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I. INTRODUCTION
A. The Challenge of Skill Acquisition

Cognitive development [1] gives rise to the major challenge
of skill acquisition, i.e., the learning of a new physical skill
for object manipulation. This learning is very difficult because
the system designer cannot specify a priori all the necessary
robot actions depending on the latest states of objects and
environmental conditions. Even slightly different environments
or facing new objects lead to an undesirable re—programming
of the action programs of the robot.

B. Related Work

At the perceptual level, approaches to skill acquisition
are imitation learning and coaching. Researchers created an
imitation learning system [2], [3] controlling a humanoid
robotic hand. Their imitation system learns hand postures by
observing the hand of a human with a camera. Their imitation
system uses a higher order Hopfield network (HHOP) as the
main mechanism. In [3], Chaminade et al. showed that the
HHOP was able to generalize between the learned patterns to
a limited extent, i.e., it could generate a few new gestures
correctly even though they were not trained a priori. On
the way from the perceptual level to motor control, system
designers have to deal with object manipulation. In embodied
cognition, objects are represented by sensorimotor patterns to
reduce the symbol grounding problem [4]. Worgdtter et al.
introduced their concept of object—action complexes [5] to
describe possible actions, which a robot can perform on a
given object.

C. Our approach

Our long term goal is the creation of a new cognitive
architecture for skill acquisition. A cognitive architecture [6] is
fundamental to any intelligent robot. In this paper, we present
a first part of our future architecture. That part is based on
our idea of meaningful associations. So far, a meaningful
association is the link between a given percept, a learned
goal state, and a corresponding action leading to that goal
state, similar to the concept of object—action complexes. But
at a later developmental stage, a meaningful association also
includes cross links to abstract values (good or bad percepts
/ actions) and memories, which bias the current actions of
the robot. For these associations, we do not provide a priori
symbolic knowledge at all, instead we put the emphasis on
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the close interaction between the robot, its local sorrounding,
and its human coach. A human coach shows the robot these
meaningful associations by giving tactile feedback. Through
continuous interaction with objects and a coach, the robot
increases the amount of such associations, representing an
increase of knowledge. Knowledge is internally stored by
forming goal—directed memory contents. So far, these contents
ground themselves in associations between sensorimotor and
neural patterns, representing percepts, goals, and goal—directed
actions (later, also values). Our approach has the potential
to exploit many cross—modal associations, e.g., visual, tactile,
which can in turn bias the behaviour of the robot in a useful
manner. Therefore, we developed the foundations [2], [3] in
the following ways:

As a part of our cognitive architecture, we created a perception
system with goal-directed memory to trigger goal-directed
physical actions of the robot (a Humanoid Robot NAO).
Our perception system processes latest visual data, enables
visual servoing, and influences the behaviour of a robot by
using previous experiences stored in an episodic memory
module. The episodic memory is implemented by Hopfield
networks. First, in contrast to [2] and [3], we extend the feature
space of the Hopfield networks in order to capture not only
simple shapes, but also basic colours. Second, we combine
the memory output with a pattern associator, in order to link a
recalled percept to a learned goal state. This goal state can in
turn trigger a corresponding goal—directed action of the robot
resulting into a new percept.

II. SYSTEM DESCRIPTION

A functional diagram of our perception system with goal—
directed memory is depicted in Fig. 1. The sensor modalities
of our system are vision and tactile feedback. However, the
main modality is vision using any colour camera built into a
robot. Tactile feedback only initiates the storage of the latest
percept into the episodic memory. We implemented several
fields of simple receptive cells, each responsive to certain
visual features, such as shape, contour, and colour. Currently,
we use four types of simple receptive cells, so called simple
retina cells, as well as higher level receptive cells. Simple
receptive cells are sensitive to shape and contour, mainly of
objects in the foreground, and to each of the basic colours red,
green, and blue. Each of these cells corresponds to a bipolar
neuron, i.e., it fires (activation value +1) when a certain feature
is present, or it does not fire (activation value —1) when the
feature is absent. A higher level receptive cell is only active,
when both a shape cell and a corresponding colour cell are
active at the same time. We implemented a simple, but robust
and flexible visual servoing module, which directs the head
of the robot towards an object of interest. Our visual servoing
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Fig. 1.  Our perception system with goal-directed memory, depicted in
functional diagram 1(a). Simple receptive cells emulate bio—inspired vision.
Visual servoing directs the head of the robot to an object of interest, e.g., a
green cup. A human coach guides the learning by giving tactile feedback, see
fig. 1(b). Tactile feedback activates the storage of visual patterns through the
episodic memory. The percept—goal associator links a recalled visual pattern to
a goal, which in turn triggers goal—directed actions of the robot. Goal-directed
actions are realized by sensorimotor modules. During an executed action, the
system is in a closed loop with its environment, and open to new (recalled)
percepts and tactile feedback. These can influence the executed action at any
time.

module moves the robot head, so that the object is in the
middle of the field of view of its camera. Here, an important
aspect is to note that at this stage, our perception system does
not regard an object as an object. Our overall system will
bootstrap this skill of higher level categorization at a later
developmental stage, after enough interactions between the
robot and environment have occurred. The activation signals
from the simple as well as higher level receptive cells run
into the episodic memory module. The storage of percepts
is triggered by tactile reinforcement on the robot through a
human coach. The episodic memory uses either the classic
Hopfield network [7], or the higher order Hopfield network
(HHOP) presented in [2], [3]. The drawback of the HHOP is
its huge need of computer memory (given N neurons, then
N3 weights need to be saved, compared to N? weights in
a classic Hopfield net). However, the advantage of HHOP is
its limited ability to generalize to new patterns based on the
already learned ones [3]. The episodic memory recalls a known
visual pattern, e.g., of an object the robot has experienced
before. The percept—goal associator links an abstract goal (e.g.,
lift the object up) to that recalled visual pattern by using a
feedforward neural network. The goal state is represented by
a neural pattern, which self-emerges through the interaction

with a human coach. In sum, once the robot sees an already
known object, our perception system recalls a visual pattern
representing that object. The recalled visual pattern is in turn
associated with a suitable goal (affordance, e.g., lift the object
up) enabling the robot to initiate action programs leading to
that goal.

ITII. RESULTS

Our perception system is a part of our new cognitive
architecture and is still an ongoing project. The simple and
higher level receptive cells as well as the visual servoing
module are fully implemented. So far we focused only on that
part of the episodic memory, which responds to shape and
contour. Within that part, we compared the classic Hopfield
and higher order Hopfield network (HHOP) performance. We
validated that the classic Hopfield network as well as the
HHOP are not sufficient for usage as an episodic memory
for a cognitive architecture when only the feature of shape
and contour is considered. This is due to the consideration of
only one feature (shape respectively contour) on the one hand,
and to memory interferences on the other hand. We showed
that the addition of colour features enhanced their performance
by increasing the dimensionality of the overall stored pattern.
Like Chaminade et al. [3], we observed that new patterns
emerged within the higher order Hopfield network, which were
not stored previously. All the implemented modules of our
system run successfully on a NAO robot according to the
descriptions in part II.

IV. CONCLUSION

We presented a perception system with goal-directed me-
mory forming an important part of our cognitive architecture.
Our perception system uses basic visual features and relies on
tactile feedback given by a human coach to create meaning-
ful associations between percepts and goals triggering goal—
directed actions.
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