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Abstract

The introduction of domestic robots into the real world faces a variety of interdisciplinary
challenges. In particular, user acceptance and the willingness of humans to cooperate
and interact with robots have to be maintained. In turn, robots should be aware of
their situational knowledge limitations and be able to pro-actively and flexibly acquire
the knowledge needed to perform their given objectives. This dissertation focuses on the
development of informational and emotional alignment strategies to provide a prosocial
common ground in human-robot interaction (HRI), and to pro-actively acquire missing
task-knowledge from natural language dialog.
A robot has to cope with various environmental impacts, e.g. noisy outdoor conditions.

In order to overcome this bottleneck of speech recognition, different dialog strategies, as
well as specified miscommunication handling requests are developed and experimentally
evaluated in this dissertation. In order to increase the efficiency of information retrieval in
case of varying speech recognition performance while maintaining highest possible natural-
ness for the user, a switching mechanism is developed to allow smooth transitions between
open and closed requests. The dialog strategies are embedded in a framework for pro-
active information retrieval, implying hypothesis-driven information processing, as well as
representing and evaluating the acquired knowledge during task-execution.
User acceptance and the willingness to cooperate and interact with a robot are increased

by a targeted integration of social-psychological interaction mechanisms in a behavior con-
trol model. In human-human interaction, empathy and a feeling of having something in
common with a person in need of help, e.g. in personal attitudes, are essential motiva-
tional influence factors for prosocial behavior. In this work, the developed mechanisms
of emotional behavior control are successfully applied in evaluative experiments to induce
these feelings in human users towards a robot. In particular, this is achieved by a combi-
nation of emotionally adaptive mimicry and speech, and pro-active small-talk mechanisms,
employed prior to task-related interaction in order to establish a prosocial and cooperative
common ground, generalizable to any human-robot interaction.
In order to combine the explored aspects of informational and emotional alignment into

an integrated approach, a general framework is developed for task-related HRI, dividing a
task in cognitive and social sub-tasks. The generalizability of the fully integrated approach
is evaluated in an urban outdoor field trial, extended by an emotion recognition module
to emotionally align with humans in a fully automated way during information retrieval.
Since emotional alignment is highly associated with the legibility of emotional expressions,
a differentiated assessment of the design-dependent legibility and user-acceptance issues
is conducted in this thesis for emotional speech and mimicry, comparing two differently
designed robotic heads of either machinelike versus more humanlike design. Additionally,
impacts of dispositional empathy on the human performance in identifying the animated
emotions are revealed, and the importance of an interactive context for emotion recognition
is confirmed.
The experimental results of the outdoor field trial re-confirm the positive effects of

combining informational and emotional alignment since all tested dimensions of user ex-
perience resulted in comparably high mean ratings, positively related with the willingness
of humans to help a robot. Finally, the results indicate that informational and emotional
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alignment are compensating each other with regard to user experience: In case of poor
speech recognition performance in outdoor environments, successful emotional alignment
keeps up the interest of humans to cooperate with a robot.

Summarizing, it can be deduced that proactive information retrieval benefits from an
integration of emotional alignment strategies, since it reinforces the underlying prosocial
motivation of humans to help a robot, thereby even compensating decreases in user accep-
tance due to bad speech recognition performance. Accordingly, the ideas, concepts, and
approaches developed in this thesis significantly advance the state of the art in design and
control of social HRI and information extraction from natural language dialogs.
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Zusammenfassung

Der Einsatz von privaten Service-Robotern birgt eine Vielzahl von interdisziplinren Her-
ausforderungen. Die Benutzerakzeptanz sowie die menschliche Bereitschaft, mit Robotern
zu kooperieren und zu interagieren spielt dabei eine besondere Rolle. Im Gegenzug sollten
Roboter die Grenzen ihres Wissens kennen und dazu im Stande sein, sich benöigtes Wissen
auf pro-aktive und flexible Weise anzueignen, um die vom Menschen gestellten Aufgaben zu
erfüllen. Der Schwerpunkt dieser Dissertation liegt in der Entwicklung von informations-
bezogenen und emotionalen Anpassungsstrategien, um einerseits eine prosoziale Basis in
der Mensch-Roboter Interaktion zu schaffen und andererseits Robotern einen pro-aktiven
Informationsgewinn aus natürlichsprachlichen Dialogen zu ermöglichen.
Roboter müssen robust gegen viele Umwelteinflüsse werden, z.B. gegen hohe Lärmpegel

in Außenbereichen. Zur Überwindung dieses Hindernisses für die Spracherkennung des
Roboters, werden in dieser Dissertation Dialogstrategien und spezifische Rückfragen zur
Klärung von Mißverständnissen entwickelt und experimentell evaluiert. Um die Effizienz
der Informationsbeschaffung im Fall einer instabilen Spracherkennungsleistung zu erhöhen,
und gleichzeitig die größtmögliche Natürlichkeit für den menschlichen Gesprächspartner
aufrecht zu erhalten, wird ein Schaltmechanismus entwickelt, der fließende Übergänge zwis-
chen offenen und geschlossenen Fragen im Dialog ermöglicht. Die Dialogstrategien sind in
ein Rahmenkonzept für pro-aktive Informationsbeschaffung eingebettet, das sowohl hy-
pothesengesteuerte Informationsverarbeitung vorsieht, also auch die Repräsentation und
Evaluierung des akquirierten Wissens während der Ausführung einer Aufgabe.
Benutzerakzeptanz und menschliche Kooperationsbereitschaft werden in dieser Arbeit

durch den Transfer von sozialpsychologischen Interaktionsmechanismen in die Verhaltens-
teuerung eines Robotersystems erhöht. In zwischenmenschlichen Interaktionen sind Em-
pathie, zusammen mit dem Gefühl, etwas mit der Hilfe benötigenden Person gemeinsam
zu haben, z.B. gemeinsame persönliche Eigenschaften, essentielle Motivationsfaktoren für
prosoziales Verhalten. In den evaluativen Experimenten dieser Arbeit, konnten die en-
twickelten Mechanismen zur emotionalen Verhaltenssteuerung erfolgreich eingesetzt wer-
den, um diese Gefühle gegenüber einem Roboter zu induzieren. Im Einzelnen wird dies
durch eine Kombination aus emotional angepasster Gesichtsmimik und Sprachprosodie mit
pro-aktivem Small-Talk vor der aufgabenbezogenen Interaktion erreicht. Dadurch wird eine
prosoziale und kooperative gemeinsame Gesprächsbasis geschaffen, die generalisierbar in
jeder Mensch-Roboter Interaktion anwendbar ist.
Um die erforschten Aspekte von informationsbezogener und emotionaler Anpassung zu

einem integrierten Ansatz zusammenzuführen, wird ein generisches Rahmenkonzept für
aufgabenbezogene Mensch-Roboter Interaktion entwickelt, in dem eine Aufgabe sowohl
in kognitive als auch in soziale Teilaufgaben eingeteilt wird. Die Generalisierbarkeit
dieses integrativen Ansatzes wird in einem Feldexperiment in urbaner Umgebung evaluiert.
Um während der Informationsdialoge eine voll automatisierte emotionale Anpassung an
die Menschen vornehmen zu können, wird der Ansatz hierbei durch ein Emotionserken-
nungsmodul erweitert. Da emotionale Anpassung in einem engen Zusammenhang mit der
Lesbarkeit emotionaler Ausdrücke steht, wird eine differenzierte Bewertung der design-
abhängigen Lesbarkeit unter Berücksichtigung von Benutzerakzeptanz für die emotionale
Gesichtsmimik und Sprachprosodie zweier Roboterköpfe im Verlgeich mit maschinen-
haftem versus menschenähnlicherem Aussehen durchgeführt. Zudem wird der Einfluss von
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dispositionaler Empathie auf die menschliche Erkennungsleistung der animierten Emotio-
nen aufgezeigt, und die Wichtigkeit eines interaktiven Kontextes für die Emotionserken-
nung bestätigt.
Die experimentellen Ergebnisse des Feldexperiments erbringen eine Rückbestätigung für

die positiven Effekte einer Kombination aus informationsbezogener und emotionaler An-
passung, da die Mittelwerte der menschlichen Nutzererlebnisse auf allen getesteten Dimen-
sionen verlgeichsweise hoch sind und zudem positiv mit der menschlichen Kooperations-
bereitschaft mit einem Roboter korrelieren. Abschließend weisen die Ergebnisse darauf
hin, dass informationsbezogene und emotionale Anpassung sich gegenseitig in Bezug auf
das Nutzererlebnis kompensieren: Im Fall schlechter Spracherkennung durch das System
in Außenbereichen kann erfolgreiche emotionale Anpassung an den Nutzer dessen Interesse
zur Kooperation mit dem Roboter aufrechterhalten.
Zusammenfassend lässt sich sagen, dass pro-aktive Informationsbeschaffung von der In-

tegration emotionaler Anpassung profitiert, da diese die zugrundeliegende Motivation zum
prosozialen Verhalten in Menschen verstärkt und in Zuge dessen sogar sinkende Benutzer-
akzeptanz aufgrund schlechter Spracherkennung des Systems kompensieren kann. Fol-
glich erhöhen die in dieser Arbeit entwickelten Ideen, Konzepte und Ansätze den Stand
der Forschung maßgeblich in Bezug auf Design und Verhaltenssteuerung in der Mensch-
Roboter Interaktion, sowie bezüglich der Informationsextraktion aus natürlichsprachlichen
Dialogen.
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1 Introduction

Robots are more and more entering our daily lives and gradually moving from strictly
structured industrial settings into our private households. Prominent examples of current
commercial domestic robots are a vacuum cleaner and robotic toys, see Figure 1.1.

Currently, commercial robots are limited to one specific functionality and, accordingly,
their design and capabilities correspond to this functionality, e.g., there is no need for a
vacuum cleaner to be socially interactive, and the only purpose of robotic toys is to enter-
tain human users. Thus, current domestic robots are mainly regarded as tools, differing in
their function, and social interaction is limited to entertainment purposes. Nevertheless,
recent studies show that humans tend to anthropomorphize these tools, i.e. by attributing
live-like qualities to them [23]. One example for this effect is the use of anthropomorphic
language when talking about technical devices. Thereby, the extend of anthropomorphic
language is bound to the function and the design of the devices, i.e., a robotic dog is
specifically more anthropomorphized than a robotic vacuum cleaner or an iPad [48].

In the research field of robotics, there is an increasing trend towards developing robots,
that are designed to assist human users in more complex cognitive tasks and, thus, cover
more than one functionality, thereby encountering for a combination of social and cognitive
skills that go beyond the capabilities of tools. This process is comparable to human
phylo- and ontogeny, providing evidence for initially separated genetic roots of cognition
and speech with an originally isolated function: According to [159], human thinking was
initially involved in the use of tools, and communication was solely associated with its
social function in terms of utterances that are “directly related to the action itself”, and
not on a meta-level, where humans communicate about any topic. Thus, in the ontogenetic
development of a child, a “pre-linguistic stage” in cognition, and a “pre-intellectual stage”
of communication, is established. These different genetic lines are developing independently
of each other, until a certain point is reached in infancy, “whereupon thought becomes
verbal and speech rational” [159], as long as the full complexity of social cognition is
developed and communicable.

For robotic research, this means that a combination of cognitive and social skills is
indispensable when aiming for robotic ”companions” [99, 118], designed to support and
complement human users in socio-cognitive tasks of their daily lives, starting with possible
differentiation between a task and its different sub-tasks, and/or the consideration of user
preferences while cleaning the floor, up to coaching or rehabilitation applications. In every
case, the difference to current commercial robotic vacuum cleaners and robotic toys is that
human users will communicate with their robot about its task(s) or any other topic, which
is not longer confined to an “action itself” and, thus, turns into meta-communication. This
means, that human-robot communication evolves beyond simple speech commands that
trigger a robotic action towards deeper understanding dialog systems, capable of extract-
ing and representing task-relevant information from human speech input in ontological
databases.
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1 Introduction

Figure 1.1: Examples of current commercial domestic robots: AIBO1, Roomba2 and PLEO3

As a consequence, a need of interaction evolves between humans and robots when sharing
a more complex task-context, in contrast to optional playful interactions with robotic toys.
Since communication is not restricted to explicit verbal utterances but also entails implicit
non-verbal components, e.g., mimicry, extensive studies are conducted in the research field
of human-robot interaction (HRI) to use and maximize the above mentioned effects of
anthropomorphism in HRI [47]. The resulting interaction-designs for robots range from
physical appearance to their interactive behavior in order to render the communication
with them most intuitive for potential human users [6], or to enhance playful interactions
by educational and/or therapeutic benefits for humans [41, 95, 114].

In human-human interaction (HHI), Watzlawick is often cited for his foundational ob-
servations on the nature of human communication: “One cannot not communicate”, and
“Every communication has a content and a relationship aspect such that the latter classi-
fies the former and is therefore a meta communication” [163]. Both paradigms underline
the socio-cognitive character of communication, i.e., an informational content is always em-
bedded in the social context of an interaction and, thus, the ambiguity of natural language
can only be interpreted in consideration of the social and situational context. Secondly, the
“relationship aspect” is not only motivating the interpretation of informational contents,
but also expressed in implicit non-verbal communication, meaning that humans even ex-
press their attitudes by conscious or unconscious body-language, or simply by not saying
anything where a response is expected by an interaction partner. This goes in line with
the findings of Spitz, who defined communication as “Each noticeable, conscious or uncon-
scious, directed or undirected change of behavior [...], through which a human persuades
willingly or unwillingly perception, feelings, affects and thoughts of others.” [141] Based
on these definitions it can be deduced that any communication is behavioral persuasion
at the same time, and that informational and emotional communication contents are in a
permanent interrelationship to each other during an interaction. Hence, in order to bring
HRI to a socio-cognitive level, both, the informational and the emotional dimension of
communication have to be considered and aligned with human interaction partners.

Within this context, this thesis explores informational and emotional alignment strate-
gies and their benefit for the retrieval of missing task-knowledge from humans in prosocial
HRI. The main challenges faced by the design and control of informational and emotional
alignment are summarized in the following.

1www.sony-europe.com/aibo
2www.irobot.com/global/de/store/Roomba
3www.pleoworld.com
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1.1 Challenges

1.1 Challenges

The challenges faced in this thesis focus on generalizable approaches to solve informational
and emotional alignment issues in the pro-active retrieval of missing task-knowledge from
humans. The presented work is part of the FP7 STREP Interactive Urban Robot (IURO)
project 1, a follow-on project of the Autonomous City Explorer (ACE)2, where a robot
has the task to find its way to a given goal location, e.g. because of being sent on errands
by its human user. As a challenging example for missing task-knowledge, the robot does
not posses any prior route knowledge or GPS. Accordingly, it has to find its way only by
asking passers-by for the way, as can be seen in Figure 1.2.

Figure 1.2: Exemplary outdoor interactions of the robots ACE and IURO

In the ACE project, the input modalities for humans were restricted to pointing gestures
and buttons on a touchscreen. In the IURO project, the input modalities are enhanced by
natural language speech input, as the most challenging modality of information retrieval
in noisy outdoor environments. Another challenge is to motivate unconcerned passers-by
to help the robot with missing route-knowledge for a task they do not benefit from.

Accordingly, this interdisciplinary approach faces several challenges for informational
and emotional alignment in HRI. In contrast to indoor settings, informational alignment
is impaired by poor speech recognition performance in outdoor environments, and thereby
also affects user experience (UX). On the other hand, for emotional alignment the challenge
is to set up a social situational context between a robot and humans in public spaces,
where interactions can be easily interrupted by unforeseen environmental impacts. A main
challenge is to trigger and keep up the motivation of human users to interact with the robot
in a prosocial way and keep up their interest to provide it with the missing task-knowledge
instead of walking away. Hence, a relation has to be created between the functionalities
of cognitive and emotional interaction components in an autonomous system in order to
embed information retrieval in a socially situated context. One way towards this goal is to
simulate infant development in robots by employing learning and reinforcement techniques
to build a social cognition, just like in child-adult interaction, e.g., [25]. However, learning
is very time-consuming and although it should surely be integrated in domestic service
robots, robots should be pre-equipped with a framework incorporating both, cognitive and
social task-dependent guidelines to be able to align with their human users and, thus, be
ready-to-use for their tasks in private households.

The key issues targeted in this thesis are summarized as follows:

1http://www.iuro-project.eu
2http://www.lsr.ei.tum.de/research/research-areas/robotics/ace-the-autonomous-city-explorer-project
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Miscommunication

Since the communication quality in public spaces is often impaired by noisy environmental
impacts, it is difficult for a robot to retrieve missing task-information from humans. The
use of natural language for information retrieval entails a number of difficulties, e.g. vague-
ness and ambiguity of spoken language, and the technical challenges posed by automatic
speech recognition. Thus, apart from background noise, miscommunication may be caused
by lexical or conceptual difficulties. Most existing approaches, where robots ask humans
for missing task-knowledge in order to extract information about the environment are still
operating in very simple structured indoor environments [2, 89, 102, 106]. These robots are
able to interpret and follow simple route instructions, but cannot cope with the complexity
and vagueness of natural language. Several studies successfully explored miscommunica-
tion and informational complexity arising from users giving verbal route instructions in a
simulated dialogic real-time interaction with an artificial agent executing the route instruc-
tions during the experiment [82, 135], and related error handling is integrated in spoken
dialog systems, e.g. [137]. Moreover, in contrast to state-of-the-art approaches, this work
addresses a robot that executes previously gained route instructions autonomously within
real outdoor environments. Thus, complexity and the range of potential errors increases
enormously, e.g. informational misalignment may be undetected during the dialog but
leads to errors during execution of the gained route knowledge. Thus, it is necessary to
represent and evaluate each newly gained information. As discontinuation due to weak
speech recognition complicates information retrieval from humans in public spaces, proper
handling of errors and miscommunication has to be ensured in order to provide validity
of the acquired information on the one hand, and a satisfactory experience for the human
interaction partners on the other hand.

User Acceptance

Another main challenge addressed in this thesis is the investigation of user acceptance -
related issues. The perception of robots by human users is not always positive and may
decrease over the time: First studies on the temporal progress of user experience (UX) in
households equipped with a robotic vacuum cleaner indicate an initial enthusiasm in human
users, but any enthusiasm may decrease over time due to habituation [14]. Interactive
robots may even raise the initial enthusiasm [165], but some humans may be willing to
explore the limits of robots, as observed in robotic applications developed to operate in
public spaces, where even bullying behavior was shown by human passers-by towards the
robot, e.g. [127]. In applications where useful information is provided by a robot, e.g.
shopping recommendations in malls [73, 75], the interactions are initiated by human users,
willing to interact with a robot for their own benefit. However, in this work the beneficial
effect is reversed: A robot is proactively initiating an interaction with humans in order
to get their help, i.e., to retrieve missing task-knowledge from them for its own benefit.
Thus, also prosocial biases have to be explored in order to trigger and maintain a positive
attitude in human users towards a robot. For example, Siegel et al. [134] could show that
giving the robot a gender can be of high use to induce positive attitudes in human users.
Numerous predictions on human behavior can be found in empirically validated theories
from social psychology [51]. Hence, one main challenge is to investigate the transferability
of these behavior predictions to HRI and, thus, make them integrable in robotic behavior
control models.
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Emotional Expressiveness

In order to involve emotional alignment in HRI, the emotional expressiveness of a robot
has to be considered in terms of legibility-issues regarding intentions and social cues.

In human-human interaction (HHI), studies on unconscious mimicry present findings
on the importance of facial mimicry in social interaction [34]. Thereby, the ability of
interpreting emotional expressions plays a key role for feeling empathy towards others, as
already developed in infants [19]. Dysfunctions might lead to social deficits, as observed
in autism [40]. Also in HRI, emotion recognition, expression, and emotionally enriched
communication and closed-loop behavior control have gained strong attention during the
last two decades [80, 94, 112, 119, 129]. A number of studies have already been conducted
which employ empathy as a factor in human-robot or human-computer interaction to
manipulate the attitude of users towards an artificial agent, which can be categorized
whether the artificial agents are used to express empathy [38, 99, 110, 113, 118, 149, 155]
or induce it in the user [113, 114, 124]. Empathic expressions by the agents are mostly
utilized to enhance the user experience and thus provide a benefit to the user. Another
approach is to induce empathy in the user. This is, for example, achieved via facial
mimicry [124]. The detection of emotions and its use in behavior control is treated in
several works, e.g., e-learning systems [3], pedagogical agents [46], driver assistants [4],
virtual agents [68], psychological assistance [72]. However, the effectiveness of automatic
emotion recognition is still very limited and the connection between perceived and real
emotions remains an open issue. In order to achieve the goal of incorporating social cues
in interactive robots, there are extensive research efforts on building robot heads or robots
with a full body that are able to express emotions, e.g. [29, 67, 151]. As related work shows,
there are many different designs for emotionally expressive robots, whereas a differentiated
validation of which is often pending. However, the legibility of the behavior of a robot is
important for human users in order to interpret its intentions, and for social cues to take
effect. This holds true for various behaviors, e.g., the legibility of the navigation behavior
of a robot [92]. This thesis focuses the legibility of emotional robotic expressiveness in
facial expressions and prosody in speech, as well as their impacts on task-relevant HRI.

Integration of Social and Cognitive Interaction Components

Prosocial HRI in the sense of proactively triggering effects of socialization between a robot
and a human is not restricted to information transfer, accompanied by emotional ex-
pressions. In human-human interaction, socialization is not only established by implicit
emotional expressions, but also in an explicit way. For example, human communication
patterns show mechanisms of small talk, also called “phatic communication” to establish
a common ground in form of shared beliefs between the interlocutors [17, 96]. Also many
robots use small talk, but do not evaluate its specific influence on the interaction: Grace
and George, two robots used as receptionist and guide at a conference [162], the seal robots
used in elderly care [160] and Breazeal et al [24] use small talk for their robotic weight
loss coach as a means for bonding and evaluation. Bartneck et al. [8] state phatic com-
munication to be an important factor when judging the social abilities of a robot. This
is consistent with Lee et al. [91], which evaluated human expectations when talking with
a robot. Results show that people not only tend to greet human-like robots, but also use
small talk with them during interaction instead of treating them like a non-social ticket
automaton - even with no background knowledge about the abilities of the robot. Accord-
ingly, a main challenge is not only to enrich dialog strategies for information retrieval by
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emotional mimicry and prosody in speech, but also to model integrated architectures that
combine cognitive tasks of information retrieval with social tasks to improve efficiency and
naturalness of the interaction.

1.2 Main Contributions and Outline of the Thesis

The presented work focuses on informational and emotional alignment strategies to be com-
bined in an integrative approach for prosocial information retrieval from natural language
HRI, that give the structure to this thesis as highlighted in Figure 1.3.

Human Robot

Informa onal Alignment

(Chapter 2)

Emo onal Alignment

(Chapter 3)

Prosocial Informa on Retrieval

(Chapter 4)

Figure 1.3: Outline of the thesis

The main contributions of this work are presented in the following.

Informational Alignment
The thesis targets robotic applications, where missing task-knowledge has to be retrieved
from humans before the task is executed autonomously. Hence, a permanent informa-
tional alignment has to be conducted: firstly, between the robot and the human during
information retrieval to assure that the information extracted by the robot meets the in-
tentions of the human, and secondly, a re-evaluation of the extracted information during
task-execution within the real world. Thus, it is necessary to represent and evaluate each
newly gained information. A first contribution towards this goal is the development of a
cognitive framework for information retrieval including not only HRI itself, but also in-
formation representation and real-world evaluation, as deduced from cognitive theories on
human perception processes.
Regarding information retrieval from natural language HRI, this thesis investigates how

informational alignment can be pro-actively controlled by the robot in a natural way for
the user and with regard to varying speech recognition performance in outdoor environ-
ments. Thus, dialog strategies are developed to control the dialog structure dependent
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on the environmental noise conditions. Thereby, suitable speech input is triggered, while
providing a natural and intuitive interaction design to the user as far as the environmental
conditions allow. Adequate handling of errors and miscommunication has to be ensured in
order to provide validity of the acquired information on the one hand, and a satisfactory
experience for the human interaction partners on the other hand. Along these lines, the
main types of potential miscommunication are classified and assigned to corresponding
states of information retrieval before being integrated in the dialog system.

Since speech recognition is a bottleneck for HRI in outdoor environments, two aspects
have to be considered: While a highly structured dialog leads to improved speech recogni-
tion results, it is more unnatural than a less predefined dialog. In contrast, a more open
dialog strategy makes predictions on how the answers of human conversation partners
will look like severely more difficult, thereby making high speech recognition performances
unlikely. In Chapter 2 these aspects of informational alignment are addressed in a sys-
tematical investigation of different dialog strategies with incorporated miscommunication
handling requests. Finally, a switching mechanism is developed in order to adapt the dialog
strategy to varying speech recognition conditions, incorporating smooth transitions from
open to closed requests to maximize information extraction when needed, and to switch
back to more open requests as soon as speech recognition recovers again.

Emotional Alignment

Emotional alignment is investigated in order to make use of emotional communication
modalities to establish and maintain a prosocial interaction context. Thereby, the main
contribution is a proactive control of the emotional alignment with humans by means
of targeted prosocial biases deduced from social-psychological principles, integrated in a
behavior control model for the robot.

In Chapter 3, emotional alignment is investigated in terms of triggering prosocial be-
havior towards a robot. In order to achieve this, in a first step the induction of situational
empathy towards a robot is explored, triggered by different ways of emotional facial expres-
sions animation, thereby revealing positive effects on subjective system-performance and
other aspects of user experience (UX), and -acceptance. In a second step, a new method-
ological emotional adaption approach to trigger more prosocial human reactions in terms of
increased helpfulness towards a robot is developed, deduced from social-psychological prin-
ciples of human-human interaction, and enhanced by emotional prosody in speech. Unlike
other state-of-the-art approaches, this approach proactively triggers a predefined target
behavior for the task-benefit of a robot by transferring predictions on human behavior
from social psychology to HRI, resulting in a behavior control model.

Since emotional alignment is highly associated with the legibility of emotional expres-
sions, a comparative video-based online-survey is conducted in Chapter 4, before testing
the generalizability of the approach embedded in an integrated architecture for proso-
cial information retrieval with the IURO-platform. Thereby, a systematical assessment
of the design-dependent legibility of emotional expressions in speech and mimicry is con-
ducted between two differently designed robotic heads of either machinelike versus more
humanlike design. Potential differences in the user-perception on the HRI-key concepts
of anthropomorphism and animacy are considered. An additional and more generalizable
research question is to reveal potential impacts of dispositional empathy on the human
performance in identifying the animated emotions.
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Prosocial Information Retrieval

In order to fulfill a task that depends on information retrieval from prosocial HRI, a robot
needs to manage social and cognitive sub-tasks. As an example, by triggering helpful
behavior of humans, the robot is robust against dynamic environmental changes, which
cannot be pre-programmed. Thereby, the request of the robot for help as well as the will-
ingness of the human to help, can be regarded as social meta communication that serves as
a motivational basis for information transfer, e.g., missing task knowledge. However, the
task cannot be executed before the missing information is successfully extracted from nat-
ural language dialog. Thus, informational and emotional alignment have to be interlinked
in relation to the task-success of the robot.

One contribution in Chapter 4, is a general underlying framework that integrates both,
social and cognitive sub-tasks. Informational alignment is integrated in the cognitive sub-
task of information retrieval, interlinked with emotional alignment in the social sub-task of
triggering helpfulness in human users in an implicit an explicit way of prosocial behavior
control.

Another contribution is an integrated architecture for prosocial information retrieval,
that is implemented in the dialog system of the robotic IURO-platform to be used in an
evaluative outdoor application of the integrated approach. Thus, proactive information
retrieval and prosocial behavior control are combined in form of a social sub-dialog prior
to the route inquiry-dialog: While implicit emotional adaption in terms of emotional facial
mimicry is used to increase the social capabilities and trigger empathy towards the robot, a
common ground of the interaction is created by the integration of small-talk before entering
the task-related part of the interaction. Moreover, prosocial behavior control is extended
by an emotion recognition module in order to align with humans in a fully automated way
during information retrieval.

An outdoor field trial is conducted in Chapter 4 to evaluate the integrated approach of
prosocial information retrieval. The experimental results indicate that pro-active infor-
mation retrieval in outdoor environments benefits from being combined with emotional
adaption, since it reinforces the underlying prosocial motivation of humans to help a robot,
thereby even compensating decreases in user acceptance due to bad speech recognition
performance.

The aspects addressed in this thesis contribute to a fundamental understanding of proso-
cial information retrieval as an integrated concept. Although, a variety of information
retrieving systems exist, only few methodical approaches are known exploiting their par-
ticular nature. In conclusion, this work contributes with 1) triggering suitable task-relevant
information input from human users while compensating for poor speech recognition per-
formance in outdoor environments, 2) insights on the transferability of social-psychological
principles to HRI and deduced behavior control mechanisms 3) developing, evaluating, and
applying an integrated framework of alignment strategies for prosocial information retrieval
from natural language HRI. This work is highly interdisciplinary by applying human inter-
action patterns from linguistics and social psychology to robotic applications. The thesis
is assigned to the context of information retrieval from natural language human-robot
interaction (HRI), yet especially the socio-cognitive character of the framework for task-
related HRI, dividing a task into cognitive and social sub-tasks, find use in a wider range
of applications in task-related HRI.
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It is the aim of this work to bring together and integrate very different and interdisci-
plinary facets of informational and emotional alignment in order to act as a guidepost and
source of inspiration for future research in this field.
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2 Proactive Retrieval of Missing
Task-Information from Natural Language

This chapter is concerned with the investigation of informational alignment strategies for
proactive information retrieval from humans in order to use this information source to
obtain missing task-information, see Figure 2.1.
In order to achieve this goal, in a first step, a theoretical framework for proactive in-

formation retrieval (IR) from natural language is developed. On the one hand, relevant
cognitive theories concerning human perception serve as a conceptual basis for the frame-
work. On the other hand, the framework is deduced from findings about human-human
communication patterns and coping strategies for miscommunication. The novel approach
is, firstly, to combine these communication patterns with coping strategies and cognitive
theories from human-human interaction (HHI) and, secondly, to transfer them to HRI as
a general framework for proactive IR and handling of miscommunication. More precisely,
natural error handling is achieved by selective raising of informational contents by means
of well-directed requests at such a rate that miscommunication can be compensated. The
presented approach is applicable to any task-oriented dialog. Given that asking for direc-
tions is a challenging example for task-oriented dialog between humans and a robot, the
conversational context is exemplarily confined to route descriptions in public spaces.
Since the communication quality in public spaces is often impaired by noisy environ-

ment, it is difficult for a robot to retrieve missing task-information from humans. Thus, in
this chapter, different dialog strategies are modeled and evaluated with respect to user ex-
perience and error handling capabilities in order to cope with erroneous speech recognition.
Since correct recognition of spoken language is a bottleneck for real-world dialog systems,
special emphasis is placed on the issue of adapting dialog strategies to the conditions under
which the dialog is held to thereby provide for adaptability of the dialog strategy to vari-
able speech recognition performance. Experimental evaluations are conducted in a fully
automated indoor setting, and in a Wizard-of-Oz (WOz) outdoor setting. In consideration
of the indications deduced from the experimental evaluations of the approach, an on-line
switching mechanism is developed, implemented in form of an on-line switching dialog
strategy, and experimentally evaluated.
The remainder of this chapter is organized as follows: A problem description is given

in Section 2.1. In Section 2.2, a framework for proactive IR is developed, deduced from
cognitive- and social-psychological theories, transferred to HRI. In Section 2.3 four differ-
ent dialog strategies are modeled based on human communication patterns using smooth
transitions between open and closed requests in order to adapt to varying environmental
noise-conditions while maintaining best possible naturalness for the user and the raise of
informational contents for the robot. Further, the dialog strategies are enriched by tar-
geted miscommunication handling requests. The approach is evaluated in two different
experiments in Section 2.4. According to the indications deduced from the experiments,
an automated online-switching dialog strategy is developed and evaluated with regard to
its applicability in varying background-noise conditions in Section 2.5.
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2 Proactive Retrieval of Missing Task-Information from Natural Language

Information

Task-

Knowledge

Figure 2.1: Pro-active retrieval of missing task-information from humans

2.1 Problem Description & State of the Art

In Human-Robot Interaction (HRI), the retrieval of knowledge from humans is vital in
situations where a robot cannot fulfill its task based on the information it has or can acquire
from its own sensor information. For robots in unknown and changing environments, this
is a common situation. In order to have this information transfer work reliably, a robust
dialog system is necessary, able to detect and handle errors and miscommunication while
taking into account the task-relatedness of these dialogs.

Generally, natural language is the modality of choice for relaying task-related informa-
tion to technical systems if easy accessibility and naturalness of the interaction are required
and a training of possible users is not wanted or possible. For the information retrieval
task in the urban setting, the use of natural language dialog is also justified according
to the modality selection formulated by Kulyukin [87], since on the one hand the robot
is autonomous in large portions of its behavior (navigation, action selection etc.), but on
the other hand it also depends on the information retrieved from humans for fulfilling its
task. Since robots are not restricted to humanlike communication modalities, in previous
work also non-humanlike feedback modalities are explored by Mirnig et al. [58, 103, 104] in
order to assess their use in conveying the internal system status to the user in information
retrieval dialogs. The results show that non-humanlike feedback modalities are a good sup-
plement to humanlike communication modalities by raising the efficiency of information
retrieval as long as they are readable for human users, such as a screen to reassure under-
standing by re-visualized depictions of the information extracted from natural language.
However, a clear trend towards verbal utterances being the most important modality to
convey the internal system status to human users is approved.
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However, the use of natural language for HRI also entails a number of difficulties, e.g.
vagueness and ambiguity of spoken language itself, and the technical challenges posed by
automatic speech recognition. As discontinuation due to weak speech recognition perfor-
mance prevents any information retrieval from humans in public spaces, proper handling of
errors and miscommunication has to be ensured in order to provide validity of the acquired
information on the one hand, and a satisfactory experience for the human interaction part-
ners on the other hand. Most existing approaches, where robots ask humans for missing
task-knowledge in order to extract information about the environment are still operating
in very simple structured indoor environments. For example, coarse qualitative route de-
scriptions can be given to a wheelchair robot [106] that navigates in an office floor. The
office robot Jijo-2 [2] learns the locations of offices and staff by moving around and asking
humans for information. A robot asking for the way at a robotics conference is presented
in [102]. A miniature robot that can find its way in a model town by asking for directions
is described in [89]. These robots are able to interpret and follow simple route instructions,
but cannot cope with the complexity and vagueness of natural language. Thus, careful de-
sign and robustness of the dialog is required, as well as adequate environment modeling for
the situatedness of the dialog. Since speech recognition in outdoor environments is highly
apt to be incorrect, resulting non- or misrecognition may eventually lead the dialog astray.
Current approaches either use open requests, e.g. “how may I help you”, and then classify
the recognized speech input by means of machine learning in a second step [62], [35], or the
other way is to use a dialog strategy, where the systems asks rather closed questions and
thus breaks the task down into several subtasks in order to get more and more required
information with every question [21]. Again, these approaches show the need for dialog
strategies for a robot in order to control the dialog structure and thus triggering suitable
speech input on the one hand, and to provide a sense of naturalness and intuitiveness for
the user on the other hand.

As there is no control over the environmental conditions, which may have great influence
on speech recognition performance, non-/misrecognition can occur frequently and eventu-
ally mislead the dialog. Hence, miscommunication has to be handled. Several studies
successfully explored miscommunication and informational complexity arising from users
giving verbal route instructions in a simulated dialogic real-time interaction with a robot
executing the route instructions during the experiment [82, 135]. In contrast to state of the
art approaches, this work addresses a robot that executes previously gained route instruc-
tions autonomously within real environments. Thus, complexity and the range of potential
errors increase enormously, e.g. informational misalignment may be undetected during the
dialog but lead to errors during execution of the gained route knowledge. Thus, it is
necessary to represent and evaluate the every new information in a cognitive framework
for information retrieval including not only HRI, but also information representation, and
real-world evaluation. Apart from background noise, miscommunication may be caused
by lexical or conceptual difficulties. Hence, another important aspect is to identify and
differentiate between several potential types of miscommunication. Successful information
retrieval and naturalness can be balanced by applying targeted handling requests in a
flexible way, but integrated in a dialog strategy.

In the following section, a cognitive framework for proactive information retrieval from
humans is developed, motivated by human perception processes and states of understand-
ing.
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2 Proactive Retrieval of Missing Task-Information from Natural Language

Table 2.1: The process of perception in three consecutive stages according to TPH, adopted
from Lilli & Frey [93]

Stage 1 Provision of expectation hypotheses
Stage 2 Input of information about the object of perception
Stage 3 Confirmation (end)/ disproof (restart) of the hypothesis

2.2 Framework for Proactive Information Retrieval from

Humans

This section is concerned with the development of a cognitive framework for proactive in-
formation retrieval (IR) from humans, allowing for hypothesis-driven top-down information
processing, but also considers bottom-up evaluation of the received stimulus input from
natural language by incorporating consecutive states of understanding deduced from hu-
man perception processes, transferred to HRI in order to be used in spoken dialog systems
(SDS). Previous developmental stages of the framework are published in [28, 57, 61].

2.2.1 Background from Social Psychology

Cognitive theories in social psychology are deduced from empirically proven data con-
cerning human behavior and problem solving. Thus, they provide useful guidelines to be
considered within HRI.

The Theory of Perceptual Hypotheses (TPH), as originally formulated by Bruner & Post-
man [27] and extended by Lilli & Frey [93] as Hypotheses Theory of Social Perception, is
based on regarding perception as a cognitive interaction between on organism and its en-
vironment. Thereby, the process of perception is generally formulated as reception and
interpretation of stimuli managed by available hypotheses about the environment. The
basic assumption is that any process of perception starts with an expectation hypothesis,
even before recognition of any environmental stimulus input. Such hypotheses originate
from prior experiences of perception and can be seen as a set of cognitive predispositions.
Accordingly, the chosen hypothesis affects perception to a certain degree by defining the
kind of information to look for. Hence, the perceived objects can be seen as a selection out
of diverse environmental stimuli organized by emphasizing some aspects of stimuli more
than others. In other words, every perception can be seen as a result of former percep-
tions, successfully approved in prior similar situations. According to TPH, the process of
perception consists of three consecutive stages as shown in Table 2.1, starting with the se-
lection of an expectation hypothesis about the following environmental information input.
Subsequently to the information input the process either ends with the confirmation of the
selected expectation hypothesis, or, if the received input data does not match the hypoth-
esis, the perception process restarts with the selection of a new expectation hypothesis.
If this cycle restarts several times the underlying strategy may be falsification of several
hypotheses. Hence, perception can be seen as a decision process.
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2.2 Framework for Proactive Information Retrieval from Humans

The strength of Hypotheses
As there can be more than one hypothesis at the same time the actual extent of influencing
perception performance depends on the strength of a hypothesis. If an underlying hypoth-
esis is very strong it primarily determines the perception process, i.e. concept-driven or
top-down information processing. In contrast, if the built hypothesis is rather weak it
leads to data-driven information processing, i.e. bottom-up [167].
The strength of a hypothesis depends on five determinates, formulated by Lilli &

Frey [93]:

1. The frequency of former confirmation: the higher the frequency the higher is the
subjective confidence.

2. The number of alternative hypotheses: the higher the amount of alternative hypoth-
esis, the lower is the chance for each hypothesis to take effect.

3. Motivational impacts: generally motivation triggers selection of hypothesis-
supporting stimulus information and avoiding hypothesis-contradicting information.

4. Cognitive impacts: The more a hypothesis is fixed within cognition, the more it is
dominant and modification-resistant, forming a guiding hypothesis e.g. daily rou-
tines.

5. Social impacts: In the absence of suitable stimulus information the accordance of
social group members can serve as hypothesis confirmation.

There is a continuous relation between the strength of an expectation hypothesis and
the available stimulus information input [93]:

1. The stronger a hypothesis, the more likely it is activated, i.e. priming.

2. The stronger a hypothesis, the smaller the amount of needed information to confirm
it.

3. The stronger a hypothesis, the larger the amount of needed conflicting information
to disprove it.

As a result, TPH provides a framework for evaluating the gained knowledge via
hypothesis-testing and thus detecting and handling miscommunication for HRI, suitable
for every task-oriented dialog.

States of Understanding
Empirical HHI-studies revealed that, within verbal communication, successful under-
standing evolves from the listener’s ability to pass through four consecutive phases,
called the ”states of understanding” by Clark & Schaefer [36], depicted in Table 2.2.
Miscommunication can affect each state, and parts of the same utterance may be spread
over different states of understanding. In case the interpreter supposes to be in a more
advanced state than she really is, the communicative goal is not achieved until a mutual
belief about being in final State 3 is established for both interlocutors, where B understood
what A meant by an utterance u’.
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Table 2.2: Four consecutive States of Understanding by Clark & Schaefer [36]: B and A stand
for listener and speaker, u’ stands for any utterance of A.

State 0 B did not notice that A uttered any u’.
State 1 B noticed that A uttered some u’ (but was not in state 2).
State 2 B correctly heard u’ (but was not in state 3).
State 3 B understood what A meant by u’.

The states of understanding are the minimum basis for each successful communication
act as passing them successfully assures that the listener understood what the speaker
meant by an utterance. Thus, passing these states is indispensable for a robot talking
to a human. Hence, these states provide a guideline for IR from humans, starting with
speech detection. As miscommunication can occur in each state it is important to assign
each category of miscommunication and related compensation strategy to one of these
states. Thereby, a robot is enabled to choose the right compensation strategy for each
kind of miscommunication depending from the state in which it occurs. The states of
understanding are transferred to HRI as states of IR, and are integrated in the cognitive
framework for proactive IR, as described more detailed in the following subsection.

2.2.2 Transfer to HRI: Framework for Proactive Information Retrieval

As introduced in [28, 57, 61], a dialog framework is developed in order to provide an
all-embracing structure for proactive information retrieval in human-robot dialog, see Fig-
ure 2.2.
The Theory of Perceptual Hypotheses (TPH), as originally formulated by Bruner &

Postman [27] and extended by Lilli & Frey [93] as Hypotheses Theory of Social Perception,
provides the conceptual basis revealing that for humans any (mis-)interpretation results
from a perceptual decision process evaluating an environmental stimulus input. This de-
cision process can be seen as a loop controlled decision process composed of three stages:
1) provision of expectation hypothesis, 2) information input, and 3) confirmation or dis-
proof of the hypothesis. In case of a disproved hypothesis, the cycle restarts as often as a
hypothesis is confirmed. Transferred to spoken language dialog in HRI this means:

Stage 1) Expectation Hypothesis: Based on a context model the robot creates a
hypothesis on what to expect from the human speech input, e.g. landmarks and directions.

Stage 2) States of Information Retrieval: In this stage, information input from HRI
is requested. Thereby, a robot has to pass four states of IR, represented in a spoken dialog
system (SDS) in order to extract the needed task-information from the speech input: Speech
Detection, Speech Recognition, Language Understanding, and Knowledge Representation.
As verbal miscommunication has to be handled in this stage, the robot is equipped with
predefined associations between these states and different categories of miscommunication.
For each of these, specific handling strategies are deduced from human-human corpora
related to the corresponding states, see Figure 2.2. If all states of IR could successfully be
passed the extracted conceptual knowledge is represented, e.g. in a route graph after each
interaction.
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2.2 Framework for Proactive Information Retrieval from Humans

Figure 2.2: Framework for proactive information retrieval in HRI [28, 57]

In order to become aware of possible miscommunication, each state calculates a con-
fidence value that indicates the extent in which the extracted information meets a hy-
pothesis. In case of low confidence, e.g. caused by ambiguity in natural language, one of
the related handling strategies is triggered. By employing handling strategies, the robot
reduces the number of possible hypotheses regarding the interpretation of the speech input
and thus raises the confidence values for other hypotheses until it is able to decide for one
interpretation.

Stage 3) Real-World Evaluation: As miscommunication may be undetected dur-
ing HRI, the robot has to evaluate the extracted information while performing its task.
Therefore, the robot looks selectively for confirming or disproving information during task
execution within the real world and, if necessary, confirms the information again by tar-
geted questions on the desired task-status, e.g. if a certain landmark is actually reached
or not. In case of different and/ or conflicting hypotheses from previous dialogs showing a
common denominator, the task is performed until the critical point of conflict is reached,
before the cycle of evaluation restarts with further hypothesis-testing in order to elimi-
nate conflicting hypotheses, and decide for a new guiding hypothesis to be conducted and
evaluated in the real world, see Figure 2.3.

After this overview of the functionalities embedded within the cognitive framework of
proactive IR, the following two sections provide more detailed information on the design
of Stage 2), i.e. how information input from HRI can be arranged and actually carried
out by the robot.
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Figure 2.3: Four examples of route graphs, extracted from previous experiments [12, 13]. The
red line marks the common denominator of the hypotheses as a critical point: below this
line the route graph is confirmed and thus, turned into a guiding hypothesis. Above the
line further hypothesis-testing is needed

2.3 Dialog Strategies & Miscommunication Handling

Requests

In this section, four different dialog strategies are presented to be incorporated in Stage 2)
of the cognitive framework of proactive IR. They allow adaption to inaccurate and unstable
automatic speech recognition resulting from dynamically changing environmental impacts.
Nevertheless, miscommunication may occur in each state of the information retrieval dialog.
Thus, different handling requests are formulated for each state of the dialog in accordance
with the corresponding category of miscommunication. The development of the dialog
strategies and miscommunication handling requests is also published in [57, 58, 61].

2.3.1 Dialog Strategies

One approach to model human-robot dialog is to gather empirical data in a first step,
e.g. by instructing humans to give directions to a robot without any verbal feedback while
driving around in a building. In a second step, a conceptual route graph can be deduced
that serves as a basis for later route inquiry dialogs [132]. When designing such dialogs,
current approaches apply open requests, e.g. “How may I help you?”, and then classify
the recognized speech input by means of machine learning [35, 62]. Another way is to use
a dialog strategy, where the system asks targeted closed questions, e.g. ”Should I head in
this direction?” and thus break the task down into several subtasks in order to selectively
increase task-specific information with every inquiry [21].

In contrast to indoor settings, a robot retrieving missing task-knowledge from HRI out-
doors, has to cope with unstable speech recognition performance depending on location-
specific impact factors, e.g. noisy street vs. quiet park scenario. Hence, the approach is
to integrate different dialog strategies incorporating smooth transitions between open and
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closed requests, in order to adapt to good, fair, or bad speech recognition performance
and thus raise the efficiency of information retrieval while maintaining naturalness of the
interaction. Accordingly, the challenge is to develop different dialog strategies in order to
enable the robot to adapt to varying environmental conditions for speech recognition.
In linguistic pragmatics, a common structure of four consecutive phases is identified by

analyzing asking-for-directions dialogs [169], see Figure 2.4.

Introduction Giving Con!rmation
directions

Conclusion

Figure 2.4: Common structure of asking-for-directions dialog [169]

Introduction: The asker addresses a respondent and defines the task, i.e. giving directions
to a specified goal location, possibly defining the mode of transportation or other individual
requirements.

Giving directions : The respondent provides the necessary information by means of natural
language and gestures, sometimes additionally with the help of a sketch.

Confirmation: Either of the two partners confirms the information. In this phase further
inquiries can be made.

Conclusion: The asker thanks the respondent and they part.

This schematic structure is flexible, i.e. some phases may be interchanged or recur. Never-
theless, it is a well-proven guideline reflecting the intrinsic cognitive processes involved in
human-human interaction and thus serves as a common ground to be transferred to HRI.
In the following, different dialog strategies based on the above-mentioned basic structure,

but with variations regarding open, closed or mixed prompts, are presented. Over the
different strategies, restrictiveness is gradually increased to gain more structured and thus
more predictable dialog behavior. The strategies are exemplarily confined to the context
of asking for directions but are applicable to any task-oriented inquiry dialog.

Open Dialog: This strategy exactly applies the basic structure of human inquiry dialogs
and thus should be most intuitive for humans: The robot opens the dialog in Introduction
phase by introducing itself and asking for the way to a certain goal location. After the
human passer-by has given route instructions during Giving directions phase, the robot
initializes the Confirmation phase by asking if it may repeat the entire route and subse-
quently asks if it was correct. If the reproduced route is not declared as correct by the
human the robot requests to give the directions again and switches back to Giving direc-
tions phase to be repeated. After either the human interactant confirms the reconstruction
given by the robot during Confirmation phase or refuses to repeat the instructions again,
the robot thanks the human and thereby closes the dialog according to Conclusion phase.

Divided Dialog: The strategy coincides with Open Dialog regarding the Introduction
phase. Yet, in Giving directions phase the robot asks directly for separate route segments
by proactively opening this phase with the utterance ”Please describe the first route seg-
ment”. Subsequent to each explained route segment the robot asks if the route is already
complete and requests the next route segment if necessary. During Confirmation phase
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the robot repeats the route description by combining all obtained route segments, but
asks for confirmation separately after reconstruction of each segment. Compared to Open
Dialog, this strategy is designed to reduce the time spent by the human on correction
through repeating only questionable route segments separately instead of repeating the
whole instruction.

Requesting Divided Dialog: This strategy coincides with the structure of Divided
Dialog but, unlike the latter, counts for each route segment in Giving directions phase if at
least one landmark and one direction had been given or recognized. In case of no landmark,
the robot requests the landmark by asking ”How far should I go in that direction or up to
which point?”. Correspondingly, in case of no direction within a route segment, the robot
asks ”In which direction shall I head?” and afterwards inserts it into the reconstruction
in Confirmation phase in order to be confirmed or corrected by the human interaction
partner after each route segment. Just like in Divided Dialog, there is no reconstruction
of the complete route at the end of the dialog to reduce the duration of the interaction.

Closed Dialog: This strategy differs from all other strategies regarding its flow: A user
cannot give any free information input, but is asked to confirm or revise closed questions.
Again, the robot introduces itself, but directly after asking for its way, the robot opens
Giving directions phase and continues with closed questions like ”Should I continue going
in this direction?”, ”In which direction shall I head?” or ”In which direction shall I turn
then?”, followed by ”How far should I go in that direction” or ”Up to which point?”. Just
like in the Requesting Divided Dialog strategy, the robot asks for directions and landmarks
as long as it gets at least one of each for a route segment. Finally, it combines directions and
landmarks to route segments in Confirmation phase in order to verify them by separated
reconstruction. Accordingly, the human interlocutor has very limited input-possibilities,
but speech recognition should be more robust due to the limited vocabulary.
As a conclusion, all dialog strategies incorporate the above-mentioned basic structure,

but differ in Giving directions phase by allowing free speech input in Open Dialog, and
turning more and more restrictive by requesting very concrete information in Divided and
Requesting Divided Dialog until only closed questions are asked by the robot in Closed
Dialog. Efficiency is varied in Confirmation phase with regard to route segments which
can be confirmed or corrected separately in Divided-, Requesting Divided-, and Closed
Dialog without the need of repeating the whole route as given in Open Dialog.

2.3.2 Miscommunication Handling Requests

In order to improve information retrieval within very noisy outdoor environments, Closed
Dialog already contains requests to confine the vocabulary and to trigger the needed infor-
mation input. Nevertheless, miscommunication may occur in all dialog strategies. Thus,
there is additional need to assign targeted handling requests deduced from human-human
corpora [52] to different categories of miscommunication [70].
In this subsection, the resulting types of miscommunication and corresponding handling

requests are assigned to each state of the dialog, combinable with the above introduced
dialog strategies.
In the proposed approach, route descriptions given by the subjects are stored and pro-

cessed internally based on route graphs [166], representing a sequence of route segments.
Each segment can consist of a controller, describing the traversal of a segment, a router
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describing the location at the end of a segment, and an action to take once this location
has been reached, e.g. a change of direction. This representation is used to form han-
dling requests and to relate the described route to the user for possible correction. As the
miscommunication handling requests are designed for experiments conducted in German
language it is important to note that the following requests are translated as far as possible,
but in some cases they meet the original meaning only approximately.

Repetition Requests: Assuming successful speech detection, miscommunication may
initially occur in the state of speech recognition as ”non-recognition”, i.e. the robot could
not gain any interpretation on what has been said by the human. In order to cope with
non-recognition the following repetition requests are implemented:

”Could you repeat that, please?”/ ”Excuse me, I didn’t get your answer. + [Repetition
of the previous question]”

Clarification Requests: As clarification requests are used to confirm an interpreta-
tion [52], these kinds of requests are employed in case of ”mis-recognition”. They are
used as well in every case of miscommunication within all following states of information
retrieval given that speech recognition already released one possible interpretation of the
speech input which can be taken as a hypothesis in order to be confirmed by the following
clarification requests.

Reprise sluices mark the interpretation gap by emphasizing ”wh”-alliterated words:

”Sorry,...where?/ when?/ how far?”

Wh-substituted reprises repeat the well-understood part and substitute the inter-
pretational gap:

”Excuse me,...in which direction?/ up to which landmark?/ how far should I continue
in this direction or up to where?/ in which direction should I turn then?/ how far should
I go in this direction or up to where?”

These particular requests are already integrated within Closed Dialog strategy as they
are part of the closed questions in order to confine the vocabulary to facilitate speech
recognition.

Reprise fragments are to emphasize an uncertain part of a gained interpretation:

”Excuse me, did you mean...to the +[direction]?/ at/up to/near +[router]?/ I must pass
by +[controller]?/ en route, I will see +[controller] on the right?”

Alternative clarification questions are used to explicitly mention alternating in-
terpretations in case of acoustic or referential ambiguity:

”Excuse me, did you mean...sight or side?/ turn to the right or turn to the side?”

”Excuse me, ...

...do I have to turn left or right at +[router]?” in order to confirm the direction.

...do I have to turn at + [router] or head straight on?” in order to confirm if a certain
landmark depicts a controller and not a router.

...do I have to pass +[controller] or turn there?” in order to confirm if a certain landmark
depicts a router and not a controller.

Task-level reformulations are used to clarify more complex actions by reformulating
the consequences of an utterance and thereby demonstrating subjective understanding.
Thus, these requests confirm the practical implication within an utterance:
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”This would mean that......I have to turn back?/ I should not turn until I have passed
+[controller]?/ at + [router] I have to turn + [direction]?”

Correction Requests: If miscommunication is detected, e.g. by the user during Con-
firmation phase when the robot reconstructs the route description, correction requests are
employed to revise an interpretation in order to determine the underlying intention of the
speaker [52]:

”Excuse me, I think I got you wrong,...please tell me where I have to go instead./ please
give the directions again, and a bit slower.”

The different dialog strategies are evaluated stand-alone, and in combination with the
miscommunication handling requests in two different experiments, as described in the
following section.

2.4 Experimental Evaluation

In order to evaluate the dialog strategies and miscommunication handling requests, mo-
tivated and developed in Section 2.3, the route description domain was chosen for the
experiments as it provides a valid and rather well-explored structure for the extraction of
missing task-knowledge from natural language HRI. The route descriptions given by the
experimental subjects are stored and processed internally based on route graphs [166], rep-
resenting a route as a sequence of route segments. As introduced in the previous section,
each segment can consist of a controller, describing the traversal of the segment, a router
describing the location at the end of the segment, and an action to take once this location
has been reached, e.g. a change of direction. This representation is used to formulate
miscommunication handling requests and to reformulate the described route to the user
for possible correction during Confirmation phase.

The different dialog strategies are each modeled as state sequences according to their
specifications given in Section 2.3. Each state could either be a textual output node
with speech output generated from templates filled with stored information given by the
user, and input nodes where information given by the user is entered into the internal
knowledge representation of the system. The transitions between the nodes, determining
the course of the dialog, are specified with conditions on the previous course of the dialog,
e.g. requirements on the information given as response, such as posing a more refined
question when not all relevant information had been provided.

The evaluation experiments are partially published in [57, 58].

2.4.1 Experiment I: Fully-Automated Indoor Setting

A first evaluation of user acceptance and user experience for the dialog strategies described
in Section 2.3 is conducted in a user experiment. The dialog strategies, modeled as state
sequences as described above, are used as templates for the DialogOS 1 tool, that provided
text-to-speech synthesis and speech recognition for a fully automated (FA) natural language
dialog. In this experiment, finite-state grammars for speech recognition are created for each
input node.

1CLT Sprachtechnologie GmbH, www.clt-st.de
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During the experiment, a route displayed on a map was presented to the subjects for
each of the dialog strategies separately. Then, the subjects were asked to interact with the
dialog system in order to describe the depicted route. Following each dialog, the subjects
filled in a questionnaire by rating several items describing their impression of the dialog.
The experiment was held in a laboratory setting without robotic embodiment of the dialog
system.

2.4.2 Experiment II: WOz-Outdoor Setting

A Wizard-of-Oz (WOz) experiment is a commonly used method in the field of human-
computer interaction with the goal of observing the use and effectiveness of a proposed user
interface. In this kind of experiment the subjects interact with an apparently autonomous
computer system but that is actually being operated completely or in parts by an unseen
human being (the ”wizard”) [78]. The dialog strategies are evaluated in combination with
the miscommunication handling requests in an outdoor environment, again in terms of user
experience. In order to simulate good speech recognition performance, the task of entering
user input into the knowledge representation of the system and the choice of system actions
were performed by a human operator, that the subjects were unaware of.

For this, the wizard was asked to perform in a way similar to a system restricted in
its input by a predefined grammar for the user answers depending on the dialog state,
similar to the system used for the experiment described in Section 2.4.1. The transitions
between the nodes were chosen depending on the dialog state by the wizard within the
bounds of the respective dialog strategy, as defined by the corresponding state machine
models. The MARY text-to-speech tool [130] was used to generate German synthesized
speech according to the templates specified in the dialog models.

In addition to the mere modeling of succession of dialog states, miscommunication han-
dling strategies were implemented in this experimental setting. After each input node in
which relevant, task-related information had been requested, the wizard had the possibility
to choose from a number of handling requests as described in Section 2.3.

In this experiment, for each dialog strategy, the subjects engage in dialogs with a dialog
system embodied in a robot platform with human-like features. A map was not presented
to the participants, but the users were asked to describe a way of their own choice to a
well-known, nearby location.

In order to provide a realistic setting for the dialog, the experiment was conducted in an
outdoor environment at Technische Universität München, and test persons faced the cur-
rent state of the IURO robotic platform based on the Autonomous City Explorer (ACE)
robot [13] as interaction partner. The interaction scenario is depicted in Figure 2.5. In
order to enable natural language dialog and other modalities of interaction, the robotic
platform is equipped with a number of sensors including cameras and microphones, a loud-
speaker and a mechanical actuated head capable of displaying emotions and lip movements
synchronized to speech [97].

2.4.3 Experimental Measures

After each interaction, subsequently to one of the four dialog strategies, which were pre-
sented in random order, the subjects of both experimental settings (FA and WOz) filled
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Figure 2.5: Experimental setting for the WOz-experiment: Interaction with the robot, con-
trolled by a wizard from inside the building.

in a questionnaire designed for measuring the user experience of the dialog strategies. In
detail, these items are (translated into English):

comprehension: “The system understood what I said/IURO understood me well.”

duration: “The duration of the interaction was appropriate.”

expectation: “I always knew which comments the system/IURO expected from me.”

structure: “The structure of the dialog was sensible.”

correction: “When there was a misunderstanding, the correction effort was appropriate.”

request : “The system/IURO asked wisely for missing or uncertain information.”

satisfaction: “Overall, I was satisfied with the dialog.”

Each item was rated by participants on a 5-item Likert scale ranging from 1 = “strongly
disagree” to 5 = “strongly agree”.

2.4.4 Experimental Results

Results can be deduced from the initial fully automatic (FA) experiment including 16
subjects (11 male and 5 female, between 22 to 35 years with a mean of 27.0 years) described
in Section 2.4.1 and the Wizard-of-Oz (WOz) experiment including 29 subjects (21 male
and 8 female, between 19 and 39 years with a mean of 22.9 years) described in Section
2.4.2.
Regarding the reliability of the developed questionnaire on user experience, the coeffi-

cients of internal consistency for for the items are good (Cronbach’s α > .80 overall).
The significance level for all performed tests is α = .05 except for multiple testing where

it has to be adjusted using the correction method of Bonferroni.
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Table 2.3: Mean ratings with standard deviations (in brackets) of single items and total scores
for each dialog strategy derived from the Fully Automatic (FA) experiment (rated on Likert
scales from 1 = strongly disagree to 5 = strongly agree).

Dialog

Open Divided Requesting Closed
Divided

comprehension 2.9(1.3) 3.4(1.0) 3.2(1.1) 4.1(0.8)
duration 3.1(1.4) 3.3(1.0) 2.9(1.1) 3.8(0.9)
expectation 3.4(1.0) 4.1(0.9) 3.3(1.2) 3.7(1.2)
structure 3.6(1.4) 3.9(0.9) 4.0(0.9) 4.1(0.9)
correction 2.9(1.4) 3.5(1.2) 3.4(1.1) 4.1(1.0)
request 2.5(1.5) 3.6(1.2) 3.5(1.2) 3.9(1.1)
satisfaction 2.7(1.4) 3.3(0.8) 3.1(0.9) 3.9(1.0)

total score 3.1(1.1) 3.6(0.8) 3.3(0.7) 3.9(0.8)

Fully Automatic (FA):

According to the results of Kolmogorov-Smirnov tests, normal distribution could be ac-
cepted for every single item as well as for the total scores (calculated as means of all single
item values per dialog strategy). Therefore, parametric comparisons and correlations are
performed.

An analysis of variance (ANOVA) with repeated measures revealed no significant dif-
ference between the total scores of the four dialog strategies. However, mean values
show a trend towards a difference between the total rating of the Open Dialog and
the Closed Dialog. Further repeated measure ANOVAs analyzing the ratings of sin-
gle items provided significant differences between the dialog strategies for comprehension
(F = 4.16, p = .011), correction (F = 3.72, p = .023), request (F = 7.89, p = .001) and
satisfaction (F = 4.11, p = .012). Post-hoc t-tests revealed a significant difference between
Open Dialog and Closed Dialog for comprehension (t = −3.31, p = .005). Similar devia-
tions indicating that Closed Dialog was rated higher than Open Dialog were also obtained
for correction, request and satisfaction, but failed to reach significance due to Bonferroni
correction of significance level to α = .0083. Means of single item ratings and total scores
of the different dialog strategies are displayed in Table 2.3.

Correlation analysis focused on the item satisfaction led to the finding of most mean-
ingful relations in the Open Dialog condition: The general satisfaction of the subjects
with the dialog significantly correlated with comprehension (r = .83, p < .001), duration
(r = .75, p = .001), structure (r = .79, p < .001), correction (r = .89, p < .001) and request
(r = .98, p < .001). The impression arises that more aspects of the interaction with the
system had to be pleasing to satisfy the user in Open Dialog condition in comparison to
the other strategies.

Wizard-of-Oz (WOz):

For the single items, normal distribution had to be rejected according to the results of
Kolmogorov-Smirnov test, but was accepted for the total scores (again calculated as means
of all single item values per dialog strategy). Hence, comparisons and correlations regarding
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2 Proactive Retrieval of Missing Task-Information from Natural Language

Table 2.4: Mean ratings with standard deviations (in brackets) of single items and total scores
(rated on Likert scales from 1 = strongly disagree to 5 = strongly agree) plus num-
ber of handling requests for each dialog strategy derived from the Wizard-of-Oz (WOz)
experiment.

Means of single items and total scores.

Dialog

Open Divided Requesting Closed
Divided

comprehension 3.6(1.3) 3.9(1.1) 3.7(1.2) 4.0(1.0)
duration 4.2(1.0) 3.8(1.1) 3.5(1.3) 3.2(1.3)
expectation 4.0(1.0) 4.0(1.1) 4.0(1.0) 3.5(1.4)
structure 4.4(1.0) 4.3(1.2) 4.0(1.1) 3.9(1.2)
correction 3.9(1.2) 4.0(1.1) 3.7(1.2) 3.7(1.2)
request 3.8(1.4) 4.4(0.8) 4.2(0.9) 4.0(1.0)
satisfaction 4.3(0.8) 4.1(1.1) 3.9(1.2) 3.8(0.9)

total score 4.0(0.7) 4.1(0.8) 3.8(0.9) 3.7(0.8)

Number of handling requests per type and in total.

repetition 4 4 3 9
clarification 17 53 63 70
correction 5 1 3 7

total 26 58 69 86

the single items were performed non-parametrically and parametric methods were used for
the total scores.
Again, no significant difference between the total scores could be derived from ANOVA

with repeated measures, but means show a trend towards higher ratings of the Open Dialog
and Divided Dialog compared to the remaining two strategies. On single item level, the
ratings of duration (χ2 = 9.00, p = .027) and satisfaction (χ2 = 8.62, p = .035) significantly
varied. According to post-hoc analyses the rating of duration considerably differed between
Open Dialog and Closed Dialog (Z = −2.68, p = .006), whereas after adjusting the α-value
no significance remained for satisfaction. Means of single item ratings and total scores of
the different dialog strategies are displayed for all three conditions in Table 2.4.
Correlations of satisfaction with other single items again varied between the dialog

strategies. In condition Closed Dialog, there were clear relations to comprehension (r =
.57, p = .001), duration (r = .59, p = .001), structure (r = .59, p = .001), correction
(r = .57, p = .002) and request (r = .56, p = .002). Fewer significant correlations could
be obtained for the other strategies and there was only one in the Open Dialog condition
(comprehension: r = .51, p = .006). Apparently, more aspects of the interaction are
important to satisfy participants in the Closed Dialog condition compared to the other
strategies.
In addition, to solve miscommunication problems, several handling requests could be

used by the wizard during each dialog. The distribution of repetition, clarification and
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2.4 Experimental Evaluation

correction requests was examined with Friedman tests. A significantly different use between
the dialog strategies was only obtained for the total amount (χ2 = 45.90, p < .001) and for
clarification requests (χ2 = 41.76, p < .001). These results mainly arose from deviations
between Open Dialog compared to the other strategies. The absolute number of applied
handling requests was the highest for Closed Dialog for every type of request and in total.
The number of included requests, both for different types and for all requests in sum per
dialog, is displayed in Table 2.4.

Comparison of ratings between both experiments:
Total scores of strategy ratings were compared between the FA and WOz experiment
with paired t tests resulting in a significant difference for Open Dialog (t = −3.09, p =
.005) and marginally significant deviations for Divided Dialog (t = −1.98, p = .054) and
Requesting Divided Dialog (t = −2.00, p = .052). The means indicate higher ratings for
Open Dialog, Divided Dialog and Requesting Divided Dialog in the WOz compared to the
FA experiment, whereas for Closed Dialog the relation is vice versa. Means and standard
deviations of total scores for both experiments are displayed in Figure 2.4.4. In sum,
quantitative results show varying ratings of the different dialog strategies between the two
conducted experiments. In FA Closed Dialog was rated highest and Open Dialog lowest,
whereas in WOz Closed Dialog was the most unpopular strategy. Surprisingly, in the
second experiment most handling requests were used in Closed Dialog and least in Open
Dialog.
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1
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Figure 2.6: Means and error bars (± one standard deviation) for the total scores both of
the Fully Automatic (FA) and the Wizard-of-Oz (WOz) scenario for all different dialog
strategies. From left to right, the bars for each condition describe ratings obtained using
Open, Divided, Requesting Divided (yellow) and Closed Dialog strategies, respectively.

Duration of interaction:
Actual durations of the interactions per dialog strategy are distributed normal in each
condition and experiment. Hence, comparisons are performed parametrically.
Concerning the interaction durations of the conditions between both experiments, paired

t-tests revealed significant results for Divided Dialog (t = −2.74, p = .009), Requesting Di-
vided Dialog (t = −3.29, p = .002) and Closed Dialog (t = −2.75, p = .009). As indicated
by the means, interactions in these conditions were clearly longer in the WOz compared
to the FA experiment (means and standard deviations of durations per dialog strategy
for both experiments are displayed in Figure 2.4.4). Longer durations in these condi-
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2 Proactive Retrieval of Missing Task-Information from Natural Language

tions probably resulted from the high amount of included handling requests as depicted in
Table 2.4.

One significant difference was obtained within the WOz experiment (F = 11.13, p <

.001). According to post-hoc tests, only the actual duration of Open Dialog strongly devi-
ated from all other conditions. This finding fits the results derived from the questionnaire,
in which the perceived duration of the Open Dialog strategy was rated best. For the initial
FA experiment, no significant differences between the four strategy-durations were found
and again, this fact suits the duration ratings derived from the questionnaire.
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Figure 2.7: Means and error bars (± one standard deviation) for the duration of dialogs both
of the Fully Automatic (FA) and the Wizard-of-Oz (WOz) scenario for all different dialog
strategies. From left to right, the bars for each condition describe ratings obtained using
Open, Divided, Requesting Divided and Closed Dialog strategies, respectively.

2.4.5 Discussion

The fact that the total user experience scores within Closed Dialog condition decrease
marginally in WOz compared to the previous FA experiment goes hand in hand with
the usage of handling requests which is highest within Closed Dialog and lowest within
Open Dialog condition. This finding might speak against the acceptance of the proposed
handling requests. However, in all other conditions the total scores are raised compared to
the FA experiment without handling requests, which indicates a slightly positive impact of
those. Additionally, the above mentioned decreasing trend within Closed Dialog might be
due to the fact that the most used clarification requests were already partly implemented
in this condition, because of being part of the closed dialog strategy. This might have
caused a feeling of over-usage of handling requests for the users compared to the other
conditions. Furthermore, as the wizard was only able to employ handling requests while
being the initiative part within all dialogs, Closed Dialog provided more chances for usage
than within Open Dialog, because there was least turn-taking due to the open prompt-
strategy at the beginning of the dialog which did not allow the wizard to interrupt the
user while giving route instructions. In contrast, the Closed Dialog strategy provokes
frequent turn-taking and thus allows for more handling requests.
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2.5 Handling of Varying Speech Recognition Performance

Indications
Summing all up, the experimental results indicate that the application of handling requests
raises user satisfaction as can be seen in the total scores for Open, Divided, and Requesting
Divided Dialog. However, at a certain point, when there are too many handling requests
employed, the effect changes into the opposite and decreases user ratings again. Another
factor of influence is the duration of the interaction: Within the WOz experiment the
duration of Open Dialog condition is significantly shorter than all other dialog strategies
and accordingly rated as most convenient duration in the questionnaire. Due to the re-
sulting significant increase of the total scores for Open Dialog compared between FA and
WOz experiments it is suggested to employ the proposed handling strategies in a flexible
way, but confined in a way to avoid a critical increase of dialog duration and a feeling of
over-usage.
Thus, in the following Section, the implementation and evaluation of an online-switching

dialog strategy is described in order to adapt to varying speech recognition performance
in outdoor environments.

2.5 Handling of Varying Speech Recognition Performance

In the previous Sections 2.3 and 2.4, four different dialog strategies for a robot asking
human passers-by for directions are modeled and evaluated in two different experiments [58,
60]: a fully automated indoor experiment, and its replication in an outdoor Wizard-of-Oz
(WOz) setting, where all types of requests for miscommunication handling are added and
evaluated in combination with each dialog strategy. According to the experimental results,
the quality of conversation between robots and humans highly depends on the performance
of speech recognition: Poor speech recognition performance not only drastically decreases
the amount of retrieved information for the robot but also naturalness of the interaction
for the user. On the one hand, the performance can be greatly enhanced by employing a
more closed dialog strategy, while open dialogs tend to be more intuitive to human users.
Since speech recognition is a bottleneck for HRI in outdoor environments, two aspects

have to be considered: While a highly structured dialog leads to improved speech recog-
nition results, they are more unnatural than a less predefined dialog. More open dialog
strategies, on the other hand, make predictions on how the answers human conversation
partners will look like severely more difficult, thereby making high speech recognition per-
formances unlikely.
Thus, in this section an approach is developed to improve information retrieval in out-

door environments with varying speech recognition performance while maintaining highest
possible naturalness of the interaction for the human interaction partner. The benefit of
the online-switching dialog strategy with integrated miscommunication handling requests
for non- or misrecognized task-knowledge is twofold: On the one hand, the gain of infor-
mation is stabilized by the possibility to switch from open to closed requests with reduced
grammar needed, and thus, improved speech recognition performance in case of very noisy
environmental interaction conditions. On the other hand, naturalness of the interaction is
maintained in two ways: 1) by avoiding an over-usage of miscommunication handling re-
quests following the open questions through switching to closed questions if the background
noise level changes during an interaction, 2) by providing the possibility to switch back to
a more open dialog strategy as soon as informational alignment with a human interaction
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2 Proactive Retrieval of Missing Task-Information from Natural Language

partner has recovered, e.g., due to decreasing background noise. Critical thresholds in
background noise are evaluated in this section.

2.5.1 Online-Switching Dialog Strategy

In order to prevent non-/misrecognition of the information input, a switching mechanism
is developed that adapts the dialog strategy to the quality of speech recognition. An
algorithm monitors the informational alignment during an interaction by calculating an
online-confidence score that triggers switching to a more closed dialog as soon as the
informational alignment decreases under a certain threshold during an interaction. If
informational alignment recovers again, e.g., due to a reduced environmental background
noise level, the algorithm triggers the transition back to a more open dialog in order to
maintain highest possible naturalness for the user by employing open questions to retrieve
the missing task-knowledge. Additionally, in order to handle potentially occurring non-
/misrecognition, miscommunication handling requests (MHRs) are integrated.
In the IURO-Project, the robot operation system (ROS)2 is used to manage the com-

munication between the different modules of the robot. Thus, the modules of dialog
management and speech recognition are connected, with all dialog-components being rep-
resented and accessible by ROS calls and services. The online-switching dialog strategy
is implemented and evaluated in the IURO-dialog system based on IrisTK: a statechart-
based toolkit for multi-party face-to-face interaction [136]. The dialog structure takes the
form of a finite state machine (FSM) implemented through XML, which is then compiled
into Java-Code and connected with the ROS-architecture by a Python script. The FSM
can handle external input as well as Java-scripting for added features.
The online-switching dialog strategy is based on two previously developed dialog strate-

gies, as introduced in Section 2.3, selected to be combined by the switching mechanism:
Since the noise-conditions in an urban outdoor environment are not expected to allow for
a completely open dialog, the Requesting Divided Dialog strategy is selected for better
speech recognition conditions, and the Closed Dialog strategy is chosen for poor speech
recognition performance. In order to handle potentially occurring non-/misrecognition,
all three types of MHRs are integrated as described earlier in Section 2.3: Repetition
Requests, Clarification Requests, i.e. Wh-substituted reprises, and Correction
Requests, using slots and fillers to clarify uncertain or missing parts of a route description.
The detailed design of the selected dialog strategies is described in the following.

Requesting Divided Dialog
For good/fair environmental speech recognition conditions, this dialog strategy is designed
as depicted in Figure 2.8, where components of the dialog-structure are depicted in rect-
angles, verbal output and input in rounded rectangles: After the Introduction phase, the
phase of Giving directions is divided into route segments, that are initially requested by an
open question, starting with “Could you please describe the first segment of my route?”
in order to trigger suitable user-input. After the open answer of the user, a feature of the
XML-architecture is used: The grammars, defining what the robot is listening for after
asking an open question to the user allows the identification of directions, and landmarks
or distance information in different lexical and grammatical variations. If at least one
landmark and one direction could be identified, the route segment is preliminary regarded

2http://www.ros.org/, 2013
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as successfully recognized. In case of total non-recognition (no landmark and no direction
could be recognized), a Repetition Request, e.g., “Could you repeat that a bit louder,
please?” is employed to get the open user-input again. In case of partial recognition
(either landmark or direction is missing), Clarification Requests, in particular, Wh-

substituted reprises are used to retrieve the missing landmark or direction by targeted
closed requests, e.g., “In which direction shall I turn then?” and/or “How far should I
go in that direction?”, integrated in the dialog strategy. In case of non-recognition of the
following closed answer, the system uses a Repetition Request again. In order to avoid a
feeling of MHR-overusage, as indicated by the experimental results in Section 2.4, a dialog-
abortion is implemented as soon as three MHRs have been asked without recognizing any
answer. If the answer can be recognized the dialog proceeds with the Confirmation of the
retrieved route segment by repeating the retrieved landmark(s) and direction(s) and asking
the user, if they are correct. In this state of the dialog, misrecognition can be handled,
e.g., if the dialog system misrecognized a “left” as a “right”. If the human notices any
misrecognition, the robot asks the same to specify and correct the error. If the error affects
both, landmark(s) and direction(s), the system again parses the open user input.In case
of either a misrecognized landmark or direction, the same Wh-substituted reprises are
used again for clarification, as described above. In case of a correct route-repetition, the
system goes on with the next route segment in an analog way, until the human interlocutor
states the end of the directions, thereby triggering the dialog system to conclude the dialog
in Conclusion phase.
Although the Requesting Divided Dialog strategy already contains a transition to

closed requests in case of partial non-recognition or misrecognition of a route segment, it
would always restart the following route segment with an open question. In order to avoid
open questions at the expense of dialog-efficiency, Closed Dialog is applied in case of
high background noise.

Closed Dialog
For poor environmental speech recognition conditions, this strategy is implemented in
collaboration with Skantze 3, as can be seen in Figure 2.9. In this strategy, non-recognition
of open user-input is assumed due to very noisy environmental impacts. Thus, directly
after introducing itself and it’s task, the robot opens the Giving directions phase with
closed Clarification Requests like “Should I continue going in this direction?” or “In
which direction shall I turn then?”, followed by “How far should I go then?” or “Up to
which point?” and, thereby, directly requests one direction and one landmark or distance
information for each route segment, as long as the goal location is indicated by the user.
For every non-recognized information, a Repetition Request can be asked. After each
route segment, consisting of two closed Clarification Requests for one direction and
one landmark, a Confirmation phase is conducted in order to handle miscommunication in
case of misrecognized route information by retrieving the erroneous direction or landmark
again with the the related Clarification Request. Accordingly, the human interlocutor
has very limited input-possibilities, but speech recognition should be more robust due to
the limited vocabulary.
In order to avoid endlessly requesting dialog loops, e.g., in very noisy environmental

conditions or if a human interlocutor leaves the interaction without completing the route
description, a dialog-abortion is again implemented as soon as three MHRs have been

3Ph.D., Department of Speech Music and Hearing, KTH Stockholm
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Figure 2.8: Dialog structure of the Requesting Divided Dialog strategy
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asked by the robot without recognizing any answer. In order to provide the opportunity
of switching back to open questions in terms of naturalness for the user if the speech
recognition stabilizes in dependence of the noise level again, a switching mechanism is
developed as described in the following.

Switching Mechanism
In order to prevent non-/misrecognition of the information input and to avoid an overusage
of MHRs as far as possible, a switching mechanism is developed that adapts the dialog
strategy to the quality of speech recognition. Therefore, the informational alignment during
an interaction is monitored by calculating an online-confidence score in order to trigger
switching between Requesting Divided Dialog and Closed Dialog. As soon as the
informational alignment decreases under a certain threshold ε during an interaction, a
switch to Closed Dialog is triggered. If the informational alignment recovers again,
e.g., due to a reduced environmental background noise level, the algorithm triggers the
transition back to Requesting Divided Dialog to maintain highest possible naturalness
for the user by employing open questions to retrieve the missing task-knowledge.
The basic principle of the online-switching dialog strategy is depicted in Figure 2.10.

Reques�ng 

Divided Dialog

Closed

Dialog

confidence score < ε

confidence score ≥ ε

AND 

route segment n recognized  

Figure 2.10: Basic principle of the online-switching dialog strategy

For the switching mechanism, the number of employed MHRs in case of non-
/misrecognized information is monitored online during information retrieval: Whenever
miscommunication occurs, i.e., a Repetition-, Clarification-, or a Correction Re-
quest is used by the system to clarify non-recognized information in the recognition check
to retrieve a route segment, or misrecognized information in the Confirmation phase, the
confidence is decreased, while each successfully recognized information improves the confi-
dence. The system starts with a value just high enough to try the Requesting Divided
Dialog when first approaching his conversation partner in the Introduction phase, switch-
ing to Closed Dialog if the confidence score decreases under the critical threshold ε, and
back to Requesting Divided Dialog if the confidence score increases again and passes
the threshold. Thereby, the timing of switching is additionally defined by the structure
of the respective dialog strategy in use: Whereas a switch to Closed Dialog is possible
during a route segment in Requesting Divided Dialog, the switch back to Requesting
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Divided Dialog is not conducted until a route segment is finished in Closed Dialog, be-
cause once a route segment is started to be retrieved via closed Clarification Requests it
would not make sense to ask the open question for the next route segment in Requesting
Divided Dialog. Thus, switching back to the more open dialog strategy is started with
the next route segment.

In summary, the rules for the switching algorithm look as follows:

Algorithm 3.1 Online-Switching Dialog Strategy
1: confidence = ε

2: miscom = 0
3: do
4: Requesting Divided Dialog
5: if information entity retrieved then
6: confidence = confidence +α

7: endif
8: if miscommunication
9: confidence = confidence - α
10: miscom = miscom + 1
11: endif
12: if confidence ≥ ε then
13: Requesting Divided Dialog for next route segment
14: else
15: Closed Dialog
16: endif
17: until interaction goal achieved or miscom ≥ δ

18: Conclusion

2.5.2 Experiment III: Evaluation of the Online-Switching Dialog

Strategy

In order to evaluate the adaptability of the online-switching dialog strategy to different
noise levels, an experiment is conducted for different noise levels, but with constant speech
input. The noise level is simulated as an experimental variable in order to evaluate poten-
tial influences of environmental background noise. Uncontrolled additional variables like
speaker-differences, lexical and/or acoustical interferences are avoided and kept constant
in the experimental setup. The goal of the experiment is to evaluate the switching mech-
anism, and to reveal critical noise levels for the application of the online-switching dialog
strategy in outdoor environments.

Experimental Design & Measures

In order to ensure experimental reproducibility, and to exclude lexical or acoustical in-
terferences, it is important to keep the speech input as constant as possible. Thus, the
speech input is restricted to one route description, consisting of a “yes” to simulate a
positive answer to the request for help of the robot in Introduction phase, followed by
two identical route segments consisting of one landmark and one direction each in Giv-
ing Directions phase. The route description ends with stating the goal by the utterance
“arrived”. Accordingly, six information entities have to be retrieved by the dialog system.
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In order to avoid the uncontrolled influence of speaker-differences, the route instruction
is previously recorded as an audio-file, to be presented to the dialog system as answers to
the requests. Due to the absence of real users, the structure of the dialog is confined to
the Introduction phase, followed by Giving Directions phase, without Confirmation and
Conclusion. Hence, in this evaluation only total- and partial non-recognitions of the route
segments can be considered by the confidence score since the algorithm adds α scores
for each recognized information, even in case of misrecognition that can only be detected
in Confirmation phase, where α scores are deduced when indicated by the user. In this
evaluation, misrecognitions are post-hoc analyzed.
For the experimental setup, a quiet room is chosen to avoid uncontrolled noise inter-

ferences. The dialog system opens the conversation with a confidence score of ε = 50
before it asks for help and then adds α = +10 scores for each recognized information, and
subtracts α = −10 scores for each non-recognized information, that has to be additionally
requested. However, the dialog is aborted if the number of miscommunications (in this
experiment non-recognitions) δ passes a threshold of 3. An audio-player is placed in front
of a microphone to simulate the user-input in a constant distance to the same. In order
to simulate noisy outdoor conditions for speech recognition, pink noise is selected corre-
sponding to urban street noise [158] as expected in the IURO-project. The pink noise is
generated with MATLAB4 [138], measured with an error of +/- 3.5dB(C).
Five different noise levels are evaluated in five dialog runs, from 40 to 80 dB(C). As

experimental measures, all runs are transcribed and dialog performance is evaluated by
counts conducted for the number of:

• switchings to Closed Dialog

• re-switchings to Requesting Divided Dialog

• successfully recognized dialogs

• handled non-recognitions by Repetition Requests or by Clarification Requests,
not being part of the respective dialog strategy

• not handled non-recognitions including dialog abortions and post-hoc analyzed mis-
recognitions

The experimental results are presented and discussed in the following.

Experimental Results
Results are deduced from 25 dialog runs, where five runs were conducted for each exper-
imentally simulated noise-level condition: 40 dB(C), 50 dB(C), 60 dB(C), 70 dB(C), and
80 dB(C).
Table 2.5 shows the proportionate occurrences of the dialog performance-measures in

five runs each for the noise-levels of 40 to 80 dB(C): “Successful dialogs” indicates the
number of dialog runs (out of five), where all requested information entities could be
successfully retrieved by the dialog system at the end of the dialog. “Dialog abortion”
specifies the number of dialog runs, where the system aborted the dialog because three
consecutively unsuccessful attempts to handle non-recognition. The number of dialog

4http://www.mathworks.de/products/matlab
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Table 2.5: Proportionate occurrences of dialog performance-measures in five runs each for the
noise-levels of 40 - 80 dB(C)

Dialog performance
Noise-level (C)

40dB 50dB 60dB 70dB 80dB

Successful dialogs 5 5 5 2 0
Dialog abortion 0 0 0 1 5
Occurrence of non-recognition 0 0 4 5 5
Handled non-recognition 0 0 4 2 0
Not handled non-/misrecognition 0 0 0 3 5
Switching to closed 0 0 3 3 5
Re-switching to divided until dialog-end 0 0 2 2 0

Confidence means 110 110 88 66 24

runs, where non-recognition occurred are indicated by the third measure in the table.
“Handled non-recognition” counts the dialog-runs where all occurred non-recognition could
be successfully handled, whereas “Not handled non-/misrecognition” includes all dialog
runs that were either aborted because of three consecutively unsuccessful attempts of non-
recognition handling (one run at 70 dB (C)), or misrecognized information that occurred in
the second route segment of two different runs at 70 dB (C), respectively: Once a landmark,
and once the indication of the direction was misrecognized. Since the Confirmation phase
was omitted in the experiment, the two misrecognized information entities are post-hoc
analyzed, and counted as not handled since it is not known if it would have been detected
and corrected by a human user. The number of dialog runs are indicated by “Switching
to closed”, where at least one switch to Closed Dialog is conducted, and the row below
indicates the dialog runs that could be completed in Requesting Divided Dialog due
to a recovery of the confidence score that could be sustained until the end of the dialog
run. Finally, the confidence means over five runs each, are indicated.
Figures 2.11 and 2.12 illustrate these proportionate distributions of the switches, and

of the dialog performance-measures. As can be seen in both figures, the noise-levels most
relevant to the online-switching dialog strategy are 60 and 70 dB(C): The occurrence of
non-recognition starts at a noise level of 60 dB(C) where all occurring non-recognitions
could be handled by the dialog system online. Whereas, the total amount of online-switches
is the same for 60 and 70 dB(C), the handling of non-recognition failed in one run that
led into dialog abortion, and two cases of misrecognition occurred at a noise level of 70
dB(C). With a noise level of 80 dB(C), the recognition of information in Requesting
Divided Dialog did not exceed the initial “yes”, as exemplarily depicted in Figure 2.13.
As a consequence, all dialog runs of 80 dB(C) resulted in a switch to Closed Dialog (see
Figure 2.11), where no further information could successfully be retrieved though.
In the left of Figure 2.13, an exemplary dialog transcript for 40 and 50 dB(C) is shown,

where all information was recognized by the dialog system without any non-/misrecognition
in all five runs each. In contrast, in the exemplarily selected transcript for 80 db(C) on
the right, only the initial “yes” was recognized in two of five runs, while in the remaining
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Figure 2.11: Proportionate distribution of online-switching in the dialog runs from 40dB(C)
to 80dB(C)

40dB 50dB 60dB 70dB 80dB

0

1

2

3

4

5

successful

dialogs

handled non-

recogni!on

not handled 

non-

/misrecogni!on

(C)

ru
n

s

Figure 2.12: Proportionate distribution of dialog performance-measures in simulated noisy
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three runs, all information was non-recognized. All transcripts show the development of
the confidence score, recognition or non-recognition of the information entities from the
speech input, and tentative online-switches between the Requesting Divided Dialog,
referred to as “divided” and the Closed Dialog, referred to as “closed”, corresponding to
the dialog progress on the x-axis. For 80 dB(C), all five runs were aborted due to three
consecutively unsuccessful MHRs.

divided

closed

recogni�on

non-rec.

ε
ε+α

ε−α

yes   route      route       arrived     dialog

segm. 1  segm. 2                     progress

divided

closed

recogni�on

non-rec.

ε
ε+α

ε−α

yes   route segment 1 dialog

progress

repetition request

dialog

aborted

Figure 2.13: Transcribed online-switching dialog results for pink background noise of 40 to 50
dB(C) on the left, and for 80 dB(C) on the right

The total occurrences within these dialog runs resulted in 0 non-recognitions for 40
and 50 dB(C) accordingly, and 9 non-recognitions, requested by MHRs (8 Repetition
Requests and 1 Clarification Requests) for 60 dB(C), which is an improvement com-
pared to previously measured 11 non-recognition requests for 60 dB(C) using only Re-
questing Divided Dialog without the switching mechanism. The highest amount of
19 MHRs (13 Repetition Requests and 6 Clarification Requests) were employed
for non-recognitions at 70 dB(C), followed by 15 MHR-requested non-recognitions at 80
dB(C), where the decrease of MHR-use (15 Repetition Requests and 0 Clarification
Requests) is due to the dialog abortion in all five runs after three unsuccessful Repe-
tition Requests. The total number of switches was identical for 40 and 50 dB(C) with
no switches, and for 60 and 70 dB(C), each with 4 switches to Closed Dialog and 3 re-
switches to Requesting Divided Dialog. At 80 dB(C), all five dialog runs switched to
Closed Dialog after the non-recognized initial “yes” with no re-switches to Requesting
Divided Dialog and thus, no confidence recovery, before the dialog abortion.
According to the experimental results, the noise levels most relevant to the online-

switching dialog strategy is from 60 to 70 dB(C). In Figure 2.14, an exemplary transcript
is depicted for 60 dB(C), where four switches were conducted, with two times to Closed
Dialog, and back to Requesting Divided Dialog, as soon as the confidence score recov-
ered to the threshold ε again in the first part of route segment 1, and at the other re-switch
in route segment 2 until the end of the directions. Prior to the switches to Closed Dialog,
two Repetition Requests were unsuccessfully employed by the system.
In Figure 2.15, an exemplary transcript for a dialog run at 70 dB(C) is shown, where two

switches are conducted: The first switch to Closed Dialog is conducted after the non-
recognition of the initial “yes”, where the confidence score decreases under the threshold
ε. The second switch is a re-switch to Requesting Divided Dialog with the confidence
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Figure 2.14: Transcribed online-switching dialog results for pink background noise of 60 dB(C)

score reaching the threshold again for route segment 1. In route segment 1, only one
information entity ([DIR])was recognized at the first place, the second information entity
([LM]) had to be requested by a Clarification Request. In route segment 2, the first
information entity ([DIR]) could be identified as misrecognized during post-hoc analysis,
and thus, would have been to be handled in Confirmation phase, where α = −10 scores
would have been subtracted if the user detected and indicated the miscommunication.
However, since a Confirmation phase was not part of the evaluation, the algorithm adds
α = +10 scores for a successfully recognized information entity that would be subtracted
again in Confirmation phase. In this dialog run, the system employed three MHRs: one
unsuccessful Repetition Request before switching to Closed Dialog for the retrieval of
the first information entity “yes”, one successfully employed Clarification Request for
the landmark after retrieving only the first information entity ([DIR]) in route segment 1
being back in Requesting Divided Dialog, and finally another successful Repetition
Request for the last information entity “arrived”.

The experimental results and indications for the handling of varying speech recognition
performance in noisy environments are summarized and discussed in the following.

Discussion

In the experimental evaluation of the online-switching dialog strategy, critical noise levels
for the handling of varying speech recognition performance by the switching mechanism
could be identified. In the experiments, there were no non-recognitions at the noise lev-
els of 40 and 50 dB(C), resulting in successfully conducted information retrieval using
Requesting Divided Dialog without using the switching mechanism. At 60 dB(C),
non-recognitions occurred that could successfully be handled by the targeted application
of MHRs combined with the switching mechanism to Closed Dialog, and back to Re-
questing Divided Dialog, where indicated by the confidence score, exceeding or falling
below a threshold ε. At a noise level of 70 dB(C), the number of successfully handled
non-recognitions started to decrease with first occurring dialog abortions after three con-
secutively unsuccessful MHRs, and miscommunication in form of misrecognized informa-
tion entities emerged. This kind of miscommunication can potentially be handled in the
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Figure 2.15: Transcribed online-switching dialog results for pink background noise of 70 dB(C)

Confirmation phase based on user-corrections, but can cause serious misleadings if they
remain undetected by the user. Hence, 70 dB(C) is the critical noise level, where misrecog-
nitions can lead the information retrieval in wrong paths, but that are still resolvable by
Correction Requests in the Confirmation phase, included in both paths of the online-
switching dialog strategy. However, at 80 dB(C), no successfully recognized dialogs could
be achieved in the experiments. Not one non-recognition could be handled and despite
switching to Closed Dialog, every run resulted in a dialog abortion after the applica-
tion of three consecutively unsuccessful MHRs. In the presented experiments, the varying
speech recognition performance, and corresponding confidence variations, that triggered
the switching mechanism was due to stochastic nature of the noise signals within a noise
level, and by fluctuations of the system performance itself. However, this is the more a pos-
itive indication for the applicability of the switching mechanism in outdoor environments
with varying noise disturbances.

Indications

When interpreting the experimental results according to a table for noise-disturbance of
“Umwelt-Bildungs-Zentrum” (UBZ)5, the following indications are deduced: The online-
switching dialog strategy is capable of handling non-recognitions due to varying speech
recognition performance up to a noise level of 60dB(C), that is comparable to disturbing
conversations up to a distance of one meter next to the robot. Due to the integrated Con-
firmation phase, the system is also able to handle potential misrecognitions at a noise level
of up to 70 db(C), corresponding to the noise disturbances at a crowded place. Thus, the
online-switching dialog strategy expands the spectrum of successful information extraction
from 50 dB(C) up to 70 dB(C) by the application of a switching mechanism, leading the
dialog in a closed dialog strategy where needed, and switching back to a more open dia-
log strategy in case of recovered speech recognition performance. The limitations of the
online-switching dialog strategy are at a noise level of 80 dB(C), corresponding to a busy
urban street with high traffic noise.

5Umwelt-Bildungs-Zentrum Steiermark 2008, www.ubz-stmk.at
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2.6 Summary

As reasoned in [117] dialogs should be interpreted in terms of informational alignment
rather than information transfer. Thus, handling miscommunication is essential for a spo-
ken dialog system. As, according to linguistic models, miscommunication can be divided
into three different categories occurring on three different states of understanding, these
states are transferred to HRI as states of information retrieval. The states in turn, have
been embedded into the second stage of a developed cognitive framework, consisting of
three consecutive stages (see Figure 2.2), derived from cognitive theories from social psy-
chology.
Thus, a cognitive framework for proactive information retrieval is developed, and four

different dialog strategies are modeled and evaluated in two different experimental set-
tings: Firstly, a fully automated (FA) indoor experiment is conducted, where each dialog
strategy is evaluated with respect to user experience based on a questionnaire. Secondly,
the experiment is replicated within an outdoor Wizard-of-Oz (WOz) setting, where three
different types of requests for handling miscommunication are additionally employed by
the wizard and evaluated in combination with each dialog strategy.
Finally, an online-switching dialog strategy is developed and implemented in a dialog

system in order to adapt to varying speech recognition performance by calculating an
online-confidence score that initiates switching to a more closed dialog strategy as soon
as the confidence decreases below a critical threshold during an interaction. In case the
online-confidence increases again, the mechanism switches back to a more open dialog
strategy to allow for more natural HRI than by using only closed prompts. An evaluative
experiment shows that information extraction from HRI can be kept up in this way in-
stead of aborting an unsuccessful interaction without the switching mechanism. Thus, the
benefit of the online-switching dialog strategy is that the robustness against environmental
disturbances is improved by increasing the bandwidth of acceptable environmental noise,
in which successful information retrieval is possible, from 50 dB(C) up to 70 dB(C) by
the application of a switching mechanism. This strategy leads the dialog in a more closed
strategy where needed, and switches back to a more open dialog strategy in case of re-
covered speech recognition performance. The limitations of the proposed online-switching
dialog strategy are at a noise level of 80 dB(C), corresponding to a busy urban street with
high traffic noise. An outdoor evaluation of the online-switching dialog strategy is pending.
Because of the hypothesized marginal traffic noise, a Closed Dialog strategy was used in
the outdoor field trials of the IURO-project, as described in Chapter 4, Section 4.3.
Since in this chapter, informational alignment was explored in terms of proactive retrieval

of missing task-information from natural language HRI, the following chapter is concerned
with emotional alignment with regard to proactively triggering prosocial behavior in terms
of increased empathy and helpfulness towards a robot.
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Robot

In the preceding chapter proactive retrieval of missing task-information from natural lan-
guage HRI has been explored in terms of informational alignment with the user, resulting
in a framework for proactive information retrieval and switchable dialog strategies, capable
of handling miscommunication in outdoor environments with varying conditions for speech
recognition. In this chapter, emotional alignment is explored with regard to proactively
trigger prosocial behavior in terms of increased helpfulness towards a robot, see Figure 3.1.
In applications where (robotic) systems provide human users with information [75, 76,

128], it is self-evident that the user keeps up the interaction as long as all requested
information is provided. However, when a robot is asking humans for missing task-
knowledge [2, 28, 102, 106] it cannot be taken for granted that humans are interested
to interact or even help a robot without any benefit. Thus, this chapter focuses on the
development of an emotional adaption approach to proactively trigger increased helpful-
ness towards the robot in task-related HRI. According to social-psychological predictions
of prosocial human behavior, the approach aims at inducing not only empathy, but paired
with a feeling of similarity, e.g., in personal attitudes, in human users towards the robot.
This is achieved by the development of two differently expressed emotional control vari-
ables: by an explicit statement of similarity before task-related interaction, and implicitly
expressed by adapting the emotional state of the robot to the mood of the human user,
such that the current values of the human mood in the dimensions of pleasure, arousal, and
dominance (PAD) are matched. The thereby shifted emotional state of the robot serves as
a basis for the generation of task-driven emotional facial and verbal expressions, employed
to induce and sustain high empathy towards the robot throughout the interaction. The
approach is evaluated in a user study utilizing an expressive robot head. The effectiveness
of the approach is confirmed by significant experimental results. An analysis of the indi-
vidual components of the approach reveals significant effects of explicit emotional adaption
on helpfulness, as well as on the HRI-key concepts anthropomorphism and animacy.
The innovation of this chapter consists in the development and evaluation of a novel

emotional adaption approach to proactively increase altruistic helpful behavior towards a
robot in a persuasive way. In contrast to most state-of-the-art approaches, the goal is an
improvement of HRI not only for the benefit of the user, but also for the robot to make use
of targeted behavior control deduced from social psychology in order to trigger human help-
fulness while fulfilling its task. Contributions are the direct transfer of social-psychological
principles from HHI to HRI into a behavior control model for a robot, combining two
independently working emotional control variables, implementable in a robotic system. A
key challenge is the development of social-psychological ”drivers” for empathy towards a
robot in a first step, and for the induction of a feeling of similarity to the robot in a second
step, which are known in social psychology to trigger altruistic forms of helpful behavior.
Another challenge is to develop an objective behavioral measure for altruistic helpfulness
towards a robot that is repeatable and thus kept constant over all experimental trials.
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Figure 3.1: Triggering prosocial behavior towards a robot

The remainder of this chapter is organized as follows: In Section 3.1, a problem descrip-
tion is given. Section 3.2 is concerned with the induction of empathy towards the robot by
means of a comparative evaluation of facial expressions shown to the user during interac-
tion, animated in different emotional ways. The experimental evaluation reveals not only
increased empathy towards the robot for the animation of emotional facial expressions in a
socially adaptive way, but also improvements of the perceived subjective task-performance
of the robot as well as increased user acceptance. In Section 3.3 an emotional adaption
approach is developed to induce not only high empathy, but also a feeling of similarity in
the human user in order to trigger altruistic helpfulness towards the robot. The approach
is based on theories from social psychology resulting in a behavior control model incorpo-
rating two different emotional control variables, explicit and implicit emotional adaption,
that are applied and evaluated in combination and as single components in a user study,
described in Section 3.4. A behavior measure for altruistic helpful behavior is developed
for the experiments. Experimental results show a significant increase in helpful behavior
towards the robot for the application of the full approach while significant effects for the
emotional control variable of explicit emotional adaption are approved on helpfulness.

3.1 Problem Description & State of the Art

In any interaction, emotions are an important issue. In 1995, Picard introduced the term
“Affective Computing” [115]. It describes a form of computing that “relates to, arises from,
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or influences emotions”. Picard emphasized that this might lead to increased performance
and decision making for the computer, stressing the importance of such ideas. Today, a
large amount of works incorporate this idea. Two main aspects of affective computing
are systems detecting emotions in the human user or conversation partner, and systems
showing emotions themselves. The detection of emotions and its use in behavior control is
treated in several works, e.g., e-learning systems [3], pedagogical agents [46], driver assis-
tants [4], virtual agents [68], psychological assistance [72], etc. However, the effectiveness
of automatic emotion recognition is still very limited and the connection between perceived
and real emotions remains an open issue. Also in HRI, emotion recognition, expression,
and emotionally enriched communication and closed-loop behavior control have gained
strong attention during the last two decades [80, 94, 112, 119, 129]. In human-human
interaction (HHI), empathy is crucial for socialization. This ability is already developed in
infants [19] and dysfunctions in feeling empathy might lead to social deficits, as observed in
autism [40]. In the course of several social psychological studies investigating inter-human
empathy, the experimentally induced extent of empathy has successfully been manipulated
via similarity of personal attitudes between the subjects [11], [84]. Additionally, studies
on unconscious mimicry present findings on the importance of facial mimicry in social
interaction. Chartrand and Bargh [34] showed in an experiment that behavioral mimicry
(“the chameleon effect”) has a significant effect on the interaction and increases empathy
towards the interaction partner. There is evidence that feeling empathy for others can be
traced back to the mirror neuron system [40], [53], [69], triggering emphatic emotion by
deriving the emotional state from facial expressions, and thus involves neural activity in
the thalamus and cortical areas responsible for the face. Models from social psychology [51]
describe how humans predict events as well as the behavior of other humans [54] and have
certain expectations on how a conversation partner will react. The analysis of HRI from
a social-psychological perspective does not only reveal important implications for hard-
ware design [171], but can also provide a framework and guidelines for the design of robot
communication and behavior [79]. In the research field of “Persuasive Technology” [50],
non-robotic technologies, such as internet services or mobile devices, are investigated and
developed to change attitudes or behaviors of human users by means of non-coercive per-
suasion and social influence. One example is an interactive mannequin for shop windows
to persuade bypassing customers in order to extend the perceived time they stay in front
of a shop window [121].

Most works on social robots are guided by the premise that robots should adapt to
humans in order to facilitate intuitive interaction. Nonetheless, proactivity of robots is
equally important in order to realize social interaction or to even enable the robot to
accomplish its tasks by proactively triggering human behavior [108, 109].

Possible application scenarios are cases where the robot needs the help of humans to
achieve a given objective. In the “Interactive Urban Robot (IURO)” project1, a social
robot is developed, capable of proactively acquiring directional information from humans
in order to achieve its objective to navigate to goal locations in urban environments, e.g.
to perform fetch-and-carry tasks like medicine delivery to its human user. By triggering
helpful behavior of humans, IURO is robust against dynamic environmental changes, which
cannot be pre-programmed.

1see http://www.iuro-project.eu
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3 Triggering Prosocial Behavior towards a Robot

Figure 3.2: Social interaction components as a motivational basis for task-related HRI

Thereby, the request of the robot for help as well as the willingness of the human
to help, can be regarded as social meta communication that serves as a motivational
basis for information transfer, e.g. missing task knowledge, see Figure 3.2. Thus, for
application scenarios where a robot relies on prosocial behavior of humans, triggering
human helpfulness is a social sub-task for the robot, necessary to be achieved in order to
fulfill its task.

The willingness of passers-by to support robots asking for directions in public spaces has
been investigated in previous outdoor-experiments: According to Weiss et al. [165], “the
large number of people interacting arises from the fact that many of the interactions were
started by curious passers-by”. However, in a long-term perspective, service robots might
no longer be a novelty in public spaces and curiosity may pass into rejection.

In this context, this chapter describes a behavioral approach and integrated system
to trigger more prosocial human reactions in terms of increased helpfulness towards a
robot. The approach is developed by transferring social- psychological principles from
human-human interaction to HRI. The main idea is to trigger helpfulness in a behavioral
way, using both, explicit and implicit communication modalities to create empathy and a
feeling of similarity.

A number of studies have already been conducted which employ empathy and similarity
as factors in human-robot or human-computer interaction to manipulate the attitude of
users towards an artificial agent. In relation to this work, they can be categorized whether
the artificial agents are used to express empathy [38, 99, 110, 113, 118, 149, 155] or induce
it in the user [113, 114, 124] as proposed here.

46



3.2 Inducing Empathy towards a Robot

Empathic expressions by the agents are mostly utilized to enhance the user experience
and thus provide a benefit to the user. Depending on the correct situation awareness
and choice of expression, the empathic reactions can be comforting to the user [118], build
trust [38], enhance the system perception by the user [99, 113], enhance the subjective task
performance [149] and meet user expectations [110]. Thereby, the expression of empathy
is either based on empirical data [99], a theoretical model [149] or both [113]. Visual [149],
auditory [149, 155] or physiological [118] cues or training data from observations of HHI [99]
are used to evaluate the situation of the user and to express an emotion that is similar to
the estimated emotional state of the same.
Another approach is to induce empathy in the user by emotional alignment with the

same. This is, for example, achieved via facial mimicry [124] or character appearance [114].
While the induction of empathy can enhance the system perception by the user, it is also
possible to facilitate altruistic behavior. An example is the work by Paiva et al. [114], in
which the character design of experimentally mistreated virtual agents provides similarity
to the user and thus the educational aspect of bullying prevention is expected to be raised.
In this chapter, the approach is to proactively trigger altruistic helpful behavior towards

a robot in situations, where helpfulness can be avoided by walking away. Unlike other
state-of-the-art approaches, the benefit of empathy and similarity is not user-oriented, i.e.
not restricted to the internal states of human users in terms of increased user experience
and/or educational success. In contrast, the presented approach is task-oriented with
regard to directly trigger external human behavior that benefits the robot to better fulfill
its task. This is achieved by transferring theories from social psychology [11, 51, 84] to
HRI, predicting for situations providing a possibility to avoid helpfulness, that altruistic
helpful behavior cannot be achieved via empathy alone, but only paired with a feeling
of similarity in personal attitudes and/or characteristics. Hence, the proposed approach
focuses not only on the induction of empathy but also on the induction of similarity felt
by a human user towards a robot.
As a first step towards this goal, the extent of induced empathy is explored with regard

to different ways of animating emotional facial expressions during task-related interaction
with a human user, as described in the following section.

3.2 Inducing Empathy towards a Robot

In this section, emotional facial mimicry is applied in a human-robot communication sce-
nario.
The influence of behavioral mimicry has been subject to studies in the field of human-

human-, human-agent- and human-robot-interaction. Related work has already shown the
transferability of inter-human-findings to virtual agents and social robots. Gratch [63]
reports on “virtual rapport” with virtual agents, showing benefits of mirroring head move-
ment and posture shifts resulting in increased speaker engagement and improvements on
the interactional level compared to unresponsive agents. The work of Bailenson and Yee [5]
on “digital chameleons” concludes that the mimicking head movements of embodied virtual
agents are viewed as more persuasive and likeable compared to agents with prerecorded
movements. In the field of social robotics, Kanda et al. [74] could improve route guidance
interactions with a robot by incorporating cooperative body movements (e.g. synchro-
nization of arm movements), enhancing both reliability and sympathy. Riek et al. [122]
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studied the effects of automatic head gesture mimicking with a chimpanzee robot. The
listening-behavior of the robot to the subjects is varied in the conditions of either mim-
icking all head gesture, only nodding, or no mimicking, which result in different levels of
interaction satisfaction.

This work extends the state-of-the-art by explicitly evaluating the extent of empathy,
induced by facial expressions in contrast to interactive impacts of head, arm or body ges-
tures. The facial expressions are generated automatically and online during HRI. Further,
two new questionnaires are developed to evaluate the extent of situational empathy and
subjective task-performance.

The core idea is to compare the extent of induced empathic emotions towards a robot
during task-related interaction between two different approaches of emotional facial ex-
pressions animation, developed by Sosnowski et al. [60]. The first approach is to mirror
the facial expressions a user shows in the course of a communicative task in order to trigger
the mirror neuron system of the user and thus evoke empathy for the robot. The second
approach is to animate the facial expressions shown by the robot according to a ”social
motivation model” that aligns the interactive smiling reactions between the user and the
robot in a socially adaptive way, as described more detailed in Subsection 3.2.1. In the
presented user-study, the subjects are asked to rate their situational empathy and the sub-
jective task performance of the robot after playing an interactive question-response game
with a robotic head, showing the varying facial expressions according to the conditions of
neutral facial expressions, mirroring facial expressions and according to a social motivation
model (SMM).

The user-study and its results are also published in [60].

3.2.1 System and Methods

The system, developed by Sosnowski et al. 2, consists of several modules, as can be seen
in Figure 3.3.

A module for the recognition of facial expressions, developed by Mayer et al. 3, and a
facial expression display module work continuously in parallel, permanently tracking and
aligning the facial expressions of the robot with the facial expressions of the user. Further,
the robot head turns the neck to focus the face of the user. Text-to-speech is integrated
by Blume et al. 4 to communicate the questions of the used question-response game
”Akinator” (see: www.akinator.com) to the user. The robot head parses each question to
generate adequate lip movements. A speech recognition module passes the verbal responses
of the human back to the robot, that sends them back to the Akinator-game via a web
API.

The modules are interconnected with a suitable communication backbone based on the
Real-time Database (RTDB) introduced by Goebl and Färber [55]. It provides a shared-
memory implementation with integrated data storing and is able to handle large amounts
of data in real-time, required for instance by the vision-based components of the system.

2Dipl.-Ing., Institute of Automatic Control Engineering (LSR), Department of Electrical Engineering and
Information Technology, Technische Universität München

3Ph.D., Intelligent Autonomous Systems Group, Department of Computer Science, TU München
4Dipl.-Inf., Institute for Human-Machine Communication, Department of Electrical Engineering and
Information Technology, Technische Universität München
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Figure 3.3: Overview of the integrated Modules in the System [60]

The Robotic Head EDDIE

For the experiment the EDDIE (Emotion Display with Dynamic Intuitive Expressions) -
head is used [139], an emotionally expressive robot head designed as an interaction partner
with 23 degrees of freedom and mixed anthropomorphic and zoomorphic features, see
Figure 3.4.

Figure 3.4: The robot head EDDIE [139].

By choosing additional animal-like characteristics, the robot is intended to not provoke
disproportionate expectations concerning its social abilities [86]. The basic functionalities
of EDDIE are: eye balls 2 DoF, eyelids 2*1 DoF, ears, 2 DoF, mouth/jaw 1 DoF, lips 2*2
DoF.
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Figure 3.5: The face model is fitted to each image in order to estimate the currently visible
facial expression. Photo: Kurt Fuchs

With this head, 13 out of the 21 emFACS 5 action units can be displayed.

EDDIE can be operated on various levels of the control hierarchy, ranging from high-
level control of the emotional state to directly sending motor commands. In this case,
direct control of the action units is used to achieve mirroring of facial expressions. The
visualization of speech is done by parsing the text-to-speech and generating a set of visemes
to accompany the speech output.

Facial Expression Analysis

For tracking the face of the human interaction partner and thus showing the focus of
attention, the robot head is equipped with a pan-tilt unit by Directed Perception as a neck.
The facial expressions of the human are analyzed from camera images, see Figure 3.5

According to Mayer et al. [60], the facial components are considered separately to deter-
mine intra-face movements like raised eyebrows or an opened mouth. The system calculates
activation intensities of several FACS action units during the interaction. Furthermore,
the position of the human face is determined in 3D space, enabling the robot head to focus
on the user by turning the head at the neck.

A model-based technique is used to determine the exact location of facial components
such as eyes or eye brows in the image. The Candide-3 face model is a wire-frame model
consisting of 116 anatomical landmarks [1]. Its parameter vector describes the face pose
in 3D space and the face shape. In order to extract action unit activations for a single
image, model parameters that match the image content are calculated. For instance, if the
user visible in an image is smiling, the model parameters should reflect raised lip corners.
The approach requires a neutral reference image of the user to calculate corresponding
model parameters. No prior knowledge of the image content or the user is available. In
subsequent images, the model is tracked and model parameters are compared with the
neutral face to determine action unit activations.

5emFACS is a subset of the facial action coding system, including only action units which are involved
in emotional facial expressions

50



3.2 Inducing Empathy towards a Robot

The action units recognized by the analysis components and synthesized by the robot
are AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU7 (lid tight-
ener), AU13 (lip corner depressor), AU26 (yaw drop), AU42 (eyes closed). Based on this
information, the robotic face calculates a corresponding facial expression for displaying an
appropriate reaction.

Social Motivation Model

The implementation of the social motivation model is based on a reduced version of the
Zurich Model of Social Motivation [64] and can describe the effect of smiling and other facial
expressions based on the motivational and emotional state of a human or agent [20]. In a
concise description, the model combines three motivational subsystems regulating security,
arousal, and autonomy. These systems are homeostatic. The autonomy regulation has a
special role, since it is coupled to security and arousal. One of the main assumptions
in this model is that smile reactions are the result of a decline in autonomy, meaning
that smiles are a reaction to external disturbances of the homeostasis, like social distance
changes, environmental changes or conflicts, etc. Changes in the respective subsystems
lead to characteristic facial expressions, which in superposition result in the overall facial
expression. With this model, an agent is able to react to various, even unknown, situations
as long as the parameters for security, arousal and autonomy can be extracted. For more
detailed information on the composition of the social model, please refer to [20].

For this experiment, the model is extended by Sosnowski et al. [60] to use the facial
expressions of the human interaction partner as an input. Smiling at the robot increases
the security state, thus resulting in a smile reaction of the robot. Detected arousal increases
the level of arousal in the system and angry or very stern looks can be interpreted as a
challenge to the autonomy. All these inputs provoke a reaction of the robot that is quite
similar to the input signal, but the reaction is delayed by about one second, due to the
frame-rate of the facial analysis and model-internal time constants, and influenced by the
actual motivational state of the robot.

Dialog and Akinator

In order to provide structure and context to the ongoing dialog, a speech-interface to the
”Akinator” (see www.akinator.com), a web-based application that is usually executed in
a browser, is integrated by Blume et al. [60]. In this dialog, the user is asked to think
of a person. Then, the computer tries to guess this person by asking several questions.
The person may be a real or fictional person, currently living or historical, taken from
literature, the media or public live. To answer Akinator’s questions, a set of fixed answers
is presented by the system. The set of answers is the same for every question and consists
of: ”Yes”, ”Probably” / “Partially”, ”I don’t know”, ”Probably not”/ ”Not really”, and
”No”. Example questions asked by the Akinator are: ”Is your character a girl?”, ”Does
your character live in America” or ”Does your character really exist?”.

In order to create a dialog with the robot head, text-to-speech is used to present Aki-
nator’s questions acoustically to the subject and speech recognition is utilized to retrieve
the answers.

A dialog manager keeps track of the ongoing communication to estimate when a response
of the human user or the machine is expected by the dialog partners. The complete
dialog structure is implemented in a first-order logic representation. Tasks to be solved
are represented by predicates with variables. These variables represent information to
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be determined during the dialog. Equivalence rules on these predicates are specified to
navigate through the dialog by splitting a task into several subtasks. Evaluating predicate
truth values and binding variables models real-world interaction.

3.2.2 Experiment IV: Evaluation of Emotional Impacts of Facial

Expressions-Animation on task-related HRI

In order to evaluate the impact of different ways of emotional facial expressions-animation,
an experimental setup is created for the subjects engage in a dialog with the robot head
EDDIE. The web-based gaming application “Akinator“ serves as a backbone for the dialog
structure. In this game, the robot tries to guess a person thought of and chosen by the
subject by asking various questions about the person. During this task-related interaction
the robot reacts in various ways to the facial expressions of the human, either ignoring
them, mirroring them, or displaying a facial expression based on the psychological model
for social awareness, as described in Section 3.2.1. In which way this robot behavior
influences the human perception of the interaction is investigated by questionnaires. The
hypothesis is that the robot behavior during interaction heavily influences the extent of
empathy by a human towards a robot, as well as perceived subjective task-performance,
with the adaptive modes leading compared to the non-adaptive mode.

A key assumption for the experiment on the impacts of how emotional robotic facial
expressions are animated, as described in this section,is that the single facial expressions of
the robot are interpreted correctly by the human subject. This assumption is strengthened
by the findings of a pre-evaluation, as described in detail in Mayer et al. [97] and Sosnowski
et al. [140].

During the interaction, EDDIE speaks and tracks the person while acting according to
one of three possible conditions. Thus, the experimental subjects are divided into different
groups depending on the following experimental conditions:

1) Neutral: EDDIE displays no facial expressions

2) Mirror: Eddie displays the subject’s facial expressions

3) Social motivation model (SMM): EDDIE displays facial expressions according to its
internal system-theoretic model of socially-adaptive smiling

After the interaction each subject fills in a computer-randomized questionnaire as de-
scribed in Section 3.2.3.

The main goal of the study is to reveal if mirroring and/or socially adaptive facial ex-
pressions in conditions 2 and 3 induce empathy towards a robot and if the user grades
the subjective performance of the robot accordingly higher than in condition 1. Further,
the study aims to unveil possible impacts on HRI regarding the five key concepts an-
thropomorphism, animacy, likeability, perceived intelligence, and perceived safety [9], as
well as possible influences on user acceptance [66]. Accordingly, the assumed interrela-
tions of user acceptance and HRI key-concepts with and between empathy and subjective
system-performance are investigated.
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3.2.3 Experimental Design & Measures

For the experimental setup a quiet room with controlled lighting conditions was chosen.
The robotic head was placed on a table to be at approximately eye-level with the subjects
that were seated in front of the robot, with a microphone placed in front of them on the
table to ensure a low error rate in speech recognition as can be seen in Fig. 3.6.

Figure 3.6: Experimental HRI setup [60].

Since the task rating and enjoyment of the interaction would depend on the ability of
the robot to correctly understand the answers, the external microphone was preferred over
the internal, that would have added to the illusion of speaking to the robot directly. The
instructor greeted the person and gave a short introduction on the task and how to interact
with the robot. In order to start the experiment, the instructor asked the participant to
think of a person of his/her own choice and give a start signal, when done. From this point,
the robot started the akinator game, speaking the questions provided by the Akinator API
and listening for the answers. A sample round of Akinator can be seen in Table 3.1.

After the game was finished by either the robot guessing the correct person or giving
up after too many trials (dependent on the Akinator API, having a threshold influenced
by the confidence and the number of trials), the subjects were asked to fill in a computer
based questionnaire.

Experimental Measures

The computer-randomized questionnaire consists of two different parts which can be ana-
lyzed independently.

The first part consists of five selected constructs based on a “limited model for studies on
social abilities or social presence” out of a toolkit for measuring user acceptance of social
robots [66]. These constructs are adapted to the requirements of the experimental setting
and kept constant with regard to a consistent number of items, i.e. four questions for each
construct. Additionally, these five constructs are enhanced by two newly developed con-
structs, which are proposed to measure the induced scope of situational empathy towards
a robot, and the subjective system-performance perceived by the user. These additional
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Question Answer
given expected

Is your character a male? No No
Is your character a singer? No No
Does your character really exist? No No
Does your character fight? Not really No
Is your character from an anime? No No
Does your character live in America? No No
Is your character a human being? No No
Is your character an animal? No No
Does your character have hair? No No
Is your character visible? Yes Yes
Is your character a robot? Yes Yes
Has your character played in ’Star Wars’? Yes Yes
Is your character yellow? No No

I guess you were thinking of: R2D2

Table 3.1: Sample dialogue of a game of akinator, looking for R2D2

constructs are to reveal supposed interrelations to the other constructs on user acceptance
and thus enhance this existing toolkit.
The second part of the applied questionnaire consists of the “godspeed” questionnaires [9]

to evaluate the “five key concepts of HRI”: anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety.
Hence, the questionnaire evaluates the interaction on three different dimensions: 1)

Empathy and subjective performance as proposed extension of 2) user acceptance, and 3)
the key concepts of the godspeed questionnaires.
In the following the two parts of the questionnaire are described in detail.

Empathy and Subjective Performance

For measuring both constructs, the scope of induced situational empathy on the one hand,
and subjective system-performance on the other hand, this part of the first questionnaire
is divided into two different paths depending on the objective system performance in
the task, i.e. if EDDIE is successful (a) or not (b) in guessing the thought-of person.
Thus, subjective performance can be compared to objective performance in order to draw
conclusions on possible interrelations due to the scope of induced empathy. Therefore,
the subjects are asked to respond to different statements including positive, negative and
inverted formulations for sharing happiness or sadness with EDDIE corresponding to the
task-success or -failure of EDDIE as shown in Table 3.2.
Users can reply to these statements on a five-item Likert scale (1=strongly disagree to

5=strongly agree). For analyzing the answers correctly, the scale for negatively formulated
items, e.g. questions 4a) and 4b), has to be inverted afterwards.

User Acceptance

Heerink et al. [66] extended the Unified Theory of Acceptance and Use of Technology
(UTAUT) model [156] by several constructs in order to adapt this model to the specific
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requirements of evaluating social robots. Given experimentally validated interrelations
between several constructs, the five selected constructs include:

Trust : The belief that the system performs with personal integrity and reliability

Perceived Sociability : The perceived ability of the system to perform sociable behavior

Social Presence: The sensing of a social entity when interacting with the system

Perceived Enjoyment : Feelings of joy or pleasure associated with the use of the system

Intention to Use: The outspoken intention to use the system over a longer time period

The questionnaire evaluates each construct by four different statements, as presented in
Table 3.2. In order to reduce acquiescence bias some items are negated and thus invert
the scale.

Again, the subjects rate the randomized statements on five-item Likert scales
(1=strongly disagree to 5=strongly agree). As the statements for user acceptance and
their constructs are independent from the system performance this questionnaire is not
divided into different paths if EDDIE was successful (a) or not (b) in guessing the person
thought of. Nevertheless, it is analyzed if interrelations to subjective task performance
exist.

Godspeed Key Concepts 6

”A series of questionnaires to measure the user’s perception of robots” combines five con-
sistent and validated questionnaires based on 5-point semantic differential scales as a stan-
dardized metric for the ”five key concepts in HRI” [9]:

Anthromorphism: how natural the robot appeared

Animacy : the liveliness of the robot

Likeability : how pleasant the robot appeared

Perceived Intelligence: how the mental abilities of the robot were perceived

As recommended, the items are randomized so as to hide the different concepts and hence
mask the intention. However, in order to avoid capturing changes of the emotional state
of the subjects while filling in the questionnaire, in this study the emotional state of the
user is measured directly after the interaction with EDDIE, and thus the three questions
of Perceived Safety constantly set up the beginning of the overall questionnaire.

3.2.4 Experimental Results

Results are deduced from the experimental evaluation including 55 subjects (40 male and
15 female, between 21 to 60 years with an average age of 28.8).
The distribution of the subjects over experimental conditions was 13 for Neutral, 17 for
SMM, and 25 for Mirror.

6Open source version, see http://www.bartneck.de/2008/03/11/the-godspeed-questionnaire-series
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Situational Empathy
1a) I am happy that EDDIE guessed my person.
1b) It’s a shame EDDIE didn’t guess my person.
2a) I would have been proud if Eddie hadn’t guessed my person. (inverted)
2b) I’m proud EDDIE didn’t guess my person.
3a) It would have been a pity if EDDIE didn’t guess my person.
3b) It would have been nice if EDDIE had guessed my person.
4a and b) I would feel sorry for EDDIE if someone tried to destroy it at that moment,

thus I would try to prevent it.
Subjective Performance

1a) I was impressed by how fast EDDIE has guessed my person.
1b) I had the feeling that EDDIE nearly guessed my person.
2) EDDIE has shown a good performance.
3) I think that EDDIE has worked efficiently.
4a) It took EDDIE long to guess my person. (negated)
4b) It took EDDIE too long to guess my person. (negated)

Trust
1) I would believe EDDIE if he gave me advice.
2) EDDIE is inspiring confidence.
3) I feel that I can trust EDDIE.
4) I do not trust EDDIE’s statements. (negated)

Perceived Sociability
1) I like EDDIE.
2) EDDIE’s mimic and verbal statements fit together well.
3) EDDIE was a good conversation partner.
4) EDDIE’s behavior was inappropriate. (negated)

Social Presence
1) I had the feeling that EDDIE really looked at me.
2) I could imagine EDDIE as a living being.
3) Sometimes it felt like EDDIE had real feelings.
4) EDDIE’s behavior was not humanlike. (negated)

Perceived Enjoyment
1) It was fun to interact with EDDIE.
2) The conversation with EDDIE was fascinating.
3) I consider EDDIE to be entertaining.
4) It’s boring when EDDIE interacts with me.(negated)

Intention to Use
1) I would like to interact with EDDIE more often.
2) I would take EDDIE home with me.
3) I would like to play again with EDDIE within the next few days.
4) I could imagine interacting with EDDIE over an extended period of time.

Table 3.2: Questionnaires for User Acceptance on a 5-point Likert scale, extended by two
constructs on Empathy and Subjective Performance
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Table 3.3: User Acceptance: Mean ratings (rated on Likert scales from 1 = strongly disagree
to 5 = strongly agree) with standard deviations (in brackets) of each construct and total
scores within conditions

Construct
Condition

Neutral Mirror SMM

Situational Empathy 3.1(1.3) 3.7(1.1) 4.4(0.8)
Subjective Performance 2.8(1.2) 3.4(1.0) 4.1(0.9)
Trust 3.0(0.6) 3.3(0.8) 3.7(0.5)
Perceived Sociability 3.2(1.0) 3.6(1.0) 3.9(0.7)
Social Presence 2.8(0.6) 2.8(0.7) 2.9(0.7)
Perceived Enjoyment 2.8(1.4) 3.9(1.2) 4.2(0.7)
Intention to Use 3.0(1.3) 3.5(1.0) 3.9(1.0)

Total Score 2.9(1.1) 3.5(1.0) 3.9(0.8)

Regarding reliability, coefficients of internal consistency are calculated with Cronbach’s
α for the items of the novel constructs on Empathy and Subjective Performance. As a
solid construct should create an Cronbach’s α > .70 all items of both novel constructs
showed good reliability with Cronbach’s α = .82 for Empathy, and Cronbach’s α > .86
for Subjective Performance. Since the selected constructs for user acceptance and of the
Godspeed questionnaires are previously evaluated [9, 66] reliability and internal consistency
are assumed.

Significance level for all performed tests was set to α = .05. According to the results
of Kolmogorov-Smirnov tests, normal distribution could be accepted for the total scores
of all constructs, except Perceived Enjoyment. Thus, this construct has to be analyzed
non-parametrically. Parametric comparisons and correlations are performed for all other
constructs.

An analysis of variance (ANOVA) revealed significant differences between the conditions
for Empathy (F = 5.35, p = .008), Subjective Performance (F = 6.48, p = .003), Trust
(F = 4.47, p = .016), and Likeability (F = 3.73, p = .031). Thus, a post-hoc analysis could
be conducted between the three conditions. Accordingly, the assumed significance level
was divided by three and thus adjusted to α = .016. Paired t-tests revealed significant
differences between Neutral- and SMM conditions for Empathy (t = −3.01, p = .007),
Subjective Performance (t = −3.51, p = .002), and Trust (t = −3.30, p = .003). Between
Neutral- and Mirror condition one significant difference was found for the godspeed
construct Likeability (t = −2.03, p = .062), and no significant differences were found
between the conditions of SMM and Mirror due to the α-value adjustment. Means, total
scores and standard deviations of the five constructs on user acceptance by Heerink [66],
and the two additionally introduced constructs on Empathy and Subjective Performance
are displayed in Table 3.3.

Mean values and total scores for the five key concepts in HRI, as derived from the
godspeed questionnaires, are depicted in Table 3.4.
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Table 3.4: Key Concepts (Godspeed): Mean ratings (rated on Likert scales from 1 = strongly
disagree to 5 = strongly agree) with standard deviations (in brackets) of each construct
and total scores within conditions

Construct
Condition

Neutral Mirror SMM

Perceived Safety 3.9(0.8) 3.6(0.6) 3.7(0.5)
Anthropomorphism 2.6(0.6) 2.8(0.5) 2.8(0.7)
Animacy 3.1(0.7) 3.3(0.4) 3.3(0.7)
Likeability 3.5(1.1) 4.1(0.5) 4.1(0.7)
Perceived Intelligence 3.5(0.8) 3.8(0.5) 3.9(0.5)

Total Score 1.1(0.7) 3.5(0.5) 3.6(0.6)

Correlation analysis focused on the five selected constructs on user acceptance, along
with the added constructs on Empathy and Subjective Performance. Correlation co-
efficients led to the finding that all constructs show significant correlations to each
other (p < .001), except for Social Presence which only correlates significantly to Trust
(r = .36, p = .007).

Emp. Perf. Trust Soc. Pres. Enjoy. Use
1

2

3

4

5

 

 
Neutral Mirror SMM

Figure 3.7: Mean values of Heerink’s 5 and the introduced 2 additional constructs for 3
conditions: neutral, mirror, and SMM on a 5-item Likert scale from 1 (strongly disagree)
to 5 (strongly agree).

3.2.5 Discussion

The experimental evaluation of emotional facial expressions in terms of their effects on HRI
provides new insights regarding the possibilities and limitations of their animation. Three
different experimental conditions of facial mimicry are implemented in a robotic system
and evaluated in terms of user acceptance and key concepts of HRI. Additionally, two
new measures for situationally induced empathy and subjective system-performance are
introduced and successfully evaluated with regard to their internal reliability and existing
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Figure 3.8: Mean values of the 5 godspeed constructs for 3 conditions: neutral, mirror, and
SMM on a 5-item Likert scale from 1 (strongly disagree) to 5 (strongly agree).

correlations with user acceptance. In general, results support the initial hypothesis by
showing a trend towards a better rating of the mirroring condition compared to the neutral
condition, with the social motivation model (SMM) being rated significantly better in most
instances. This underlines the importance of social factors to be considered for further
refinement of how mimicking should be performed.
The reliability of the newly developed measures for empathy and subjective performance

is confirmed and correlations of those with all other constructs on user acceptance, but
social presence, are revealed. Also the significance of empathy, subjective performance, and
likeability provides evidence for the impact of socially-adaptive animated facial expressions
on the interaction. Since EDDIE has a very machine-like appearance it is possible that
this may have dominating effects on the construct of social presence: Mean values show
no noticeable increase within this construct, and no correlations could be found besides
with the construct of trust. However, results indicate that social presence, that is very
much bound to being humanlike, is not crucial in order to induce empathy. It is notable
that according to Bailenson and Yee [5], the effect persists even when the person being
mimicked is fully aware that the mimicker is an artificial agent.
In the following section, the gained insights on induced empathy are re-evaluated by ex-

tending this approach to an integrated behavior control model to trigger prosocial behavior
in terms of increased helpfulness towards a robot.

3.3 Inducing Empathy & Similarity towards a Robot

In order to trigger altruistic helpfulness towards another human, high situationally induced
empathy must be paired with a feeling of similarity towards a person in need of help [51].
Thus, in order to transfer this finding to HRI, similarity is induced by two different ways
of emotional expression in the proposed approach: by an explicit statement of similarity
before task-related interaction, and implicitly expressed by adapting the emotional state
of the robot to the mood of the human user, such that the current values of the hu-
man mood in the dimensions of pleasure, arousal, and dominance (PAD) are matched.
The thereby shifted emotional state of the robot serves as a basis for the generation of
task-driven emotional facial- and verbal expressions, employed to induce and sustain high
empathy towards the robot throughout the interaction. In the experimental evaluation
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of the approach, these task-driven emotional expressions are kept as a constant over all
experimental conditions to sustain high empathy, while the factors of explicit and implicit
emotional adaption are varied in a 2x2 between-subjects design in order to reveal their
effects on helpfulness, shown by the user towards the robot in task-related interaction, as
well as on user experience. In a first step, the user-mood is determined by an initial self-
assessment by the human participant to be extended by automatic emotion recognition
modules in a later stage. The interaction task is exemplarily designed as a person guessing
task. The effectiveness of the approach is confirmed by significant experimental results,
deduced from 55 test subjects in previous work (see Section 3.2, and 84 subjects in the pre-
sented study. An analysis of the individual components of the approach reveals significant
effects of explicit emotional adaption on helpfulness, as well as on the HRI-key concepts
anthropomorphism and animacy. The development of the emotional adaption approach
and the experimental evaluation of the full approach as well as of the single components
as stand-alone emotional control variables are also published in [56, 59, 85].

3.3.1 Background from Social Psychology

In human-human interaction, “prosocial behavior” in terms of altruistically motivated
helpfulness and its determinants is a well-studied field of research [18]. The presented ap-
proach is inspired by social-psychological studies [11, 84], where a feeling of being “similar”
in terms of having something in common with a person in need of help, e.g. in personal
attitudes or characteristics, turned out to be a motivational activator for increased help-
fulness towards this person, paired with high empathy. Empathy can be defined as “The
capacity to know emotionally what another is experiencing from within the frame of refer-
ence of that other person, the capacity to sample the feelings of another or to put one’s self
in another’s shoes” [16]. In other words, the extend of personal distress felt by a potential
helper when observing a person in need of help depends on the degree of situationally de-
veloped empathy for this person, and similarity is the activating factor for either reacting
with altruistically or egoistically motivated behavior:
In situations providing a possibility to avoid helpfulness, e.g. by walking away, referred

to as “easy means of escape”, the feeling of having something in common with the person in
need of help (similarity), paired with correspondingly high empathy, activates altruistically
motivated helpfulness. Accordingly, the perceived reward for helping is much higher than
the reward for walking away, resulting in high helpfulness, see Table 3.5. In contrast, in the
absence of similarity, people would only be highly helpful if there was no or only difficult
means of escape. This kind of helpfulness is egoistically motivated to reduce one’s own
discomfort arising from the empathic reaction on the situation.
Thus, in situations with easy means of escape (as given in most HRI-scenarios), people

without a feeling of similarity tend to leave the scene showing low helpfulness towards
the person in need of help, since this is an equally efficient way of reducing the negative
empathic stimulus. The degree of empathy would not play a role in this case [18]. In
Table 3.5, the social-psychological predictions on helpfulness are summarized for situations
with easy means of escape, considering the influence of similarity, paired with high empathy.
Since in most HRI-scenarios easy means of escape are provided, the approach is to raise

the motivation of human users to help the robot, e.g. in public places. According to the
findings of social psychology, the approach is to design the interaction in a way to induce
similarity between the robot and the user, paired with high empathy towards the same.
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Table 3.5: Predictions on helpfulness for situations with easy means of escape according to
social-psychological theories [11, 18, 84]

Low empathy High empathy

With similarity Low helpfulness High helpfulness
Without similarity Low helpfulness Low helpfulness

Hence, in order to increase helpfulness towards a robot, the presented experiments focus
on a constant induction of high empathy, paired with the experimentally varied induction
of similarity. Constantly high empathy is achieved by emotionally adaptive facial expres-
sions of the robot, as investigated in previous work, see Section 3.2, incorporated in the
developed approach. Regarding the induction of similarity, an evaluative variation of two
different persuasive emotional control variables, developed earlier as components of the
emotional adaption approach [56, 59], is applied. The experimentally evaluated parts of
social-psychological predictions and corresponding human target behaviors are marked in
gray color in Table 3.5.
For the development of persuasive emotional control variables, all available robotic out-

put modalities should be used. The following subsection provides an overview on explicit
and implicit communication modalities with regard to their linguistic background and
applications in HRI.

Explicit versus Implicit Communication
In linguistic pragmatics, a distinction is made between explicitly communicated content
which is directly said or written, and ”implicatures” [30], that enrich and manipulate the
pragmatic interpretation of explicitly communicated content. Accordingly, communication
modalities are not limited to explicit communication channels like direct verbal or written
utterances, but also “silent messages” [100] as implicit communication channels of emo-
tions and attitudes. According to Mehrabian [100] this includes “all facets of nonverbal
communication, including body positions and movements, facial expressions, voice quality
and intonation during speech, volume and speed of speech, subtle variations in wording of
sentences that reveal hidden meanings in what is said, as well as combinations of messages
from different sources, e.g., face, tone of voice, words.” This holds equally true for HRI,
where beliefs about the other’s mind are also resulting from interpretation of the other’s
behavior, that becomes a “sign” of their own minds, by means of implicit and explicit ways
of communication [32].
The importance of such “mutual beliefs” in natural language communication is instanti-

ated in the phenomenon of “grounding” [36], meaning that the interpretation of commu-
nicated contents has to be at least “approximately correct” in order to achieve successful
communication acts, based on a common underlying field of knowledge and/or required
actions [152]. Also for artificial social agents, Castelfranchi stresses the importance of
a “basic ontology of social action” with special focus on prosocial forms in the mental
representations as beliefs and goals of the agent in a social interaction [33].
In the presented approach, focus is set on the adaption of emotional facial and verbal

expressions in an implicit and explicit way: An explicit statement of similarity is given by
the robot by verbally expressing that it is in the same mood as the user prior to task-related
HRI. Implicit emotional adaption is conducted by shifting the base-values of emotion facial
end verbal expressions (prosody in speech) towards the user-mood during task-related HRI.
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The implicit modality of facial expressions has already been explored in terms of inducing
high empathy in previous work and is shortly outlined in the following.

3.3.2 Transfer to HRI: The Emotional Adaption Approach

The basic idea is to induce both, high empathy and a feeling of similarity in a human user
towards a robot by adapting to the mood of the user and thus providing the human with
the impression of sharing the same emotional state as a starting position for the interaction.
To achieve this, the emotional adaption approach is divided into two components which
express the adaption to the mood of the user in two different ways: explicitly and implicitly.
Explicit expression of similarity is given by stating ”me too” when the user was asked
about her mood, as outlined more detailed in the following, and in Section 3.3.4. Implicit
expression of similarity is generated using facial and verbal emotion expressions during
the HRI task execution that are biased using the mood of the human as measured before
the interaction. In the implicit case, as described more detailed in the following, and
in Section 3.3.5, similarity consists of an initial bias of the emotional state of the robot,
based on the user mood. In the course of task-related interaction, this bias serves as a
shifted baseline for the generation of task-driven emotional expressions of the robot that
are included to induce and sustain high empathy in the human user in accordance with
the experimental findings of previous work, see Section 3.2.

As an example for implicit emotional adaption, previous work showed that empathy and
other dimensions of HRI could be improved by the emotional animation of facial expressions
to the human user [60]. However, a socially adaptive way of reacting to facial expressions,
shown by a user during interaction, requires robust recognition and analysis of the facial
action units involved, based on camera images [97]. Since the recognition quality may often
be impaired by dynamically changing environmental impacts like varying light conditions
or unpredictable background-movements which may distract the focus of a face tracker,
the approach of emotional adaption additionally includes an explicit emotional adaption
method. Hence, the approach is not restricted to implicitly expressed mimicry or prosodic
variations in speech, but also applies explicitly uttered statements to induce similarity,
modeled according to underlying social psychological principles. Another advantage is
the increased robustness against environmental impacts: If bad performance of automatic
speech recognition impairs the explicit part of emotional adaption, the approach may
still be robust in terms of implicit emotional adaption. Hence, two different emotional
control variables for prosocial HRI are proposed, capable of compensating each other with
regard to varying recognition performance of speech or facial expressions, as depicted in
the developed behavior control model, see Figure 3.9: For the robot, the emotional control
cycle starts with the input of the user-mood as starting point for emotional adaption
mechanisms. This can be achieved by emotion recognition modules or, as applied in the
presented study, by an initial self-assessment of the user. Subsequently, the robot initiates
the dialog with the user and applies explicit and/or implicit emotional adaption during
the interaction. Thereby, the robot persuades the user to show prosocial behavior, e.g. in
terms of increased helpfulness towards the robot.

In the following, the two components of the approach, namely explicit and implicit
emotional adaption are explained, and related control variables, as used in the presented
experiments, are defined.
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Figure 3.9: Emotional control cycle for prosocial behavior in task-related HRI: After the in-
put of the user-mood the robot persuades the user by explicit and/or implicit emotional
adaption to trigger more prosocial behavior in turn.

Explicit Emotional Adaption
Independent of the interactive goal which is expressed later during task-related human-
robot dialog, the idea is to implement some small talk to open the dialog and thereby
monitor the current mood or other personal attitudes of the user. Thus, an explicitly
expressible basis is provided to induce a feeling of similarity between the user and the
robot. Thereby, it has to be considered that this may not match the actual mood but only
the mood, the user is willing to communicate because of social conventions and rituals
during small talk [150]. However, even when communicating with embodied artificial
agents, humans build rapport and trust by means of small talk [17]. The instrumentalized
form of small talk used in the presented approach is referred to as “social subdialog” in
the following, since triggering helpfulness by means of similarity is regarded to be a social
sub-task in cases where helpfulness is necessary to fulfill the overall task. In the course
of this social subdialog, explicit emotional adaption, and thereby similarity, is created by
directly stating a mutuality in an attitude or, as applied in the presented study, in the
current mood. Thereby, an impression of having something in common with the user is
created.
Accordingly, the emotional control variable of explicit emotional adaption is a directly

uttered similarity statement during a social subdialog.

Implicit Emotional Adaption
Existing HRI-applications using implicit communication channels are based on a com-
municative mechanism in human-human interaction, called “alignment” [116], that leads
to adaptive processes between interlocutors which are essential for human-human inter-
actions [49, 83]. One example is an alignment-approach of emotional facial expressions,
where a distinction of automatic, schematic and conceptual levels for emotionally adaptive
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reactions is made, as partly implemented in the robotic head “Flobi” [39]. In contrast to
state-of-the art approaches, this work additionally aims to create a feeling of similarity in
users by adapting to their current mood. Thus, an underlying representation of emotional
states is needed for both, the generation of facial and verbal expressions, as well as for
decoding and adapting to the mood of a user: the Pleasure-Arousal-Dominance (PAD)
model [101], where emotions are presented in a continuous three-dimensional space:

• Pleasure describes a person’s evaluation of the situation, or, put more generally, how
content the person is. High pleasure indicates happiness or gratification, while anger
and boredom result in low pleasure values.

• Arousal states how agitated the social actor is - regardless of whether this a positive
or a negative excitation. High arousal values can be found in angry expressions as
well as surprised expressions, while low values can, for example, describe a bored
expression.

• Dominance is defined as ”a feeling of control and influence over one’s surroundings
and others” versus submissiveness, in the sense of ”feeling controlled or influenced
by situations and others.” [101]

Advantages of using PAD are for e.g. the supportive evidence for the three dimensional
categorization of emotions [101], the ability to express a variety of emotional states in
varying intensities (even subtle forms) and the availability of assessment tools like the
semantic differential, described in Section 3.3.5.
For implicit emotional adaption, the approach is to use the human-like modalities of

facial and verbal expressions in terms of mimicry and prosody in speech, but can be ex-
tended to any emotional non-human-like modalities by related PAD-values. Before implic-
itly adapting to the mood of the user, the emotional state of the user has to be determined
and mapped to the continuous PAD space. Ideally, this can be achieved by emotion recog-
nition modules [98, 161], but at least according to an explicit statement in the course of the
social subdialog introduced above, and/or in combination with an initial self-assessment
of the user on the PAD dimensions. When this is achieved, the robot shifts its base-PAD
values for emotional expressions towards the mood of the user as a new starting point for
potential emotional variations, e.g. due to task-success or -failure, in the course of the
interaction.
Thus, the emotion space, underlying the variations of facial and verbal expressions, is

shifted into new boundaries, as depicted in Fig. 3.10. Accordingly, the emotional control
variable for implicit emotional adaption is a “PAD-bias” as explained more detailed in the
following section, where the technical implementation of the approach is outlined.

3.3.3 Technical Implementation

The system used in the experiments is the robotic head EDDIE [139], an emotionally
expressive robot head, designed as an interaction partner. The head has 23 degrees of free-
dom, mixing anthropomorphic (human-shaped) and zoomorphic (animal-shaped) features,
combining the ears of a dragon lizard, the crown of a cockatoo and human characteristics
like eyes, lips and eyebrows. By choosing a more technical design, the robot does not
provoke disproportionate expectations concerning the social abilities of the robot. The
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Figure 3.10: Implicit emotional adaption: The robot shifts its internal emotional state, under-
lying the generation of emotional facial and verbal expressions, towards the current mood
of the user. The illustration is exemplarily depicted in a 2D-projection on pleasure and
arousal, but the experiments also considered the dimension of dominance.

integration of additional zoomorphic features has a beneficial impact compensating for the
deficiencies of the reduced technical design [86].

3.3.4 Explicit Emotional Adaption: Social Sub-Dialog

For a first evaluation of the explicit emotional control variable in the form of a similarity
statement, the social subdialog is conducted by the Wizard-of-Oz (WOz) method: Un-
known to the subject, the investigator manually triggers one out of a set of predefined
answers to best fit in [123]. In order to create similarity to the test subjects, the robot
adapts to the mood of the user explicitly by telling the proband that it feels the same way
(good, bad, or mediocre).

In the presented evaluation study, the social subdialog is opened by the utterance “Hello,
my name is EDDIE. How are you?”. After the user-input, the robot answers with the
adaptive similarity statement “Me too”, followed by “Would you like to play a game?”. If
the subject agrees, EDDIE starts the task-related interaction in form of a person-guessing
game.

3.3.5 Implicit Emotional Adaption: PAD-bias

During task-related HRI, the robot implicitly adapts its underlying base-PAD values to the
user-mood according to an initial self-assessment, filled in by the users prior to interacting
with the robot. Thus, similarity and empathy are created by a shared emotional starting
point for the generation of facial and verbal expressions in task-related HRI. As can be seen
in Figure 3.11, the Self-Assessment Mannekin (SAM) scale [22] is used in a first evaluative
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step to replace an emotion recognition module. The scale is a visual way of assessing the
three PAD values through images on 5-item semantic-differentials.

Figure 3.11: The SAM scale for measuring PAD values [22]

Before the game starts, implicit emotional adaption to the user is applied through shifting
the base-PAD values of EDDIE by means of an emotional PAD-bias towards the mood of
the user in the following way: The original base-PAD values are determined by the internal
state of the robot. Before HRI the internal base-PAD values of the robot are neutral. After
asking the users about their mood, the change is applied in the following way:

• For users measuring their mood as neutral (3/3/3 for pleasure, arousal and dominance
respectively) on the SAM scale, no change takes place.

• For every point the proband moves away from neutral mood on the SAM scale, 25
points are added or subtracted from the base value in the respective PAD-dimension
(on a scale from -100 to +100).

Therefore, in case of users feeling very happy (and thus rating their pleasure with a ’1’ on
the SAM scale) the robot starts out with a pleasure value of 50 instead of 0, and further
changes, e.g. caused by the success in the game described in the following, will influence
this value instead of a neutral one.

Generation of Emotional Facial Expressions

The current state in the PAD space is mapped to the joint space of the robot [139]. In
this mapping, the pleasure, arousal and dominance values are converted to activations of
facial Action Units for emotional expressions. Action Units are defined as muscle groups
in the face that lead to observable changes, see the Facial Action Coding System (FACS)
for more details [45]. 13 Action Units are emulated by the actuators of the robotic face.
Fig. 3.3.5 shows the resulting facial expressions for the PAD values that correspond to the
six basic emotions. For example, in a surprised state, EDDIE raises the brows and unfolds
the lizard ears.
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Figure 3.12: EDDIE [139] displaying the basic facial expressions, proposed by Ekman et al.
[44].

In the course of task-related interaction, the PAD-variations mainly meet three out of
the six basic emotions: happiness, sadness, and surprise, caused by the task-success as
reference for the underlying emotional states of the robot. However, the robot needs to
be equipped with the full expressive capacity for the six basic emotions, since they may
randomly emerge from additional PAD-variations due to the tentative PAD-bias when
adapting to the human interaction partner.

Generation of Emotional Verbal Expressions
The MARY Text-to-Speech System [130] from DFKI (Deutsches Forschungszentrum für
Künstliche Intelligenz) is used to generate verbal expressions. The XML based interface
allows to manipulate the output of the synthesizer on the prosodic level. This method
of influencing the prosody based on the emotional state is used to generate emotional
verbal expressions and is adapted from Schröder [131]. The terms evaluation, activation
and power used in his work (based on [37]) correspond directly to pleasure, arousal and
dominance.
An emotional sentence is first passed from the dialog system, in this case the Akinator

game, to a pre-processor module. This module generates the XML structure for MARY
based on the current PAD state, altering a set of acoustic parameters to achieve a change
in prosody.
The parameter set is selected by Schroeder for being manipulable within MARY. Ta-

ble 3.6 sums up the maximum values for all acoustic parameters, as well as the influence
of the different PAD-values. Each parameter is computed by

β = 1.0 + fP Pleasure + fA Arousal + fD Dominance (3.1)

Acoustic parameter = (Basevalue) β (3.2)

The PAD-values as well as the acoustic parameter-dependent factors fP , fA, fD are in the
range of [-1.0,1.0]. The base value is the value for each acoustic parameter that would
be used to synthesize the voice in a neutral, non-emotional way. The composition of β in
(3.1) is based on the assumption that a linear correlation between the PAD dimensions and
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the acoustic parameters exists, neglecting a presumably more complex interrelation, but
providing satisfying results in a perception test [131]. The values of the factors fP , fA, fD
originate from a combination of corpus analysis, literature review and heuristics [131].

Table 3.6: Changes to the acoustic base parameters by the emotional speech module, including
corrected limit values and changes for better distinction

Acoustic parameter Variation range fP fA fD
Pitch -50%, +30% 0.27 0.27 0.09
Range -80%, +80% 0 1.60 0

Pitch dynamics -400%, +400% 0 2.00 2.00
Range dynamics -400%, +400% 0 3.00 1.00

Rate -70%, +10% 0.20 0.50 0
Accent Prominence -100%, +100% 0.50 -0.50 0

Accent slope -150%, +150% 1.00 -0.50 0
Number of pauses -40%, +40% 0 0.40 0
Duration of pauses -20%, +20% 0 -0.20 0

Vowel/nasal/
liquid duration -70%, +70% 0.40 0 0.30
Plosive/fricative

duration -90%, +90% -0.40 0.50 0
Volume -66%, +66% 0 0.66 0

The presented values are mainly adapted from Schröder [131] with some changes: Pre-
experiments showed that high changes in pitch, range, rate and number/duration of pauses
might lead to the voice sounding unnatural. To present a fitting addition to the facial
expressions of EDDIE, these extremes might interfere with the experiment, with users
focusing on the few cases when the sound of the robotic voice deviates too much from a
human voice. The change of these values, therefore, has been adapted to the experimental
environment. Further adaption was possible because the source of the emotion-data mainly
focuses on three emotions: a happy/self-assured expression if the task is going well for the
robot, a sad expression if the task does not work out the way it should for the robot,
and a surprised emotion for sudden gain or loss in confidence during the person-guessing
game. As a result, the change in parameters is optimized for these three emotions (high
pleasure, medium arousal and high dominance for the first, low pleasure, low arousal and
low dominance for the second, and medium pleasure, high arousal and reduced dominance
for the third), making the transition from one to the other more easy to recognize. This
is especially important due to the continuous input provided by the game, with small
alterations in the mood of the robot needing to be perceived distinguishably. The changes
concentrate on those acoustic parameters that do not interfere with understandability,
namely the duration of the vocals.

In the following, an experimental evaluation of the full approach and of the single com-
ponents is presented.
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3.4 Experimental Evaluation

The conducted experiments investigate the persuasiveness of both introduced emotional
control variables, namely implicit emotional adaption by means of a PAD-bias, and explicit
emotional adaption through a similarity statement in the course of a social subdialog. As
a first step, in order to evaluate the presented fully-integrated approach including both
components, the combination of implicit and explicit emotional adaption (full emotional
adaption condition) is evaluated in comparison to a non-adaptive condition. The results
show not only significantly higher helpfulness towards the robot in the full emotional adap-
tion condition than in the non-adaptive comparison group [56], but also significantly higher
ratings for the HRI concepts of anthropomorphism and animacy [59]. In order to study the
benefits and limitations of the single components of the approach as well as their mutual
substitutability, the explicit and implicit emotional control variables are additionally eval-
uated in a comparative study as stand-alone conditions (explicit vs. implicit emotional
adaption). Thereby, the single effects of each control variable are analyzed in compari-
son to the effects achieved by the full emotional adaption approach and the non-adaptive
condition [85].
Thus, in the following, the experimental studies are summarized and presented in a

combined way.

3.4.1 Experiment V: Increasing Helpfulness towards a Robot

In order to evaluate whether or not helpfulness towards a robot can be increased by ap-
plying the introduced approach, a setup for a task-related HRI-experiment is designed
according to four different experimental conditions:
1) Full Emotional Adaption: The main group, in which full emotional adaption

to the mood of the user is applied using both emotional control variables: explicitly by
answering with the similarity statement “me too” in a social subdialog asking for the mood
of the user, and implicitly by means of a PAD-bias during task-related interaction.
2) Explicit Emotional Adaption: In this condition, the persuasiveness of explicit

emotional adaption is evaluated stand-alone, by only adapting to the user with the simi-
larity statement “me too” in the social subdialog prior to task-related interaction. During
task-related interaction EDDIE acts in an emotional way according to its task-success, but
no implicit emotional adaption by a PAD-bias is applied.
3) Implicit Emotional Adaption: This condition evaluates the influence of implicit

emotional adaption stand-alone, independent from explicit emotional adaption. In order to
isolate the effects of the PAD-bias, small talk in terms of the social subdialog is completely
skipped. Thus, possible effects triggered by the social subdialog even without applying a
similarity statement, e.g. rapport, are excluded. Accordingly, only task-related interaction
is applied in this condition, where EDDIE shows emotional facial and verbal expressions
according to its task-success, additionally biased by shifted base-PAD values towards the
mood of the user for the entire interaction.
4) Non-Adaptive: In this condition no emotional adaption is applied. In order to

provide an identical and comparable interaction process to the full- and explicit emotional
adaption conditions, and to reveal possible stand-alone effects of non-adaptive small talk
in direct comparison to the adaptive small talk of the explicit adaption condition (both
without a PAD-bias), the subjects are approached with a social subdialog, asking for their
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mood. However, EDDIE answers with a neutral ”ok” instead of the similarity statement
“me too”. During the game, EDDIE shows emotional reactions according to its success in
the game, but no PAD-bias towards the mood of the user is applied.
An overview of the tested experimental conditions and emotional control variables is

given in Table 3.7.

Table 3.7: Overview on experimental conditions and variables testing explicit & implicit emo-
tional adaption

Emotional Control Variable
Experimental Conditions Similarity Statement PAD-bias

(explicit) (implicit)

Full Emotional Adaption yes yes
Explicit Emotional Adaption yes no
Implicit Emotional Adaption no yes

Non-Adaptive no no

For all groups of subjects, additional factors influencing helpfulness are tested by pre-
interaction questionnaires to be balanced before the evaluation of the approach - namely
stress (reducing helpful behavior) and dispositional empathy (increasing helpful behavior).
After the interaction the subject can choose to either leave the robot and fill in the follow-
up questionnaires, or to stay longer and help the robot with another task.
The goal of the study is to reveal if the approach of emotional adaption leads to signif-

icantly higher helpfulness towards the robot. For this purpose, specific assumptions and
hypotheses have to be tested and fulfilled.

Assumptions & Hypotheses
In human-human interaction, only the combination of high empathy and an impression
of similarity to the person in need of help leads to high helpfulness when easy means of
escape are given (see Table 3.5). Since this combination has to be achieved by the presented
approach, the following key assumptions have to be fulfilled:
A1) Correct interpretation of emotional output modalities : Since it is essential for the

experiment, that the combination of both emotional output modalities, facial and verbal
expressions, is interpreted correctly by the participants, a pretest was conducted prior to
the experiment:
By presenting EDDIE, showing the six basic emotions (joy, sadness, anger, surprise,

disgust, fear) to 20 staff members of Technische Universität München (TUM), a rough
measure of the quality of the implementation could be achieved. Each way of conveying
the emotion (visual or audio) was shown on its own and combined in random order. The
pretest not only revealed that the test subjects were able to roughly assign the correct PAD
values to the respective emotions by filling in the SAM-scale after each presentation, but
were also able to reliably identify the key-emotions used in the experiment for task-related
interaction (happiness, sadness, surprise) by filling in the emotion, they believed EDDIE
to show, see Table 3.8.
A2) Empathy is sufficiently high in all groups of subjects : Previous work revealed that the

animation of facial expressions in a socially motivated emotional way creates significantly
more empathy in users towards a robot than the animation in a non-emotional way, see
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Table 3.8: Pretest-results on human recognition rates for emotional facial and verbal expres-
sions, evaluated in a pretest stand-alone (visual or audio), and in combination [%] according
to [59].

Audio Video Combined

Joy 75 75 85
Sadness 75 90 95
Anger 40 65 75

Surprise 45 90 85
Disgust 5 20 20
Fear 30 85 85

Section 3.2. All experimental conditions, including the non-adaptive comparison group,
provide socially motivated emotional facial expressions according to the task-success of the
robot during the question-response game. Thus, it is hypothesized that for all experimental
conditions high empathy towards the robot is induced during the interaction. Thereby, it
is important to distinguish this situationally induced type of empathy from dispositional
empathy that indicates the general affinity on empathy of the users. In order to proof
the hypothesized situationally induced empathy, a questionnaire testing for dispositional
empathy is filled in by the subjects prior to HRI, and a questionnaire evaluating situational
empathy is filled in after the interaction.

A3) Easy means of escape: In order to provide “easy means of escape”, special care
was taken to assure the subjects that the experiment is finished, but on the other hand
assured that they brought enough time to help: All of them were told to reserve at least
40 minutes for the experiment - with the real duration normally not being more than
20 minutes altogether. Easy means of escape, in terms of providing the subjects with
a possibility to leave the situation and thus avoid helpful behavior towards the robot,
are given in all groups, since the robot states the end of the experiment and offers each
participant to leave the experiment alternatively.

Under fulfilled assumptions, first studies revealed a significant increase in helpfulness
towards the robot, as well as raised user-ratings for the concepts of anthropomorphism
and animacy in the full emotional adaption condition compared to the non-adaptive con-
dition [56, 59]. In this article, a comparative study is introduced, incorporating two new
experimental conditions, where emotional adaption is split up into its components. Thus,
only explicit or implicit emotional adaption is applied in order to reveal which of the two
developed control variables (similarity statement vs. PAD-bias) is more effective with re-
gard to persuasion than the other, or if only the combination of both variables leads to
increased helpfulness. Furthermore, by comparing the results of the non-adaptive com-
parison group with those achieved by the explicit emotional adaption group, the effects
of small talk as applied in the social subdialog are investigated, since these experimental
conditions only differ with regard to the use of explicit emotional adaption (“ok” vs. “me
too”). In other words, potential effects on helpfulness can be directly traced back to the
use of the explicit emotional control variable, the similarity statement, in an isolated way
independent of other small talk effects.

The following section describes the experimental design and the measures used in each
phase of the experiment.
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3.4.2 Experimental Design & Measures

For the experimental setup a quiet room with controlled lighting conditions is chosen. The
robotic head is placed on a table to be at approximately eye-level with the participants.
Participants are seated in front of the robot, with a microphone placed in front of them on
the table to ensure a low error rate in speech recognition. The instructor greets the person,
gives a short introduction on the task and hands out the pre-interaction questionnaires.
To avoid that the participants are influenced by the instructor, he leaves the room as
soon as the proband finishes the questionnaires, and returns not sooner than the follow-up
questionnaires have to be provided. Figure 3.13 shows the setup of the interaction.

Figure 3.13: Experimental setup of the interactive part [59]

The experiment consists of five phases, which are varied according to the four conditions
over the different groups of subjects:
1) Pre-Interaction Questionnaires on dispositional empathy (all), stress (all), prior

knowledge of the Akinator game (all), and the SAM-scale to capture the current mood of
the subjects (all).
2) Social Subdialog : Variations according to the explicit emotional control variable,

the similarity statement: “Me too” (full emotional adaption group & explicit emotional
adaption group), skipping of the social subdialog (implicit emotional adaption group), and
the neutral statement: “Ok” (non-adaptive group).
3) Bonding-Game: Variations according to the implicit emotional control variable, the

PAD-bias: emotional facial and verbal expressions according to the task-success (explicit
emotional adaption group & non-adaptive group), and additionally shifted the by the
PAD-bias (full emotional adaption group & implicit emotional adaption group).
4) Picture labeling : Additional task on a voluntary basis to measure helpfulness towards

the robot (all).
5) Follow-up Questionnaires on induced situational empathy (all), and the Godspeed

questionnaires [10] evaluating user experience with regard to the perception of the robot.
An overview of the emotional control variables, used in the related experimental phases

2) Social Subdialog and 3) Bonding-Game is given in Table 3.9.
In the following, the five phases and used measures are explained more detailed.
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Table 3.9: Overview on the emotional control variables, used in the experimental groups at
the related phases for testing explicit & implicit emotional adaption

Experimental Phase
Experimental Group Social Subdialog Bonding-Game

(explicit) (implicit)

Full Emotional Adaption “me too” PAD-bias
Explicit Emotional Adaption “me too” no PAD-bias
Implicit Emotional Adaption – PAD-bias

Non-Adaptive “ok” no PAD-bias

Pre-Interaction Questionnaires
Firstly, the subjects fill in two different questionnaires testing for dispositional empathy
and stress, state whether they know Akinator or not, and rate their current mood on the
SAM-scale. The questionnaire fitting for the purpose of measuring dispositional empathy,
is the Toronto Empathy Questionnaire (TEQ), presented in [142].
The TEQ consists of 16 self-assessing items, which can be rated between 0 (for an

answer of ’never’) and 4 points (for an answer of ’always’) each. Adding these items up,
a minimum of 0 and a maximum of 64 points can be reached for each person, with high
values representing high empathy. Similarly, statements about the current emotional state
of the test person are included, filled in by the proband after the TEQ. They help to make
sure no stress or time pressure alters the helpful behavior later in the experiment. The
statements used are:

• I have an important appointment after this experiment

• I reserved more than enough time for this experiment

• I feel stressed at the moment

• I hope the experiment will not take too long

Each item is rated on a scale ranging from 1 (not true) to 5 (completely true). A short
question afterwards covers the influence factor whether the probands already know the
game, used in the following step as a means of bonding the test persons with the robot.
A prior knowledge of the game and therefore the robot’s abilities might for example

influence the impression of the robot later in the follow-up questionnaires.

Social Subdialog
In the second phase, explicit emotional adaption is varied: The participants are split up
into the four experimental groups of equal size. The subjects of the full emotional adaption
group, as well as of the explicit emotional adaption group, have some small talk with the
robot asking for their mood and adapting its “mood” to theirs by the similarity statement
as described in Section 3.3.4. The subjects of the non-adaptive group are faced with a
neutral social subdialog, that differs with respect to the answer of the robot, by being
reduced to a neutral “ok” instead of the adaptive “me too”. For subjects of the implicit
adaption group, this phase is completely skipped, with the robot introducing itself with
“Hello, my name is EDDIE, would you like to play a game with me?”. If the subject

73



3 Triggering Prosocial Behavior towards a Robot

agrees, the robot starts task-related interaction in form of an interactive person-guessing
game. by using the utterance “That’s great, how about this one: You think of a person
and I try to guess which one it is”? After a positive reply to the query “Please tell me,
when you’re ready”, the game is started with the first question on the imagined character.

Bonding-Game

Managing to develop empathy and similarity between the user and the robot first requires
the user to interact with the robot. Therefore, the bonding-game is played to provide
an interactive context for the generation of empathy, induced by the emotional animation
in all experimental groups, and similarity, induced by the PAD-bias in the full emotional
adaption and implicit emotional adaption group. As a communicative task the subjects
play the Akinator2 game with EDDIE: The players first have to think of a person, and
EDDIE then tries to guess the person by asking questions. The users can input their
answers via microphone, with the five options from the Akinator game available, and a
possibility to repeat the question: “yes”, “maybe”, “I don’t know”, “probably not”, “no”,
“come again?”.

During this task-related interaction, the game determines the current emotional state
of the robot, that is respectively biased by the user mood, if desired. Starting out with
a neutral, but friendly expression, the robot gradually becomes more self-assured when
getting nearer to an answer. This is represented by a confidence-value ranging between
0% and 100%. A medium boost in confidence lightens up the robot’s emotion, while the
inability to achieve a certain level of confidence after a few steps gradually worsens the
robot’s mood until it shows strong discouragement. Additionally, the robot looks more
focused if the confidence passes the threshold of 50%, and changes to a more surprised
mood if a large boost in confidence occurs. The robot reveals its guess of the imagined
person as soon as it reaches 95% of confidence or higher. The robot then congratulates
the proband on finishing the “experiment”, telling the test subject that he or she was
a very good gaming partner. The praise for the user is implemented on purpose - as
shown in [50], complimenting the subjects increases the ease of persuading them later on,
for example when asking for help in the next phase of the experiment. The subjects are
told that the experiment is over, and that they were faster than expected. On the one
hand, this opens up the means of escape for the test subjects: With the robot considering
the experiment finished, they are no longer obliged to stay, and the basis for measuring
altruistic helpfulness is set. On the other hand, there is actually enough time left for the
subject to show helpful behavior within the originally expected time frame for participating
the experiment.

Picture labeling

In the fourth phase, the test subjects get the option of either directly proceed to the last
phase, or helping the robot with an object labeling-task. The object labeling-task is used
to measure the helpfulness towards the robot: The amount of pictures labeled is used
as an indicator for helpfulness. The robot approaches the subject with an optional job
of helping the robot with an easy object labeling task, which (allegedly) will be used to
improve orientation in urban environments. The task itself intentionally is an easy one:
The subject has to label everyday objects, i.e., windows, doors and stairs. The simplicity
of this optional task is used to make sure it is the helpfulness of the subject that influences

2see www.akinator.com
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the number of pictures labeled and not the person’s amusement or excessive demands.
Additionally, in order to avoid personal amusement, the subject has to manually type in
what object is presented even though there are only four different answers. Additionally,
after 38 labeled pictures, the pictures start to repeat stepwise, beginning with one repeating
picture per 5 presented pictures, and ending up with all five presented pictures being
repeated, before the threshold of 80 labeled pictures is reached.
The robot also stresses the point that the subject faces a rather long list of pictures and

is free to leave any time after the first five labeled pictures. The amount of pictures labeled
is later used to measure the helpfulness: While a subject simply quitting the experiment
after the bonding-game (using the easy means of escape) shows no helpfulness, one point
is added to the scale for each picture labeled, up to a maximum of 80 points for labeling
all 80 pictures.

Follow-up Questionnaires
Lastly, one questionnaire tests whether sufficient empathy towards the robot had been
induced for the similarity to work. Additional questionnaires measure the user’s perception
of the robot. In the concluding phase, the instructor enters again, and asks the user whether
or not EDDIE was able to guess the person. Subsequently, the subjects are asked to rate
four statements concerning their situational empathy towards the robot on a scale from 1
(not true at all) to 5 (completely true) [60]:

• I’m happy EDDIE has guessed my person/I’m sorry that EDDIE didn’t guess at my
person

• I would have been sorry if EDDIE had not guessed my person/It would have been
nice if EDDIE had guessed my person

• It would be a pity if somebody damaged EDDIE, and I would try to interfere

• I would have been proud if EDDIE had not guessed my person/I am proud that
EDDIE did not guess my person

Afterwards, the subjects fill in a selection out of the Godspeed questionnaires [10]. Based
on 5-point semantic differential scales, their perception of the robot on four dimensions of
HRI are measured:

Anthromorphism: how natural the robot appeared

Animacy : the liveliness of the robot

Likeability : how pleasant the robot appeared

Perceived Intelligence: how the mental abilities of the robot were perceived

The experimental results are presented in the following section.

3.4.3 Experimental Results

Results are deduced from 84 test subjects (52 male and 32 female, between 18 and 52
years with an average age of 24,8), with very different backgrounds. Since a 2x2 between-
subjects design is applied, the subjects were randomly split into four groups, with 21 in
the full emotional adaption group, 22 were part of the explicit emotional adaption group,
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while 21 experienced only implicit emotional adaption, and 20 subjects were assigned to
the non-adaptive group.

Pre-Interaction Questionnaires

Table 3.10 shows the mean values for the four experimental groups, together with the
respective standard deviation for the Toronto Empathy Questionnaire (TEQ). The mean
values in all groups are lower than the ones presented in [142] (measuring between 43
and 45 points for male and between 44 and 49 for female participants, respectively), even
when calculating in the higher amount of male participants, hinting at the fact that the test
subjects had a slightly lower dispositional empathy. Since no significant difference between
the groups concerning dispositional empathy, age or gender was found, no influence of
dispositional results on helpfulness was found. Therefore, this factor can be ruled out for
the evaluation of the results.

Table 3.10: Toronto Empathy Questionnaire mean scores (on a scale from 0 to 64) and stan-
dard deviations (in brackets)

Condition TEQ Value

Full Emotional Adaption 41.19 (6.05)
Explicit Emotional Adaption 40.10 (5.40)
Implicit Emotional Adaption 40.20 (7.10)

Non-Adaptive 42.35 (6.29)

The statements used to measure the current stress factors of the subjects were individ-
ually tested for group differences, and no significant differences between the groups were
found either.

Out of 84 subjects, 25 knew the Akinator game beforehand. However, prior knowledge of
the game was distributed rather equally over the experimental groups with each 6 probands
in the full emotional adaption group and the non-adaptive group, and 13 participants
distributed over explicit and implicit emotional adaption group - no significant influence
on the helpfulness or the Godspeed results was found though.

The implicit pleasure, arousal and dominance values, captured by the SAM-questionnaire
and representing the mood of the users, were collected for all subjects, but only used in
the full emotional adaption and implicit emotional adaption group to adapt to the mood
to the subject through a PAD-bias. A trend to higher pleasure values and neutral arousal
and dominance values could be observed in all experimental groups. Hence, significant
differences could be ruled out between the groups concerning dispositional PAD-values.

Social Subdialog

The explicit answers to the question “How are you?” in the full emotional adaption group
were rather one-sided. 17 out of 21 people answered with a variant of “I’m fine, how are
you?”, only 2 stuck to a rather mediocre answer, while 2 people admitted that their mood
was rather bad. In the explicit emotional adaption group, 19 out of 22 stated to be in a
good mood, 2 in a rather mediocre mood and one test subject answered he was in a bad
mood before the experiment. For the non-adaptive group the answers were not tracked,
since the robot did not adapt explicitly to these statements, but answered with “ok” in
each case. The implicit emotional adaption group skipped this experimental phase.
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Bonding-Game

During the game, EDDIE was able to guess at most of the thought-of persons: Out of
84 imagined figures, EDDIE was able to guess at 71. Three characters imagined were not
guessed at by the robot in the full emotional adaption group and two wrong guesses were
made in the non-adaptive group. The remaining eight mistakes in the groups of explicit-
and implicit emotional adaption were either very difficult characters (Schroedinger’s cat,
god), or result of misunderstandings. Neither the fact that a test subject knew the game
before (for example altering expectations) nor the fact whether EDDIE guessed at the
person correctly had a significant (α < 0.05) influence on the later empathy questionnaire,
the Godspeed dimensions or the helpfulness towards the robot.

Picture Labeling

For the helpfulness measure, the collected values ranged from zero points for not helping the
robot at all, to 80 points for completely finishing the task. In the full emotional adaption
group, the average number of labeled pictures led to the highest mean value for helpfulness
of 53.28 (SD 6.36). The subjects of the explicit emotional adaption group resulted in an
average number of 48.64 labeled pictures (SD 6.36), and while a mean value of 34.62 (SD
6.78) was reached by the implicit emotional adaption group. The lowest mean value for
helpfulness was achieved by the non-adaptive group with 32.35 (SD 6.72) labeled pictures.

Although all groups are not normally distributed, an analysis of variance (ANOVA) is
used to find significant effects of the experimental factors (implicit vs. explicit emotional
adaption) on helpfulness: Since all groups are of (nearly) equal size, the ANOVA shows high
robustness to this violation of premises. Thus, no significant change in results compared
to non-parametric tests is to be expected [147]. Further, post hoc T-tests are used to find
more detailed differences between the four groups.

Firstly, an univariate two-way ANOVA is conducted in order to test the effects of the
two factors (independent variables): 1) explicit emotional adaption (similarity statement:
yes/no) versus 2) implicit emotional adaption (PAD-bias: yes/no) on helpfulness (depen-
dent variable), measured by the number of labeled pictures. A significant effect of explicit
emotional adaption on helpfulness (F = 6.150, p = .015) is revealed. No effect is found for
implicit emotional adaption, and no significant interaction was found between the factors
explicit and implicit emotional adaption. Further, no influence of dispositional empathy,
as well as of situational empathy, is given as covariates.

Subsequently, to get a more refined analysis, T-tests are conducted to make detailed
post hoc comparisons between the conditions. Setting the significance level to α < 0.05,
T-tests showed a significant difference (t = 2.167, p = .036) between the full emotional
adaption group and the non-adaptive group, where several people used the easy means of
escape and did not help the robot at all. Hence, the expected increase in helpfulness for
the full emotional adaption group proved to be tangible during the statistic analysis.

As a trend, a nearly significant (t = 1.8, p = .086) increase in helpfulness was found
in the explicit emotional adaption group compared to the non-adaptive group. Similarly,
a nearly significant decrease was observed in the implicit emotional adaption group in
comparison to the full emotional adaption group (t = −1.9, p = .063). Two subjects had
difficulties in understanding the robot, which lead to an alteration in the experience for
them. These test subjects also showed significantly higher dispositional empathy in the
TEQ, casting doubt on the fact the high helpfulness they showed was the result of empathy
and similarity induced by the experiment. Discarding them accordingly, the helpfulness in
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the implicit emotional adaption group compared to the full emotional adaption becomes
significantly lower, with t = −2.2 and p = .038. Apart from that, discarding these two
subjects, does not reveal any further differences in the results.

Accordingly, a comparative ranking of helpfulness is deduced, starting with the lowest
mean values in picture labeling for the non-adaptive group, increasing means over implicit
and explicit emotional adaption, up to a significant higher helpfulness in the full emo-
tional adaption group, where both, implicit and explicit control variables are applied, see
Figure 3.14.
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Figure 3.14: Ranking of helpfulness measure means from lowest helpfulness in the comparison
group to highest helpfulness in the emotional adaption group.

Since the data, gained from the picture labeling task, was not normally distributed,
Figures 3.15, 3.16, 3.17 and 3.18 show the actual distributions of experimental data for
helpfulness in all experimental groups.
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Figure 3.15: Distribution of data in the full emotional adaption group

The actual data-distributions show pairwise similarities: The full- and explicit emotional
adaption groups show a very similar low distribution of subjects, varying around 2, who
stopped helping the robot before 70 pictures have been labeled. The majority of subjects
(8 for full emotional adaption, and 7 for explicit emotional adaption) continued to help
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Figure 3.16: Distribution of data in the explicit emotional adaption group
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Figure 3.17: Distribution of data in the implicit emotional adaption group
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Figure 3.18: Distribution of data in the non-adaptive group
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Table 3.11: Godspeed results (on a Likert-scale from 1 to 5) and standard deviations (in
brackets)

Group
Dimension Full-Adapt. Expl.-Adapt. Impl.-Adapt. Non-Adaptive

Anthropomorphism 3.13 (0.76) 3.07 (0.72) 2.73 (0.76) 2.36 (0.69)
Animacy 3.82 (0.58) 3.76 (0.58) 3.21 (0.59) 3.18 (0.56)
Likeability 3.90 (0.59) 3.93 (0.58) 3.81 (0.78) 3.83 (0.80)

Perceived Intelligence 3.73 (0.58) 3.69 (0.58) 3.52 (0.60) 3.46 (0.54)
Total score 3.63(0.51) 3.61 (0.50) 3.32 (0.53) 3.27(0.50)

the robot until the maximum of 71-80 pictures was reached, although the pictures started
to repeat after 38 labeled pictures, as can be seen in the peaks of Figures 3.15 and 3.16.

In contrast, the implicit emotional adaption and non-adaptive groups show the same
high amount of subjects who used the easy means of escape and did not help the robot at
all, with a peak of 6 participants for both groups. Another identical peak can be observed
starting from 21 until 60 labeled pictures, where in both groups 8 subjects stopped helping
the robot while some pictures started to repeat with a firstly repeated picture no. 39.
Nevertheless, some participants (5 in the implicit emotional adaption group and 4 in the
non-adaptive group) continued helping the robot with labeling up to 71-80 pictures which
is nearly half of the subjects that showed the maximum amount of help in the conditions
of full- and explicit emotional adaption.

Follow-up Questionnaires

With all the Godspeed dimensions and the situational empathy being normally distributed,
the ANOVA is used to reveal the effects of explicit versus implicit emotional adaption as
well as possible interaction effects of dispositional/situational empathy. Post hoc T-tests
(α < 0.05) are used to test for detailed group differences. Statistical analysis reveals
significant differences, similar to the results of picture labeling. Table 3.11 shows the mean
values and total scores of the selected Godspeed questionnaires. Scores are ranging from
1 (very low) to 5 (very high).

As a first step, a multivariate two-way ANOVA is employed to reveal the effects of the
two factors similarity statement (explicit independent variable) and PAD-bias (implicit
independent variable) on the four Godspeed dimensions as dependent variables: anthropo-
morphism, animacy, likeability, and perceived intelligence. Dispositional and situational
empathy are used as covariates. Again, results reveal highly significant effects of ex-
plicit emotional adaption on anthropomorphism (F = 7.013, p = .010), and animacy
(F = 20.941, p = .000), as well as a marginally significant effect on perceived intelligence
(F = 3.9688, p = .05). No interaction effects between explicit and implicit emotional adap-
tion are found, and no influence of dispositional and situational empathy on the ratings of
the godspeed dimensions are revealed.

Accordingly, post hoc T-tests showed significant differences (α < 0.05) between the
groups for the anthromorphism (t = 2.216, p = 0.033) and animacy (t = 3.298, p =
.002) dimensions: The probands from the full emotional adaption group considered the
robot to be more humanlike and more attentive than the test subjects in the non-adaptive
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group. The explicit emotional adaption group also shows much better results than the non-
adaptive group: Both, the anthromorphism and the animacy dimensions, are significantly
higher (t = 2.0 and p = .049 for anthromorphism, t = 3.3 and p = .002 for animacy). On
the other hand, animacy is significantly lower in the implicit emotional adaption group
compared with full emotional adaption (t = 3.0, p = .004). However, no correlation was
found between these two Godspeed dimensions and the high helpfulness in the groups of
full- and explicit emotional adaption. No group differences can be determined for perceived
intelligence.
A ranking of all experimental groups for the significant differences in the dimensions of

anthropomorphism and animacy is depicted in Figure 3.19 and 3.20.
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Figure 3.19: Ranking of anthropomorphism measure means from lowest anthropomorphism
in the non-adaptive group to highest anthropomorphism in the full emotional adaption
group.
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Figure 3.20: Ranking of animacy measure means from lowest animacy in the non-adaptive
group to highest animacy in the full emotional adaption group.

A univariate two-way ANOVA shows no significant effects of implicit versus explicit
emotional adaption (independent variables) on situationally induced empathy (dependent
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variable). The mean values and standard deviations for situational empathy are depicted
in Table 3.12 in comparison to the values of the conditions in previous work [60].

Table 3.12: Situationally induced Empathy (on a Likert-scale from 1 to 5) and standard devia-
tions (in brackets), compared to the conditions of neutral-, mirror-, and Social Motivation
Model (SMM) of previous work

Experiment groups Empathy

Full Emotional Adaption 3.94 (0.67)
Explicit Emotional Adaption 4.10 (0.65)
Implicit Emotional Adaption 4.11 (0.67)

Non-Adaptive 4.13 (0.70)
Neutral 3.10 (1.30)
Mirror 3.70 (1.10)
SMM 4.40 (0.80)

According to the results of previous work (see Section 3.2), empathy towards a robot
could be raised by showing facial expressions in an emotional and socially adaptive way to
the user. In order to fulfill the assumption A2) Empathy is sufficiently high in all groups
of subjects, the level of empathy, achieved in previous work, has to be sustained. Since
there is no significant difference between all experimental groups and the SMM-condition
of previous work, assumption A2) can be regarded as fulfilled.
In the following, the results are summed up and discussed.

3.4.4 Discussion

The results show that dispositional factors like stress or differences in dispositional empathy
can be ruled out over all experimental groups, since no group differences were found on
these dimensions, and thus, occurred in a balanced way for all groups. Apart from few
exceptions, the current mood, indicated by the subjects, was rather one-sided in a slightly
positive way. Thus, in most cases, pleasure was the adapted dimension for explicit and
implicit emotional adaption. Prior knowledge of the game, as well as the success of EDDIE
did not influence the significance of the results. Easy means of escape are provided by the
experimental design. Since no significant group differences with mean values around 4 in
all groups of a maximum of 5 could be observed, situationally induced empathy can be
regarded as sufficiently high and distributed equally over the experimental groups. Hence,
all assumptions, defined for the approach to work, are fulfilled.
As deduced from the significant group differences in picture labeling, the participants

confronted with full emotional adaption show higher helpfulness towards the robot than the
participants of the non-adaptive group. Additionally, the ANOVA revealed a significant ef-
fect for the persuasiveness of explicit emotional adaption on helpfulness. On the one hand,
a nearly significant increase in helpfulness could be observed for the explicit emotional
adaption group, compared to the non-adaptive group, pointing to the increased persuasive
power, compared to a neutral small talk (without similarity statement). On the other
hand, a nearly significant decrease of helpfulness was detected for the implicit emotional
adaption group, compared to the full emotional adaption group, where both emotional con-
trol variables, the similarity statement and the PAD-bias were applied, pointing to the fact
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that implicit emotional adaption stand-alone is not a persuasive emotional control variable,
as also seen in the lack of ANOVA-effects. However, only the combination of both, explicit
and implicit emotional adaption, leads to significantly increased mean values between the
groups. Identically to the effects on helpfulness, the explicit similarity statement showed
significant effects on anthropomorphism and animacy, but not on situationally induced
empathy.

Accordingly, the question arises, why the persuasiveness of the explicit emotional adap-
tion component is highly effective as a stand-alone emotional control variable. As outlined
in Section 3.3.1, the phenomenon of “grounding” leads to better communication results in
natural language dialog by establishing a shared contextual knowledge between the inter-
locutors. Since the non-adaptive group did not result in similar high helpfulness as the
explicit emotional adaption group, this can only be traced back to the similarity statement
in the course of the social subdialog as the only difference between these experimental
conditions. Thus, the impression evokes, that an explicit similarity statement may estab-
lish a feeling of similarity as common ground between the interlocutors, that cannot be
achieved by non-adaptive small talk alone. The resulting effect of increased helpfulness
turned out to grow significantly higher when being coupled with the implicit emotional
PAD-bias that recalls similarity in terms of emotional alignment in facial and verbal ex-
pressions between the dialog partners. Previously conducted outdoor experiments on the
willingness of humans to support a robot revealed the implication that the first successful
communication experiences must be received by the user during the first minute of interac-
tion [165]. Explicitly establishing common ground in form of a similarity statement prior
to task-related interaction seems to meet this implication because of resulting in a first
successful communication act. Additionally, the significantly increased helpfulness by an
additional implicit PAD-bias during task-related interaction reconfirms the positive effects
of emotional alignment, but do not seem to provide enough similarity to be established as
common ground in the human interaction partner. When analyzing the actual distribu-
tions of data for helpfulness, the same impression evokes: While the single application of
explicit emotional adaption shows a highly similar distribution of helpfulness as the ap-
plication of full emotional adaption, helpfulness for implicit emotional adaption is almost
identically distributed as for the non-adaptive group. Nevertheless, only the combination
of both emotional control variables led to significantly increased helpfulness towards the
robot in the conducted experiments. An interesting side-effect is, that in the full- and ex-
plicit emotional adaption groups, remarkably less subjects stopped the experiment when
the picture sequence repeated, what could be interpreted again as symptomatic for altru-
ism. Accordingly, the number of not helping subjects strongly decreased in comparison
to the other two groups. Whether the increased helpfulness is really due to a feeling of
similarity, induced by emotional adaption, cannot be validated through the results. How-
ever, the questionnaires evaluating the anthropomorphism and animacy of the robot, again
showed the same significant group differences for the benefit of explicit emotional adaption
respectively. Although no direct correlations between the values for these dimensions and
the number of pictures labeled could be found, there is a strong indication for anthropo-
morphism and animacy being the affected dimensions of the emotional adaption approach,
independent from situationally induced empathy. Summing all up, the emotional adaption
approach turned out to be successful in increasing helpfulness towards a robot, thereby
affecting the concepts of anthropomorphism and animacy in a significantly positive way.
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3.5 Summary

In this chapter, emotional alignment was explored in terms of triggering prosocial behavior
towards a robot. In order to achieve this, in a first step the induction of situational
empathy towards a robot has been explored, triggered by different ways of facial expressions
animation, thereby revealing effects to subjective system-performance and other aspects
of user experience (UX). In a second step, a new methodological approach to trigger more
prosocial human reactions in terms of increased helpfulness towards a robot was developed,
deduced from social-psychological principles of human-human interaction. Unlike other
state-of-the-art approaches, this approach proactively triggers a predefined target behavior
for the task-benefit of a robot by transferring predictions on human behavior from social
psychology to HRI.
In human-human interaction (HHI), empathy is crucial for socialization and often not

only expressed, but also triggered by emotional facial mimicry. The state-of-the-art has
been extended by an explicit evaluation of the extent of empathy and subjective system-
performance, solely induced by the animation of facial expressions in contrast to interactive
impacts of head, arm or body movements. The facial expressions were generated automat-
ically and online during HRI. Additionally, two new measures for situationally induced
empathy and subjective system-performance have been introduced and evaluated with re-
gard to their internal reliability and detected correlations with state-of-the-art measures
of user acceptance. The significance of empathy, subjective performance, and likeability
provides evidence for the impact of socially-adaptive animated facial expressions on the
interaction.
The user-ratings supported the initial hypothesis by showing a trend towards a better

rating of the mirroring condition compared to the neutral condition of facial expressions-
animation, with the social motivation model (SMM) being rated significantly better in
most instances. This underlines the importance of social factors to be considered for
further refinement of how mimicking should be performed.
Additionally, the results indicate that social presence, that is very much bound to being

humanlike, is not crucial in order to induce empathy in a human user towards a robot. It
is notable that according to Bailenson and Yee [5], the effect persists even when the person
being mimicked is fully aware that the mimicker is an artificial agent.
A new methodological approach to trigger more prosocial human reactions in terms of in-

creased helpfulness towards a robot has been developed, deduced from social-psychological
principles of human-human interaction. Unlike other state-of-the-art approaches, this ap-
proach proactively triggers a predefined target behavior for the task-benefit of a robot by
transferring predictions on human behavior from social psychology to HRI.
The proposed approach is evaluated in a user-study, and, confirmed by significant ex-

perimental results, increases helpfulness by adapting to the mood of the user. In a first
step, the current user-mood as starting point for an implicit emotional bias in facial and
verbal expressions is captured by an initial self-assessment by the human subject to be
extended by automatic emotion recognition modules in a later stage, as done in the out-
door field trials of the IURO-project described in the following chapter. The combination
of both, explicit and implicit emotional adaption, leads to significantly higher results in
prosocial behavior towards a robot. An analysis of the single components of the approach
revealed that explicit emotional adaption, instantiated by a similarity statement in the
course of a social subdialog, turned out to be a more effective emotional control variable
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than implicit emotional adaption in facial expressions and prosody in speech: A significant
effect of explicit emotional adaption on helpfulness is revealed, but no effect is found for
implicit emotional adaption stand-alone, and no significant interaction was found between
the factors explicit and implicit emotional adaption.
The generalizability of the approach is evaluated in combination with information re-

trieval in an outdoor field trial applying the fully integrated emotional adaption approach
together with an emotion recognition module to extend explicit emotional adaption by
proactively estimating the user-mood as described in the following chapter in Section 4.3.
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4 Prosocial Information Retrieval in Outdoor
Environments

In the preceding chapters, informational alignment was explored in terms of proactive
information retrieval from humans. Thereby, a framework was developed, incorporat-
ing different dialog strategies to handle miscommunication, and a switching mechanism
to adapt the dialog strategies to varying speech recognition performance resulting from
disturbing environmental impacts in noisy outdoor environments. Since the retrieval of
missing task-knowledge from humans highly depends on their willingness to help a robot,
prosocial behavior has been investigated in terms of triggering empathy and helpfulness
towards a robot as an indispensable basis for information retrieval. In order to achieve this,
a behavior control model was developed and evaluated, incorporating an emotional adap-
tion approach deduced from social-psychological theories to trigger helpfulness in humans
by employing targeted emotional control variables in HRI. This chapter focuses on the
combination of both, informational and emotional alignment, into an integrated approach
for prosocial information retrieval in outdoor environments as applied in the IURO-project,
see Figure 4.1
Since emotional alignment is highly associated with the legibility of emotional expres-

sions, a comparative video-based online-survey is conducted to reveal potential design-
dependent differences between EDDIE and IURO, before applying the emotional adaption
approach, as evaluated on EDDIE, on the IURO-platform. Generally, the results indicate
a better human recognition rate for IURO than for EDDIE, especially on the dimension
of pleasure. Further, the survey reveals a significant interaction between dispositional em-
pathy and open guesses of the subjects about the mood of the robot for the emotions
happiness and sadness, again hinting to a key-function of the pleasure-dimension for the
legibility of emotions. Further, the online-survey results in rather low ratings for both heads
on the HRI key concepts of anthropomorphism and animacy compared to the previously
conducted HRI experiments. Thereby, an interesting insight regarding anthropomorphism
is that the more humanlike design of the IURO-head stand-alone does not necessarily re-
sult in a higher anthropomorphism-rating of the same. Thus, the online-survey reconfirms
the importance of the interactive behavior of a robot in a situational context, as well as
the positive impact of emotional alignment as a consequence thereof. Since the results of
the online-survey indicate a benefit in the legibility of emotions for IURO, the use of the
IURO-head is justified for the evaluation of the integrated approach in outdoor field trials.
For the integrated approach, proactive information retrieval and prosocial behavior con-

trol are combined. Thereby, the emotional adaption approach is extended by an emotion
recognition module to estimate the user mood before adapting to the same. In this way,
emotional adaption is integrated in the robotic system to enable the robot to align with
humans in a fully automated way during information retrieval. Thus, the approaches
for proactive information retrieval and emotional adaption, as presented in the previous
chapters, are combined in the dialog system to allow for prosocial information retrieval in
outdoor environments.
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Emotional alignment

Informational alignment 

Figure 4.1: IURO: Emotional and informational alignment as components of prosocial infor-
mation retrieval in outdoor environments

An outdoor field trial is conducted in order to evaluate the integrated approach. The
experimental results reveal a significant gender effect in user experience for subjective
system-performance and perceived enjoyment: A trend of higher ratings of female users
emerged for perceived enjoyment, whereas male users came up with higher ratings on
subjective system-performance. Further, a significant interaction effect is found between
emotion recognition and speech recognition quality: Since the willingness of human users
to help a robot only significantly decreases if both, emotion and speech recognition modules
showed poor performance, it can be deduced that the two modules are compensating each
other for helpfulness, as long as recognition works for at least one of the two modules.

The innovation of this chapter consists in the investigation of design-dependent differ-
ences of emotional legibility between two different robotic heads in consideration of dispo-
sitional empathy. In contrast to other legibility studies, the emotions, depicted in facial
expressions and additionally expressed by prosody in speech, are additionally analyzed
with regard to the legibility of their manifestation in the single dimensions of pleasure,
arousal and dominance, according to the PAD-model [101]. An integrated architecture
for emotional and informational alignment is developed and evaluated in an outdoor field
trial, investigating interaction effects of emotion recognition and speech recognition dur-
ing information retrieval from humans with regard to user acceptance and the willingness
of humans to help a robot fulfilling its task. The main goal is an improvement of infor-
mation retrieval by integrating emotional behavior control in order to maintain not only
informational, but also emotional alignment with human users, thereby increasing the will-
ingness to help a robot in public spaces, where humans do not have a direct benefit of the
interaction.
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4.1 Problem Description & State of the Art

The remainder of this chapter is organized as follows: In the following Section 4.1, a
problem description and the state of the art are given. In Section 4.2, an online survey
is described, evaluating design-dependent differences in the legibility of emotional facial
expressions and prosody in speech between two different robotic heads in consideration
of dispositional empathy. In Section 4.3.1, an integrative architecture is described, incor-
porating both, informational and emotional alignment for proactive information retrieval
in outdoor environments. Section 4.3 describes the application of the fully integrated ap-
proach in an evaluative outdoor field trial using the robotic platform IURO. A summary
is given in Section 4.4.

4.1 Problem Description & State of the Art

HRI studies in public places are gaining more and more popularity in contrast to strictly
structured laboratory settings. The goal of these studies is to explore potential application
fields for robots in human environments of which human users can benefit in the future. A
very common setting is a robot that provides human users with missing information, e.g.,
in a shopping mall context. Kanda et al. [75] introduced a robotic system for shopping
malls that provides human users with shopping recommendations and directions to specific
shops via natural language and pointing gestures. In some of these applications, the
shopping recommendations are personalized by e-commerce methods, i.e., by considering
the shopping history of customers [73]. In these applications, the interaction is initiated
by human users, willing to interact for their own benefit. The few exceptions include
robotic systems that are approaching people to proactively offer their help to the human
users [76, 128]. However, in this work the beneficial effect is reversed: A robot is proactively
initiating an interaction with humans in order to get their help, i.e., to retrieve missing
task-knowledge from them for its own benefit.
In contrast to indoor settings, the main challenge for information retrieval in unstruc-

tured outdoor environments is poor speech recognition performance due to uncontrolled
environmental noise impacts, as described in Chapter 2. Another big challenge is the
open, human-inhabited public space as an interaction context itself, as also referred to as
“situated HRI” [126]. As investigated by Suchman [144, 145], an autonomous robotic sys-
tem interacting in a human-inhabited environment cannot be seen as an object, but more
as an autonomous individual, that “produces effective forms of agency within particular
networks of social and material relations” [146].
When employing humans to help a robot with missing task knowledge in the context

of public spaces, an important assumption is that humans perceive this robot as a social
actor [120]. Some HRI-studies indicate that people tend to respond to robots in a different
way as they do to humans [107]. In contrast, a study on a sociable trash box revealed that
even the most simplistic robots can manage to evoke helping behavior in humans [170].
For HRI in public spaces, a first understanding of user acceptance related to robots as
social actors was investigated in the Autonomous City Explorer (ACE) - project1, where a
robot navigates in urban environments, finding its way with the help of pointing gestures
of human passers-by [164, 165], as a predecessor of the Interactive Urban Robot (IURO) -
project2, where also verbal interaction is explored in this context [28, 103].

1http://www.lsr.ei.tum.de/research/research-areas/robotics/ace-the-autonomous-city-explorer-project
2http://www.iuro-project.eu
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In the research field of persuasive technology, Fogg [50] described five kinds of cues that
have to be fulfilled to make humans think of robots as social actors:

1. Physical cues, like a face, eyes or a body

2. Psychological cues, like personal preferences, humor, personality, feelings, empathy,
or the ability to apologize

3. Language-related cues, including the use of language and recognition of the same

4. Social dynamics, like taking turns in a game, cooperation, praising the user for good
work, answering questions, and reciprocity, describing the concept of receiving and
paying back favors

5. Social roles, with the robot being seen as a doctor, teacher or in a similar role

In order to achieve the goal of incorporating all social cues in interactive robots, there
are extensive research efforts on building robot heads or robots with a full body that are
able to express emotions: WE-3R III [148], WE-4R [172], Kismet [26], Leonardo [151],
Roberta [65], Sparky [129], Feelix [29], Saya [81], Flobi [67], iCat [154], eMuu [7],
Doldori [90], Ifbot [133], and Lino [153]. An increasing research interest is also observed
regarding back-projected robot heads. This technique allows for smoother and subtler
motions by means of projecting a 2D-screen avatar onto the back of a 3D-mask, e.g.,
LightHead [42], Furhat [105], and Mask-Bot [88]. A further trend in robotics research is
to create lifelike “copies” of humans, so called androids, such as the Geminoid HI-1 [111],
Geminoid-F [15] and the Geminoid-DK [157]. As related work shows, there are many differ-
ent designs for emotionally expressive robots, whereas a differentiated validation of which
is often pending. However, the legibility of the behavior of a robot is important for human
users in order to interpret its intentions, and for the social cues to take effect. Accordingly,
a systematical assessment of the design-dependent legibility of emotional expressions in
speech and mimicry is conducted in this thesis in form of a comparative online-survey be-
tween the two different robot heads EDDIE and IURO in order to investigate the potential
influence of machinelike versus humanlike design.
After validating the legibility of the IURO-head, an integrated dialog-architecture is im-

plemented, where a social sub-dialog in terms of small-talk precedes the route inquiry of the
robot. According to the experimental evaluation results in Chapter 3, explicit emotional
adaption during small-talk, prior to task-related interaction, increases the prosocial behav-
ior of human users towards a robot, as well as the perception on the HRI-key concepts of
anthropomorphism and animacy.
Small talk, also called phatic communication, is described by Bickmore & Cassell as

a talk where only interpersonal goals are discussed, while task goals are only marginally
important [17]. As pointed out in [31] and [96], small talk opens up a way for humans to
explore the ideas and beliefs of the conversation partner, thereby establishing the common
ground, as discussed in Chapter 3, before entering the task-related part of the conversation.
Phatic communication is deeply rooted in human rituals - though this kind of casual
conversation is often led between strangers, e.g., a sales agent and a potential customer, it is
used between close friends for the same reasons. The effectiveness is not restricted to finding
a common ground: By enhancing the other person’s social respect through appreciation, a
sense of solidarity and thereby trust is built [17] to later carry the conversation to a deeper
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level. It is also used as a means for maintaining social identities and relations [43]. In
human-computer interaction (HCI), small talk is implemented in virtual agents - embodied
computer programs with a human body or face as virtual display - to establish a prosocial
common ground with users. A prominent example is REA, a conversational agent designed
by the MIT as a real estate agent [17]. REA interviews potential buyers for properties,
and tries to build up trust with the user for that goal. Small-talk plays an important role
in this context, as results show that when revealing information about itself in small talk,
REA is rated to be much more attractive by users, and users tend to rather buy a product
from a small-talking agent. Bickmore also states the importance of relational agents -
virtual agents designed to form a lasting relation with the user - but does not go into more
detail. Stocky et al. [143] use small talk for grounding with MACK, another virtual agent.
MACK gives route descriptions to passers by from his position in a kiosk, explaining a
nearby paper map. Again, results point to much more lively conversations through the
use of small-talk, and reduced attention by the user without it. Also cultural differences
in small-talk are encountered in an application, where small talk is used to bridge gaps
and awkward silences in international meetings by conversations between virtual agents
and humans [71]. Up to now, not much research is conducted for small-talk in HRI. Many
robots use small talk, but do not evaluate its specific influence on the interaction: Grace
and George, two robots used as receptionist and guide at a conference [162], the seal
robots used in elderly care [160] and Breazeal et al [24] use small talk for their robotic
weight loss coach as a means for bonding and evaluation. Bartneck et al. [8] state phatic
communication to be an important factor when judging the social abilities of a robot. This
is consistent with Lee et al. [91], which evaluated human expectations when talking with
a robot. Results show that people not only tend to greet human-like robots, but also use
small talk with them during interaction instead of treating them like a non-social ticket
automaton - even with no background knowledge about the robots abilities.
These implications go in line with the findings from Experiment V in Chapter 3. Implicit

emotional adaption in form of an adaption in the emotional expressions of mimicry and
voice increases empathy towards a robot. However, the explicit emotional adaption in
an adaptive small-talk resulted in a significant impact on humanlikeness and helpfulness
towards a robot. As Stocky et al. [143] stated, humans expect a robot or virtual agent
with even roughly human looks to sport the abilities used in human communication. Even
though the design of MACK, their virtual agent, is only partly humanlike (featuring a
humanlike body, but a very robotic face), people show much more attention towards the
agent when it displays its social capabilities by means of small talk. In the same way, the
REA agent [17], which is more humanlike in its design, uses storytelling - a metaphoric form
of phatic discourse - to reveal facts about herself, leading to much higher trust and raises
efficiency for sales. Both projects share the principle behind their social strategy: They
create a common ground with the user, which later is beneficial to the agent in consequent
tasks and conversations. In this work, the same rule is transferred to IURO: While implicit
emotional adaption is used in the experiments to increase its social capabilities and trigger
empathy towards the robot, the common ground is created through a shared emotion
during some the small-talk. This leads to heightened humanlikeness - as expected by Stocky
et al. - and increased helpfulness, as the instinct to help is created through similarity and
empathy with a social robot, as investigated in Chapter 3.
In order to ensure that the insights gained in Chapter 3, as investigated with the EDDIE-

head, are transferable to the IURO-platform, a comparative study is conducted to inves-
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tigate design-dependent differences in the legibility of emotional expressions between the
two robotic heads EDDIE and IURO, as described in the following section.

4.2 Legibility of Emotional Robotic Expressions

Before being applied to the IURO-platform in combination with information retrieval in
an outdoor field trial, the legibility of the emotions, expressed by IURO has to be eval-
uated. In other words, in order to transfer the findings of emotional adaption from an
application on the EDDIE-head to the application on the IURO-robot, the legibility of
the emotional expressions, generated in the same way, should at least not be worse than
using the EDDIE-head. Thus, in order to ensure the legible transfer of emotional expres-
sions animation, a comparative online survey is conducted prior to the outdoor field trials
between the legibility of emotions shown by the two robotic heads EDDIE and IURO. Ad-
ditionally, the user-perception of both robotic heads is evaluated towards the key-concepts
of anthropomorphism and animacy without any interaction. Further, as a generalizable
research question, a hypothesized impact of dispositional empathy on the human emotion
recognition performance, as argued in [125], in identifying the depicted robotic emotions,
is investigated in this section.

4.2.1 Experiment VI: Comparative Online-Survey on the Legibility of
Emotional Robotic Expressions

A comparative video based online-survey is conducted in order to investigate the legibility
of emotional speech in combination with the emotional facial expressions of two different
robotic heads: EDDIE and IURO, animated identically, but using a different head-design
as described in the following. For the evaluation, the emotions most relevant to the later
information retrieval in the outdoor field trials are identified as happy, sad, surprised, and
neutral as a control condition. The goal of the survey is to investigate three different
topics:

1. Potential differences in the legibility of emotions as a function of head-design between
EDDIE and IURO

2. Potential impacts of differences in dispositional empathy on the human performance
in identifying the depicted emotions

3. Potential differences in the user-perception on the HRI-key concepts of anthropo-
morphism and animacy as a function of head-design between EDDIE and IURO

In the online-survey, the newly developed robotic head for the IURO-project is compared
with the EDDIE-head. The IURO-head is based on the EDDIE-head and uses the same
basic functionalities as described in Chapter 3, but a cover is added to make the robot
robust against environmental outdoor impacts. In contrast to EDDIE, the IURO head-
cover is more humanlike in its design, see Figure 4.2. The basic functionalities of IURO are:
eye balls 2 DoF, eyelids 2x1 DoF, ears 2 DoF, mouth/jaw 1 DoF, lips 2x2 DoF. The head
is built around commercially available miniature servo-mechanisms and the neck consists
of 3 DC-motors equipped with harmonic drive gears.
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Figure 4.2: Experimentally evaluated emotions of EDDIE (left) versus IURO (right): neutral,
happiness, sadness, surprise (from top to bottom)
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For both robotic heads, the underlying model for the generation of facial expressions
and emotional speech are based on the Pleasure-Arousal-Dominance (PAD) model [101],
as already described more detailed in Chapter 3. In short, the PAD model represents
emotions in a continuous three-dimensional space that is mapped to the joint space of
the robot by converting the PAD values of the emotions to activations of facial action
units (muscle groups) for emotional expressions, generated according to the Facial Action
Coding System (FACS) [168] that allows an objective transfer of facial movements for the
corresponding expressions to the robot face. Both, EDDIE and IURO use a subset of
FACS including 13 action units relevant for emotional expressions. The underlying PAD
values for the selected emotions are specified in Table 4.1

Table 4.1: Underlying PAD values for the selected emotions in the video-based online-survey
from 1=very low to 5=very high

Emotions P A D

Neutral 3.0 3.0 3.0
Happiness 4.5 4.0 3.5
Sadness 1.5 1.5 1.5
Surprise 3.0 4.5 2.5

The experimental design and used measures are described in the following.

4.2.2 Experimental Design & Measures

The video based online-survey is implemented and distributed over LimeSurvey3, an open
source survey software. After following the link to the survey, the subjects can choose
to participate in the study either in German or English language. The survey consists of
three different parts:

1. Personal data and self-assessment of dispositional empathy

2. Assessment of 8 randomized video-files of EDDIE and IURO

3. Concluding comparative assessment of anthropomorphism and animacy

The first questions to answer for the subject are of demographic nature, e.g., age and
gender. After that, the subjects have to fill in the Toronto empathy questionnaire (TEQ),
a self-assessment of their dispositional empathy [142], as already used in Experiment V in
Chapter 3.
Subsequently, 8 video files showing the 4 selected emotions on EDDIE versus IURO of 10

seconds length are presented to the subject in randomized order. In all videos, both robots
speak the sentence “I am a machine-like entity with emotions”, synthesized in an identical
PAD-based emotional way as the corresponding facial expressions, matching the presented
emotion as described in Chapter 3, Section 3.3.5. The videos are repeatable, and after
watching each video, the subjects are asked if the video was played without disturbances.
In case of a positive answer, each video is firstly assessed by using the SAM-questionnaire

3http://www.limesurvey.org

94



4.2 Legibility of Emotional Robotic Expressions

as depicted in Figure 3.11 in Chapter 3. In contrast to Experiment V, in this experiment
the SAM-questionnaire is not used for a self-assessment of the user-mood, but to assess the
legibility of the different PAD components of an emotion, presented by the robotic heads
in the video. Additionally, a qualitative measure is included in form of an open question
about the mood of the robot after each video-file. Subsequently, all subjects are asked
to choose the emotion from a predefined list of different emotions, best matching that of
the presented video-file. The emotion-list contains the actually depicted emotions, but is
extended by additional emotions, not included in the experiment:

• Happiness

• Anger

• Disgust

• Fear

• Contempt

• Sadness

• Surprise

• Neutral

In this way, a total of 8 video-files are presented to be evaluated by the user.
In order to get a concluding comparative assessment of the anthropomorphism and

animacy for the designs of EDDIE versus IURO, the corresponding Godspeed question-
naires [10] are employed at the end of the survey - interlinked with two additional pictures
of the robotic heads.

4.2.3 Experimental Results

Experimental results are deduced from 73 subjects: 43 female and 30 male, aged between
12 and 54 years with an average age of 29.2 (SD 7.6), and different vocational backgrounds.
No significant interaction effects were found between age and any other measure used in
the survey.

Dispositional Empathy (TEQ)
Table 4.2 shows the mean values with standard deviations of the subjects for dispositional
empathy (TEQ). Just like in Experiment V (Chapter 3), the means are slightly lower than
the ones presented by Spreng et al. [142], proposing between 43 and 45 scores for male
and between 44 and 49 for female participants, respectively. Thus, the male subjects are
considerably below this prediction with a mean of 40,83 scores (SD 6.24). Accordingly,
significant gender-differences are found: The means of the female subjects are significantly
higher than the male means (T = 3.898, p = .025), but still just about their lower pre-
dicted boundary value with 44,52 mean scores (SD 5.23). As a consequence, the means of
all subjects together are located at the lower boundary value for male subjects, although a
higher amount of significantly more emphatic female subjects joined the survey in contrast
to the previously conducted Experiment V. Nevertheless, an interaction effect was found
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between dispositional empathy and the human performance in identifying the correct emo-
tion when answering the qualitative measure by an open entry about the possible mood
of the robot after each presented file for Happiness (F = 4.69, p = .011) and Sadness
((F = 3.54, p = .032): The higher the dispositional empathy of the subjects the better is
their identification performance of these emotions.

Table 4.2: Toronto Empathy Questionnaire (TEQ) mean scores (with a minimum of 0 and a
maximum of 64 scores) and standard deviations (in brackets)

Subjects TEQ Value

Female subjects 44.52 (5.23)
Male subjects 40.83 (6.24)
All subjects 43.00 (5.91)

SAM-Questionnaire
For the SAM-questionnaire, evaluating the legibility of the single PAD dimensions in the
presented emotions, a repeated measures multivariate one-way ANOVA resulted in a sig-
nificant influence of the factor head design (F = 3.63, p = .001) on the legibility of the
PAD values (dependent variables) for the emotions. No interaction effects were found for
dispositional empathy, age and gender. In the following, the detailed results are outlined
for the presented emotions.
For Neutral, the mean values and standard deviations are depicted in Table 4.3.

Table 4.3: Neutral mean scores and standard deviations (in brackets) of the SAM-
questionnaire on a 5-point Likert scale, compared to the original PAD values underlying
the emotion generation

Condition P A D

Original 3.0 3.0 3.0
IURO 2.75 (0.58) 2.07 (1.15) 2.42 (0.88)
EDDIE 2.94 (0.53) 1.76 (1.09) 2,65 (0.94)

n 72 72 72

As paired T-tests did not reveal any significant differences between EDDIE and IURO, as
well as between both heads and the original PAD values for all dimensions of PAD, it can
be deduced that the Neutral values of all PADs can be generally identified by the human
subjects at both robotic heads.
For Happiness, the mean values and standard deviations are depicted in Table 4.4.

Paired T-tests revealed significant differences between both heads, as well as between the
both heads and the original PAD values in the dimension of Pleasure (T ≥ 4.500, p = .000)
and Arousal (T ≥ 4.000, p = .000), with a trend of IURO being perceived closer to the
original PAD values than EDDIE. For the dimension of Dominance, no significant differ-
ences were found between IURO and EDDIE. However, both heads are rated significantly
different from the original PAD values (T ≥ 4.50, p = .000), hinting to the fact that Dom-
inance is rather difficult to identify in the implemented approach for emotional speech and
facial expressions of both robotic heads.
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Table 4.4: Happiness mean scores and standard deviations (in brackets) of the SAM-
questionnaire on a 5-point Likert scale, compared to the original PAD values underlying
the emotion generation

Condition P A D

Original 4.5 4.0 3.5
IURO 4.04 (0.80) 2.78 (0.92) 2.88 (0.92)
EDDIE 3.39 (0.81) 2.35 (0.97) 2.71 (0.90)

n 72 72 72

For Sadness, the mean values and standard deviations are depicted in Table 4.5. Since
the subjects had the possibility to skip a question in case of being not able to answer for
any reason, the number of subjects (n) differs for this emotion for IURO, as indicated in
the table.

Table 4.5: Sadness mean scores and standard deviations (in brackets) of the SAM-
questionnaire on a 5-point Likert scale, compared to the original PAD values underlying
the emotion generation

Condition P A D

Original 1.5 1.5 1.5

IURO 1.90 (0.56) 2.2 (1.06) 2.37 (0.84)
n 73 64 73

EDDIE 1.93 (0.79) 2.13 (0.99) 2,39 (1.08)
n 72 72 72

Paired T-tests did not reveal any significant differences between EDDIE and IURO. How-
ever, a significant difference between both heads and the original PAD values are found
for all PAD dimensions of Pleasure, Arousal, and Dominance (T ≥ 4.50, p = .000), indi-
cating that all PAD dimensions are hard to identify in the design of both robotic heads
for Sadness.
For Surprise, the mean values and standard deviations are depicted in Table 4.6.

Table 4.6: Surprise mean scores and standard deviations (in brackets) of the SAM-
questionnaire on a 5-point Likert scale, compared to the original PAD values underlying
the emotion generation

Condition P A D

Original 3.0 4.5 2.5
IURO 2.71 (1.13) 4.17 (0.93) 3.42 (1.16)
EDDIE 4.15 (1.00) 3.83 (1.09) 3.58 (1.00)

n 72 72 72

For Pleasure, paired T-tests resulted in significant differences between EDDIE and IURO,
and between EDDIE and the original P-value (T ≥ 2.00, p = .000). Since three T-
tests are conducted, the significance level has to be adjusted from α=.05 to α=.017. As
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a consequence, no significant difference exists between IURO and the original P-value
for Surprise with T ≥ 2.00, p = .032. In other words, the legibility of IURO was
significantly closer to the original P-value while presenting the Surprised emotion. In
contrast, the P-value of EDDIE was overestimated. For the dimension of Arousal, no
significant difference was detected between EDDIE and IURO with p = .024, due to the
adjusted significance level (α=.017), but between both robotic heads and the original A-
value (T ≥ 3.00, p = .000) with a tight trend towards IURO being closer to the original A-
value of Surprise. In the Dominance-dimension, both robotic heads are rated significantly
above the original D-value (T ≥ 6.50, p = .000) by the subjects.
Further, it is analyzed if some PAD-dimension(s) was/were generally better identified

than others when being presented by EDDIE versus IURO, independent from the depicted
emotions. Therefore, an absolute error was calculated for each PAD-dimension by comput-
ing the absolute difference (above or below) between the original PAD values and those,
identified in the presentations of EDDIE and IURO, respectively. As a result, paired T-
tests revealed a significant difference of the absolute error between EDDIE and IURO for
the dimension of Pleasure with T = 5.70, p = .000. The corresponding mean values of the
absolute error in the dimension of Pleasure are 0.87 (SD 0.32) for EDDIE, and 0.65 (SD
0.28) for IURO.
As a summary of the PAD-analysis, it can be stated that the legibility of Pleasure is

better for the head design of IURO than for the head design of EDDIE, independent
from the depicted emotion. This may be due to the main differences in the emotions
Happy, where a trend towards IURO being rightly rated as more pleasant than EDDIE
was apparent, and Surprise, where EDDIE is erroneously rated more pleasant than IURO,
resulting in a significant difference between EDDIE and the original PAD values. This is
also visible in an overview of the PAD-ratings of EDDIE vs. IURO, compared with the
original PAD values in Figure 4.3 and 4.4 . No interaction effect was found for age, gender,
or dispositional empathy on the PAD-ratings in the SAM-questionnaire.

Open Guess & Predefined List of Emotions
After rating the single PAD dimensions in the SAM-questionnaire, that did not reveal
the presented emotion itself, the subjects were firstly asked to make an open guess on
how the robot is feeling in the video in form of an open entry. Secondly, a window with a
predefined list of emotions appeared, where the subjects were asked to choose the emotion,
best fitting to the presented video file. Both, the open entries and the selected emotions
from the predefined list, were coded in either 1=correct or 0=wrong for each emotion and
robotic head. The resulting human recognition rates are depicted in Table 4.7 and 4.8

Table 4.7: Human recognition rates of the emotions [%] by an Open Guess

IURO EDDIE

Neutral 64 60
Happiness 67 47
Sadness 70 78
Surprise 69 51

Mean recognition rate 67.5 59.0

For the open entries, paired T-tests revealed statistically significant differences in the
human recognition performance between EDDIE and IURO for Happiness (T = 3.01,
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p = .004), and for the mean recognition rate in total (T = 2.84, p = .006). Although not
statistically significant, a considerable difference is also notable for Surprise to the benefit
of IURO, which supports the findings of the PAD-analysis, as described above. Further, a
significant interaction effect was found for dispositional empathy (TEQ) on the human
recognition rate of the emotions Happiness (F = 4.69, p = .011) and Sadness (F = 3.54,
p = .032).

Table 4.8: Human recognition rates of the emotions [%] by a Predefined Emotion-List

IURO EDDIE

Neutral 76 83
Happiness 65 36
Sadness 68 74
Surprised 53 38

Mean recognition rate 65.5 57.8

The recognition rates of the predefined list of emotions go in line with those of the open
entries, collectively. However, no statistically significant differences were found between
the heads. This may be due to a higher distribution of individual differences caused by
the high variety of emotions, offered in the list which may have triggered more room for
interpretation in the subjects in contrast to the open entries.

Anthropomorphism & Animacy
Finally, an overall rating of EDDIE versus IURO was requested in the survey for the HRI
key-concepts of anthropomorphism and animacy. Anthropomorphism was rated with a
mean of 2.35 (SD 0.86) for EDDIE, and IURO could achieve a mean of 2.28 (SD 0.99) on a
semantic differential scale from 1=very low to 5=very high. For animacy, the mean-ratings
are 2.70 (SD 0.82) for EDDIE, and 2.47 (SD 0.90) for IURO. No significant head-design-
differences were found, as well as no interaction effects.

4.2.4 Discussion

At the first glance, the ratings for anthropomorphism and animacy seem to be very low
compared to the previous interactive experiments IV and V in Chapter 3. However, in the
non-adaptive comparison group, where EDDIE did not employ either implicit or explicit
emotional adaption, the mean value was comparably low with 2.36 (SD 0.69). By implicit
emotional adaption, this mean could be increased to 2.73 (SD 0.76), by explicit emotional
adaption to 3.07 (SD 0.72), and by applying both ways of emotional adaption the mean for
anthropomorphism could be raised up to 3.13 (SD 0.76). Since no emotional adaption could
be applied in this non-interactive online-survey, the low means are plausible. For animacy,
the means of the previous experiments were higher in all tested conditions, ranging from
3.10 (SD 0.7) in the neutral condition of Experiment IV up to 3.82 (0.58) in Experiment
V, where both, implicit and explicit emotional adaption, were applied. The lower ratings
in the presented online-survey for EDDIE with 2.70 (SD 0.82), and IURO with an even
lower mean of 2.47 (SD 0.90) may be due to the missing interactive part of the experiment:
Since animacy is very much bound to interactive animation and reactivity, this may not
be conveyed through the presented videos, which could only be watched in a passive way
by the subjects, and no interaction effects could appear in this setting.
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The PAD-analysis of the emotions resulted in a significantly better legibility of IURO
on the dimension of Pleasure, which particularly affects the emotions Happiness, where a
trend towards IURO being rated correctly as more pleasant than EDDIE was noticeable,
and Surprise, where EDDIE is erroneously rated more pleasant than IURO, resulting
in a significant difference between EDDIE and the original PAD values. In contrast,
the dimension of Dominance was rather difficult to identify in the facial expressions and
prosody in speech of both heads. Interestingly, this is a vice-versa relation to the results,
achieved by Karg [77], where an investigation of the legibility of emotional gait patterns
revealed a good legibility of Dominance, and a rather poor legibility of Pleasure. Thus,
it can be deduced that Dominance may be better expressed by body movements than by
facial mimicry and/or prosody in speech. Correspondingly, the legibility of Pleasure seems
to be highly bound to mimicry and speech-prosody.

Independent from the single PAD-dimensions, for the open guess on how the robot
may feel, and the predefined emotion-list where the subjects had to choose the matching
emotion, the same effect was visible: The recognition rates of Happiness and Surprise
were up to 20% better for IURO. The fact that the recognition rates as a whole are lower
than in the pretest of Experiment V with EDDIE, depicted in Table 3.8, may be due
to the fact that in the pretest only 20 staff members of Technische Universität München
(TUM) were chosen as subjects. Hence, the sample was potentially used to robots and,
thus, showed a better recognition performance. In this sample, however, 73 subjects with
very different backgrounds participated in the survey, thereby better representing potential
users. However, just like for anthropomorphism and animacy, another aspect is the missing
interactive part in the presented online-survey. It is presumed to be easier for subjects to
interpret emotional speech and facial expressions in an interactive situational context.
Thus, it is expected that the recognition rates of human users will increase again in a real
interaction scenario, where a task-related interaction context provides an added value for
the identification of emotions, as given in the outdoor field trials described in Section 4.3.

An interaction effect of dispositional empathy on the human recognition performance
was only found for the open entries, where the subjects had to guess how the robot may
feel in the video. Hence, dispositional empathy only affects the recognition performance
in open guesses for Happiness and Sadness, which are located opposed to each other in
the dimension of Pleasure. Thus, it may be deduced that dispositional empathy affects
the human emotion-recognition performance in the dimension of Pleasure. However, the
influence is only given when the interpretation is not supported, and thus not triggered, by
any preset measure, e.g., by pictures in the SAM-questionnaire or a predefined emotion list
to choose from, but rather if the recognition of an emotion is solely based on an intuitive
sense that benefits from dispositional empathy in case of much room for interpretation.
Accordingly, no significant influence of dispositional empathy on recognition performance
is given or the predefined emotion list, maybe due to the constrained interpretation room
by the variety of preset emotions to choose from.

After validating the legibility of the IURO-head, an integrated dialog-architecture is
developed and implemented in the IURO-platform, where a social sub-dialog in terms
of some small-talk precedes the route inquiry of the robot. The application of the fully
integrated approach in outdoor environments is presented in the following section.
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4.3 Application of the fully Integrated Approach in

Outdoor Environments

In this section, a fully integrated approach is developed and implemented in the robotic
system IURO. For the integrated approach, proactive information retrieval and prosocial
behavior control are combined. The emotional adaption approach is extended by an emo-
tion recognition module to estimate the user-mood before adapting to the same. In this
way, emotional adaption is integrated in the robotic system to enable the robot to align
with humans in a fully automated way during information retrieval. Thus, the approaches
for proactive information retrieval and emotional adaption, as presented in the previous
chapters, are combined in the dialog system to allow for prosocial information retrieval
in outdoor environments. An outdoor field trial is conducted in order to evaluate the
integrated approach. The experimental results reveal a significant gender effect in user
experience for subjective system-performance and perceived enjoyment: A trend of higher
ratings of female users emerged for perceived enjoyment, whereas male users came up with
higher ratings on subjective system-performance. Further, a significant interaction effect
is found between emotion recognition and speech recognition quality: Since the willingness
of human users to help the robot only significantly decreases if both, emotion and speech
recognition modules showed poor performance, it can be deduced that the two modules
are compensating each other towards the induction of helpfulness, as long as recognition
works for at least one of the two modules.

4.3.1 Integrated Architecture

A main challenge, addressed in this work is to motivate unconcerned passers-by to help
a robot with missing route-knowledge for a task they do not benefit from. Thus, for a
robot, a more complex task may be divided into different cognitive and social sub-tasks
that have to be achieved in order to fulfill its task, e.g., a social sub-task for a robot could
be to actively create a prosocial situational context in order to motivate people that are
unconcerned with its task to be cooperative and help out with missing task-knowledge.
Since robots cannot be pre-programmed with all the world-knowledge humans possess,
humans are an indispensable information source for robots operating in dynamic real-
world scenarios. Thus, robots may need to accomplish a social sub-task first, in order to
fulfill the cognitive sub-task to retrieve missing task-information before it can execute the
task itself, see Figure 4.5.

In the integrated architecture, proactive information retrieval and prosocial behavior
control are combined. According to the experimental results in the previous Chapter 3,
explicit emotional adaption in form of an adaptive social sub-dialog is most powerful for
prosocial behavior control. Thus, the approach is extended by an emotion recognition
module in order to expand the effect by guessing on the mood of a human user, before a
similarity statement is uttered to adapt to the same. In order to create a prosocial basis
for information retrieval, the social sub-dialog is integrated in the dialog system, precedent
to obtaining missing task information from humans.

Emotional adaption is implemented in form of a social sub-dialog (SSD) prior to the
route dialog. The social sub-dialog itself incorporates explicit adaption towards the mood
of the user: An inquiry about the user-mood is followed by a similarity statement of
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Figure 4.5: General framework for task-related HRI with missing task-knowledge, split up into
a cognitive and a social sub-task
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the robot being in the same mood. At the same time, the emotional state of the robot,
underlying the synthesis of emotional mimicry, is shifted by a bias towards the mood of
the user for the following route dialog. The implementation uses XML-files that define a
Finite State Machine (FSM) incorporating the dialog structure, as depicted in Figure 4.6:

Social Sub-dialog

“Hello, my name is IURO”

Emo!on Recogni!on

“I guess, you feel [emo]”

Emo!on Screening

“Am I right”

Emo!onal Adap!on to User

“I also feel [emo]” 

& PAD-bias

Route Dialog

“Can you help me…?”

Bu"on emo!on input

“Please use the bu!ons” 

[good/ mediocre/ bad]

Verbal Emo!on Input

“How do you feel?”

emo!on output

no emo!on output

correct

incorrect

3 failures of speech rec.

Figure 4.6: Integrated dialog structure of emotional adaption in form of a social sub-dialog

In order to apply emotional adaption, the original FSM of the IURO-dialog-system is
enhanced by additional states. The original initial state controls the detection of users and
starts all associated states as well as returning the state in case of unexpected dialog abor-
tion. This initial state is changed to the requirements of emotional adaption in terms of a
variable initiating the social sub-dialog to increase helpfulness towards the robot. Thereby,
a distinction is made between cases where the emotion of the user could be determined
based on a facial expressions-analysis by the emotion recognition module Shore 4, and cases
where emotion recognition did not work initially. In case of an existing emotion recognition
output the FSM proceeds in a state, where IURO expresses its estimation of the current
mood to the user, and screens the emotion of the user accordingly. Shore uses values
between 1 and 100 for the basic emotions happy, angry, neutral, sad, and surprised, that
can be interpreted as confidence values. The emotion with the highest confidence is used
for an estimation of the user-mood in the dialog system. The FSM screens the estimated
emotion by the inquiry: “I guess you currently feel [emo]?”. In case of a successful guess by
the robot, the following emotional expressions of the robot are adapted to this emotion in
terms of being shifted by a corresponding bias in the underlying emotional representation
on the PAD dimensions [101]. In case of an incorrect estimation of the user-mood, the user
is asked for a verbal emotion input with the utterance “how do you feel then?”, identically
with cases, where no emotion could be detected in the facial expressions of the human

4http://www.iis.fraunhofer.de/de/bf/bsy/produkte/shore.html

104



4.3 Application of the fully Integrated Approach in Outdoor Environments

interaction partner. In case of three failures caused by bad speech recognition quality, the
emotion can be inserted via predefined buttons on a touch screen.
In any case, the robot answers with the similarity statement “me too”, and shifts its

baseline for further emotional expressions towards the corresponding PAD values, trans-
mitted to the mimicry of the robot via ROS. In this way, the robot is able to sustain
implicit emotional adaption for the interaction.
A simulation environment is developed, which facilitates the simulation of messages, so

that changes of the dialog structure and exchange of variables between the modules of the
robot can be tested. An event-based exchange of data is realized by the FSM-structure,
which controls speech recognition, robot motion, and speech output. For the social sub-
dialog, a modification of the variable structure is necessary in order to add emotional
information in form of a new event containing this emotional information. This event sets
the current emotion to be displayed by the facial expression system through the FSM.
Additional six event structures are added, covering recognized emotions from the visual
emotion recognition module of the robot.
The integrated architecture is applied and evaluated in a fully integrated system in an

evaluative outdoor field trial, as described in the following.

4.3.2 Experiment VII: Prosocial Information Retrieval from Humans
in an Outdoor Environment

In order to evaluate the feasibility of the integrated approach, an outdoor field trial is
conducted with the robotic platform IURO, where the emotional adaption approach to
trigger helpfulness in humans towards a robot is paired with retrieval of missing task-
knowledge by natural language HRI. The experimental design and measures are described
in the following.

4.3.3 Experimental Design & Measures

The fully integrated outdoor experiment was distributed over six runs, which were con-
ducted in October 2012. Each run lasted approximately 3-4 hours depending on the battery
discharging. As can be seen in Figure 4.7, the experimental design of the outdoor field
trial can be described with the robotic platform IURO driving around in the city center of
Munich, proactively approaching passers-by and initiating natural language interactions
with approximately 100 people by firstly making a guess about their mood, and secondly
asking for the way to a public place. In 36 cases, the interaction led to a full route dialog.
In order to increase the willingness to help, the route dialogs are opened by small talk

about the current mood in a social sub-dialog, where emotional adaption is applied before
asking for directions. All interaction partners are observed plus video-taped, and inter-
viewed with questionnaires on user experience (UX), subjective system performance, and
social acceptance.

Questionnaires:
In order to evaluate the fully integrated architecture with emotional adaption implemented
in the social sub-dialog and combined with asking for directions, all interaction partners (30
out of 36) that had a full social sub-dialog followed by a full route dialog with IURO, filled
in these questionnaires. The questionnaires consist of a selected combination of different
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Figure 4.7: Impressions of the robotic platform IURO in the outdoor field trial

state-of-the-art and newly developed measure-constructs on user acceptance, willingness
to help, subjective task-performance, anthropomorphism, and animacy of the robot as well
as the degree of situational empathy induced by the robot during the interaction:

• The previously developed (see Chapter 3), but adapted questionnaires on situational
empathy and subjective performance

• A newly developed questionnaire-construct on the willingness of humans to help a
robot

• An adapted selection of state-of-the-art constructs for user acceptance [66], i.e., per-
ceived sociability, social presence, perceived enjoyment, and intention to use.

• The unmodified Godspeed-constructs for anthropomorphism and animacy [10].

The questionnaires (without the unmodified Godspeed-constructs) are depicted in Ta-
ble 4.9.

Video Annotation:
A video analysis is conducted for two performance-dependent influence factors on the
interactions:

• Emotion recognition quality (successful/ misrecognition/ non-recognition: IURO
asked for user-mood)

• Speech recognition quality (successful/ miscommunication/ non-recognition: Input
via buttons)

4.3.4 Experimental Results

Experimental results could be deduced from 30 subjects, that had both, a full social sub-
dialog and a full route dialog with IURO. The mean age of these people was 36.9 years
(SD 18.9), ranging from 13 to 74 years. 18 of the respondents were male, 12 female.
For the newly developed questionnaire-construct on the human willingness to help, Cron-

bachs α was calculated to evaluate the internal reliability of the items. As solid construct
should create a Cronbachs α ≥ 0.70, the items of the novel construct showed an acceptable
reliability with Cronbachs α = 0.73.
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Situational Empathy
1) I would be happy for IURO if it reaches its goal location.
2) It would be a pity if IURO gets lost underway.
3) It would be funny if IURO gets lost underway. (inverted)
4) I would feel sorry for IURO if someone tried to destroy it at that moment,

thus I would try to prevent it.
Subjective Performance

1) I had the feeling that IURO understood my directions.
2) IURO has shown a good performance.
3) I think that IURO has worked efficiently.
4) It took IURO (too) long to understand my directions. (inverted)

Willingness to Help
1) Humans should help a robot to fulfill its task.
2) Robots should not ask humans for help. (inverted)
3) I really wanted to help IURO to find its goal location.
4) I would help IURO again to find its goal location.

Perceived Sociability
1) I like IURO.
2) IURO’s mimic and verbal statements fit together well.
3) IURO was a good conversation partner.
4) IURO’s behavior was inappropriate. (negated)

Social Presence
1) I had the feeling that IURO really looked at me.
2) I could imagine IURO as a living being.
3) Sometimes it felt like IURO had real feelings.
4) IURO’s behavior was not humanlike. (negated)

Perceived Enjoyment
1) It was fun to interact with IURO.
2) The conversation with IURO was fascinating.
3) I consider IURO to be entertaining.
4) It’s boring when IURO interacts with me.(negated)

Intention to Use
1) I would like to interact with IURO more often.
2) I would take IURO home with me.
3) I would like to play again with IURO within the next few days.
4) I could imagine interacting with IURO over an extended period of time.

Table 4.9: Questionnaires for User Acceptance on a 5-point Likert scale, extended by a new
construct on the willingness to help a robot
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Table 4.10 shows the means and standard deviations (SD) of the user ratings for the
constructs measuring all interactions with applied emotional adaption on a 1: very low 5:
very high Likert scale.

Table 4.10: Means and standard deviations (SD) of the user ratings for the constructs mea-
suring all interactions with applied emotional adaption (on a 1: very low 5: very high
Likert scale)

Construct Mean (SD)
Situational Empathy 4.15 (0.89)
Subjective Performance 3.52 (0.95)
Willingness to Help 4.09 (0.93)
Perceived Sociability 3.93 (0.78)
Social Presence 2.87 (0.94)
Perceived Enjoyment 4.18 (1.01)
Intention to Use 3.77 (1.25)
Anthropomorphism 2.92 (0.86)
Animacy 4.18 (0.75)

Since high situational empathy has to be assumed for emotional adaption to lead to
increased helpfulness towards a robot [18], this assumption can be regarded as fulfilled
with a mean of 4.15 (SD 0.89). Accordingly, the willingness to help construct resulted
in a comparable high mean of 4.09 (SD 0.93). Correlation analysis focused on empathy
and willingness to help along with the other constructs: For both, empathy and willing-
ness to help, correlations were revealed to each other (p=0.002) and all other constructs
(p ≤ 0.020), except of social presence. Univariate two-way ANOVAs for all constructs us-
ing job (working - in education - not working/retired - technical background) and gender
(male - female) as independent variables revealed a significant influence of gender on sub-
jective performance (F=4.764, p=0,039) and perceived enjoyment (F=4.866, p=0.039).
Post hoc T-tests between male and female users did not reveal significant group differ-
ences for subjective performance, but a nearly significant trend for perceived enjoyment
(F=1.877, p=0.071) to be higher for female users (mean=4.61, SD=0.82) than for male
users (mean=3.92, SD=1.05).
As described above, emotional adaption was opened by an estimation of the robot on the

current user mood in the social sub-dialog. After the user either confirmed or declined this
estimation via speech recognition or buttons (in case of bad speech recognition quality),
IURO adapted its mood to the user by an explicit statement, and by shifting the baseline
of the implicit generation of emotional facial and verbal expressions by a bias according
to the user mood. Thus, in order to evaluate the effects of the performance shown during
the social sub-dialog, two potential influence factors on the user ratings were identified
as independent variables with three stages, deduced from observations and video analysis:
Firstly, the emotion recognition quality regarding the user mood, including the stages
of successful recognition: 22 cases, misrecognition: 4 cases, non-recognition: 4 cases (e.g.
because of bad light conditions), where the users had to be asked about his/her mood. The
second factor is speech recognition quality with the three stages of successful recognition:
14 cases (where IURO understood the user input immediately), miscommunication: 8 cases
(where IURO needed an inquiry), non-recognition: 8 cases (when speech recognition did
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not work at all and the users had to use buttons for their input). A univariate two-way
ANOVA on the constructs revealed a significant influence for emotion recognition quality
on willingness to help (F=5.812, p=0.009), as well as an interaction with the factor speech
recognition quality (F=4.122. p=0.018) with regard to a decrease of Willingness to help
in case of misrecognition of emotion paired with non-recognition of speech (buttons). For
subjective performance, a univariate two-way ANOVA also revealed a significant influence
of emotion recognition quality (F=4.407, p=0.025), but without any interaction effects to
speech recognition quality.

4.3.5 Discussion

In summary, the results of the questionnaire of emotional adaption revealed acceptable
reliability for the novel construct of willingness to help, resulting in high mean ratings for
this construct and all other constructs. Correlation analysis revealed positive correlations
between all constructs, except of social presence, that additionally resulted in the lowest
mean value compared to the other constructs (just like in previous work [60]). The Job
of the users did not influence their ratings of the interaction. The experimental results
reveal a significant gender effect in user experience for subjective system-performance and
perceived enjoyment: A trend of higher ratings of female users emerged for perceived enjoy-
ment, whereas male users came up with higher ratings on subjective system-performance.
Further, a significant interaction effect is found between emotion recognition and speech
recognition quality: The willingness of human users to help the robot only decreases, if a
false estimation (misrecognition) of the user-mood is paired with bad speech recognition
quality (non-recognition). By implication, if only one of the modules results in mis- or
non-recognition, the willingness to help does not increase. Thereby, the two modules of
emotion recognition and speech recognition are compensating each other as long as the
recognition performance works for at least one of the modules. In order to quantify the
impact of this relation, in the outdoor field trials, speech recognition was successful in
approximately half of the interactions, and emotion recognition worked out in circa in
two-thirds of the interaction.

4.4 Summary

In this chapter, the combination of both, informational and emotional alignment, into an
integrated approach for prosocial information retrieval in urban outdoor environments was
applied on the robotic platform IURO in a field trial in outdoor environments.
Since emotional alignment is highly associated with the legibility of emotional expres-

sions, as a first step, a comparative video-based online-survey was conducted to reveal
potential design-dependent differences between EDDIE and IURO. The results indicate
a better human recognition rate for IURO than for EDDIE, especially on the dimension
of pleasure. Further, the survey revealed a significant interaction between dispositional
empathy and open guesses of the subjects about the mood of the robot for the emotions
happiness and sadness, again hinting to a key-function of the pleasure-dimension for the
legibility of emotions. Further, an interesting insight was provided for anthropomorphism:
The more humanlike design of the IURO-head does not necessarily result in a higher
anthropomorphism-rating of the same. Thus, the online-survey reconfirms the importance
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of the interactive behavior of a robot in a situational context, as well as the positive impact
of emotional alignment as a consequence thereof.
Since the results of the online-survey indicated a benefit in the legibility of emotions

for IURO, the use of the IURO-head is justified for the evaluation of the integrated ap-
proach in outdoor field trials. For the integrated architecture, as presented in this chapter,
proactive information retrieval and prosocial behavior control were combined. The emo-
tional adaption approach is extended by an emotion recognition module to estimate the
user mood before adapting to the same. Thus, emotional adaption was integrated in a
robotic system to enable the robot to align with humans in a fully automatic way during
information retrieval. The experimental results of the outdoor field trial revealed a sig-
nificant gender effect in user experience for subjective system-performance and perceived
enjoyment: A trend of higher ratings of female users emerged for perceived enjoyment,
whereas male users came up with higher ratings on subjective system-performance which
is related to the willingness of human user to help a robot. Further, a significant inter-
action effect is found between emotion recognition and speech recognition quality: Since
the willingness of human users to help a robot only decreases if both, emotion and speech
recognition modules showed poor performance, it could be deduced that the two modules
are compensating each other for helpfulness, as long as recognition works for at least one of
the two modules. Summing all up, it can be deduced that proactive information retrieval
in outdoor environments benefits from being combined with emotional adaption, since
all tested dimensions of user experience (UX) resulted in comparably high mean ratings,
which are positively related to the willingness to help a robot. Thus, the combination of
informational and emotional alignment brings a benefit to task-related HRI by reinforcing
the underlying prosocial motivation of humans to help a robot, thereby even compensating
for bad speech recognition performance. Hence, the integration of the emotional alignment
strategies as developed in this thesis in future social robots that are operating and retriev-
ing information in outdoor environments is of high benefit for user acceptance and the
human willingness to cooperate with those robots.
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5.1 Concluding Remarks

The introduction of domestic robots into the real world faces a variety of interdisciplinary
issues. In particular, user acceptance and the willingness of humans to cooperate and
interact with robots have to be maintained. In turn, robots should be aware of their situa-
tional knowledge limitations and be able to pro-actively and flexibly acquire the knowledge
needed to perform the objectives given by their human masters.

Thereby, a robot has to cope with various environmental impacts, e.g. noisy outdoor
conditions. In order to overcome this bottleneck of speech recognition, different dialog
strategies and specified miscommunication handling requests are developed and experi-
mentally evaluated in this dissertation. In order to adapt to varying speech recognition
performance while maintaining highest possible naturalness to the user, a switching mech-
anism is developed that allows smooth transitions between open and closed requests. The
dialog strategies are embedded in a framework for pro-active information retrieval, also
incorporating hypothesis-driven information processing, as well as the representation and
evaluation of the acquired knowledge during task-execution within real world.

User acceptance and the willingness to cooperate and interact with a robot have been
increased by a targeted integration of psychological interaction mechanisms, modeled ac-
cording to theories from social psychology. In human-human interaction, empathy and a
feeling of having something in common with a person in need of help, e.g. in personal
attitudes, are essential motivational influence factors for prosocial behavior. Thus, differ-
ent emotional control variables have been developed and integrated in a behavior control
model. In evaluative experiments, emotional behavior control was successfully applied
to proactively trigger these feelings in human users. In particular, this is achieved by
pro-active small-talk mechanisms, employed prior to task-related interaction in order to
establish a prosocial and cooperative common ground, generalizable for any human-robot
interaction. Additionally, the social capabilities of the robot are enhanced by correspond-
ing emotional facial expressions and prosody in speech throughout the interaction in a way,
emotionally adaptive to the user.

Since emotional alignment is highly associated with the legibility of emotional expres-
sions, a comparative video-based online-survey was conducted, before testing the general-
izability of the approach in an integrated architecture for prosocial information retrieval
with the IURO-platform. Thereby, a differentiated assessment of the design-dependent
legibility of emotional expressions in speech and mimicry was conducted between two dif-
ferently designed robotic heads of either machinelike versus more humanlike design. Also,
potential differences in the user-perception on the HRI-key concepts of anthropomorphism
and animacy have been considered. Additionally, impacts of dispositional empathy on the
human performance in identifying the animated emotions are revealed, and the importance
of an interactive context for emotion recognition is confirmed.
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In order to integrate the investigated aspects of informational and emotional alignment,
a general underlying framework has been developed integrating both, social and cognitive
sub-tasks. Therein, informational alignment is integrated in the cognitive sub-task of infor-
mation retrieval, interlinked with emotional alignment in the social sub-task of triggering
helpfulness in human users in an implicit an explicit way of prosocial behavior control.
An integrated dialog architecture for prosocial information retrieval was developed and

implemented in the dialog system of the robotic IURO-platform to be used in an evaluative
outdoor application of the integrated approach. Thus, proactive information retrieval and
prosocial behavior control are combined in form of a social sub-dialog prior to the route
inquiry-dialog: While implicit emotional adaption in terms of emotional facial mimicry is
used to increase the social capabilities and trigger empathy towards the robot, a common
ground of the interaction is created by the integration of small-talk before entering the
task-related part of the interaction. Moreover, prosocial behavior control is extended by
an emotion recognition module in order to align with humans in a fully automated way
during information retrieval.
The fully integrated approach of prosocial information retrieval is evaluated in an

outdoor field trial. The experimental results confirm the positive effects of combining
informational and emotional alignment with human users since all tested dimensions of
user experience (UX) resulted in comparably high mean ratings, positively related with
the willingness of humans to help a robot. A significant interaction effect between the
technical performances of emotion- and speech recognition showed that the willingness to
help a robot only decreases if both, emotion and speech recognition modules, show poor
performance. Thus, it can be deduced that informational and emotional alignment are
compensating each other with regard to helpfulness: In case of poor speech recognition
performance in outdoor environments, successful emotional alignment keeps up the
interest of humans to cooperate with a robot.

Summarizing, it can be deduced that proactive information retrieval benefits from being
combined with emotional adaption, since it reinforces the underlying prosocial motivation
of humans to help a robot, thereby even compensating decreases in user acceptance due
to bad speech recognition performance. Accordingly, the ideas, concepts, and approaches
developed in this thesis significantly advance the state of the art in design and control of
social HRI and information extraction from natural language.

112



5.2 Outlook

5.2 Outlook

The research field of social robotics is of highly interdisciplinary nature. By combining
the research fields of linguistics and social psychology with computer science and robotics
engineering, the work in this thesis provides a solid ground for future interdisciplinary re-
search on information retrieval from human-robot interaction (HRI) and prosocial behavior
control. The topics addressed in this dissertation also motivate a number of interesting
future research directions, as drafted in the following.

• Social-psychological interaction control models - This work showed that theories from
social psychology on human-human interaction are transferable to HRI. In this dis-
sertation, a behavior control model was exemplarily defined for the social sub-task
of helpfulness, needed in this context, but can be enhanced by additional social
sub-tasks, specified for any other tasks.

• Dynamic behavior control - Each interaction can be seen as a dynamic process. Yet,
dynamic emotional changes in the course of the interaction are not considered in the
behavior control model. Thus, an interesting field of future research is the integration
of system-theoretic approaches to prosocial behavior control in terms of applying
dynamic mathematical models on emotional alignment, deduced from statistically
gained interaction data.

• Predictions on informational alignment in dialog strategies - The switching mecha-
nism, developed in this thesis, allows an adaption of the dialog strategy on varying
speech recognition performance by monitoring the amount of miscommunication ver-
sus the amount of correctly extracted information. One future aspect is to enhance
the approach by an integration of stochastic mathematical models in order to predict
informational alignment over time, and the application of tools from control theory,
allowing for not only reactive, but also preventive switching dialog strategies.

Many aspects of informational and emotional alignment of the research presented in this
dissertation are not limited to natural language HRI, but are basically applicable to any
task-related HRI, exploiting the mentioned benefits. Research on informational and emo-
tional alignment strategies will have a large impact on integrated concepts of multi-modal
interactive systems. Promising will be the joint research on haptic collaborative systems,
where significant synergies are expected due to a high transferability and applicability
of the developed communication strategies to haptic communication channels, which will
highly advance the state of the art with high impact on future technology and applications.
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[106] R. Müller, T. Röfer, A. Lankenau, R. Musto, K. Stein, and A. Eisenkolb. Coarse
qualitative descriptions in robot navigation. In Spatial Cognition II, pages 265–276,
2000.

[107] J. Mumm and B. Mutlu. Human-robot proxemics: physical and psychological dis-
tancing in human-robot interaction. In ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 331–338. IEEE, 2011.

[108] K. Nakagawa, M. Shiomi, K. Shinozawa, R. Matsumura, H. Ishiguro, and N. Hagita.
Effect of robot’s active touch on people’s motivation. In Proc. of IEEE Int. Conf.
on Human-Robot Interaction (HRI), 2011.

[109] K. Nakagawa, M. Shiomi, K. Shinozawa, R. Matsumura, H. Ishiguro, and N. Hagita.
Effect of robot’s whispering behavior on people’s motivation. International Journal
of Social Robotics, 5(1):5–16, January 2013.

[110] R. Niewiadomski, M. Ochs, and C. Pelachaud. Expressions of empathy in ECAs.
Intelligent Virtual Agents, pages 1–8, 2008.

[111] S. Nishio, H. Ishiguro, and N. Hagita. Geminoid: Teleoperated android of an existing
person. Humanoid Robots-New Developments, 14, 2007.

[112] I. R. Nourbakhsh, J. Bobenage, S. Grange, R. Lutz, R. Meyer, and A. Soto. An
affective mobile robot educator with a full-time job. Artificial Intelligence, 114(12):95
–124, 1999.

[113] M. Ochs, C. Pelachaud, and D. Sadek. An empathic virtual dialog agent to improve
human-machine interaction. In Padgham, Parkes, Müller, and Parsons, editors, Pro-
ceedings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 89–96, Estoril, Portugal, 2008.

[114] A. Paiva, J. Dias, D. Sobral, R. Aylett, S. Woods, L. Hall, and C. Zoll. Learn-
ing By Feeling: Evoking Empathy With Synthetic Characters. Applied Artificial
Intelligence, 19(3-4):235–266, 2005.

[115] R.W. Picard. Affective Computing. MIT Press, Cambridge, 1997.

[116] M. J. Pickering and S. Garrod. Toward a mechanistic psychology of dialogue. Be-
havioral and Brain Sciences, pages 1–58, 2004.

[117] M. J. Pickering and S. Garrod. Alignment as the basis for successful communication.
Research on Language and Computation, 4(2-3):203–228, 2006.

[118] H. Prendinger and M. Ishizuka. The emphatic companion: A character-based inter-
face that adresses users’ affective states. Applied Artificial Intelligence, 19(3-4):267–
285, 2005.

123



Bibliography

[119] P. Rani, C. Liu, N. Sarkar, and E. Vanman. An empirical study of machine learning
techniques for affect recognition in humanrobot interaction. Pattern Analysis and
Applications, 9(1):58–69, 2006.

[120] B. Reeves and C. Nass. The media equation: how people treat computers, television,
and new media like real people and places. Cambridge University Press, New York,
NY, USA, 1998.

[121] W. Reitberger, A. Meschtscherjakov, T. Mirlacher, T. Scherndl, H. Huber, and
M. Tscheligi. A persuasive interactive mannequin for shop windows. In Proc. of
the 4th Int. Conf. on Persuasive Technology (Persuasive). ACM, 2009.

[122] L. Riek, P. Paul, and P. Robinson. When my robot smiles at me: Enabling human-
robot rapport via real-time head gesture mimicry. Journal on Multimodal User In-
terfaces, 3:99–108, 2010.

[123] L.D. Riek. Wizard of oz studies in hri: A systematic review and new reporting
guidelines. Journal of Human Robot Interaction, 1(1):119–136, 2012.

[124] L.D. Riek and P. Robinson. Real-time empathy: Facial mimicry on a robot. In
in Workshop on Affective Interaction in Natural Environments (AFFINE) at the
International ACM Conference on Multimodal Interfaces. ACM, pages 1–5, 2008.

[125] R. E. Riggio, J. Tucker, and D. Coffaro. Social skills and empathy. Personality and
Individual Differences, 10(1):93–99, 1989.

[126] S. Sabanovic, M.P. Michalowski, and R. Simmons. Robots in the wild: Observing
human-robot social interaction outside the lab. In IEEE International Workshop on
Advanced Motion Control, pages 596–601, 2006.

[127] P. Salvini, G. Ciaravella, W. Yu, G. Ferri, A. Manzi, B. Mazzolai, C. Laschi, S. R.
Oh, and P. Dario. How safe are service robots in urban environments? bullying a
robot. In Proc. of IEEE International Symposium on Robot and Human Interactive
Communication, 2010.

[128] J. Satake and J. Miura. Multiple-person tracking for a mobile robot using stereo. In
Proceedings of MVA, pages 273–277, 2009.

[129] M. Scheeff, J. Pinto, K. Rahardja, S. Snibbe, and R. Tow. Experiences with sparky,
a social robot. Socially Intelligent Agents, 3:173–180, 2002.
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M. Buss. Robots asking for directions: The willingness of passers-by to support
robots. In Int. Conf. on Human-Robot Interaction (HRI), pages 23–30, 2010.

[166] S. Werner, B. Krieg-Brückner, and T. Herrmann. Modelling Navigational Knowledge
by Route Graphs. Spatial cognition II, pages 295–316, 2000.

[167] W. Wirth, T. Hartmann, S. Bcking, P. Vorderer, C. Klimmt, and H. et al. Schramm.
A process model of the formation of spatial presence experiences. Journal of Media
Psychology, 9:493–525, 2007.

[168] A. Wojdel and L. J. M. Rothkrantz. Facs based generating of facial expressions.
In Proc. of 7th Annual Conf. of the Advanced School for Computing and Imaging
(ASCI), 2001.

[169] D. Wunderlich. Linguistische Berichte, volume 53, chapter Wie analysiert man
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