for dynamic motion planning on the other hand. This detec-
tion of moving objects has to take place during the motion
of the robot itself.

Three-dimensional motion is projected onto a two-
dimensional velocity field (or displacement field in the case
of isochronous sampling) on the image plane(x; y) of the
camera. This vector field is commonly termedoptic flow
(or more preciselyimage flow). If the displacement vectors
are regarded to be equivalent to the velocity vectors (an ac-
ceptable assumption for realistic frame rates and velocities
[1]) and the focal length of the camera is normalized to 1 (a
mathematical convenience that does not restrict generality),
the optic flowF = f~f1::: ~fi::: ~fn; ~f = � �x�y �g

can be calculated according to the following:~f(x; y; Z; Tx; Ty ; Tz ; !x; !y; !z) =1Z � Tzx� TxTzy � Ty �+ !x � xyy2 + 1 ��!y � x2 + 1xy �� !z � �yx �
(1)

Before reconstructing the 3D motion parameters, this 2D
vector field has to be estimated from the variation of bright-
ness patterns on the projection plane.

Section 2 of this paper describes the architecture of an
image processing system for real-time estimation of the op-
tic flow that is motivated by the similarity of optic flow cal-
culation and the so-calledmotion compensationdefined by
the MPEG video compression standards. As the properties
of the resulting optic flow restrict the possibilities of further
evaluation, Section 3 proposes techniques to reconstruct the
relevant motion parameters and a simple scene interpreta-
tion.



2 Real-time optic flow sensor

The MPEG compression standards use the spatio-
temporal redundancy in an image sequenceIt for band-
width reduction. If possible, only displacement vectors are
transmitted instead of the complete pixel information. Al-
though the MPEG standards do not regulate how these vec-
tors have to be computed, the state-of-the-art technique is
correlation. As correlation is computationally expensive,
specialized processors, so calledMEPs (Motion Estimation
Processors) have evolved from this area. A reference block
(RB, 16x16 pel) from imageIr is compared with a search
window (SW, 32x32 pel) in the imageIs. For all possi-
ble offsets�; � 2 f0 : : : 15g, a correlation-like value called
SAD(Sum of Absolute Differences) is calculated; the mini-
mum designates the best match, and its position defines the
displacement vector:SAD(�; �) =P15�=0P15�=0 jSW (�+ �; � + �)�RB(�; �)j (2)SAD(�min; �min) = min�;�2f0:::15g SAD(�; �)) ~fpel = � �xpel�ypel � = � �min � 8�min � 8 � (3)

If consecutive images are compared (i.e.s� r = 1), the
resulting vector field can be regarded as optic flow.

The idea to use one of those extremely optimized MEPs
for the generation of optic flow is not new. In particular
Inoue et al. describe the integration of a MEP into their im-
age processing transputer network [5]. Resulting from their
work, a commercial version is available, and meanwhile is
used in various research projects [3, 4].

A problem that several researchers report is that the optic
flow generated by such a correlation processor can become
very noisy. This happens when the image structure of the
RBs or SWs is ambiguous or completely missing. Then
the detection of a significant minimum according to Eqn. 3
fails.

Fig. 2 a illustrates the problem. The flow was generated
by a linear forward movement of the camera, so all vectors
should intersect in a single point, the FOE (Focus Of Ex-
pansion). Due to local lack of structure, most vectors point
to completely different directions. Unfortunately, this effect
dominates in most office-type environments. Further evalu-
ation of such a flow field is virtually impossible.

To solve this problem, we augmented a MEP with exter-
nal circuitry that calculates an additional confidence value
for each vector [7]. In the simplest case, this confidence
value can be tested against a fixed threshold to sift out the
noisy flow vectors. A drawback is the sparseness of the re-
maining field (see Fig. 2 b).

Our prototype system consists of an ISA image process-
ing board containing the MEP, and a LINUX host PC (see
Fig. 3).

Figure 2. Optic flow, generated by a MEP.
a) complete, b) sifted.
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Figure 3. Optic flow sensor: System struc-
ture.

Three frame memories allow the comparison of two im-
ages and simultaneous acquisition of the next image into
the third memory. Depending on the utilization of the MEP
internal pipeline, up to 525 vectors can be calculated per
frame (PAL, 25 Hz). For applications like tracking multi-



ple objects or big displacements (as typically induced by
camera rotation) a fixed block-raster is not adequate. To
achieve the highest possible flexibility, the coordinates of
RBs and SWs can be randomly set by the software running
on the PC for each single matching operation. A list of
positionsf(xRBpel; yRBpel; xSW pel; ySW pel)jg is read via
DMA, the list of resultsf(�xpel;�ypel; onfidene)ig is
written back by DMA again. This saves most of the CPU’s
processing power for the application software that evaluates
the generated flow fields as described in the next section.
For a more detailed description of the hardware see [7].

3 Detection of moving objects by optic flow
segmentation

Many papers in the literature of optic flow address the
problem of object segmentation and motion parameter re-
construction. Algorithms to calculate all five parameters
(the absolute value of the translation vector gets lost dur-
ing the 3D to 2D projection) were proposed for example by
Prazdny [6] or Weng et al. [8]. Adiv presents an elegant ap-
proach to solve the segmentation problem for all five param-
eters: Objects are considered to consist of planar surfaces,
so vectors can be clustered in an 8D (5D for the motion and
3D for the surface parameters) Hough space [1].

Applying these techniques to optic flows calculated by
our sensor system produces no satisfying results, though.
Responsible for the failure of these very general approaches
is the numerical instability of the closed form solution to
Eqn. 1 along with the strong quantization errors of the cal-
culated vectors.

The reason for this failure can also be graphically de-
duced by the similarity of fields generated by mere lateral
and mere rotational motion. Though all vectors are par-
allel in the translational case, and aligned with hyperbolas
(according to Eqn. 1) in the rotational case, the difference
has the same order of magnitude as the quantization effects.
Fig. 4 demonstrates the problem for realistic camera param-
eters and constant depth.

Figure 4. Optic flow: a) horizontal translation
b) vertical rotation.

Therefore, a general solution to the complete motion re-
covery (i.e. segmentation of moving objects and determina-
tion of all 5 parameters for each object) seems impossible

in our context.
More pragmatic approaches that cluster flow vectors

along their 2D properties as for example proposed by Ya-
mamoto et al. [9], produced better results, but are difficult
to adapt for a moving observer and cannot be used for ob-
jects moving along the optical axis.

3.1 Determination of ego-motion

Because of the above problems, we introduce some sim-
plifications to the general approaches that are inspired by
the requirements of our application. Because the camera is
mounted on a mobile robot with non-holonomic kinemat-
ics, only one translational and one rotational parameter re-
main. Without further restricting generality, but to simplify
the equations, it is assumed that the camera is mounted hori-
zontally. In camera coordinates, there isTx; Ty; !x; !z � 0
and the general equation of the optic flow (Eqn. 1) can be
reduced to the following:~fi = � �xi�yi � = TzZi � xiyi �� !y � x2i + 1xiyi � (4)

As only two unknown variables (TzZ and !y) remain,
Eqn. 4 can be solved for each vector as follows:TzZ i = �yi x2i + 1yi ��xixi (5)!yi = ��xi + xiyi�yi (6)

The first resultTzZ is a measurement of the distance of
the corresponding 3D point and thus has an individual value
for each vector (it is the reciprocal value of theTime To
Collision, TTC).

The second result!y should correspond to the rotational
velocity of the camera and therefore be identical for each
vector. Thus, the rotation of the camera can be estimated by
a simple mean value calculation:!̂y = �!yi = 1n nXi=1 (��xi + xiyi�yi) (7)

Experiments on MARVIN in a real office-type environ-
ment have demonstrated the feasibility of the proposed es-
timation approach for!y. When employing themedianin-
stead of the simplemeanvalue, the robustness of the cal-
culated value against remaining faulty vectors can be in-
creased further. Fig. 5 shows a comparison of the estimated!̂y and the one calculated by the odometry of the robot.

Since the resulting vector length significantly exceeds
the maximal vector length of the MEP, even for moderate
turning rates of the robot (!y � 0:2 rads in Fig. 5), the es-
timated!̂y must be used to bias the positions of the SWs
accordingly.
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Figure 5. Comparison of a) the estimated !̂y
and b) the corresponding odometric value

Simply using the last̂!yt�1 to calculate a bias vector~b = �!̂yt�1 � x2 + 1xy �
transforms the limitation of the rotational velocity to a

limitation of the rotational acceleration. Thus, a good esti-
mate!̂y is essential for the overall operation of the vision
system.

3.2 Segmentation of moving objects

In the case of one or more moving objects in the observed
scene the determination of the rotation has to be modified.
The!yi of vectors belonging to a moving object no longer
coincide with the!y of the camera. Segmentation can be
performed by clustering vectors according to their!yi. A
simple cluster algorithm has proven to be sufficient in the
experiments. Vectors are sorted by increasing values of!yi,
so 8� < � ! !y� � !y�

Then they are combined to form a set of clustersfC1 : : : Cj : : : Cmg as long as they satisfy the criterion!yi+1 � !yi � �. ThereforeCj = f~fi j !yminj � !yi �!ymaxjg.
Thesem clusters build the first hypotheses for the seg-

mentation of the optic flow. Unfortunately, not each cluster
corresponds to one moving object, because the assumptions
that led to Eqn. 4 are only true for a restricted camera mo-
tion, i.e. for the vectors belonging to the background. So in
this step, only a classificationbackgroundversusnot back-
groundcan be made for each cluster. Good results can be
achieved by declaring the clusterCj=b as background that
contains the set of vectors with the largest spatial variance�.
This approach is inspired by the observation that the back-
ground is the only ”object” not corresponding to a compact
image region.

Since, as in the live experiments only the first field of
each frame is used, the variance� in x direction is much
more meaningful than iny direction and can be used exclu-
sively: �j = �2(xi)~fi2Cj

�b = maxj2f1:::mg �j ) Cb =: bakground
Taking into account only the vectors ofCb, the estimate

for the camera rotation can again be calculated according
to Eqn. 7. Fig. 6 demonstrates the performance of the back-
ground detection statistically using typical image sequences
containing one to several moving objects. In this experi-
ment, the camera is not moving, i.e. the estimated!̂y should
be 0. Each dot corresponds to one flow fieldF . The ab-
scissa depicts the percentage of flow vectors belonging to
the background, the ordinate the estimated!y (here indegs ).
If more than 50% of the background is visible, the median
of all !yi coincides with the actual!y. Below this percent-
age, the median of the background clusterCb still delivers
a satisfying result.

Figure 6. a) Median of all !yi, b) Median
of !yi 2 Cb.
If the size of the background candidate does not exceed

a certain threshold, no statement can be made at all and no
estimate is produced in this case.

In closed loop operation on MARVIN, the accuracy of
the estimated rotation is sufficient to calculate suitable SW-
bias vectors for a robust system operation.

3.3 Object segmentation

According to the aforementioned considerations, the set
of vectorsO = F n Cb belongs to theforeground, i.e. to
moving objects. To designate volatile image regions that
should be excluded from static scene reconstruction, this set
is sufficient. But, for navigation purposes, a further cluster-
ing of this set to individual objectsfO1 : : : Olg is desirable.
This can be achieved by a spatial clustering of the vectors~fi.
For this purpose, the same cluster algorithm as described in
Section 3.2 is applied first toxi; ~fi2O. The resulting Clus-

tersOxk = f~fi j ~fi 2 O ^ xmink � xi � xmaxkg can
then again be clustered alongyi; ~fi2Cxk . As in the typical
application, moving objects (people) never appear on top
of each other, this second clustering step is skipped in the
real-time implementation. Instead, the image regions be-
longing to moving objects are represented by their bounding
boxesf(xmink; ymink; xmaxk; ymaxk)g. By keeping track



Figure 7. Segmentation results (PAL, first field only)

of those bounding boxes in a list, hypotheses of object re-
gions can also be maintained when the detection fails for a
short time, i.e. when a moving object temporarily stops.

Fig. 7 shows samples from a typical image sequence
used in the experiments. The camera (i.e. the robot) is mov-
ing along a slight left turn while a person crosses the scene.
Vectors not belonging to the background are robustly de-
tected and clustered. The bounding boxes can, of course,
only encompass those parts of the moving objects where
optic flow vectors have been calculated and have passed the
sifting process.

4 Conclusion and further work

We have presented a low cost but efficient image pro-
cessing system that is able to calculate a sparse optic flow
in real-time (up to 525 vectors per frame). Further, a prac-
tical algorithm to detect moving objects by segmentation of
the flow field was proposed and some experimental results
were presented. The system is currently used in closed loop
experiments on an autonomous, vision-guided robot.

Further work will be concerned with improvements to
the robustness of the system. Applying Kalman filtering to
the estimation of the camera rotation can further reduce the
sensitivity to noise and allow a prediction of!y even when
the background detection temporarily fails. For the vectors
belonging to the background, the additional parameterZTz
(i.e. theTime To Collision) can be calculated. By examining
this parameter, static obstacles could also be detected and
taken into consideration for collision avoidance.
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