
Hierarchical Recognition of Articulated Objects from SinglePerspective Views�Alexa Hauck Stefan Lanser, Christoph ZierlLehrstuhl f�ur Proze�rechner Forschungsgruppe Bildverstehen (FG BV)Technische Universit�at M�unchen Technische Universit�at M�unchenhauck@lpr.e-technik.tu-muenchen.de flanser,zierlg@informatik.tu-muenchen.deAbstractThis paper presents an approach to the recognitionof articulated 3D objects in monocular video images.A hierarchical object representation models objects asa composition of rigid components which are explic-itly connected by speci�c kinematic constraints, e.g.,rotational and/or translational joints. The recognitiontask follows this tree-like structure by �rst estimatingthe 3D pose of the static component (root) and af-terwards determining the relative 3D pose of the re-maining components recursively. This method limitsthe search space for the actual correspondences betweenimage and model features and copes with the prob-lem of self-occlusion. Experiments in the context of au-tonomous, mobile robots show the practicability of thisapproach.1 IntroductionThe vision-based recognition of well-structured rigid3D objects from monocular video images has beenwidely investigated in the past years leading to a widerange of solutions for speci�c domains. More recently,research activities have focused on objects with com-plex surfaces, deformable objects, and the recognitionof generic object classes [15]. Without the use of 3Dsensor data many of these approaches seem to belimited to even more speci�c domains, though. Thiswork concentrates on articulated objects, i.e., objectsconsisting of multiple rigid components connected byjoints. The components are approximated by polyhe-drals. Despite of these restrictions our approach can�This work was supported by Deutsche Forschungs-gemeinschaft within the Sonderforschungsbereich 331,\Informationsverarbeitung in autonomen, mobilen Hand-habungssystemen", projects L9 and Q5.

handle a large number of man-made objects in realworld applications.In the speci�c case of the recognition of articulatedobjects di�erent approaches have been proposed. Thenaive method is to localize each component separatelybefore determining the inner joint states, e.g. [8]. Theseapproaches neither exploit the kinematic constraintsimposed by di�erent joint types nor can they deal withself-occlusion caused by the object components. Themore formal solution, the extension of the aspect-graphconcept by object con�gurations [16], leads to an explo-sion of the number of possible aspects even in simplecases. Global parametric methods like [13, 1] simul-taneously estimate the poses of all object components.These approaches su�er from an explosion of the searchspace for correspondences between image and modelfeatures.Our approach is motivated by the sequential evalu-ation of joints suggested in [7]: Starting with one com-ponent the pose of the connected components is esti-mated, making use of the kinematic constraints andthe already obtained information. In contrast to [7],which uses stereo data, our approach is based on 2Dfeatures extracted from a single video image. Further-more, we introduce a hierarchical model representation,a mechanism to handle self-occlusion, and a more ro-bust method for establishing correspondences incorpo-rating knowledge about the current con�guration.After a brief discussion of di�erent appropriate ob-ject models for recognition tasks, Sec. 2 presents aframework for the hierarchical representation of ar-ticulated objects. Section 3 introduces the applicationof this framework to the vision-based recognition ofrigid and articulated objects. Additional experimentsare shown in Sec. 4, followed by a short conclusion.



2 Hierarchical Object RepresentationMost modeling techniques described in literature arespecialized on a certain application and therefore arewell adapted to speci�c perception tasks and sensorsbut cannot be used in a general way. This is especiallytrue for vision{based object recognition systems whichheavily depend on the underlying description. In thepast years two orthogonal approaches for object repre-sentation have evolved (discussed in detail in [6, 14]),both having advantages and disadvantages: Geometricrepresentations allow the building of large databases,enable part{based descriptions and therefore can beused for generalized objects and object classes. Bypredicting views of the assumed object the segmenta-tion process can be assisted in a top{down manner.Appearance{based representations on the other handimplicitely take into account surface properties like tex-ture or re
ectance, o�er easier identi�cation, since thecompared data is very similar, but rely heavily on ro-bust segmentation, which is problematic in the case ofcluttered scenes or occlusion.We have developed a hybrid modeling system [4]that combines elements from both approaches by usinga geometric description to permit sensor independentabstractions and to enable hierarchical object struc-tures, together with sensor{speci�c features to inte-grate information on appearance. In the context of au-tonomous mobile robots this model serves as the cen-tral knowledge base. Sensor data interpretation is facil-itated by providing a fast access to the relevant modeldata in form of predicted sensor views.
2.1 Low-level RepresentationObjects in
uence sensor images in two ways. Theycan be the source of sensor{speci�c features and theycan hide other elements. For a correct sensor view pre-diction, full geometric and physical models of objectand sensor are necessary. In the speci�c case of a videocamera such models are di�cult to obtain because var-ious factors as illumination or surface properties haveto be taken into account.As a compromise, an object obj can be representedby the tuple h Bobj ;Mobji, where B denotes a polyhe-dral boundary representation and M = fM�g a set ofvideo-features (up to now 3D line segments). The fea-tures are derived in a two-step process: First, 3D linesegments which are based on the same set of verticesas the boundaries are generated. Then the model datais compared with a set of images, using the methodsdescribed in Sec. 3 to establish correspondences. Only

those features that can actually be detected by the sen-sor are kept in the model, along with a measure of theirdetectability. The boundary representation can eitherbe derived from a CAD model or be reconstructed bya sensor-based exploration process.
2.2 Aggregated FeaturesIt has been shown that the recognition of objectscan be facilitated by establishing correspondences notonly between single model and image features, but be-tween groupings of them [12]. This approach reducesthe number of correspondence hypotheses to be tested,while at the same time the probability of mismatchesdecreases with the increasing complexity of the group-ing. Therefore, in our appraoch the feature concepthas been extended by allowing the de�nition of ag-gregated features. Aggregated features have the formh M; C; R;A i, with M = fM1 : : :Mmg being a set offeatures, C = fC1(M) : : : Cn(M)g a set of constraintsthat have to be satis�ed by the features, and A a set offreely de�nable attributes. R denotes a rule with whichthe visibility of the aggregated feature in a sensor viewprediction is determined depending on the visibility ofits feature components.This generic mechanism can be used to create com-plex feature clusters, but also serves as a powerful toolto de�ne feature templates which express relations be-tween features, as for example the topological relationsused by the object recognition process described inSec. 3.1 [11].
2.3 Object StructureTo enable the modeling of articulated objects, therepresentation described above has been extended to atree-like structure which re
ects the hierarchic compo-sition of an articulated object. Every node in this treerepresents a rigid component of the object; therefore,the root represents the static component. An objectcomponent c� is de�ned recursively as the tupleh c�Tc� ; j� ; B� ;M� ; C� i (1)with c�Tc� being a homogeneous transformation ma-trix relating the local coordinate system (frame) to theone of its parent component c�, j� describing the jointthat links c� and c�, and C� = fc�1 : : : c�ng being theset of (sub-)components that are each linked to c� bya separate joint. In the case of the root componentc0 (= obj), the parent w is the world reference frame.Therefore, the transform wTobj describes the pose ofthe object in the world; the joint j0 can be used tomodel displacements of objects.
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νFigure 1. Static and variable part of a joint.Joints. A joint j� can exhibit 6 degrees of freedom(DOF) (3 translational and 3 rotational). Its currentstate is denoted as s� = h tx; ty; tz; �; �;  i, using anEuler angle representation. The set Jobj of the jointstates s� of all components of an object obj is called itsjoint con�guration. The transformation matrix c�Tc�can be divided into a static part and a variable part:c�Tc� = c�Tj� � j�Tc� (s�)with c�Tj� describing the (static) transform betweenthe parent frame and the joint frame, while j�Tc� (s�)denotes the (variable) transform between the jointframe and the component frame, depending on thecurrent joint state s� , see Fig. 1. Thus, the jointframe coincides with the component frame for the stateh 0; 0; 0; 0; 0; 0 i.In the special case that all joints exhibit at mostone rotational or translational degree of freedom, theobject description can be constructed using a modi-�ed Denavit{Hartenberg formalism, which was origi-nally developed to model manipulator kinematics.Masks. A joint state can be explicitely declared asunknown. Unknown joint states have to be speciallytreated during a sensor view prediction since the posi-tion of both the features and the boundary of the com-ponents following the joint can vary over a large range.In order to avoid mismatches a conservative approachwas taken: if a joint state is unknown, the featuresof all the components following the joint are ignored.The boundary description is extended by the so-calledmasks, which model the space potentially being occu-pied by the moving component and its subcomponents.For a sensor view prediction, the masks are treated asadditional obstacles; if a feature is hidden by a mask,it will be predicted, but with an additional attributemarking it as possibly-occluded.Object classes. Geometrically identical objectsform an object class. The instances of a class di�er intheir individual position wTobji and their current joint
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Figure 2. Hierarchical object model of doorsand drawer cabinets.
Figure 3. Sensor view prediction of a door witha mask due to the unknown joint state.con�guration Ji. The invariant parts of an object de-scription (i.e., the static transforms c�Tj� , boundaries,and features) are stored only once for each class.Figure 2 illustrates the modeling concept at the ex-ample of two object classes, a door and a movabledrawer cabinet containing two drawers.

2.4 Prediction of Sensor ViewsA sensor view prediction consists of projecting themodel features into the image plane and testing theirvisibility against the boundary descriptions. For this,a modi�ed z{bu�er algorithm is used, which originallywas developed for computer graphics applications [3].The result is a set of 2D features fmig.Figure 3 shows a sensor view prediction of a door su-perimposed on the underlying z{bu�er: White lines de-note video{speci�c features that are visible, black lines(possibly) hidden ones. The joint state of the door{wing is unknown, so the corresponding mask is pre-dicted, hiding features of the door{frame.



3 Hierarchical Object RecognitionThis section presents our approach to vision-based3D object recognition using single images captured bya monocular CCD sensor [10]. The basic principle isto establish correspondences between detected imagefeatures and appropriate model features provided bythe framework described in the previous section.The recognition of solid objects, i.e., objects with-out joints or with known joint con�guration, can beformalized by an interpretation [2]h obj; f(Ij1 ;Mi1) : : : (Ijk ;Mik)g; camTobj i (2)with obj the object hypothesis, (Ijl ;Mil) the correspon-dence between image feature Ijl and model featureMil(subsequently called an association), and camTobj thetransform describing the estimated 3D pose of the ob-ject relative to the camera.Dealing with articulated objects with (partially) un-known joint con�guration, this de�nition of an inter-pretation has to be extended toh obj; f(c� ; f(Ij1 ;M�i1) : : : (Ijk ;M�ik)g; c�Tc� )g i (3)with obj the object hypothesis consisting ofdi�erent object components fc�g. The setf(c� ; f(Ij1 ;M�i1); : : : ; (Ijk ;M�ik)g; c�Tc� )g of triplesdescribes the joint state of each object component c�relative to its parent c� and the underlying correspon-dences. Note, that camTc0 corresponds to camTobj inEq. (2).
3.1 Objects with Known Joint ConfigurationIn case there is hardly any knowledge about the cur-rent pose of a rigid object, the recognition process isdivided into two phases. First, rough pose hypothesesare generated by combining consistent sets of associa-tions. These pose hypotheses serve as a starting pointfor the subsequent pose veri�cation and re�nement.Characteristic views. The recognition of rigid ob-jects is based on a set of characteristic 2D views (mul-tiview representation), called CVs. The determinationof the viewpoints de�ning the CVs is based on the tri-angulated Gaussian sphere which guarantees an ap-proximately homogeneous distribution of viewpointsaround the object [10]. Alternatively, an aspect-basedapproach to select object-speci�c viewpoints could beemployed [17]. The CVs are predictions of model fea-tures (sensor view) provided by the model.Knowledge about the current scene can be used tofurther restrict the number of CVs to be considered:For example, if the tilt of the CCD camera relative

Figure 4. Characteristic views of a rigid 3D ob-ject, given an approximately known camera tilt.to the object is approximately known, the viewpointsmust lie within a "torus" around the object, see Fig. 4.Building rough hypotheses. During the recogni-tion process, possible associations between model andimage features are generated for each CV. The con�-dence value for each association is obtained by a ge-ometrical comparison of the features incorporating ameasure for the local topological consistency [11]. Theunderlying topological relations are provided by the ge-ometric model using the mechanism of feature aggre-gation, see Sec. 2.2.The associations are grouped to geometrically andtopologically consistent hypotheses. This list of hy-potheses is sorted by a con�dence value, which incor-porates the con�dence values of the included associa-tions, the percentage of mapped model features, andthe global topological support [11]. Once the 2D cor-respondences are established, the CV v consisting ofthe 2D features fmvi g underlying the selected hypothe-sis is scaled (by factors s1; s2) and shifted (by a vector(tx ty)T ) in the image plane to match the image fea-tures. Aligning this modi�ed CV with the original 3Dmodel fMig leads to a rough pose estimate cam~Tobj byminimizingnXi=1 �proj(cam~Tobj �Mi)��s1 00 s2� �mvi ��txty��2 (4)proj��x y z 1�T� := �f xzf yz� with f the focal lengthIn Eq. (4) the modi�ed CV is used instead of the origi-nal image features to reduce the impact of mismatches.Final pose estimation. The exact 3D pose camTobjis determined by traversing a dynamically re-arrangedinterpretion tree. This process combines the pose esti-mation and the search for �nal correspondences. The



Figure 5. Extracted image line segments andcomputed 3D pose estimation of a rigid object.
Figure 6. Characteristic views of the the staticcomponent of a drawer cabinet with an un-known joint con�guration of the two drawers.traversion is controlled by topological constraints andthe viewpoint consistency constraint. On each level ofthe interpretation tree the remaining uncertainty of thecurrent pose estimate restricts the search space for thestill unmapped model features [9].Similar to [13], the pose estimation itself is based ona weighted least-squares technique minimizingmXk=1 e (Mik ; Ijk ; camTobj)2 (5)using an appropriate error function e, e.g., the distancebetween the projected endpoints of model lines and thecorresponding image lines.Figure 5 shows the extracted image line segmentsand the result of the recognition of a drawer cabinetwith a priori known joint con�guration.

3.2 Objects with Unknown Joint ConfigurationFor the recognition of articulated objects a recursiveprocess is proposed, which is guided by the hierarchi-cal structure of the object model. First the static objectcomponent c0 is recognized by applying the method de-scribed in Sec. 3.1. Potential self-occlusion by yet un-recognized object components is automatically takeninto account by the mask technique during the compu-tation of the CVs as described in Sec. 2.3. If enoughmodel features are predicted, which are not occludedby masks, possibly-occluded features are excluded fromthe interpretation. Figure 6 shows some exemplary CVs

Figure 7. Two of the characteristic views ofthe upper drawer predicted using the estimatedpose of the static object component.of the static component of the movable drawer cabi-net. Here, model features which are marked as possibly-occluded are suppressed. Figure 8 (a) shows the resultof the recognition of the static component.For each subsequent c� the corresponding joint statej�Tc� (s�) has to be determined following the objecthierarchy. This again can be done by applying themethod described in Sec. 3.1. Note, that camTobj inEq. (5) now has to be replaced bycamTc� = camTobj � : : : � c�Tc�= camTc� � c�Tj� � j�Tc� (s�)= camTj� � j�Tc� (s�)with camTj� depending only on the static transformof j and the already estimated pose of the higher-levelcomponents c0 : : : c�.CVs of c� are predicted by sampling the accordingsubspace of the joint con�guration space, see Fig. 7.Depending on the sampling distance, an uncertainty isassociated with each viewpoint, which is propagated tospeci�c search spaces for matching candidates amongthe image features [9]. When dealing with lines as fea-tures a appropriate search space is the region of theinput image in which a corresponding image line mustlie with a given probability. Consider the projectionmlpixi of a 3D model point M li in a (sub-)pixel of thevideo image as a random variable with mean mlpixi andcovariance matrix �mlpixi derived from the uncertaintyof the camera pose. Then the desired search space SMifor a model line Mi = hM1i ;M2i i can be computed asSMi = convexhull�SM1i [ SM2i �SM li = �mlpixi j mdist �mlpixi� � d	mdist (x) =q(x� x)T ��1x (x� x)where the Mahalanobis distance d controls the de-sired probability, see [9] for details. Fig. 10 (d) showsan example for such a search space. In a similar way a



(a) (b) (c) (d)Figure 8. The recursive recognition of a drawer cabinet (with unknown joint con�guration).
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Figure 9. Determining a rotational joint state.search space in the (�; �) space of line parameters canbe computed to further restrict the position and orien-tation of match candidates among the image lines.Note, that inverting this mechanism might be usedto determine the necessary CVs, given a maximum al-lowed di�erence between image and 2D model features.Since self-occlusion cannot be taken into account in thisreverse mechanism, we use a �xed number of CVs.In most cases the joint state of a component c�(� � 1) has less degrees of freedom than the object posecamTc0 . Thus, the �rst recognition phase described inSec. 3.1 can be omitted. Instead the 3D model features,the �xed transform camTj� and j�Tc� (s�) underlyingthe CVs are directly fed to the interpretation tree ofthe second stage. Dealing with a smaller number ofDOF, the viewpoint consistency constraint controllingthe tree search during the pose estimation can detectdead ends in the interpretation tree very early, therebyspeeding up the process. Note, that Eq. (5) containsless DOF as well, which further facilitates the pose es-timation. Figure 8 (b-c) shows the computed joint stateof the two drawers of the drawer cabinet.Joints with one DOF. In the special case of jointswith only one (rotational or translational) degree offreedom, speci�c aggregated model features (variantcorners) can be used to directly determine the joint

(a) (b)Figure 10. (a) Recognition of a door, (b) thecomputed search space for the two radial modellines of the door-wing corresponding to an un-certainty of �20� in the opening angle.state [5] alternatively to the general approach as de-scribed above. To determine the joint state it is su�-cient to �nd one variant corner in the image; the statecan then easily be calculated by intersecting the pathof the variant corner with its projection ray. In case ofa rotational joint this path is a circle, see Fig. 9.A simple backtracking mechanism is incorporatedinto the hierarchical object recognition process. If thelocalization of a component fails, a new hypothesis forits parent component is tested.4 ExperimentsOur system was tested within an interdisciplinaryresearch project dealing with autonomous mobilerobots. The ability to recognize articulated objects in-creases the 
exibility of such a robot, e.g. enables it toopen a door or grasp objects out of a drawer cabinet.Analogous to the determination of the joint con-�guration of a movable drawer cabinet (Fig. 8 (a-d))consisting of two translational joints, one example forthe determination of a rotational joint state is shownin Fig. 10 (a). First, the static component of a door(the door{frame) is localized taking into account themodel features, which are potentially hidden by thedoor{wing, see Sec. 2.3. Using the estimated poseof the door{frame, characteristic views of the door{wing are predicted. For each model feature a speci�csearch space is computed as described in Sec. 3.2 (seeFig. 10 (b)).



Figure 11. Determining the joint con�gurationof a whiteboard.Figure 11 shows the recognition of a whiteboard, anobject with one translational and two rotational joints.Once again, following the hierarchical object structurethe recognition process �rst estimates the pose of thestatic component. Since all predicted model featuresof the middle part of the whiteboard are hidden bythe masks of the two wings (with still unknown jointstate), the correspondence search takes into accountthe possibly-occluded model features as well. After de-termining the translational joint between the middlepart and the static component, the two rotational jointsregarding the wings are determined.5 ConclusionA systematic framework for the representation ofarticulated objects has been introduced. The hierar-chical model structure decomposes an object into its(rigid) components which are connected by transla-tional and/or rotational joints. The recognition of artic-ulated objects follows this tree-like structure and deter-mines step-by-step the joint con�guration taking intoaccount self-occlusion and the kinematic constraints ofthe components.Future work will focus on the following topics: Theunderlying model description has to be extended in or-der to deal with di�erent primitive features. Objectcomponents should include parametric attributes tocope with (generic) object classes. Furthermore, thecurrent backtracking mechanism has to be extended. Ifthe recognition of a single object component c� fails, analgorithm for "jumping" directly to the subcomponentsof c� (skipping) has to be developed. Alternatively, thesearch order of the object hierarchy could be alternatedto cope with undetectable components, thus increasingthe robustness of the proposed approach.References[1] M. Dhome, A. Yassine, and J. M. Lavest. Determi-nation of the Pose of an Articulated Object From aSingle Perspective View. In British Machine VisionConference, pages 95{104. BMVA Press, 1993.

[2] P. J. Flynn and A. K. Jain. CAD-Based Computer Vi-sion: From CAD Models to Relational Graphs. IEEETrans. on Pattern Analysis and Machine Intelligence,13(2):114{132, 1991.[3] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Com-puter Graphics { Principles and Practice. AddisonWesley, Reading, Massachusetts, 1990.[4] A. Hauck and N. O. St�o�er. A Hierarchical WorldModel with Sensor- and Task-Speci�c Features. InInt. Conf. on Intelligent Robots and Systems, pages1614{1621, 1996.[5] A. Hauck and N. O. St�o�er. Video-Based Determi-nation of the Joint States of Articulated Objects. InInt. Conf. on Robotics, Vision and Parallel Process-ing for Industrial Automation, Ipoh, Malaysia, pages1018{1023, 1996.[6] M. Hebert, J. Ponce, T. Boult, and A. Gross, editors.Int. NFS{ARPA Workshop on Object Representationin Computer Vision, New York City, USA, LNCS 994Springer-Verlag, 1994.[7] Y. Hel-or and M. Werman. Constraint Fusion forRecognition and Localization of Articulated Objects.Int. J. Computer Vision, 19(1):5{28, July 1996.[8] T. Kratchounova, B. Krebs, and B. Korn. Erken-nung und Bestimmung der aktuellen Konstellationvon Objekten mit Scharniergelenken. In Mustererken-nung 1996, DAGM, pages 502{509. Informatik aktuell,Springer-Verlag, 1996.[9] S. Lanser and T. Lengauer. On the Selection ofCandidates for Point and Line Correspondences. InInt. Symp. on Computer Vision, pages 157{162. IEEEComputer Society Press, 1995.[10] S. Lanser, O. Munkelt, and C. Zierl. Robust Video-based Object Recognition using CAD Models. In In-telligent Autonomous Systems IAS-4, pages 529{536.IOS Press, 1995.[11] S. Lanser and C. Zierl. On the Use of Topological Con-straints within Object Recognition Tasks. In 13th Int.Conf. on Pattern Recognition, pages 580{584. IEEEComputer Society Press, 1996.[12] D. G. Lowe. Perceptual Organization and VisualRecognition. Kluwer Academic, Boston, MA, 1985.[13] D. G. Lowe. Fitting Parameterized Three-DimensionalModels to Images. IEEE Trans. on Pattern Analysisand Machine Intelligence, 13(5):441{450, 1991.[14] J. Ponce, A. Zisserman, and M. Hebert, editors.Int. Workshop on Object Representation in ComputerVision II, Cambridge, U.K., LNCS 1144. Springer-Verlag, 1996.[15] A. R. Pope. Model-Based Object Recognition. Techni-cal Report TR-94-04, Univ. of British Columbia, 1994.[16] M. Sallam, J. Stewman, and K. Bowyer. Computingthe Visual Potential of an Articulated Assembly ofParts. In Third Int. Conf. on Computer Vision, pages636{643. IEEE Computer Society Press, 1990.[17] R. Wang and H. Freeman. Machine Vision forThree Dimensional Scenes, chapter The Use ofCharacteristic-View Classes for 3D Object Recogni-tion, pages 109{162. Academic Press, Inc., 1990.


