
   

 

Abstract 

The work presented herein addresses traffic modelling and optimization of roadway infrastructure 

rehabilitation for urban roadway networks and travels of approximated origins and destinations, by 

means of an entropy-based formulation of their vehicular movements and the impact caused by 

scheduled roadway closures. The perceived level of disorder (entropy metric) caused by the numerous 

vehicle-traveller trips in the domain under examination is subsequently utilized for the formulation of 

a multi-year scheduled maintenance policy in order to minimize the entropy in the system. The 

entropy-based analysis takes into consideration not only vehicular movements and traffic counts 

between multiple origins and destinations, but also annual maintenance budgets and costs, 

maintenance priority rules, and resource constrains. The optimization goal is to improve on 

maintenance schedules and minimize the impact of road closures on travellers subject to preset annual 

budgetary and road closure constraints.  The proposed entropy-based model is shown to perform 

particularly well and to be an effective tool for evaluating the distribution of traffic loads and for 

appraising the level of disorder caused in a network. Furthermore, the entropy-based method is shown 

to be an excellent metric for evaluating fluctuations in traffic and/or resource assignment distributions 

(especially equiprobability). These properties can in turn be used for devising annual maintenance 

schemes and for reducing traffic loads and maintenance impacts on traffic arteries of interest. The 

work presented is also compared to agent-based infrastructure impact analysis (most notably Ant 

Colony Optimization) previously reported on by the researchers.  

Keywords: infrastructure maintenance, scheduling, optimization, entropy. 

1 Introduction 

Roadway maintenance planning and urban traffic modelling are highly complex problems, 

especially in urban domains with complex street networks and high volume of unplanned vehicular 

movements. Roadway maintenance planning in such locales involves both the study of the street 

network topology but also the travel patterns (origins, destinations, paths) and the maintenance 

parameters (annual budgets, work prioritization, duration and cost of maintenance work). The 

aforementioned parameters are often difficult to evaluate and the underlying maintenance and 

transportation problem resolves to a stochastic (simulated) or fuzzy-estimated problem. One such 

possible approach to arriving at roadway maintenance and work prioritization plans involves the 

modelling of vehicular traffic by means of the “entropy-maximization method” (Christodoulou 

2010a); a method that has previously been shown to have direct applications in transportation 
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planning and by which the theoretical basis for a class of forecast models on traffic demand can be 

based. 

The work presented herein builds on previous work by Christodoulou (2010a), addressing traffic 

modelling by means of an entropy-based formulation of the vehicular movements in the domain 

studied, and work by Christodoulou (2010b) and Lukas and Borrmann (2011) on ant colony 

optimization and its application to path routing and maintenance scheduling. The former provides the 

mathematical framework of entropy and of the entropic metric utilized in measuring the impacts of 

vehicular movement. The latter describes the maintenance optimization problem in study and provides 

the theoretical framework for ant colony optimization and its applicability to path routing. 

2 Problem statement 

Traditionally the planning of maintenance measures in urban locales is done manually and ad-hoc. 

City and traffic planners typically execute maintenance measures (including planned or unplanned 

lane closures) primarily aiming a minimal impact on the commuters and subject to several constraints. 

Such constraints should be, for example, the maintenance budget, the cash flows, the network’s traffic 

capacity, the impacts of roadway closures, the operating condition of the network, the severity and 

extent of the work required, the social impacts, the stakeholders and their collective influence, the 

prioritization of work, the tolerance to traffic delays and the availability of alternative operational 

pathways from one destination to another.  

With the above in mind, the fundamental question to be answered in a typical roadway 

maintenance planning problem is twofold: (1) how can one analyze the multiple objectives and 

constraints and optimize/prioritize the maintenance measures, and (2) how can a reasonably good 

estimate be made of the traffic flow in a network, given the number of travellers, their origins and 

their destinations? Furthermore, as a corollary, how can this analysis be used in minimizing the 

impact of lane closures on traffic flow. 

It should also be noted that in finding an optimal maintenance schedule one has to address not only 

the minimization of the impact on the traffic flow but also the minimization of the risk-of-failure of 

each network segment. For example, all road network bridges have to be maintained before they reach 

a state of collapse.  

3 State of knowledge 

To-date a number of studies on infrastructure assessment and roadway maintenance have been 

undertaken. The intent of such studies has traditionally been to assist city planners and roadway 

managing agencies in improving their maintenance plans and in minimizing the impacts of 

construction work or roadway closures on commuters.  

The vehicle routing problem (VRP) has been researched extensively over the years and numerous 

methodologies have been proposed (Samanta and RoY, 2005) ranging from mathematical models, to 

numerical models, and most recently artificial intelligence techniques. Examples of such research 

work are given below. An algorithm calculating time-dependent shortest paths from all network nodes 

to a given destination node can be found in Ziliaskopoulos and Mahmassani (1993), while a 

multimodal trip distribution function and a methodology for measuring accessibility and effectiveness 

of road networks by use of the impedance curves in their proposed model can be found in Levinson 

and Kumar (1994). Heuristic algorithms for solving general transit network design problems were 

subsequently introduced by Baaj and Mahmassani (1995) and Braca et al. (1997). The work by Li et 

al. (2002) looks at a combined model for time-dependent trip distribution and traffic assignment, 

assuming known time-dependent departure rates from origins and overall arrival rates at destinations. 

The model then seeks the estimation of the origin-destination matrix according to the observed 



   

 

entropy value and the subsequent minimization of the total system travel time. A mixed-integer 

multiple-commodity network flow model formulating bus movements and passenger flows at various 

time intervals was also examined and presented in Yan and Chen (2002). The model manages the 

interrelationships between passenger trip demands and bus trip supplies to produce the best bus routes 

and timetables for the given network. Notable are also the various artificial intelligence techniques 

applied to VRP, such as genetic algorithms (Chien et al., 2001; Baker and Ayechew, 2003; Fan and 

Machemehl, 2006; Thangiah and Nygard, 2005), interactive meshing, neural networks and 

evolutionary algorithms (Creput and Koukam, 2007). 

In terms of entropic measures and their application to VRP, notable are the general models in 

Chandler et al. (1958), examining traffic dynamics and liking driving as an action done on the verge 

of instability, as well as the works in Wang et al. (2006) and Wilson (1970a, 1970b) on the concept of 

entropy and on equilibrium distributions derived from kinetic energy and from entropy maximization 

as tools that may allow the prediction of the consequences of specific policy decisions. A method for 

estimating the optimal distribution of cars in a traffic network based on a variant of the maximum-

entropy method was presented in Das et al. (2000) and a general multi-objective transportation 

problem with an additional entropy objective function was presented in Samanta and Roy (2005). A 

generalized transport planning model based on entropy maximization, for both symmetric and 

asymmetric traffic flow was also presented in Agrawal et al. (2005), whereas an entropy approach to 

describing inhabitant trip distributions and developing a model based on origin moments was 

described in Wang et al. (2006). 

4 The use of an entropic metric for traffic modelling and roadway 
maintenance planning 

Entropy is generally thought of as a metric of a system’s state of disorder (the higher a system’s 

entropy is, the more disordered the system is) and generally systems tend to move toward higher 

entropy values, at which system stabilization may be sought. As a metric, entropy’s relation to 

disorder may have a direct application to traffic flow accounting since it allows a traffic planner to 

utilize the entropy metric to approximate the vehicular movement in the network at a state close 

traffic chaos.  

In general terms, entropy is defined as the uncertainty associated with traffic movements in the 

space boundaries under consideration and is related to the probability distribution of traveller-trips 

within the system by origin and destination. In mathematical terms, the fundamental general equation 

for entropy is Eq. (1), 

 

(1) 

and the basic assumptions and equations for the transportation problem are as follows. 

If we assume that the network in examination consists of no origins and nd destinations, and we 

define Pij as the probability that a number of vehicles originates from location i destined to location j 

during the time interval of interest, then by use of Eq. (1) the total system vehicular entropy becomes 

 

(2) 

where, Px is the probability of occurrence of event x, which in the absence of a probability distribution 

function can be assumed to be the statistical probability for event x. In the case of traffic modelling, 

Pij can be expressed in terms of the traffic loads (Tij) between locations i and j as a percentage of the 
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total traffic (T) in the system. Since a closed system is assumed, the entropy-maximization traffic 

modelling problem can be expressed by, 

 

(3) 

subject to, 

 

(4) 

with Oi being the total volume of traffic originating from region i, and Dj being the total volume of 

traffic arriving at region j. As shown in Agrawal and el. (2005) and Christodoulou (2010), the entropy 

equation can be refined by considering a subdivision of the network into smaller regions of interest, 

the existence of various traffic flow paths in the network and the vehicular movements in-between the 

regions. The revised equations (Christodoulou, 2010) become, 

 

(5) 

subject to, 

 

(6) 

The parameters in Eq. (5)-(6) are defined as follows: i and j are the regions of interest; Tij is the 

traffic between regions i and j; T is the total traffic flow generated in the system; K is the total number 

of blocks in the system; Ui is the probability of traffic originating from region i; Vj is the probability 

of traffic destined to region j; Ui is the probability of traffic originating from region i of some block k 

and destined to various regions of the same block; Vj is the probability of traffic destined to region j of 

some block k and originated from various regions of the same block; and ak and bk are the set of 

origins and destinations respectively that belong to block k. 
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5 Case study network 

5.1 General problem definition 

Given a roadway network consisting of nr road segments of variable unidirectional or bidirectional 

traffic flows and capacities, nj junction nodes, no origins and nd destinations, a multi-year maintenance 

time horizon nt, annual maintenance budgets br and additional network parameters as shown in Table 

1, optimize the roadway maintenance schedule so as to minimize the impacts to traffic flow while also 

satisfying all budgetary and operational constraints set on the road network. 

5.2 Model network 

Figure 1 shows the topology of the case-study roadway network. The network, which was reported 

upon by Lukas and Borrmann (2011), consists of 103 streets in need of maintenance in the next 15 

years. Of the 103 streets, a maximum of only 10 streets can be maintained each year. Maintenance 

reduces the vehicular capacity of a street by 50% and maintenance schedules shall be developed for 

the next 5 years. The maintenance costs per street, the annual budget constraints, the street capacities 

and the number of travellers per origin and destination are also given (the parameter notation and the 

values utilized in the analysis are shown in Table 1).  

 

 

Figure 1. Case-study traffic network (adopted from Lukas and Borrmann, 2001) 

 

 

 



   

 

 
Table 1. Parameters of model network (Figure 1). 

Parameter Notation Value Comments 

MaintenanceTimeHorizon t 5 years Constraint 

MaintenanceMaxAnnualBudget  bt 3.0 million Constraint 

MaintenanceMaxRoadsClosedPerAnnum mt 10  Constraint 

    

RoadNodes nj 61  

    TrafficOriginatingFromNode oj Variable  Stochastically distributed 

    TrafficDestinedToNode dj Variable  Stochastically distributed 

RoadSegments nr 103  

    RoadHourlyCapacity hr Variable  

    RoadLength lr Variable  

    RoadDeadlineToRepair rr Variable  

    RoadCostToRepair cr Variable  

    RoadVehicularCapacity pr Variable  

    RoadTrafficFlowDirection fr Variable  

Areas na 23  

    AreaOriginatingFrom ga Variable Stochastically distributed 

    AreaDestinedTo sa Variable Stochastically distributed 

Travellers nv 12700  

NumberOfPossiblePaths np 855  

6 Solution methodology 

Solution of the case-study problem entails the conversion of the network topology into a directed 

graph with arcs representing the road segments and with nodes representing the road junctions. The 

arcs are directional (to indicate traffic flows) and have vehicular capacities, while each enclosed area 

(neighbourhood) has a number of residing travellers whose origin (starting node) and destination 

(ending node) are stochastically distributed. The network topology is completed with a nodal 

connectivity matrix and a path list, so as to provide the means to simulate traffic movements and to 

calculate the entropy caused by path, road segment and node. 

The network, mapped in a typical spreadsheet, is solved by means of a commercially available 

Monte-Carlo simulation program (Oracle Crystal Ball
TM

). One million simulation runs per solution 

stage (i.e. for each annual maintenance cycle) are executed, simulating at each simulation run the 

following: the vehicular load by origin and destination node, the path chosen by each commuter and 

the roads closed for maintenance (<=10 per annum). The entropy values for each traversed path are 

computed by use of Eq. 5-6 and then distributed equally among the road segments on the path. The 

total system entropy, the total annual maintenance cost and the total number of road segments 

maintained per annum are then maximized (subject to the predefined budget and road closures 

constraints) and the solution refined until converge to an optimal solution is obtained (Fig. 2). To 

avoid a computationally-demanding exhaustive enumeration and to accelerate convergence (Fig. 2), 

the simulation utilizes a neurofuzzy modeller (Oracle Crystal Ball Decision Optimizer
TM

) which cuts 

the computation time to about 30 minutes per optimization stage (i.e. for each annum).  

 



   

 

 

Figure 2.  

7 Results 

The aforementioned entropy-maximization approach to the roadway maintenance case-study problem 

results in the maintenance plan shown below (Table 2). The solution satisfies all objectives and 

constraints set in the definition of the problem and compares favourably with the solutions obtained 

by Lukas and Borrmann (2011) by use of ant colony optimization (ACO). 

 
Table 2. Obtained 4-year maintenance plan 

Road  Repair 

By (year) 

Repair 

On (year) 

Cost  

to Repair 

 Road  Repair By 

(year) 

Repair On 

(year) 

Cost  

to Repair 

3 2 1  175,413     6 4 3  186,502    

7 1 1  100,724     9 3 3  153,449    

38 1 1  165,837     15 4 3  143,094    

44 1 1  305,387     33 3 3  239,770    

53 2 1  149,668     43 5 3  398,524    

58 1 1  288,728     45 4 3  144,784    

61 1 1  395,741     54 3 3  358,998    

84 2 1  399,980     68 3 3  110,824    

89 1 1  332,759     76 4 3  108,887    

91 1 1  176,272     95 4 3  176,630    

8 3 2  374,924     16 4 4  271,226    

12 2 2  260,778     17 5 4  356,477    

21 3 2  229,205     28 6 4  127,274    

47 2 2  306,319     31 8 4  348,431    

66 2 2  181,367     35 6 4  112,406    

71 4 2  134,330     48 7 4  149,803    

77 4 2  399,287     56 5 4  292,245    

80 4 2  352,658     57 6 4  186,596    

81 2 2  225,730     73 8 4  108,377    

90 6 2  397,694     92 5 4  329,473    

8 Conclusion 

The proposed entropy-based model is shown to perform particularly well and to be an effective tool 

for evaluating the distribution of traffic loads and for appraising the level of disorder caused in a 

network. Furthermore, the entropy-based method is shown to be an excellent metric for evaluating 



   

 

fluctuations in traffic and/or resource assignment distributions (especially equiprobability). These 

properties can in turn be used for devising annual maintenance schemes and for reducing traffic loads 

and maintenance impacts on traffic arteries of interest. As in the case of ACO, the entropy-

maximization method provides good solutions to the underlying NP-hard maintenance planning 

problem by use of an intelligent path traversal algorithm. Unlike ACO or other heuristic techniques, 

though, the entropy-maximization method is guaranteed to converge to a good solution without falling 

into local minima. It should also be noted that the entropy method does not utilize any traffic 

simulator (such as VISUM) to account for the traffic impacts in the network, since the computation 

relies only on the origin and destination of each traveller (Eq. 5-6). This attribute reduces the 

computation time significantly compared to agent-based infrastructure impact analysis methods.  

Ongoing and future work on the subject matter aims the incorporation of additional optimization 

goals and constraints in the analysis (beyond the traffic impact, maintenance deadlines and budget 

constraints) and increased computational efficiency of the algorithms used. 
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