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1 IntroductionIt is generally agreed that the rapid prototyp-ing methodology reduces the development ef-fort and therefore the \time to market" fora new embedded controller application. Inthe domain of hard real{time systems, as usede. g. in automotive control and mechatron-ics, an adapted target platform should supportboth the proof that the system meets all itsdeadlines, and the automated translation of asystem speci�cation into an executable proto-type. This prototype architecture replacesthe small scale embedded parallel system dur-ing the speci�cation phase.1.1 Design ProcessUsing a HW/SW{Codesign methodology (Fig-ure 1), the rapid prototyping design processis divided into the following steps: First, westart to specify the embedded system using im-plementation independent languages like SDLto express system structure, behavior and dy-namic. Concurrently we describe the embed-ding process with event{streams, timing con-straints (deadlines) and event dependence ma-trices (Section 1.3).After the classi�cation according to compu-tation complexity and required response times(Section 1.2) an automatic translation fromSDL to a (C{)task system (SW{part) or a SDLto VHDL conversion (HW{part) occurs. Be-
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Figure 1: Rapid Prototyping Design Processcause of the di�culties of mapping an asyn-chronous SDL{speci�cation to a synchronousVHDL{description, we | in the moment |have to redesign the HW{part with State-charts and then translate this system model toVHDL. For synthesizing the HW part of thesystem model, the design cycle currently usesthe commercial tools Statemate (i-Logix) forsystem speci�cation and VHDL{code genera-tion, Synopsys for synthesis and Xilinx XActfor �tting the netlists into the target technol-ogy.The next step includes the compilation andsynthesis of the C{ and VHDL{codes. Subse-quently the WCETs and signal delays are de-rived. They are the source information for theschedulability analysis described in section 1.3.In a �nal con�guration step, the whole sys-tem model is mapped to the prototyping targetarchitecture.1.2 Target ArchitectureEspecially with modern high performance mi-croprocessors and multi level memory hierar-chies the estimation of WCETs is a non{trivialproblem and the numbers determined are oftentoo pessimistic and hence unusable. Life can bemade a little easier, if \appropriate" process-
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Figure 2: Classi�cation of application tasksing nodes are used for the di�erent applicationtasks with their speci�c requirements regard-ing maximum response time tR;max (the tasksdeadline), maximum amount of computation C(complexity) and the code and data size of thetask. Figure 2 shows the estimated achievabledeadlines on di�erent types of processing unitsfor a given amount of computation.For a task implemented in programmablehardware response times are usually short (inthe order of some 10 ns) and can be preciselyspeci�ed, while the complexity of the functionsto be performed is limited (Curve 1). Tasksimplemented in software can be as complex asnecessary but response times are longer andat the same time harder to predict. Witha microprocessor system specially tuned forreal{time applications | a Real{Time Unit(RTU), | response times down to 1 �s can beachieved and determined with reasonable accu-racy (Curves 2a and 2b). A modern standardcomputer system | a High Performance Unit(HPU) | on the other hand is more powerfulbut tight deadlines are much harder to guar-antee (Curve 3).Our target system architecture REAR(Rapid Prototyping Environment for Ad-vanced Real{Time Systems) consists of thesedi�erent types of processing nodes outlinedabove to achieve the exibility, con�gurabilityand predictability of usable WCETs necessary
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deadline = 3Figure 3: Example of Event Function E(I) andresulting C(I)for rapid prototyping hard real{time applica-tions.1.3 Schedulability AnalysisProving that a system meets all its deadlineseven in the worst case | i. e. guaranteeing itsperformance | is a key requirement of hardreal{time systems. As opposed to \soft real{time", \hard real{time" means that a dead-line miss may result in loss of lives and money.We do not want to test the timely response by\trial and error", but rather verify the neces-sary properties of the reactive system by theschedulability analysis developed by Gresser[1, 2, 3]. In contrast to analysis methodsfor time driven (periodic) systems where taskdeadlines are guaranteed by the constructionof the time driven schedule, this method takesinto account the timely behaviour of the tech-nical process which stimulates the event drivensystem's tasks.Event streams describe the maximum possi-ble number of events of a certain type withinan interval I and lead to an Event Func-tion E(I). Single tasks are characterized bytheir worst case execution times (WCET) andthe respective deadlines (maximum allowed re-sponse times) for the triggering events. TheC(I) Function is de�ned as maximum com-putation time requested and due within inter-

val I. For a single task Ci(I) can be calculatedeasily from E(I) by shifting by the deadlineand multiplication with the WCET (Figure 3).While the resulting C(I) for a number of in-dependent tasks on a computing node is simplythe sum of all the Ci(I) functions, Gresser de-veloped an algorithm to determine C(I) for anetwork of communicating tasks, taking intoaccount dependences of the triggering events,precedence constraints, inter node communica-tion and mutual exclusion. For earliest dead-line �rst scheduling he proved, that all taskson one node meet their deadlines if the result-ing C(I) always runs under the bisector whichspeci�es the available computing time in eachinterval.The task model used by Gresser is similar tothat presented in [4], but Je�ay does not con-sider event dependences and limits the analysisto single processor systems.The paper is organized as follows: The nextsection surveys related work, in section 3 wepresent a detailed description of the REARhardware architecture, especially focusing onthe Real{Time Unit (RTU) and the Con�g-urable I/O Processor (CIOP). Two exampleapplications, a CAN controller and a steppermotor controller for a small robot arm are out-lined in Section 4. In the last Section we sum-marize our results and indicate future experi-ments.2 Related WorkAs this paper focuses on target architectures,this section compares the basic approaches ofrelated HW/SW{Codesign projects. The com-mon idea is that the target architecture has tosupport the design automation of the embed-ded controllers with their appropriate software.Optimizing the communication structureaccording to the bandwidth requirements,the \multi{layered architecture template" ofSIERA [5] supplies di�erent layers for the var-ious protocols. Highest throughput can befound in the lowest layers using dedicated hard-ware (ASICs and FPGAs), while software is



dominant in the lower{rate upper layers.The use of a small microcontroller with aFPGA{coprocessor is the basis of the POLIS[6] design automation system. The main re-search goals of this project are to preserve thesemantics of their Codesign Finite State Ma-chine (CFSM) speci�cation during system syn-thesis and to improve the e�ciency of the gen-erated code.The two design systems COSYMA [7] andVULCAN [8] try to minimize the unit costsby implementing as much as possible of thesystem speci�cation in software, using a mi-crocontroller as processing unit. Both projectsmove time critical system parts to hardware,i. e. programmable logic. Starting with thewhole system in software, COSYMA uses ap-plication speci�c HW | the so called \copro-cessor" | to increase the system performanceand to meet the deadlines. VULCAN startswith a HW{solution and then extracts systemparts to SW, as long as the timing constraintsare satis�ed.Implementing the complete system in ap-plication speci�c HW is the concept of theCASTLE [9] design environment. The sys-tem is �rst realized using a Multi{FPGA boardfor test and HW/SW co{simulation. Afterthe function and timeliness proof, the commonspeci�cation can be compiled into an ASIC.To optimize the performance/price relation,the Chinook system [10] supports the auto-mated synthesis of I/O interfaces and the gluelogic necessary to connect them to the generalpurpose microcontrollers of their target sys-tem. Device driver generation for the SW partis provided as well.Supporting the veri�cation of the function-ality and timeliness of the real{time system,rather than minimizing the unit costs is themain objective of the REAR architecture. Theautomated transformation of the system spec-i�cation and the possibility to connect the pro-totype to the embedding process should an-swer the questions \Is the speci�cation of ourapplication correct?" and \Is our analysis ofthe timing constraints correct?". The imple-mentation of the now veri�ed system speci�-
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Figure 4: REAR hardware architecturecation with reduced production costs using ar-chitecture templates is the focus of our recentlystarted research project ATLAS.3 REAR Hardware Architec-tureThe target system is a con�gurable and scal-able heterogeneous multiprocessor system. Itconsists of processing nodes with state{of{the{art high performance microprocessors (CISCand RISC type) and Con�gurable I/O Proces-sors (CIOP) based on �eld programmable gatearrays. The nodes are tightly coupled by aglobal bus, which o�ers high throughput andlow latency, both necessary to yield good re-sults from the schedulability analysis. Figure 4gives an overview of the target system architec-ture, which is mostly built from o�{the{shelfcomponents and uses PCI bus to connect theprocessing nodes.If the need arises, other types of PCI cardslike peripheral devices or DSP boards can beeasily added to our three standard types of pro-cessing nodes described in the following subsec-tions.3.1 High Performance UnitThe High Performance Unit (HPU) is intendedto run application tasks with a very high de-mand for computing performance as well as formemory space (e. g. image processing tasks).



Therefore an o�{the{shelf computer system isused as HPU, equipped with a latest generationprocessor, large memory and typically two orthree levels of caches for high average perfor-mance.Due to the multi level memory hierarchy,superscalar processor architectures and spec-ulative execution (as e. g. on the PentiumPro)the worst case timing analysis necessary for theschedulability analysis for hard real{time tasksis very di�cult or results in unrealistic and un-usable values. This problem can be alleviatedpartly by cache partitioning and locking tech-niques or by avoiding frequent interrupts andcontext switches [11]. The e�ect of these tech-niques will be investigated using multiple com-puting intensive tasks and sporadic interruptsas a workload for a real{time operating systemon the HPU.Currently we use a 133 MHz Intel Pentiumbased system running Linux for software devel-opment and soft real{time tasks.3.2 Real{Time UnitThe Real{Time Unit (RTU) is designed torun application tasks with medium complexity,limited memory requirements but short dead-lines. In order to simplify the prediction ofWCETs, this processing unit is ideally basedon a processor with an easy to analyze pipelineand uses fast static main memory and no oronly a 1st level cache.For the RTU we chose the MIPS Orion pro-cessor family (R4600/R4700), a successor ofthe MIPS R3000. Both architectures are oftenused in high performance embedded systemslike network components, printers or automo-tive control systems. Yerang Hur et. al. [12]describe a methodology for worst case timinganalysis for the R3000 processor which yieldsreasonably good predictions. Their extendedtiming schema provides means to reason aboutthe execution time variation of a program con-struct inuenced by the surrounding programconstructs. To calculate the number of cyclesused by the instructions within a basic block,they build a reservation table of all utilized

Table 1: Real{Time Unit memory throughputThroughput single access burst accessMBs�1 read write read writeL1 I+D caches 1200 800 1200 800SRAM module 100 133 229 267DRAM 50 57 114 123pipeline stages. An algebra with concatena-tion and prune operations allows the recursiveanalysis of the whole program. To determinethe caching e�ects of the memory referencesin the execution path, information about thecache contents left by preceding memory ac-cesses is stored too. One aw of this method-ology is that e�ects caused by interrupts andtask switches are not considered. By disablingtask preemption | this would lengthen the re-sponse times | we can solve this problem in a�rst step.The RTU was built using the Galileo 4 evalu-ation system, which integrates the Orion CPU,memory, serial ports and the PCI interfaceon a single PCI card. To narrow the mem-ory bandwidth gap between the CPU and theDRAM available on the board a SRAM mod-ule was built from synchronous cache RAMsand a Xilinx 7336 CPLD which implements theR4600 system interface [13]. This module canbe plugged between the CPU and the Galileoboard and serves read and write requests fromthe CPU without wait states. Table 1 com-pares the peak throughput for DRAM, theSRAM module and the processors L1 cachesfor a R4600 with 100 MHz pipeline and 50 MHzsystem interface clock. Performance measure-ments for application and real{time operatingsystem code will be done in the near future.One additional CPLD implements the gluelogic to connect the CIOP to the Real{TimeUnit's local bus and eight hardware spinlocks.These simplify the implementation of low over-head multiprocessor communication primitiveswithin the operating systems running on themicroprocessor based computing nodes. De-pending on the access address, one of eight
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Figure 5: RTU with Con�gurable I/O Proces-sorspinlocks can be either tested or tested and setin a single read access, whereas a write clearsthe spinlock. Figure 5 depicts a block diagramof RTU and CIOP.3.3 Con�gurable I/O ProcessorThe CIOP serves two purposes: Linking theprototyping architecture to the embedding pro-cess and performing tasks with deadlines tooshort to be met by software. Within our appli-cation domain we expect this to be event trig-gered I/O tasks and not computation intensivetasks. Examples include, but are not limited tohigh speed serial signals, high data rate parallelconnections and time functions like pulse widthmodulation. Hence the CIOP is not a copro-cessor | compared with the processing powerof the RTU and HPU processors, the commu-nication latency would eat up the performancegain for most applications | but a preproces-sor which acts as an \event �lter" and mayreduce the load on the busses and the numberof interrupts and context switches on the RTUand HPU.The Con�gurable I/O Processor consists ofone Xilinx 4013E Logic Cell Array (replaceableby a pin compatible XC4025E with more chipresources), additional 32 bit wide dual portedRAM and several bu�ers to connect directly tosignals from the embedding process (Figure 5).

Table 2: CIOP Interface throughputThroughput single access burst accessMBs�1 read write read writeRTU maximum 40.0 57.1 100.0 84.2current 26.7 44.4 48.5 59.3PCI PT 22.0 26.0 48.0 52.8optim. PT 33.0 33.0 58.6 58.6FIFO 33.0 33.0 52.8 52.8As depicted the CIOP is either connected tothe RTU's local bus via the glue logic men-tioned above, or to the PCI bus using the socalled \pass through" (PT) and FIFO modes ofthe S5933 PCI controller [14]. This allows dif-ferent communication styles to be implementedand evaluated.Since the PCI controller's \add{on bus" is apassive slave, a bus master state machine wasimplemented in programmable logic chips [15].This keeps the interface part of the applicationsystem model small and simple, and allows usto use identical system models and con�gura-tion �les for the CIOP's FPGA for both con-nection alternatives.The REAR CIOP is clocked either withthe RTU's 50 MHz system clock or with the33 MHz PCI bus clock.1 However, overheadimposed by the code generation and synthesistools limits response times | depending on thecomplexity of the system model | to be � 2clock cycles.The achievable peak data rates depend onthe interface con�guration: In the case of theRTU's local bus the maximum throughput isdetermined by the fastest possible device tim-ing of the Galileo 64010 system controller. Forour current CIOP prototype the rates are lowerdue to long cables between RTU and CIOP.In the PCI case the limitation comes from themaster state machine controlling the add{onbus. With the current complete synchronousdesign a single word PCI read access takes1Xilinx guarantees full PCI bus compliance for thewhole XC4k{family; that implies clock frequencies upto 66 MHz and hence (theoretical) response times downto 15 ns.



6 PCI cycles whereas a 4 word burst write takes10. Table 2 lists the calculated peak data ratesfor the di�erent interface con�gurations \RTUlocal bus", \PCI pass through (PT)" (currentand optimized designs) and \PCI FIFO mode".The achievable peak data rates can be com-puted easily by cycle counting, due to the syn-chronous nature of execution on the CIOP.4 Applications4.1 Low level control of a robot armAs a �rst non time critical application exam-ple a stepper motor controller for a robot armwith 6 degrees of freedom was implementedin the CIOP. The controller consists of a pro-gramming interface (6 read/write registers), astep clock generator, 6 phase generators for thestepper motors and a multiplexer to write thephase bits cyclicly to the corresponding robotaxis motors' latches within the robots powerelectronics. While the con�gurable logic block(CLB) utilization only reached 72 % of the576 CLBs available in the XC4013E, the Xil-inx partitioning placement and routing tool re-ported di�culties in �tting the design into thechip. In this case the routing resources limitedthe size of the design.The aw of this design is the expensive pro-gramming interface compared with the com-plexity of the whole task. A �rst improvementcan be achieved by moving parts of the in-terface into the FPGA's IOBs. By extractingthe non time critical functions, like the step-per motor speed control and even the phasegeneration to software, routing resources andtherefore space for other I/O tasks in the CIOPcould be regained.4.2 CAN controller and monitorA CAN bus controller and monitor system wasimplemented on REAR as an application whichimposes a wide range of timing constraints andcomplexity on the implementation. CAN isa serial �eld bus which was originally devel-oped for communication in vehicles, but has

reached by now widespread use in the �eld ofproduction automation. The CAN bus runsa masterless, message oriented bus protocolwith CSMA/CA (Carrier-Sense Multiple Ac-cess/Collision Avoidance) access mode. Busaccess is granted to each participant by bitwisearbitration using individual message IDs. Sev-eral cooperating error detection mechanismsguarantee fast system wide error detection anderror recovery. CSMA/CA bus access, in com-bination with prioritization of the messagesand the short data block length (max. 8 Byte)lead to a very short latency for high prioritymessages. The sophisticated bus protocol anddata rates up to 1 MBit/s lead to an excel-lent performance of the CAN �eld bus. At thesame time it demands very high quality designof components able to execute this protocol.In our example, the REAR prototyping en-vironment is used to implement a CAN busmonitoring and diagnosis system. Two dis-tinct functions need to be performed by theCAN monitor: First, it has to be a fully func-tional CAN bus participant. In addition to thatit needs to execute the data sampling and testsignal and error generation functions necessaryfor monitoring and analyzing the CAN bus.The individual tasks to be performed for theCAN bus participation (from now on calledCAN bus controller) can be classi�ed by anorthogonal set of attributes: The deadline ofthe task and complexity of the function to beperformed. This is shown in Table 3 (see alsoFigure 2).An analysis of the timing and complexityrequirements resulting from the CAN bus pro-tocol yields three distinct groups of tasks. Atmessage level, the complexity of the tasks |message identi�cation and message frame gen-eration, CRC checksum generation, error pro-tocol functions, data handling | is mediumto high. The timing constraint here is iden-tical with the length of one CAN message,44� 108 �s (44 control and up to 64 data bits,at an assumed data rate of 1MHz).The controller tasks at bit level | transmis-sion of the message bits, CRC checksum errordetection, bit stu�ng and destu�ng| need to



Table 3: CAN controller functionsFunction Deadline ComplexityMessage Level:Message Identi�cation 44{108 �s mediumMessage Frame Genera-tion 44{108 �s mediumCRC Checksum Gener-ation 44{108 �s highError Logic 44{108 �s highData Handling 44{108 �s mediumBit Level:Message TransmissionGeneration 1 �s mediumCRC Error Detection 1{3 �s mediumBit Stu�ng and De-stu�ing 1 �s mediumBelow Bit Level:Bit Timing 270 ns lowBitwise Arbitration 60 ns very lowbe �nished in the worst case before the startof the next message bit. That results in a tim-ing constraint of 1 �s. The complexity of thesetasks is medium.Bitwise arbitration | i. e. transmission isstopped before the next message bit if a stationsending a message with higher priority ID isdetected on the bus | and synchronization ofthe sample points while receiving the messagebit stream (bit timing) are tasks with timingconstraints below bit level. The complexity ofthese tasks is low to very low.The hardest time constraints on the CANcontroller are imposed by the bit timing andbitwise arbitration tasks. A worst case anal-ysis of the timing parameters of the CAN busprotocol have resulted in deadlines of 60 ns and270 ns, respectively. It is obvious that these re-quirements can only be met in hardware. Thebit timing logic and transceiver control logicof the CAN controller were therefore imple-mented on the CIOP using the already men-tioned CASE tool chain. The execution timesof the arbitration mechanism and the bit syn-chronization were found to be 1 and 2 clockcycles respectively. So the deadlines of thesetwo functions will be met by this implemen-tation even if the CIOP runs with the slower33 MHz PCI clock.

Subject of future work will be a similaranalysis and implementation for the remainingCAN controller functions, which will partiallybe realized in software.
5 Summary and future workWe started with the analysis of di�erent em-bedded high performance applications and de-rived a task classi�cation regarding computa-tion complexity and required response times.Based on this model we built a basic REAR ar-chitecture from o�{the{shelf{components withappropriate processing nodes: One HPU, oneRTU and one CIOP. A main purpose of REARis to facilitate the WCET analysis on the HPUby SW{means (long computation times, inter-rupts disabled) and the RTU by HW{means(fast SRAM replaces 2nd{level cache).All the necessary software tools for crosscompiling, down loading, as well as the FPGAoriented part of the CASE tool chain are al-ready in use, whereby the Statemate VHDLcode generator leaves room for optimization.The implementation of the robot arm con-troller has shown that our Con�gurable I/OProcessor is capable of processing several dif-ferent non trivial event driven I/O tasks. Be-cause the CIOP is not intended as an accel-erating coprocessor, but a processing unit forindependent I/O tasks, the HW/SW{interfacethroughput is su�cient.In the near future we plan to implementlarger application examples on the REAR ar-chitecture, which take advantage of the di�er-ent types of processing nodes. One challengingCIOP{task will be the high data rate I/O oper-ations of a real{time image acquisition. Whileexploring the design space by moving tasksbetween software (RTU, HPU) and hardware(CIOP) we will gain the knowledge necessaryto expand our CASE tool chain towards parti-tioning and generation of e�cient code for thesoftware parts.
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