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Abstract

This thesis covers the field of augmented beam Finite Elements for geometrical and material

linear, prismatic structures in the fields of static and dynamic excitations. An approach of

superposed unit deflection shapes which are defined on a two dimensional Finite Element

mesh of the cross section is used. This Finite Element mesh of the cross section is also used

for the preparation of the unit deflection shapes by solving different differential equations

such that unit deflection shapes emerge which most effectively cover the physical effects

occurring on beam shaped structures with a three dimensional material law. The concept of

unit deflection shapes is in analogy with the concept of warping torsion of beam elements.

The method is validated and visualised with several numerical examples which are compared

to the results of three dimensional standard Finite Element models.

Kurzfassung

Diese Arbeit behandelt erweiterte Finite Balkenelemente im materiell und geometrisch lin-

earen Anwendungsbereich für prismatische Strukturen unter statischen und dynamischen

Lasten. Dabei wird eine Superposition von Einheitsverformungszuständen eingesetzt, die

auf einem zweidimensionalen Finite Elemente Netz des Querschnitts definiert sind. Dieses

Finite Elemente Netz wird auch für die Erzeugung der Einheitsverformungszustände ver-

wendet. Dabei werden auf diesem Netz verschiedene Differentialgleichungen gelöst, um Ein-

heitsverformungen zu erhalten, mit denen das Verhalten einer balkenartigen Struktur mit

dreidimensionalem Materialgesetz möglichst effektiv erfasst werden kann. Das Konzept der

Einheitsverformungszustände steht dabei in Analogie zu dem der Wölbkrafttorsion. Die

Methode wird in der Arbeit validiert und die Ergebnisse mit denen von dreidimensionalen

Finite Elemente Berechnungen verglichen.
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EIω Nm4 Warping resistance (in literature also EAωω or ECM)

f 1
s

Frequency

G N
m2 Shear modulus

GASy, GASz, GASyz
Nm2

m2 Shear stiffness (see appendix A.5.2)

GASω, GASyω, GASzω
Nm2

m2 Stiffness against warping torsion shear deformation (see

appendix A.5.2)

GIt Nm2 Torsion constant (see appendix A.5.1.1)

i − Imaginary unit (i =
√
−1)

[I] − Identity matrix

ρIω kg m3 Dynamic warping inertia

ρIϑ kg m Dynamic rotational inertia

kx
rad
m

Wave number

[K] Stiffness matrix

[M ] Mass matrix

MB Nm2 Bimoment

Mx Nm Torsional moment

MxV Nm Primary torsional moment (de St.-Venant component)

MxS Nm Secondary torsional moment (from warping torsion)

My,Mz Nm Bending moments

N N Normal force

[N ] − Matrix of shape functions (FEM)

p,p, [p] N Load, load vector, nodal load matrix

q,q, [q] N General force, force vector, nodal force matrix

Qy, Qz N Transverse forces

t s Time

ux, uy, uz,u, [u] m Deflection components, deflection vector, nodal deflec-

tion matrix
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ux,uy,uz m (Generalised) rigid body deflections of the cross section

[U ] − Transmission matrix (see section 3.1.2)

V m3 Volume

W Nm Work

v − Participation factor

y̆, z̆ m Coordinates with reference to the centre of gravity

(yS; zS)

ý, ź m Coordinates with reference to the shear centre/ centre

of rotation (yM ; zM)

x,y,z m (Cartesian) coordinates

yM , zM m Coordinates of the shear centre/ centre of rotation

yS, zS m Coordinates of the centre of stiffness

yI , zI m Coordinates of the centre of gravity/mass

Accents and Symbols

◦
� Known value from a previous computation or state

� Generalised quantity

�̄ Conjugate (complex) value

�′x Partial derivative with respect to x

[�] Indicates a matrix

[�]T Transpose of a matrix

[�]−1 Inverse of a matrix

�̇ Derivative with respect to time

�̈ Second derivative with respect to time

�̂ Quantity in the Fourier domain

<(�) Real part of a complex quantity

=(�) Imaginary part of a complex quantity

τ (bold face) Indicates a vector or tensor of higher order

δ� Virtual quantity (principle of virtual work)

f (n) nth Derivative of a function f
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2Jean Baptiste Joseph Fourier (∗1768, †1830)
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1 Introduction

1.1 Problem statement

The Finite Element Method (FEM) became the most popular simulation tool in structural

mechanics within the past decades. A huge variety of commercial tools is available for

different types of problems with sometimes very comfortable graphic or text-based input

or import from spatial computer aided design (CAD) models. In structural mechanics and

especially in bridge design still beam elements play an important role. There are primarily

two reasons for this [Katz 2008]: the basic results given in integral or generalised forces

instead of stresses. This enables the engineer to check the results easily against the loading

and gain a better feeling for the structure. The second is that not only the computer

time for the solution is reduced but also the time spent on modeling a structural system

is considerably smaller than for full 3D models. Furthermore, the data structure is well

suitable for automated design or optimization either of reinforcement bars or parametric

description of cross sections. Finally the ultimate limit design as formulated in the common

design codes is based on integral resistances at least of a complete section, but in general of

the whole structure. A non linear analysis is required which boosts the computational cost

of the calculation for volume models.

As Moore’s law [Moore 1965] is still valid, but for the given subject only when parallel

computing is made use of [Sutter 2005], it becomes obvious that the prospects of classically

arranged analysis software is limited. In order to efficiently make use of many processors,

new techniques are necessary. One that is well known is the substructure technique and the

main advantage is that its benefits apply both for pre- and post processing. As stated in

[Katz 2008], the sophisticated standard beam analysis procedure directly provides such a

substructure: the cross section.

On the other hand, [G. Müller and Buchschmid 2011] show that especially for dynamic but

also for static analysis beam models may quickly reach their limit of applicability if the

lateral carrying action gains influence. Of course also for certain regions near supports,
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snatch blocks, or loads in the so-called de St.-Venant zones, the classical beam theory is not

applicable.

Furthermore academic examples are conceivable where the fact that the cross section of a

beam cannot deform leads to severe inaccuracies:

• Composite beams with materials with a different Poisson ratio.

• Interaction of longitudinal and lateral direction due to the Poisson ratio. This may

become of interest e.g. when the top plate of a girder is prestressed in the lateral

direction.

• Beams of thin-walled troughed sheet close to their ultimate load.

The aim of augmented beam theories as presented in this thesis is to come up with the

mentioned drawbacks without losing the advantages mentioned above.

1.2 Augmented Beam Theories: State of Knowledge

1.2.1 Thin-walled Sections

The development of the classical Beam Theory is connected with the names Bernoulli1,

Timoshenko2, Coulomb3, de St.-Venant4, Bredt5 and Prandtl6. It is understood to be the

theory covering elongation, torsion with respect to the theory of de St.-Venant and the

two bending deflections including the generalised shear deformation due to the transverse

forces. The bending and shear deformations are coupled and such six degrees of freedom

(three deflections and three rotations) occur which also arise in the general mechanics of three

dimensional rigid bodies. The basic assumptions or restrictions are that plane sections remain

plane to the axis of the beam and that the sections do not distort. [Cowper 1966] conducted

further studies concerning the shear correction factor of Timoshenko’s beam theory and

provided a general procedure as to how to calculate it for an arbitrary cross section.

1Jakob I. Bernoulli (∗1655, †1705)
2Stepan Prokopowytsch Tymoschenko (∗1878, †1972)
3Charles Augustin de Coulomb (∗1736, †1806)
4Adhémar Jean Claude Barré de Saint-Venant (∗1797, †1886)
5Rudolf Bredt (∗1842, †1900)
6Ludwig Prandtl (∗1875, †1953)
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At the beginning of the 20th century numerous authors developed the warping torsion or

nonuniform torsion. Vlasov ’s7 textbooks [Wlassow 1964], [Wlassow 1965] and [Wlassow

1958] are probably the most relevant. Their terminology for this issue was adopted worldwide

for the following decades until today. [Bornscheuer 1952] established a uniform notation for

the surface integrals of the zeroth (F ), first (Fy, Fz and Fω) and second order (Fyy, Fzz,

Fωω, Fyz, Fyω, and Fzω) and by that prepared the theory for practical use. The concept

of warping torsion is basically to enable the beam to perform one additional out of plane

deflection shape which is connected to the derivative of the rotation around the beam axis.

Parallel to these enhancements of beam theory a set of theories treating folded plates or

strips was developed.

Wlassow’s textbooks [Wlassow 1964], [Wlassow 1965] are German translations of Russian

books from which the first edition was published in Russia in 1940. Beyond treating is-

sues of torsional warping in traditional beam theory (only one additional degree of freedom

and no deformation of the cross section) the mentioned books and [Wlassow 1958] contain

further generalizations for thin-walled prismatic structures considering deformations of the

cross section. One of them treats arbitrary (curved) open cross sections neglecting shear

deformations. The other takes the shear deformations into account enabling the solution of

closed (box-) girders with straight walls.

[Kreuzinger 1974] develops a formulation for thin-walled arbitrary (open unbranched, open

branched and closed unbranched) cross sections allowing for distortions, warpings and shear

deformation in the plane of the strips. Trigonometric ansatz functions are used. [Zienkiewicz

and Taylor 2005, chapter 16] illustrates a rather similar approach making use of the orthog-

onality properties of sin and cos functions.

[Schardt 1989] concludes and illustrates the work done before by himself and others since

1966 in the area of enhanced beam theories. Shear deformations are neglected and by that

a very schematic approach is obtained. The separation of variables is performed for so-

called deformation processes. Each process includes both the warping and a corresponding

deformation or displacement of the section in the x − y plane. For each process a PDE

of fourth order in the x-direction is to be solved. The methodology is called Generalised

Beam Theory (GBT) or Verallgemeinerte Technische Biegetheorie (VTB) in German. This

type of approach is still a matter of research. [Gonçalves and Camotim 2012] formulate a

geometrically nonlinear GBT which also takes shear deformations into account. [Camotim

and Basaglia 2012] uses the GBT for the distinction of local and global buckling shapes in

7Vasilii Zakharovich Vlasov (Wassili Sacharowitsch Wlassow) (∗1906, †1958)
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shell Finite Element models. The theory is discussed in more detail in section 3.2.3 on page

26.

[Hofmann 1992] establishes an augmented beam theory by introducing a new warping degree

of freedom for the warping from shear forces. The motivation is to quantify the error arising

from inconsistencies due to the negligence of this effect in standard (Timoshenko) beam

theory. His approach for the longitudinal direction is based on the complete separation of the

deflection into the part arising from bending and the part from shear. The two differential

equations appear to be completely decoupled inside the domain. They are nevertheless

coupled by the boundary conditions since they affect the total deflections which consist of

the sum of the two latter components. Couplings arising from the non-orthogonality of the

shear- and torsional warp shapes are not covered. Hofmann analyses the arising differential

equations and discusses the parallels to the PDE of torsional warping. The PDE is solved

both analytically using hyperbolic functions and approximatively by a truncated Taylor

series. Stiffness matrices for the end deformations of an element of finite length are derived

using both principles. The method is additionally applied to the theory of second order and

linear dynamics. The underlying warp shapes of the cross sections are derived from shear

stresses which are gained by equilibrium at a cutout free end assuming a constant shear

distribution in thickness direction which is applicable for thin-walled open cross sections.

Theoretically this (secondary) warp shape can be taken as the basis for a further (tertiary)

shape which itself could be a basis again. Since the gain of accuracy from these high order

shapes is decaying very fast with the number of order only the secondary shapes are taken into

account. The thesis ends saying that the newly introduced effects are of small importance

and the gain of accuracy is only small even for dynamic and nonlinear problems.

1.2.2 General, thick-walled sections

For thick-walled sections only few extensions of the beam theory exist. A first “step” of

extension can be seen in the improved numerical computation of section values (inertia

of torsion, shear areas and warping resistance) for arbitrary sections. An overview of the

literature on this topic can be found in section 4.2.1.1 on page 38.

There exist many extensions (high order versions) which enable enhanced computation of

longitudinal stresses but apply only for a certain type of cross section (rectangle [Levinson

1985], [Bhimaraddi and Chandrashekhara 1993], [Bickford 1982] or circle or circular pipe):

A comparison of various formulations is given in [Sayyad 2011].
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[Zeller 1982] tried a very exciting way of extending beam theory for general thick-walled sec-

tions. He showed ways to compute generalised deflections using mixed plane finite elements.

The scaling of the unit deflections is proportional to the high order derivatives of the beam

variable (deflection or rotation).

[Ferradi et al. 2013] proposes a beam element for general thick walled sections enriched by

high order warping deflections computed with the help of a Finite Element mesh of the cross

section. The warp deformations are introduced as additional generalised deflection shapes.

Other types of deformations of the cross section are not considered. The approach is thus

similar to the one presented by [Hofmann 1992] but is applied to general sections and not

only to rectangular ones.

[Gollwitzer 2007] formulates a method for wooden composite beams with a flexible com-

pound. Therefore, a linear three dimensional Finite Element for open bundles of single

beams is implemented. Each of the single beams conforms with the assumptions of Euler-

Bernoulli for small deflections and the shape functions are straight forward. Non uniform

torsion and the influence of the flexible compound on the position of the centre of rotation

as well as distortions of the cross section are not considered. Theory of Second Order is

considered for bending deformations. The work of [Roik and Sedlacek 1970] can also be clas-

sified into this group since the presented sections consist of several beam strips connected by

joints either rigid or flexible with respect to shear. Each of the individual strips obeys the

Euler-Bernoulli assumptions.

[Živković et al. 2001] presents a beam element based on the super-element technique. Only

the rigid-body deflections of the cross-sections are part of the global system. The cross section

is able to perform arbitrary relative deformations including both warping and distorions as

local degrees of freedom. Elements can be grouped such that the continuity of the relative

deflections between elements is adhered.

1.2.3 Linear Wave Guides

Wave guide in this context addresses a method for the numerical computation of systems of

structural dynamics with one direction of primary extent. The systems may be of finite or

infinite length. The method is also called semi-analytical FEM. It can be used to predict the

behaviour infinite structures under moving loads or loads with a given wave number spectrum

[e.g. Chen and Huang 2003; K. Müller 2007], or e.g. to analyse wave propagation in rib-

stiffened plate structures typical of ship construction [Finnveden 2004]. Further applications
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are the preprocessing of energy-transmission-properties for the statistical energy analysis

[Orrenius and Finnveden 1996] or stiffness matrices for a super-element which can be used

in larger beam or Finite Element systems [Friberg 1985].

By using a wave ansatz in the longitudinal direction every beam theory can be used as the

basis for the formulation of a wave guide. [Friberg 1985] does this for the thin-walled Vlassov

beam theory not considering shear deformations.

Additionally, more general methods exist which are based on a discretisation of the cross

section of a continuous structure either with thin-walled strips [Finnveden 2004; Orrenius

and Finnveden 1996] or area elements [Zienkiewicz and Taylor 2005, chapter 16].

[Hinke et al. 2004] enable for the computation of arbitrary (periodically repeating along x)

waveguides. They use commercial Finite Element software to compute the dynamic stiffness

matrix of a segment. Periodical boundary conditions are applied and an eigenvalue analysis

is performed which is prone to numerical problems [Waki et al. 2009]. This approach is called

the wave and finite element method (WFE).

1.3 Short Description of the Proposed Method

1.3.1 Separation of variables

All deflections ux(x,y,z), uy(x,y,z) and uz(x,y,z) of the beam structure are built by a linear

combination of unit deflection shapes ψi(y,z) depending on the sectional coordinates (y, z)

and their corresponding contribution factor vi(x) depending on the longitudinal x-direction.

u(x,y,z) =

ux(x,y,z)

uy(x,y,z)

uz(x,y,z)

 =

nshapes∑
i=1

[ψi(y,z) · vi(x)] = [Φ] [v] (1.1)

This separation of variables is especially appropriate for structures like beams, where the

x-direction is of a greater extent than the other ones.



1.3 Short Description of the Proposed Method 7

1.3.2 Unit Deflection Shapes

The unit deflection shapes or mode shapes ψi(y,z) in equation (1.1) are obtained from solving

different problems on a plane Finite Element mesh of the cross section. In the following these

problems are listed. It is important to mention that this list is not universally valid. Further

types of deflection shapes are conceivable and might replace the presented. It is furthermore

not a must to always apply all types of deflection shapes. In fact it depends on the type

of problem and the properties of the structure which types of deflection shapes are more

effective.

1.3.2.1 Eigenmodes of the section treated as a free plane plate in membrane action

The first three eigenmodes have the eigenvalue 0 and represent the rigid body modes of

the plate. In the scope of the beam system they represent the two lateral deflections and

the torsional rotation. Higher eigenmodes are distortion modes of the section. These unit

deflection shapes are treated in section 4.1.1.

1.3.2.2 Eigenmodes of the section treated as a free plane plate in bending and

transverse shear action

As above, the first three eigenmodes have the eigenvalue 0 and represent the rigid body

modes. In the scope of the beam systems they represent the longitudinal deflection and the

two rotations around the lateral axes. Higher eigenmodes are out of plane or warping shapes.

These unit deflection shapes are treated in section 4.1.2.

1.3.2.3 Solution of the PDE of warping

The PDE of warping can be solved for the load cases primary torsion (rotation), shear force

(two directions) and secondary torsion. It yields four out of plane deflection shapes. By this

approach in standard beam-software the properties for non-uniform torsion and the shear

correction factors for Timoshenko Elements are obtained. These unit deflection shapes are

treated in section 4.2.1.
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1.3.2.4 Derived plane and warping shapes

[Zeller 1979] shows that one can obtain warp shapes from in-plane shapes by using the PDE

of warping (weak equilibrium in the longitudinal direction) again. He shows additionally

that in-plane deflections can be derived from warping shapes. The underlying considerations

are illustrated in section 3.2.4. The actual derivation of these unit deflection shapes can be

found in the sections 4.2.3 and 4.3.2.

Also warping shapes themselves can be used to derive higher warping shapes (see section

4.2.2).

1.3.2.5 In Plane Poisson Shapes

If any warpshape changes its magnitude along x and the utilised material law shows a Poisson

ratio ν 6= 0, lateral strains occur. To some extent they are covered by the above mentioned

in plane deflection shapes, but the convergence rate can be improved significantly if special

unit deflection shapes are calculated here fore. This can be done utilising the PDE of a plate

in membrane action with a prescribed strain in the x-direction.

1.3.2.6 Eigenmodes of the infinite beam for waves of a fixed frequency

The PDE is gained by a double Fourier transformation of the Lamé8 equation in x and t.

The Eigenvalues correspond to wave numbers kx of waves travelling along the beam. The

underlying Finite Element formulation is derived in section 4.4. and validated in appendix

A.4. The numerical example in section 6.2.1 shows the potential capacity of this approach.

1.3.3 Beam Element Matrices and Load Vectors

The beam element stiffness matrices and load vectors are obtained by performing a volume

integral for the virtual work inside the beam domain using the deflection shapes both as

ansatz and test functions.

The inner virtual work integral is able to employ an arbitrary linear three dimensional

material law.

8Gabriel Lamé (∗1795, †1870)
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The volume integral is performed using standard non-conforming hexahedral Finite Elements

with the Wilson extension [Bathe 2002; Wilson et al. 1973] (see appendix A.2) such that

locking does not occur.

1.4 Content of the Thesis

In the present thesis, an approach for augmented beam Finite Elements is presented. It is

based on the separation of variables aiming at unit deflections shapes and corresponding

amplification factors. Arbitrary cross sections can be treated since the unit deflection shapes

are defined on a two dimensional Finite Element mesh of the cross section.

The presented method allows for the use of a three dimensional material law. As results,

three dimensional strain and stress tensors can be obtained. The underlying assumptions

and sign conventions can be found in chapter 2.

Chapter 3 gives a brief overview of beam theories in literature and beam element techniques.

Selected augmented beam theories are discussed more in detail.

Chapter 4 covers the computation of effective unit deflection shapes making use of the before

mentioned Finite Element mesh of the cross section. Different differential equations are

solved. In section 4.4 a Finite Element procedure for a Fourier transformed Lamé continuum

is developed and a special eigenvalue problem for the wave number kx is developed and

illustrated. The Finite Element procedure itself is validated in appendix A.4.

Chapter 5 describes how the before calculated unit deflection shapes are arranged and pro-

cessed to obtain an augmented beam Finite Element method. The element stiffness and

mass matrices for the beam element are assembled. Different procedures for the application

of boundary conditions and the post-processing of strains, stresses and sectional forces are

introduced. Finally a method for the a posteriori error estimation is proposed.

Chapter 6 illustrates the capabilities, problems and the efficiency of the presented method

with the help of different numerical examples. The results are compared against those from

commercial Finite Element packages.
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2 Basic relations

2.1 Sign Conventions

y

z
x

Qz

Nx

Qy Mx

Mz

My

axis of centre of stiffness (yS , zS )

axis of centre of rotation(yM , zM )

zero axis (0, 0)

uz
uxuy

ϕ
x ϕ

z

ϕ
y

Figure 2.1: Sign- and direction conventions for forces and deflections.

2.2 Strains

The kinematics in this thesis shall be based on the Green1-Lagrange2 strain formulation

ε = εij Gi ⊗Gj (2.1)

εij =
1

2

[
ui|j + uj|i + ul|i ul|j

]
. (2.2)

The last term of the latter formula is omitted when the strain tensor is linearised

εij lin =
1

2
[ui|j + uj|i] . (2.3)

1George Green (∗1793, †1841)
2Joseph-Louis Lagrange (∗1736, †1813)
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If, furthermore, a Cartesian3 coordinate system is assumed the absolute derivatives ui|j turn

into partial derivatives ui′j.

ε =
1

2

 2ux′x ux′y + uy′x ux′z + uz′x

uy′x + ux′y 2uy′y uy′z + uz′y

uz′x + ux′z uz′y + uy′z 2uz′z

 (2.4)

Using the symmetry of this tensor

γxy = γyx = εxy + εyx

γxz = γzx = εxz + εzx

γzy = γyz = εzy + εyz

(2.5)

one can rewrite the remaining six independent values as a 6x1 matrix

[ε] =



εx

εy

εz

γxy

γxz

γyz


=



ux′x

uy′y

uz′z

ux′y + uy′x

ux′z + uz′x

uy′z + uz′y


=



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y



ux(x,y,z)

uy(x,y,z)

uz(x,y,z)

 = [G] · u . (2.6)

2.3 Material Law

2.3.1 Three Dimensional Material Law

When a linear material behaviour is assumed it follows that stresses for the Cauchy4 Stress

Tensor σ = σij Gi ⊗Gj can be obtained from strains by a simple multiplication

σij = Dijklεkl. (2.7)

Where D = DijklGi ⊗Gj ⊗Gk ⊗Gl is a tensor of 4th order.

3Cartesius, latin name of René Descartes (∗1596, †1650)
4Augustin-Louis Cauchy (∗1789, †1857)
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For equlibrium reasons the stress tensor σ has to be symmetric. Just as with the strain

tensor in equation (2.6) it is possible to collect the six independent values into a 6x1 matrix

[σ] =
[
σxx σyy σzz σxy σxz σyz

]T
=
[
σx σy σz τxy τxz τyz

]T
. (2.8)

By that, the relation in equation (2.7) can be represented as a simple matrix multiplication

[σ] = [D] [ε] (2.9)

[ε] = [D]−1 [σ] = [D]inv [σ] . (2.10)

For a linear elastic isotropic material with two free values E (elastic modulus) and ν (Poisson

ratio) the matrix [D] reads as follows

[D] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


. (2.11)

In case of orthotropy, which means that three directions exist in which no coupling between

longitudinal strains and shear strains occur, the material law has 9 free values

[D] =



D11
11 D11

22 D11
33 0 0 0

D22
22 D22

33 0 0 0

D33
33 0 0 0

D12
12 0 0

sym. D13
13 0

D23
23


.

A general anisotropic linear material law can be covered by 21 free values. The matrix [D]
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then has the form

[D] =



D11
11 D11

22 D11
33 D11

12 D11
13 D11

23

D22
22 D22

33 D22
12 D22

13 D22
23

D33
33 D33

12 D33
13 D33

23

D12
12 D12

13 D12
23

sym. D13
13 D13

23

D23
23


(2.12)

Still the existence of an elastic potential is a prerequesite for these material laws [G. Müller

2012].

In order to abbreviate and simplify references, the indices of [D] are reduced and reordered

[D] =



D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66


. (2.13)

2.3.2 Deriving Two Dimensional Material Laws

2.3.2.1 Membrane Systems (plane strain)

Membrane systems in the y-z-plane with plane strain means that all strains except εy, εz

and γyz are equal to zero. The corresponding material law can consequently be derived by

picking the corresponding entries

[DMn] =

D22 D23 D26

D32 D33 D36

D62 D63 D66

 . (2.14)



14 2 Basic relations

2.3.2.2 Membrane Systems (plane stress)

Membrane systems in the y-z-plane with plane stress means that all stresses except σy,

σz and τyz are equal to zero. This relation is introduced to equation (2.10) and thus the

corresponding entries have to be picked from the inverse of the material matrix [D]inv. The

collected matrix has to be inverted finally

[DMs] =

Dinv 22 Dinv 23 Dinv 26

Dinv 32 Dinv 33 Dinv 36

Dinv 62 Dinv 63 Dinv 66


−1

. (2.15)

2.3.2.3 Warping Problems

The material law for warping problems [Dω] can be easily gained from each of the before

presented matrices [D] by picking the corresponding entries:

[Dω] =

[
D44 D45

D54 D55

]
. (2.16)
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3 Beam Elements - Prior Art

This chapter shall give a slight overview of the traditional beam theories, on the one and

extended beam theories, on the other hand.

3.1 Different Aspects of Traditional Beam Elements

The distinction between traditional and extended beam theories can never be done sharply.

In the scope of this thesis traditional beam theories denote those with six or seven degrees

of freedom. As the following sections will show, these traditional beam theories can also be

enriched and refined as regards several details which are still a subject of research.

3.1.1 Key Issues of Traditional Beam Theories

Traditional beam theories can be distinguished and characterised as follows [see e.g. Wun-

derlich and Kiener 2004]:

1. The cross section of the beam remains undistorted. By that, the strains εy, εz and/or

γyz and the corresponding stresses vanish. In some cases they can be resurrected by

equilibrium considerations or using the material law but they in no case interact with

the remaining strains or stresses.

2. Loads act as line or point loads and are defined with respect to the beam axis. This is

an important prerequisite for item 1.

3. Shear deformations γxy and γxz are neglected (Bernoulli assumption) in the Euler-

Bernoulli beam theory. As a consequence, plane cross sections remain plane and per-

pendicular to the longitudinal axis. In Timoshenko beam theory generalised shear

strains γ
xy

and γ
xz

are taken into account. γxy and γxz are assumed to be constant

over the cross section which violates equilibrium at the lateral surfaces. This fact
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can be arrived at by calculating shear correction factors from exact shear warp deflec-

tions. This approach is then based on the assumption unrestricted thus constant warp

deflections of the cross section (see section 4.2.1.3 and item 4a) here).

4. Concerning torsion and warping the following distinctions have to be made

a) If warping effects are completely neglected and only de St.-Venant torsion is con-

sidered, it is assumed that the cross section can warp freely and no longitudinal

stresses arise. The prerequisite is that the torsion moment is constant thus the

drill (change of rotation) is constant.

b) If warping effects are considered but shear deformations due to warping torsion are

neglected (Wagner’s hypothesis), Wlassow Beam Theory [Wlassow 1964], [Wlas-

sow 1965] is obtained.

5. The beam is prismatic (uniform along x). This important assumption underlies almost

all derivations of all beam theories. Without this assumption especially item 1 does

not hold. It can nevertheless be weakened in such a way that the sectional properties

(sectional stiffnesses, position of the gravitational axis, position of the centre of rotation

and excentricities) change along the longitudinal axis. It is noteworthy that this sort

of extensions of theory may violate both equilibrium and compatibility and thus has

to be handled with care.

6. The lateral dimensions are small compared to the longitudinal one.

7. Physical and geometrical relations are linear. The prerequisite is that rotations and

especially strains remain small.

3.1.2 Method of Transmission Matrices (Reduction Method)

[see Bogensperger 2000; Kiener 1988; SOFiSTiK AG 2013b; Wunderlich and Kiener 2004]

The method of transmission matrices is very well suited for the differential equations oc-

curring in beam calculations. It provides a replacement for the common “Finite Element

toolbox” consisting of a set of mostly arbitrary advised shape functions plus a weightening

scheme (virtual work, potential of inner forces, weighted residuals or variational calculus)

and a numerical integration (Gauss 1 Points). It was commonly applied in hand calculations

1Johann Carl Friedrich Gauß (∗1777, †1855).



3.1 Different Aspects of Traditional Beam Elements 17

before the computer’s triumph. It is still used in some commercial beam analysis software

e.g. STAR [SOFiSTiK AG 2013b].

The basic idea is to see the beam as an initial value problem with both force and deflection

values [zi] at the start point i. From there, the underlying differential relations are used

and integrated along the whole beam or a part of it to the point i + 1. This integration

can be performed either numerical using standard implicit or explicit integration schemes

(Gauss, Runge-Kutta, ...) or in closed form (analytically) using e.g. a series expansion. This

integration yields the matrix [U ]i and a load term [z̄]i such that

[z]i+1 = [U ]i · [z]i + [z̄]i (3.1)

The following equation exemplifies the relations for a linear Euler-Bernoulli Beam with

bending and normal force.

ux

uz

ϕy

N

Qz

My


i+1

=



1 0 0 ∆x
EAyi

0 0

0 1 −∆x 0 − ∆x3

6EIyi
− ∆x2

2EIyi

0 0 1 0 ∆x2

2EIyi

∆x
EIyi

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 ∆x 1


·



ux

uz

ϕy

N

Qz

My


i

+ [z̄] (3.2)

The matrix [z̄] represents the loads (forces, curvatures, strains...): single loads and line loads

with different functions depending on x.

[U ] can be decomposed into submatrices treating either only deflections [u], only forces [s]

or the relation between them:

[z]i+1 =

[
[u]

[s]

]
i+1

=

[
[U ]uu [U ]us
[U ]su [U ]ss

]
·

[
[u]

[s]

]
i

+

[
[ū]

[s̄]

]
(3.3)

Equation (3.1) can be applied repeatedly to obtain the variables [zb] at the end of a beam

element depending on the start variables [za]. The following equation examplifies the process

for three steps from a to b

[zb] = [U ]3 [U ]2 [U ]1︸ ︷︷ ︸
[̂U ]

[za] + [U ]3 [U ]2 [z̄]1 + [U ]3 [z̄]2 + [z̄]3︸ ︷︷ ︸
[̂z̄]

. (3.4)
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The lines of equation (3.3) have to be solved for the force values [s]a and [s]b

[u]b = [̂U ]uu [u]a + [̂U ]us [s]a + [̂ū]

⇒ [s]a = [̂U ]
−1

us [u]b − [̂U ]
−1

us [̂U ]uu [u]a − [̂U ]
−1

us [̂ū] (3.5)

[s]b = [̂U ]su [u]a + [̂U ]ss [s]a + [̂s̄]

⇒ [s]b = [̂U ]su [u]a + [̂U ]ss
(
[̂U ]
−1

us [u]b − [̂U ]
−1

us [̂U ]uu [u]a − [̂U ]
−1

us [̂ū]
)

+ [̂s̄]. (3.6)

Equations (3.5) and (3.6) can be rearranged to separate terms depending on [u]a and [u]b.

Due to different sign conventions in the equilibrium conditions which underlie equation (3.2)

and those of the edge forces [q] in Finite Element derivations an intermediate step is necessary

[q]a = − [s]a

[q]b = [s]b .
(3.7)

before the stiffness relation can be written as[
[q]a
[q]b

]
=

 [̂U ]
−1

us [̂U ]uu −[̂U ]
−1

us

[̂U ]su − [̂U ]ss [̂U ]
−1

us [̂U ]uu [̂U ]ss [̂U ]
−1

us


︸ ︷︷ ︸

[K]e

[
[u]a
[u]b

]
+

 [̂U ]
−1

us [̂ū]

[̂s̄]− [̂U ]ss [̂U ]
−1

us [̂ū]


︸ ︷︷ ︸

[p]e

. (3.8)

[
[q]a
[q]b

]
=

[
[K]eaa [K]eab
[K]eba [K]ebb

][
[u]a
[u]b

]
+

[
[p]ea
[p]eb

]
(3.9)

[K]e represents the element stiffness matrix and [p]e the element load vector.

The presented process can be inverted to obtain a transmission matrix [̂U ] from an existing

element stiffness matrix [K]e[
[̂u]b
[̂s]b

]
=

[
− [K]−1

eab + [K]eaa − [K]−1
eab

[K]eba − [K]ebb [K]−1
eab [K]eaa − [K]ebb [K]−1

eab

]
︸ ︷︷ ︸

[̂U ]

[
[̂u]a
[̂s]a

]
+

[
− [K]−1

eab [p]ea
− [K]ebb [K]−1

eab [p]ea + [p]eb

]
︸ ︷︷ ︸

[̂z̄]

.

(3.10)
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3.1.3 High-Order Finite Elements

This section addresses the ansatz functions in the x-direction. The underlying theory is not

modified. The concept is to use not only linear and quadratic shape functions but functions of

even higher polynomial order (p). It is also called the p-version of Finite Elements [Babuska

et al. 1981]. It was shown by many authors, that for this class of problems the p-version

is superior to the classical h-version approach. Combined with a proper mesh design, the

p-version shows an exponential rate of convergence in energy norm in the preasymptotic

range. In addition to high accuracy the p-version includes some further advantages. It

was theoretically and numerically shown, that the p-version is free of locking effects, if the

polynomial degree is chosen to be moderately high [Düster et al. 2001; Szabó et al. 2004].

The so-called p-refinement (order elevation of the ansatz functions) reaches very high conver-

gence rates if the problem is sufficiently smooth [Sprague and Geers 2007]. Singularities such

as load applications inside elements are covered much worse and thus should be treated with

(additional) separate elements (hp-refinement). Error estimates and proofs of convergence

of both refinement strategies for Timoshenko elements can be found e.g. in [Li 1990].

High order ansatz functions are also the prerequisite for modelling a curved beam element

and the effects occurring from curvature.

3.1.3.1 h-Type Finite Elements

The first possibility to enrich the functional basis is to use a series of p + 1 Lagrangian

interpolants of polynomial order p

Ni(ξ) =

p+1∏
j=1, j 6=i

ξ − ξj
ξi − ξj

(3.11)

where the positions ξj are called nodes. Usually the nodes are evenly spaced [Düster 2007;

Sprague and Geers 2007]. An attractive feature of Lagrangian interpolants is that they

constitute a nodal basis, i.e.,

Ni(ξj) = δij (3.12)

where δij is the Kronecker delta. [Sprague and Geers 2007] call this approach h-type Finite

Elements, [Düster et al. 2001] standard Finite Element basis.
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Figure 3.1: Different shape functions for high order Finite Elements.
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3.1.3.2 Spectral Finite Elements

The first possibility to improve this approach are the so-called spectral2 Finite Elements.

Their shape functions are Lagrangian interpolants with node locations either at the (p+ 1)

Gauss-Lobatto3-Chebyshev4 or Gauss-Lobatto-Legendre5 points [Deville et al. 2002; Sprague

and Geers 2007]. The latter are defined by.

(
1− ξ2

)
Lp ′ξ

!
= 0 (3.13)

where Lp represents a Legendre polynomial of degree p.

With this nodal distribution, the Lagrangian interpolant for the ith node can be written as

Ni(ξ) = − 1− ξ2

p(p+ 1)Lp(ξi)(ξ − ξi)
Lp ′ξ ∀i ∈ {0; 1; . . . ; p}. (3.14)

Elements of this type differ from the before mentioned by the fact that the shape functions

are attached to nodes which are not evenly spaced. They still form a nodal basis, thus

equation (3.12) holds. Quadrature points and nodes coincide which leads to an optimally

lumped mass matrix and little computational effort for the evaluation of integrals. A plot of

this type of shape functions for order p = 5 can be seen in figure 3.1a.

3.1.3.3 Hierarchical Ansatz Functions

A different way of enrichment are the so-called hierarchical ansatz functions using the Leg-

endre polynomials differently:

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2

Ni(ξ) = φi−1(ξ), ∀i ∈ {3; 4; . . . ; p+ 1}
(3.15)

with

φj(ξ) =
1√

4j − 2

(
Lj(ξ)− Lj−2(ξ)

)
, ∀j ∈ {2; 3; . . . ; p} (3.16)

2The term “spectral elements” is not uniquely defined and may also refer to elements utilising harmonic or
exponential ansatz functions.

3Rehuel Lobatto (∗1797, †1866)
4Pafnuti Lwowitsch Tschebyschow (∗1821, †1894)
5Adrien-Marie Legendre (∗1752, †1833)
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While such shape functions do not constitute a nodal basis like before, they are well suited to

adaptive refinement (order elevation) [Düster et al. 2001; Hartmann and Katz 2007; Sprague

and Geers 2007]. The prerequisite is that the new functions are orthogonal with respect to

the strain energy product of the treated problem. For continuum problems, this product

reads

1∫
−1

Ni ′ξNj ′ξ dξ = δij. (3.17)

The functions defined in equations (3.15) and (3.16) fulfil this orthogonality condition. For

beam elements this property is not sufficient to eliminate off-diagonal terms in stiffness

matrices because the strain energy is not exclusively contained in the first order derivatives.

This can be seen e.g. from equation (4.76) on page 70 for the Timoshenko beam theory.

Furthermore, the element mass matrix becomes fully populated [Sprague and Geers 2007]

which may lead to stability problems of a transient analysis [Rank et al. 1983].

The hierarchical ansatz functions up to degree p = 5 can be seen in figure 3.1b.

3.1.4 Using Degenerate Hexahedral Continuum Elements

In [Düster et al. 2001] a hierarchic hexahedral element is presented which is able to vary

the polynomial degree for the three different local directions and also to choose a different

degree for each primary variable (e.g. ux, uy and uz). This enables the element to be used in

degenerate cases, e.g. to represent the volume of a plate with a comparable ansatz space as

in e.g. Reissner/Mindlin plate theory. The authors state that the element is stable even if

the aspect ratio of the elements becomes very large. By this, the element can also represent a

beam with a cross section with 4 corners and curved edges. More elements can be combined

to represent more difficult shapes. If the order of the shape function is sufficient the shape

of the beam in longitudinal direction can be curved and the cross section may vary.

The different polynomial degrees for ux, uy and uz in the different directions can be chosen

such that deformations of higher order and also distortions of the cross section can be covered,

thus this solution can go beyond the standard beam theories.
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3.2 Selected Extended Beam Theories in the Literature

3.2.1 Attributes and Classifications of Extended Beam Theories

Theories which enrich the solution space of the traditional approaches are the subject of

research at least since 1940 [Wlassow 1964]. Several approaches exist which are sometimes

hard to distinguish. This section shall provide a possible set of criteria to classify different

theories.

3.2.1.1 Thin or Thick Walled Cross Sections

Some extensions of beam theory apply only for rectangular cross sections [e.g. Bickford

1982; Hofmann 1992; Levinson 1985]. Most extensions for beam theories apply for thin-

walled cross sections [e.g. Gonçalves and Camotim 2011, 2012; Gonçalves, Ritto-Corrêa, et

al. 2010; Kreuzinger 1974; Möller 1982; Okur 1971; Orrenius and Finnveden 1996; Roik and

Sedlacek 1970; Schardt 1989]. The cross section is then mostly subdivided into strips for

which different shell theories are applied. If this reduction of dimensions is not done, thick

walled cross sections are treated [e.g. Ferradi et al. 2013; Zeller 1979]. This approach is more

general but further reductions and simplifications are harder to find. Few approaches such

as [Zeller 1979] treat both mentioned types of cross sections.

3.2.1.2 Shape of the Beam

Most beam formulations apply for (straight) prismatic shapes. Commercial standard Fi-

nite Element software packages sometimes offer the possibility to consider changes of beam

parameters in longitudinal direction which might be confused with the ability to calculate

haunched beams. The latter requires a huge set of effects to be treated exactly which is

explained and illustrated in [Hartmann and Katz 2007], [Bogensperger 2000] and [Unter-

weger 2001]. Besides the expectable effects like lateral stresses e.g. the haunched (tapered)

box girder under torsional loading causes unexpected huge warping stress [Unterweger 2008].

Extended beam theories may cover this issue [Bogensperger 2000].

Curvature effects (plane or skew) on beams go beyond coupled stiffnesses which are covered

either by high order Finite Beam Elements (see 3.1.3) or directly by special transmission

matrices given e.g. in [Petersen 1966] which can be easily computed into stiffness matrices

(see section 3.1.2). This does not cover e.g. the effects on the cross section from deviation
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forces. This is only possible by allowing for lateral distortions of the cross section. To

the knowledge of the author there is no extended beam formulation available covering both

curved beams and lateral distortions.

3.2.1.3 Polynomial Degree or Type of Interpolation Functions

Almost all extended beam theories are based on deformation approaches using nodal deflec-

tions or rotations and shape functions to interpolate between nodes. The function type may

vary for different types of deflections (longitudinal/lateral) or rotations. Most procedures

use linear interpolation [e.g. Schardt 1989]. [Kreuzinger 1974] uses a series of trigonometric

functions.

Theories which address a certain thick type of cross section like [Bickford 1982; Hofmann

1992; Levinson 1985] contain high order shapes for e.g. warping deflections ux(y,z). [Sayyad

2011] compares different shear stress distributions occurring in the literature.

Also the longitudinal interpolation functions may have different specifications. It also de-

pends on the emerging type of PDE (see section 3.2.1.6) and the type of problem (static or

dynamic) which approach is suitable.

3.2.1.4 Considering Additional Terms of Virtual Work

Standard beam theory neglects a lot of components of the stress- or strain tensor or of both.

In some constrictive cases (homogeneous material, no compound material) either stresses or

strains can be resurrected from the material law and an assumption about the other. For

example, the assumption of zero stresses in the lateral direction can enable the calculation

of lateral strains.

Extended beam theories can be distinguished and judged by the sorts of additional strains

and stresses taken into account.

For thin-walled sections, the distinction becomes even more subtle since not only the ten-

sor components but different types of plate degrees of freedom or also plate assumptions

(Reissner-Mindlin or Kirchhoff ) can occur.

The more terms are taken into account the more complex the computations get and the

harder it gets to perform orthogonalisations or reductions of the bandwidth.



3.2 Selected Extended Beam Theories in the Literature 25

3.2.1.5 Orthogonalisation

Some beam formulations are based on local degrees of freedom with respect to the cross

section. These may be deflections or rotations of single nodes or strips [e.g. Kreuzinger 1974;

Wlassow 1958, 1965]. This approach is straight forward and allows for a simple application

of arbitrary boundary conditions. The drawback is that the solution is not comprehensible

without performing a post processing and obtaining stresses. Values such as moment and

shear force have to be computed as resultants of stresses.

This precedure is not necessary if the degrees of freedom are global with respect to the cross

section like they are in standard beam theories (rotation or deflection of the whole section,

global deflection shapes like warping) [e.g. Möller 1982; Roik and Sedlacek 1970; Schardt

1989]. This approach additionally allows for the orthogonalisation of the degrees of freedom

or at least a bandwidth reduction provided that some additional assumptions are made (see

section 5.2 on page 77).

Orthogonalisation or the reduction of the bandwidth is of great importance for the numerical

efficiency of a method. Different theories treat this problem with different priorities. Two

approaches lead to the goal of decoupling the degrees of freedom

1. Neglecting off-diagonal terms or special underlying parts of the virtual work term. This

approach may lead to a lack of accuracy (see section 3.2.1.4).

2. Transforming the problem to a new modal domain (rearranging of the unknowns) by

solving one or more eigenvalue problems. This is done e.g. in the GBT [Schardt 1989]

(see section 3.2.3 on page 26).

3.2.1.6 Emerging Type of PDE

Different augmented beam theories lead to different types and orders of differential equations.

For the solution of higher order differential equations different approaches exist. The first

refers to Euler-Bernoulli Beams and solves the equations “directly” leading to the need for

ansatz functions with high continuity requirements. This strategy is chosen e.g. by the GBT

[Schardt 1989]. The second approach is to develop the high order differential equation into a

coupled system of linear differential equations. The derivatives (e.g. rotations or curvatures)

are substituted to new unknowns. This strategy is chosen e.g. by [Zeller 1979].

For the integration in the longitudinal direction which is necessary to obtain the virtual

work terms for the stiffness matrix various procedures can be applied. One option are the
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“classical” numerical integration schemes which are familiar from standard Finite Element

procedures. But also an exact or stepwise numerical integration of the PDE or the solution

state, known as the reduction method (see section 3.1.2) comes into use e.g. in [Zeller

1979].

3.2.2 Beam Theory with Enhanced Warping

This type of extension was published in the most general form by [Roik and Sedlacek 1970]

(German: Stabtheorie mit Zusatzverwölbungen, SZW). It employs additional warping de-

grees of freedom for thin walled cross sections to capture shear-lag effects (effective width)

and effects in the vicinity of load applications. The cross section remains undeformed.

The biggest advantage of this method is that only few further information needs to be

provided with respect to a standard beam calculation. The new DOFs are coupled to the

standard beam DOFs via the shear stiffness of the membrane members.

Numerous considerations exist which treat thin walled cross sections and presume generalised

shapes (e.g. quadratic parabolas). They are listed e.g. in [Bogensperger 2000].

3.2.3 Generalised Bending Theory (GBT)

This theory was founded by Schardt in the 1960s. The intention was to collect and unify

developments in the area of prismatic (thin-walled) folded plate structures. It allows for

distortions of the cross section and makes a huge (also computational) effort to obtain stiffness

matrices which are strongly decoupled or even orthogonal. To achieve that, some restrictions

in the solution set are introduced and some effects are neglected. There exist different flavours

of the theory which differ in their capabilities and orthogonality properties.

The theory was used to evaluate the buckling behaviour of thin-walled metal structures

[Okur 1971].

[Schardt 1989] collects and illustrates research work done on beams with thin-walled cross

sections allowing for distortions (linear theory). The second volume announced to cover the

nonlinear theory is not yet published.

The first version described in [Schardt 1989] presumes strict assumptions such as the absense

of shear deformations and lateral normal strains εyy and εzz in the mid-planes of the plates.

The assumptions are equivalent to those of Euler-Bernoulli, Kirchhoff and Wagner (no shear
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deformation). The basic principle is to combine a couple of one warping deflection shape

and one corresponding in-plane deflection shape to something called a “deformation process”

for which a separation of variables with respect to the longitudinal direction x is applied.

The in-plane deflections are classified into uniform deflections (global modes)

u(x,y,z) = ku(y,z) · kV (x)′x[
v

w

]
(x,y,z) =

[
kv
kw

]
(y,z) · kV (x)

(3.18)

The unit warping deflections are chosen by engineering experience such that they are or-

thogonal. From those the corresponding in-plane deflections are obtained from a geometrical

procedure which only works for open unbranched sections (see figure 3.2 a)). The usual

deformations (processes) occurring at a Euler-Bernoulli beam are fitted into that concept

where each of the processes (numbered by k) is described by a PDE of fourth order:

E kC kV′xxxx = kq. (3.19)

Where E is the elastic modulus, kC a sectional value, kV a participation factor and kq the

load. Like in Euler-Bernoulli Beam Theory shear forces are recovered afterwards from an

equilibrium consideration. At this stage, all processes are orthogonal to each other and thus

can be considered separately without the need to solve a system of equations.

If in addition the influence of plate bending moments with stresses in the y-z-plane is con-

sidered an additional term occurs

E kC kV′xxxx + kB kV = kq. (3.20)

The effect of this term can be compared with an elastic bedding for the process k.

a) b) c1) c2)

d1) d2)

Figure 3.2: Cross-section types in GBT: a) open, unbranched, b) open, branched, c) closed, single and
multi-cell, d) closed cells with open branches [Gonçalves, Dinis, et al. 2009]
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Figure 3.3: Different types of deformation shapes of the conventional GBT each belonging to one defor-
mation process [Camotim and Basaglia 2012]

If in addition the longitudinal bending and drilling moments are taken into account, the

differential equation is extended further and becomes coupled such that one process cannot

be treated separately any more:

E [C] [V ]
′xxxx

−G [D] [V ]′′ + [B] [V ] = [q] . (3.21)

Still an orthogonalisation with respect to the matrices [C] and [B] is done to keep the

bandwidth small and thus reduce the computational effort. At the same time the remaining

off diagonal elements of the matrix [D] may be neglected.

In later chapters of [Schardt 1989], the assumption of the absense of shear deformations is

dropped to allow for the solution of a single-cell closed cross section (see figure 3.2 c)). Still

the restriction to unbranched sections prohibits the applicability to multi-cell sections.

[Möller 1982] extended the theory by the ability to cover shear deformations and Theory of

II. Order. His concept is more based on the one presented by [Wlassow 1964] which means it

is rather a theory of folded plates or finite strip theory. The first line of the equation (3.18)

is changed to

u(x,y,z) = ku(y,z) · kV (x). (3.22)

This fundamentally modifies the structure and leads to the fact that considerably more

deflection shapes have to be taken into account which are moreover coupled to a greater

extent. The gain is the fact, that arbitrary cross sections can be handled. The theory is

applied to dynamic problems (eigenvalue problem) and stability analysis.

The development of GBT is still alive since for example Camotim et al. recovered and

extended the theory. [Gonçalves, Dinis, et al. 2009] extend the theory for arbitrary, thin-

walled prismatic beams keeping the key properties of the theory. They introduce the theory

of second order such that a linearized buckling analysis can be performed. [Gonçalves and
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Camotim 2011] enrich the GBT by an elastoplastic material law and [Gonçalves and Camotim

2012] enable for geometrically non-linear effects such that the post buckling behaviour and

collapse loads of elastoplastic members can be determined. [Camotim and Basaglia 2012]

deal with the behaviour and influence of joints and shows opportunities to use the theory as

part of a general, three dimensional beam finite element program.

3.2.4 Cross-Sectional Distortions of Bars by Zeller

A way of enhancing or refining beam theory which is very similar to the one presented in

this work can be found in [Zeller 1979] and [Zeller 1982]. It is formulated both for thin

and thick walled sections. The general approach is a stepwise correction of non-equilibrated

states of stress which result from the assumptions of the Bernoulli bending and de St.-

Venant torsion theory. The correction is done by introducing additional unit displacement

and stress states of the cross section computed from previous non-equilibrated states. This

is done by introducing two types of problems based on a 2D Finite Element representation

of the cross section: warping and distortion. Thin-walled cross sections are just derived

from the genreal ones as a special case. Zeller derives and uses a huge variety of general

variational formulations for all the problems which subsequently lead to a 2D mixed Finite

Element discretisation of the cross section. As in this thesis, warping describes only out of

plane deflections distortion only in-plane deflections.

In the end, a coupled linear differential equation system depending on the longitudinal coor-

dinate is obtained. This is integrated in the longitudinal direction in order to obtain a linear

beam element stiffness matrix with additional degrees of freedom.
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3.2.4.1 Warping Problem

y z

x

τyx + dτyx

τzx + dτzx

τzx

◦
σx′x

τyx

◦
εxy◦
εxz

Figure 3.4: Quantities of the Warping Problem

Zeller formulates a general warping problem similar to the ones chapter 4.2.1 of this work.

The problems are enumerated with i. The PDE is based on equilibrium in longitudinal

direction

τzx′z + τyx′y+
◦
σx′x

!
= 0. (3.23)

Additionally, the equilibrium at the surface is considered

τzxnz + τyxny
!

= 0. (3.24)

Quantities with a
◦
� indicate a type of load which here is assumed to be known.

Shear strains can arise both from warping and distortion deflections

γxy = εyx+
◦
εxy= ux′y+

◦
uy′x

γxz = εzx+
◦
εxz= ux′z+

◦
uz′x .

(3.25)

In an arbitrary ith warping problem, a deflection ux and shear stress state (τzx, τyx) is wanted

for satisfying the known longitudinal stresses
◦
σx and shear strains

◦
εxy and

◦
εxz. The longitu-
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Figure 3.5: Quantities of the Distortion Problem

dinal stresses
◦
σx result from the i− 1th warping problem, the shear strains

◦
εxy and

◦
εxz from

the i− 1th distortion problem.

3.2.4.2 Distortion Problem

As a second type of problem, Zeller introduces the distortion problem. He points out the

analogy to a plate problem. As the latter, it is based on the equilibrium in the uy and uz

direction

σy′y + τzy′z+
◦
τxy′x

!
= 0

σz′z + τzy′y+
◦
τxz′x

!
= 0.

(3.26)

At the bounding surfaces of the section the stresses are in equilibrium with the components

of the load

σyny + τzynz + py = 0

σznz + τzyny + pz = 0.
(3.27)

Quantities with a
◦
� indicate a type of in-plane load which results from the ith warping

problem.
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Figure 3.6: Relation between the different types and orders of problems

3.2.4.3 Setting up and Solving the Problem in the Longitudinal Direction

The method follows the scheme that free or unconsidered forces of the already covered

problems are taken as input to generate new deflection shapes (see Figure 3.6). The procedure

can theoretically be continued infinitely often, but the gain of accuracy will decay with rising

order. Due to that and due to limitations of the size of computational problems those days

Zeller stopped the enhancements at order two. Thus, he considered four problems:

• the primary warping problem

• the primary distortion problem

• the secondary warping problem

• the secondary distortion problem.

This set of extensions is applied to three types of load impacts: bending with respect to the

y-axis, bending with respect to the z-axis and torsion.

By the fact that he uses mixed elements, Zeller obtains both unit deflection shapes and

the corresponding strains and stresses at the same time. These are used to calculate by

integration sectional values which are then used in the integration in longitudinal direction

which yields the element stiffness matrix.

To solve the actual beam problem, several of these element stiffness matrices are assembled

to a global stiffness matrix into which the boundary conditions (supports) are implemented.

Different new types of supports are possible since the additional degrees of freedom like the

warpings and the distortions of the section at a beam node can independently be either fixed

or not.
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3.2.4.4 Remarks About the Method

The fact that the integration is done in two steps, first lateral to obtain sectional values,

and then longitudinal opens the gate for applying the sectional values multiple times even

for elements of different lengths which can be an advantage in the computational effort.

The fact that the series of problems is truncated at order 2 is an arbitrary choice which

should be evaluated e.g. by a reference calculation using a volume model.

The unit distortions are determined taking into account the external load and its position

which certainly improves the accuracy and thus the efficiency of the method. On the other

hand, forces induced by supports are not considered which is acceptable as long as the

supports are defined such that they prevent any distortion which is not the case in general.



σx

τxy

τxz

σy

σz

τyz
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=


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·



εx

γxy

γxz

εy

εz

γyz


(3.28)

Equation (3.28) shows the material law as utilised by Zeller. The two types of problems do

not interact at all on the basis of the material law. It can be observed that the coupling of

the longitudinal and lateral direction due to the Poisson ratio is not covered.
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4 Gaining Effective Unit Deflections

Shapes with a 2D Finite Element Mesh

As indicated in the overview of the method (see section 1.3) one of the first steps of the

solution process of a beam problem as presented here is to gain a set of unit deflection

shapes which form a solution basis as effective as possible. Different possible types of unit

deflection shapes are derived and presented in this chapter.

4.1 Using Dynamic Eigenmodes of Plane Systems

This type of shapes is gained by solving the homogeneous dynamic problem of the cross

section

(
[K]− Ω2 [M ]

)
Ψ = [0] . (4.1)

It is a generalised eigenvalue problem with respect to the eigenvalue Ω2. [K] represents the

stiffness matrix, [M ] the mass matrix and Ω the angular frequency. Equation (4.1) here

refers to two differential equations: the one of a plate in membrane action (see following

section 4.1.1) and the one of a plate in bending action (see following section 4.1.2).

Though the PDEs underlying plane systems do not represent the behaviour of the structure

exactly (or not at all, see section 4.1.2), it is still possible to use the computed eigenmodes as

ansatz functions. Eigenmodes are particularly suitable because of their arrangement where

the most smooth shapes come first and the more curved ones later. The shapes are applicable

as ansatz functions even if the system is not calculated for dynamic loads. Furthermore,

the fact that eigenmode shapes fulfil certain orthogonality conditions implies their linear

independency which is indispensable for using them as ansatz functions. The eigenvalues

obtained by equation (4.1) are not of interest.
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The mass and stiffness distribution can be adopted from the 3D model. In each case, the

first three eigenmodes have the eigenvalue 0 and can only be computed using a shifted

configuration as illustrated in appendix A.1. They represent an arbitrary linear combination

of the three rigid body modes.

4.1.1 Eigenmodes of a Plate in Membrane Action

Shapes of this type are gained by solving the homogeneous dynamic problem of a slice of the

beam regarding only the lateral deflections. The underlying PDE is depicted later in section

4.3.

In the scope of the beam system the rigid body modes represent an arbitrary mix of the two

lateral deflections and the torsional rotation. In order to obtain pure deflections and the

pure rotation about the shear centre they are generated manually. Higher eigenmodes can

be seen as distortion shapes of the section (see 4. in figure 4.1).

The Finite Element system of the section is set up using bilinear quadrilateral elements with

the Wilson extension (see appendix A.2).

4.1.2 Eigenmodes of a Plate in Bending Action

Analogously to the previous section, the cross section can be treated as a plate in bending

action with “arbitrary” thickness. The mass and stiffness distribution can be adopted from

the 3D model. The first three eigenmodes with eigenvalue 0 represent an arbitrary linear

combination of the three rigid body modes. Here, they are generated manually assuring that

they represent the longitudinal deflection and the two rotations around the lateral axes which

intersect with the centre of stiffness. Higher eigenmodes, from eigenmode 4 on, extend the

standard beam theory by further longitudinal deflection shapes. Since the Reissner-Mindlin

plate formulation was used, the actual shape of the higher eigenmodes depends on the chosen

thickness of the plate. The thicker the plate is the more dominated by shear deformation they

get. The underlying PDE is straight forward such that it will not be derived or illustrated

here.
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1. 2.
Rigid body Rigid body

3. 4.
Rigid body Deformation

Figure 4.1: Eigenmodes one to four of the cross section (in-plane).

Remark 1

Concerning its physical behaviour the utilised PDE is far away from the actual deforma-

tion processes happening in a continuous beam structure. Nevertheless, this type of shape

functions can be used and because of their smoothness the shapes are effective compared to

arbitrary deflection shapes like e.g. setting step by step one nodal deflection equal to 1.0

and all remaining equal to 0. Nevertheless the deflection shapes computed here are not as

effective as the shapes derived in the following sections.

The Finite Element system of the cross section is set up using bilinear quadrilateral elements

which is an element type prone to shear locking [Bathe 2002; Bathe and Dvorkin 1985].

For the above mentioned reason, that this type of deflection shape does not represent the

behaviour of the structure at all the element formulation was not refined further.
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1. 2.
Rigid body Rigid body

3. 4.
Rigid body Deformation

Figure 4.2: Eigenmodes one to four of the cross section (out of plane).

Remark 2

The desired unit deflection shapes contain only deformation degrees of freedom ux. The

solution of the procedure explained here contains both a deflection and two rotations per

node. For the further usage the rotations are simply neglected which induces the need for

caution concerning the linear independency of the generated shapes. At most one third of

the producible modeshapes can be used for further computation.
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4.2 Deriving Further Shapes from Existing Shapes Using

the PDE of Shear Warping

4.2.1 Calculation of Shear Warp Shapes with the FEM

The differential equations for the determination of all types of shear warp figures are based

on equilibrium in the longitudinal direction.

4.2.1.1 Literature

Computing shear warp shapes with the help of Finite Elements published in German can be

found in [Gruttmann et al. 1998a,b], [Gruttmann and Wagner 2001], [Wunderlich and Kiener

2004], [Kraus 2005] and [Kraus 2007a,b]. Early works on this topic are e.g. [Herrmann 1965],

[Krahula and Lauterbach 1969] and [Haberl and Och 1974]. [Gruttmann and Wagner 2001]

extend the procedure to a nonlinear material law such that plastic torsions resistances and

shear stress distributions can be obtained.

Procedures to compute shear warp shapes and section values for nonuniform torsion with

Boundary Elements can be found for example in [Katz 1986] and [Athanasiadis 1982]. The

warping resistance cannot be determined with boundary integrals [SOFiSTiK AG 2013a]

because the applicability of the divergence theorem is limited.

4.2.1.2 Primary or uniform torsion

[Wunderlich and Kiener 2004]

The warp ordinate or warp shape for uniform torsion is derived under the following pre-

liminaries (assuming a Cartesian coordinate system where the x-direction is pointing in the

direction of the beam axis):

1. The beam exhibits a prismatic shape and the x-axis is parallel to the central axis.

2. The lateral surface of the beam is free of external forces.

3. The self weight of the beam is neglected.

4. The torque at the ends is applied as shearing stress only.
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Figure 4.3: Prismatic beam, torqued around the x-axis and deflection of an arbitrary point P on the cross
section

5. The stresses and through that the strains are independent of the coordinate x. Thus,

the torque ϕ
x′x

remains constant along x.

6. The shape of the cross section in the y-z-plane does not distort.

The assumptions from above lead to the fact that the normal stresses σx are zero. σy and σz

as well as τyz are equal to zero due to the assumptions of beam theory. The shear stresses

τxy and τxz can be computed as follows.

Starting from the shear strains

γ =

[
γxy

γxz

]
=

[
ux′y + uy′x

ux′z + uz′x

]
. (4.2)

The lateral deformations uy and uz in this respect according to figure 4.3 singularily have

one origin - the rotation ϕ
x
. Thus, the shear strains can be rewritten

γ =

[
ux′y − zϕx′x
ux′z + yϕ

x′x

]
. (4.3)

A warping function ωV (y,z) is defined on the cross section such that the deformation ux can
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Figure 4.4: Infinitesimal element of a beam with shear stresses.

be written with a separation of variables:

ux(x,y,z) = ψ(x) · ωV (y,z). (4.4)

ψ(x) represents the scaling factor for the deflection field ωV (y,z). Equation (4.4) together

with the material law yields the shear stresses

τ =

[
τxy

τxz

]
= [Dω] · γ = [Dω] ·

[
ωV′y − zϕx′x
ωV′z + yϕ

x′x

]
. (4.5)

where the material matrix [Dω] is allocated as illustrated in section 2.3 on page 11.

Strong formulation

Using figure (4.4) to set up the equilibrium in the axial direction gives

τxz′z + τxy′y
!

= 0. (4.6)

Equation 4.5 can be introduced to obtain an equation containing the unknown deflection

field ωV (y,z).

According to assumption 2 on page 38 the shear stresses parallel to the lateral surface must

vanish

n · τ = 0. (4.7)

This relation is also visualised in figure 4.5.
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The strong formulation is based on equilibrium and thus not suitable for a computer calcula-

tion of a statically overdeterminate system (which always applies for continuum calculations).

Therefore in the next section a weak formulation is derived. On that basis a FEM formulation

can be formulated.

α

α

ny

nz

τ

n

α

τxydA

τxzdA

S

dS

dy

dz

y
z

τxy

τxz

dA

Figure 4.5: Shear strain at lateral surfaces. Normal stresses are assumed not to occur. The stress vector
τ needs to be parallel to the surface and perpendicular to the normal vector n.

Weak formulation

The weak formulation can be obtained by applying the principle of virtual work.

δWi = −
∫

(A)

δγ · τ dA with δγ =

[
δω′y

δω′z

]
. (4.8)

Since a linear system behaviour is presumed it is possible to decompose τ from equation

(4.5) into a part depending on ωV and one on ϕ
x′x

. Additionally, ϕ
x′x

= 1.0 is introduced

because ψ in equation (4.4) shall be equal to 1.0 for a unit of torque ϕ
x′x

= 1 (Wagner’s

hypothesis).

τ = τ ω + τϕ = [Dω] ·

[
ωV′y

ωV′z

]
+ [Dω] ·

[
−z
y

]
. (4.9)
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This can be used to set up two separate parts of the virtual work

δWi = −
∫

(A)

δγ · τ ω dA−
∫

(A)

δγ · τϕ dA
!

= 0. (4.10)

This expression can be formulated using the FEM approach

∫
(A)

[δω]T · [B]T · [Dω] · [B] · [ωV ] dA =

∫
(A)

[δω]T · [B]T · [Dω] ·

[
z

−y

]
[N ] dA (4.11)

with the following matrices:

[δω] =
[
δω1 δω2 δω3 δω4 . . .

]T
(arbitrary) discrete virtual deflections

[ωV ] =
[
ωV 1 ωV 2 ωV 3 ωV 4 . . .

]T
(unknown) discrete deflections

[N ] =
[
N1 N2 N3 N4 . . .

]
shape functions

[B] =

[
N1′y N2′y N3′y N4′y . . .

N1′z N2′z N3′z N4′z . . .

]
derived shape fuctions

The left hand side of equation (4.11) ends up to be a stiffness matrix since it contains the

wanted nodal values ωV . The right hand side can be seen as a load vector. The resulting

system of equations is at this stage singular since there is no “support”. This can be solved

by fixing ωV at one node e.g. to 0. This procedure is numerically stable and the resulting

wrong rigid body motion can be determined and subtracted afterwards.

Normalisation of the Results

The result of the linear system of equations is the warp shape ωV for a drill ϕ
x′x

= 1 about

the origin of the coordinate system y-z. For further computation, the warp shape should be

normalised. First the rigid body motion which was mentioned above has to be eliminated.

The result is the unit warp shape ω̄V

ω̄V = ωV −
1

EA

∫
(A)

EωV dA = ωV −
EAω
EA

. (4.12)
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The next step is to determine the “real” centre of rotation - the shear centre. The coordi-

nates of the shear centre yM and zM can be found from the demand that the torque shall not

cause any bending moment. The corresponding warp shape is the principal warp shape ω̃V .∫
(A)

Eω̃V y̆ dA
!

= 0 (4.13a)

∫
(A)

Eω̃V z̆ dA
!

= 0 (4.13b)

where y̆ = y− yS and z̆ = z− zS are the coordinates with reference to the centre of stiffness

(yS; zS). These coordinates are also needed for any type of shift of the axis of rotation by

(∆y; ∆z) 1:

ωV new = ωV old + ∆yz̆ −∆zy̆ (4.14)

The difference between ω̄V and ω̃V is also just a shift of the centre of rotation from the

coordinate origin to (yM ; zM) which is expressed through

ω̃V = ω̄V + yM z̆ − zM y̆. (4.15)

If this condition is introduced into the equations (4.13a) and (4.13b) two equations for the

unknown coordinates (yM ; zM) are obtained:∫
(A)

E
(
ω̄V y̆+ yM z̆y̆− zM y̆2

)
dA

!
= 0 (4.16a)

∫
(A)

E
(
ω̄V z̆+yM z̆

2− zM y̆z̆
)
dA

!
= 0 (4.16b)

Solving this system of equations and using the abbreviation EAab =
∫

(A)

Eab dA leads to

yM =
−EAω̄V z̆EAy̆y̆ + EAω̄V y̆EAy̆z̆

EAy̆y̆EAz̆z̆ − EAy̆z̆2 (4.17a) zM =
EAω̄V y̆EAz̆z̆ − EAω̄V z̆EAy̆z̆

EAy̆y̆EAz̆z̆ − EAy̆z̆2 (4.17b)

With this information equation (4.15) can be solved and the principal warp shape ω̃V is

obtained. It is corresponding to a change of rotation around the shear centre.

1Remark: Also other coordinate systems can be used for shifting the centre of rotation but then a new
rigid body component in the longitudinal direction is reintroduced and the substraction step (equation
(4.12)) has to be performed again.
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1. 2.

Figure 4.6: Torsional warp shapes ωV .

4.2.1.3 Shear force and non-uniform (secondary) torsion

In equation (4.6) it was assumed that no change of stresses in the longitudinal direction

occurs. In fact, longitudinal normal stresses σx occur as well as their derivatives σx′x. They

can be computed as

σx = σx(My) + σx(Mz) + σx(Mω) (4.18)

with

σx(My) = My

(
E · EIz

EIyEIz − EIyz2 · z − E ·
EIyz

EIyEIz − EIyz2 · y
)

(4.19a)

σx(Mz) = Mz

(
−E · EIy

EIyEIz − EIyz2 · y + E · EIyz

EIyEIz − EIyz2 · z
)

(4.19b)

σx(Mω) = E · MB

EIω
ωV . (4.19c)

If the stiffness properties EIi are assumed to be constant over x the differential relations of

the sectional forces can be made use of

σx′x = σx′x(Qz) + σx′x(−Qy) + σx′x(MxS) (4.20)
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with

σx′x(Qz) = Qz

(
E · EIz

EIyEIz − EIyz2 · z − E ·
EIyz

EIyEIz − EIyz2 · y
)

(4.21a)

σx′x(Qy) = −Qy

(
−E · EIy

EIyEIz − EIyz2 · y + E · EIyz

EIyEIz − EIyz2 · z
)

(4.21b)

σx′x(MxS) = E · MxS

EIω
ωV . (4.21c)

For composite sections the different Young ’s moduli E have to be taken into account.

The derivatives or changes of the longitudinal normal stress σx′x in equations (4.21a) through

(4.21c) due to equilibrium cause shear stresses τyx and τzx.

y z

x
τyx

τyx + dτyx

τzx + dτzx

τzx

σx + dσx

σx

Figure 4.7: Shear stresses caused by the change of longitudinal stress on an infinitesimal element.

For each of the stress states (Qy, Qz and MxS) the following virtual work formulation can

be set up:

δW =

∫
(A)

(
σx′xδω − τyxδω′y − τzxδω′z

)
dA

!
= 0. (4.22)

Using a general material law this can be transformed to

δW =

∫
(A)

(
δω · σx′x i − δγ · τ ωSi) dA

!
= 0 (4.23)

where σx′x i is one of the normal stress states caused by My, Mz and MB as depicted in

equations (4.21a) to (4.21c) and ωSi is the corresponding warp ordinate.
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This leads to the following representation in FEM notation:∫
(A)

[δω]T · [B]T · [Dω] · [B] · [ωSi] dA =

∫
(A)

[δω]T · [N ]T · [N ] · [σx′x i] dA. (4.24)

[σx′x i] represents a vector of discrete nodal values of σx′x i. The other matrices are explained

near equation (4.11) on page 42.

Figure 4.8 shows the shear deformation caused by transverse forces (first and second term in

equation (4.20)). Figure 4.9 shows the shear deformation caused by the secondary torsional

moment (third term in equation (4.20)).

1. 2.
Shear force in the y-direction Shear force in the z-direction

Figure 4.8: Shear deformation due to transverse forces.

1. 2.
Concrete section Steel section

Figure 4.9: Shear deformations due to the secondary torsional moment.
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4.2.2 Calculation of Derived Warp Shapes from Warp Shapes

The concept of the previous section (4.2.1.3) works for any kind of warping deflection shape.

The procedure is that every warp shape when it is blocked or changes along the x-axis causes

normal stress distributions which are affine to itself with respect to y and z. If these normal

stresses change along the x-axis shear stresses are caused to fulfil the equilibrium (see figure

4.7 on page 45). Analogously to section 4.2.1.3 every calculated warp figure can be taken as

another loadcase to calculate another, high order warp figure.

As a matter of fact, for usual load situations and compact sections of beam structures, the

participation of these warp shapes on the solution decreases fast with increasing order. So

introducing them as additional degrees of freedom will not result in a big gain of accuracy

[see e.g. Ferradi et al. 2013; Hofmann 1992]. Nevertheless, for beams where the distortions of

the sections are of considerable importance also this type of warp shape may gain influence

and improve the accuracy of the beam solution.

4.2.3 Calculation of Derived Warp Shapes from Distortions

4.2.3.1 Basic considerations and equilibrium

[Zeller 1979] shows that one can compute a warp field from every distortion or in-plane

deflection field ψplane(y,z) · v(x). Under the supposition that the derivative of the amplitude

of the in-plane field in the x-direction ψplane v′x is constant and all the other preconditions

from section 4.2.1.2 one can assume that there is a warp deflection field which is free of

normal stresses σx as claimed in equation (4.6) (see also figure 4.4 on page 40).

τzx′z + τyx′y
!

= 0 (see equation 4.6)

where

τ =

[
τxy

τxz

]
= [Dω] ·

[
εxy + εyx

εxz + εzx

]
. (4.25)

As the shear strains result from the different derivatives of the different deflections one can

separate

εxy = ux′y = ω′y and εxz = ux′z = ω′z (4.26)



48 4 Gaining Effective Unit Deflections Shapes with a 2D Finite Element Mesh

which arise from the warp deflections ω from εyx and εzx which result from the in-plane

distortions ψplane

εyx = uy′x = ψplane y v′x

εzx = uz′x = ψplane z v′x.
(4.27)

v represents the participation factor as introduced in equation (1.1) on page 6.

4.2.3.2 Virtual work and weak form

The weak form of the problem can be found by applying virtual work

δWi =

∫
(A)

δγ · τ dA with δγ =

[
δω′y

δω′z

]
. (see equation 4.8)

Introducing equation (4.25) leads to

δW = −
∫

(A)

[δγ] · [Dω]

[
ω′y + uy′x

ω′z + uz′x

]
dA. (4.28)

which can be rearranged to

δW = −
∫

(A)

[δγ] · [Dω] ·

[
ω′y

ω′z

]
︸ ︷︷ ︸

δW from ω

+ [δγ] · [Dω] ·

[
uy′x

uz′x

]
︸ ︷︷ ︸
δW from ψplane v′x

!
= 0. (4.29)

The first part represents the virtual work performed by warp deflections and analogously to

equation (4.23) it turns out to be the very same stiffness term of the shear PDE. Consequently

the second term represents the load. Equation (4.29) can be written in FEM notation

∫
(A)

[δω]T · [B]T · [Dω] · [B] · [ω] dA = −
∫

(A)

[δω]T · [B]T · [Dω] ·

[
uy′x

uz′x

]
· [N ] dA. (4.30)
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Since the aim of this procedure is to find unit deflection shapes it is not necessary to care

about the actual size of v′x. It can be replaced by 1.0 when equations (4.27) are introduced.

1. 2.
Distortion shape (“input”) Derived warp shape

3. 4.
Distortion shape (“input”) Derived warp shape

Figure 4.10: In-plane shapes (left) and corresponding derived warp shapes (right).



50 4 Gaining Effective Unit Deflections Shapes with a 2D Finite Element Mesh

y

z

x

τ y
x

τ y
z

+
d
τ y
z

σz + dσz

σz

σyσy + dσy

τzy + dτzy

τzy

Figure 4.11: Infinitesimal element with occurring stresses in the y and the z-direction.

4.3 Deriving Further Shapes from Existing Shapes Using

the PDE of a Membrane Plate

The previous section showed how to compute unit deflection shapes from other shapes us-

ing the PDE of shear warping. The obtained shapes are all warp shapes. In the present

section, the goal is to compute in-plane unit deflection shapes in a similar way by using

previously calculated shapes to derive a load function for a PDE, namely the PDE of a plate

in membrane action (membrane plate).

Strong Formulation

The strong formulation is based on equilibrium equations

σy′y + τzy′z
!

= 0

σz′z + τzy′y
!

= 0.
(4.31)

The occurring stresses for each direction are visualised in figure 4.11.

At the free edges the following boundary conditions apply

σyny + τzynz = 0

σznz + τzyny = 0.
(4.32)
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Weak Formulation

The weak equilibrium can be stated on the basis of the principle of virtual work∫
(A)

−δε · [D] · εtot + δu · p dA
!

= 0. (4.33)

The vector εtot contains strains both from the unknown displacement field ε and from “pre-

scribed strains”
◦
ε which might either come from e.g. a temperature load or a prescribed

deflection shape.

εtot = ε+
◦
ε . (4.34)

The material matrix [D] is here written in the general form. It has to be noted that the

vector δε here only contains the components δεy, δεz and δγyz unequal to zero. If plane

strain is assumed this holds analogously for ε. It then contains only components εy, εz and

γyz unequal to zero. For plane stress, the material matrix can be transformed such that the

strains adept and stresses in the x-direction vanish (see chapter 2.3.2).

However, the prescribed stresses
◦
ε may contain arbitrary components

◦
ε=
[
◦
εx

◦
εy

◦
εz

◦
γxy

◦
γxz

◦
γyz

]T
. (4.35)

Equation (4.33) can be rewritten in terms of finite element formulation and the part containig

known forces or prescribed stresses is interpreted as a load matrix.

∫
(A)

(
− [δu]T [B]T [D] [B] [u]− [δu]T [B]T [D] [N ]

[◦
ε
]

+ [δu]T [p]
)
dA

!
= 0 (4.36)
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with the following matrices

[δu] =
[
δuy1 δuz1 δuy2 δuz3 . . .

]T
(arbitrary) discrete virtual deflections

[u] =
[
uy1 uz1 uy2 uz2 . . .

]T
(unknown) discrete deflections

[p] =
[
py1 pz1 py2 pz2 . . .

]T
(nodal) force vector

[N ] =
[
N1 N2 N3 N4 . . .

]
shape functions

[B] =

[
N1′y N1′y N2′y N2′y . . .

N1′z N1′z N2′z N2′z . . .

]
derived shape functions.

The second and the third part in equation (4.36) represent the right hand side and form the

nodal load vector.

In contrast to section 4.1.1 where eigenmodes of the section were calculated it is now neces-

sary to introduce supports to make the system solvable. This can be done in two ways: either

support every node with a very soft spring in each direction or introduce a statically deter-

mined support: lock two deflections at a node and one at another node such the direction of

the latter deflection does not intersect with the first node.

Depending on how the support conditions are set up this may lead to implausible shapes

because rigid body deflections can be contained to a considerable extent. This is removed

later by the orthogonalisation (see chapter 5.2.1).

4.3.1 Unit deflection shapes for Transverse Strain

The underlying three dimensional material law with a Poisson ratio ν 6= 0 leads to the

fact that longitudinal stresses lead to lateral stresses if the cross section is not enabled to

deform. Actually all previously presented deformation shapes only very poorly cope with

that and thus the stresses are not in equilibrium at the edges (see figure 4.12a). Consequently,

deflection shapes are needed which enable for the lateral distortion caused by strains emerging

from the Poisson ratio.

The derivation of these shapes starts with prescribed strains in the x-direction
◦
εx as the only
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(a) Error force2 for a structure under normal
force with a material with ν 6= 0 and no
Poisson shapes enabled.

(b) Nodal load vector for uniform compres-
sion in the x-direction (right hand side
of equation (4.38)).

Figure 4.12: Comparison of error force2 and nodal load vector of a system under uniform compression.

load. Thus, equation (4.33) can be modified as follows∫
(A)

δε · [D] · ε dA = −
∫

(A)

δε · [D] · ◦ε dA. (4.37)

The corresponding Finite Element formulation reads∫
(A)

[δu]T [B]T [D] [B] [u] dA = −
∫

(A)

[δu]T [B]T [D] [N ]
◦

[ε] dA. (4.38)

with

◦
[ε]=

[
◦
εx 0 0 0 0 0

]T
. (4.39)

◦
εx is obtained from a previously computed out of plane deflection shape ψwarp(y,z) by

◦
εx (y,z) = ux′x(y,z) =

nmodes∑
i=1

[
ψwarpi(y,z) · vi′x(x)

]
. (4.40)

The separation of variables is again made use of. One can see that
◦
εx (y,z) is affine to

◦
ux (y,z)

which is the longitudinal component of a previously computed warp shape ψwarp(y,z). Thus,

2For the derivation of the error forces printed here, refer to section 5.6.



54 4 Gaining Effective Unit Deflections Shapes with a 2D Finite Element Mesh

◦
εx (y,z) ∼ ψwarp(y,z). (4.41)

Since the purpose is to compute unit deflection shapes, the absolute amplitude of
◦
εx (y,z) is

not of interest and one can set
◦
εx (y,z) = ψwarp(y,z).

1. 2.
Warp shape (“input”) Derived distortion shape

1. 4.
Warp shape (“input”) Derived distortion shape

Figure 4.13: Derived Poisson shapes (right) from warp shapes (left).

4.3.2 Derived Distortion Shapes from Warp Shapes

Analogously to section 4.2.3 where warp shapes were calculated from distortion shapes the

inverse procedure to calculate distortion shapes from warp shapes is possible as well [Zeller

1979, 1982] (see also chapter 3.2.4 and figure 3.5 on page 31). The PDE (4.31) is extended



4.3 Deriving Further Shapes from Existing Shapes Using the PDE of a Membrane Plate 55

(a) Warp shape from force in z-direction
(“input”)

(b) Derived in-plane loading

Figure 4.14: Input for the calculation of derived distortion shapes.

by a load term
◦

[τ ]
′x

σy′y + τzy′z+
◦
τxy′x

!
= 0

σz′z + τzy′y+
◦
τxz′x

!
= 0.

(4.42)

The load terms
◦

[τ ]
′x

are computed from a previously determined warp shape and the material

law. The components
◦

[γ] occurring in a warp shape ψwarp(y,z) can be computed as

◦
γxy = ψwarp x′y

◦
γxz = ψwarp x′z.

(4.43)

These strains can be used to form a prescribed strain vector
◦

[ε] which can be introduced to

equation (4.36)

◦
[ε]=

[
0 0 0

◦
γxy

◦
γxz 0

]T
. (4.44)

Figure 4.14b shows the nodal forces calculated from a sample warp shape in figure 4.14a.

As it can be seen in figure 4.14b these forces do not necessarily form an equilibrium group.

In [Zeller 1979] they are in equilibrium with the part of the load carried by the prior warping

problem. The approach presented here does not allow for this type of information (amount
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(a) Distortion shape (b) Distortion shape after orthogonali-
sation (see section 5.2)

Figure 4.15: Distortion shape derived from the warp shape in 4.14a.

and location of load carried by another shape) in this stage of the process (preprocessing).

Therefore, another solution has to be found to bring the forces to equilibrium.

The first possibility would be to introduce rigid supports as in the previous section 4.3.1.

Their location has to be chosen arbitrarily and has a big influence on the out-coming shape.

Furthermore, this approach in neither way refers to the actual behaviour of the structure.

The chosen solution is to apply a constant elastic spring bed to the plate. Thereby, the

ratio of the stiffnesses of the plate and springs influences the outcoming deformation shapes.

The best approach seems to be to choose a very soft springbed. Possibly occurring large

rigid body displacements will be eliminated later when the set of unit deflection shapes is

orthogonalised (see section 5.2).

Figure 4.15 shows the distortion corresponding to the warp shape and the therefrom derived

load from figure 4.14 before (4.15a) and after (4.15b) orthogonalisation.
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4.4 Using Eigenmodes of an Infinite Waveguide Structure

4.4.1 Formulation of a Finite-Element Procedure in the Wave Number

Domain

In this chapter, a Finite Element Formulation shall be derived for a problem domain which

is infinitely extended in the x-direction. The procedure was published in [Hackenberg 2010]

and [K. Müller 2007] with plane 2D constant strain triangle (CST) elements. [Finnveden

2004] performs similar steps to 1D line elements of high order.

Both in the x- and the time direction a Fourier transformation is applied to an arbitrary

function f

f(t) f̂(Ω) (4.45)

f(x) f̂(kx). (4.46)

The transformation rules read as follows [Brigham 1987]:

f̂ (Ω) =

∞∫
−∞

f (t) e−iΩt dt Fourier integral (4.47)

f (t) =
1

2π

∞∫
−∞

f̂ (Ω) eiΩt dΩ inversion formula (4.48)

And for the x-direction, the functions are transformed to the wave number domain kx:

f̂ (kx) =

∞∫
−∞

f (x) e−ikxx dx Fourier integral (4.49)

f (x) =
1

2π

∞∫
−∞

f̂ (kx) e
ikxx dkx inversion formula (4.50)

The transformed domain yields an advantage concerning the nth derivatives f (n) in the
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transformed direction. They turn out to be a simple multiplication [Bronstein et al. 2005]

f (n)(t) (iΩ)n · f̂(Ω) (4.51)

f (n)(x) (ikx)
n · f̂(kx). (4.52)

This can be applied to the operator matrix [G] which is used to compute strains [ε] from

deflections [u]

εx

εy

εz

γxy

γxz

γyz


=



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y



ux(x,y,z)

uy(x,y,z)

uz(x,y,z)



[ε] = [G] · [u]

(see equation 2.6)

and yields the following form

ε̂x

ε̂y

ε̂z

γ̂xy

γ̂xz

γ̂yz


=



ikx 0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

ikx 0
∂
∂z

0 ikx

0 ∂
∂z

∂
∂y



ûx(kx,y,z)

ûy(kx,y,z)

ûz(kx,y,z)



[ε̂] =
[
Ĝ
]
· [û] .

(4.53)



4.4 Using Eigenmodes of an Infinite Waveguide Structure 59

4.4.1.1 Virtual Work of Stresses

Equation (4.53) together with the linear material law (see equation (2.9)) enables for the

formulation of the inner virtual work

δWi = −
∫

(V )

δε(x,t) · σ(x,t) dV = −
∫

(V )

[δε]T · [D] · [ε] dV

= −
∫

(V )

[δu]T · [B]T · [D] · [B] · [u] dV. (4.54)

where [B] = [N ] · [G] and [N ] is the matrix containing the finite element shape functions.

This statement can be reformulated as follows by Parseval’s3 theorem [K. Müller 2007]

+∞∫
−∞

δε(x)· σ(x) dx =

+∞∫
−∞

δε(x) ·

 1

2π

+∞∫
−∞

σ̂(kx)e
ikxx dkx

 dx
=

1

2π

+∞∫
−∞

 +∞∫
−∞

δε(x)eikxx dx

 · σ̂(kx)dkx

=
1

2π

+∞∫
−∞

 +∞∫
−∞

δε(x)e−i(−kx)x dx

 · σ̂(kx)dkx

=
1

2π

+∞∫
−∞

δε̂(−kx)T· σ̂(kx)dkx =
1

2π

+∞∫
−∞

δε̂(kx)
T· σ̂(−kx)dkx. (4.55)

Where
[
B̂
]

=
[
Ĝ
]
·
[
N̂
]

and
[
N̂
]

is the matrix containing the finite element shape functions

which depend on the lateral coordinates y and z.

With the help of equation (4.55), the expressions from equation (4.54) can now be trans-

formed into the kx domain without the need for a convolution

δWi = − 1

2π

∫
(kx)

∫
(z)

∫
(y)

[δû(−kx)]T·
[
B̂(−kx,y,z)

]T
· [D] ·

[
B̂(kx,y,z)

]
· [û(kx)] dydz dkx. (4.56)

3Marc-Antoine Parseval (∗1755, †1836)
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4.4.1.2 Virtual Work of Inertia Forces

In the original (x, y, z)-domain, the virtual work of the inertia forces reads

δWT = −
∫

(V )

δu(x,t) · ρ · ü(x,t) dV = −
∫

(V )

[δu]T · [N ]T · ρ · [N ] · [ü] dV. (4.57)

It can be transformed to the wave number/frequency domain by applying equation (4.55)

δWT =
1

2π

∫
(kx)

∫
(z)

∫
(y)

[δû(−kx)]T · [N ]T ρ [N ] · Ω2 [û(kx)] dy dz dkx (4.58)

4.4.1.3 Virtual Work of the External Forces

In the original domain the virtual work of the external forces reads

δWe =

∫
(V )

δu(x,t) · p(x,t) dV. (4.59)

This can just as before be transformed into the wave number/frequency domain by applying

equation (4.55)

δWe =
1

2π

∫
(kx)

∫
(z)

∫
(y)

[δû(−kx)]T · [p(kx,Ω)] dy dz dkx. (4.60)

4.4.1.4 System Matrices and Solution

The solution is obtained for setting the total virtual work equal to zero. The virtual dis-

placements δu can be chosen arbitrarily but at least one of them has to be unequal to zero.

The most useful procedure is to stepwise choose one of them equal to one and all others

equal to zero. By that the symmetric system matrices and the load vector are obtained line

by line.

δW = δWi + δWT + δWe
!

= 0 (4.61)
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It can be rearranged such that[
K̂(kx)

]
[û]− Ω2

[
M̂
]

[û] = [p̂(kx,Ω)] . (4.62)

This system of equations can be solved for the nodal deflections û (in all three directions of

space) presuming a discrete tuple of (kx,Ω).

The obtained deflections û are then used to compute the strains ε̂ and stresses σ̂ by

[ε̂] =
[
B̂(kx)

]
[û] (4.63)

[σ̂] = [D] [ε̂] . (4.64)

Remark 1

As shown in appendix A.3, an arbitrary sinusoidal function in the real domain leads to both

positive and negative wave numbers/frequencies simultaneously. The usual approach is to

skip the negative tuple since the function values are simply conjugate to those from the

positive tuple and thus can be determined directly. This saves computational effort and

simplifies the understanding of the problem. As shown in appendix A.3 this procedure is

applicable for cases where a complex stiffness term is used to cover frequency constant viscous

damping effects as long as the positive and negative frequency are treated equally. This is

for example not the case for moving loads (which are approximated by a frequency shift)

and negative frequencies have to be treated differently than positive and thus separately.

Remark 2

All three terms in equation (4.62) contain a 1
2π

which can be skipped consequently.

Secondly, for example the Fourier transformed representation of a cos function is

A cos(Ω0t) Aπ
(
δ(Ω− Ω0) + δ(Ω + Ω0)

)
. (4.65)

It has become common practice to “not think” about the π which occurs as a factor of the

Dirac4-δ terms since they skip with the 1
2π

of the inverse Fourier transformation (equations

(4.48) and (4.50)). The actual quantity of interest, the amplitude A, is not affected.

4Paul Dirac (∗1902, †1984)
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4.4.1.5 Transformation Back to the Real Domain

The procedure of the latter section provides a solution set û, ε̂ and σ̂ for each wave number

and angular frequency. They can be transformed back to the time/x-domain by equations

(4.48) and (4.50). Since linearised materials and deflections are presumed the results of

various frequencies and wave numbers can be superposed to form the total solution.

4.4.1.6 Validation

The solution procedure presented in this section is validated in appendix A.4. The results

show that the procedure is prone to shear locking when bilinear elements are used as done

within the scope of this thesis. The Wilson extension as presented in section A.2 can resolve

this issue. It is nevertheless not applied since the element matrix has to be inverted partially.

By that the element matrix is not suited for the procedure of formulating an eigenvalue

problem as illustrated in the following section.

4.4.2 Eigenvalue Problem for the Waveguide

4.4.2.1 Setup of the Problem

As
[
B̂(kx)

]
in equation (4.64) contains terms with different polynomial degrees of kx (kx

0 = 1

and kx
1 = kx) it is obvious that

[
K̂(kx)

]
contains terms with kx

0, kx
1 and kx

2. On that

basis equation (4.62) can be transformed into a homogeneous problem depending on both

the wave number kx and the angular frequency of excitation Ω:

[
K̂(kx)

] [
ψ̂
]
− Ω2

[
M̂
] [
ψ̂
]

= [0] (4.66)([
K̂0

]
− Ω2

[
M̂
]

+ kx

[
K̂1

]
+ kx

2
[
K̂2

]) [
ψ̂
]

= [0] (4.67)

with [
K̂(kx)

]
=
[
K̂0

]
+ kx

[
K̂1

]
+ kx

2
[
K̂2

]
. (4.68)

Equation (4.66) can be solved by fixing kx and solving a generalised eigenvalue problem

(GEP) for Ω. Secondly, it is possible to treat it in the configuration of equation (4.67) by
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fixing the value for Ω and solve a polynomial eigenvalue problem (PEP) of order 2 which is

also called a quadratic eigenvalue problem (QEP) depending on kx. The first approach is

numerically much less expensive and more stable but in some cases (like here) not suitable.

The QEP in the second approach can be transformed GEP as explained in [Orrenius and

Finnveden 1996, Appendix A]. This process is also called linearisation. [Tisseur and Meer-

bergen 2001] states that such linearised Polynomial Eigenvalue Problems can be numerically

ill-conditioned which was not encountered during the investigations presented in this work.

4.4.2.2 Properties of the Problem

In the following section the properties of the involved matrices are listed since the charac-

teristics of the solution can be determined or checked on that basis.

1. Real Material Properties

For real valued material properties E and ν the following conditions apply for the

matrices:

•
[
K̂0

]
− Ω2

[
M̂
]

is real and symmetric thus Hermitian5, depending on Ω mostly

non-singular but indefinite.

•
[
K̂1

]
is imaginary, skew symmetric and equal to 0 on the diagonal thus Hermitian.

It is indefinite.

•
[
K̂2

]
is real, symmetric thus Hermitian. Additionally it is positive definite.

•
[
K̂(kx)

]
−Ω2

[
M̂
]

is real and symmetric thus Hermitian depending on Ω mostly

non-singular.

• All matrices are sparse.

Given that
[
K̂2

]
is non-singular 2n finite eigenvalues occur, none of the eigenvalues is

infinite.

2. Complex Material Properties

For complex valued material properties E and ν (considering viscous damping) the

follwing conditions apply for the matrices:

5Charles Hermite (∗1822, †1901)
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•
[
K̂0

]
− Ω2

[
M̂
]

is complex, symmetric and, depending on Ω mostly non-singular

but indefinite.

•
[
K̂1

]
is complex, skew symmetric and equal to 0 on the diagonal.

•
[
K̂2

]
is real, symmetric and positive definite.

• All matrices are sparse.

4.4.2.3 Solution

This special arrangement of the QEP is rarely discussed in the literature [Tisseur and Meer-

bergen 2001]. It has 2n eigenvalues where n is the size of the matrices. It can be solved

either directly e.g. using the xGGEV algorithm from LAPACK [Anderson et al. 1999] which

underlies the polyeig function in MATLAB and yields all the eigenvalues of the problem.

Effective iterative approaches like [Benner et al. 2007] have to be checked for their appli-

cability before they come to use. [Benner et al. 2007] requires real matrices. [Meerbergen

2001] gives an overview of applicable iterative methods. Applicable methods are e.g. the

Quadratic Arnoldi Method [Meerbergen 2008] or the Second Order Arnoldi Method (SOAR)

[Bai and Su 2005].

Alternatively, the problem can be solved iteratively using a linearisation like the first com-

panion form
 [0] [I]

−
[[
K̂0

]
− Ω2

[
M̂
]] [

K̂1

]
− kx

 [I] [0]

[0]
[
K̂2

]



[
ψ̂
]

[
ψ̂ks

]
 = [0] . (4.69)

It is obtained by substituting
[
ψ̂ks

]
= kx

[
ψ̂
]

into equation (4.67)

([
K̂0

]
− Ω2

[
M̂
])

[û] +
[
K̂1

]
[ûs] + kx

[
K̂2

]
[ûs] = [0] . (4.70)

[Afolabi 1987] notes that the matrix [I] can be replaced by any non-singular matrix. Further

types of linearisation are possible [see e.g. Tisseur and Meerbergen 2001].

Equation (4.69) represents a complex generalised eigenvalue problem (GEP) and can be

solved by the corresponding algorithms. In the scope of this thesis, the MATLAB function
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eigs is used. It is capable of searching a specified number of eigenvectors/-values iteratively.

One can specify a value in the vicinity of which the eigenvalue search starts. Since in a

modal superposition the lowest wave numbers have to be included to describe the system

behaviour correctly, this value is chosen as 0.

4.4.2.4 Results

The results show that for real material properties the eigenvalues are either pure real, pure

imaginary or complex. Complex eigenvalues are appear to be dominated by the imaginary

part. The eigenvalues occur to be symmetric to both the real and the imaginary axis in the

complex plane. This means that the eigenvalues occur in pairs k+
x /k

−
x where k+

x = −k−x if

they are either purely imaginary or real. Complex eigenvalues occur in quadruples k++
x =

−k−−x = k̄+−
x = −k̄−+

x .

For complex material parameters, all occurring eigenvalues are complex. The size relation

of real and imaginary part cannot be predicted. The eigenvalues occur either in pairs with

k+
x = −k−x or in quadruples k++

x = −k−−x = k̄+−
x = −k̄−+

x .

The eigenvectors [ψ] are complex and occur in an arbitrary phase position. The vectors of

an eigenvalue pair k+
x /k

−
x are conjugate to each other

[
ψ(k+

x )
]

=
[
ψ̄(k−x )

]
. (4.71)

Still the phase position of both vectors is arbitrary.

All results discussed here are obtained for a positive angular frequency Ω+. To obtain a

complete solution basis for arbitrary load cases (including e.g. moving loads) the procedure

has to be repeated for the corresponding negative angular frequency Ω− = −Ω+.

4.4.2.5 Mechanical Interpretation

The eigenvectors can be transformed back to the original domain by applying the inversion

formulae (4.48) and (4.50)

u(x,y,z) = ψeikxxeiΩt. (4.72)
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Real eigenvalues represent harmonic waves along x, the far field. Complex eigenvalues rep-

resent waves which decay or grow in the x-direction. Pure imaginary eigenvalues describe

waves which follow a real e-function either with a positive exponent (decaying) or negative

(growing) amplitude. The latter two represent the near field

• in the positive x-direction if decaying with positive x

• in the negative x-direction if decaying with positive x or growing with negative x

respectively.

The general relations are as follows:

• If the real part of kx is positive, the wave travels in the positive x-direction for a positive

Ω and vice versa.

• If the imaginary part of kx is positive, the amplitude of the wave decays in the positive

x-direction and vice versa.

To illustrate the properties, some numerical examples will follow.

4.4.2.6 Numerical Example 1

This example treats a rectangular cross section with a height of 0.6 m and a width of 0.4 m.

The material properties are chosen as follows:

E = 28300 · 106 N
m2

ν = 0.2

ρ = 2500 kg
m3

The frequency of excitation is chosen to be f = 10 Hz or Ω = 62.83 rad
s

.

The eigenvalues and eigenvectors are given in figures 4.16 and 4.17. For low frequencies the

real eigenvalues occur for the waves of a classical beam: longitudinal compression, torsion

bending in y- and z-direction. Euler-Bernoulli beam theory yields the following analytical
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1. 2. 3.
0.01867 + 0i −0.01867 + 0i −0.03421 + 0i

4. 5. 6.
0.03421 + 0i −0.3293 + 0i 0 + 0.3273i

7. 8. 9.
0− 0.3273i −0.4029 + 0i 0 + 0.4012i

Figure 4.16: Eigenvectors and eigenvalues (kx) 1 to 9 for a rectangular section at f = 10Hz.
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10. 11. 12.
0− 0.4012i 0.3293 + 0i 0.4029 + 0i

13. 14. 15.
0 + 6.706i 2.103 + 6.927i −2.103 + 6.927i

16. 17. 18.
0− 6.706i 3.807 + 7.032i −3.807 + 7.032i

Figure 4.17: Eigenvectors and eigenvalues (kx) 10 to 18 for a rectangular section at f = 10Hz.
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19. 20. 21.
−2.103− 6.927i 2.103− 6.927i −3.807− 7.032i

22. 23. 24.
3.807− 7.032i −3.45 + 10.5i 3.45 + 10.5i

25. 26. 27.
−5.69 + 10.61i −3.45− 10.5i 5.69 + 10.61i

Figure 4.18: Eigenvectors and eigenvalues (kx) 19 to 27 for a rectangular section at f = 10Hz.
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solutions for the wave numbers of these processes depending on the frequency of excitation

Compression: kxc =
Ω

cc
= Ω

√
ρ

E
(4.73)

Torsion: kxt =
Ω

ct
= Ω

√
ρIϑ
GIt

(4.74)

with It = 0.196b3h 6 and Iϑ =
bh3 + hb3

12

Bending: kxb =
Ω

cb(Ω)
=
√

Ω
4

√
Aρ

EI
. (4.75)

Equations (4.73) through (4.75) yield the following numerical results for Ω = 62.83 rad
s

:

kxc = 0.0187 rad
m

kxt = 0.0340 rad
m

kxby = 0.3284 rad
m

kxbz = 0.4022 rad
m
.

4.4.2.7 Numerical Example 2

This example treats the same setup as the latter. The difference is that the frequency is

changed in terms of a frequency sweep. The results are compared against various available

beam formulations including those from the latter section.

The graph in figure 4.19 shows that for lower frequencies all occurring eigenvalues fit well

with the beam equations. Euler-Bernoulli beam theory quite quickly leaves its range of

validity. Therefore, the curves for the Timoshenko beam theory are computed in addition

starting from the following set of equations e.g. from [Petersen 1996]

ρAüz =
(
GASz (uz′x − ϕy)

)
′x

ρIϕ̈y = (EIyϕy′x)′x +GASz (uz′x − ϕy) .
(4.76)

Assuming constant sectional values and applying the Fourier transformations according to

equations (4.47) and (4.49) yields

−ρAûzΩ2 +GASzûzkx
2 +GASzϕ̂yikx = 0

−ρIϕ̂yΩ2 + EIyϕ̂ykx
2 −GASzûzikx +GASzϕ̂y = 0.

(4.77)

6Value taken from [Schneider 2008], only valid for h/b = 1.5.
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This system of equations in analogy to equation (4.67) can be interpreted as a QEP with

respect to kx([
−ρAΩ2 0

0 GASz − ρIΩ

]
+ ikx

[
0 GASz

−GASz 0

]
+ kx

2

[
GASz 0

0 EIy

])[
ûz

ϕ̂y

]
=

[
0

0

]
.

(4.78)

The solution sets (kx,ûz, ϕ̂y) can be obtained e.g. by applying MATLAB’s polyeig function.

Four eigenvalues can be computed. As in section 4.4.2.3 the eigenvalues occur in pairs k+
x /k

−
x

and are potentially complex. Figure 4.19 only contains real eigenvalues. It can be seen that

wave numbers from this theory fit far better with the results from the FT FEM than those

from Euler-Bernoulli. This even holds in frequencies where the wave of compression already

left its range of validity. Additionally, even some of the wave patterns which occur beyond

12000 rad
s

are covered quite well by the second occurring eigenvalue (“Timoshenko 2 ”).

1. 2. 3.
Ω = 16336 Ω = 16022 Ω = 12881

kx = 9.548 + 0i kx = 5.23 + 0i kx = 1.651 + 0i

“z-Bending” “Compression” “y-Bending 2”

Figure 4.20: Eigenvectors and eigenvalues (kx) as indicated in figure 4.19.

In a medium, no mechanical wave is faster than the compression wave. Nevertheless, the fact

that wave numbers occur which are smaller than the compression wave numbers is neither

unrealistic nor wrong. The problem treated here is the steady state part of the solution.

Wave numbers lower than the compression wave numbers do not represent a fast wave but

a wave pattern with a very long wavelength.
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4.4.2.8 Numerical Example 3

The third example shows that for structured sections the widely used beam theories do not

keep their validity as long as in the previous example. The investigated section is a steel

I-beam as illustrated in figure 4.22. The material properties are those of steel:

E = 210000 · 106 N
m2

ν = 0.3

ρ = 7850 kg
m3 .

Figure 4.21 shows the results in an analogous way to figure 4.19. One can see that de St.-

Venant torsion is a bad estimate of the torsional behaviour of this cross section. Therefore

in addition the PDE of warping torsion is evaluated

GItϕx′xx − EIωϕx′xxxx − ρIϑϕ̈x + ρIωϕ̈x′xx = 0. (4.79)

This equation can be transformed to the wave number/frequency domain analogously to

equations (4.76) and wave numbers for each frequency of excitation. The results are plotted

in figure 4.21. Note that the displayed frequency range is much smaller than in figure 4.19.

Additional terms which couple to bending equations (4.76) to the torsion equation (4.79)

would be necessary if the shear and mass centre didn’t coincide [see e.g. Friberg 1985]. The

system can be refined further by considering the fact that the shear correction factors are

not orthogonal.

While the bending waves about the y-axis are covered well by the Timoshenko equations

this does not hold true for bending about the z-axis. 1. in figure 4.23 shows why: the

deformation of the cross section becomes so severe that the assumption of their absense is

not valid. Figure 4.23 3. shows that from Ω = 2500 rad
m

also the torsion wave contains severe

deformations of the cross section leading to deviations from the curve beloning to warping

torsion in figure 4.21.
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400

180
Figure 4.22: Cross section for example 3. Dimensions in mm. The thickness of the flanges is 14 mm, the

thickness of the web is 10 mm.

1. 2. 3.
Ω = 1445 Ω = 1696 Ω = 2764

kx = 3.527 + 0i kx = 2.432 + 0i kx = 3.514 + 0i

“z-Bending” “z-Bending 2” “Torsion”

Figure 4.23: Eigenvectors and eigenvalues (kx) as indicated in figure 4.21.
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5 Processing of the Beam System

5.1 Choice of Unit Deflection Shapes

Table 5.1 shows an overview of different types of unit deflection shapes presented in the

previous chapter together with a short name each which will be used in the following.

Table 5.1: Short names for different unit deflection shapes.

Long name Short name see section

Eigenmodes of a Plate in Membrane Action Eigenmodes membrane 4.1.1

Eigenmodes of a Plate in Bending Action Eigenmodes bending 4.1.2

Calculation of Shear Warp Shapes with the
FEM

Shear warp shapes 4.2.1

Calculation of Derived Warp Shapes from
Distortions

High order shear warp shapes 4.2.3

Derived Distortion Shapes from Warp
Shapes

High order deformation shapes 4.3.2

Unit deflection shapes for Transverse Strain Poisson shape 4.3.1

Using Eigenmodes of an Infinite Waveguide
Structure

FT modes 4.4

In order to conduct a beam calculation one has to choose a set of unit deflection shapes from

the types listed in table 5.1. Some remarks about the choice are given in the following:

1. The FT modes cannot be combined with the other, “conventional” unit deflection

shapes. The reason is that the FT modes must not be orthogonalised (see section 5.2.4)

which is a prerequisite for an arbitrary combination. All following points address the

combination of “conventional” unit deflection shapes.

2. The rigid body modes of the cross section (eigenmodes membrane 1 to 3 and eigenmodes

bending 1 to 3) have to be part of every set of unit deflection shapes. Exceptions
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are systems of reduced dimension like plane frames with plane loading or grids with

perpendicular loading.

3. The calculation in [Paolini 2012] showed that it is generally a good strategy to employ

many different types of deflection shapes.

4. The calculation in [Paolini 2012] also showd that the shear warp shapes 1 to 3 (torsional

warping and warping due to transverse forces) are very effective and thus should be

part of the set.

5. If a material law with Poisson ratio ν 6= 0 is used, there should be a Poisson shape

for each out of plane shape since otherwise the stiffness of the warp shapes is not

considered correctly.

6. The high order deformation shapes at the current state appear to behave poorly and

should not be used. Their calculation procedure might be enhanced by information

about the load application analogously to [Zeller 1979].

7. The bending eigenmodes do not cover the physical behaviour of a beam structure.

Their only purpose is to generate arbitrary, smooth deflection shapes which get curved

more and more the higher the number gets. The calculations in [Paolini 2012] approved,

that high order warp shapes should be used instead.

5.2 Orthogonalisation of the Unit Deflection Shapes

5.2.1 Orthogonalisation of Conventional Unit Deflection Shapes1

Provided that the unit deflection shapes are linearly independent further orthogonalisation

is not mandatory from a computational or numerical point of view [see e.g. Bogensperger

2000].

Nevertheless, orthogonalisation is necessary to allow that comprehensive values like moment,

shear force or normal force can be computed from participation factors v. Furthermore, it

enables to apply comprehensive boundary conditions like for example a simple support.

Additionally, it allows for comprehensive loading like transverse loads or line moments.

1Conventional unit deflection shapes in this chapter addresses the shapes gained with the procedures pre-
sented in the sections 4.1 to 4.3. The mode shapes gained in section 4.4 have to be treated differently
(see section 5.2.4).
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The orthogonalisation is organised hierarchically. From every further deflection shape the

contained components of all preceding deflection shapes are subtracted by the following

scheme:

ψi,ortho = ψi −
i−1∑
k=1

ψi
T · [A] ·ψk

ψi
T · [A] ·ψi

·ψk. (5.1)

Listing 5.1: MATLAB-Code for the orthogonalisation loop equation (5.1).

1 for i=2:size(modeset,2)

2 cont = modeset’*A*modeset;

3 for j=1:i-1

4 modeset(:,i) = modeset(:,i)-cont(j,i)/cont(j,j)*modeset(:,j);

5 end

6 end

Warp shapes and in-plane shapes are treated separately since both groups are orthogonal to

each other by definition. For warp shapess the matrix [A] contains the longitudinal stiffness

(elasticity) weighted with the influence area of the section node. For the in-plane shapes the

matrix [A] contains the transverse stiffness (shear modulus) weighted with the influence area

of the section node.

Figure 5.1 illustrates how by the process of orthogonalisation the deflection shapes change.

However, as this orthogonalisation is just referred to the deformation patterns of the cross

section it will not lead to diagonal mass and stiffness matrices.

5.2.2 Remarks to the Orthogonalisation of Warp Shapes

Orthogonalisation and Three Dimensional Material Laws

The main goal of the orthogonalisation is the preservation of comprehensive values like

bending moment and normal force from standard beam theories. This means that it would

be desirable to make e.g. the bending moment depend on only one participation factor vi(x)

or its derivative vi′x(x).



5.2 Orthogonalisation of the Unit Deflection Shapes 79

(a) Before orthogonalisation (see figure 4.13) (b) After orthogonalisation

Figure 5.1: Poisson shape before (left) and after (right) orthogonalisation.

The bending moment My is defined as

My(x) =

∫
(A)

σx(x,y,z) · z dA. (5.2)

For the case of an isotropic linear material it can be itemised as follows

My(x) =

∫
(A)

E
(1− ν)εx(y,z,vi′x(x)) + νεy(y,z,vi(x)) + νεz(y,z,vi(x))

(1 + ν)(1− 2ν)
· z dA. (5.3)

It can be seen that for the general, non-orthogonalised case it depends on all participation

factors vi(x). The structure of equation (5.3) makes it obvious that the demand to make My

depend on only one vi(x) cannot be fulfilled exactly for ν 6= 0. It would entail requirements

to different degrees of derivation of the primary variables vi′x(x) which cannot be involved

in the calculation of the shape functions ψi(y,z).

The next best option is to fulfil this demand for the special case “plane stress”. For a linear

elastic isotropic material this means

εy = εz = −νεx. (5.4)
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Introducing that into equation (5.3) leads to the well known formula

My(x) =

∫
(A)

Eεx(x,y,vi′x(x)) · z dA. (5.5)

Now only one degree of derivation occurs: vi′x(x).

The gained insight is that warp shapes can be approximatively orthogonalised with respect

to the longitudinal stiffness E. This means that for warp shapes the matrix [A] in equation

(5.1) is a stiffness matrix of a spring bed in longitudinal direction for which the stiffness

corresponds to the longitudinal stiffness E(y,z). For sections with a homogeneous material

the mass matrix can be used instead since the absolute values of [A] are not of importance

but only the relative ones. The latter is eqivalent to using a weightening corresponding to the

nodal area which is used (in analytical integrals over the section area) in [Roik and Sedlacek

1970].

Sequence of Orthogonalisation

The sequence in which the unit deflection shapes are arranged for the orthogonalisation

procedure is of importance since the first shape is not modified at all. From the second its

contents affine to the first are subtracted and so on. That’s why shapes which shall not be

modified have to come first. The following order was found to be an appropriate one:

1. Rigid body shapes from the plate in bending problem (Rotation about the y- and z-axis

and the elongation).

2. Shear warp shapes (torsional warping, shear warping in y- and z-direction and the

secondary warp torsion shape).

3. Plate in bending modes with index greater that 3.

4. Warp shapes derived from in-plane shapes 4.2.3

5.2.3 Remarks to the Orthogonalisation of In-plane Shapes

The orthogonalisation of the transverse deflection is even more ambiguous. Even for the stan-

dard Timoshenko beam theory the shear force depends on at least two generalised variables
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ϕ
y

and uz:

Qz(x) =

∫
(A)

τzx(x,y,z) dA =

∫
(A)

G · (εxz + εzx) dA

=

∫
(A)

G ·
(
uz′x − ϕy +

∑(
ωi′z · vi(x)

)
− (y − yM)ϕ

x′x

)
dA.2 (5.6)

with

uz : uniform deflection in the y-direction

ϕ
x
, ϕ

y
, : rotation about the x- and y-axis with respect to the shear centre

yM : y-coordinate of the shear centre

ωi : warp shapes as computed in section 4.2.1 3

Actually every warp figure and every distortion or deflection shape (excluding some excep-

tions occurring on symmetric cross sections) affects the shear stress state τ (y,z). Conse-

quently, an exact orthogonalisation of in-plane shapes with respect to the shear stiffness is

not achievable.

Performing a “mixed orthogonalisation” including both distortion and warp shapes is not

feasable because to many specifications would have to be addressed.

5.2.4 Orthogonalisation of Dynamic Mode Shapes

The mode shapes gained in section 4.4 typically contain both in and out of plane deflections

within the same shape. The relation between the amplitudes of these two components is part

of the wave character and must not be changed. Actually a modification within a hierarchic

orthogonalisation as presented in section 5.2.1 would do exactly that. Therefore, this type

of shapes cannot be mixed with others and orthogonalised.

On the other hand, the set of modeshapes provided by the procedure presented in section

4.4 is highly redundant when the real and imaginary part of each eigenmode are used as a

2Additional terms would occur in case of tapered beams with changes of the coordinates of the shear centre
and the centre of gravity [see e.g. Hartmann and Katz 2007].

3When shear correction factors are used, the participation factor of the shear warping figures are assumed
to be affine to the generalised shear strain θy = ϕ

y
− uz′x.
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Figure 5.2: Shape which was linearly dependent on preceding shapes after orthogonalisation. Scaling
factor: 64 · 1012

shape function each. For some waves, the imaginary part is linearly dependent on the real

part. For others the components of the wave travelling in the positive x-direction is linearly

dependent on the corresponding wave travelling in the negative x-direction.

The problem of the procedure presented in the previous section is that it is not robust when

more than one linear dependent shape is contained in the set of shapes. Due to the limited

precision of calculation the first linear dependent shape will be chunked down to something

very close to but not exactly zero. It will become a very edgy shape which still contains

common components with upcoming shapes (see figure 5.2). According to equation (5.1) it

will be subtracted from“later” shapes and through that introduce edginess to them. This can

be prevented by immediately removing a shape which was found to be linearly dependent

from the processed set. Listing 5.1 has to be modified as shown in listing 5.2.

An alternative to the presented algorithm is using a QR-decomposition4 of the matrix of

unit deflection shapes [Ψ]. When a vector is linearly dependent on his predecessors the

corresponding entry on the diagonal of the matrix [R] is very small.

4QR-decomposition (or QR-factorsation) is a decomposition of a matrix [A] into a product [A] = [Q] [R] of
an orthogonal matrix [Q] and an upper triangular matrix [R] where [A] is m× n, [Q] is m× n and [R] is
m×m.
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Listing 5.2: MATLAB-Code for the orthogonalisation loop modified for dynamic mode shapes.

1 del = 0; % number of removed shapes

2 for i=2:size(modeset,2)

3 cont = modeset’*A*modeset;

4 for j=1:i-1

5 modeset(:,i-del) = modeset(:,i-del)-cont(j,i-del)/cont(j,j)*modeset(:,j);

6 end

7 size = mean(abs(modeset(:,i-del)),1);

8 if size < 1e-7

9 modeset(:,i-del) = [];

10 del = del+1;

11 bad(del) = i;

12 end

13 end
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Figure 5.3: Deciding values for a set of 200 dynamic mode shapes.

Figure 5.3 shows the crucial values for both methods: the variable size as computed in

listing 5.2 line 7 and the corresponding main diagonal entry in the matrix [R] of the QR-

decomposition. One can see that both methods separate clearly the “usable” shapes from the

linear dependent. The results of the two coincide qualitatively. A good choice for a deciding

threshold for both methods seems to be 1 · 10−7. Shapes with smaller values are deleted,

others are used for the pending analysis.
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For the QR-decomposition sophisticated algorithms and e.g. an intrinsic MATLAB function

qr(A) exists. Consequently, the computational efficiency is much higher for this method and

thus it is chosen as standard approach.

5.3 Processing

5.3.1 Element Matrices and Load Vectors

The beam element stiffness matrices and load vectors are gained by performing a volume

integral for the virtual work inside the beam domain using the deflection shapes both as

ansatz and test functions. The inner virtual work integral is able to include an arbitrary

three dimensional material law. The chosen way is to fill out the domain of a beam element

with volume elements in a preliminary step using standard non-conforming hexahedral Finite

Elements according to Appendix A.2 such that transverse shear locking does not occur.

Afterwards, the stiffness matrix of this volume system [K]bricks is transformed to the domain

of the participation factors of the front and end node of the beam element by a simple matrix

multiplication

[K]elem = [N ]T · [K]bricks · [N ] . (5.7)

with

[N ] =

[
ψ1 0 ψ2 0 · · · ψnmodes

0

0 ψ1 0 ψ2 · · · 0 ψnmodes

]
. (5.8)

The beam element mass matrix can be found in a similar way

[M ]elem = [N ]T · [M ]bricks · [N ] . (5.9)

The beam element load vector
[
p
]

elem
can be derived from a nodal load vector [p]bricks from

loads as illustrated in figure 5.4a:

[
p
]

elem
= [N ]T · [p]bricks . (5.10)
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(a) Volume element load

(b) Forces acting on nodes of a certain section (c) Generalised load.

Figure 5.4: Different types of possible load applications.

All element wise quantities denoted with [ ]elem are afterwards assembled into a corresponding

global quantity [ ] by standard Finite Element procedures.

Additionally, components of the generalised load vector
[
p
]

can be determined on a beam

nodal basis. Forces [p]secnod acting at nodes of a certain section as illustrated in figure 5.4b

can be transformed into the domain of the generalised parameters v by multiplying them

with the matrix of unit deflection shapes

[
p
]

= [Φ] · [p]secnod . (5.11)

Finally, loads can be detached directly to the generalised degrees of freedom v which prac-

tically means a certain value is added to an entry in
[
p
]
. This makes it possible to easily

apply line loads if the DOFs of rigid body deflection are addressed or moments in case of

rigid body rotations. This type of load application is illustrated in figure 5.4c. It has to

be noted that by this procedure the actual distribution of the applied forces over the cross

section is not uniquely defined. By definition, this type of load represents an arbitrary load

distribution which performs a certain amount of virtual work on the corresponding unit

deflection shape.
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5.3.2 Assembling and Solution

The assembling and solution of the system follows standard Finite Element procedures. The

application of different types of boundary conditions will be illustrated in section 5.4.

The solution of the system of equations yields the participation factors v for all considered

unit deflections at all beam nodes. Standard linear solvers such as utilised in the MATLAB

function mldivide can be used.

5.3.2.1 Static Problem

For the static problem, the following system of equations is solved

[K] [v] =
[
p
]
. (5.12)

5.3.2.2 Dynamic Eigenvalue Problem

For the dynamic eigenvalue problem, the following system is solved for the eigenvalues ω and

the eigenvectors [Ψ]

(
[K]− ω2 [M ]

)
[Ψ] = [0] . (5.13)

5.3.2.3 Dynamic Problem: Harmonic Analysis

For the harmonic steady state problem at a discrete angular frequency Ω, the following

system is solved for the deflection amplitudes [v]

(
[K]− Ω2 [M ]

)
[v] =

[
p(Ω)

]
. (5.14)

5.4 Application of Boundary Conditions

5.4.1 Generalised Boundary Conditions to Primary Variables vi(x)

The unknowns in the global system of equations are the participation factors vi at each beam

node. Dirichlet boundary conditions can be applied directly to them.
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The employed process is standard in FEM technologies. In the system of equations the

corresponding row is eliminated. The corresponding column is multiplied with the prescribed

value (in most cases 0) and shifted to the right hand side if necessary. As a post-processing

step the corresponding entry in the vector of unknowns is set to be the prescribed value.

Provided the set of shape functions is orthogonalised as illustrated in section 5.2.1 this type

of boundary condition can act as comprehensive support conditions as they are known from

any beam analysis (e.g. a hinged displaceable or undisplaceable support) can be applied to

the system. The most common use is to “lock” one or more of the rigid body motions of the

cross section. It has to be noted that it is ambiguous e.g. to lock lateral rigid body motions

while distortions of the cross section are still enabled.

If e.g. a fork bearing or a fully clamped support is desired, Dirichlet boundary conditions

have to be applied e.g. to all in-plane degrees of freedom or all degrees of freedom at a

beam node, respectively. Also symmetry boundary conditions can be applied by locking all

warping degrees of freedom.

5.4.2 Boundary Conditions to Nodal Deflections

It is desirable to apply boundary conditions to local nodes since then arbitrary boundary

conditions can be modelled. There are several ways to achieve this feature.

The first possibility is to modify the set of shape functions such that the addressed DOF is

zero in all of them or all of them but one. There it is preferably equal to one. To this shape

then a boundary condition as described in the previous section is applied. This approach is

applicable for cases like in figure 5.5 from [Paolini 2012] where the side conditions can be

fulfilled by rigid body modifications of the deflection shapes. It is not applicable for more

general cases and the orthogonalisation (see section 5.2.1) is not preserved.

From the mathematical point of view boundary conditions are side conditions to the global

solution. Generally, such a side condition reads

[ΨU ] [v] = [u] . (5.15)

It is of the dimension n × m where n is the number of boundary conditions and m is the

dimension of the global system of unknowns. [v] is the global vector of unknown participation
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(a) Unmodified (b) First step: Adapt the
deflection such that the
left bottom node does
not deflect.

(c) Second step: Adapt the rotation (about
the left bottom node) such that the right
bottom node does not deflect vertically.

Figure 5.5: Correction of an in-plane deflection shape to fulfil the condition “no deflection of the left bottom
node and no vertical deflection of the right bottom node” [from Paolini 2012].

factors. [u] are the prescribed deflection values and a row of [ΨU ] is of the form[
0 . . . 0 . . . ψ1j . . . ψkj 0 . . . 0

]
. (5.16)

ψij represents the component of shape i in the direction of the local DOF j and j is the

number of DOFs (shapes) at the addressed beam node.

5.4.2.1 Using Lagrangian Multipliers

One possibility to introduce the desired boundary condition (“deflection at a particular node

equal to a certain value”) is utilising the Lagrangian multipliers [Bathe 2002].

The boundary conditions (5.15) are introduced to the global potential which then reads

Π∗
(
[v] , [λ]

)
=

1

2
[v]T [Kglob] [v]− [v]T [p] + [λ]T

[
[ΨU ] [v]− [u]

]
. (5.17)

[Kglob] and [p] represent the global stiffness matrix and force vector.
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For each boundary condition an extra unknown λ is added to the global system of unknowns

which then reads[
[Kglob] [ψU ]T

[ψU ] [0]

][
[v]

[λ]

]
=

[
[p]

[u]

]
. (5.18)

In this form, without further preconditioning, the band structure of the system is perished.

Furthermore, the coefficient matrix is not positive definite but semidefinite. In the scope of

this thesis a performance drop by about a factor of two was observed for the solver on systems

with Lagrangian multipliers compared to a system without. This is illustrated by listing 5.3

(which later has to be compared to listing 5.4). It shows the output of the MATLAB function

mldivide5 and indicates that a solver optimised for banded matrices is not used but a more

general one.

Listing 5.3: Echo from MATLAB’s mldivide function for a system with boundary conditions applied with
the Lagrangian multiplier method 6.

sp\: bandwidth = 1629+1+1629.

sp\: is A diagonal? no.

sp\: is band density (0.12) > bandden (0.50) to try banded solver? no.

sp\: is A triangular? no.

sp\: is A morally triangular? no.

sp\: is A a candidate for Cholesky (symmetric, real positive diagonal)? no.

sp\: use Unsymmetric MultiFrontal PACKage with automatic reordering.

sp\: UMFPACK’s factorization was successful.

sp\: UMFPACK’s solve was successful.

Global BCs and Global solve. Took 0.28038s

Remark 1

The bandwidth could be reduced significantly by reordering the system of equations such that

the entries corresponding to a certain beam node are located in the region corresponding to

that node. [Bathe 2002] nevertheless recommends to leave the entries as indicated in equation

(5.18) because the corresponding elements on the main diagonal are zero. Nowadays many

different strategies for linear solvers exist. It actually depends on the used solver as to

whether or not bandwidth or the position of zeros on the main diagonal play an important

5Matrix left divide
6This output can be obtained by executing spparms(’spumoni’,1) before the mldivide call.
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role so the consequences of introducing sideconditions as illustrated here cannot be judged

concludingly.

Remark 2

When the side condition is introduced as denoted in equation (5.17), the results obtained for

[λ] are force quantities. This might lead to an ill-conditioned system if the units for forces

and deflections are chosen improperly.

5.4.2.2 Using the Penalty Method

Alternatively, the side conditions can be achieved by the penalty method [see also Bathe

2002].

Π∗∗
(
[v]
)

=
1

2
[v]T [Kglob] [v]− [v]T [p] +

α

2

[
[ΨU ] [v]− [u]

]T [
[ΨU ] [v]− [u]

]
(5.19)

The penalty number α has to be chosen such that α� max(kglob ii) but also not too big since

then numerical errors may occur. An approproate choice is e.g. α = 1000 ·max(kglob ii).

The global system for the minimum of the potential Π∗∗ then reads

[
[Kglob] + α [ΨU ]T [ΨU ]

]
[v] = [p] + α [ΨU ]T [u] . (5.20)

Listing 5.4 shows that for a system with side conditions contained as introduced here mldi-

vide uses a solver optimised for banded problems which is far more efficient than a general

one.

Listing 5.4: Echo from MATLAB’s mldivide function for a system with boundary conditions applied with
the penalty method.

sp\: bandwidth = 191+1+191.

sp\: is A diagonal? no.

sp\: is band density (0.75) > bandden (0.50) to try banded solver? yes.

sp\: is LAPACK’s banded solver successful? yes.

Global BCs and Global solve. Took 0.101s
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Figure 5.6: Example system for the global and nodal boundary conditions.

Figure 5.7: Deflected system of the boundary condition example.
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Figure 5.6 shows an example application for both the global and the nodal boundary condi-

tions. The t-beam under self weight is supported with boundary conditions to the primary

variables (see section 5.4.1) at the first and last beam node. At the section in the middle of

the span the bottom nodes at the ends of the plate are supported. The example contains

31 beam nodes and 96 DOFs or shapes at each of them thus 2976 unknown in total. The

numbers and calculation times in listings 5.3 and 5.4 also refer to this example. The deflected

shape can be seen in figure 5.7.

Remark

As the penalty method introduces stiffness to the system which is order of magnitudes higher

than the highest stiffness already contained in the system, it deteriorates the condition of the

system of equations. Throughout the calculations made for this thesis this appeared from

time to time and the system became close to ill conditioned by introducing side conditions

with the penalty method.

As a matter of fact, beam systems generally tend to be more ill conditioned than e.g. volume

systems where during mesh generation it is ensured that neighbouring nodes have stiffness

values close to each other by limiting the size ratio of neighbouring elements.

5.5 Postprocessing

5.5.1 Deflections

The deflections at the nodes can be obtained by superposition according to equation (1.1).

Usually not the full set of shape functions is taken into account for the calculation. This

literally means that nmodes is smaller than the number of discrete deflections at a section.

The superposition then yields only an approximative solution û

û =

nmodes∑
i=1

(
ψi · vi

)
= [Φ] [v] . (5.21)

The presented method enables only discrete deflections at the section at each beam node.

Inside the element domain the generalised deflections v can be interpolated linearly. High

order ansatz functions in the longitudinal direction may allow for a more sophisticated eval-

uation just as in standard beam analysis. See section 3.1.2 for the method of transmission
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matrices and section 3.1.3 for high order ansatz functions (p-version of Finite Elements). The

deflection field on the level of the brick elements can be obtained using the utilised shape

functions.

5.5.2 Strains and Stresses

The discrete deflections [u] as obtained by superposition in the previous section can be applied

to the brick Finite Element system underlying the stiffness matrix [K]bricks (see section 5.3.1).

This yields strains [ε] inside one beam element applying standard Finite Element procedures.

[ε] = [B] [u] . (5.22)

From there stresses [σ] can be obtained employing the material matrix [D] from section 2.3

[σ] = [D] [ε] . (see equation 2.9)

Figure 5.8: Stresses σxx for a simply supported beam under selfweight visualised using the open source
program Paraview employing the VTK file format [VTK 2013].
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Remark

The procedure yields the stresses in the Gauss integration points. They can be extrapolated

to the element nodes by a multiplication with the inverse of the shape function matrix

N−1. This yields “stepped” results as they can be observed in figure 5.8. Commercial Finite

Element packages perform an averaging at the mesh nodes to obtain smooth results. This is

not done here since the size of the jump of the values between elements may also serve as a

measure for the inaccuracy of the results in that region.

5.5.3 Support Forces

5.5.3.1 Support Forces at Generalised Supports

Given the orthogonalisation according to section 5.2 has been performed the generalised

support forces
[
q
]

glob
and moments at generalised support conditions as explained in section

5.4.1 can be estimated by taking them directly from equation (5.12) introducig for v both

the prescribed and the computed values from the solver

[
q
]

glob
= [K]glob [v]−

[
p
]

glob
. (5.23)

5.5.3.2 Support Forces at Nodal Supports

At nodal supports according to section 5.4.2 the procedure depends on the method used for

the application.

If Lagrangian Multipliers according to section 5.4.2.1 are used, the support forces can be

taken directly from the solution vector. The entries [λ] in those lines corresponding to the

introduced side conditions (see equation (5.18)) represent the support forces directly

qloc = −λ. (5.24)

If alternatively the penalty method according to section 5.4.2.2 is used, the support forces

can be obtained from the following equation

qloc = −α (û− u) . (5.25)
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û represents the superposed nodal deflection solution according to equation (5.21). α repre-

sents the penalty factor and u the prescribed deflection as introduced in section 5.4.2.2.

5.5.4 Sectional Forces Using the Primary Variables v

Given the orthogonalisation according to section 5.2 has been performed the sectional forces

can be estimated according to beam theory, directly with the help of the primary variables

v, their derivatives and certain sectional values.

5.5.4.1 Normal Force, Bending Moments, and the Bimoment

For the sectional values the abbreviation as used in chapter 4.2.1.2 is applied again:

EAab =

∫
(A)

Eab dA and EAa =

∫
(A)

Ea dA (5.26)

The calculation of the normal force and the moments including the bimoment is still straight

forward from the primary deflection and rotation variables ux, uy, uz, ϕy, ϕz and the warping

Ψ

N = EA · ux′x + EAz · ϕy′x + EAy · ϕz′x (5.27)

My = EAz · ux′x + EAzz · ϕy′x − EAyz · ϕz′x (5.28)

Mz = EAy · ux′x − EAyz · ϕy′x + EAyy · ϕz′x (5.29)

MB = EAωω ·Ψ′x. (5.30)

The off-diagonal terms may be erased by using the principal axis which intersect in the centre

of stiffness. The values EAz EAy and EAyz become zero then. Furthermore, additional terms

occur if the centre of rotation (point of attack of the shear forces) is not chosen in the shear

centre.
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5.5.4.2 Shear Forces and Torsional Moment

In cases where non-uniform torsion is considered the torsional moment consists of two com-

ponents

Mx = MxV +MxS. (5.31)

MtV represents the torsional moment due to uniform (de St.-Venant) torsion:

MxV = GIt · ψ (5.32a)

= GIt · ϕx′x. (using Wagner’s hypothesis) (5.32b)

MtS represents the torsional moment due to non-uniform (warping) torsion (secondary tor-

sional moment). It can be computed by

MxS = EIω · ψ
′xx

(5.33a)

= −EIω · ϕx′xxx. (using Wagner’s hypothesis) (5.33b)

ψ represents the participation factor for the warp shape of primary torsion. It can be seen

that to compute MtS with these equations at least the second derivative of a primary variable

is needed. This is a big disadvantage since in the presented global approach using the stiffness

matrix of a system of brick elements provides only the first derivative (see remark at the end

of this section).

Alternatively, if the Wagner hypothesis is skipped and shear deformations from warping

torsions are allowed for, the secondary torsional moment can be found in analogy to the

shear force in Timoshenko beam theory (see equation (5.37))

MxS = GASω · γω (5.34)

with

γ
ω

= ϕ
x′x

+ ψ. (5.35)

The shear forces can be obtained from the following equation using the shear stiffnesses

calculated in appendix A.5.2 based on the transverse shear warp shapes from section 4.2.1.3.
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Figure 5.9: Occurring rotation and generalised shear strain values for the Timoshenko beam in the de-
flected position

Qy = GASy · γy (5.36a)

Qz = GASz · γz (5.36b)

where the generalised shear strains are computed from[
γ
y

γ
z

]
=

[
ϕ
y

+ uz′x

−ϕ
z

+ uy′x

]
. (5.37)

The values on the right hand side of the latter equation can be obtained from the solution

of the system of equations.

As illustrated in appendix A.5 all shear stiffnesses GASi occurring in this section are cou-

pled and off-diagonal entries exist. In appendix A.5.1 equation (A.5.11) the corresponding

flexibility matrix [GAinv] is computed. It can be utilised as follows

 Qy

Qz

MxS

 = [GAinv]−1 ·

γyγ
z

γ
ω

 . (5.38)
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5.5.4.3 Remarks

1. The presented approach using the stiffness matrix of a system of brick elements (see

section 5.3.1) provides the solution of the primary variables discretely at the beam

nodes. That’s why it allows only for obtaining the first derivative of the primary

variables v by

v′x =
vend − vstart

lelem

. (5.39)

It can be seen that per element only values constant with respect to x can be gained.

The second or higher derivatives cannot be obtained at all. Better results can be

obtained when either higher order (with respect to x) elements are used (see section

3.1.3) or if the static condensation of the intermediate quadratic DOF (see appendix

A.2) is not done on the level of the brick DOFs but on the level of the beam DOFs v.

2. The relation as depicted in equation (5.38) coincides with sources in literature [e.g.

Bogensperger 2000; Katz 2008; Schade 1969]. However, none of the sources evaluated

the relations by comparing a beam calculation employing them with a corresponding

three dimensional volume or shell model.

3. The examples in the sections 6.1.2 and 6.1.3 show that the values for section forces

obtained from this approach of calculation are not reliable once the underlying assump-

tion of the undeformability of the cross section is not fulfilled. Some of the sectional

forces seem to be more robust than others. While all quantities related to normal

stresses (normal force, bending moments and the bimoment) are estimated comparably

well, the quantities related to shear stresses (shear forces and the torsional moments)

underlie big vulnerabilities especially at the locations of supports or load applications.
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5.5.5 Sectional Forces Using the Stresses

Once the stresses are calculated as illustrated in section 5.5.2 they can be used to calculate

the sectional forces by simple surface integrals at each section:

N =

∫
(A)

σx dA (5.40a)

My =

∫
(A)

zσx dA (5.40b)

Mz = −
∫

(A)

yσx dA (5.40c)

Qy =

∫
(A)

τxy dA (5.40d)

Qz =

∫
(A)

τxz dA (5.40e)

Mx =

∫
(A)

τxy (zM − z) + (y − yM) τxz dA (5.40f)

MB =

∫
(A)

ωV σx dA. (5.40g)

The evaluations of the integrals of the cross section can be performed efficiently making use

of the existing Finite Element mesh. The results are obtained in an intermediate step at the

positions of the Gauss integration points and have to be extrapolated into the element nodes

of the beam element. This leads to slopes which appear to be stepped (see e.g. figures 6.9

and 6.10 and the remark in section 5.5.2).

5.6 Error Estimation

5.6.1 Introduction

As described the presented method is based on modal truncation meaning that the number

of actual (generalised) DOFs v is smaller than the number of available nodal deflections at all

sectional nodes. This truncation induces an error which can be determined straight forward,
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if a reference solution is calculated in which all available nodal deflections are considered.

Namely, a full 3D analysis with volume elements has to be performed either within the same

code or using other, commercial software packages. The actual results can be compared

against this reference solution with respect to different quantities. This approach is applied

in [Paolini 2012] and briefly explained in section 6.1.1.1. Two drawbacks arise: If generalised

support conditions (see section 5.4.1) or generalised loads (see section 5.3.1) are applied it is

not always possible to find equivalent boundary conditions for the volume system. Secondly,

the computation of a full 3D solution is labour-intensive. The aim of the following approach

is to avoid this step.

5.6.2 Derivation

Like for the evaluation of the strains and stresses the deflection field u can be applied to

the underlying brick system forming the elementwise stiffness [K]bricks (see figure 5.10). By

doing so with two elements neighbouring the node of interest i one can obtain the reaction

force vector qre i from the system necessary to enforce this deflection setup around node i

qre i = [K]bricks j−1 ·

[
ui−1

ui

]
+ [K]bricks j ·

[
ui

ui+1

]
. (5.41)

In the ideal case, these forces are in equilibrium with the load pi and support forces qsupp i

applied to the system such that

qre i = pi + qsupp i. (5.42)

Since the presented method aims at a modal truncation this is not the case in general. The

error at node i induced by the modal truncation can thus be estimated a posteriori by

ei =

nnodes∑
i=1

∣∣∣∣qre i − pi − qsupp i

∣∣∣∣ . (5.43)

The total error in a beam system can be obtained by summing up over all beam nodes:

etot =

nnodes∑
i=1

∣∣∣∣qre i − pi − qsupp i

∣∣∣∣ . (5.44)
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ui−1

ui

ui+1

[K]bricksj−1

[K]bricksj

Figure 5.10: Brick system as used for the evaluation of the error forces at node i.

5.6.3 Example

Figure 5.11 shows two plots of these error forces of a system equivalent to the example in

section 6.2.1 with a static load. The plots refer to a cross section in a distance of 1m to the

clamped support. The two figures 5.11a and 5.11b are scaled equally.

5.11a refers to a configuration which is equivalent to Timoshenko beam theory: 3 eigenmodes

membrane, 3 eigenmodes bending, 3 shear warp shapes, 6 Poisson shapes7.

5.11b refers to a slightly enriched configuration: 5 eigenmodes membrane, 3 eigenmodes

bending, 3 shear warp shapes, 2 high order shear warp shapes, 6 Poisson shapes7.

(a) System with 15 DOFs per beam node. (b) System with 19 DOFs per beam node.

Figure 5.11: Error force plot for different discretisations.

7The names of the types of unit deflection shapes refer to those in table 5.1 on page 76.
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5.6.4 Remarks

1. For the case of a harmonic analysis with the angular frequency Ω, [K]bricks has to be

replaced by the dynamic stiffness matrix [K]dyn bricks = [K]bricks − Ω2 · [M ]bricks.

2. If either generalised loads or generalised support conditions are applied to the beam

degrees of freedom v, a unique, correct nodal load vector cannot be computed. This fact

becomes obvious especially for the shear forces. Their corresponding stress distribution

over the cross section depends heavily on circumstances such as the fact of whether or

not the point of application is allowing for warping deformations.

Consequently, nodes to which either generalised support conditions or generalised loads

were applied should remain unconsidered in the summation of equation (5.44).

3. At beamnodes where singularities are applied (point loads or nodal supports) the error

may become extremely high and dominate the error of the whole system because sin-

gularities are covered only very poorly by the used smooth ansatz functions. Systems

with such singularities may even show a higher error if the number of unit deflection

shapes is increased.

4. The presented error force does not cover the “internal error” of the employed volume

elements. It only contains the part of the error caused by the modal truncation and

the limitation of the solution space caused thereby.

5. This error is not relative but absolute meaning that it depends on the absolute stress

level inside the system and the size of the system. It is of the unit force [N]. It would

be reasonable to make it relative by dividing it by the absolute strain energy in the

corresponding part of the system

W =
1

2

∫
(V )

σ · ε dV. (5.45)

This strain energy takes into account both the absolute stress level and the size of the

system. This division does not lead to a dimensionless quantity because the strain

energy is of the unit energy [Nm]. An opportunity to resolve this problem would be to

determine a stress and strain state σe/εe corresponding to the error forces by applying

them as a load to the system and perform a direct 3D analysis without the generalised
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DOFs. From there a cumulative error can be determined by

We =
1

2

∫
(V )

σe · εe dV (5.46)

and the relative error by

E =
We

W
. (5.47)

The latter step could be done for the whole system which is again labour-intensive and

should be avoided. It might be sufficient to perform this step on a small subsystem

like e.g. one beam element.
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6 Applications and Numerical Examples

6.1 Static Calculations

6.1.1 Comparing Different Types of Mode Shapes

[Kreutz and G. Müller 2012; Paolini 2012]

The presented method gives the opportunity to freely choose the amount and composition

of degrees of freedom. The maximum number of linearly independent deflection shapes is for

warping degrees of freedom equal to the number of nodes in a cross section. For distortion

degrees of freedom it is twice as high. It is clear that when the full extent of the possible

and linearly independent deflection shapes is used one will obtain exactly the same result

as if one calculated an ordinary volume model. But this is not the aim of the method. The

aim of this method is to obtain results preferably close to these with a considerably lower

number of degrees of freedom.

In [Paolini 2012] a huge number of examples including conventional beam systems and com-

pact shear walls was calculated for different load situations and with different support con-

ditions. On the basis of these calculations an efficient strategy to choose the types of unit

deflection shapes which come to use was determined. The results were integrated into the re-

marks listed in section 5.1. Here, one example is presented exemplarily. The results represent

well those of most of the other examples.

6.1.1.1 Quantities of Validation

The quality of the solution is determined with respect to a Finite Element volume model

calculated with the commercial software package SOFiSTiK. Two types of quantification of

the quality are used and shall be introduced shortly.
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The Tanimoto Coefficient T [Willett et al. 1998] is used to compare the nodal values of the

discretised stress state σAB of the complete augmented beam system with the one from the

reference model σRM.

T (σ) =
σAB · σRM

‖σAB‖2 + ‖σRM‖2 − σAB · σRM

(6.1)

T takes the value one if the two stress states equal exactly. In all other cases it takes values

smaller than one.

To cover also the deviations of the peak values which would be overseen by the Tanimoto

Coefficient additionally the relative deviation of the maximum value of the effective stress

σmax,AB is observed. It is calculated by

f(σmax) =
σmax,AB − σmax,RM

σmax,RM

· 100%. (6.2)

It is equal to zero if there is no deviation and can take arbitrary values otherwise.

6.1.1.2 Problem Setup

0.35 m

0.05 m

2.00 m

0.26 m

0.013 m

0.024 m

z

y

Figure 6.1: Cross section of the beam in the example [Paolini 2012].

The presented example is a two span beam with the cross section given in figure 6.1. Input

values for the calculation:

• lengthwise span of the beam: two times 8 m

• elastic modulus: E = 210000 MN
m2

• Poisson-Ratio ν = 0.3
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5 kN/m2
5 kN/m2

Loadcase 1 and 2 Loadcase 3 and 4

Figure 6.2: Load situations for the example from [Paolini 2012].

Four loadcases are calculated (see figure 6.2):

• loadcase 1: centric load on both spans

• loadcase 2: centric load on one span

• loadcase 3: excentric load on both spans

• loadcase 4: excentric load on one span

The number of degrees of freedom is increased step by step starting from the following initial

configuration: three eigenmodes membrane, three eigenmodes bending, no warp shapes and

three Poisson shapes. This start configuration is chosen such that the solution space is

close to standard Timoshenko Beam Theory. In a first step the four shear warp shapes

corresponding primary torsion, the shear forces and secondary torsion are added. From

there the setup is enriched stepwise where in each step the number of considered deflection

shapes of the following types is increased by one: eigenmodes membrane, high order warp

shapes (corresponding to the eigenmode membrane) and Poisson shapes (corresponding to

the high order warp shape).

6.1.1.3 Results

Figure 6.3 shows how the validation quantities behave when the number of DOFs is increased

as described above. The graphs show two predominant gains of accuracy at four and ten

extra DOFs. The first corresponds to the four standard warp shapes as described above.

The second is even bigger and corresponds to the deformation of the cross section shown in

figure 6.4 and the corresponding Poisson shape.
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Figure 6.3: Tanimoto Coefficient (left) and relative deviation of the maximum effective stress (right) de-
pending on the additional number of degrees of freedom and the load case.

(a) 5. Eigenmode membrane (b) Corresponding high order warp shape

Figure 6.4: Important unit deflection shapes representing the deformation of the cross section.
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3.00 m

(a) Fork bearing at x = 0

3.00 m

(b) Clamped at x = 0

Figure 6.5: Systems for the two torsion examples.

6.1.2 Example: Torsion

This example illustrates the correctness and effectiveness of the warp modes calculated in

section 4.2.1 and problems occurring when sectional forces shall be calculated.

6.1.2.1 Setup

The system is a single span beam of 3 m length with different support conditions at x = 0

(see figure 6.5). The tip is loaded with a torsional moment of Mx = 0.08 MNm. The cross

section is an I-beam as drawn in figure 4.22 on page 75. The discretisations of the cross

section can be seen in figure 6.6.

The material properties are (isotropic material) Ex = 210000/1.1 MN
m2 and ν = 0.2963, thus

G = 73636 MN
m2 .

6.1.2.2 Results (fork bearing at x = 0), Pure de St.-Venant Torsion

The torsional resistance can be computed as depicted in appendix A.5.1:

GIt = 36.7 ·10−3 MNm2. Since the ideal case of uniform torsion is fulfilled the exact solution

for the rotation at the tip is given by

ϕ
x

=
0.8 · 3.0

33.33 · 10−3
= 72.0 mrad. (6.3)

Results for different models can be seen from table 6.1. The number of DOFs refers to a

uniform lengthwise division into 20 elements for all models. Of course this number can be
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Figure 6.6: Coarse (left) and fine (right) discretisation of the cross section.

Table 6.1: Results for the rotation at the tip [mrad] for pure de St.-Venant torsion
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Beam model (exact) 140 72.0

shell model [Katz 2011] 3600 98.4

volume model 64700 72.2

ab 10 coarse 3 3 4 0 200 70.8

ab 50 coarse 23 3 4 20 1000 70.8

ab 10 fine 3 3 4 0 200 72.2

ab 50 fine 23 3 4 20 1000 72.2
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Figure 6.7: Load as a prescribed deflection applied at the tip of the volume model.

reduced significantly for most models if further insights (absense of shear force and warping

torsion and reduction of dimension) are made use of.

One can see that all the results fit well with the exact solution except the shell model from

[Katz 2011]. The reasons are given in that paper: drill moments are defined differently in

plate theory than in beam theory. On thin-walled cross sections for de St.-Venant torsion the

well known linear shear stress distribution over the thickness of the members only represents

half of the torsional moment (force pairs A in figure 6.7). The second half is “stored” in the

free ends where the stresses cover a small area but have a big lever arm (force pairs B in

figure 6.7). This part is not covered by the common plate theories.

The volume model was computed with the Finite Element package SOFiSTiK. In order to

avoid local distortions of the cross section at the load application point, the system was

“loaded” with a prescribed deflection (rotation about the centre of rotation at the tip, see

figure 6.7). Afterwards, the stresses in the system were integrated to section forces. As

expected the system behaves a little softer than the exact solution since non-conforming

elements are used.

The results from the augmented beam model coincide very well. One can see that the
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Figure 6.8: Shear stress distribution in MN
m2 for pure de St.-Venant torsion. The arrows indicate local

resultants.

warping degrees of freedom cover the deformation state well and additional unit deflection

shapes are not necessary. The models “ coarse” and “ fine” just differ in the discretisation of

the cross section (see figure 6.6).

The load was applied as a generalised load but both at the point of load application and

on the support all deformations of the cross section except the uniform rotation about the

centre of rotation were locked since otherwise additional deformations would occur and the

system would behave even softer.

6.1.2.3 Results (clamped at x = 0), Warping Torsion

If the support node is not allowing for warping deformations warping torsion occurs which

at this type of cross section decays very slowly with respect to x.

The results in table 6.2 show again a good accordance. The beam model is not a real

reference solution any more due to the unavoidable presense of stiffening effects due to the

Poisson ratio near the fixed support in all other models.

The presense of normal stresses makes the corresponding Poisson shapes necessary (see

section 4.3.1).

One can see that again the deformation state is covered well by the 17 DOFs present in the

models ab 17 . Additional shapes contribute only little.
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Table 6.2: Results for the rotation at the tip [mrad] for warping torsion.

Name E
ig

en
m

o
d
es

m
em

b
ra

n
e

E
ig

en
m

o
d
es

b
en

d
in

g

S
h
ea

r
w

ar
p

sh
ap

es

H
ig

h
or

d
er

w
ar

p
sh

ap
es

P
oi

ss
on

sh
ap

es

#
D

O
F

s
(a

p
p
ro

x
.)

ϕ
x

at
ti

p

Beam model 140 30.4

shell model [Katz 2011] 3600 37.2

volume model 64700 33.3

ab 17 coarse 3 3 4 0 7 340 33.0

ab 57 coarse 23 3 4 20 7 1140 33.1

ab 17 fine 3 3 4 0 7 340 33.3

ab 57 fine 23 3 4 20 7 1140 33.4
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Figure 6.9: Results for the torsional moments of the model ab_57_fine together with reference models.
“Direct” refers to the calculation procedure presented in section 5.5.4 using the primary vari-
ables v, “integration” to the procedure performing an integration of stresses as explained in
section 5.5.5. “Beam” refers to the standard SOFiSTiK beam model, “volume” to the Finite
Element volume model which was evaluated with a spacial integration tool (SIR) which is part
of SOFiSTiK.
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Figure 6.10: Results for the bimoment of the model ab_57_fine together with reference models. The
namings correspond to those in figure 6.9.

The graph in figure 6.9 shows different evaluations of the torsional moment Mx for different

models. What catches the eye is the fact that except the beam calculation all models have

problems to obtain the correct solution. All procedures performing a spatial integration

(“volume” and “integration”) have accuracy problems. The integration in the augmented

beam model benefits from the fact that the stress values are evaluated directly at the Gauss

points of the underlying volume model. From there, the values for sectional forces are extrap-

olated to the beam nodes. Integration of stresses does generally not allow for a separation

of de St.-Venant and secondary torsional moment.

The directly evaluated section forces according to section 5.5.4 show a different degree of

accuracy. While the de St.-Venant component seems to be evaluated correctly the secondary

torsional moment faces severe accuracy problems near the support at x = 0. This can be

explained with the before mentioned stiffening of the system through Poisson effects near

the clamped end. This can also be observed in figure 6.10 where the bimoment is plotted.
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6.1.3 Example: Thin-Walled Structure

6.1.3.1 Problem Setup

This example treats a thin metal sheet structure. The system is clamped at x = 0 m and

supported in y-direction at x = 0.75 m. Further dimensions and the load can be seen in

figure 6.11. The material properties are E = 210000 MN
m2 and ν = 0.2963.

The reference model is a usual Finite Element model consisting of shell elements.

1,0
kN

m

750

750

200

110 50

t = 1,5

y

z
x

uy
uz

Figure 6.11: Thin-walled system with load

6.1.3.2 Results

The results for the deflection of the bottom front tip in the z- and y- direction can be seen

in table 6.3.

The results show a good convergence of both depicted deformation values at the bottom front

tip uy and uz. One can see that for uy which is dominated by the rigid body deformations

of the cross section (predominantly the rotation) and the stiffness properties at the supports
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Table 6.3: Results for the deflection of the bottom front tip. The error in the last column as described in
equation (5.44). The node at x = 0 is excluded from the error summation.
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shell model (reference) - - - - - - 102600 18.2 9.97 -

ab 17 20 3 3 4 0 7 20 340 17.81 6.65 3.02

ab 37a 20 13 13 4 0 7 20 740 17.9 9.54 9.03

ab 37b 20 13 3 4 10 7 20 740 17.9 9.90 8.46

ab 57b 20 23 3 4 20 7 20 1140 17.9 9.91 8.45

ab 107b 20 33 3 4 30 37 20 2140 17.9 9.93 3.00

ab 107c 20 23 33 4 20 27 20 2140 17.9 9.91 6.73

ab 17 100 3 3 4 0 7 100 1700 17.91 6.69 1.92

ab 37a 100 13 13 4 0 7 100 3700 18.06 9.62 4.18

ab 37b 100 13 3 4 10 7 100 3700 18.03 9.88 3.90

ab 57b 100 23 3 4 20 7 100 5700 18.07 9.89 3.89

ab 107b 100 33 3 4 30 37 100 10700 18.09 9.92 1.43

ab 107c 100 23 33 4 20 27 100 10700 18.08 9.89 3.12
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(a) Shell model (SOFiSTiK)

(b) Augmented beam model (ab_37b_100)

Figure 6.12: Von Mises stresses in the whole system for the reference model and one of the coarser
augmented beam models.

the lengthwise discretisation is of higher importance than the number of additional deflec-

tion modes per beamnode. In contrast to that for the vertical deformation at the tip, the

additional (distortion) modes play a very important role and the lengthwise discretisation is

of subordinate importance.

The error force depicted in the last column of table 6.3 shows no clear convergence. The

reason might be that both the load and the support in the middle represent singularities

from the view of a cross sectional system.

The comparison of the von Mises stresses in the figures 6.12 and 6.13 shows very good accor-

dance between the very fine discretised shell model and the comparably coarse augmented

beam model.
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(a) Shell model (SOFiSTiK)
(b) Augmented beam model

(ab_37b_100)

Figure 6.13: Von Mises stresses at x = 1.2 m for the reference model and one of the coarser augmented
beam models.

As described in the remarks in section 5.5.4.3 the sectional forces based on the primary

variables v yield results which are unfeasable. Especially the transverse forces are vulnerable

and yield results ranging up to 1000 kN. In figure 6.14 only those sectional forces are plotted

which are gained from the integration of stresses as described in section 5.5.5.
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Figure 6.14: Section forces computed by integration (see section 5.5.5) for the model ab_107b_100.
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6.2 Dynamic Calculations

6.2.1 Harmonic Analysis

[published in G. Müller and Kreutz 2013]

This example illustrates the properties of the method when it is used to solve dynamic steady

state problems (see equation (5.14) on page 86). For this type of analysis also the FT-modes

are applicable and are compared to different sets of conventional modes which were used in

the previous examples.

6.2.1.1 Setup

The calculated system is a concrete cantilever (clamped at x = 0 m) with a line load applied

at the tip (see figure 6.15). The dimensions of the cross section can be seen in figure 6.16.

Input values for the calculation:

• span of the beam: 15 m

• elastic modulus: E = 28300 MN
m2 , Poisson-Ratio: ν = 0.2, density: ρ = 2500 kg

m3

• load: 1MN
m

The reference volume model is computed with the commercial Finite Element package AN-

SYS using eight noded solid185 elements with KEYOPT(2)=2 (enhanced strain formulation)

[see ANSYS, Inc. 2012].

Node A

Node B

x
y

z

Figure 6.15: FEM model for the harmonic analysis with loading and location of the evaluation nodes A
and B.
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4000

1000

500

800

Figure 6.16: Cross section for the harmonic analysis example. Dimensions in mm.

Table 6.4: Configuration of different types of unit deflection shapes for the harmonic analysis.

Config.→ c22 c40 c184 ft22 ft40 ft184
Type

Eigenmodes membrane 6 12 60 - - -

Eigenmodes bending 3 3 3 - - -

Shear warp shapes 4 4 4 - - -

High order shear warp shapes 3 9 57 - - -

Poisson shapes 6 12 60 - - -

FT-modes - - - 22 40 184

Total 22 40 184 22 40 184

The frequency steps were chosen very small to be able to resolve the resonance peaks clearly.

The beam model and the ANSYS volume model are discretised equally in all three dimensions

as indicated in the figures 6.15 and 6.17.

The different combinations of types of unit deflection shapes for the beam model can be seen

in table 6.4.

6.2.1.2 Results

Figures 6.18 and 6.19 show the results of the deflection for the different models at the nodes

A and B depending on the frequency. The location of the nodes A and B can be seen in

figure 6.15. The results for frequencies lower than 100 Hz fit very well and are thus not

displayed.

The comparison to the results from ANSYS shows that all beam models behave too soft.

This is a matter of the underlying brick element formulation (see section 5.3.1 and appendix

A.2) and does not concern the presented method. The finest setup c184 is therefore taken as
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Figure 6.17: Deflection shape of the beam model c184 at f = 190 Hz

a reference. It fits very well with the corresponding finest setup using the FT modes ft184.

The fact that the ANSYS curve fits apparently well with the results from the coarsest setup

using conventional modes c22 is just by chance.

The coarsest setup using FT modes ft22 produces very good results for frequencies below

125 Hz from where on the results become very unstable.

The medium setups ft40 and c40 produce reliable results. Thereby ft40 shows a higher

accuracy compared to c40.

The comparison of the figures 6.18 and 6.19 shows that the quality of the results does not

depend significantly on the fact of whether or not the observed node is located near the

boundary or point of load application as long as the load is not applied to a single section

node.

Figure 6.20 shows a dispersion diagram. For every frequency the first 40 kx eigenvalues are

painted together with the information about the phase position arg(kx): The x-component of

the arrow indicates the relation of real part to the absolute value, the y-component indicates

the relation of imaginary part to the absolute value. Multiple instances of kx may lie on a

specific point. It is important to mention that redundant figures are already erased from the

set as explained in section 5.2.4. The area of the red semicircle indicates the amplification

factor v of a real part of an eigenmode, and the green semicircle the amplification factor of

the imaginary part. Both are averaged through the whole system (all beam nodes). Before

the computation, all modes were normalised such that the maximum deflection equals 1.0.

Furthermore, only relative participation factors are shown since the actual magnitude of the

deflections may vary especially at resonance peaks (see figures 6.18 and 6.19).
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Three important observations can be made from figure 6.20:

1. The reason why the setup ft22 from about 120 Hz on starts to produce defective results

is that the dominant modeshape (big semicircles) at this frequency starts to exceed

the threshould of the 22nd mode. This means that in ft22 it is not considered anymore.

The reason for this “drift” is the fact that as explained in section 4.4.2 with increasing

frequency more and more eigenmodes with a small wave number kx occur. They are

actually mode shapes where most of the strain energy is contained in strains deforming

the cross section (εy, εz, γxy, γxz and γyz).

2. Obviously in the observed range predominantly the modes which correspond to real

eigenvalues kx are of importance (arrows strictly horizontal).

3. One can see that very few shape functions cover the solution (big semicircles). This

leads to the perception that the presented method enables for an even more effective

description of the system if only those shapes are taken into account which are of

importance. The prerequisite is an effective criterion or algorithm to identify these

modes before the actual calculation is run.

Figure 6.21 shows some mode shapes ψ corresponding to f/kx tuples. The red deflection

shapes indicate the real part <(ψ), the green shapes the imaginary part =(ψ).
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1. 2.
kx = 0.3988− 0i rad

m kx = −0.8112− 3.2677i rad
m

f = 20 Hz f = 20 Hz

3. 4.
kx = 2.2545 + 0i kx = −0.099− 0.7672i

f = 180 Hz f = 180 Hz

Figure 6.21: Chosen FT mode shapes for different kx/f pairs. The corresponding participation factor can
be seen in figure 6.20.

.
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6.2.2 Eigenvalue Analysis

[published in Kreutz and G. Müller 2012]

In this example the presented method is used to calculate dynamic eigenmodes of a single

span beam with the same t-beam cross section as in the previous example. Two calculations

are run with different numbers of degrees of freedom. Additionally, two reference models were

calculated using the commercial Finite Element package SOFiSTiK. One of them consists of

standard, non conforming beam elements (see figure 6.22) and the other of volume elements

(see figure 6.23).

6.2.2.1 Problem Setup

The material properties and dimensions are chosen equally to the previous example. The

support conditions are applied as fork bearings on both ends and can be seen in figure 6.22.

The configuration concerning the types of mode shapes can be seen from table 6.5.

Table 6.5: Configuration of different types of mode shapes for the eigenvalue analysis.

Type Config. 1 Config 2

Eigenmodes membrane 5 30

Eigenmodes bending 3 5

Shearwarp shapes 4 4

High order shear warp shapes 2 27

Poisson shapes 6 30

6.2.2.2 Results

To provide a clear comparison only the eigenmodes for bending in the z-direction are listed.

Table 6.6 shows the results for the eigenfrequencies for a beam model, two different config-

urations of the presented method and the Finite Element volume model.
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Table 6.6: Bending eigenvalues in the z-direction for different discretisations in [Hz]

# Beam Config. 1 Config. 2 FEM
nDOFs 210 643 2976 18778

1 6.45 6.23 6.21 6.24

2 25.75 21.67 21.28 21.57

3 57.73 37.02 35.85 36.47

4 102.09 49.80 47.89 48.54

One can observe that configuration 1 with 643 degrees of freedom improves the result from

standard beam elements strongly. As in the preceding example, the reason for the fact

that the values for configuration 2 are even lower than the volume model lies in different

formulations of the non conforming volume element.

In figure 6.23 one can clearly see a wave pattern of bending and shear waves which could be

directly made visible by means of a wave number approach in the longitudinal direction.

Figure 6.22: Deflection figure of the reference beam modell: 4th bending eigenmode in the z-direction at
102.09 Hz.

Figure 6.23: Deflection figure of the reference model (FEM): 4th bending eigenmode in the z-direction at
48.54 Hz.
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7 Summary and Outlook

7.1 Summary

Beam-shaped structures represent an important field in engineering. Many cases exist still

both in static and dynamic analysis where engineers are forced to use strongly simplified

beam models due to the limits of computational power and modelling effort.

The presented method provides an efficient way of modelling line shaped structures both

for static and dynamic problems. The models can be refined adaptively concerning support

conditions and load distributions since both the load and the support conditions can be

defined either on a basis of the generalised DOFs (coarse) or on a basis of the volume nodes

(fine). In the scope of this thesis the method was restricted to geometrically and material

linear, prismatic structures.

Fully three dimensional material laws can be used and thus as results, fully three dimensional

stress and strain tensors are obtained. They can be computed efficiently into sectional forces.

The shown examples of static problems illustrate that the method is able to produce results

with a high accuracy but only needs few global degrees of freedom. It is generally possible to

choose the amount of degrees of freedom according to the desired requirements of accuracy

and other problem parameters like frequency. Of course the pre- and postprocessing is costly,

but these processes are very well suited for parallelisation. The topology of the problem is

substructured and leads to a small system of unknowns which can be solved very fast.

These properties allow for massive performance gains on current and upcoming processor

architectures.

The method might be of special interest for calculations in the field of structural dynamics

since there not only the support conditions and the load may lead to the necessity of an

enhanced beam model but also the frequency or the wavelength in the structure respectively

(see e.g. the example in section 6.2.2).
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Also bridge design implies problems where this method yields advantages. Shear lag effects

are covered correctly and three dimensional effects like the lateral prestress of the top plate

are introduced easily with small modelling effort.

7.2 Outlook

7.2.1 Mechanical Enhancements of the Cross Section and Element

Formulation

7.2.1.1 Further Types of Unit Deflection Shapes

As mentioned, the presented choice of types of unit deflection shapes in not universally

valid. Further types are conceivable. A specific lack can be identified: The information of

the location and amount of load application is not made use of. The same holds for support

locations. One could imagine unit deflection shapes which cover especially the deformations

occurring at load application points and supports.

Secondly, an efficient adaptive (iterative) procedure could be established by using the error

forces derived in section 5.6 for the computation of new deflection shapes. In-plane and

warping deflections would have to be considered separately. The global system of equations

would have to be solved at least twice.

7.2.1.2 Enhancing the Cross Section

The shown functionalities can be enhanced directly to composite sections and sections con-

taining further types of “features”:

• elastic shear gaps as they occur especially in compound timber-concrete structures

• elastic gaps in lateral directions

• singular longitudinal stiffnesses for modelling reinforcement bars.
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beam structure

FEM discretized domain
Interface elements

beam nodes

Figure 7.1: FEM discretisation of a joint of two beam elements.

7.2.1.3 Theory of Second Order and Stability Analysis

The presented approach could be extended by the terms of Theory of Second Order on the

basis of the implemented volume elements. The obtained implementation would also serve

for first order stability analysis (ultimate load analysis with a linear eigenvalue problem).

Implementing theories of higher order would require at least a separate treatment of the

rigid body motions of the cross section especially of the rotations [see e.g. Živković et al.

2001]. [Sauer 1998] derives a geometrically nonlinear standard beam finite element for civil

engineering purposes where only those rotation terms are included which are necessary in

that context. These could be extended as shown in [Živković et al. 2001].

7.2.2 Joints and Interface Elements

The possible deformation figures of the presented approach are so general, that joints with

different attached cross sections or corners cannot be modelled simply anymore either. To

consider their behaviour correctly it is necessary to set up a volume model of the joint or

corner and couple it correctly to the adjacent beams via interface elements as shown in

figure 7.1. The “internal” DOFs of the joint can be eliminated by applying a superelement

approach (static condensation). By that, only the generalised beam deformation shapes of

the adjacent beams remain and the substructure character of the problem is preserved.
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7.2.3 Spectral Element

The results from section 6.2.1 showed that the dynamic deflection shapes (FT modes) derived

in section 4.4 are effective for describing dynamic waveguides of finite length. The procedure

can be optimised making use of another piece of information contained in the eigenvalues kx:

the wavelength. Up to now (and thus also in the examples in section 6.2.1) just linear ansatz

functions in longitudinal direction were used (disregarding the additional Wilson term, see

appendix A.2). The idea of spectral elements is to use the (complex) e-functions (actual

wave functions) at this point

u(x) =

nmodes∑
j=1

[
ψj(y,z) · aj · eikxjx

]
. (7.1)

Each“mode”then represents a wave travelling along the beam or a near field deflection shape

respectively. The amplification factors corresponding to waves aj need to be transformed

into participation factors for deformation shapes at the ends of the beam domanin (x = 0

and x = l). [Koloušek 1973] and [Friberg 1985] do so. Problems may occur since not the

full set of available modes shall be used here and the mentioned transformation may become

under-determinate.

Alternatively, a BEM approach might be interesting. The mode shapes ψj(y,z) can be used

as testing functions. The corresponding test-stresses t∗ at the ends of the beam structure can

be easily determined by evaluating equation (4.53). By that arbitrary boundary conditions

can be applied at the ends and a transformation of the boundary conditions into the wave

domain is not necessary.

Furthermore, especially figure 6.20 on page 124 shows that the global deflection shape of a

prismatic structure can be covered very effectively by a small number of FT modes. The

prerequisite is an significant criterion or algorithm to identify these modes before the actual

calculation is run. This could be subject of further investigations. By this, the vulnerability

of the FT mode sets arousing through modes with very small wave number occurring at

higher frequencies could also be purged.
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A Appendix - Further Applications and

Theory

A.1 Shifted Eigenvalues

According to [Bathe 2002].

Given is the following eigenvalue problem

[K]ψ = λ [M ]ψ. (A.1.1)

By replacing [K] with[
K̂
]

= [K]− ρ [M ] (A.1.2)

yields a modified eigenvalue problem[
K̂
]
ψ = µ [M ]ψ. (A.1.3)

with the shifted eigenvalues

µ = λ+ ρ. (A.1.4)

Shifting eigenvalues is often used to quickly find eigenvalues in a certain region. It can also be

used when eigenvalues and eigenvectors of systems without supports have to be calculated.
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A.2 Non-uniform quadratic extension for quadrilateral and

hexahedral elements

[Bathe 2002], originally proposed by [Wilson et al. 1973].

A.2.1 Necessity of extensions

The simplest displacement based Finite Element is the isoparametric one where the defor-

mations are interpolated with the same shape functions as the coordinates of the nodes.

The conditions imposed are compatibility and completeness. Completeness means that the

elements need to be able to represent a constant stress state as well as stress free rigid body

motions. Compatibility means that the deformations must be continuous (not having any

gaps) within the elements and across element interfaces. These two conditions are leading to

monotonic convergence which means that the accuracy of the solution will always increase

as the mesh is refined (subdivided). Isoparametric elements like the four-node quadrilateral

fulfil these conditions, and furthermore, their derivation is straight forward. Nevertheless

this element is prone to shear locking.

Practice often shows that satisfying results can be obtained from element formulations where

the continuity requirements are violated. These elements are called incompatible or non-

conforming elements. The elements can penetrate each other and gaps can occur. As a

consequence, the calculated potential energy is not necessarily an upper bound to the exact

one any more. The completeness condition must not be violated.

A.2.2 Derivation of the Element Stiffness Matrix

The procedure is shown by the example of a 2D quadrilateral plate element. It can be applied

accordingly to different problems and also to 3D displacement based hexahedrals.
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Figure A.1: Quadratic shape functions on the edges

The known shape functions for the corner nodes

N1 =
1

4
(1− ξ) · (1− η)

N2 =
1

4
(1− ξ) · (1 + η)

N3 =
1

4
(1 + ξ) · (1 + η)

N4 =
1

4
(1 + ξ) · (1− η)

(A.2.1)

are extended with quadratic functions which have their maximum at the centre of two op-

posing edges:

N5 = 1− ξ2

N6 = 1− η2.
(A.2.2)

The displacements ux and uy are now represented by six shape functions each

ux =
4∑
i=1

Niuxi +
6∑
i=5

Niαxi

uy =
4∑
i=1

Niuyi +
6∑
i=5

Niαyi.

(A.2.3)

The vector of unknowns on element basis [û]∗ can thus be written as

[û∗] =

[
[û]

[α̂]

]
(A.2.4)
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where the nodal deformations

ˆ[u]
T

=
[
ux1 uy1 . . . ux4 uy4

]
(A.2.5)

are separated from the edge deformations

ˆ[α]
T

=
[
αx1 αy1 αx2 αy2

]
. (A.2.6)

The strain tensor ε can be obtained through the compound [B]-matrix:

ε =
[
[B] [BIC]

] [[û]

[α̂]

]
(A.2.7)

where the [B]-matrices look like

[
[B] [BIC]

]
=

N1′x 0 · · · N6′x 0

0 N1′y · · · 0 N6′y

N1′x N1′y · · · N6′x N6′y

 . (A.2.8)

[B] represents the usual strain-displacement matrix and [BIC] the contribution of the incom-

patible modes. The weak equilibrium on element level can be established as

∫
(V )

[B]T [D] [B] dV


∫

(V )

[B]T [D] [BIC] dV

∫
(V )

[BIC]T [D] [B] dV


∫

(V )

[BIC]T [D] [BIC] dV




[

[û]

[α̂]

]
=

[
[P ]

[0]

]
(A.2.9)

[Kext] [ûext] =

[
[P ]

[0]

]

The second condition from above, the completeness, is seen to be indispensable. The reason

is that when a Finite Element mesh is refined, the stress and strain state within each of the

elements “converge” towards a constant one. Thus, an element has to be able to represent

this state in order to enable the whole system to converge towards the exact solution. A

benchmark to check for this behaviour is the so-called patch test. An arbitrary assemblage

of elements is arranged such that it forms a geometry to which a constant stress condition is
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applied externally via nodal loads or prescribed deformations. The stresses at the evaluation

points inside each of the elements have to meet this value. Correctly formulated displace-

ment based elements in compatible meshes always pass this test while elements like the one

formulated before do not.

At the moment when the nodal deflections are the exact ones [û]c which correspond to a

constant stress state τ c we can say that∫
(V )

[BIC ]T [D] [B] dV [û]c =

∫
(V )

[BIC ]T τ cdV. (A.2.10)

Forcing the element to fulfil this for an arbitrary stress state τ c leads to∫
(V )

[BIC ]T dV
!

= [0] . (A.2.11)

Applying this to the contributions of the incompatible modes leads to

[Bcorr
IC ] = [BIC ]− 1

V

∫
(V )

[BIC ] dV. (A.2.12)

The improved version of the element stiffness matrix from equation (A.2.9) is then obtained

by using [Bcorr
IC ] instead of [BIC ].

[Kext] =



∫
(V )

[B]T [D] [B] dV

︸ ︷︷ ︸
[Kuu]

∫
(V )

[B]T [D] [Bcorr
IC ] dV

︸ ︷︷ ︸
[Kuα]∫

(V )

[Bcorr
IC ]T [D] [B] dV

︸ ︷︷ ︸
[Kαu]

∫
(V )

[Bcorr
IC ]T [D] [Bcorr

IC ] dV

︸ ︷︷ ︸
[Kαα]


(A.2.13)

A.2.2.1 Interpretation

By applying this scheme the element is forced to behave under a constant stress state like

the compatible element. Setting û = [û]c and [α̂] = [0] produces only forces [P ] according

to the compatible modes and none according to the incompatible ones. The element in this

case behaves as if the incompatible modes were not there.
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A.2.2.2 Gaining an Element Stiffness Matrix

From this matrix [Kext] in equation (A.2.13) the entries corresponding to the extra degrees of

freedom [α̂] are removed by static condensation (Gaussian elimination). The corresponding

entries of the load vector have to stay zero. By that the problem separates into two parts

[Knew] [û] = [P ] (A.2.14)

[α̂] = [Q] [û] (A.2.15)

where the new stiffness matrix [Knew] and the matrix [Q] can be calculated out of the different

components of the matrix [Kext] from equation (A.2.13)

[Knew] = [Kuu]− [Kuα] [Kαα]−1 [Kαu] (A.2.16)

[Q] = − [Kαα]−1 [Kαu] . (A.2.17)

[Q] is a matrix which is used to calculate the extra degrees of freedom from the nodal ones. It

is needed for the postprocessing when strains and stresses are calculated from the deflection

field using (A.2.7).

A.2.3 Example

The example is a cantilever with the following values:

• length/height/width: 4 m/1 m/1 m

• elastic modulus: E = 28300 MN
m2 Poisson ratio: ν = 0.2

• load at the tip: P = 1.0 MN

Table A.1: Different Results for the deformation at the tip [mm].

Analytic result (Euler-Bernoulli) 9.046

FEM-system without extension 5.615

FEM-system with extension 9.229

The results can be seen in table A.2. As expected, the results for the system without the

here presented extension shows severe locking. The system with extensions behaves weaker

than the analytical result for two reasons: The analytical result is based on Euler-Bernoulli
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Figure A.2: Finite Element mesh for the cantilever test.

beam theory and does not include shear deformation. Secondly, the extensions made the

element non-conforming meaning that the deformations of neighbouring elements do not

coincide necessarily. Gaps may occur and the elements might penetrate each other. This

sort of elements typically tends to behave “too soft” [Bathe 2002].

A.2.4 Application in this thesis

The derivation shown above was made for a two dimensional quadrilateral element. It can

be applied analogously to three dimensional hexahedral elements. Quadrilateral elements

were used to calculate the problems in the sections 4.1.1 and 4.3. The hexahedral elements

were used to derive the beam element stiffness matrix in section 5.3.1.
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A.3 SDOF Oscillator with Complex Stiffness in the

Frequency domain

A.3.1 System and Differential Equations

The steady state response of a SDOF system under a harmonically oscillating load is eval-

uated. Two different systems are observed one with a real spring stiffness k and a damper

resistance c the other with a complex spring stiffness

kc = k
(
1 + i sgn(Ω) · ηD

)
= kr + iki. (A.3.1)

ηD represents the damping ratio. The reason for the presence of the sgn(Ω) is explained in

[G. Müller 1989] and will become clear in the next section.

p(t)

w(t)

k

m

p(t)

w(t)

k = kr + iki

m

c

System A System B

Figure A.3: SDOF Systems

The equation of motion, an ordinary 2nd differential equation (ODE)

mẅ (t) + cẇ (t) + k w (t) = p (t) (System A) (A.3.2)

mẅ (t) + kcw (t) = p (t) (System B). (A.3.3)

is transformed into the Fourier domain and thereby simplified to an algebraic equation (AE)
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for ŵ (Ω) [Buchschmid and G. Müller 2012]:

−Ω2mŵ (Ω) + iΩc ŵ (Ω) + k ŵ (Ω) = p̂ (Ω)(
−mΩ2 + iΩ c+ k

)
ŵ (Ω) = p̂ (Ω)

(System A)

−Ω2mŵ (Ω) + kc ŵ (Ω) = p̂ (Ω)(
−mΩ2 + (kr + iki)

)
ŵ (Ω) = p̂ (Ω)

(System B).

From these, the solution can be computed as

ŵ (Ω) =
p̂ (Ω)

k −mΩ2 + iΩ c
(System A) (A.3.4)

ŵ (Ω) =
p̂ (Ω)

k −mΩ2 + ik sgn(Ω) · ηD
(System B). (A.3.5)

A.3.2 Arbitrary Harmonic Load Case

An arbitrary harmonic load can be defined as

p(t) = A sin(Ω0t) +B cos(Ω0t). (A.3.6)

It is assumed that A, B, Ω0 and t are real numbers. Furthermore, Ω0 is assumed to be

positive.

When equation (A.3.6) is transformed to the frequency domain it reads

p̂(Ω) = π
(
+Aiδ (Ω + Ω0)− Aiδ (Ω− Ω0) +Bδ (Ω− Ω0) +Bδ (Ω + Ω0)

)
. (A.3.7)

A.3.2.1 Solution for System A

Introducing equation (A.3.7) to equation (A.3.4) and applying the IFT leads to

w(t) =

(
−iAk + iAmΩ0

2 + AΩ0c−Bk +BmΩ0
2 − iBΩ0c

)
2
(
−k +mΩ0

2 + iΩ0c
) (
k −mΩ0

2 + iΩ0c
) e−iΩ0t

+

(
iAk − iAmΩ0

2 + AΩ0c−Bk +BmΩ0
2 + iBΩ0c

)
2
(
−k +mΩ0

2 + iΩ0c
) (
k −mΩ0

2 + iΩ0c
) eiΩ0t (A.3.8)
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The two expressions are conjugate and thus it follows that =(w(t)) = 0 and the real part

can be reformulated as a term containing sin and cos:

w(t) =

(
Ak − AmΩ0

2 +BΩ0c
)

k2 − 2kmΩ0
2 +m2Ω0

4 + Ω0
2c2︸ ︷︷ ︸

A∗

sin (Ω0t)

+

(
Bk −BmΩ0

2 − AΩ0c
)

k2 − 2kmΩ0
2 +m2Ω0

4 + Ω0
2c2︸ ︷︷ ︸

B∗

cos (Ω0t) . (A.3.9)

From that, the amplitude wmax value of the oscillation w(t) can be determined by

wmax =
√
A∗2 +B∗2 =

√
A2 +B2

k2 − 2kmΩ2
0 +m2Ω4

0 + Ω2
0c

2
. (A.3.10)

A.3.2.2 Solution for System B

For the solution of system B equation (A.3.7) has to be introduced to equation (A.3.5). After

applying the inverse Fourier transformation the solution reads

w(t) =

(
−iAkr + Aki + iAmΩ0

2 −Bkr − iBki +BmΩ0
2
)

2
(
−kr + iki +mΩ0

2
) (
kr + iki −mΩ0

2
) e−iΩ0t

+
2
(
iAkr + Aki − iAmΩ0

2 −Bkr + iBki +BmΩ0
2
)(

−kr + iki +mΩ0
2
) (
kr + iki −mΩ0

2
) eiΩ0t. (A.3.11)

As above the two expressions are conjugate such that =(w(t)) = 0 and the real part can be

reformulated as a term containing sin and cos

w(t) =

(
Akr − AmΩ0

2 +Bki
)

kr
2 − 2krmΩ0

2 +m2Ω0
4 + ki

2︸ ︷︷ ︸
A∗

sin (Ω0t)

+

(
Bkr −BmΩ0

2 − Aki
)

kr
2 − 2krmΩ0

2 +m2Ω0
4 + ki

2︸ ︷︷ ︸
B∗

cos (Ω0t) . (A.3.12)
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The oscillation’s amplitude wmax can be computed as

wmax =

√
A2 +B2

kr
2 − 2krmΩ0

2 +m2Ω0
4 + ki

2 . (A.3.13)
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A.4 Validation of the Fourier Transformed FEM Procedure

From Section 4.4

A.4.1 Introduction

In this appendix, the program which implements the FEM procedure presented in section 4.4

is validated. The procedure is able to calculate structures of infinite extent in x-direction.

The properties of the structure (cross section, material properties and support conditions)

have to be stationary along x.

The chosen model is an infinite strip of concrete as depicted in figure A.4. It is loaded at the

top with a constant line load p̂ = −1 · 1010i N
m2 and fixed in all directions at the bottom.

Y
Z

p̂(kx,Ω)

b

h

Figure A.4: 2D infinite structure: geometry and load

The wavelength λ = 2π
kx

, the width and height of the problem are chosen such that the

different directions interact in a measurable way. This is the case when all dimensions

(including λ) are chosen within the same order of magnitude. The material constants are

chosen as follows:

• E = 34500 · 106 N
m2 and ν = 0.2

• ρ = 2500 kg
m3 .

The complex load p̂(kx,Ω) represents one Fourier coefficient corresponding to the wave num-

ber kx and the angular frequency Ω. The real domain representation can be obtained by
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p(x,t) = <
(
p̂(kx,Ω) · eikxx · eiΩt

)
. (A.4.1)

The load will act in different directions as the following examples will explain.

A.4.2 Reference Model

The validation is done by comparing the results to those obtained from a prismatic Finite

Element volume model with the length λ. λ thereby represents the wavelength or repetition

length in the x-direction corresponding to the wave number kx.

Y
Z

X λ =
2π

kx

b

h
A

B

Figure A.5: Volume structure for the FEM calculation of an infinite structure.

The bottom surface is fixed in all directions. The surfaces A and B (see Figure A.5) are

coupled such that all displacements on surface A equal those of surfaceB at the corresponding

point.

uA(y,z)
!

= uB(y,z). (A.4.2)
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The reference solution is calculated with the commercial FEM package ANSYS with a suf-

ficient number of volume elements. The coupling of the deflections at the end surfaces is

realised by a direct coupling of the nodal degrees of freedom of corresponding nodes.

A.4.3 Static Analysis with Loading in the z-Direction

A.4.3.1 Problem Setup

In the static analysis the angular frequency Ω is set to zero. The observed wave number

kx = 2π m
rad

such that the wavelength λ = 1 m. The lateral dimensions are b = 0.1 m and

h = 0.6 m. The load will act in the positive z-direction.

Y
Z

X

Node A

Node B

Figure A.6: Finite Element mesh with load graph and deflected structure for a sine load

A.4.3.2 Results

The results of the 2D Finite Element problem contain both real and imaginary parts. They

both can be visualised as shown in figure A.7. The real part can be interpreted to represent

the deflection at (x = 0, t = 0), the imaginary part the deflection at (x = λ
4
, t = 0).
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<(u) =(u)Y
Z

Figure A.7: 2D FEM solution real (left) and imaginary (right) part for p̂z = 1 · 1010i N
m2 and Ω = 0 rad

s .

Table A.2: Deflections [m] of the static analysis at selected points

Node / DOF ANSYS FT FEM

A / ux 0.3507 · 10−1 0.3494 · 10−1

B / uy 0.5320 · 10−2 0.5617 · 10−2

B / uz 0.9108 · 10−1 0.9093 · 10−1

A.4.4 Dynamic Analysis

A.4.4.1 Problem Setup

The method is also capable of computing the particular solution for dynamic load cases. This

is validated by the same load shape as depicted in the previous example with an additional

time harmonic function (see equation (A.4.1)). The problem is evaluated within a frequency

range from 1000 to 10000 Hz.

A.4.4.2 Results

The results can be observed in figure A.8. In general, one can observe a good compliance

with the reference solution. In some cases this does not hold for the regions in the vicinity of

resonances. This can be explained by the fact that no physical damping was introduced and
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Figure A.8: Results of the frequency sweep for different characteristic directions and locations
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thus the systems are very likely to become unstable close to resonances and small differences

may cause huge effects.

<(u) =(u)Y
Z

Figure A.9: 2D FEM solution real (left) and imaginary (right) part for p̂z = 1 · 1010i N
m2 and f = 8000 Hz.

A.4.5 Static Analysis with Loading in the y-Direction

A.4.5.1 Problem Setup

Since the implementation of the observed element is following the isoparametric approach

without any extensions or incompatibilities as e.g. shown in section A.2.3 it is conjecturable

that the element is prone to shear and volumetric locking.

In order to observe that, the setup from above is modified, such that a slender system is

subjected to a bending dominated stress state. The height of the structure is modified to

2 m and the wavelength λ is set to 10 m. The load is pointing in the y-direction.

A.4.5.2 Results

The reference calculation was done with different software packages and discretisations in

order to ensure the correctness and illustrate the key issue.

Both the FT FEM element and the used ANSYS SOLID185 with the default KEYOPT(2)=0

are prone to shear locking. Even the massive mesh refinement only leads to a poor conver-

gence behaviour. The elements using enhanced strain formulations ANSYS SOLID185 with
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Y
Z

<(u) =(u)

Figure A.10: 2D FEM model and load (left) solution real (middle) and imaginary (right) part for p̂y =
−1 · 1010i N

m2 and f = 0 Hz.

Table A.3: Deflections [m] of the static analysis at selected points

Software Package FT FEM ANSYS ANSYS ANSYS ANSYS SOFiSTiK
Discretisation y×z 1×20 1×20 4×40 1×20 4×40 1×20

Options1 - 0 0 2 2 -

Node A / ux −10.549 −10.497 −10.111 −12.887 −12.842 −12.857

Node B / uy 346.88 344.36 335.06 422.85 424.25 423.06

Node B / uz 13.295 12.321 13.155 16.177 16.265 16.190

KEYOPT(2)=2 and the SOFiSTiK brick element produce good results also with the coarse

mesh of 1×20 elements.

In order to use the validated element in stress states like in this example a different formu-

lation like for example in section A.2 for ordinary shell elements should be implemented.

1The ANSYS SOLID185 element offers different element formulations which can be chosen with the option
KEYOPT(2). KEYOPT(2)=0 is the default setting and leads to full integration with the b-bar method.
KEYOPT(2)=2 leads to an enhanced strain formulation [ANSYS, Inc. 2012].
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A.5 Calculation of Shear-Related Sectional Values

The warp shapes calculated in section 4.2.1 may be used to calculate the sectional values

used in linear beam theory.

A.5.1 Torsional Stiffnesses

A.5.1.1 Torsion Constant

For the torsion constant GIt different formulas exist using the warp shape ωV calculated in

section 4.2.1.2

GIt =

∫
(A)

G
(
ý2 + ź2 − ωV′y2 − ωV′z2

)
dA [e.g. Katz 1986] (A.5.1)

GIt =

∫
(A)

G
(
(ωV′z + ý) ý + (−ωV′y + ź) ź

)
dA [Bogensperger 2000; Kraus 2005].

(A.5.2)

ý = y − yM and ź = z − zM represent the coordinates with reference to the shear centre

(yM ; zM).

Both representations (A.5.1) and (A.5.2) can be shown to be equivalent to a third more

general one

GIt =

∫
(A)

γTV [Dω]γV dA (A.5.3)

[Dω] is explained in section 2.3.2.

γV represents the shear strain occurring due to torsion as a superposition of the uniform

rotation about the centre of rotation and the corresponding warping deformation ωV

γV =

[
γV y

γV z

]
=

[
−ź + ωV′y

ý + ωV′z

]
(A.5.4)
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For an isotropic material [Dω] reduces to

[Dω] =

[
G 0

0 G

]
(A.5.5)

If equation (A.5.5) is introduced to equation (A.5.3) it yields

GIt =

∫
(A)

G
(
ź2 − 2źωV′y + ωV′y

2 + ý2 + 2ýωV′z + ωV′z
2
)
dA. (A.5.6)

It can be transferred into (A.5.2) by once and into (A.5.1) by twice substracting

GIt =

∫
(A)

G
(
−źωV′y + ωV′y

2
)︸ ︷︷ ︸∫

(A)

τV yw∗ dA

+G
(
+ýωV′z + ωV′z

2
)︸ ︷︷ ︸∫

(A)

τV zw∗ dA

dA. (A.5.7)

The terms
∫

(A)

τV iw
∗ dA can be seen as the weighted residual of the equlibrium in horizontal

/ vertical direction weighted with the (arbitrary) test function w∗ = ωV′i. Since the shear

stresses over the section fulfil this equilibrium the integrals yield zero and they can thus be

added or subtracted arbitrarily.

A.5.1.2 Warping Resistance

The calculation of the warping resistance EIω or EAωω is straight forward using the warp

shape ωV calculated in section 4.2.1.2

EIω = EAωω =

∫
(A)

EωV
2 dA. (A.5.8)

A.5.2 Shear Stiffnesses and Shear Correction Factors

The stiffnesses for the transverse forces GASy, GASz needed for Timoshenko beam analysis

can be calculated together with the shear stiffness for shear deformable warping torsion

GASω. It is noteworthy that for a general section off-diagonal terms exist for all quantities

mentioned here. The existence of the latter is not within the standard knowledge of engineers

[Katz 2008].



A.5 Calculation of Shear-Related Sectional Values 153

The calculation concept shall be illustrated using the example of the shear stiffness GASy.

It is based on the principle of virtual forces stating equality of the virtual work performed

by the stresses ([Dω] · γ(Qy)) on the corresponding virtual deflection field (δγ(Qy)) and the

virtual work of the section force (Qy) on the generalised deflection / rotation ( δQy
GASy

)

∫
(A)

δγ(δQy)
T · [Dω] · γ(Qy) dA

!
= Qy ·

δQy

GASy
. (A.5.9)

γy = γ(Qy = 1.0) is the shear strain distribution known directly from the postprocessing of

the shear warp figures ωSi calculated in section 4.2.3. δγy = δγ(δQy = 1.0) is affine to it.

One can thus set Qy = 1.0 and δQy = 1.0 and obtain∫
(A)

δγTy · [Dω] · γy dA
!

= 1.0
1.0

GASy
. (A.5.10)

The integral in equation (A.5.10) thus yields a flexibility instead of a stiffness. They can be

transformed into each other by inversion.

As mentioned above the shear stiffnesses are coupled in the general case and so are the

flexibilities. Using the shear strains γz = γ(Qz = 1.0), γω = γ(MtS = 1.0) and their virtual

correspondants all entries of the flexibility matrix can be computed

[GAinv] =



∫
(A)

δγTy · [Dω] · γy dA
∫

(A)

δγTy · [Dω] · γz dA
∫

(A)

δγTy · [Dω] · γω dA∫
(A)

δγTz · [Dω] · γy dA
∫

(A)

δγTz · [Dω] · γz dA
∫

(A)

δγTz · [Dω] · γω dA∫
(A)

δγTω · [Dω] · γy dA
∫

(A)

δγTω · [Dω] · γz dA
∫

(A)

δγTω · [Dω] · γω dA

 . (A.5.11)

The results from equation (A.5.11) can also be used to calculate the so called shear correction

factors for non-composite sections defined as

κi =
GASi
G · A

. (A.5.12)
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B Appendix - Test Implementation

This appendix contains the implementation and application examples of a Finite Element for

a cylindrical shell structure. The shell element is implemented using generalised (sinusoidal)

ansatz functions for the discretisation in the lateral directions and linear shape functions

for the longitudinal direction. The maximum degree (number of waves in circumferential

direction) of the sinusoidal functions is variable and can be refined stepwise. By that, this

implementation represents a test implementation for the method presented in this work. It

shall determine and illustrate whether the idea of smooth generalised extended degrees of

freedom is leading to good results. Similar calculations are e.g. done in [Cremer et al. 2010]

and [Schardt 1989].

B.1 Derivation

B.1.1 Basics: Hamilton’s Principle

The derivation of the element matrices shall be done by making use of Hamilton’s principle.

It says that from all possible motions of a system always the one really occur for which the

difference between kinetic energy Ekin and potential Energy Epot has a minimum within a

time integral

δ

t2∫
t1

(Ekin − Epot) dt+

t2∫
t1

δWdt = 0. (B.1.1)

W thereby represents the energy fed into the system from outside. By the help of ansatz- or

shape functions the scalar quantities Ekin, Epot and W are derived as functions of the discrete

deflection values. By the help of variational calculus and assumptions or linearisations this

principle can be transformed into a linear system of equations where the discrete deflection

values are the unknowns.
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B.1.2 Definition of the Degrees of Freedom

The continuum of the shell can theoretically perform arbitrary deflection shapes. Some

assumptions about the ratio of thickness and radius and further simplifications allow to

introduce five deflection quantities of the mid plane which are illustrated in figure B.1b:

η . . . Deflection in the radial direction

ξM . . . Deflection of the mid plane in the tangential direction

ζM . . . Deflection of the mid plane in longitudinal

ϕϑ . . . Rotation about the longitudinal axis

ϕz . . . Rotation about the tangential axis

Y

Z

X

ϑ y

z

(a) coordinates (local and global)

η

ξM

ζM

ϕz

ϕϑ

(b) deflections / rotations

Figure B.1: Sign definitions

From these deflections and rotations and their derivatives with respect to the coordinates in

the mid plane of the shell it is possible to derive five strain quantities [Cremer et al. 2010]:
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εϑ =
1

a

(
1− y

a

)
η +

1

a

∂ξM
∂ϑ

+
y

a

∂ϕϑ
∂ϑ

(B.1.2a)

εz =
∂ζM
∂z

+ y
∂ϕz
∂z

(B.1.2b)

γrϑ =
(

1− y

a

)
ϕϑ +

1

a

(
1− y

a

) ∂η
∂ϑ

(B.1.2c)

γrz = ϕz +
∂η

∂z
(B.1.2d)

γzϑ =
(

1 +
y

a

) ∂ξM
∂z

+ y
∂ϕϑ
∂z

+
1

a

(
1− y

a

) ∂ζM
∂ϑ

+
y

a

∂ϕz
∂ϑ

. (B.1.2e)

Thereby terms containing y2 were neglected. Furthermore, the radial derivatives of the

quantities ξM and ζM were set to zero since the deflections of the mid plane are assumed to

be constant over the whole thickness of the shell.

B.1.3 Shape Functions

The five deflections η, ξM , ζM , ϕϑ and ϕz are interpolated within one element with the help

of shape functions. Along the circumferential direction these shape functions shall be sinu-

soidal functions of variable order P depending on ϑ:

Nharm1 = sin(Pϑ) (B.1.3a) Nharm2 = cos(Pϑ) (B.1.3b)

p=0
p=1
p=2
p=3
p=4

Figure B.2: Cosine shape functions in the circumferential direction for the radial deflection η.
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This choice is in analogy to [Cremer et al. 2010] where the approach is used to calculate the

sound radiation of an infinitely long cylindrical shell. Because of the fact that this thesis

shall treat beam elements, an approach with a finite length is chosen. The shape functions

in longitudinal direction shall be linear depending on z

Nlin1 = 1− z

L
(Node 1) (B.1.4a) Nlin2 =

z

L
(Node 2). (B.1.4b)

Multiplying all harmonic shape functions Nharm (for every P ) with the linear function Nlin

yields the two dimensional shape functions on the mid plane of the shell. The interpolated

representation of every degree of freedom looks like the following

u(ϑ, z) =
2∑
i=1

2∑
j=1

p∑
P=0

(
Nlini(z)Nharmj(ϑ · P ) · uijP

)
. (B.1.5)

u represents the variables η, ξM , ζM , ϕϑ or ϕz. uijP are the discrete degrees of freedom of

the system.

Figure B.3 exemplarily shows the shape functions of the deflection degrees of freedom at the

“upper edge” of the element for P = 1 which means one sine or cosine wave in circumferential

direction.

(a) ξ: tangential deflection (b) η: radial deflection (c) ζ: axial deflection

Figure B.3: Three DOFs of a cylindrical shell element for P = 1: The dashed lines show the undeformed
geometry, the deformed geometry is outlined in grey.

If several of these elements are coupled in terms of the FEM then arbitrary, straight and

prismatic pipes can be computed with increasing accuracy. If in the circumferential direction



158 B Appendix - Test Implementation

enough sine and cosine shape functions are used then depending on the shape of the load a

satisfying degree of accuracy is achieved.

B.1.4 Stiffness Matrix

The strains in the equations (B.1.2) allow to formulate the potential energy of the internal

stresses of an element

Epot =
1

2

∫
(V )

(σ · ε+ γ · τ ) dV

=
1

2

2π∫
0

h/2∫
−h/2

L∫
0

[
E

1− µ2

(
εϑ

2 + εz
2 + 2µεϑεz

)
+G

(
γrϑ

2 + γrz
2 + γzϑ

2
)]
a dϑ dy dz

(B.1.6)

with

L: length of the element

h: thickness of the wall

a: radius of the cylinder (with respect to the mid plane of the wall).

If for that the strain equation according to (B.1.2) and the shape functions according to

(B.1.5) are used one obtains an expression for Epot which depends on the discrete degrees of

freedom u of the element. From that, the entries of the stiffness matrix [K] can be computed

by

[K]ij =
∂2Epot

∂ui∂uj
. (B.1.7)

ui and uj represent the discrete degrees of freedom. The application of this formula calls for

the fact that the system of equations is linear. This is the case here.

The resulting matrix is (as typical for an element matrix) singular and the system is only

solvable after introducing the boundary conditions. Additionally, one has to note that the

shape function Nharm1 for P = 0 is always equal to 0 (sin(ϑ ·0)). The consequence is that the

potential energy of this degree of freedom is 0 as well as consequently its stiffness. This means

that the corresponding degree of freedom has to be eliminated since otherwise the system

of equations will be singular even after introducing the boundary conditions. In contrast,
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Nharm2 with P = 0 has to be considered well since it represents a in the circumferential

direction constant shape of the corresponding degree of freedom.

B.1.5 Load Vector

The load vector is obtained from the expression W in equation (B.1.1). W is in a first step

expressed by the discrete degrees of freedom

W =

∫
(V )

(u ∗ p) dV. (B.1.8)

p is a general, spatially distributed and oriented load. The load vector for the linear system

of equations is obtained by deriving W with respect to the discrete degrees of freedom. The

emerging expression equals the one resulting from the principle of virtual work when the

acting load is multiplied with the virtual deflection at the point of load application. The

entries of the load vector are obtained by

[p]i =
∂W

∂ui
. (B.1.9)

B.1.6 Mass Matrix

For dynamic calculations, the mass matrix is also needed. It can be derived from the kinetic

energy. It does not contain the derivatives of the deflections with respect to the coordinates

but with respect to time thus the velocities

Ekin =
1

2

∫
(V )

(ρu̇) dV

=
ρh

2

2π∫
0

L∫
0

[
ξ̇2
M + η̇2 + ζ̇2

M +
h2

12

(
ϕ̇2
ϑ + ϕ̇2

z +
2

a
ξ̇M ϕ̇ϑ

)]
a dy dz (B.1.10)

with

L: length of the element

h: thickness of the wall

a: radius of the cylinder (with respect to the mid plane of the wall).
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Like in equation (B.1.6) for Epot, with the help of the shape functions according to the

equations (B.1.5) one can get to an expression for Ekin which now depends on the derivatives

with respect to time of all discrete degrees of freedom u̇. This can be used to calculate the

entries of the stiffness matrix [M ]

[Mij] =
∂2Ekin

∂u̇i∂u̇j
. (B.1.11)

B.2 Applications

The element derived in the previous sections shall be used to calculate some examples and

validate the method of extended beam elements. A Finite Element model with a very fine

mesh with 1200 shell elements (see figure B.4) shall serve as reference.

B.2.1 Problem Configuration

The calculated geometry represents a lever arm with a length of three metres and a diameter

of one metre. At the support all degrees of freedom are fixed. The thickness of the wall is

three centimetres. The material parameters shall be those of a concrete with elastic modulus

E = 28309MN
m2 and Poisson number ν = 0.2.

Figure B.4: Finite Element model.
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B.2.2 Static Analysis

B.2.2.1 Load

In this example, the lever arm shall be loaded with a point load of 1.0MN in the radial

direction at the free end (see figure B.5).

1000

Figure B.5: Load case for the static analysis

B.2.2.2 Results

Figure B.6 shows the deformed system both for the FEM and the pipe element model in

an isometric view. The plots in figure B.7 on page 163 show the deflections in axial lines

(ϑ = const.) at the angular coordinate where the single load is applied.

The results converge very well except for the point where the single load is applied. Since

shell or plate theory is underlying this point is singular which means that both moment and

shear force become infinitely large. Furthermore, the smooth shapes of the sine and cosine

functions in the circumferential direction are not able to approximate the deflection of the

applied load very well.
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At points which are not close to the load, the deflection is approximated very well already

for low orders p and refinement levels n. As indicated in figure B.7a even the lowest order

p = 1 produces better results than the classical Euler-Bernoulli beam theory.

From figure B.7 one can see that both the h-refinement (using smaller elements) and the

p-refinement (elevating the used order of the shape functions) increase in small steps the

accuracy close to the singularity. The two types of refinement affect different (spacial)

directions thus both are necessary to cope with the singularity which “spreads” in both

directions.

Figure B.6: Isometric view of the deflections of the static analysis: FEM model and n = 5 cylindrical shell
elements of degree p = 4

B.2.3 Dynamic Analysis

B.2.3.1 Computation

The method shall be used to solve the homogeneous part of the solution. This means the

eigen frequencies and eigenmode shapes of the system are computed.
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Figure B.7: Deflections from the static analysis for different types of discretisation
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B.2.3.2 Results

Table B.1 on page 165 shows the calculated natural frequencies for different types of dis-

cretisation and the reference computation using classical shell Finite Elements. One can see

that depending on the discretisation some frequencies are missing.

That is due to the fact that only such shapes can occur which can be built by the super-

position of the shape functions. Some high frequencies such as the torsional mode but also

the longitudinal tension/compression mode are already found by the coarsest models. Com-

paring the number of DOFs one can say that compared to the FEM the method is highly

efficient. On the other hand, one has to admit that the stiffness matrix has a much wider

band structure than for the FEM model which reduces some of the gains when it comes to

solving the system.

B.2.4 Conclusion

These examples show that extending the classical degrees of freedom of a beam with shape

functions on a macro (sub-global) level can be a very efficient procedure. This is especially

the case if the underlying shape functions fit well with the expected deflection shape. Like

in these examples, the sub-global shape functions are likely to be smooth and thus will have

problems to accurately represent deflection shapes in the vicinity of huge discrete loads.

For dynamic applications like the determination of natural frequencies and eigenmode shapes

the procedure is even better suited since jumps or discrete loads don’t occur in this scenario.

One has to admit that the used sine shaped ansatz functions fit very well with the shapes

of the eigenmode shapes of the system. The restriction to prismatic, straight and ringlike

structures is representing a very special case where this approach is elegant but which does

not have a huge practical range of application. Nevertheless it can be seen that once the

shape functions at the section fit well with the actual deflection shape the method just like

beam methods produces very accurate results with few degrees of freedom and modelling

effort.
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