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Abstract: A mandatory condition for mechatronic systems to be re-
alized in a unified manner is a communication system interconnecting
the different, spatially distributed subsystems. In the last few years so
called fieldbusses have been proposed to fulfill this task. A new commu-
nication concept presented in this paper provides the means to integrate
sensors, actuators and computers to a complete mechatronic system.
The requirements are analyzed and discussed in this paper. The article
also explains, how these requirements are taken into account to realize
MERKUR. The last part outlines the main aspects of the hardware
implementation.

1 Introduction

Distributed real-time computer systems are replacing conventional centralized con-
trol techniques especially in this field of mechatronic systems, e.g. process control
systems or hardware-in—the-loop simulations. Typical distributed systems are char-
acterized by a controlled object (the mechanical system) and a control system (the
computers). These two elements are connected via sensor based and actuator based
interfaces. The control system accepts data from the sensors, processes them and
outputs the results to the controlled object via the actuators. The aim of this ac-
tion is to affect the dynamic mechanical object in such a way, that its behavior is
optimized.

The general information flow between the two main components is illustrated in Fig-
ure 1. This process of merging mechanical parts with sensors, actuators, computer
and software to an integrated system is known as mechatronics.

In practice, Figure 1 describes only a global view of the system. Typically, the
mechanical system is spatially distributed. It consists of multiple subsystems and
its dynamics model is represented by several degrees of freedom. The situation of
the control system is similar. Due to the complexity of today’s mechanical systems
and due to the increasing iteration rates of the control loops, the computational
loads of the algorithms are extremely high.

For that reason, most control units do not ”fit” within a single computer module.
Instead, many require multiple Central Processing Units (CPUs) to handle the mas-
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Figure 1: A general mechatronic system

sive load of the algorithms. These distributed approaches of realizing the mechanical
and the control system have presented some problems in themselves. Probably the
most demanding of these problems has been the question how to interconnect all
these distributed components, including the sensors and actuators, to form an unit
as displayed in Figure 1.

This paper will describe a ring—structured communication system based on a de-
terministic channel access protocol. First of all the requirements of the system will
be analyzed and compared to existing concepts. The next part of the article will
outline the main architectural principles which have been followed in the design
of MERKUR (MEchatronic Redundant K[Clommunication Under Real-Time
Conditions). Finally, the paper will take a look at the hardware structure of the
implemented system.

2 Architectural characteristics of MERKUR

2.1 Requirements and existing concepts

As already mentioned, the fundamental processing work of the control stations con-
sists of the following sequence. First of all, the actual state of the mechanical system
is perceived by reading new values of the connected sensors, then the new actions
that should take place are calculated and finally the new control values are trans-
mitted via the actuators to the controlled system.

This general processing sequence is essential for mechatronic systems, but not exclu-
sively found there. It requires a suitable communication system for transporting the
input and output information of the control loop from respectively to the controlled



object. It is extremely important to avoid inconsistencies between the internal states
of the control system and the controlled object. The control system has to respond
to an external stimulus from the environment within an interval dictated by the
object, called response time. This time must be guaranteed on the one hand by
the control, on the other hand by the communication system. In a multitude of
mechatronic applications typical sample rates are in the order of 1 to 100 millisec-
onds. In addition, the communication system must support a kind of fault tolerance,
timeliness, maintainability and extensibility.

In detail, the communication system has to offer the following criteria to satisfy the
requirements of the mechatronic system:

e The number of participants, consisting of sensors, actuators and computer
nodes, is typically < 100.

e The distributed components reside within a radius of about 50 meters.

e The main load on the communication media is caused by periodic messages
transporting sensor and actuator values.

e The sample rate of the control loops are in the range of 10 to 1000 Hz.
e A typical resolution of 16 bits for the data types has to be supported.

e Jitter in data transfer can only be tolerated when its order is much smaller
than the sample period.

e Under certain circumstances, sporadic communication with predictable small
latency should be possible. Such a situation can occur when switching to an
emergency mode is necessary.

e Because of the critical environmental conditions, in which the communica-
tion system will operate, the system has to be insensitive to electromagnetic
disturbance.

e Integration respectively disintegration of communication nodes during opera-
tion is a desired feature, but not of utmost importance.

e A simple interface to the application layer should allow an efficient access to
the distributed data.

These requirements are the results of a study made by the interdisciplinary research
project [14].

MERKUR isn’t the first concept for a bus system interconnecting distributed sys-
tems. Many other concepts for so called fieldbusses like "PROFIBUS” [2, 5],
"Interbus-S” [8, 3], "CAN” [13, 6], 7ASI” [12], ”SERCOS” [15] and the real-time
network "SCRAMNET” [4] exist. All these implementations were examined and
compared with regard to the important items mentioned above. It’s far beyond the
scope of this article to discuss this study in all its details here.



As a short conclusion, we can establish, that none of the existing fieldbus concepts
accomplish all the mechatronic requirements listed above which are necessary for
coupling multiple computer nodes and sensor/actuator units. Many of them can’t
guarantee the timing constraints because of too small transmission rates of the
communication medium or too much overhead in the communication protocol. An
exception represents the ”"SCRAMNET” implementation, whose design philosophy
is to realize a distributed real-time simulation environment consisting of multiple
workstations. This design allows a node delay of 1usecs. The actual concept of
MERKUR combines many aspects found in the different realizations and some new
ones especially with respect to a fast, deterministic and reliable communication
system.

2.2 Topology and transmission medium

The node interconnection topology is perhaps the most common way to describe
local network architectures. The MERKUR net topology can be characterized as a
ring structure. Each node possesses 4 ports. The two neighbors are connected via
2 ports to this node (Figure 2). This structure has been chosen for the following

reasons.

Figure 2: MERKUR net topology

First of all, the choice of the physical medium influences the whole system design.
Due to the increasing importance of optical fibers, MERKUR is based on a low
cost plastic optical fiber. This fiber is the only supported transmission medium.
By employing this fiber, we can profit by different advantages: fibers minimize
the electromagnetic disturbance caused by the environment. Also the aspired high
bandwidth of 10 to 50 MBit/sec can be realized with few effort over a length of
about 20 meters.

One disadvantage of optical fibers is manifested in the fact that only point-to—
point connections between two participants can be built with low expense. For that
reason, the chosen topology of the communication system is a ring structure as found
in many other systems based on optoelectronic transmission techniques.



2.3 Deterministic information distribution

Each real-time system has to provide the specified timely service to its environment
(see section 2.1). To meet this requirement, two fundamentally different methods
exist: the event—triggered approach and the time—triggered approach [10].

In an event driven system, a significant event in the environment or in the computer
triggers the start of a corresponding system action — for example the activation
of a special task on a node. In such systems the communication happens only on
demand.

A time driven system is characterized by the fact, that the moment when a particular
message is passed over the communication system is predefined and therefore known
a priori. Because of this property, the system behavior concerning the information
transport is totally fixed. Data transmission happens permanently, even when no
task needs the data at the moment.

These two main concepts are compared comprehensively by Kopetz [10, 11]. By
analyzing the desired requirements of the mechatronic communication architecture
as described in section 2.1 and by comparing them with the theses in [10], the
only possible realization consists of a time based system architecture. The following
considerations will emphasize the decision for a time orientated concept.

To satisfy the demand of timeliness in all imaginable situations like peak load, the
system performance must not degrade with variations in the frequency of external
stimuli or due to message congestion on the real-time bus [9]. The medium access
delay time of the bus must be independent of the communication traffic on it. To
realize and especially to prove this behavior by event—triggered concepts is much
more complicated than by time-triggered approaches. Therefore in MERKUR a
TDMA (Time Division Multiple Access) strategy provides a deterministic, load
independent and collision free procedure for medium access like other existing real—
time busses designed for special purposes as MARS [9] or SERCOS [15].

2.4 Data communication

Distributing information over the MERKUR ring is both simple and fast. The
engineer of the control system software only has to know, that the system—wide
common data is represented as a contiguous dataset. The application program can
access this dataset by linking a start address to the beginning of the shared—memory
block. The operating system can assist this access by a special service routine.

Once this is accomplished, data communication can take place. Each time a new
variable value is written to the shared—memory, it is automatically updated in all
other nodes on the network ring.

Refer to Figure 3 for an overview of the just mentioned process. The CPU
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"writes” a dataword of 16 bit width to a memory location, which physically re-
sides on the MERKUR card, by simply executing an assignment statement like
speed = actual _speed or a system call such as WriteData Value(Speed, actual_speed).
This formulation is well known from most high—level programming languages. The
MERKUR memory, also named real-time data base, "looks” to the CPU as all
other memory existing in the computer system, because it is mapped in the normal

address space of the host computer.

All the other work concerning the transmission of the data is managed transparently
by the MERKUR electronics. Every other component connected to the ring places
the 16-bit message automatically in its own local memory at the same relative phys-
ical address as the producer node during the next communication cycle. This cycle
is started periodically.

The key features of this technique are the simplicity, the speed of data exchange,

Figure 3: MERKUR data access

the access at any time and the unified and easy structure of the software.

2.5 Aperiodic communication

Beside the normal data traffic over the communication channel, a mechanism that
handles reactions on sporadic, external events and exceptions is required. For treat-




ing this type of message, the basic tool of the system engineer is to utilize hardware
interrupts. Because of the decentralized system concept, these interrupts must be
communicated among nodes efficiently, fast, and ”deterministically”.

This fact is also taken into consideration by the design of MERKUR. Every node has
the possibility to generate two different interrupts whose meanings can be defined
freely by the application designer. In addition to this, all nodes have the ability to
generate a so called failsafe interrupt, whose meaning can’t be modified.

The failsafe interrupt is used, if a serious failure occurs, either in the control system
or the controlled object. If such a situation happens, a further continuation of the
operation of the object is not possible or does no longer make sense. The system
must shut down and stop in a controlled predetermined manner. Similar to normal
exceptions, the activation of failsafe can be done by every node integrated in the
communication scheme.

Up to now only the possibility of generating aperiodic events has been discussed.
The mechanism, how all these abilities are implemented in MERKUR, is described
in section 2.7.

2.6 Fault tolerance

The ring topology naturally includes an uncertainty, because a break of one trans-
mission line stops the complete information transfer of the entire system.

A) B)

Figure 4: Failure situations: A) channel failure B) node failure

Therefore, the communication topology of MERKUR consists of an antiparallel
duplex—ring (see Figure 2). This design feature covers permanent transmission line
faults by using the secondary ring segment for bypassing the data flow at the error
location as shown in Figure 4. With this method it is also possible to bypass



a defective node. When the ring is already operating in one of the two states
illustrated in Figure 4, a repeated occurrence of a similar fault forces the system
to enter a failsafe state. This step is absolutely necessary because this additional
event would divide the remaining ring into two independent ring systems. Such a
constellation does no longer represent a valid configuration.

Another fault situation occurs, when data transport fails because of mainly transient
failures. This is the case, when a bit toggles falsely during communication. This
kind of error is handled by the protocol mechanism.

2.7 Efficient protocol

In the protocol, driven on the communication system, each participant is represented
at least by one 16-bit slot. These slots of the TDMA frame are arranged successively
according to their slot number 7. This number is also used by the MERKUR, control
unit as an offset for addressing the real-time data base (see section 2.4). The start
of a communication cycle is marked by the header packet "CS” as illustrated in
Figure 5.
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Figure 5: TDMA protocol of MERKUR: CS Communication synchronization slot,
DTi Data telegram slot ¢

This form of protocol allows an implicit addressing of the different nodes inside
one communication cycle whereby the efficiency of the protocol increases and the
overhead of sending explicit addresses is avoided. When a message is detected faulty
— the odd parity bits indicate this — it is rejected and replaced by the message of
the following cycle. This is done as fast as possible and avoids overhead of message
acknowledge and message repeating mechanisms.



Furthermore, every instant of the control system can be configured in such a way
that it checks the actuators for being alive and operating correctly. The method for
doing this is the ” Alive”-bit in the data telegram. All bad actuators are not able
to toggle this bit. For example this is the case, when an actuator is powered down.

Finally, the protocol has to handle reactions on sporadic, external events and excep-
tions. As mentioned in section 2.5, every node possesses the possibility to generate
two universal and one failsafe interrupt. Their transmission is done by replacing the
normal data packet. First of all, the ” Alarm”-bit is set in the own slot. Then the
alarm reason is encoded in the data field (DO ...D15). Again, the address of the
node generating the interrupt is given implicit. This method of overriding implies,
that one data message gets lost. To avoid the loss of more than one message, these
two different information types are alternated in worst case situations.

3 Node architecture

3.1 Types of participants

A mechatronic system is composed of a passive mechanical system and computer sta-
tions. These two parts are linked together by the sensors and actuators. The commu-
nication involves only the sensors, actuators and computers. Therefore, MERKUR
offers two basic types of nodes. The first type is named ”slave” and allows to connect
interface components (sensors, actuators). Its functionality is limited to simple 10
operation. A slave occupies exactly one slot of the TDMA frame (see Figure 5).

More than one slot can only be assigned to the so called "master” nodes which
are part of the control system. Such a node is always realized as an extra board,
mounted in a computer as shown in Figure 3. These master nodes are the second
type of nodes.

3.2 Slave node

The slave node is arranged in multiple functional modules. One of the most impor-
tant units is the shift register in the middle of Figure 6. Its function is to read or
write values from or to the mechanical objects depending on the chosen operating
mode of the node (sensor or actuator). This register reflects also the whole organiza-
tion of the ring as a large distributed shift register. Every transmitted information
passes this register unit. This method is one of several to realize medium access
[7]. The slot counter supports the selection of the slot, which corresponds to the
node, by comparing the actual counter value with the node address adjusted by DIP
switches.
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Figure 6: Functional block diagram of a slave node

Another essential part is the switchbox. Its task is to attach the physical inputs
PI and ST (respectively outputs PO and SO) to the logical inputs INPUT and
BSR (respectively outputs OQUT PUT and BSS). The primary stream controller
is utilized to supervise the logical input INPUT for a channel failure (signal pcf)
or a test signal (ptst), which serves for checking an already broken line. The same
work is done by the secondary part for the input BSR (signals stst and scf). Refer
to Table 1 for an overview of the mapping process for all imaginable channel faults.
In normal operating mode, the signals BSR and BSS are used to handle the data
streams on the secondary ring segments.

‘ channel failure type H INPUT ‘ oUTrPUT H BSR ‘ BSS ‘

all 4 ports ok PI PO ST SO
SO or PI defective ST PO PI SO
ST or PO defective PI SO ST PO

Table 1: Channel mapping from physical to logical ports of the switchbox: BSR bit
stream receiver, BSS bit stream sender

This concept implements a local fault management for the data channels, because
no central station is needed to handle such situations. Every node is checking and
reacting for itself, but all master nodes are informed of the new ring configuration



by sending an alarm packet after the fault detection. This mechanism allows a fast
rearrangement of the ring in the case of a line break. The detailed implementation
is described in the masterthesis [1].

3.3 DMaster node

The master node integrates the general aspects of a slave with the extended func-
tionality necessary for a master node. One of these features is the interconnection
between MERKUR and the computer. For that reason, the master possesses an AT
bus interface. The actual design is implemented for a personal computer (PC) as
master station. The AT bus allows to access two different memory blocks on the
MERKUR board. On the one hand, the normal data memory already described in
section 2.4 is located on the master board. On the other hand, a special configuration
memory is accessible.
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Figure 7: Functional block diagram of a master node

The meaning of that memory block is to describe every TDMA slot (maximum
number is 4096) more precisely by one byte, so that the hardware knows how to
handle every slot. The 8 bit width dataword encodes the following attributes of



one slot: the first bit marks the last valid slot of the whole frame, another one
determines, whether the slot is an actuator, which must be served by the node. The
third and fourth bit declare, if the ” Alive” bit is enabled or ignored and if a slot
belongs to the local or a foreign host.

To evaluate the contents of this SRAM-based configuration memory for each slot
during execution, it is necessary to read the value at the beginning of the outgoing
message slot. Before the ring is started by setting a bit in the control port, it must
be guaranteed, that the configuration memory is initialized correctly. A slot counter
is used for addressing both memory types.

As illustrated in the Figures 6 and 7, every node uses a clock recovery unit to extract
the clock from the data stream. The ring structure must possess one node, which
generates this clock base. Exactly one master must be selected by setting a bit in
the control port to do this job. Such a master is named ”special master”.

As mentioned above, a master can also possess more than one slot. In a system with
n nodes the shift registers can only store n datawords. A FIFO buffer is activated
exclusively by the special master to hold the rest of the distributed information.
This FIFO also compensates minimal timing discrepancies between the incoming
and outgoing data stream clocks.

Finally, the special master initiates also the operation of the secondary ring. This
work includes the generation of a special test pattern for the output BSS (bit stream
sender), the corresponding clock base and the evaluation of the received pattern at
port BSR (bit stream receiver). During normal operation (no channel faults exist),
all nodes communicate over the primary ring segments and the secondary part is
only tested for a fault.

4 Conclusion

The design of distributed mechatronic systems requires a suitable communication
system. In this paper a real-time interconnection concept has been presented, that
provides all services needed to distribute the necessary information.

For proving the correct operation of the described ideas in practice, the MERKUR
system has been implemented as a prototype consisting of two slave modules and
one master node. The last mentioned one is realized as a PC based system. The
aspired bandwidth of 20 MBit/sec is not reached at the moment. Actually a trans-
mission rate of 4 MBit/sec is working. This lower rate is caused by the applied fiber
optic transmission devices and the provisional board layout used to implement the
prototypes.

The whole interpretation of the communication protocol is done by hardware without
a microcontroller. The slave modules consist of two CPLDs (complex programmable
logic devices). The master uses five of these chips. A further improvement in system



behavior is expected, when the message protocol format is modified in such a way,
that the encoding of the aperiodic information is separated from the normal data.
This can be done by extending the slot format with several additional bits. This
extension avoids the loss of one data message in the case of an alarm.

Beside the hardware, a run-time system is needed to allow a unified integration
of the application software. This run—time system serves as an interface between
the hardware and the user software. The architecture of the run—time software
is developed at the moment. Results of this design process will be presented in
following papers.

5 Remarks

The work presented is sponsored by the Volkswagen—Stiftung, Hannover, Germany,
as part of the interdisciplinary research project ”Integration of distributed mecha-
tronic systems with special regard to real-time behavior”.
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