
Managing Power for Closed-Source Android OS
Games by Lightweight Graphics Instrumentation

Benedikt Dietrich, Samarjit Chakraborty
Institute for Real-time Computer Systems
Technical University of Munich, Germany
Email: {dietrich, samarjit}@rcs.ei.tum.de

Abstract—Power consumption and battery life are important
design concerns for mobile platforms. On these devices games
can be considered as one of the most demanding applications
in terms of computational cost and consumed energy. In this
demo we showcase Android-based power management for games.
We reduce the power consumption of games by scaling the
processor’s voltage and frequency. Towards this, the game’s
future workload has to be predicted. To accurately predict the
workload, previous work heavily instrumented the game’s source
code itself. The source code is typically not available for up-to-
date Android games. The work presented in this paper does not
require any modification of the game’s source code and therefore
can as well be applied to closed source games. Towards this, we
utilize the game’s communication interfaces with the operating
system to accurately predict a game’s workload. The approach
presented in the following has been implemented and tested
on the PandaBoard ES [12] and Galaxy Nexus mobile phone
with a number of popular closed-source games. Measurements
show significant power savings while the gaming experience is
maintained.

I. INTRODUCTION

The increasing gap between the computational demand and
battery capacity more than ever requires sophisticated power
management algorithms. Especially, on portable devices like
Android-based smartphones battery life is an important design
concern. On these devices highly computational intensive
games are a popular class of applications. Typically, games
are not programmed in a power aware fashion, but are solely
optimized for high frame rates and a good gaming experi-
ence. However, as shown in [3], frame rates above particular
boundaries do not improve the gaming experience of most
players and therefore are not required. In particular, for games
played on relatively small displays like on smartphones the
optimization for high frame rates can be questioned.

In our work we maintain a constant frame rate that is high
enough to guarantee a good gaming experience. The frame
rate is kept constant and power savings are achieved by scaling
the processor’s voltage and frequency up or down depending
on the workload of future frames. Power management based
on such prediction of the future workload is a very general
approach applicable to both video and game applications. In
case of games, accurate timing measurements of previously
seen frames are required to predict the next frame’s workload.
To the best of our knowledge, all previous approaches are
based on instrumenting the game’s source code to gather the

required timing information. The need for the source code’s
modification, however, restricts the applicability to a very
small and not very meaningful selection of games.

In our demo we present an approach that does not require
such modifications, but instead utilizes the game’s communica-
tion interfaces with the underlying Android operating system.
Thus, our method is applicable to any Android-based game.
The demo is based on a PandaBoard ES [12] which has been
modified to allow accurate power measurements. Additionally,
a Galaxy Nexus phone is used to demonstrate the approach on
a popular smartphone. Our setup opens up the possibility of
evaluating any power management scheme on different closed-
source Android-based games running on an ARM processor,
which is representative of processors on portable devices like
mobile phones.

II. RELATED WORK

Previous work in the domain of application specific power
management mainly focused on video playback applications.
In this context, control theoretic approaches like PID con-
trollers and more complex algorithms (see [1], [2], [6]) have
been successfully utilized to predict the decoders upcoming
workloads. These video-specific algorithms rely on buffering
frames which is not a feasible approach for game applications.

Previous work on power management for games presented
in [11] allowed the user to directly evaluate the current
performance and the CPU has to be accordingly scaled up
or down statically. Clearly, such approaches requiring user
intervention will either lead to undesired frame rate drops in
more demanding scenes or will not take full benefit of the
potential power savings. Online workload prediction, similar
to the video domain, has been shown in [5] and [4]. However,
all of the above mentioned methods require the instrumentation
of the game’s source code. This in turn restricts the application
range to a very small and not very meaningful choice of
games. Moreover, it requires a good knowledge of the source
code itself to be able to instrument the game at the right
place. To the best of our knowledge, the approach presented
in the following is the first approach to utilize the game’s
communication with the underlying OS and libraries for an
accurate workload prediction and power management.

III. DESIGN AND IMPLEMENTATION

In the following section we will describe the implementation
issues of our power management algorithm. First, we will give



Fig. 1. System Architecture Overview.

a short introduction to the workload prediction technique for
games that we use. Our setup of course can be used for other
prediction techniques as well.

A. Time Series-based Workload Prediction

As described in [5], [4], the workload of a game’s next
frame is predicted based on the workload of previous frames.
For example, using an Auto-regressive Model-based predic-
tion, the next frame’s workload is computed using the follow-
ing equation:

c̃[i+ 1] =

n−1∑
k=0

wk c[i− k], (1)

where c[i] is the measured execution time in cycles of the
i-th frame and c̃[i + 1] the prediction for the next frame.
The weights wk are learned once and then kept constant.
Thus, for the workload prediction the execution time of each
frame needs to be measured. In the following we will describe
how this execution time can be measured in Android without
instrumenting the game’s source code itself.

B. Android Implementation Details

Figure 1 gives an overview of the system architecture.
Typically, Android games are written in Java and executed
in their own Dalvik Virtual Machine. Besides computations
like AI, physics and game logic, a game needs to render the
game scene onto the screen. Dalvik provides the Java Native
Interface (JNI) to allow games to make calls to native C/C++
libraries. The game uses this interface to call native OpenGL
ES and Embedded Graphics Library (EGL) [10] functions.
Calls are then forwarded to the GPU driver and finally to
the GPU where the content is rendered to the so-called back
buffer. Once the game has finished all computations for the
current frame and issued all the required render calls, the
eglSwapBuffers() function residing in the Embedded
Graphics Library (EGL) is called by the game. This will cause
the GPU to swap between the front and the back buffers. As
a consequence the frame’s content is shown on the display.
It may be noted that in our work we assume that the game
does not perform any frame rate control itself, but instead
calls eglSwapBuffers() as often as possible in order to

maximize the frame rate because a higher frame rate is directly
associated with a better game experience for most games.
This behavior has been observed for all the games used for
evaluating our technique. In future, a game induced throttling
could be detected by additionally taking the game’s idle time
into account by for example, detecting sleep-related calls.

In our work we leverage this standardized interface and in-
strument the eglSwapBuffers() function. Each time this
function is called, we record a cycle accurate time stamp which
then is used as input to our workload prediction. However,
scaling the processor’s frequency is only allowed in kernel
mode. Towards this, we have implemented our own Android
power management governor. At the load time this kernel
module populates a character device to the system and creates
a device node to allow user to kernel space communication.
The first time a game issues an eglSwapBuffers()call,
this device node is opened. In the following calls the opened
node is used to send the recorded time stamps to the governor
via ioctl syscalls. The governor receives the time stamps
and performs the workload prediction according to Equation
(1). Based on the prediction result and the desired target frame
rate the required frequency is computed. The frequency is
quantized to one of the available CPU frequencies and the
scaling is initiated. An interface is provided to allow the
configuration of the game’s target frame rate. Moreover, for
each known game a default target frame rate is stored which
has been found to give a good gaming experience.

Our prediction algorithm is optimized for game applications.
As not only game applications run on Android we detect
the current application’s type. This is done by comparing the
name entry in /proc/APPLICATION’sPID/status with
a provided list of known games. If the current application
is found in the list, a game identification number is sent to
the kernel module. Otherwise, the governor is notified that
currently not a game has the focus. Depending on the appli-
cation’s type the governor will either perform game optimized
power management or behave as default Interactive An-
droid power management governor.

IV. DEMO SETUP AND PROOF OF CONCEPT

We have implemented the approach described above on two
Android devices, namely the Pandaboard ES [12] attached to
a 10” Multitouch LCD Display and a Samsung Galaxy Nexus.
Both devices are based on an OMAP4460, a dual core ARM
Cortex-A9 1.2GHz Mobile processor from Texas Instruments
[9].

The demo includes the measurement setup depicted in
Figure 2. We have modified the PandaBoard to allow power
measurements with the help of shunt resistors. The Texas
Instruments INA199 [8] amplify the corresponding voltage
drops at the shunt resistors. The amplified voltage is then
measured with the help of the analog digital converters of a
Texas Instruments MSP430 [7] at a sampling rate of 50 kHz.
A GPIO pin of the PandaBoard triggers the MSP430 to start
the measurements synchronized with the start up of the game.
Once the player exits the game, the MSP430 is again signaled



PandaBoard ES

CPU

GPU

Periphery

INA
199

INA
199

INA
199

MSP430

I/O Signal

ADC
Shunt

Shunt

Shunt

Fig. 2. Measurement Setup

Fig. 3. Experimental Setup consisting of the modified PandaBoard (lower
left), the Multitouch LCD (upper right) and the Power Measurement Unit
(upper left).

TABLE I
OVERHEAD MEASUREMENT RESULTS

Type Average Overhead
Read Cycle Counter 71 cycles
ioctl syscall 989.7 cycles
Workload Prediction 207.3 cycles
Voltage Frequency Scaling 241 - 852µs

and the measurement is stopped. The power measurement
results are shown on the display attached to the MSP430.
The real setup consisting of the modified PandaBoard, the
Multitouch LCD and the power measurement unit is shown
in Figure 3. The Android governor can be changed to allow
a comparison between the default Interactive and our
Gaming governor. In addition, we have used the Samsung
Galaxy Nexus to show the implementation running on a
commercial Android device. The setup has been tested
with popular games like Dragonfly, Jetpack and TurboFly
3D on the PandaBoard and additionally on the Samsung
Galaxy Nexus with the highly demanding Shadowgun game.
Significant power savings could be observed without an
visible impact on the gaming experience.

Overhead: the proposed implementation comes with a com-
putational overhead. The results of the overhead measurements
are given in Table I. Reading the ARM’s cycle accurate time
stamp takes 71 cycles in average. The ioctl command to

the Android governor in average consumes 989.7 cycles. The
workload prediction itself is performed in average within 207.3
cycles. Scaling of the voltage and frequency is the largest
contributor to the total overhead and depends on the current
and the target frequency. Measurements have shown that the
switching time ranges from 241µs to 852µs per scaling.
Assuming a game running with 30 frames per second, the
total overhead in the worst case is 2.59 %.

V. CONCLUSION AND FUTURE WORK

In our work we have shown how Android can be extended
to allow application specific power management for games.
Previous work on power management for games has been
restricted to open-source games as code instrumentations were
required. In contrast, our proposed setup gives the possibility
to evaluate power management algorithms for any Android-
based game for which the source code is not available and
hence cannot be instrumented. Further, we have modified the
PandaBoard and integrated a low-cost power measurement de-
vice. As measurements are directly controlled by the Android
OS, repeatability and high accuracy is guaranteed. The setup
can now be used, to evaluate the efficiency of game specific
power management governors for any Android-based closed
source games running on an ARM processor.

Future plans target to instrument other OpenGL calls and
evaluate if OpenGL call patterns can be leveraged to further
improve the workload prediction.

ACKNOWLEDGMENT

The work reported in this paper was partially funded
through a joint project with the Microprocessor Lab of Intel
Labs Germany. We specially thank Matthias Gries for his
helpful comments.

REFERENCES

[1] A Acquaviva, L Benini, and B Ricco. An adaptive algorithm for low-
power streaming multimedia processing. In Design, Automation and
Test in Europe (DATE), March 2001.

[2] K Choi, K Dantu, W.-C. Cheng, and M Pedram. Frame-based dynamic
voltage and frequency scaling for a MPEG decoder. In International
Conference on Computer-Aided Design (ICCAD), November 2002.

[3] M Claypool, K Claypool, and F Dama. The effects of frame rate and
resolution on users playing First Person Shooter games. In ACM/SPIE
Multimedia Computing and Networking (MMCN), January 2006.

[4] B Dietrich, S Nunna, D Goswami, S Chakraborty, and M Gries. LMS-
based low-complexity game workload prediction for DVFS. In ICCD,
pages 417–424, 2010.

[5] Y Gu, S Chakraborty, and W T Ooi. Games are up for DVFS. In Design
Automation Conference (DAC), July 2006.

[6] C J Hughes and S V Adve. A formal approach to frequent energy
adaptations for multimedia applications. In Intl. Symp. on Computer
Architecture (ISCA), June 2004.

[7] Texas Instruments. MSP430F551x MSP430F552x Mixed Signal Con-
troller. 2009.

[8] Texas Instruments. INA199A1 Voltage Output , High or Low Side
Measurement , Bi-Directional Zero-Drift Series INA199A1. Technical
report, 2010.

[9] Texas Instruments. OMAP4460 Data Manual. Technical Report January,
2012.

[10] Khronos Group. Embedded Graphics Library.
[11] A Mallik, B Lin, G Memik, P Dinda, and R P Dick. User-driven

frequency scaling. IEEE Computer Architecture Letters, 5(2):16, July
2006.

[12] Pandaboard.org. Pandaboard ES - System Reference Manual. 2011.


