A Configurable Target Architecture for
Rapid Prototyping High Performance Control Systems*

Franz Fischer

Thomas Kolloch ~ Annette Muth ~ Georg Farber

Laboratory for Process Control and Real-Time Systems
Prof. Dr.-Ing. Georg Farber
Technische Universitat Miinchen, D-80290 Miinchen, Germany
Phone: +49-89-289-2 3550, Fax: +49-89-289-235 55

{Franz.Fischer,Thomas.Kolloch,Annette.Muth,Georg.Faerber}@lpr.e-technik.tu-muenchen.de

Abstract FEmbedded hard real-time control sys-
tems show growing functional complexity as well
as increasing demand for short response times and
high computing performance. This paper presents a
target system architecture suitable for rapid proto-
typing embedded real-time applications. The tightly
coupled heterogeneous multiprocessor system in-
cludes state—of-the—art high performance micropro-
cessors as well as Configurable I/0 processors based
on field programmable gate arrays. It is designed to
allow better performance guarantees by simplifying
the prediction of tight worst case execution times,
which are the base for the schedulability analysis
of the tasks executed on the microprocessor based
nodes. The Configurable I/O processors are used
for both interacting with the embedding system and
processing tasks with deadlines too short to be met
by software. The automated transformation of the
system specification and the possibility to connect
the prototype to the embedding process allows the
validation of the specification regarding function as
well as timing constraints.

Keywords: embedded control system, rapid
prototyping, HW/SW-Codesign, hard real-time,
schedulability analysis

*This work was supported with funds of the
Deutsche Forschungsgemeinschaft under reference
number Fa109/11-1 within the priority program
“Rapid Prototyping for Embedded Hard Real-Time
Systems.”

1 Introduction

It is generally agreed that the rapid prototyp-
ing methodology reduces the development ef-
fort and therefore the “time to market” for
a new embedded controller application. In
the domain of hard real-time systems, as used
e. g. in automotive control and mechatron-
ics, an adapted target platform should support
both the proof that the system meets all its
deadlines, and the automated translation of a
system specification into an executable proto-
type. This prototype architecture replaces
the small scale embedded parallel system dur-
ing the specification phase.

1.1 Design Process

Using a HW/SW-Codesign methodology (Fig-
ure 1), the rapid prototyping design process
is divided into the following steps: First, we
start to specify the embedded system using im-
plementation independent languages like SDL
to express system structure, behavior and dy-
namic. Concurrently we describe the embed-
ding process with event—streams, timing con-
straints (deadlines) and event dependence ma-
trices (Section 1.3).

After the classification according to compu-
tation complexity and required response times
(Section 1.2) an automatic translation from
SDL to a (C-)task system (SW-part) or a SDL
to VHDL conversion (HW-part) occurs. Be-

Specification & Design

Embedding System Embedded System
Event Stream SDL
Timing Constraints Statecharts
Event Dependences Structure, Behavior, Dynamic

Classification & Codegeneration
sw HW

C VHDL
Task-System Statemachine

Profiling & Schedulability Analysis
sw HW

c(l) Signal

Ci i Path Delays

Function

REAR
Target Architecture

Figure 1: Rapid Prototyping Design Process

cause of the difficulties of mapping an asyn-
chronous SDL-specification to a synchronous
VHDL-description, we — in the moment —
have to redesign the HW-part with State-
charts and then translate this system model to
VHDL. For synthesizing the HW part of the
system model, the design cycle currently uses
the commercial tools Statemate (i-Logix) for
system specification and VHDL—code genera-
tion, Synopsys for synthesis and Xilinx XAct
for fitting the netlists into the target technol-
ogy.

The next step includes the compilation and
synthesis of the C— and VHDL-codes. Subse-
quently the WCETs and signal delays are de-
rived. They are the source information for the
schedulability analysis described in section 1.3.

In a final configuration step, the whole sys-
tem model is mapped to the prototyping target
architecture.

1.2 Target Architecture

Especially with modern high performance mi-
croprocessors and multi level memory hierar-
chies the estimation of WCETSs is a non—trivial
problem and the numbers determined are often
too pessimistic and hence unusable. Life can be
made a little easier, if “appropriate” process-

maximum
response time [s]|
0 10 100 1000 MIPS

10
” A/
A
] Vs
A/
s |
" A/
"] i
A
Var

108 gﬁ (programmable) Hardware

I@I Microprocessor (fast RAM, single task)
=
'I Microprocessor (fast RAM, multiple tasks)

10° =
o Microprocessor (Cache)

10° T T T T T .
4 6 8 Complexity
10 10 10 10 10 [Instructions]

Figure 2: Classification of application tasks

ing nodes are used for the different application
tasks with their specific requirements regard-
ing maximum response time tg 4, (the tasks
deadline), maximum amount of computation C'
(complexity) and the code and data size of the
task. Figure 2 shows the estimated achievable
deadlines on different types of processing units
for a given amount of computation.

For a task implemented in programmable
hardware response times are usually short (in
the order of some 10 ns) and can be precisely
specified, while the complexity of the functions
to be performed is limited (Curve 1). Tasks
implemented in software can be as complex as
necessary but response times are longer and
at the same time harder to predict. With
a microprocessor system specially tuned for
real-time applications — a Real-Time Unit
(RTU), — response times down to 1 pus can be
achieved and determined with reasonable accu-
racy (Curves 2a and 2b). A modern standard
computer system — a High Performance Unit
(HPU) — on the other hand is more powerful
but tight deadlines are much harder to guar-
antee (Curve 3).

Our target system architecture REAR
(Rapid Prototyping Environment for Ad-
vanced Real-Time Systems) consists of these
different types of processing nodes outlined
above to achieve the flexibility, configurability
and predictability of usable WCETSs necessary

E(1), C(1)
A

1 deadiine=3 ° cycle=7

Figure 3: Example of Event Function E(I) and
resulting C(I)

for rapid prototyping hard real-time applica-
tions.

1.3 Schedulability Analysis

Proving that a system meets all its deadlines
even in the worst case — i. e. guaranteeing its
performance — is a key requirement of hard
real-time systems. As opposed to “soft real—
time”, “hard real-time” means that a dead-
line miss may result in loss of lives and money.
We do not want to test the timely response by
“trial and error”, but rather verify the neces-
sary properties of the reactive system by the
schedulability analysis developed by Gresser
[1, 2, 3]. In contrast to analysis methods
for time driven (periodic) systems where task
deadlines are guaranteed by the construction
of the time driven schedule, this method takes
into account the timely behaviour of the tech-
nical process which stimulates the event driven
system’s tasks.

Event streams describe the maximum possi-
ble number of events of a certain type within
an interval I and lead to an FEwent Func-
tion E(I). Single tasks are characterized by
their worst case execution times (WCET) and
the respective deadlines (maximum allowed re-
sponse times) for the triggering events. The
C(I) Function is defined as maximum com-
putation time requested and due within inter-

val I. For a single task C;(I) can be calculated
easily from E(I) by shifting by the deadline
and multiplication with the WCET (Figure 3).

While the resulting C'(I) for a number of in-
dependent tasks on a computing node is simply
the sum of all the C;(I) functions, Gresser de-
veloped an algorithm to determine C(I) for a
network of communicating tasks, taking into
account dependences of the triggering events,
precedence constraints, inter node communica-
tion and mutual exclusion. For earliest dead-
line first scheduling he proved, that all tasks
on one node meet their deadlines if the result-
ing C(I) always runs under the bisector which
specifies the available computing time in each
interval.

The task model used by Gresser is similar to
that presented in [4], but Jeffay does not con-
sider event dependences and limits the analysis
to single processor systems.

The paper is organized as follows: The next
section surveys related work, in section 3 we
present a detailed description of the REAR
hardware architecture, especially focusing on
the Real-Time Unit (RTU) and the Config-
urable I/O Processor (CIOP). Two example
applications, a CAN controller and a stepper
motor controller for a small robot arm are out-
lined in Section 4. In the last Section we sum-
marize our results and indicate future experi-
ments.

2 Related Work

As this paper focuses on target architectures,
this section compares the basic approaches of
related HW/SW-Codesign projects. The com-
mon idea is that the target architecture has to
support the design automation of the embed-
ded controllers with their appropriate software.

Optimizing the communication structure
according to the bandwidth requirements,
the “multi-layered architecture template” of
STIERA [5] supplies different layers for the var-
ious protocols. Highest throughput can be
found in the lowest layers using dedicated hard-
ware (ASICs and FPGAs), while software is

dominant in the lower-rate upper layers.

The use of a small microcontroller with a
FPGA-—coprocessor is the basis of the POLIS
[6] design automation system. The main re-
search goals of this project are to preserve the
semantics of their Codesign Finite State Ma-
chine (CFSM) specification during system syn-
thesis and to improve the efficiency of the gen-
erated code.

The two design systems COSYMA [7] and
VULCAN [8] try to minimize the unit costs
by implementing as much as possible of the
system specification in software, using a mi-
crocontroller as processing unit. Both projects
move time critical system parts to hardware,
i. e. programmable logic. Starting with the
whole system in software, COSYMA uses ap-
plication specific HW — the so called “copro-
cessor” — to increase the system performance
and to meet the deadlines. VULCAN starts
with a HW-solution and then extracts system
parts to SW, as long as the timing constraints
are satisfied.

Implementing the complete system in ap-
plication specific HW is the concept of the
CASTLE [9] design environment. The sys-
tem is first realized using a Multi-FPGA board
for test and HW/SW co-simulation. After
the function and timeliness proof, the common
specification can be compiled into an ASIC.

To optimize the performance/price relation,
the Chinook system [10] supports the auto-
mated synthesis of I/O interfaces and the glue
logic necessary to connect them to the general
purpose microcontrollers of their target sys-
tem. Device driver generation for the SW part
is provided as well.

Supporting the verification of the function-
ality and timeliness of the real-time system,
rather than minimizing the unit costs is the
main objective of the REAR architecture. The
automated transformation of the system spec-
ification and the possibility to connect the pro-
totype to the embedding process should an-
swer the questions “Is the specification of our
application correct?” and “Is our analysis of
the timing constraints correct?”. The imple-
mentation of the now verified system specifi-

HPU [1[e] ¢ i t

other PCI device

Console
Scsi
Ethernet
[ran |
global bus (PCI)
ciop RTU RTU
LU Pl
RAM
[}

v

Figure 4: REAR hardware architecture

cation with reduced production costs using ar-
chitecture templates is the focus of our recently
started research project ATLAS.

3 REAR Hardware Architec-
ture

The target system is a configurable and scal-
able heterogeneous multiprocessor system. It
consists of processing nodes with state-of-the-
art high performance microprocessors (CISC
and RISC type) and Configurable I/O Proces-
sors (CIOP) based on field programmable gate
arrays. The nodes are tightly coupled by a
global bus, which offers high throughput and
low latency, both necessary to yield good re-
sults from the schedulability analysis. Figure 4
gives an overview of the target system architec-
ture, which is mostly built from off-the—shelf
components and uses PCI bus to connect the
processing nodes.

If the need arises, other types of PCI cards
like peripheral devices or DSP boards can be
easily added to our three standard types of pro-
cessing nodes described in the following subsec-
tions.

3.1 High Performance Unit

The High Performance Unit (HPU) is intended
to run application tasks with a very high de-
mand for computing performance as well as for
memory space (e. g. image processing tasks).

Therefore an off-the—shelf computer system is
used as HPU, equipped with a latest generation
processor, large memory and typically two or
three levels of caches for high average perfor-
mance.

Due to the multi level memory hierarchy,
superscalar processor architectures and spec-
ulative execution (as e. g. on the PentiumPro)
the worst case timing analysis necessary for the
schedulability analysis for hard real-time tasks
is very difficult or results in unrealistic and un-
usable values. This problem can be alleviated
partly by cache partitioning and locking tech-
niques or by avoiding frequent interrupts and
context switches [11]. The effect of these tech-
niques will be investigated using multiple com-
puting intensive tasks and sporadic interrupts
as a workload for a real-time operating system
on the HPU.

Currently we use a 133 MHz Intel Pentium
based system running Linux for software devel-
opment and soft real-time tasks.

3.2 Real-Time Unit

The Real-Time Unit (RTU) is designed to
run application tasks with medium complexity,
limited memory requirements but short dead-
lines. In order to simplify the prediction of
WCETsS, this processing unit is ideally based
on a processor with an easy to analyze pipeline
and uses fast static main memory and no or
only a 1st level cache.

For the RTU we chose the MIPS Orion pro-
cessor family (R4600/R4700), a successor of
the MIPS R3000. Both architectures are often
used in high performance embedded systems
like network components, printers or automo-
tive control systems. Yerang Hur et. al. [12]
describe a methodology for worst case timing
analysis for the R3000 processor which yields
reasonably good predictions. Their extended
timing schema provides means to reason about
the execution time variation of a program con-
struct influenced by the surrounding program
constructs. To calculate the number of cycles
used by the instructions within a basic block,
they build a reservation table of all utilized

Table 1: Real-Time Unit memory throughput

Throughput single access | burst access
MBs ! read | write | read | write

L1 I+D caches || 1200 800 | 1200 800
SRAM module 100 133 229 267
DRAM 50 57 114 123

pipeline stages. An algebra with concatena-
tion and prune operations allows the recursive
analysis of the whole program. To determine
the caching effects of the memory references
in the execution path, information about the
cache contents left by preceding memory ac-
cesses is stored too. One flaw of this method-
ology is that effects caused by interrupts and
task switches are not considered. By disabling
task preemption — this would lengthen the re-
sponse times — we can solve this problem in a
first step.

The RT'U was built using the Galileo 4 evalu-
ation system, which integrates the Orion CPU,
memory, serial ports and the PCI interface
on a single PCI card. To narrow the mem-
ory bandwidth gap between the CPU and the
DRAM available on the board a SRAM mod-
ule was built from synchronous cache RAMs
and a Xilinx 7336 CPLD which implements the
R4600 system interface [13]. This module can
be plugged between the CPU and the Galileo
board and serves read and write requests from
the CPU without wait states. Table 1 com-
pares the peak throughput for DRAM, the
SRAM module and the processors L1 caches
for a R4600 with 100 MHz pipeline and 50 MHz
system interface clock. Performance measure-
ments for application and real-time operating
system code will be done in the near future.

One additional CPLD implements the glue
logic to connect the CIOP to the Real-Time
Unit’s local bus and eight hardware spinlocks.
These simplify the implementation of low over-
head multiprocessor communication primitives
within the operating systems running on the
microprocessor based computing nodes. De-
pending on the access address, one of eight

Orion CPU

i SRAM Module
fast i
SRAM |
; Galileo 4 ciop
Spinlocks ; 35“‘:\‘?
CIOP Glue X
ey S
Device FPGA
Cor | XC4013-3

2Channel = Bus $§5933
UART [Master PCICtrl

System-Controller

PCl bus

Figure 5: RTU with Configurable I/O Proces-

sor

spinlocks can be either tested or tested and set
in a single read access, whereas a write clears
the spinlock. Figure 5 depicts a block diagram
of RTU and CIOP.

3.3 Configurable I/0O Processor

The CIOP serves two purposes: Linking the
prototyping architecture to the embedding pro-
cess and performing tasks with deadlines too
short to be met by software. Within our appli-
cation domain we expect this to be event trig-
gered I/0 tasks and not computation intensive
tasks. Examples include, but are not limited to
high speed serial signals, high data rate parallel
connections and time functions like pulse width
modulation. Hence the CIOP is not a copro-
cessor — compared with the processing power
of the RTU and HPU processors, the commu-
nication latency would eat up the performance
gain for most applications — but a preproces-
sor which acts as an “event filter” and may
reduce the load on the busses and the number
of interrupts and context switches on the RT'U
and HPU.

The Configurable I/O Processor consists of
one Xilinx 4013E Logic Cell Array (replaceable
by a pin compatible XC4025E with more chip
resources), additional 32 bit wide dual ported
RAM and several buffers to connect directly to
signals from the embedding process (Figure 5).

Table 2: CIOP Interface throughput

Throughput single access | burst access

MBs™! read | write | read | write

RTU maximum | 40.0 | 57.1 | 100.0 | 84.2
current || 26.7 | 44.4 48.5 59.3

PCI PT || 22.0 | 26.0 48.0 | 52.8
optim. PT || 33.0 | 33.0 58.6 | 58.6

FIFO || 33.0 | 33.0 52.8 | 52.8

As depicted the CIOP is either connected to
the RTU’s local bus via the glue logic men-
tioned above, or to the PCI bus using the so
called “pass through” (PT) and FIFO modes of
the S5933 PCI controller [14]. This allows dif-
ferent communication styles to be implemented
and evaluated.

Since the PCI controller’s “add—on bus” is a
passive slave, a bus master state machine was
implemented in programmable logic chips [15].
This keeps the interface part of the application
system model small and simple, and allows us
to use identical system models and configura-
tion files for the CIOP’s FPGA for both con-
nection alternatives.

The REAR CIOP is clocked either with
the RTU’s 50 MHz system clock or with the
33 MHz PCI bus clock.! However, overhead
imposed by the code generation and synthesis
tools limits response times — depending on the
complexity of the system model — to be > 2
clock cycles.

The achievable peak data rates depend on
the interface configuration: In the case of the
RTU’s local bus the maximum throughput is
determined by the fastest possible device tim-
ing of the Galileo 64010 system controller. For
our current CIOP prototype the rates are lower
due to long cables between RTU and CIOP.
In the PCI case the limitation comes from the
master state machine controlling the add-on
bus. With the current complete synchronous
design a single word PCI read access takes

'Xilinx guarantees full PCI bus compliance for the
whole XC4k—family; that implies clock frequencies up
to 66 MHz and hence (theoretical) response times down
to 15 ns.

6 PCI cycles whereas a 4 word burst write takes
10. Table 2 lists the calculated peak data rates
for the different interface configurations “RTU
local bus”, “PCI pass through (PT)” (current
and optimized designs) and “PCI FIFO mode”.
The achievable peak data rates can be com-
puted easily by cycle counting, due to the syn-
chronous nature of execution on the CIOP.

4 Applications

4.1 Low level control of a robot arm

As a first non time critical application exam-
ple a stepper motor controller for a robot arm
with 6 degrees of freedom was implemented
in the CIOP. The controller consists of a pro-
gramming interface (6 read/write registers), a
step clock generator, 6 phase generators for the
stepper motors and a multiplexer to write the
phase bits cyclicly to the corresponding robot
axis motors’ latches within the robots power
electronics. While the configurable logic block
(CLB) utilization only reached 72 % of the
576 CLBs available in the XC4013E, the Xil-
inx partitioning placement and routing tool re-
ported difficulties in fitting the design into the
chip. In this case the routing resources limited
the size of the design.

The flaw of this design is the expensive pro-
gramming interface compared with the com-
plexity of the whole task. A first improvement
can be achieved by moving parts of the in-
terface into the FPGA’s IOBs. By extracting
the non time critical functions, like the step-
per motor speed control and even the phase
generation to software, routing resources and
therefore space for other I/O tasks in the CIOP
could be regained.

4.2 CAN controller and monitor

A CAN bus controller and monitor system was
implemented on REAR as an application which
imposes a wide range of timing constraints and
complexity on the implementation. CAN is
a serial field bus which was originally devel-
oped for communication in vehicles, but has

reached by now widespread use in the field of
production automation. The CAN bus runs
a masterless, message oriented bus protocol
with CSMA/CA (Carrier-Sense Multiple Ac-
cess/Collision Avoidance) access mode. Bus
access is granted to each participant by bitwise
arbitration using individual message IDs. Sev-
eral cooperating error detection mechanisms
guarantee fast system wide error detection and
error recovery. CSMA /CA bus access, in com-
bination with prioritization of the messages
and the short data block length (max. 8 Byte)
lead to a very short latency for high priority
messages. The sophisticated bus protocol and
data rates up to 1 MBit/s lead to an excel-
lent performance of the CAN field bus. At the
same time it demands very high quality design
of components able to execute this protocol.

In our example, the REAR prototyping en-
vironment is used to implement a CAN bus
monitoring and diagnosis system. Two dis-
tinct functions need to be performed by the
CAN monitor: First, it has to be a fully func-
tional CAN bus participant. In addition to that
it needs to execute the data sampling and test
signal and error generation functions necessary
for monitoring and analyzing the CAN bus.

The individual tasks to be performed for the
CAN bus participation (from now on called
CAN bus controller) can be classified by an
orthogonal set of attributes: The deadline of
the task and complexity of the function to be
performed. This is shown in Table 3 (see also
Figure 2).

An analysis of the timing and complexity
requirements resulting from the CAN bus pro-
tocol yields three distinct groups of tasks. At
message level, the complexity of the tasks —
message identification and message frame gen-
eration, CRC checksum generation, error pro-
tocol functions, data handling — is medium
to high. The timing constraint here is iden-
tical with the length of one CAN message,
44 — 108 us (44 control and up to 64 data bits,
at an assumed data rate of IMHz).

The controller tasks at bit level — transmis-
sion of the message bits, CRC checksum error
detection, bit stuffing and destuffing— need to

Table 3: CAN controller functions

| Function | Deadline | Complexity]
Message Level:
Message Identification 44-108 ps medium
Message Frame Genera- || 44-108 us medium
tion
CRC Checksum Gener- || 44-108 us high
ation
Error Logic 44-108 ps high
Data Handling 44-108 ps medium
Bit Level:
Message Transmission 1 ps medium
Generation
CRC Error Detection 1-3 ps medium
Bit Stuffing and De- 1 ps medium
stuffing
Below Bit Level:
Bit Timing 270 ns low
Bitwise Arbitration 60 ns very low

be finished in the worst case before the start
of the next message bit. That results in a tim-
ing constraint of 1 us. The complexity of these
tasks is medium.

Bitwise arbitration — i. e. transmission is
stopped before the next message bit if a station
sending a message with higher priority ID is
detected on the bus — and synchronization of
the sample points while receiving the message
bit stream (bit timing) are tasks with timing
constraints below bit level. The complexity of
these tasks is low to very low.

The hardest time constraints on the CAN
controller are imposed by the bit timing and
bitwise arbitration tasks. A worst case anal-
ysis of the timing parameters of the CAN bus
protocol have resulted in deadlines of 60 ns and
270 ns, respectively. It is obvious that these re-
quirements can only be met in hardware. The
bit timing logic and transceiver control logic
of the CAN controller were therefore imple-
mented on the CIOP using the already men-
tioned CASE tool chain. The execution times
of the arbitration mechanism and the bit syn-
chronization were found to be 1 and 2 clock
cycles respectively. So the deadlines of these
two functions will be met by this implemen-
tation even if the CIOP runs with the slower
33 MHz PCI clock.

Subject of future work will be a similar
analysis and implementation for the remaining
CAN controller functions, which will partially
be realized in software.

5 Summary and future work

We started with the analysis of different em-
bedded high performance applications and de-
rived a task classification regarding computa-
tion complexity and required response times.
Based on this model we built a basic REAR ar-
chitecture from off-the—shelf-components with
appropriate processing nodes: One HPU, one
RTU and one CIOP. A main purpose of REAR
is to facilitate the WCET analysis on the HPU
by SW-means (long computation times, inter-
rupts disabled) and the RTU by HW-means
(fast SRAM replaces 2nd-level cache).

All the necessary software tools for cross
compiling, down loading, as well as the FPGA
oriented part of the CASE tool chain are al-
ready in use, whereby the Statemate VHDL
code generator leaves room for optimization.

The implementation of the robot arm con-
troller has shown that our Configurable I/O
Processor is capable of processing several dif-
ferent non trivial event driven I/O tasks. Be-
cause the CIOP is not intended as an accel-
erating coprocessor, but a processing unit for
independent I/O tasks, the HW/SW-interface
throughput is sufficient.

In the near future we plan to implement
larger application examples on the REAR ar-
chitecture, which take advantage of the differ-
ent types of processing nodes. One challenging
CIOP-task will be the high data rate I/O oper-
ations of a real-time image acquisition. While
exploring the design space by moving tasks
between software (RTU, HPU) and hardware
(CIOP) we will gain the knowledge necessary
to expand our CASE tool chain towards parti-
tioning and generation of efficient code for the
software parts.

References

[1]

Klaus Gresser. An event model for dead-
line verification of hard real-time systems.
In Proc. Fifth Euromicro Workshop on
Real Time Systems, pages 118-123, Oulu,
Finland, June 1993. TEEE.

Klaus Gresser. Echtzeitnachweis ereignis-
gesteuerter Realzeitsysteme. Number 268
in Fortschrittsberichte VDI, Reihe 10.
VDI-Verlag, Dusseldorf, 1993. Disserta-
tion am Lehrstuhl fiir Prozefirechner der
TU Miunchen.

Herbert Thielen. Automated design of dis-
tributed computer control systems with
predictable timing behaviour. In J. A.
de la Puente and M. G. Rodd, editors,
Proc. 12th IFAC Workshop on Distributed
Computer Control Systems, pages 47-52,
Toledo, Spain, September 1994. TFAC.

Kevin Jeffay. Scheduling sporadic tasks
with shared resources in real-time sys-
tems. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 89-99,
Phoenix, AZ, December 1992.

Mani B. Srivastava and Robert W.
Brodersen. Siera: A unified framework for
rapid—prototyping of system—level hard-
ware and software. IEEE Transactions on
Computer-Aided Design of Integrated Cir-
cuits, 14(6):676-693, June 1995.

Massimiliano Chiodo, Paolo Giusto,
Daniel Engels, Harry Hsieh, Attila Jurec-
ska, Luciano Lavagno, Kei Suzuki, and
Alberto Sangiovani-Vincentelli. A case
study in computer-aided codesign of em-
bedded systems. Design Automation for
Embedded Systems, 1(1):51-67, January
1995.

Jorg Henkel, Rolf Ernst, Wei Ye, Michael
Trawny, and Thomas Benner. COSYMA':
Ein System zur Hardware/Software Co-
Synthese. GME Fachbericht Mikroelek-
tronik, 15, 1995.

8]

[10]

[11]

[12]

[13]

[14]

[15]

Rajesh K. Gupta and Giovanni de Micheli.
A co—synthesis approach to embedded sys-
tem design automation. Design Automa-
tion for Embedded Systems, 1(1):69-120,
January 1995.

Raul Camposano and Jorg Wilberg. Em-
bedded systems design. Design Automa-
tion for Embedded Systems, 1(1):5-50,
January 1995.

Pai Chou, Ross B. Ortega, and Gaetano
Borriello. The chinook hardware/software
co—synthesis system.
Symposium on System Synthesis, Cannes,
France, September 1995.

In International

Jeffrey C. Mogul and Anita Borg. The
effect of context switches on cache perfor-
In Proc. jth Intern. Conference
on Architectural Support for Programming

Languages and Operating Systems, pages
75-84, Santa Clara, April 1991. ACM.

mance.

Yerang Hur, Yyoung Hyun Bae, Sung-
Soo Lim, Sung-Kwan Kim, et al. Worst
case timing analysis of RISC proces-
sors: R3000/R3010 case study. In 16th
IEEE Real-Time Systems Symposium,
Pisa, Italy, December 1995.

Robert Pinzinger. Speichersubsystem
und flexible ProzeBanbindung fiir einen
Rechnerknoten eines Rapid-Prototyping—
Systems, 1997. Diplomarbeit (masters
thesis) am Lehrstuhl fiir Prozefirechner,
TU Miinchen.

Applied Micro Circuits Corporation, San
Diego, CA. AMCC 55933 PCI Controller
Data Book, 1996.

Christian Miuhlbauer. Konzeption und
Implementierung einer Schnittstellenkarte
mit programmierbaren Logikbausteinen
zur Erweiterung einer Rapid-Prototyping
Plattform, 1996. Diplomarbeit (masters
thesis) am Lehrstuhl fiir Prozefirechner,
TU Miinchen.

