
N. O. St�o�er and G. F�arber. An Image Processing Board with an MPEG Processor and Additional Con�denceCalculation for Fast and Robust Optic Flow Generation in Real Environments. In Proc. 1997 Int. Conf. on AdvancedRobotics (ICAR'97), 845-850, 1997

1



An Image Processing Board with an MPEG Processor andAdditional Con�dence Calculation for Fast and Robust Optic FlowGeneration in Real EnvironmentsNorbert O. St�o�er and Georg F�arberLaboratory for Process Control and Real-Time SystemsTechnische Universit�at M�unchenD-80333 M�unchen, Germanywww.lpr.e-technik.tu-muenchen.de/�sto�erAbstractThis paper describes a vision system based on a PC-board which can calculate a sparse but robust optic owat frame rate. A correlation chip, which was originallydesigned for MPEG video compression, is used to cal-culate displacement vectors between blocks of pixels inconsecutive frames. The main disadvantage of similarapproaches, the noisiness of the displacement �eld inareas with weak structure, is compensated by a compu-tational inexpensive con�dence criterion, which is cal-culated for each vector in hardware. The performanceof the criterion and the improvements in the ow �eldare demonstrated by experiments.Keywordsrobot vision, optic ow, correlation, block-matchingMotivationOne of the basic problems in robot vision isthe detection and measurement of motion. Three-dimensional motion in the real scene induced by mov-ing objects and/or a moving camera results in a two-dimensional velocity �eld (respectively displacement�eld in the case of isochronous sampling) on the im-age plane, according to the equations of optic ow [7]:� �x�y � = 1Z � Tzx� TxTzy � Ty �� !x� xyy2 + 1 �(1) +!y � x2 + 1xy �+ !z � �yx �Before reconstructing the 3D motion, which is atopic by its own, the 2D velocity �eld has to be es-timated from the variations of the illumination on the

projection plane. Basically, two approaches for thedetermination of velocity in the image plane are dis-cussed in literature [1]:a) The gradient-based approach [3, 11] which de-pends on the assumption of constant illumination andthe evaluation of spatio-temporal derivatives, andb) the matching approach, which is based on thedetermination of correspondences between consecutiveframes. These correspondences can be found by track-ing particular elements belonging to moving objectslike edges and corners or by correlating small patchesof the images.The image processing system described in this paperis motivated by the similarity of the matching problemand the so called motion compensation de�ned by theMPEG video compression standards. MPEG uses thespatio-temporal redundancy in an image sequence forbandwidth reduction. If possible, only correspondencevectors between consecutive frames are transmitted in-stead of the complete pixel information. The MPEGstandard does not regulate how these correspondenceshave to be computed, but the state-of-the-art tech-nique is correlation.As correlation is computationally expensive, special-ized processors, so called MEPs (Motion EstimationProcessors) have evolved from this area [6, 8, 9]. SinceMPEG-1 and MPEG-2 work block-oriented the basicoperation of those MEPs is also referred to as block-matching. A 16x16 pixel reference block (RB) is cor-related with a search window (SW) which is typicallyof the size 32x32. For all possible displacements �xand �y (for the mentioned SW size ranging from �8to +7 each) a correlation like value called SAD (Sumof Absolute Di�erences) is calculated:



SAD(�x;�y) = 15Xy=0 15Xx=0 jSW (x+�x; y+�y)�RB(x; y)jThe result of this operation is a correlation matrixindexed by �x and �y. The vector (�x �y) refer-ring to the minimum SAD discriminates the block inSW which is most similar to RB and thus the foundcorrespondence.The idea to use one of those extremely optimizedMEPs for the generation of optic ow is not new.Especially Inoue et al describe the integration of theMEP from SGS Thomson [8] into their image process-ing transputer network [5]. Resulting from their work,a commercial version is available from Fujitsu whichis based on the same chip and is meanwhile used invarious research projects [2, 4].A problem which several researchers report is thatthe optic ow generated by such a correlation proces-sor can become very noisy. This is the case when theimage structure in some of the reference blocks is am-biguous or completely missing. Then the detection ofa signi�cant minimum in the correlation matrix fails.Unfortunately, this is the case in most indoor environ-ments like e.g. o�ce buildings.

Figure 1: Noisy optic ow, generated by a MEPFig. 1 illustrates the problem. The ow was gener-ated by a linear forward movement of the camera, soall vectors should meet in a single point, the FOE (Fo-cus Of Expansion). Due to the local lacks of structure,this can only be observed in a few areas.To evaluate this ow �eld, e.g. for the reconstruc-tion of the three dimensional motion, extra knowledgewould be necessary.

ApproachWe propose a con�dence criterion which can be usedto sift out the noisy ow vectors. The criterion is sim-ple enough to be calculated in parallel to the MEPoperation by few additional circuitry.

Figure 2: Sifted owFig. 2 shows the resulting ow. The remaining vec-tor �eld is sparse, but the noise is signi�cantly reduced.
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Figure 3: Cases of correlation matrices: a) signi�cantb) ambiguous c) indi�erentWhen searching for an adequate con�dence value foreach vector, several ideas come to mind. Obviously thequality of the minimum detection is correlated withthe structure in the reference block. A measure forthis structure could be calculated by summarizing thedi�erences between adjacent pixels. This computationcan be implemented very e�ciently by ADSPs or spe-cial convolver chips, e.g. [12]. But in the experimentsthis kind of criteria did not work too well due to theirlocal nature and sensibility to the camera noise.The con�dence value we have �nally chosen derivesfrom evaluating the correlation matrix itself. In prin-ciple, the three cases depicted in �g. 3 have to be takeninto consideration.3
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Figure 4: The MEP LSI74720We calculate the di�erence d between the SAD of thebest match and the SAD of the second best match. Incase a) the value of d describes the steepness of theminimum. High values stand for signi�cant matches.In case b) the position of the best match is ambiguous.If both minima have similar SADs, d will be small. Incase c) the reference block is missing any structure atall. The SAD for all possible correspondence vectorsis similar. Also in this case d is small.More sophisticated evaluation of the matrix is pos-sible (see e.g. [10] for an overview), but this simpleapproach showed very good results in our �rst simula-tions and is easy to compute if the complete correla-tion matrix is accessible. These arguments led to thehardware design presented in the next chapter.System structureFig. 4 shows the MEP LSI74720. For each block-match the RB and the SW have to be transferred intothe internal bu�ers of the MEP by external circuitry.As for the nominal application matching has to beperformed for adjacent RBs and symmetric SWs, thesearch windows overlap by 16 pixels. For this reason,the SW bu�er is pipelined and only the right half hasto be loaded before the next operation. At the begin-ning of a new row, two load operations are necessarywhich roughly doubles the time needed for the �rstmatch. The 256 SADs are stored in an additional cor-relation bu�er; the minimum is calculated automat-ically and written out along with the corresponding

(�x �y) at the end of the operation. All bu�ers aredouble-bu�ered which allows simultaneous calculationand loading of the next data.The external calculation of the proposed con�dencevalue without any performance loss is permitted by theLSI74720 because also the complete correlation ma-trix can be read in parallel to the nominal operation.The second smallest value is then determined by somelatches and comparators.A prototypic system has been realized on an ISA-bus PC-card (see �g. 5). Three frame memories allowcomparison of two images and simultaneous acquisi-tion of the next image into the third memory. Tomanage the data-ows a exible control logic has beenimplemented by a set of FPGAs. It contains the ad-dress generation for the memories, the calculation ofthe second smallest SAD and a central crossbar whichpermits random connection of memories, MEP, and adigital camera.
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Figure 5: Structure of the developed systemThe random con�guration of the crossbar allows theusage of the three memories as a ring-bu�er, as wellas other strategies. For example a reference imagecan be kept in one of the memories and permanentlycompared to the next frame. This technique couldbe used for background-foreground separation or fordynamic control of the comparison rate, allowing alsothe detection of very slow movements.For special applications like the tracking of multipleobjects or big displacements, the MPEG-like block-raster and �xed search window positions are not ade-quate. To achieve the highest possible exibility, thecoordinates of RBs and SWs can be randomly set bythe software running on the PC for each single match-ing operation. A list of so called MEP commands,containing the desired coordinates for each match, isstored in the PC memory. To take optimal advantageof the mentioned MEP internal pipeline, each com-4



mand can also contain a row counter, designating thenumber of adjacent matches. This command list isread via DMA by the control logic, which then feedsthe addressed pixel-blocks into the MEP. The results ofeach calculation, namely displacement and the SADsof the best and the second best match are written backinto the PC memory via DMA again. This saves mostof the CPUs processing power for application softwarewhich evaluates the generated ow �elds. The sift-ing according to the con�dence value d is done by theapplication software, thereby allowing more sophisti-cated strategies like e.g. sorting by con�dence.Depending on how often the MEP pipeline has tobe interrupted, up to 525 vectors can be calculatedper frame (PAL, 25Hz).A PC-interrupt is generated for every new frame;the corresponding interrupt handler has to write thenext crossbar-con�guration and pointers to commandand result list into the registers of the control logic.This permits double bu�ering of the two lists.Each frame memory can also be accessed directlyby the PC. Thus the card could be used as a framegrabber, but the main intention of access by the PC isto load reference images into the frame memories. Thisallows comparison of current frames with databases, toe.g. recognize stored patterns or objects.Experiments

Figure 6: Experimental setup with manipulator andposterSeveral experiments have been carried out to testthe performance of the proposed system. At �rst, var-ious con�dence values were evaluated. An adequatecon�dence criterion should be able to discriminate thevectors of the optic ow according to their coincidencewith the theoretically expected ow. This ability has

been statistically tested for the considered criteria. Tocalculate a reference ow according to equation 1 thesix motion parameters and the z-coordinate have to beknown for each vector.In a �rst series of experiments this was achieved bythe setup shown in �g. 6. The camera was mountedon the wrist ange of a standard 6 DOF manipulator,thus allowing exactly known camera movements. The\scene" consisted of a strictly planar poster.Each optic ow vector was tested against the calcu-lated reference vector. If both were equal (the pixelquantization allowed to test for exact coincidence) thevector was called a hit, in the other case amiss. A suit-able con�dence value must be high for hits and low formisses.
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Figure 7: Proposed con�dence value: a) hits, b) misses
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Figure 8: Another considered con�dence value: a) hits,b) missesThe histograms in �g. 7 a) and b) show the resultsfor the proposed con�dence value, the abscissa corre-sponding to the di�erence d between best and secondbest match. As demanded, a lot of hits but only veryfew misses have high values. A criterion can thus bede�ned by thresholding this value. A threshold of e. g.100 would sift out 95% of the misses, i.e. the noisy partof the ow, while still 65% of the hits would remain.A second example from the considered criteria isshown in �g. 8 a) and b). In principle, the behav-ior is similar. The peak of the hits is shifted towardhigher values relative to the peak of the misses. But5



Figure 9: Examples for sifted ows in real environmentsits not possible to �nd an appropriate threshold whichsigni�cantly separates the hits from the misses.

Figure 10: MARVIN

As this merely statis-tic evaluation depends onthe kind of the scene,a second series of exper-iments was carried outin a real world environ-ment. Flows were gen-erated for about 50 ran-dom views throughout theo�ce building containingour lab (see �g. 9 for someexamples). The setup con-sisted of a TRC Labmatechassis, a TRC Zebra pan-tilt-head equipped withdigital cameras, and sev-eral PCs, forming togetherour mobile \robot" MAR-VIN (Mobile AutonomousRobot with VIsion-based Navigation, see �g. 10).In this setup unfortunately the z-coordinates are notknown. In order to still be able to calculate a refer-ence vector �eld, only rotations of he camera along anaxis through the focal center were performed. Thiswas achieved by changing the vergence angle of theZebra pan-tilt-head. The results are documented bythe histograms in �g. 11.In this histograms an increased amount of hits hasalso a low con�dence value and thus is sifted out. Thereason for this are the areas with little structure whichsometimes lead to a hit, but at general have no signif-icant minimum in the correlation matrix. But fromthe over 500 calculated vectors per frame enough hitsremain for most applications. The histogram for the
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Figure 11: O�ce environment: a) hits, b) missesmisses still guarantees the elimination of noisy vectors.To show the improvements in applications of theoptic ow a simple ow evaluation has also been per-formed. In this experiment, MARVIN starts a turnwith a small radius, inducing virtually pure lateral op-tic ow on the projection plane. The diagrams showthe mean lateral ow for the sifted and the complete�eld.
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Figure 12: Sifted ow6
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Figure 13: Complete owThe mean value of the sifted ow according to �g. 12corresponds well to the actual robot movement. Afterstanding still, the robot accelerates to a constant turn-ing speed, leading to a short vibration of the cameraat the beginning. During the turn, a nearly constantow of two pixel length is measured. After about 22seconds (550 frames) the robot stops, again resultingin a short vibration, and remains standing still.The mean value of the complete ow resembles thisbehavior for the �rst 10 seconds. During this part ofthe movement a very structured wallpaper dominatesthe images. After frame 250 a standard indoor scenelike �g. 1 comes into view. From this point on, thenoise increases until it is impossible to reconstruct themotion anymore.Conclusion and further workWe have presented an image processing systemfor correlation-based real-time optic ow calculation,which overcomes the noise problem by introducing acon�dence criterion for each vector and sifting the vec-tor �eld. As the experiments show, this does lead to adramatic improvement for the resulting �eld which onthe other hand gets sparse.Further work will be concerned with adapting stan-dard optic ow applications and evaluation algorithmsto these sparse vector �elds.References[1] P. Anandan. A Uni�ed Perspective on Computa-tional Techniques for the Measurement of VisualMotion. In International Conference on Com-puter Vision, pages 219{230. IEEE, June 1987.[2] G. Cheng and A. Zelinsky. Real-Time Visual Be-haviours for Navigating a Mobile Robot. In In-

ternational Conference on Intelligent Robots andSystems, pages 973{980. IEEE, November 1996.[3] B. K. P. Horn and B. G. Schunk. DeterminingOptical Flow. Arti�cial Intelligence, 17:185{203,1981.[4] M. Inaba, K. Nagasaka, F. Kanehiro, S. Kagami,and H. Inoue. Real-Time Vision-Based Control ofSwing Motion by Human-form Robot Using theRemote-Brained Approach. In International Con-ference on Intelligent Robots and Systems, pages15{22. IEEE, November 1996.[5] H. Inoue, T. Tachikawa, and M. Inaba. RobotVision System with a Correlation Chip forReal-Time Tracking, Optical Flow and DepthMap Generation. In International Conferenceon Robotics and Automation, pages 1621{1626.IEEE, 1992.[6] LSI Logic. Image Compression Databook. LSILogic Corporation, 1993.[7] L. Matthies, R. Szelinski, and T. Kanade. KalmanFilter-based Algorithms for Estimating Depthfrom Image Sequences. Int. J. Computer Vision,pages 2989{2994, 1989.[8] SGS-THOMSON Microelectronics. Image Pro-cessing Data Book, chapter STI3320 Motion Es-timation Processor. SGS-THOMSON Microelec-tronics, 1990.[9] Array Microsystems. a77300: Motion EstimationCoprocessor, April 93.[10] T. Mori, M. Inaba, and H. Inoue. Visual Track-ing Based on Cooperation of Multiple AttentionRegions. In International Conference on Roboticsand Automation, pages 2921{2928. IEEE, 1996.[11] M. Otte and H.-H. Nagel. Optical Flow Esti-mation: Advances and Comparisions. In Jan-Olof Eklundh, editor, Computer Vision - ECCV94, volume 800 of Lecture Note in Computer Sci-ence, pages 51{60, Stockholm, Sweden, May 1994.Springer Verlag.[12] Harris Semiconductor. Digital Signal ProcessingDatabook. Harris Corporation, 1993.
7


