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Abstract

This paper presents an approach to the recognition
of articulated 3D objects in monocular video images.
A hierarchical object representation models objects as
a composition of rigid components which are explic-
itly connected by specific kinematic constraints, e.g.,
rotational and/or translational joints. The recognition
task follows this tree-like structure by first estimating
the 3D pose of the static component (root) and af-
terwards determining the relative 3D pose of the re-
maining components recursively. This method limits
the search space for the actual correspondences between
image and model features and copes with the prob-
lem of self-occlusion. Experiments in the context of au-
tonomous, mobile robots show the practicability of this
approach.

1 Introduction

The vision-based recognition of well-structured rigid
3D objects from monocular video images has been
widely investigated in the past years leading to a wide
range of solutions for specific domains. More recently,
research activities have focused on objects with com-
plex surfaces, deformable objects, and the recognition
of generic object classes [15]. Without the use of 3D
sensor data many of these approaches seem to be
limited to even more specific domains, though. This
work concentrates on articulated objects, i.e., objects
consisting of multiple rigid components connected by
joints. The components are approximated by polyhe-
drals. Despite of these restrictions our approach can
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handle a large number of man-made objects in real
world applications.

In the specific case of the recognition of articulated
objects different approaches have been proposed. The
naive method is to localize each component separately
before determining the inner joint states, e.g. [8]. These
approaches neither exploit the kinematic constraints
imposed by different joint types nor can they deal with
self-occlusion caused by the object components. The
more formal solution, the extension of the aspect-graph
concept by object configurations [16], leads to an explo-
sion of the number of possible aspects even in simple
cases. Global parametric methods like [13, 1] simul-
taneously estimate the poses of all object components.
These approaches suffer from an explosion of the search
space for correspondences between image and model
features.

Our approach is motivated by the sequential evalu-
ation of joints suggested in [7]: Starting with one com-
ponent the pose of the connected components is esti-
mated, making use of the kinematic constraints and
the already obtained information. In contrast to [7],
which uses stereo data, our approach is based on 2D
features extracted from a single video image. Further-
more, we introduce a hierarchical model representation,
a mechanism to handle self-occlusion, and a more ro-
bust method for establishing correspondences incorpo-
rating knowledge about the current configuration.

After a brief discussion of different appropriate ob-
ject models for recognition tasks, Sec. 2 presents a
framework for the hierarchical representation of ar-
ticulated objects. Section 3 introduces the application
of this framework to the vision-based recognition of
rigid and articulated objects. Additional experiments
are shown in Sec. 4, followed by a short conclusion.



2 Hierarchical Object Representation

Most modeling techniques described in literature are
specialized on a certain application and therefore are
well adapted to specific perception tasks and sensors
but cannot be used in a general way. This is especially
true for vision—based object recognition systems which
heavily depend on the underlying description. In the
past years two orthogonal approaches for object repre-
sentation have evolved (discussed in detail in [6, 14]),
both having advantages and disadvantages: Geometric
representations allow the building of large databases,
enable part—-based descriptions and therefore can be
used for generalized objects and object classes. By
predicting views of the assumed object the segmenta-
tion process can be assisted in a top—down manner.
Appearance—based representations on the other hand
implicitely take into account surface properties like tex-
ture or reflectance, offer easier identification, since the
compared data is very similar, but rely heavily on ro-
bust, segmentation, which is problematic in the case of
cluttered scenes or occlusion.

We have developed a hybrid modeling system [4]
that combines elements from both approaches by using
a geometric description to permit sensor independent
abstractions and to enable hierarchical object struc-
tures, together with sensor—specific features to inte-
grate information on appearance. In the context of au-
tonomous mobile robots this model serves as the cen-
tral knowledge base. Sensor data interpretation is facil-
itated by providing a fast access to the relevant model
data in form of predicted sensor views.

2.1 Low-level Representation

Objects influence sensor images in two ways. They
can be the source of sensor—specific features and they
can hide other elements. For a correct sensor view pre-
diction, full geometric and physical models of object
and sensor are necessary. In the specific case of a video
camera such models are difficult to obtain because var-
ious factors as illumination or surface properties have
to be taken into account.

As a compromise, an object obj can be represented
by the tuple ( Bop;, Mypj), where B denotes a polyhe-
dral boundary representation and M = {M,} a set of
video-features (up to now 3D line segments). The fea-
tures are derived in a two-step process: First, 3D line
segments which are based on the same set of vertices
as the boundaries are generated. Then the model data
is compared with a set of images, using the methods
described in Sec. 3 to establish correspondences. Only

those features that can actually be detected by the sen-
sor are kept in the model, along with a measure of their
detectability. The boundary representation can either
be derived from a CAD model or be reconstructed by
a sensor-based exploration process.

2.2 Aggregated Features

It has been shown that the recognition of objects
can be facilitated by establishing correspondences not
only between single model and image features, but be-
tween groupings of them [12]. This approach reduces
the number of correspondence hypotheses to be tested,
while at the same time the probability of mismatches
decreases with the increasing complexity of the group-
ing. Therefore, in our appraoch the feature concept
has been extended by allowing the definition of ag-
gregated features. Aggregated features have the form
(M,C,R, A), with M = {M;...M,} being a set of
features, C = {C1(M)...Cp(M)} a set of constraints
that have to be satisfied by the features, and A a set of
freely definable attributes. R denotes a rule with which
the visibility of the aggregated feature in a sensor view
prediction is determined depending on the visibility of
its feature components.

This generic mechanism can be used to create com-
plex feature clusters, but also serves as a powerful tool
to define feature templates which express relations be-
tween features, as for example the topological relations
used by the object recognition process described in
Sec. 3.1 [11].

2.3 Object Structure

To enable the modeling of articulated objects, the
representation described above has been extended to a
tree-like structure which reflects the hierarchic compo-
sition of an articulated object. Every node in this tree
represents a rigid component of the object; therefore,
the root represents the static component. An object
component ¢, is defined recursively as the tuple
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with ““T., being a homogeneous transformation ma-
trix relating the local coordinate system (frame) to the
one of its parent component ¢, j, describing the joint
that links ¢, and ¢,, and C, = {¢,, ...¢,, } being the
set of (sub-)components that are each linked to ¢, by
a separate joint. In the case of the root component
co (= obj), the parent w is the world reference frame.
Therefore, the transform “T,; describes the pose of
the object in the world; the joint jo can be used to
model displacements of objects.
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Figure 1. Static and variable part of a joint.

Joints. A joint j, can exhibit 6 degrees of freedom
(DOF) (3 translational and 3 rotational). Its current
state is denoted as s, = ( ty,ty,ts, 6, 6,7 ), using an
Euler angle representation. The set J,;; of the joint
states s, of all components of an object obj is called its
joint configuration. The transformation matrix “T.,
can be divided into a static part and a variable part:

“T,, =*T;, v T., (sv)

with “*'T;, describing the (static) transform between
the parent frame and the joint frame, while * T, (s,)
denotes the (variable) transform between the joint
frame and the component frame, depending on the
current joint state s,, see Fig. 1. Thus, the joint
frame coincides with the component frame for the state
(0,0,0,0,0,0).

In the special case that all joints exhibit at most
one rotational or translational degree of freedom, the
object description can be constructed using a modi-
fied Denavit—Hartenberg formalism, which was origi-
nally developed to model manipulator kinematics.

Masks. A joint state can be explicitely declared as
unknown. Unknown joint states have to be specially
treated during a sensor view prediction since the posi-
tion of both the features and the boundary of the com-
ponents following the joint can vary over a large range.
In order to avoid mismatches a conservative approach
was taken: if a joint state is unknown, the features
of all the components following the joint are ignored.
The boundary description is extended by the so-called
masks, which model the space potentially being occu-
pied by the moving component and its subcomponents.
For a sensor view prediction, the masks are treated as
additional obstacles; if a feature is hidden by a mask,
it will be predicted, but with an additional attribute
marking it as possibly-occluded.

Object classes. Geometrically identical objects
form an object class. The instances of a class differ in
their individual position “T,;, and their current joint
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Figure 2. Hierarchical object model of doors
and drawer cabinets.

Figure 3. Sensor view prediction of a door with
a mask due to the unknown joint state.

configuration ;. The invariant parts of an object de-
scription (i.e., the static transforms “*'T;, , boundaries,
and features) are stored only once for each class.

Figure 2 illustrates the modeling concept at the ex-
ample of two object classes, a door and a movable
drawer cabinet containing two drawers.

2.4 Prediction of Sensor Views

A sensor view prediction consists of projecting the
model features into the image plane and testing their
visibility against the boundary descriptions. For this,
a modified z—buffer algorithm is used, which originally
was developed for computer graphics applications [3].
The result is a set of 2D features {m;}.

Figure 3 shows a sensor view prediction of a door su-
perimposed on the underlying z—buffer: White lines de-
note video—specific features that are visible, black lines
(possibly) hidden ones. The joint state of the door—
wing is unknown, so the corresponding mask is pre-
dicted, hiding features of the door—frame.




3 Hierarchical Object Recognition

This section presents our approach to vision-based
3D object recognition using single images captured by
a monocular CCD sensor [10]. The basic principle is
to establish correspondences between detected image
features and appropriate model features provided by
the framework described in the previous section.

The recognition of solid objects, i.e., objects with-
out joints or with known joint configuration, can be
formalized by an interpretation [2]

( Obja{(I]'uMh) ---(Ijk’Mik)}vcamTOb]' > (2)

with obj the object hypothesis, (I;,, M;,) the correspon-
dence between image feature I; and model feature M;,
(subsequently called an association), and ““™Tg; the
transform describing the estimated 3D pose of the ob-
ject relative to the camera.

Dealing with articulated objects with (partially) un-
known joint configuration, this definition of an inter-
pretation has to be extended to

(obj, {(cv, {(Ij, M) . (L, M)}, Te, )} ) (3)

with obj the object hypothesis consisting of
different object components {c¢,}. The set
{(ev, {(Ljy, M}), ..., (I, M})},“*Te,)}  of triples
describes the joint state of each object component ¢,
relative to its parent ¢, and the underlying correspon-
dences. Note, that “*™T,, corresponds to “"T,; in

Eq. (2).
3.1 Objects with Known Joint Configuration

In case there is hardly any knowledge about the cur-
rent pose of a rigid object, the recognition process is
divided into two phases. First, rough pose hypotheses
are generated by combining consistent sets of associa-
tions. These pose hypotheses serve as a starting point
for the subsequent pose verification and refinement.

Characteristic views. The recognition of rigid ob-
jects is based on a set of characteristic 2D views (mul-
tiview representation), called CVs. The determination
of the viewpoints defining the CVs is based on the tri-
angulated Gaussian sphere which guarantees an ap-
proximately homogeneous distribution of viewpoints
around the object [10]. Alternatively, an aspect-based
approach to select object-specific viewpoints could be
employed [17]. The CVs are predictions of model fea-
tures (sensor view) provided by the model.
Knowledge about the current scene can be used to
further restrict the number of CVs to be considered:
For example, if the tilt of the CCD camera relative
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Figure 4. Characteristic views of a rigid 3D ob-
ject, given an approximately known camera tilt.

to the object is approximately known, the viewpoints
must lie within a ”torus” around the object, see Fig. 4.

Building rough hypotheses. During the recogni-
tion process, possible associations between model and
image features are generated for each CV. The confi-
dence value for each association is obtained by a ge-
ometrical comparison of the features incorporating a
measure for the local topological consistency [11]. The
underlying topological relations are provided by the ge-
ometric model using the mechanism of feature aggre-
gation, see Sec. 2.2.

The associations are grouped to geometrically and
topologically consistent hypotheses. This list of hy-
potheses is sorted by a confidence value, which incor-
porates the confidence values of the included associa-
tions, the percentage of mapped model features, and
the global topological support [11]. Once the 2D cor-
respondences are established, the CV v consisting of
the 2D features {m}} underlying the selected hypothe-
sis is scaled (by factors s1, s2) and shifted (by a vector
(te ty)T) in the image plane to match the image fea-
tures. Aligning this modified CV with the 0r7i7§r;i~nal 3D
model {M;} leads to a rough pose estimate o Top; by
minimizing

i—il [proj(mm’i‘obg’ -M;) — <801 32) -my — <iz>r W

z
proj ((myz 1)T> = (}ci) with f the focal length
In Eq. (4) the modified CV is used instead of the origi-
nal image features to reduce the impact of mismatches.

Final pose estimation. The exact 3D pose “" Ty,
is determined by traversing a dynamically re-arranged
interpretion tree. This process combines the pose esti-
mation and the search for final correspondences. The
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Figure 5. Extracted image line segments and
computed 3D pose estimation of a rigid object.

% [
Figure 6. Characteristic views of the the static

component of a drawer cabinet with an un-
known joint configuration of the two drawers.

traversion is controlled by topological constraints and
the viewpoint consistency constraint. On each level of
the interpretation tree the remaining uncertainty of the
current pose estimate restricts the search space for the
still unmapped model features [9].

Similar to [13], the pose estimation itself is based on
a weighted least-squares technique minimizing

Ze (MikajjkacamTObj)2 (5)
k=1

using an appropriate error function e, e.g., the distance
between the projected endpoints of model lines and the
corresponding image lines.

Figure 5 shows the extracted image line segments
and the result of the recognition of a drawer cabinet
with a priori known joint configuration.

3.2 Objects with Unknown Joint Configuration

For the recognition of articulated objects a recursive
process is proposed, which is guided by the hierarchi-
cal structure of the object model. First the static object
component ¢g is recognized by applying the method de-
scribed in Sec. 3.1. Potential self-occlusion by yet un-
recognized object components is automatically taken
into account by the mask technique during the compu-
tation of the CVs as described in Sec. 2.3. If enough
model features are predicted, which are not occluded
by masks, possibly-occluded features are excluded from
the interpretation. Figure 6 shows some exemplary CVs

Figure 7. Two of the characteristic views of
the upper drawer predicted using the estimated
pose of the static object component.

of the static component of the movable drawer cabi-
net. Here, model features which are marked as possibly-
occluded are suppressed. Figure 8 (a) shows the result
of the recognition of the static component.

For each subsequent ¢, the corresponding joint state
7T, (s,) has to be determined following the object
hierarchy. This again can be done by applying the
method described in Sec. 3.1. Note, that ““™T,;; in
Eq. (5) now has to be replaced by

camch CamTobj o Cp ch

= T, Ty, T, (sy)
= mmTju v T.,(sv)

with ““™T; depending only on the static transform
of j and the already estimated pose of the higher-level
components ¢y . .. Cy-

CVs of ¢, are predicted by sampling the according
subspace of the joint configuration space, see Fig. 7.
Depending on the sampling distance, an uncertainty is
associated with each viewpoint, which is propagated to
specific search spaces for matching candidates among
the image features [9]. When dealing with lines as fea-
tures a appropriate search space is the region of the
input image in which a corresponding image line must
lie with a given probability. Consider the projection
ml.,. of a 3D model point M/ in a (sub-)pixel of the
video image as a random variable with mean m!; and
covariance matrix ¥, derived from the uncertainty

of the camera pose. Then the desired search space S,
for a model line M; = (M}, M?) can be computed as
S, = convexhull (SM; U SMg)

Sy = {ml,;,. | mdist (ml;, ) <d}

piz; piz;

mdist (z) = \/(z = 7)7 " (« =)

where the Mahalanobis distance d controls the de-
sired probability, see [9] for details. Fig. 10 (d) shows
an example for such a search space. In a similar way a
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Figure 8. The recursive recognition of a drawer cabinet (with unknown joint configuration).

) i1
world ObJT ioint 4 T.,(6)
j1 frame Z‘| \
Zc
X component
¢\:X Ik frame

T obj object

frame 4 F--o

camera

frame = !
L

y

Figure 9. Determining a rotational joint state.

search space in the (6, p) space of line parameters can
be computed to further restrict the position and orien-
tation of match candidates among the image lines.

Note, that inverting this mechanism might be used
to determine the necessary CVs, given a maximum al-
lowed difference between image and 2D model features.
Since self-occlusion cannot be taken into account in this
reverse mechanism, we use a fixed number of CVs.

In most cases the joint state of a component c,
(v > 1) has less degrees of freedom than the object pose
“@™M .. . Thus, the first recognition phase described in
Sec. 3.1 can be omitted. Instead the 3D model features,
the fixed transform ““™T;, and /*T,,(s,) underlying
the CVs are directly fed to the interpretation tree of
the second stage. Dealing with a smaller number of
DOF, the viewpoint consistency constraint controlling
the tree search during the pose estimation can detect
dead ends in the interpretation tree very early, thereby
speeding up the process. Note, that Eq. (5) contains
less DOF as well, which further facilitates the pose es-
timation. Figure 8 (b-c) shows the computed joint state
of the two drawers of the drawer cabinet.

Joints with one DOF. In the special case of joints
with only one (rotational or translational) degree of
freedom, specific aggregated model features (variant
corners) can be used to directly determine the joint

L
(a) [ e A

Figure 10. (a) Recognition of a door, (b) the
computed search space for the two radial model
lines of the door-wing corresponding to an un-
certainty of £20° in the opening angle.

state [5] alternatively to the general approach as de-
scribed above. To determine the joint state it is suffi-
cient to find one variant corner in the image; the state
can then easily be calculated by intersecting the path
of the variant corner with its projection ray. In case of
a rotational joint this path is a circle, see Fig. 9.

A simple backtracking mechanism is incorporated
into the hierarchical object recognition process. If the
localization of a component fails, a new hypothesis for
its parent component is tested.

4 Experiments

Our system was tested within an interdisciplinary
research project dealing with autonomous mobile
robots. The ability to recognize articulated objects in-
creases the flexibility of such a robot, e.g. enables it to
open a door or grasp objects out of a drawer cabinet.

Analogous to the determination of the joint con-
figuration of a movable drawer cabinet (Fig. 8 (a-d))
consisting of two translational joints, one example for
the determination of a rotational joint state is shown
in Fig. 10(a). First, the static component of a door
(the door—frame) is localized taking into account the
model features, which are potentially hidden by the
door—wing, see Sec. 2.3. Using the estimated pose
of the door—frame, characteristic views of the door—
wing are predicted. For each model feature a specific
search space is computed as described in Sec. 3.2 (see
Fig. 10 (b)).



Figure 11. Determining the joint configuration
of a whiteboard.

Figure 11 shows the recognition of a whiteboard, an
object with one translational and two rotational joints.
Once again, following the hierarchical object structure
the recognition process first estimates the pose of the
static component. Since all predicted model features
of the middle part of the whiteboard are hidden by
the masks of the two wings (with still unknown joint
state), the correspondence search takes into account
the possibly-occluded model features as well. After de-
termining the translational joint between the middle
part and the static component, the two rotational joints
regarding the wings are determined.

5 Conclusion

A systematic framework for the representation of
articulated objects has been introduced. The hierar-
chical model structure decomposes an object into its
(rigid) components which are connected by transla-
tional and/or rotational joints. The recognition of artic-
ulated objects follows this tree-like structure and deter-
mines step-by-step the joint configuration taking into
account self-occlusion and the kinematic constraints of
the components.

Future work will focus on the following topics: The
underlying model description has to be extended in or-
der to deal with different primitive features. Object
components should include parametric attributes to
cope with (generic) object classes. Furthermore, the
current backtracking mechanism has to be extended. If
the recognition of a single object component c,, fails, an
algorithm for ”jumping” directly to the subcomponents
of ¢, (skipping) has to be developed. Alternatively, the
search order of the object hierarchy could be alternated
to cope with undetectable components, thus increasing
the robustness of the proposed approach.
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