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Abstract

Single view reconstruction denotes the task of estimating the 3D geometry of an object
from only a single input image. The problem is inherently ill-posed as unique depth
is only recoverable for very special cases and within controlled environments. Existing
approaches, therefore, require demanding user input to solve the problem.

In this thesis we take a variational approach to the interactive 3D reconstruction
of closed objects relying on simple and intuitive user input. The key idea is to com-
pute minimal surfaces, a principle which is common for natural and man-made objects.
Furthermore, the minimal surface must comply with the object’s silhouette which is
extracted from the input image by a simple user guided segmentation.

For improving the reconstruction quality we propose three constraints, which are in-
cluded in the minimal surface approach. Firstly, a constraint on the object volume averts
flat reconstructions and controls the compactness of the object. The second constraint
imposes characteristic shape information which scales with the object volume. The
last constraint relates the sizes of object parts and allows for self-occlusions, dents and
protuberances. Moreover, we propose a new method that infers the shape information
automatically from the shading in the input image.

To compute the reconstruction surface an energy functional is minimized via convex
relaxation and fast primal-dual schemes. The solution can be shown to be either globally
optimal or to lie within small bounds from the optimum. To accelerate the reconstruction
process, we conceive, implement and compare several numerical optimization methods,
among others the Fast Iterative Shrinkage Thresholding Algorithm (FISTA), the Alter-
nating Direction Method of Multipliers (ADMM), parallelized Succesive Overrelaxation
(SOR) and Primal-dual (PD).

The developed single view 3D reconstruction software keeps necessary user input sim-
ple and intuitive, it harnesses parallel computation hardware for an efficient reconstruc-
tion process and compares well to state-of-the-art methods.
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1 Introduction

This thesis deals with the problem of inferring 3D geometry of one or several objects
from just a single image. In particular, we will concentrate on estimating closed repre-
sentations of objects, which can be viewed from all directions, instead of mere height
fields.

The problem of single view 3D reconstruction - as we will denote this task throughout
this thesis - is one of the fundamental tasks in computer vision, yet it is still far from
being solved. It may surprise at a first glance, that compared to other popular fields
there are few works that deal with this fundamental task. However, being one of the most
ill-posed tasks in computer vision, single view 3D reconstruction is an extremely hard
problem. Since it is mathematically impossible to invert the image formation process
based on a single image, approaches to single view 3D reconstruction have to confine
their reconstruction domain to very specific problems and make strong assumptions on
the objects, their geometry or the original images.

This thesis will be no exception. We will have to focus on certain types of objects,
feasible views and scene contexts in order to make the problem tractable. Yet, we will
open up a new perspective on the task conceptionally, methodically, mathematically and
computationally. In particular and to the best of our knowledge, we will present the first
variational approach to single view 3D reconstruction based on energy minimization.

Why should continuous convex optimization methods be well suited for solving the
very task of single view 3D reconstruction? Convex optimization has been around for
longer in mathematical vision to solve problems such as denoising [90], inpainting [23],
stereo [82], binary- and multi-label segmentation [22, 20, 110, 66], 3D reconstruction
[62], super-resolution [40, 75], motion estimation [94] and optical flow [111, 96]. Fur-
thermore, in [61] and [3, 2] it was shown that many convex relaxation methods have
several advantages over graph cut methods, the two main ones being the avoidance of
metrication errors (which occur due to the approximation of the Lo norm in the total
variation of discrete formulations) and the strong parallelizability. Still, the usefulness
of convex optimization methods in connection with a strongly ill-posed problem such as
ours is not obvious.

Therefore, this thesis demonstrates that the framework represents a new paradigm
addressing several common shortcomings of existing approaches to the reconstruction of
curved objects. More precisely it offers new solutions to non-heuristic surface inflation
and topological freedom of reconstruction surfaces. A major goal of this thesis is to show
that convex variational energy minimization methods lead to elegant, precise and simple



1 Introduction

mathematical formulations for interactive 3D reconstruction from a single view that can
be solved efficiently with strongly parallelizable algorithms within interactive runtimes.
The proposed formulations can be optimized either globally optimally or within bounds
from the global optimum. Especially in ill-posed settings it can be considered a strong
benefit to have well defined global optima. Most importantly, the proposed approaches
are sustainable by their high degree of extendability. Priors and constraints will be
added to the basic framework as they help to sensibly restrict the solution space and
allow for more reasonable reconstructions. In this context, simple and sparse user input,
fundamental prior assumptions and shape information inferred from the input image will
be exploited.

As is the case with many vision tasks, human perception will be a major guideline
in the development of algorithms. Humans have a remarkably well developed ability
to estimate relative 3D geometric information of never before seen objects from only a
single image. Humans excel at this task, however studies have also shown that they, too,
fail in assessing absolute depth information in a single view. Consequently, in this thesis,
our goal is to infer reasonable reconstructions that comply with the human intuition of
the shown object rather than exact solutions with respect to a ground truth.

Although learning certainly plays a significant role in human perception, for the pro-
posed approaches we deliberately refrain from learning aspects. The reason is that such
methods tend to strongly restrict the reconstruction domain. In addition, training data
often has to cover a wide spectrum of different images and scene contexts in order to
work well for arbitrary inputs. Instead, this thesis will show that a generic approach
based on sparse user input and strong priors leads to compelling 3D estimates that can
be used as 3D models for additional applications without the need for post-processing
and further editing.

Applications of single view 3D reconstruction approaches very much depend on the
proposed algorithms, their target images and the type of reconstructions they result in.
In general, typical applications include high-level image editing tasks such as new view
synthesis or relighting. The closed representations obtained by the approaches in this
thesis can also be used as models for augmented reality applications, games and others.

The outline of this thesis is as follows. The first chapter will introduce mathematical
concepts on convexity, optimization and minimal surfaces that will form the basis for
the reconstruction approaches in this thesis. The second chapter will be a thorough
introduction to the topic of single view 3D reconstruction. We will discuss the problem
definition and provide a survey on related work that will include a classification and
comparison. A closer insight will be given into algorithms that are strongly related to the
approaches in this thesis. In Chapter 4 a new framework for single view reconstruction
based on silhouette compliant minimal surfaces will be introduced that will lay the
foundation for the approaches presented in the rest of the thesis. This includes Chapter
5, where we explore the formulation of parametric shape priors in a first approach to
single view reconstruction, Chapter 6, which introduces a non-heuristic inflation strategy



and Chapter 8, which is dedicated to the design of dynamic shape priors that infer
shape characteristics from shading information in the input image. An approach that
also computes minimal surfaces but is based on a different representation and computes
guaranteed global optimal solutions is proposed in Chapter 7.
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2 Basic Mathematical and Algorithmic
Concepts

2.1 Convex Optimization in Computer Vision

Computer vision tasks are often formulated as energy minimization problems, either in
a finite dimensional discrete or in a variational continuous setting. In both cases, an
energy functional is defined that often stems from a Bayesian interpretation and models
a specific problem statement by assigning an energy to each possible configuration in a
solution space. The task then is to find a feasible configuration with minimal energy.
The computational complexity for this task quickly rises with the number of variables,
so for most interesting problems a brute force search of the (discretized) solution space
easily becomes infeasible. Extremality conditions constitute necessary circumstances
for optimality, but they only indicate local instead of global optima. Therefore, often
smarter optimization strategies are necessary that take advantage of the specific struc-
ture of the given problem formulation. Alternatively, an approximation of the problem
with a simpler structure can be optimized.

One such desirable problem structure is convezity. Convex functionals have the
favorable property that each local minimum is a global minimum. We will
discuss formal definitions later on in this chapter. The analogon in the spatially discrete
setting is submodularity.

Convex optimization deals with the challenge of approximating computational chal-
lenges as convex energy minimization problems and solving them efficiently. Since few
reasonable energy models are convex by nature one has to revert to relaxation techniques
that transform the models into convex counterparts which are easier to solve. Of course
such an approach is only promising if some tight relation between the solutions of the
relaxed and the original non-convex problem can be established. Devising optimization
problems for which such relaxations exist that are as close to the original problem as
possible is one of the biggest challenges in convex optimization. In many cases convex
relaxation methods do not lead to globally optimal solutions of the original problem:;
however, they often result in provable optimality bounds. Furthermore, optimization
algorithms based on convex relaxations are usually independent of their initialization as
there are no local optima.

One may argue that convexity is a rather strong assumption for energy functions that
model real world problems. However, many important and complex problems in early
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and higher vision have already been solved over the last years either globally optimally
or within provable optimality bounds by applying convex optimization methods. Pock et
al. [82] showed that multi-label problems can be solved globally optimally by functional
lifting assuming a linear label space, a discontinuity preserving TV regularizer and an
arbitrary data fidelity term. An analogous result for the discrete case had been published
before by Ishikawa et al. [55] for a convex data fidelity. These algorithms can be applied,
e.g., to stereo problems. For the piece-wise smooth and piece-wise constant cases of the
Mumford-Shah functional convex relaxation frameworks were proposed by Pock et al.
[81] and others [20, 110, 66] leading to solutions that are within bounds from the global
optimum. The latter case is also known as the minimal partition problem and can
be used for segmentation with [110] and without [97] metric distance measures on the
label space. Chan et al. [22] showed that the minimal partition problem for the binary
labeling case can even be optimized globally by convex relaxation. Their result is relevant
to some of the proposed approaches in this thesis and will, therefore, be reviewed later
on. Furthermore, convex relaxation techniques have also been proposed for multi-label
problems on product label spaces [41], which is suited for computing optical flow.

For the rest of this chapter we will give an introduction to the theoretical basics of
convex functionals, convex optimization and relaxation techniques. This will lay the
foundation for the chapters ahead.

2.2 Convexity

2.2.1 Convexity of Sets and Functionals

Let V be a vector space. A set C C V is called convex if the linear convex combination
of arbitrary points in the set lie in the set as well. Formally, this is subsumed by

Definition 1. A set C C V is convex if
Ve,ye C,Ae[0,1]] =X+ (1-NyeC. (2.1)

Intuitively this means that each line connecting two points in the set will be completely
contained by the set. Convex sets are closed with respect to intersection, but not with
respect to the union operation.

Definition 2. A functional f : )V — R is convex if its epigraph
epi(f) :={(z,A\) | x €V and A > f(x)} (2.2)
is a convex set.

The epigraph can be seen as the set of points “above” the graph of a real valued
functional (see Figure 2.1 for an example). One can easily see that for a continuous



2.2 Convexity

epi(f) -

Figure 2.1: Left: example of a function f with its corresponding epigraph in blue epi(f).
Right: a plot of the function f(z,y) = 22 — y? with a saddle-point at (0,0)
(red).

function having two local minima, the epigraph cannot be convex, as the line connecting
both minima will necessarily leave the epigraph.

By applying Definition (2.1) to points lying on the epigraph boundary, one arrives at
another definition of convex functionals:

Definition 3. A functional f :V — R is convex if for all ,y € V and A € [0, 1] it holds

fOz 4+ (1= Ny) <Af(z)+ (1 =N f(y). (2.3)

This definition is well suited for testing convexity of a given function. Intuitively, the
definition means that the line between two function values must lie above the function
graph.

2.2.2 Saddle-Point Problems

Closely related to convex functionals are functionals that are convez-concave.

Definition 4. A functional £ : U x V — R U {—00, 00} defined on vector spaces U and
V is called convex-concave if

o Yy €V, urr E(u,vp) is convex and
e Yug €U, v— E(up,v) is concave.

A functional E is concave if —F is convex. Convex-concave functionals do not have
minima as in the convex case, instead, one searches for a saddle-point. A saddle-point
is a point (4,0) € U x V for which holds that if one component is fixed, the other
component yields an extremum of the resulting functional (see Figure 2.1).
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Definition 5. For a concave-convex functional £ : U x V — R U {—o00, 00} a point (4, v0) €
U x V is called a saddle-point if

e 4 € argmin, F(u,v) and
e U € argmax, E(u,v)

Similar as for global minima of convex functionals, saddle-points of convex-concave
functionals are not necessarily unique, but different saddle-points have the same energy.
Another characterization of a saddle-point (4, v) is that

min max F(u,v) = max min F(u,v) = E(u,0) . (2.4)
u v v u

This is convenient as it allows us to commutate min and max.

An important example for a saddle-point problem is given by the Lagrangian dual which
is used to formulate convex optimization problems under constraints. Given a convex
functional f : Y — R which is constrained by g(z) = ¢ for a convex functional g : U — R,
one can write the constrained convex optimization problem as a saddle-point problem by
adding a Lagrange multiplier A € V = R and maximizing with respect to this multiplier

inf f(u) = supinf f(u)+ A(g(u) —c) . (2.5)
R

The following proposition justifies calling (2.5) a saddle-point problem.
Proposition 1. The functional E(u, \) = f(u)+A(g(u)—c) is a convex-concave function.

Proof. By definition u — FE(u, \) is convex for all A, since f and g are convex, so their
sum is convex as well. Finally, for fixed u the function A\ — E(u, \) is linear (and thus
concave) in A. ]

2.2.3 Duality

The concept of duality plays an important role in convex and constrained optimization.
It allows to formulate approximations to hard problems and to convert constrained to
equivalent unconstrained problems as was shown in the last section. We will use it
frequently in this thesis. A fundamental definition in this context (see e.g. [87]) is

Definition 6. Let U be a real normed vector space, U* its dual and < .,. >: U xU* — R
the bilinear function defined as < u, ¢ >+ ¢(u). The Legendre-Fenchel dual f* : U* — R
of a function f : U — R is given by

[ (y) = Sup <.,y > —f(=) (2.6)

10
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J hr.y( X)

Figure 2.2: Left: let hy, be an affine function with intercept ¢ and slope 3. The Legendre-
Fenchel dual f*(y) of a function f at a point y describes the maximal negative
intercept of all affine functions with slope y that lie below the graph of f.
Right: an example of the convex envelope of a non-convex function f.

where y € U* and U™ is the dual space of the real normed vector space U, i.e. the space
of real-valued linear and continuous functions f : Y — R with domain U.

The Legendre-Fenchel dual value f*(y) can be interpreted as the largest intercept of
an affine function with slope y that is below the function f (see Figure 2.2). Due to
this, the dual f* of a convex function f is convex as well. More importantly, a convex
function f is the pointwise supremum of all affine functions that are below f. Therefore,
it follows

Proposition 2. For a convex and lower semi-continuous function f : U4 — R it holds

f(z) = [ (x).

Proof. Let hy; be the affine function with slope y and y-intercept ¢. Then, since f is
convex it holds by definition of f*

f(x) = sup hy.(x) = sup <y,z>—f"(y) = f"(x)
hy1<f yev*

where in the second equality we used the definition of the Legendre-Fenchel dual. O

In particular, for a non-convez function, f** describes its convex envelope (see Figure
2.2). Finally, the dual of an indicator function 1l¢(x) of a convex set C is equal to
its support function, i.e. the convex function that describes the signed distances of
supporting hyperplanes.

11



2 Basic Mathematical and Algorithmic Concepts

2.3 Convex Relaxations

Sometimes we are confronted with functionals that do not adhere to the definition of
a convex functional simply because their domain is not a convex set - it is easy to see
that in this case Definition 3 is not applicable. Such functions can be convexified by
expanding their function domain.

An important example in the context of this thesis is given by functionals defined on
the space of indicator functions (functions assigning a binary labeling to each point in a
target domain) with bounded variation, denoted as

BV(2:{0,1}) . (2.7)

This set is obviously non-convex according to definition (2.3), as e.g. the linear convex
combination of the two constant indicator functions fo:x € Q+— 0 and f1 :x € Q— 1
with A = 0.5 is the function fy5 :  — 0.5, which is not in the set (2.7). We can
revert to the convex hull, i.e. the smallest convex set that contains all the points of
the original set, of all indicator functions with bounded variation BV (€2;[0,1]) in the
functional definition and search for a minimizer of the convex, relaxed problem
ueB\r/Iigﬁ[o,u) B(u). (28)
Minimizing this convex problem is often much easier than optimizing the combinatorial
counterpart. A relaxation is said to be tight if it is close to the original problem in the
sense that its solution is a feasible solution to the original problem or that there is a
tight bound to the original problem. An a priori bound for such a relaxation is given
by the following relation. Let uopt be the optimal solution of the original problem and
U the one of the relaxation. Then, since each solution of the binary problem is also
feasible for the relaxed problem, it holds E(ug,) < E(uopt) and, thus, for any binary
solution wupi, (which may be acquired by thresholding the relaxed optimum) it holds

E(ubin) — E(udpy) < E(ubin) — E(opt) (2.9)

which means that any optimal solution of the relaxed problem provides us with a bound
on the optimal binary solution, which is more or less tight depending on the relaxation.
Ideally, one can come up with a thresholding scheme that converts the relaxed optimal
solution into a solution to the original problem which is provably optimal. Key ingredient
to such a theorem is the co-area formula (2.32).

2.4 Variational Calculus

Variational Calculus deals with finding minimizers of functions with infinite dimensional
domain. In this section a short overview of the basic theory is given as it will be used
frequently in the chapters ahead. For a detailed introduction see e.g. [37].

12



2.4 Variational Calculus

2.4.1 Existence of Minimizers

Having explained the notion and benefits of convexity, the question naturally arises
whether a well-defined minimum exists for a given convex functional. The conditions
for a functional f : i/ — R defined on a Banach space U/ - i.e. a normed and complete
vector space (see e.g. [73]) - to attain a minimum are the following

e f is lower semi-continuous, i.e. epi(f) is a closed set.
e fiscoercive, i.e. for any sequence x,, C U with ||z, || — oo it follows lim f(z,) = co

For saddle-point problems an analogue definition exists. A convex-concave functional F
attains a saddle-point if

e u+— E(u,v) and v — —F(u,v) are lower semi-continuous for all u € U/ and v € V.

o u+— E(u,v) and v — —FE(u,v) are coercive for all u € Y and v € V.

2.4.2 Extremality Conditions

Finding the minimizer of a convex functional is the main problem we are concerned
with. In the following necessary conditions for a local extremum of a functional are
discussed. We are given a compact set 2 C R™ with piecewise smooth boundary 92 and
a functional E : C1(2) — R of the form

= / L(u,Vu,z)dr
Q

where £: R x R" x Q = R, (a,b,xz) — L(a,b,x) is a continuously differentiable func-
tional called the Lagrangian. Similar to the finite dimensional case, a necessary condition
for a local extremum for functions on infinite dimensional domains is that the directional
derivative - given by the Gateaux differential lim,_, 2(E(u+ ev) — E(u)) - has to vanish
in each direction v. For a given functional E(u), one can derive the following form of
the Gateaux differential

/dE(u)vdx =0, (2.10)
Q

where dE(u) is the Fréchet derivative. According to the fundamental lemma of vari-
ational calculus this equation can only hold if dE(u) equals zero for all x € Q. This
implies the Fuler-Lagrange equations

oL(u*, Vu x) Z d oL(u* Vu ,T)

= Q 2.11
e 0 Vxe (2.11)

to hold for a local minimum u*.

13
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Optimality conditions for Saddle-points For completeness we will present the ex-
tremality condition for a saddle-point: (u,?) is a saddle-point of a convex-concave func-
tional E(u,v) if and only if

e 0 € 0,FE(u,v) and
o 0 ¢ d,E(,0)

where 0, F is the subgradient of E with respect to x.

2.5 Algorithms for Convex Optimization

Depending on its form different strategies for solving the partial differential equations
(2.11) can be considered. In the linear case, iterative methods such as the Gauss-
Seidel or Jacobi method can be applied. Closed form solutions, however, are very rare.
Common iterative optimization approaches for non-linear cases will be reviewed in the
following. The quality of the solution of each optimization method depends on the
problem formulation.

2.5.1 Gradient Descent

Gradient descent is the most basic numerical scheme for solving equations (2.11) for
convex functionals. Starting from an arbitrary initial solution u, in each iteration of the
algorithm the current solution is modified in the direction of the negative gradient (or
Fréchet derivative), i.e. the steepest descent of the energy functional:

dE(u)
du

Upp1 = Up — T - (2.12)
where 7 is the step size. Naturally, 7 has to be chosen carefully depending on the
respective functional E as the numerical scheme will easily get unstable for too large
step sizes.

2.5.2 Forward-Backward Splitting and FISTA

Gradient descent requires the convex functional E to be differentiable with respect to
u. Forward-backward splitting [19] can be considered as a generalization of gradient
descent and assumes that the objective function is a sum of a (proper) convex function
F : U — R with a Lipschitz continuous derivative and a (proper) convex and lower
semi-continuous but generally non-differentiable part G : i/ — R defined on a Banach
space U

min F'(u) + G(u). (2.13)

ueU

14



2.5 Algorithms for Convex Optimization

In each iteration the objective functional is approximated at the current point v by a
quadratic functional that lies above it

F(u)+G(u) < Qy(u) = F(v)+ <u—v,VF(v) > +§ lu—v||* + G(u) (2.14)

where the first three terms of @, yield a quadratic approximation of F' and L is a
Lipschitz constant. Letting go of F'(v) (which is constant since v is fixed) and completing
the square by adding 1 IVE(u)||* we arrive at the following forward-backward splitting

scheme (for time step ¢ + 1)
1 2
u— <ut - LVF(Ut)> } . (2.15)

Here, optimization over the sum of two functionals is split into two steps: the term in
brackets is a gradient descent of function F', whereas the outer problem

L
Ut41 = argmin {G(u) + 3
u

(I+ %QG)—l(w) = arginin {G(u) + g llu — wHQ} (2.16)

can be interpreted as a subgradient descent step of function G. It is also called the
proxr-operator prox 1 (w). Notably, the prox-operator prox, , () of the characteristic

function x4 of a set A defined as

(2.17)

0 fzxe A
xa(zx) == {

oo otherwise

is equal to the projection of x onto the set A.

Beck and Teboulle [14] extended the forward-backward splitting scheme to the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA), which can be shown to converge
quadratically. The iteration at time step t is given by

Uy = proxig (ﬂt — %VF(at))

Ot11 =%(1+W)

%tt;ll (ut - ut_l) .

U] = Up +

The first operation is the forward-backward splitting step (2.15). Step two and three
comprise an over-shooting scheme extrapolating the current solution by a factor 6 (step
three) which is adapted in each step (step two).

15
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2.5.3 First Order Primal-Dual Optimization

In [21] Chambolle and Pock proposed a numerical scheme for optimizing convex problems
of the form

inf F(Ku)+ G(u) (2.18)
ueld
where U, V are reflexive Banach spaces (those which can be identified with its bidual) and
G:U — Rand F : V — R are convex, proper (i.e. < 0o) and semi-continuous (but not
necessarily differentiable) functions and K : U — V is a linear operator. The primal-dual
algorithm is a numerical scheme for solving the primal-dual version of problem (2.18)

inf sup < Ku,v > +G(u) — F*(v) . (2.19)
u€lU yey

Here, F* denotes the Legendre-Fenchel dual of F. To see that (2.18) and (2.19) describe
the same problem, we make use of the Legendre-Fenchel dual and the fact that since F
is lower semi-continuous and convex it holds that F**(w) = sup,ey < v,w > —F*(v) =
F(w):
inf F(Ku)+ G(u) =sup inf < Ku,v > —F*(v) + G(u) . (2.20)
ueU vey ueld
Note that the primal-dual is computationally easier to solve than the primal (2.18) in
the sense that G and F' now depend on two different variables. This splitting idea will
reappear in the ADMM algorithm below.

The numerical scheme of the primal-dual algorithm for solving the saddle-point prob-
lem (2.19) consists of a gradient descent in the primal variable, a gradient ascent in the
dual variable and an over-relaxation step which extrapolates the current solution in the
direction of the solution change by a factor 0 € [0, 1]:

o = (4 29F)! (vt + zKat)
utl = (I+ToG)™ ! (ut — TK*UHI) (2:21)

attt =ttt 4 O(utt — )

where 3 and T are preconditioning matrices. The scheme is iterated until convergence.
There are different convergence criteria. One can measure the difference in energy of the
primal and the dual problem formulation (primal-dual gap) and stop when it falls below
a threshold. However, depending on the given problem the computation of the dual
energy can be as difficult as solving the primal problem. Alternatively, one can iterate
until the relative change in the solution falls below a threshold. This will be detailed in
the chapters to follow. The numerical scheme (2.21) is provably convergent and can be
applied to several interesting problems in computer vision that can be cast in the form
(2.18).
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2.5 Algorithms for Convex Optimization

2.5.4 Alternate Direction Method of Multipliers

Another way of optimizing problems of the form (2.18) is the Alternate Direction Method
of Multipliers (ADMM) [36]. For simplicity, we will stick to the finite dimensional case,
ie. Y CR" and V C R™ and K € R™ ™. The algorithm is derived by performing a
variable splitting
min  F(v)+G(u) st. Ku=wv (2.22)
ueU eV

and formulating the augmented Lagrangian of this problem:
Ly (u,0,\) = F(v) + G(u) + N Ku —v) + % | Ku— | . (2.23)

The last summand can be understood as a quadratic penalty term for the constraint
Ku = v. The ADMM algorithm alternately minimizes the augmented Lagrangian and
then does a gradient ascent step on the Lagrange Multiplier A:

uPtt = argminG(u) + A(Ku — o) + T || Ku — ka2

u€R™

oF*l = argminF (v) + A(KubT! —v) + Z || Kuftt — ’UH2 (2.24)
veER™

)\k—f—l — )\k + T(Kuk—H _ vk-{-l)

where 7 > 0 is the step size parameter. One can pull linear term into the squared
norm by substituting A = %/\. Furthermore, an over-relaxation step can be introduced.
Together this results in the following scheme, which will be used in later chapters

uttl = argeﬁinG(u) + T || Ku— o + )\tH2
u n
rttl — OzKUH_l + (1 _ Oé)l)t

vt = argminF(v) + Z ||r'*! — v + AtHQ
veER™
AL 2\ g ptHl gt

(2.25)

\

where a € (0,2) is the over-relaxation parameter.

Similar to the primal-dual algorithm, the ADMM method allows for a problem de-
composition owing to the variable splitting in (2.22). This can be used to separate
projections on intersections of convex sets that cannot be solved in closed form. This
is a major advantage of the ADMM algorithm. Note that ADMM and the primal-dual
algorithm are closely related as shown in [21]. However, practically both algorithms
differ in memory consumption and runtime.

A convergence criterion for scheme (2.25) is to measure the relative change in the
solution and stop if it falls below a given threshold. This strategy will be detailed in the
following chapters.
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2 Basic Mathematical and Algorithmic Concepts

2.6 Total Variation

Many convex approaches to computer vision problems incorporate the total variation
norm as a smoothness prior term. The total variation plays an important role throughout
this thesis for its geometric and convex properties and will be introduced in the following.

2.6.1 Definition

Consider the following

Definition 7. The weighted total variation norm for a functional » : Q@ C R™ — R is
defined as

TVg(u):/g|Du|:sup —/udivfdx | cecloRY), lElo<gy.  (226)
Q Q

where Du is the derivative of u in the distributional sense, g : 2 — Rg is a weighting
function, |||, is the uniform norm and C! denotes the space of smooth functions with
compact support.

This definition is valid for any locally L!-integrable function (including indicator func-
tions of sets with measurable boundary). Several favorable properties make the TV
norm well suited as a regularizer in convex optimization problems: it is a convex, lower
semi-continuous function and - in contrast to a quadratic regularizer - well preserves
discontinuities in the solution. Intuitively, the reason for this lies in the fact that the
total variation of a function that quickly jumps from zero to one is the same as that of
a function which goes from zero to one in small steps. In case the function w is differen-
tiable, TV (u) is equal to [, [Vu|dz. The right side of Equation 2.26 can be considered
the bidual of that expression.

Minimizers of T'V-based functionals live in the space of bounded variation, which is
defined as all locally integrable functions u that have a finite total variation [11]:

BV(R) = {u e Ll () | TV() < oo} . (2.27)
This defines a Banach space with respect to the norm
HUHU(Q) + TV(U) (2.28)

(where TV (u) denotes the unweighted version of the total variation). The 7T'V-norm is
not coercive. However, typical T'V-based functionals in computer vision usually incor-
porate a coercive data affiliation term making the functional coercive and guaranteeing
the existence of minimizers.
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2.6 Total Variation

2.6.2 Geometric Properties

The TV norm can be used to measure the perimeter of point sets. This property is the
basis for convex formulations of minimal partition problems. It will also be the basis for
most of the minimal surface approaches proposed in this thesis. The details are given in

Proposition 3. Let 15 be the indicator function of a set S C 2 with smooth boundary.
Then the T'V-norm of 1s describes the perimeter of & measured in the metric defined
through the non-negative function g : Q — R(J)r:

Pery(S, Q) = TV, (1s) (2.29)

Proof. By the definition in (2.26), T'V,(1s) is equal to

é:illifq{_/ﬂls div(¢) dx} :&itf)q{—/sdiv(g) dm} (2.30)

= sup {/ n-&ds}: ds (2.31)
¢:l¢le<1 LJas a8

where in the second equality the theorem of Gauss was applied. O

Given this relation one can express the TV norm of a functional u by the perimeter
of its upper level sets. This is formalized by

Proposition 4. The co-area formula states that

TV (u) = / TV (1ysr) dt (2.32)
where '
Luse(z) == {é ellfS:(x) =t (2.33)

A proof can be found in [38].
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3 Literature Overview

Estimating 3D geometry from images has been a core research topic in computer vision
for several decades. For the case of multiple input images a large variety of methods has
been developed which are able to deliver exact high quality reconstruction results. For
the special case that only a single still image is available the problem gets considerably
more difficult. In the literature there exists a variety of methods to estimate 3D geometry
that are tailored for specific classes of input images. However, a thorough comparison
between the approaches has not been carried out so far.

The reason for this lies mainly in the inherent ill-posedness of the problem: during im-
age formation, depth is irrecoverably lost. In their effort to make the problem tractable,
single view methods have come up with an abundance of very different assumptions,
methods and priors to infer the geometry of a depicted scene or object. This geometric
information can be of different nature reaching from purely relational information, sparse
measurements or dense depth information to a complete 3D model of a single object or
even a scene. The reconstruction precision of such approaches exceeds that of plausible
estimates only in very few cases. Consequently, the reconstruction objectives are of very
different nature, which makes a comparison difficult.

In this chapter we give a brief survey on the subject of single view 3D reconstruction,
which was published in [6]. We provide an introduction to the field and examine basic im-
age information and assumptions that are used in order to compensate for ill-posedness.
We then review, categorize and compare existing state-of-the-art approaches.

To this end, in the following we will first look into typical image cues and priors that
are used in the literature for inferring geometric information from a single image. We
will then present and categorize relevant works in the field. Finally, in Section 3.3 a
systematic comparison of the presented methods is undertaken.

3.1 Image Cues and Priors

In this section we firstly provide an overview on the different types of image information
(*image cues’) used in the literature. Secondly, we will review the priors that are assumed
in order to overcome the ill-posedness. This serves as a survey on related work.
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3 Literature Overview

3.1.1 Types of Image Information

Approaches to single view reconstruction extract higher or lower level information from
the input image in order to infer geometric information. This is done automatically or
with the help of user input. In the following we list the most important categories of
image information and give prominent references.

Shading. The problem of shape-from-shading (SfS) is to infer a surface (height field)
from a single gray level image by observing the gradual variation of shading that is
induced by the interaction of surface and light. Some approaches also co-estimate lighting
conditions and reflection properties. In general, the goal is to find a solution to the
following image formation model

R(n(x)) = I(z) , (3.1)

where [ is the image, n is the normal field of the surface and R is the reflectance function
which is dependent on the object. In most SfS approaches a Lambertian reflectance
model of constant albedo is assumed. But there are other models which also consider
specular materials (e.g. Wang et al. [105]). SfS is an ill-posed problem, although there
has been progress on deriving conditions for unique solutions by Prados and Faugeras
[83].

As shown by Durou et al. [35] and Zhang et al. [115] reconstruction from real world
images is limited in the sense that each approach exhibits special and sometimes unreal-
istic requirements on lighting conditions or reflection properties. Especially the presence
of texture is an issue. Work has been done, however, to incorporate interreflection [77],
shadowing and perspective projection [29] just to name a few. One of the first mini-
mization approaches to SfS is by Ikeuchi and Horn [54]. For a current survey see Durou
et al. [35].

Shadow. The shadow that is thrown by objects conveys geometric information relative
to the viewpoint of the light source. Often point light sources are assumed as soft shadows
do not provide high frequency information. Furthermore, shadow is not always thrown
on known geometry, which makes the problem harder. References include works by
Daum and Dudek [32], Kender and Smith [60], Yu and Chang [109] and Hatzitheodorou
[45].

Contour Edges. Contour edges are salient structures in the image that are induced
by surface discontinuities, occlusion, object boundaries or reflectance changes. They
give evidence for geometry and relative pose/position of objects. Junction points or
corners, where multiple contour edges meet or end, are also important cues for single
view reconstruction.
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3.1 Image Cues and Priors

Subclasses of contour edge-based methods are contour-based and silhouette-based re-
construction methods. Shape-from-contour approaches try to infer geometry given the
object contours alone. Approaches based on closed contour drawings include Horaud et
al. [48], Ulupinar et al. [101] and Li et al. [68]. Karpenko et al. [58, 59] interpret user
line drawings. Other single view reconstruction approaches that use contour edges for
reconstruction include [33, 43, 64, 46, 91, 92].

Silhouette. Closely related to shape-from-contour are approaches that infer geometry
given the object silhouette. The silhouette is the image of the contour generator plus its
interior and the contour generator is the set of visible points on a surface, whose image
rays are tangent to the surface. Silhouette based approaches find reconstructions, whose
projection into the image plane agrees with the silhouette and whose normals agree with
those of the contour generator. As there are always infinitely many objects that are
silhouette consistent this cue suffers from inherent ambiguity if used alone.

References for silhouette based reconstruction algorithms include Prasad et al. [85, 86]
and the approaches proposed in this thesis. Closely related are sketch based modeling
tools such as Igarashi et al. [53], Karpenko et al. [59] and Nealen et al. [78].

Texture. The local albedo, also known as diffuse reflectivity or simply color, is a local
property of the object material. The variation of the albedo along surface location
is called texture. In contrast to shading information, texture is considered an inherent
property of the object surface rather than a result of an interaction of light and geometry.
A complete separation of shading and texture information is a hard problem (a problem
also known as intrinsic images).

If one assumes objects to have a known or regular texture it is possible to infer their
geometry from the way the texture is deformed after image projection. These shape-
from-texture approaches, obviously, impose strong constraints on the reconstructable
objects. An example constitutes the work of Malik and Rosenholtz [74].

Further single view 3D reconstruction algorithms that use texture cues include Super
et al. [99], Hassner and Basri [44] and Vetter et al. [103]. Approaches that combine
texture and contour edges for reconstruction by considering so-called ’superpixels’ are
Hoiem et al. [46] and Saxena et al. [92].

Defocus. Due to physical aspects of image formation, the sharpness of the image of
an object correlates with its distance from the camera. This fact can be used to infer
a dense depth map from an image. However, the accuracy of such methods is limited
and camera calibration is required. References include works from Levin [67], Zhou et
al. [116] and Bae and Durand [12].
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Location. Relative spacial location of objects in the image can be used to infer semantic
knowledge. For example, ground, floor or sky can be identified more easily from their
location in the image. This information can be helpful for 3D reconstructions. Hoiem
et al. [46] reconstruct vertical objects by distinguishing them from the ground and the
sky. Delage et al. [33] use a Bayesian network to identify floor pixels.

3.1.2 Priors

Priors are of utter importance in single view 3D reconstruction to constraint the solution
space of reconstructions. They are either applied a priori, or they are learned from sample
data. Furthermore, there are low-level and high-level priors. In the following we will list
priors that are most frequently assumed in single view 3D reconstruction.

Smoothness. Smoothness can be defined as the small spatial change of some property.
In single view reconstruction we are often not able to infer a dense reconstruction. It is
therefore good practice to choose among the possible reconstruction surfaces those which
tend to be smooth. Smoothness naturally plays a significant role in the reconstruction
of curved surfaces as in [114, 86].

Smoothness in a wider sense can also be learned as the consistency of object surfaces.
Hoiem et al. [46] use a machine learning approach to find image features indicating the
assignment of neighboring superpixels to the same object. Saxena et al. [92] use image
cues and geometric relations to learn the relative depth of neighboring superpixels.

Geometric Relations. Basic geometric relations are often encountered specifically in
man-made environments. One can consider e.g. coplanarity, collinearity, perpendicular-
ity and symmetry. An early work which makes use of such simple rules is the one of
Lowe [72]. By assuming planes to be parallel or perpendicular one can also derive camera
parameters (see Criminisi et al. [31]). Objects are often assumed to stand vertically on
the ground plane [46, 33, 43]. Symmetric objects consist of self-similar parts, which are
projected to different locations in the input image. This constellation is, thus, similar
to having multiple views of the object [47, 43].

Volume / Area. Single view approaches that search for smooth reconstructions often
suffer from flat solutions. Requiring the surface to enclose a specific volume is a means of
inflating the reconstructions. The area of the object silhouette can be used to estimate
the object volume. Volume priors can be found in Li et al. [68] and in the proposed
methods in this thesis.

Semantic Relations. Semantic relation priors assume high-level knowledge on the rel-
ative position and inner structure of different objects and their depth values. Han and
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3.2 A Classification of Approaches to Single View 3D Reconstruction

Zhu [43], e.g., infer occluded points based on semantic human knowledge, for instance
that leaves are connected to the plant. Koutsourakis et al. [64] introduce semantic
knowledge to ensure the consistency of different floors. Finally, knowledge on the loca-
tion of the ground and the sky represents an important cue for 3D reconstruction. The
ground is often used as starting point for the reconstruction as objects, especially walls,
are usually perpendicular to this plane [43, 33, 46].

Shape Priors. Shape priors impose low-level or high-level knowledge on the reconstruc-
tion shape. Shape priors can be defined or learned. In [64], Koutsourakis et al. define
a full shape grammar for the reconstruction of facades. This limits the approach to the
reconstruction of buildings in urban environments. In contrast, Rother and Sapiro [89]
and Chen and Cipolla [25] shape priors are learned from a database of sample objects.
Hence, they are not a priori limited to a specific object class. However, their choice
of samples intrinsically limits their approach to the object classes represented in the
database. Silhouette priors can be regarded as a form of shape prior. Cremers et al. [30]
introduced shape priors in the context of continuous level set segmentation.

The representation of shape priors ranges from specified sets of grammar rules over
parametric models to probabilistic priors. In [25], Chen and Cipolla learn depth maps
of human bodies by means of principal component analysis. This model imposes strong
assumptions on the 3D object, but the dimension of the state space is reduced and only
valid 3D reconstructions are obtained. In contrast, Rother and Sapiro [89] impose less
strong assumptions on the learned model. For each object class a shape prior is learned
as the relative occupancy frequency of each voxel in the object.

3.2 A Classification of Approaches to Single View 3D
Reconstruction

In this section a taxonomy of single view 3D reconstruction approaches is developed.
From the diversity of single view related reconstruction methods, we consider only those
algorithms that focus on real world images that are not taken under controlled environ-
ments or with strong constraints on object material or lighting conditions. The selection,
furthermore, focuses on works that are representative and state-of-the-art.

The following classification stems from the observation that the type of a single view
approach strongly depends on its application domain, i.e. the set of objects and scenes,
which it is designed for. Four categories are proposed, each named after the type of the
specific reconstruction domain:

e Curved Objects

e Piecewise Planar Objects
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e Learning Specific Objects
e 3D Impression from Scenes

Approaches that reconstruct curved objects principally aim at producing arbitrary, mostly
smooth objects. Often minimal surface priors are used, which try to minimize the sur-
face of the object given a silhouette or similar. The second class consists of methods
that concentrate on piecewise planar objects such as buildings and man-made environ-
ments. Furthermore, we distinguish arbitrary curved and planar objects from learning
specific objects. Approaches in this class cannot reconstruct arbitrary objects, but are
inherently limited to specific object classes by shape information learned from sample
databases. Finally, we discuss methods that do not aim to reconstruct exact or plausible
3D geometry but rather provide a pleasing 3D Impression from Scenes.

In the following we will review relevant single view 3D reconstruction methods that
represent each of the class well. Particular emphasis will be put on methods that are
closely related or important to the approaches presented in this thesis.

3.2.1 Curved Objects
Zhang et al.

Zhang et al. [114] proposed a method for interactive depth map editing based on an
input image. The depth map reconstruction is the result of minimizing a thin plate
energy [34], which favors smooth surfaces and penalizes bending. User input comes as
a variety of constraints on the thin plate energy which are applied interactively to the
depth map. These comprise of position constraints, surface normals, surface or normal
discontinuities, planar region constraints or curves along which curvature or torsion is
minimized.

The mathematical formalism is based on the thin plate energy for a continuous func-
tion f on a two dimensional rectangular domain © = [0, 1]> C R? is defined as:

sn=[ [ [a(uw)

where functions o, 3,7 : [0,1] +— {0,1} are weights that can be used to define local
surface discontinuities. Zhang et al. [114] discretize this minimization problem by intro-
ducing a function g; ; that samples values of the depth map function f : [0, 1]2 — R on
a discrete rectangular grid, that is, g; ; = f(id, jd), with d being the distance between
neighboring grid points. For efficiency and accuracy the grid resolution can be locally
refined by the user. All values g; ; can stacked into a vector g and after discretizing the
partial derivatives in (3.2), the energy can be written as a quadratic form
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gl'Cg subject to Ag=Db , (3.3)
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3.2 A Classification of Approaches to Single View 3D Reconstruction

where Ag = b models the linear constraints on the surface mentioned above. See [114]
for a detailed description on how the constraints are incorporated into this quadratic
optimization problem. A description of these constraints from the user’s point of view
is given later together with the experimental comparison in Section 6.5.

After introducing a Lagrange multiplier A for the constraints the extremality condition
of the optimization problem yields a sparse linear system

PIHEN 60

which can be computed efficiently with standard solvers.

Prasad et al.

The works [86] and [85] of Prasad et al. introduce a framework for single view 3D
reconstruction of curved surfaces. The method is closely related to the one by Zhang et
al. [114].

The main idea is to compute a parametric minimal surface by globally minimizing the
thin plate energy (Equation (3.2)). However, in contrast to Zhang et al. they minimize
the energy with respect to a parametrized 3D surface f : [0,1]? — R? instead of a depth
map. Consequently, function domain and image domain are no longer equivalent. The
discretization of the optimization problem with constraints is done similarly to Zhang
et al. (see Equation (3.4)).

The choice of constraints is mostly different from Zhang et al. [114]. The main source
of reconstruction information is the silhouette: Prasad et al. [86] use the fact that surface
normals can be inferred at points projecting to the contour generator c(t), since at these
points the normals are parallel to the image plane and have the same direction as the
normal at ¢(t). This can be formalized by the following constraints

m(f(u(t),v(t)) = clt) (3.5)
n(e()f(u®),v(t)) = 0 Vvie[0,1], (3.6)

where n(c(t)) is the normal at the point c(t) in R? and 7 the orthographic projection
function. The user has to determine the coordinates (u(t),v(t)) of the contour generator
in parameter space. This is done by placing lines onto the grid of the parameter space
and setting them in correspondence with the parts of the contour generator. Similar
to Zhang et al. [114] the user can employ position constraints to define the object
inflation locally. Also, surface discontinuities can be optionally specified to relax the
surface smoothness along curves in the parameter space. Importantly, in order to define
the topology of the object, the user has to define which parts of the parameter space
boundary are connected. For example, the connection of the left and right boundary
defines a cylindrical shape of the function domain.
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The optimization of minimal surface problem (3.2) is done similarly to the method by
Zhang et al. (see above). More details on the user input is given later in Section 6.5 of
Chapter 6.

Other Approaches

Another subclass of 3D reconstruction algorithms for curved objects are based on sur-
faces of revolution (SORs) [108, 102, 27]. They are common in man-made objects and
represent a subclass of Straight Homogeneous Generalized Cylinders. SOR. approaches
strongly rely on the assumption of rotational symmetry of the objects. In Colombo
et al. [27], the task of 3D reconstruction is formulated as the problem of determining
the meridian curve from the imaged object silhouette and two given imaged cross sec-
tions. Based on the computation of fixed entities such as the vanishing line or the SOR
symmetry axis, camera calibration can be done and the SOR is inferred.

Francois and Medioni [39] present an interactive 3D reconstruction method based
on user labeled edges and curves, which are represented by non-uniform rational basis
splines (NURBS). The reconstructed objects are either modeled as generalized cylinders
or as a set of 3D surfaces. Terzopoulos et al. [100] propose deformable elastic 3D shape
models, which evolve around a symmetry axis and whose projection into the image is
attracted by strong image gradients. Cohen and Cohen [26] propose a generalization of
snakes to 3D objects based on a sequence of 2D contour models for medical images.

3.2.2 Piecewise Planar Objects and Scenes

Approaches that reconstruct piecewise planar objects and scenes use polygonal repre-
sentations. Accordingly, the algorithms are based on the assumption of an idealized
piece-wise planar world. In the following we give a short overview over a selection of
relevant works. This will be less detailed as for the curved objects, as the piece-wise
planar case is less relevant to the reconstruction approaches proposed in this thesis.

Criminisi et al. [31] describe how exact 3D affine measurements can be obtained from
a single perspective view. They assume that a vanishing line of a reference plane as
well as a vanishing point for a direction not parallel to the plane can be computed from
the image. Given those and a known reference length, the authors derive affine scene
structure from the image. Measurements between and on planes parallel to the reference
plane are obtained from cross-ratios and specific image mappings. The approach is
applied among others to 3D reconstruction of idealized piecewise planar scenes.

Delage et al. [33] describe an approach for the automatic reconstruction of 3D indoor
scenes. Strong assumptions are made: the objects in the scene are composed of orthog-
onal planes and edges and the calibration of the vertical camera is available. Delage
et al. show that given a segmentation of pixels into planes and edges together with
respective orientations (assuming no occlusion edges are present) unique 3D geometry
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can be inferred for the whole image. For the segmentation, a Markov Random Field is
constructed. Image features, priors and statistics are used as data terms. Finally, to
obtain a 3D reconstruction from the MRF labeling, a constrained iterative optimization
problem is formulated, a generalization of Sturm and Maybanks work [98].

Another very different approach is taken by Koutsourakis et al. in [64]. They generate
urban 3D reconstructions from single images by estimating the parameters of a 3D shape
grammar with the help of a Markov Random Field, so that the generated building best
matches the image. The main advantages of using a shape grammar are that it always
produces well-defined buildings and that the complexity of the optimization as well as
the dimensionality of the problem is strongly reduced. In the MRF, the unary terms
ensure that object boundaries coincide with image boundaries, whereas the pairwise
terms measure the appropriateness of the configuration of atomic shapes and ensure the
consistency between the operator and the image.

Other approaches include the following: Kanade [57] recovers shape from geometric
assumptions. The world is modeled as a collection of plane surfaces, which allows for a
qualitative object recovery. Quantitative recovery is achieved by mapping image regu-
larities into shape constraints. Piecewise planar scenes are computed in Liebowitz et al.
[70] based on camera and geometric constraints such as parallelism and orthogonality,
e.g. for the reconstruction of buildings.

Apart from symmetry and planarity, two additional shape constraints are introduced
by Li et al. [68] for object reconstruction: maximum compactness and minimum surface.
Instead of computing vanishing lines, Kushal et al. [65] perform 3D reconstruction of
structured scenes by registering two user indicated world planes. Hong et al. [47] study
the relation between symmetry of objects and the viewer’s relative pose to the object.
An important principle for the reconstruction of symmetric objects is that one image of
a symmetric object is equivalent to multiple images. Li et al. [69] describe a method for
reconstructing piecewise planar objects by using connectivity and perspective symmetry
of objects.

3.2.3 Learning Specific Objects

The approaches in this category learn the appearance, structure or shape of certain
object classes. As a consequence, reconstructing objects outside the learned classes is
likely to fail with these methods. A direct comparison of results with the proposed
methods in this thesis is fruitless, as approaches that rely on learning are mostly not
general purpose methods in a stronger sense.

Han and Zhu [43] propose a 3D reconstruction approach based on manually defined
shape priors, which can on the one hand be applied to polyhedral objects and on the
other hand to grass and tree-like objects. They argue that learning priors is hard in
practice, because there is not enough real world training data available. They manually
define priors on planarity of faces as well as similarity in angles or edge lengths or
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smooth and evenly spread curves for tree-like structures. The input image as well as the
3D scene are both represented as graphs and in a Bayesian approach the 3D scene graph
is determined given the image graph.

Rother and Sapiro [89] present a general framework for pose estimation, 2D segmen-
tation, object recognition and 3D reconstruction from a single image based on learning
specific object classes. They assume to have a segmentation of the object and a corre-
sponding color model of foreground and background. An implicit volumetric represen-
tation is chosen and a shape prior is defined by learning voxel occupancies for specific
objects. A reconstruction is inferred from a probabilistic model that is based on the
shape prior and a likelihood function taking into account a color model of the object
and the probability of obtaining a particular pixel state (foreground or background)
based on the number of full voxels projecting onto a pixel.

Chen and Cipolla [25] propose to infer 3D information directly from learned shape
priors. They assume a number of given training shapes each consisting of the silhou-
ette and the corresponding depth map. Principal component analysis is applied to the
registered training data to obtain feature pairs consisting of position and depth infor-
mation and learned via a Gaussian Process. Given an unknown registered silhouette,
3D information can then be inferred from the learned shape model by projecting it into
the PCA subspace and asking for the most likely depth estimate at each point which is
determined via an iterative optimization scheme.

Hassner and Basri [44] aim at depth reconstruction from a single image based on
examples. The samples are given in a database and for each image patch centered on a
pixel its depth is inferred from known depth values of the most similar patches in the
database by maximizing its plausibility. The image patches overlap leading to several
depth estimates for each pixel. These are combined by averaging. To ensure consistency
of neighboring patches a global optimization procedure is proposed which iteratively
refines depth estimates.

Other approaches that are worth mentioning include the following. Vetter [103] learned
a parametric model for the reconstruction of faces by applying PCA to a database of
registered 3D faces. Then the model parameters can be found, which best explain the
given image of a face. In Nagai et al. [76], objects are learned from a sample database.
A Hidden Markov Model is used to model the correspondence between intensity and
depth.

3.2.4 3D Impression from Scenes

Approaches in this category differ from the other reviewed reconstruction methods
mainly in two aspects: they focus on whole scenes instead of single objects and they
put emphasis more on pleasant looking rather than exact or plausible reconstructions.
Also, none of the approaches reconstruct closed geometry.

In [46], Hoiem et al. propose a fully automatic approach for creating 3D models
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similar to pop-up illustrations in children’s books. They divide the world into ground,
sky and vertical objects. The appearance of these classes is described by image cues,
which are learned from sample images. The image is segmented into superpixels, which
are grouped to constellations by a probability model learned from training data. From
the computed constellations a polygonal 3D modal is constructed.

In [92], Saxena et al. propose another approach for obtaining 3D structure from a
single image of an unstructured environment. The only assumption the authors make
is that the world consists of small planes, whose 3D position and orientation is to be
estimated. Similar to Hoiem et al. [46], the authors start out from a superpixel seg-
mentation of the image. But instead of grouping the superpixels into constellations,
depth and orientation for each of them is inferred. This is done by a Markov Random
Field (MRF) model whose parameters are learned from training data. The data term of
the model comprises of image features such as color and texture and the pairwise term
encompasses coplanarity, connectedness and collinearity.

Other works in this category include the following: in Horry et al. [50], simple 3D
scenes are reconstructed based on user input such as vanishing points and foreground
objects. The background of the scene is then modeled by rectangles, the foreground by
hierarchical polygons. Barinova et al. [13] propose a reconstruction approach for urban
scenes yielding visually pleasant results. The method is based on fitting 3D models
containing vertical walls and ground plane to the scene.

3.3 Properties and Comparison of Related Works

After categorizing and reviewing the single view 3D reconstruction literature, the sur-
veyed approaches will be summarized and compared with respect to several categories.
This is done in Table 3.1, which also indicates image cues and shape priors leveraged in
each approach. Note that in general the given categorizations and assigned properties
are sometimes ambiguous and overlap. E.g., the approach by Rother and Sapiro [89] can
reconstruct curved objects, but is listed under the learning category. The works listed
as Toeppe et al. and Oswald et al. represent the approaches proposed in this thesis. In
the following we will explain the table.

Category, Assumptions and Precision. The different reconstruction methods are
grouped into the four categories of Section 3.2 (see first column of Table 3.1), that
represent basic reconstruction domains.

Characteristic to each approach are the assumptions made. If specific assumptions
are not met, the reconstruction process easily fails. Assumptions for each method are
summarized in the second row of Table 3.1. Typical assumptions are a calibrated camera
[33], a simplified scene composition [33, 46], an object database containing samples for
learning shape priors [25, 89], a specific viewpoint [86], [5, 9] or given geometric properties
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Prasad characteristic ~ [closed] contours, x x | x
et al. [86] sideview, parametric [creases]
max. genus 2
" Zhang none ~ | depth map constraints X
s et al. [114]
‘= | Oswald sideview, o~ closed silhouette, X X
© et al.[5] symmetry implicit [creases], [data term)]
3 Toppe sideview, ~ closed silhouette, X X X
m et al. [9] symmetry implicit [creases], [volume]
O Colombo rotational ~ closed silhouette, X X
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% | Cipolla [25] PCA
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. | etal [46] sky, vertical depth map
g walls&ground
8 Saxena world consists ~ | pw. planar none X X X L X
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Table 3.1: Comparison of single view methods: for each approach the most important

characteristics are indicated (see text). The 'L’ indicates learned priors, terms

in brackets are optional.
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such as vanishing lines of reference planes [31].

Closely related to the assumptions of the approach is its reconstruction precision.
The precision of a method describes the consistency of the reconstructed 3D model with
the actual real-world scene. There is a trade-off between precision and reconstruction
feasibility. One can witness a correlation between reconstruction precision and require-
ments: the higher the envisaged reconstruction precision, the more assumptions and
priors have to be made on the reconstruction domain.

Exact reconstructions from a single image are only possible if strong assumptions are
made, e.g. piecewise planarity with only three orientations (Manhattan assumption) [33]
or known reference heights and a calibrated camera [31]. Since such strict assumptions
strongly limit the applicability of the approach, most approaches revert to computing
the most likely solution to the ill-posed reconstruction problem without guaranteeing
accuracy. The probability of a solution is usually measured by means of manually defined
priors [43], learned shape priors [25, 89], smoothness priors [86, 114], [9] or other priors.
We call this a plausible precision. Finally, there are approaches, which do not aim for a
reconstruction at all. Instead, they find solutions which look good to the viewer when
animated [46, 92, 50] or can be used to synthesize approximate new views of a scene.
We call these reconstructions pleasing. The reconstruction precision is indicated in the
third column of Table 3.1. ’=’ indicates exact precision, '~ plausible precision and 'a’
a pleasing approach. Surely there are smooth transitions between these classes.

Representation. Different surface representations have a strong impact on recon-
struction domain, complexity, runtime, memory usage and versatility of the algorithm.
We distinguish between parametric and implicit representations and those which are
neither parametric nor implicit. Each point on a parametric surface can be uniquely
described by a coordinate. Finding a good parametrization for an object is not straight-
forward and generally does not allow for arbitrary topology. Implicit surfaces are a
remedy to this problem. In this case, the surface is a level set of a function defined
on R3. In contrast to parametric surfaces, single points on the surface are not easily
addressed. Polygonal surface representations are neither parametric nor implicit and
can be described as a planar graph with nodes, edges and faces. Note that polygonal
surfaces often describe piecewise planar objects but are also used for approximating
curved parametric surfaces. Finally, representations can describe closed and non-closed
3D surfaces. A depth map is an example for a non-closed representation and assigns a
depth value to each pixel. An implicit representation describes closed surfaces where the
backside of the surface is invisible from any chosen view point.

User Input and Runtime. Most single view approaches rely on user input to dissolve
ambiguities. The complexity of the input varies strongly among different approaches.
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User input can convey low-level and high-level information. High-level input is of se-
mantic quality which helps to dissolve ambiguities, e.g. the object silhouette.

This stands in contrast to tools, where the user models the reconstruction with the
help of low-level operations, e.g. by specifying surface normals or cutting away object
parts. Many of these modeling tools [56, 107, 15] are not image-based and therefore
only remotely related to single view 3D reconstruction. In sketch based modeling tools
[53, 78, 59, 112] such modeling operations are driven by user indicated strokes. The
Teddy tool will be examined in more detail in Section 6.5. A pioneering work on free-
form modeling was done by Welch and Witkin [106].

There is 2D and 3D user input. Most approaches use 2D input which in most cases
is directly applied to the input image [9]. This involves tracing contour edges such as
creases or vanishing lines. 3D input is directly applied to the reconstruction surface and
is often more involved for the user as he needs to navigate in 3D space (e.g. specifying
normals).

For some approaches the user input stage is separate from the reconstruction stage
[25, 31]. Other methods compute a first reconstruction, then the user can add further
input and the process is continued [114, 86|, [5, 9]. For approaches of the latter kind,
runtime is obviously an important factor.

Image Cues and Priors. The image cues and priors each method builds on are listed
in the lower rows of Table 3.1. See Section 3.1 for an explanation of the respective cues
and priors. Cues and priors are marked by a cross “z” if they are being used by the
method and by an “L” if they are learned beforehand.

3.4 Conclusion

Single view 3D reconstruction approaches infer 3D objects from just one 2D image. Due
to the ill-posed problem formulation there exist a variety of strongly differing approaches
that tackle the problem by imposing strong prior information or utilizing human input.

In this chapter, we discussed a representative set of existing algorithms and grouped
them into four classes: curved objects, piecewise planar objects, learning specific objects
and 3D impression from scenes. These groupings are based on the different recon-
struction objectives of the algorithms. We identified several important categories for
comparing the approaches: the reconstruction precision, the 3D object representation,
the assumptions made by the algorithm, the required user interaction, as well as image
cues and priors used by the algorithms.
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4 Interactive Workflow and the Minimal
Surface Assumption

Several methods for single view 3D reconstruction have been reviewed in Chapter 3. It
was shown that those approaches are based on largely differing assumptions, accuracy
and priors and focus on diverse reconstruction scenarios. At the same time they have to
deal with common problems and often exhibit similar shortcomings.

In this thesis we will concentrate on the 3D reconstruction of one or multiple closed,
curved objects seen in a single image. Our approaches will neither concentrate on exact
reconstructions, nor on polyhedral representations. Instead, it is designed to compute
reasonable 3D geometry estimates of man-made and natural entities that often will be
fairly close to the real object, which means that a comparison to a ground truth surface
could be meaningfully evaluated.

More precisely, the contribution of this thesis is to explore the computation of minimal
surfaces with variational methods in the context of single view 3D reconstruction. We will
show that these methods lead to elegant mathematical formulations of the reconstruction
problem, which can be efficiently optimized exactly or within provable bounds from the
optimum, lead to compelling reconstructions by employing simple and sparse user input
and address some of the common problems of state-of-the-art methods.

The following section will introduce the basic interactive framework for all the pro-
posed reconstruction approaches in this thesis. In the second part we will detail the
fundamental theoretical concepts of computing reconstructions by variational minimal
surfaces. Both sections will form the basis for the proposed single view approaches in
this thesis.

4.1 Interactive Work Flow

All of the proposed single view 3D reconstruction approaches in this thesis are based
on an interactive framework. Design premises are the following: the tool should be
easy to use, little or no expert knowledge should be required by the user, reconstruction
runtimes should be small enough for enabling user interaction and results should be
finished within few mouse clicks. The workflow of the reconstruction tool is depicted in
Figure 4.1.

In the variational reconstruction approaches that are proposed in this thesis the object
silhouette plays a central role. Firstly, it encodes a main part of the shape information
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Figure 4.1: The basic workflow of the single view 3D reconstruction process: the user
marks the input image with scribbles indicating foreground (red) and back-
ground (blue) exemplarily (left). From this a silhouette is generated by a
graph cut segmentation algorithm (second from left). A first reconstruc-
tion estimate is then generated from the silhouette. The user can iteratively
adapt the parameters (third from left) until a satisfactory reconstruction is
acquired (right).

for the reconstruction. Secondly, the topology of the reconstruction surface is determined
by the number of holes that the silhouette exhibits. Therefore, a high quality silhouette
is the main prerequisite for a good reconstruction result. At the same time, the user
effort to extract the silhouette should be kept small.

In the proposed reconstruction framework, the segmentation is obtained by utilizing an
interactive graph cut scheme similar to the ones described by [17, 88] [7]. The algorithm
calculates a partition of the image domain based on color histograms for foreground and
background which are computed from representational user pen strokes (see Fig. 4.1).

From the information in the image and silhouette a first reconstruction is computed
with corresponding parameters that are automatically estimated or hard coded. Number
and types of parameters depend on the particular reconstruction method used and will
be described in the following chapters.

Depending on the complexity of the object the preliminary reconstruction can already
be satisfactory. If not, the user can subsequently adapt the reconstruction by specifying
intuitive and simple global and local constraints, which depend on the specific recon-
struction method. The editing stage can be reiterated by the user until the desired result
is obtained. The texture is added to the reconstructions by orthogonally projecting the
input image onto the reconstruction mesh.

Notably, for all proposed reconstruction methods the silhouette does not necessarily
have to be fully connected. Disconnected parts in the silhouette will yield separate
reconstruction objects automatically.
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a) b) c)

Figure 4.2: Basic assumptions of all reconstruction approaches. a) The reconstruction
volume V' C R? contains the image plane Q. b) The object silhouette X is
part of the image plane €. c¢) To make the reconstruction feasible the object
geometry is assumed to be symmetric with respect to the image plane 2.

4.2 Basic Assumptions on the Reconstructions

To obtain feasible reconstructions we make the following assumptions, which are illus-
trated in Figure 4.2. Q denotes the image plane which contains the input image and
lies inside the reconstruction volume V C R? (see Figure 4.2 a). As part of the image
we also have an object silhouette ¥ C  (Figure 4.2 b), which is obtained by means of
an interactive segmentation tool. Since we reconstruct objects based on a single view
only we require the object to be symmetric with respect to the image plane ). Based
on these assumptions we can now introduce the minimal surface concept for single view
reconstruction.

4.3 Minimal Surfaces

Assume we are given the silhouette of an object in an image obtained by means of an
interactive segmentation tool. The goal is then to compute a smooth 3D model of the
object which is consistent with the silhouette. How should we select the correct 3D
model among the infinitely many that match the silhouette? Clearly, we need to impose
additional information, at the same time we want to keep this information at a minimum
since user interaction is always tedious and slow. All of the proposed approaches in this
thesis are based on the prior assumption that a majority of objects in the natural and
man-made environments follow the principles of minimal surfaces. In the following we
will introduce the mathematical notion of this concept and introduce a basic variational
framework for computing minimal surfaces that comply with a given silhouette of an
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object.
We seck to compute reconstructions as minimal weighted surfaces S C R3 that are
compliant with the object silhouette >:

min/g(s)ds (4.1)
S
subject to w(S) =% (4.2)

where 7 : R3 — ) is the orthographic projection onto the image plane €2, g : R? — R¥
is a smoothness weighting function and s € S is a surface element. In the following
we derive an implicit representation for the above problem. The main advantage of an
implicit surface representation is that the implementation does not need to deal explicitly
with the surface topology.

To begin with, the surface S is replaced with its implicit binary indicator function
u € BV (R?;{0,1}), where BV denotes the set of functions of bounded variation. The
function u indicates the exterior (u(z) = 0) or interior (u(xz) = 1) of the surface. As was
shown in Chapter 2, the weighted surface area of an implicit surface u € BV (R?;{0,1})
is given by the total variation of u. Thus, finding a reconstruction surface with minimal
area over a suitable set U of feasible surface functions yields the following problem:

min / (@) V()| d* (4.3)

where Vu denotes the derivative in the distributional sense. Equation (4.3) favors smooth
solutions. However, smoothness is locally affected by the function g(z) : R3 — R* which
will be used in later chapters for modeling sharp edges and protrusions (see details there).

What does the set U of feasible functions look like? For simplicity, we assume the sil-
houette to be enclosed by the surface. Then the following set describes surface functions
that are consistent with the silhouette X

0, m(x) ¢ X
Us =< u € BV(R%{0,1}) | u(z) = {1, rEY (4.4)
0 or 1, otherwise.

Solving for a solution to (4.3) with respect to the set Us; of silhouette consistent functions
will result in the silhouette itself.

As described in Chapter 3 this surface collapsing is a common problem in single
view 3D reconstruction. Many works, therefore, revert to inflation heuristics. These
techniques boil down to fixing absolute depth values. This is undesirable as true depth
values cannot be recovered from a single image and fixing them to arbitrary values is
tedious for the user and inhibits the flexibility of the reconstruction approach. In the
following chapters different remedies for this problem are proposed that refrain from
such heuristics.

38



5 A First Variational Method Using a
Shape Prior

In this chapter we devise a first approach to 3D reconstruction from a single image. The
proposed method extends the variational minimal surface formulation introduced in the
last chapter by a parametric shape prior. This prior fulfills two main tasks: it determines
the basic shape of the reconstruction, and it is a means of inflating the geometry in order
to avoid surface collapsing.

Contributions. In this chapter a shape prior based variational single view 3D recon-
struction approach is proposed, which comes with the following favorable properties:

e The variational framework is elegant and provably computes globally optimal min-
imal surfaces that comply with the object silhouette. It is highly parallelizable and
solutions can be computed within interactive runtimes.

e The implicit surface representation allows for reconstructions with arbitrary topol-
ogy and genus.

e User input is kept simple compared to state-of-the-art methods and little expert
knowledge is required.

e Inflation of the reconstruction surface is done implicitly by the shape prior, which
avoids surface collapsing.

This approach was published in [5]. In the following we will present the mathematical
formulation of the minimal surface reconstruction problem and define the parametric
shape prior. After that, the numerical optimization of the resulting problem will be
discussed. In the experimental section that follows, the embedding into an interactive
framework is described and qualitative results and runtimes are presented.

5.1 Variational Formulation with Shape Prior

There are different ways to model shape priors. One option is to introduce hard con-
straints similar to the required silhouette consistency, see Chapter 8. In this chapter a
different path is taken by introducing a data affiliation term into the 3D reconstruction
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energy functional, which measures how much the reconstruction surface agrees with the
shape that is considered most probable.

5.1.1 Shape Prior Definition

In general, the data term takes the following form

Eshape = /u(x) ¢shape(x)d3x (51)

where ¢gpape : R3 — R can be chosen arbitrarily. In this chapter, we set for each voxel
r € R3

< 0, if z is favored to lie inside the object (5.2)
> 0, otherwise. ‘

¢shape (.’L‘) {

In the following we will derive a parametric shape prior which depends on the silhouette
Y. For any point p € R" let

dist(p, A) = min|[p - 5| (5.3)

denote its distance to the set A C R”. Setting A = 0% and p € 2 we, for example, obtain
the distance transform of the contour 9%. We now define the shape prior by means of a
height map A : Q — R, which maps each projected point 7(z) to the maximum height
value the object shall have in this location

—1 ifdist(z,Q) < h(w(x))

5.4
+1 otherwise . (54)

¢shape (-73) = {

For defining the height map h we make the simple assumption that the thickness of the
observed object increases as we move inward from its silhouette. To this end, h is defined
by means of a parametric pyramidal shape

h(p) = min {Mcutoﬂv Uoffset + Mfactor * diSt(]% az)k} (5.5)

based on the four parameters k, ofset s ffactors feutoff € RT. foftset aNd fieutof define the
minimum and maximum height value, whereas pif.ctor and the exponent k determine the
slope of the height map, see Figure 5.1. The function can evolve either linearly (k = 1),
in a concave (k > 1) or in a convex fashion (k < 1). For k& — oo the shape becomes a
box with an infinite slope at the silhouette borders. Note that the impact of all shape
parameters is attenuated with increasing weight A on the smoothness term.
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k=2 k=1 k =1/100

Figure 5.1: Left: definition of the shape prior parameters pioffset, ffactors feutoff 11 (5.5),
Right: resulting (scaled) height map plots for a circular silhouette for various
values of exponent k.

5.1.2 Complete Energy with Shape Prior

Adding shape prior (5.1) to the minimal surface energy (4.3) amounts to the following
optimization problem:

min /u(x) ¢shape(x)d3x—i—/\/g(x)|Vu(a;)|d3a: (5.6)

uelUs,

where A is a weighting parameter that determines the relative smoothness of the solution.
The silhouette consistency constraint contained in Uy can be integrated into the shape
prior by defining the following function

oo, m(z)¢ X
dsil(r) = { —00, zE€X (5.7)
0, otherwise.

This function assures that all points projecting outside of the silhouette will be assigned
to the background (i.e. u(x)=0) and that all image plane points within the contour will
be assigned to the object (u(x)=1).

Merging the function ¢g and the shape prior ¢gnape yields the complete 3D recon-
struction problem

min /u(:c) (¢sit(z) + Pshape(x))dP2 + /\/g(x)\Vu(x)\d?’a:. (5.8)

u€BV (R3;{0,1})

5.2 Efficient Optimization via Convex Relaxation

Energy (5.8) is highly non-convex since the optimization domain consists of binary func-
tions. We will, thus, revert to a relaxation technique to arrive at a convex minimization
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problem which can be optimized globally. Subsequent thresholding will yield a binary
solution to the reconstruction problem. The relaxation plus corresponding thresholding
scheme was first shown to yield globally optimal results for this kind of energy functionals
by Chan et al. in [22].

A relaxation of the problem in (5.8) is obtained by replacing the optimization domain
by its convex hull, i.e. u € BV(R?;[0,1]). This allows the surface indicator function to
take on values in the unit interval [0, 1] and the problem reads as

ueB‘}I(lﬂi%gl;[O,l])E<U) where F(u) := /u(m)gﬁ(ac)d% + )\/g(a:)]Vu(x)]de (5.9)

and ¢ := ¢sil(x) + ¢shape'

Proposition 5. The optimization problem in (5.9) is convex.

Proof. For all u1,us € BV (R3;[0,1]) all linear combinations auj + (1 — a)ug, « € [0,1]
are obviously element of BV (R?;[0,1]), so the optimization domain is convex. The
functional E is convex since for any functions u; and ug and any « € (0,1) we have:

E(ou; + (1 — a)ug)
= /(aul(m) + (1 = @)uz(2))d(z) + Ag(2)|V(aur + (1 — @)us)|d’

_ / aur (2)6(x) + (1 — a)us(2)d(x) + Ag(@)|aVus + (1 — a)Vus)|d*a

< a / w1 (2)6(x) + Ag(2)| Ve |dz + (1 — a) / ()6 (x) + Ag(x)| Vua|dz
= aF(ur)+ (1 —a)E(us).

O
The Euler Lagrange Equations to (5.9) describe a non-linear diffusion process
\Y
0=¢— \div <g(x)‘vz|> . VzeR: (5.10)

In order to solve this system we follow the fixed-point iteration scheme first developed
by Vogel and Oman [104] and applied to 3D reconstruction in [63].

Lagged Diffusivity Fixed-point Iteration. This scheme is also known as lagged diffusiv-

ity: the system (5.10) is linearized by treating the diffusivity d(x) := % as a constant
over a number of fixed-point iterations:
0=¢—d(z)Au, VrecR3 (5.11)

For solving this linear system efficiently Successive Over-relaxation (SOR) is used, a
Gauss-Seidel fixed-point iteration scheme combined with an over-relaxation step for
faster convergence. The diffusivity is updated every ten to twenty steps.
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Discretization. The Laplace operator in (5.11) is discretized by a standard 3D Laplace
kernel. An update step of the Red-black version of the SOR scheme then reads as

— . du(t)
u§t+1) =(1- w)ugt) +w <¢ glwdj J ) (5.12)
inj @j

where ¢ ~ j denotes neighboring voxels using 6-connectivity and w € (0,2) is the over-
relaxation parameter. The voxels of the optimization domain can be imagined colored as
red and black fields of a checkerboard. Update step (5.12) is alternatively applied to the
red and to the black set of voxels. This is a parallelizable alternative to the Gauss-Seidel
scheme, which has to be implemented sequentially.

For numerical stability we compute the partial derivatives in the diffusivities d; by a
non-negativity scheme. This scheme will be detailed in Chapter 7 for the 2D case in
Equations (7.25)-(7.28). The 3D case is a straightforward generalization.

The diffusivities will be undefined if the norm of the gradient becomes zero. Therefore
a small € has to be added to the gradient before applying the norm. This is numerically
problematic as values can get very large at points having a small or zero gradient. Due
to this, the proposed algorithm will not compute the exact solution to (5.8). A remedy
is to employ a primal-dual scheme. This strategy will be detailed in Chapter 6 and can
be directly transfered to the functional at hand in (5.9).

Thresholding. To obtain a binary solution from the globally optimal computed relaxed
solution a thresholding scheme is applied. In [22] it was shown that picking an arbitrary
threshold 6 € (0,1) will in fact result in a globally optimal binary solution. This is
known as the thresholding theorem.

Proposition 6. Let u* € BV (R?;[0,1]) be a globally optimal solution to the relaxed
problem (5.9). Then for any 6 € (0,1), the thresholded solution 1,+>¢ is a global
optimum of the original binary problem (5.8).

Proof. Using the layer cake representation of u(x) = fol 1,>,dp and the co-area formula
[ g(z)|Vu|dx = fol [ 9(2)|V1y>,|dzdp the energy in (5.9) can be rewritten in terms of
lu>p

1 1
B(u) = /0 / 15 6(2) + 9(2) [V Lys | dadys = /0 E(Lusp)dp.  (5.13)

Let uopt be an optimal binary solution. Assume that for some 6 the thresholded solution
1,+>p is not optimal, then for these values of 6 it holds E(uopt) < E(1y+>p). For all
other thresholds 6 we have E(uopt) = E(1y+>g). It follows

1 1
E(uopt) :/0 E(uopt)dp </O E1ys>p)dp = E(u"). (5.14)
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Since u* is a minimizer of the relaxed problem it holds that E(uept) > E(u*), a contra-
diction. ]

5.3 Experimental Results

In the following, we will carry out experiments based on the proposed variational re-
construction method. First we will describe the interactive modeling of the shape prior
before experimental results are given.

5.3.1 Interactive Shape Prior Modeling

A good shape prior should be flexible so that it is applicable to a wide range of objects. To
this end, this framework allows for interactive adaptation of the shape prior parameters
in (5.4) by means of three different kinds of editing tools: global shape parameters and
local shape parameters in combination with a local relaxation of the minimal surface
assumption. The first two influence the shape prior directly while the third one defines
the weighting function g.

Global Shape Prior Parameters. The parameters Aofiset, Mactors Acutoff and the expo-
nent k of the function (5.4) define the basic shape of the prior, refer to the explanation
in Section 5.1.2 and Figure 5.1.

Local Shape Prior Parameters. The shape priors in (5.4) tend to be flat at the silhou-
ette borders due to the distance transform in the shape prior height map definition (5.5).
This behavior is not always desirable as the vase example in Figure 5.2 demonstrates.
The shown vase reconstruction should be bulgy exhibiting a sharp edge at the top and
the bottom. Instead, the shape prior assumes a smooth transition of height values to
zero close to the silhouette boundaries.

A remedy is to let the user mark these contour parts in the image and exclude them
from the calculation of the distance transform, i.e. in the dist function in (5.4).

Local Discontinuities. Reconstructions resulting from a minimal surface approach such
as (5.8) tend to be roundish regardless of the silhouette (see Figure 5.2). The weight
g(z) in the surface area term of (5.8), however, can be leveraged to induce creases,
discontinuities or protrusions on the reconstruction surface. By setting g(z) < 1 the
smoothness of the surface at location x is relaxed.

The user alters local surface smoothness by drawing curves into the input image and
associating them with a reduced value for g(x). For all the voxels in the reconstruction
volume that project to the drawn curve in the image the smoothness weight g(z) is then
set to the according value. The weight of the remaining voxels is set to g(z) = 1 by
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e) f) g) h)

Figure 5.2: Top: improving the shape prior for the vase image in e) by excluding sil-
houette parts in the distance transform, a) original shape prior with corre-
sponding reconstruction in b) exhibiting flat top and bottom, ¢) improved
shape prior after excluding the top and bottom of the vase (marked in blue
in e)) from the reconstruction yielding the result in d). Bottom: locally re-
laxing the smoothness where marked by the red user strokes in e) yields the
reconstruction shown from three different view points in f),g) and h).

default. The effects of this input can be observed in the bottom row of Figure 5.2 and
in some examples in the experimental section below.

5.3.2 Experiments

The proposed method is applied to several input images in Figure 5.3. For each object
the silhouette is extracted and functional (5.8) is minimized.

The examples demonstrate different qualities of the proposed approach. The fence
(top row) is a an object with complex topology of high genus. A drawback of parametric
reconstruction approaches in general is that the genus of the reconstruction has to be
modeled explicitly by the user [86]. In contrast, the proposed formulation in (5.6) is
ignorant of the topology of the reconstruction surface, and its genus is defined implicitly
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by the number of holes in the silhouette. For the fence example no user input was
necessary except for the silhouette extraction from the image.

The remaining reconstruction examples were obtained by editing the parameters of
the shape prior as described in Section 5.3.1. In particular, the Acuiof parameter was
altered to a low value in the biker example. The lower part of the opera building and
the socket of the Cristo statue were excluded from the distance transform computation
as described in Section 5.3.1. Scribble-based local relaxation of the surface smoothness
was applied to the beak in the cockatoo example and again to the socket of the Cristo
statue in order to obtain sharp edges in the reconstruction. All editing operations are
simple in the sense that firstly, they do not require expert knowledge, secondly they are
intuitive and thirdly they are specified by means of user strokes in the image instead of
the 3D model.

To limit the runtime and memory demand the input images were scaled down to size
2562256. The meshes that are shown in Figure 5.3 were recovered by applying the march-
ing cubes method [71] to the implicit binarized surface function after reconstruction. On
an Nvidia GeForce GTX 480 graphics card the computation of the reconstruction ge-
ometry takes between 0.1 and 15 seconds, depending on the input silhouette, volume
resolution and applied editing operations.

5.4 Conclusion

In this chapter a first variational approach to single view 3D reconstruction for closed,
curved objects was introduced by combining the minimal surface idea of Chapter 4 with a
parametric shape prior. It allows to compute a plausible 3D model for a limited but rea-
sonable class of single images. By using an implicit surface representation we eliminate
the dependency on a choice of surface parameterization and the subsequent difficulty
with objects of varying topology. The proposed functional integrates silhouette informa-
tion and additional but simple user input. Globally optimal solutions are obtained via
convex relaxation and subsequent thresholding of the variational energy minimization
problem. The algorithm can be used interactively, since the parallel implementation of
the underlying nonlinear diffusion process on standard graphics cards only requires short
runtimes.

The shape prior solves the surface collapsing problem and imposes shape on the recon-
struction. One problem of this approach, however, is that a parametric prior in many
cases is too rigid and that the distance transform is a heuristic assumption that inhibits
the flexibility of the approach during the editing phase. Furthermore, the user still has
to specify several parameters, which can be tedious. The following chapter will address
these problems.
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Input Image Reconstruction Geometry Textured
with Image Plane Geometry

Figure 5.3: Left: input images, Right: corresponding reconstruction results of the pro-
posed variational shape prior based approach.
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In the last chapter a shape prior was added to the variational minimal surface prob-
lem (4.3) and it was shown that within an interactive environment this concept yields
reasonable 3D reconstruction results for many images. However, one could see that a
data term imposes a strong bias on the shape. Furthermore, the user has to tune several
parameters in order to obtain the appropriate shape for the respective image. Ideally, we
strive for a non-heuristic inflation incentive that does not inhibit the shape variety, has
less parameters and results in compact surfaces. To this end, in this chapter a constraint
on the size of the volume enclosed by the minimal surface is proposed.

Contributions. In this chapter another minimal surface approach is proposed that over-
comes the limitations mentioned above. The new approach will share most of the ad-
vantages of the method from Chapter 5 such as speed, freedom of topology, easy surface
inflation and simplicity of user input. In particular:

e It will be shown that one can efficiently compute silhouette-consistent, weighted
minimal surfaces for a user-prescribed volume within provable bounds from the
global optimum.

e Surface collapsing is avoided.
e User input is strongly reduced.

e No heuristic or shape prior is required, since volume constraints in combination
with minimal surface assumptions lead to an automatic inflation of the object.

This approach was published in [9] together with a comparison of different optimization

methods in [1]. A comparison to the shape prior approach in the previous Chapter was
published in [10].

Related Work. A precursor to volume constraints are the volume inflation terms pio-
neered for deformable models by Cohen and Cohen [26]. However, no constant volume
constraints were considered and no implicit representations were used.

In fact, the presented solution can be considered as a means of inflating the object
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silhouette like a balloon. In the following we will first introduce a variational formula-
tion of this intuition and discuss how the resulting energy can be optimized efficiently.
Some theoretical considerations on solutions of the minimization problem will be given
subsequently, followed by a discussion on efficient optimization techniques. After show-
ing how the proposed approach is embedded into the interactive framework from Chapter
4, the last section will discuss qualitative experiments and runtimes of the method as
well as a comparison to related state-of-the-art approaches.

6.1 Variational Formulation with Volume Constraints

The constraint on the size of the volume enclosed by the minimal surface is formulated
as a soft- and as a hard constraint both of which are discussed in the following. We start
from the minimal surface problem (4.3) based on the feasible set of silhouette consistent
reconstructions Uy, defined in (4.4).

Hard Constraint.

By further constraining the feasible set Uy, of the minimal surface problem one can force
the reconstructed surface to have a specific target volume V. This leads to the following
formulation

weliB, / 9(@)|Vu(@)|d’x (6.1)
where Uy = {u € BV(R?;{0,1}) ‘ /u(ﬁ)d% _ V} _ (6.2)

Here, Uy denotes all reconstructions with bounded variation that inscribe the specific
volume V. Solutions to (6.1) is a Cheeger set problem. Cheeger sets are minimal surfaces
for a fixed volume. As an important special case, for a circle shaped silhouette and the
right volume the corresponding Cheeger set is a ball.

Soft Constraint.

Alternatively one can formulate a soft constraint by adding a ballooning term to the
minimal surface energy (4.3):

By (u) =\ </ u(z)d>z — V>2 . (6.3)

The term quadratically punishes the deviation of the surface volume from a certain tar-
get value V. In contrast to the hard constraint above, this formulation comes with an
extra parameter A. To avoid additional parameters in the following we will focus on
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(6.1) instead.

Notably, in contrast to the version with shape prior presented in Chapter 5 these for-
mulations do not contain explicit information as to where the surface is inflated and to
what extent. Rather, local volume inflation is a result of finding the minimal surface
which only depends on the silhouette shape and the target volume V. The narrower the
silhouette is the more expensive is its inflation due to the increased surface energy, so
wider silhouette regions will be inflated more.

6.2 Efficient Optimization via Convex Relaxation

Optimizing (6.1) is hard, since the set of feasible reconstruction surfaces consists of
binary valued functions making it highly non-convex (see Chapter 2).

In order to be able to apply continuous numerical optimization schemes such as the
ones reviewed in Chapter 2, we will have to convexify the problem by relaxing the
energy formulation. After having found a solution to the relaxed problem, we apply a
thresholding scheme to obtain a binary solution again. We will later explore optimality
bounds for this binary solution with respect to the original problem (6.1).

To relax the optimization problem we replace the sets Uy, and Uy in the definition (6.1)
by their respective convex hulls Uy, and Uy,. Formally, this is done by substituting the
function domains BV (R3; {0,1}) by BV (R3;[0,1]) in definitions (4.4) and (6.2) yielding

U = UL UL =
0, m(x) ¢ 3
u € BV(R3;[0,1]) ‘ /u(az)d?’a: =V and u(zx)=1<1, LAY (6.4)

0 or 1, otherwise.

In Chapter 5 it was shown that the energy (6.1) is convex if its feasible set is convex.
Thus, it suffices to show that

Proposition 7. The relaxed set U" := Uy, N Uy; is convex.

Proof. The constraint in the definition of Uy is clearly linear in w and therefore Uy, is
convex. The same argument holds for Uy, and Us;. As an intersection of two convex sets
U™ is convex as well. O

A common way of finding the globally optimal solution to this energy minimization
problem is gradient descent. However, this method converges rather slowly. Moreover,
as seen in Chapter 5, no exact solution to (6.1) can be found with this method, as
the corresponding Euler-Lagrange equations are not defined for vanishing Vu. Because
of this and since optimization speed is an integral part of an interactive reconstruction
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framework, two different provably convergent strategies for exact convex optimization are
proposed in the following: the primal-dual algorithm published in [81] and the alternate
direction method of multipliers (ADMM). Both algorithms were reviewed in Chapter 2.
A comparison was published in [1].

6.2.1 Optimization Using the Primal-dual Scheme

In order to apply the primal-dual scheme, we replace the minimal surface term in (6.1)
by its weak formulation (see Chapter 2)

min /g(x)\Vu]d?’x = min max( ){/—u divg d3x} , (6.5)

ueU" ueU" |£(z)|2<g
which is the primal-dual version of the reconstruction problem.

Optimization is done by alternating a gradient descent with respect to the function
u and a gradient ascent for the dual variable ¢ € CL(R3;R3). In each iteration step an
over-relaxation is done on the primal variable for speed-up.

The main problem in applying the primal-dual scheme is that the solution u has
to fulfill three constraints: silhouette consistency, constant volume and uw € [0,1]. As
proposed in Chapter 5, in order to maintain silhouette consistency (4.4) we add the
data affiliation term (5.7) to energy (6.1). Alternatively, we can confine updates during
optimization to those voxels which project onto the silhouette interior excluding the
silhouette itself. For ease of notation we will stick to the latter strategy in the following.

The remaining two constraints (volume compliance and u € [0,1]) can either be en-
forced by projecting the solution to the feasible set during optimization or by introducing
Lagrange multipliers into the energy. Both schemes have their strengths and weaknesses
and are sketched in the following.

Primal-dual Optimization via lterative Projection

Applying the primal-dual scheme described in [21] to the saddle point problem (6.5)
directly yields the following steps which are iterated until convergence

& = Mg@p<q(@) (€ + 7 Va¥)
kbt =TIy (uF + o - divert) (6.6)
G — okt _ ok
where 114 denotes the projection onto the set A. Projection of £ is done by simple
clipping while that of the primal variable u will be detailed in the following.

A closed form solution for the projection onto the remaining constraints in U” cannot
be devised. However, an iterative algorithm which computes the Euclidean projection
of a point onto the intersection of arbitrary convex sets was given by Boyle and Dykstra
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[18]. It converges provably to the projection solution. Formally, for our case step i of
this algorithm reduces to two separate projections for volume and domain

o
wy=up —vy N (6.7)
vy =y — (5" i)
up = T, (uy — v ") (6.8)
oy = uy — (al, —vy1).

We initialize up with the current u* in (6.6) and vp, vy with zero. o 1) (u) simply clips
the value of u to the unit interval and Vj is the difference between the target volume
V and the current volume of the values ugl - v{';l. N is the number of voxels in the
discrete implementation.

The algorithm does not yield the exact projection unless it is iterated infinitely often.
This states a theoretical problem, as the primal-dual algorithm is only provably conver-
gent when the precise projection is computed in each step. However, practically this is
not an issue.

Interestingly, it can be verified that the ADMM algorithm (see Chapter 2) with K = I,
F = xc and G = xp is equivalent to Dykstra’s algorithm for finding the projection onto
the intersection of convex sets C' N D.

Primal-dual Optimization via Lagrange Multipliers

In this formulation the volume constraint is introduced into the primal-dual energy
of problem (6.1) with the help of a Lagrange multiplier A, leading to the following
Lagrangian dual problem [16]:

max - min {/ —u divg d’z + A (/u 3z — v)} (6.9)
\i(z)Alz_ig(z) u€eUsy,

= max min {/—u dive d>z + )\/u B — )\V} . (6.10)

&()|2<g (=) u€Uy,
AER

As shown in Chapter 2, this Lagrangian dual is a saddle point problem to which the
primal-dual scheme can be applied. The Lagrange multiplier adds one step to the dual
gradient ascent in the iteration scheme

Y = e y<g(a) (€ + 7¢ - Vb)
MAL=XF 47y ([ade—V)
uF = Tyepoq)(uF — o - (=div €41 4 AFH))

k1 _ g k+1 _ k.

(6.11)

U
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The projection for the primal variable u now reduces to a clipping operation which can
be done point-wisely.

Of the presented optimization schemes the Lagrange-multiplier version of the single
view 3D reconstruction energy with volume constraint is more efficient. However, the
projection scheme of Dykstra can be faster when more constraints are introduced. Run-
times of the algorithms will be given in the experimental section below.

6.2.2 Optimization Using Alternate Direction Method of Multipliers

In the following the ADMM algorithm is derived for problem (6.1). For simplicity, we
present a spatially discretized version of the problem statement. To this end, the domain
X := RWXHXD ig defined as a 3-dimensional regular grid with width W, height H and
depth D. Then u € X is the implicit surface and u;,1 <7 < WHD its i-th element. We
set Z := (X?,X) and the linear operator K : X — Z such that Ku = (Vu u)T. Then
for a suitable discretization [ul|, of the TV-norm and a discretized volume constraint

set Uy (see both below) and by defining £ = (v w)T € Z we can cast problem (6.1) in
the following discrete form

min [oll, + < fou>+xu, (w) , st Ku=¢ (6.12)

uE[O,l}WXHXD

where the data affiliation term < f,u > ensures silhouette consistency (see (5.7)) and
XA is the characteristic function of set A, see (2.17). The variable splitting with aux-
iliary variable w will separate the projection on the volume constraint and on the set
[0, 1]W*H*D i the corresponding ADMM scheme

utl = argmin <f,u>+%HKU*§t+)‘tH;

ue[()’l]WxHxD
ritl = aKult! 4+ (1 — )¢t

t+1 __ : T t+1 )\t 2 (613)
3 —arggrgmllvllngXUV(wH =l E+ M5
c

\)‘H_l =\ + T(Tt—H _ §t+1)

where A = ()\1 )\2)T € Z are the Lagrange multipliers, r = (7“1 7“2)T € Z is the
over-relaxed solution and a € (0,2). Solutions for the subproblems are detailed in the
following.

Solving the subproblem in u. Deriving the problem with respect to u results in the
following Fuler-Lagrange equations

(Z - A= f—l—wt—)\g—divvt—kdiv)\ﬁ : (6.14)

T
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The constrained problem can be approximately solved by the Projected Gradient Descent
method.

However, we rather solve approximately for v by alternating Jacobi iterations with
pointwise projection to the constraint set Uy in the same fashion as [42]. In practice
this strategy turned out to be slightly faster than projected gradient descent, while
producing the same results. Five iterations for this subproblem suffice to make the
ADMM algorithm converge.

Solving the subproblem in v. The closed-form solution for the minimizer of the opti-
mization problem

o' = argmin ol + 5 [|o — (17 + 2D (6.15)
is given by the coupled shrinkage formula
o't = shrink, (r} + X4, 7)
which we define similarly to [42, 93] as
; 4 9i
(shrink g(z, 7)); = {Z s fﬂl”;ﬂl’zs f & (6.16)

See the Appendix for the derivation of the shrinkage formula.

Solving the subproblem in w. According to the definition of the proz-operator reviewed
in Chapter 2, the closed form solution to the optimization problem in w is given by the
orthogonal projection of ré“ + AL onto the convex set Uy, since

. T 2
argmin x¢,, (w) + 3 |w— (5 + )\g)H2 = proxi,, (ritT 4+ A8) =Ty, (T + N))
w T

(6.17)
It is shown in the next section, that this projection can be closely computed by

1
Iy, (u) =u — — Zul -V
‘X‘ 1eX
6.2.3 Implementation Details

Discretization. To implement both optimization schemes we have to discretize the
spatial optimization domain. As described for the ADMM scheme, we define a regular
grid X := RWXH*D and a surface function v € X. The gradient field of u is given as
Vu €Y := X2, Accordingly, the TV-norm is discretized as

IVuly =Y gilVauilly - (6.18)
1€Q
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Similarly, the constraint set of volume compliant surfaces v is equal to

Uy = {ueX‘Zui:V}

(6.19)

Forward differences are used to compute the gradient field Vu. At the boundary of X

von Neumann boundary conditions are assumed

'LL($ + 1a Y, Z) - U(l',y, Z)

(Vu(z,y,2))z := {0

U(%y +1, Z) - U([E, Y, Z)

(VU(Z, Y, Z))y = {0

U(xay,Z‘F 1) - u(:l:,y,z)

(Vu(z,y,2)), = {0

if z<W

otherwise

if y<H

otherwise

if z2<Z2

otherwise.

(6.20)

(6.21)

(6.22)

The divergence operator has to be chosen adjoint to the gradient operator, i.e. such that
it holds < Vu, & >= — < u,div€ >. It is straightforward to show that this is given for
the following discretization of div¢ with backward differences and Dirichlet boundary

conditions

5(3373/,2)1 - §($ - 17y7 Z)l
Ol (2,y,2) == { &(,y, 211
_5(1" - 1,y,Z)1

E(x,y,2)2 —&(z,y — 1,2)9
8y€<1',y,2) = f(x,y, Z)2
—&(x,y —1,2)2

g(xaya Z)3 - g(xaya = 1)3
82‘5(567:% Z) = ‘f(ﬂ?,yvz)a
_g(wvyuz - 1)3

if I<ax<W
if z=1
if =W
if 1<y<H
if y=1
if y=H
if 1<z<D
if z=1
if z=D

(6.23)

(6.24)

(6.25)

and div¢ = 0,¢(x, vy, 2) + 0,&(x, y, 2) + 0.&(x,y, 2) where £ € Y. For the ADMM, the
Laplace operator in equation (6.14) is discretized as A := —VTV. Both algorithms were
parallelized on recent graphics hardware by using the CUDA framework.
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Projection Scheme. An orthogonal projection on the set of volume compliant surfaces
Uy has to be done in both the primal-dual scheme with iterative projection as well as
in the ADMM algorithm. In the following we will devise this step analytically. The
Euclidean projection of «’ onto the relaxed set Uy (see (6.1)) can be described as the
following optimization problem:

minl/ Hufu’Hde s.t. /udx:V . (6.26)
u 2 Jq 0

By introducing the Lagrange multiplier A € R and calculating the partial derivatives of
the corresponding Lagrangian function we obtain the following extremality conditions:

O=u—u+X Vze (6.27)

Oz/uda}—V (6.28)
Q

Inserting (6.27) into (6.28) results in a solution for A

Jouwdz =V
Q
back substituting into 6.27 yields
V- 'd
w=1u+ (M) 1 (6.30)
Q

as a simple update scheme for the volume projection in which 1 is an indicator function
being 1 at every point z € 2 and 0 elsewhere. Intuitively, this means that the residual
volume is evenly distributed over all function values of w in €.

6.2.4 Thresholding Scheme and Optimality Bound

The optimization algorithm above computes a globally optimal solution uqp, of the
relaxed primal-dual reconstruction problem (6.5). The question remains how a solution
to the binary problem can be obtained from there and how these solutions relate to each
other energetically. Unfortunately, no thresholding theorem holds, which would imply
the binary optimality of the thresholded relaxed optimum for arbitrary thresholds such
as in [22]. We can, nevertheless, construct a binary solution ug;, as follows:

Proposition 8. The relaxed solution can be projected onto the set of binary functions
in such a way that the resulting binary function preserves the user-specified volume V.

Proof. Tt suffices to order the voxels = by decreasing values u(z). Subsequently, one sets
the value of the first V' voxels to 1 and the value of the remaining voxels to 0. O
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6 Cheeger Set Formulation

Figure 6.1: The two cases considered in the analysis of the compactness of solutions.
Left: a hemispherical concentration of the material. Right: the material is
distributed uniformly over the volume.

Concerning an optimality bound the following holds:

Proposition 9. Let ug, be the globally optimal solution of the relaxed energy and uopt
the (unknown) globally optimal solution of the binary problem. Then

E(ubin) — Blutopt) < Euin) — Buly) - (6.31)

A proof for this bound was shown in Chapter 2.

6.3 A Theoretical Analysis of the Compactness of Solutions

As we have seen above, the proposed convex relaxation technique does not guarantee
global optimality of the binary solution. The thresholding theorem [22] — applicable
in the unconstrained problem — no longer applies to the volume-constrained problem.
While the relaxation naturally gives rise to a posteriori optimality bounds, one may take
a closer look at the given problem and ask why the relaxed solution u should favor the
emergence of solid objects rather than distribute the assigned volume equally over all
voxels within the reconstruction domain.

In the following, an analytical proof is derived that the proposed functional energeti-
cally prefers compact solutions. For simplicity, we will consider the case that the object
silhouette in the image is a disk. And we will compare the two extreme cases of all
volume concentrated within a ball (a known solution of the Cheeger problem) compared
to the case that the same volume is distributed equally over the whole feasible space
(namely a cylinder) — see Figure 6.1. Note that in the following proof it suffices to
consider the volume only on one side of the silhouette.

Proposition 10. Let ugphere denote the binary solution which is 1 inside the sphere and
0 outside — Figure 6.1, left-hand side — and let w.y denote the non-binary solution which
is uniformly distributed (i.e. constant) over the entire cylinder — Figure 6.1, right-hand
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side. Then we have
E(usphere) < E(ucyl)a (6.32)

independent of the height of the cylinder.

Proof. Let R denote the radius of the disk. Then the energy of usphere is given by the
area of the hemisphere:

E(ugsphere) = Vigphere|d>x = 27 R. 6.33
P P

If instead the volume of this hemisphere, i.e. V = %R:g, is distributed uniformly over
the cylinder of height h € (0, 00) with volume wR%h, we have

if x is i‘nside cylinder (6.34)
0 otherwise.

V. _ 2rR3 _ 2R
Ucyl(l‘) — {ﬂ‘RQh ~ 37R?h ~ 3 h
The surface energy of u.,; is given by the area of the cylinder weighted by the respective
jump size at the bottom and top disks of the cylinder and for all other boundary voxels:
2R 2R 7

E(ucy) = / (Vitey|d*x = ( — %) TR® + ¢ R? +27Rh) = gﬂRQ > E(Ugphere)-
(6.35)
O

6.4 Experimental Results

In this section we study the properties and applicability of the proposed interactive single
view 3D reconstruction method with volume constraint. Note that both the primal dual
and the ADMM optimization method compute the global optimum of the energy in (6.1)
and thus yield exactly the same results. Qualitative experiments are presented, which
are used to highlight practical and theoretical aspects of the approach. Furthermore,
limitations and runtimes of the framework are explored and an experimental comparison
to the minimal surface approach with shape prior presented in Chapter 5 is given. Failure
cases of the approach will be discussed in the subsequent Chapter 8, in Section 8.5.

6.4.1 Interactively Controlling Volume and Smoothness

Embedding the above presented optimization schemes into the interactive framework
described in Chapter 4 is straightforward. User specified parameters include the smooth-
ness weight ¢g(z) in (6.5) and the object volume.

Volume control is implemented as a simple slider indicating the percentage of the vol-
ume the reconstruction surface should inscribe. Each time the user alters the volume, a
recomputation of the reconstruction surface is triggered. This is illustrated in Figure 6.2.
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Input Image Reconstruction +25% Volume +35% Volume

Figure 6.2: By interactively increasing the target volume, the reconstruction is intuitively
inflated. Broader parts of the silhouette are inflated more than thinner ones.

One disadvantage of minimal surface approaches is that they tend to result in roundish
reconstructions. For several objects this is not desirable. We, therefore, employ the
user scribble interface as described in Section 5.3.1 for controlling the local smoothness
parameter g(z) of the surface are term in (5.6).

6.4.2 Inflation Behavior

Figures 6.3 and 6.4 illustrate how solutions to (6.1) are typically inflated. The former
shows that roundish silhouettes lead to balloonish reconstructions. The latter figure
shows that thin structures in the silhouette - such as the twig - are inflated less whereas
points that have a longer distance to the silhouette boundary are inflated more - see e.g.
the bird. Thus, in a way the heuristic shape prior approach of Chapter 5 mimics the
Cheeger set method by introducing a silhouette distance transform. Both examples are
unweighted, i.e. g(xz) =1 for all .

Input Image Reconstructed Geometry Textured Geometry

Figure 6.3: The proposed Cheeger set approach favors minimal surfaces for a user-
specified volume. Therefore the reconstruction algorithm is ideally suited
to compute smooth, round reconstructions.
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Input Reconstruction Different View Geometry

Figure 6.4: Volume inflation dominates where the silhouette area is large (the bird)
whereas thin structures (the twigs) are inflated less.

6.4.3 Weighted Minimal Surfaces

Figure 6.5 shows how the weight ¢ can be adapted in order to model high frequency
features such as the edges of the box-like shape of the watering can. The user input
for this reconstruction is kept simple, although choosing the right scribble parameter
requires some experience.

In the air plane example in Figure 6.6 the surface weight was used to create protrusions
in the reconstruction. This was achieved by setting the parameter of the wing scribble
to a very low value (0.03 in this case). Notably, inducing protrusions in this way is not
possible in the approach of Chapter 5, since the shape prior of energy (5.6) inhibits the
flexibility of the surface.

Image with User Input Reconstructions Geometry

Figure 6.5: The proposed approach allows to generate 3D models with sharp edges
marked by the user as locations of low smoothness in the image. Along
the red user strokes the local smoothness weighting function ¢ is decreased.
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Image with User Strokes  Reconstructed Geometry Textured Geometry

Figure 6.6: An example for a minimal surface with user defined volume and local smooth-
ness adaptation for creating protrusions. Colored lines in the input image
mark user input, which locally alters the surface smoothness. Red marks
decrease, yellow marks increase the smoothness.

6.4.4 Compactness of the Solution

It was theoretically shown in Section 6.3 that the relaxed problem formulation of 6.1
energetically favors compact solutions. In Figure 6.7 an experimental evaluation of the
compactness of the reconstructions is shown for several examples. Voxel occupancies
of the optimal relaxed surface function w are visualized. Values range from 0 (com-
pletely transparent) to 1 (white). We can see that most voxels are either 0 or 1 which
demonstrates the compactness of the solutions.

6.4.5 Shape Prior versus Volume Prior

Figure 6.8 compares multiple reconstruction examples of the proposed Cheeger set ap-
proach with those of the shape prior method from Chapter 5. The experiments show
that the reduced number of parameters does not have a negative impact on the recon-
struction quality for most of the shown examples. For some examples the shape priors
inflicts a strong bias on the reconstructions (see e.g. the pyramidal shapes of the egret
and the giraffe). Increasing the smoothness parameter A in the energy (5.6) will mitigate
the influence of the shape prior. However, with higher smoothness the result tends to be
less voluminous making it hard to achieve ball-like shapes. This relationship is shown in
Figure 6.9. The shape prior also does not allow for protrusions as induced by the weight
g(z) described above, since the data term is too strong.

6.4.6 Runtime Comparison for PD and ADMM

Table 6.1 compares the ADMM and the Lagrange Multiplier version of the PD algo-
rithm with respect to the runtime. Both algorithms were run until the RMSE error
|lu — u*|| 2/+/|Q| dropped below a threshold of ¢ = 5.0 x 1073. The optimal solution u*
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Figure 6.7: Voxel occupancies visualized for the optimal relaxed solution computed on

several examples. Occupancies range from 0 (transparent) to 1 (white). Al-
most all voxels are either 1 or 0 demonstrating the compactness of the recon-
structions. Additionally, some images contain the iso-surface, i.e. the final
reconstruction, that was generated by the described thresholding scheme.
One can see that the relaxed solution is reasonably close to the final iso-
surface for most cases, which further supports the compactness thesis.

Runtime in Seconds Number of Iterations
|2 PD ADMM PD ADMM
sm 0.15 (£ 0.10) 0.10 (£ 0.05) 1015 (£ 618) 300 (£ 152)
med | 13.47 (+ 11.64) 8.35 (£ 7.32) 5716 (+ 5664) 1471 (£ 1399)
big | 115.30 (£ 113.60) 79.16 (£ 91.80) | 11724 (4 12136) 3171 (4 3776)

Table 6.1: Average and standard deviation of the runtime and number of iterations for

the PD and ADMM algorithm over 18 different single view 3D reconstruction
examples. The results show that ADMM performs better with respect to the
runtime.

of the energy minimization problem was computed by letting the algorithms run for a
sufficiently long time. For the ADMM parameters 7 = 1, @ = 1.5 were chosen and for
the PD algorithm it was set § = 1 with preconditioned step sizes. All numerical experi-
ments were carried out on a PC with a 3.4GHz Intel i7-3770 CPU with 32GB RAM and
a NVIDIA GeForce GTX680 graphics card on a Linux distribution.

For experiments 18 test images were used and the reconstruction was computed for
each of them using PD and ADMM. To examine how the algorithms scale with the
resolution of the reconstruction domain € three different resolutions were used. A rather
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Input Image Reconstruction with Geometry with
Shape Prior Volume Prior Shape Prior Volume Prior

Figure 6.8: Direct comparison of the reconstruction method with shape prior given in
Chapter 5 to the Cheeger set formulation in this chapter. The results demon-
strate the superior reconstruction performance of the Cheeger set formulation
in contrast to the shape prior approach which often yields biased solutions
(see egret and giraffe).
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006

Input Image Data Term Reconstruction with Reconstruction with
as Shape Prior Shape Prior Volume Prior

Figure 6.9: Using a silhouette distance transform as shape prior the relation between the
data term and the final reconstruction is not obvious for a user. In contrast,
the Cheeger set approach results in more intuitive solutions controlled only
by the volume parameter.

coarse resolution with few (~ 3.4-10%) voxels (sm), an intermediate (= 8.0-10°) resolution
(med) and a high resolution with a large number (= 3.6 - 10%) of voxels (big).

For each resolution the average runtime and standard deviation over all test images
is given in Table 6.1. Figure 6.10 shows an example for the different performances of
PD and ADMM on the balloon reconstruction image in Figure 6.3. The horizontal line
indicates the termination criterion where the desired accuracy of the solution is reached.
Results on the other test images look similar. From the results we can conclude that
the ADMM algorithm converges faster than the PD algorithm for the 3D reconstruction
problem instance of the minimal partition problems with volume constraints.

balloon_big balloon_big

10¢

10¢

2 3 4 5 100
10 10 2 10 100 10" 107 10° 107

time [sec] iterations

Figure 6.10: Exemplary convergence of the ADMM and the Lagrange Multiplier version
of the PD algorithm. The horizontal line indicates the termination crite-
rion based on the accuracy of the algorithm (vertical axis). The ADMM
algorithm converges significantly faster than the PD algorithm.
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Example Zhang Igarashi Prasad Shape Prior | Volume Prior
et al. [114] | et al. [53] | et al. [86]

Banana 20 min < 1 min 10 min 5 min < 1 min
Fish 15 min < 1 min 2 min 8 min 1 min
Dory 40 min < 1 min 5 min 7 min 1 min
Vase 20 min < 1 min 2 min 13 min 4 min

Squash 12 min < 1 min 2 min 2 min 1 min

Orange 14 min < 1 min <1 min 3 min < 1 min

Ostrich 30 min < 1 min 15 min 7 min 2 min

Donut 55 min < 1 min 10 min 3 min 1 min

Jelly Bean 15 min < 1 min 2 min 4 min 1 min

Teapot 35 min < 1 min 20 min 15 min 4 min

Table 6.2: Approximate modeling times for a user with intermediate experience for all
five methods based on the examples in Figures 6.11, 6.12 and 6.13. In combi-
nation with the reconstruction results this table reveals significant differences
in the efficiency of the methods.

6.5 Comparison to State-of-the-art Single View Approaches

In this section the minimal surface reconstruction algorithms presented so far are com-
pared to the most relevant related single view 3D reconstruction approaches that have
been published over the last years. Our focus lies on methods that aim for the recon-
struction of curved surfaces. In particular, we discuss the approaches by Zhang et al.
[114], Prasad et al. [86] and Igarashi et al. [53]. Although Igarashi et al. is rather a
modeling tool it inflates object contours and is thus strongly related to silhouette based
3D reconstruction.

For all experiments, the single view modeling tool by Zhang et al. [114] and the
SmoothTeddy software - which is based on several works by Igarashi et al. [53, 51, 52] -
was used. Both of them are publicly available for download. The reconstruction results
by Prasad et al. are taken from [85, 86, 84].

Figures 6.11, 6.12 and 6.13 show the reconstruction results of all five methods on ten
different examples, covering various issues such as object shape, topology, viewing angle
and image type.

User Input and Modeling Times. The measured modeling times are listed in Table
6.2. Times include all the preprocessing (such as silhouette extraction) and respective
user input and only excludes the coloring of the model in the approach by Igarashi et
al. [53].

Among the reconstruction approaches, Zhang et al. and Prasad et al. exhibit the
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Banana Fish Dory (Finding Nemo) Vase

Input Images

; ¥ w,,%

Zhang et al. 114

DT

Igarashi et al.

Proposed Minimal Surface with Shape Prior [5

9

Proposed Minimal Surface with Volume Prior [9

Figure 6.11: Experimental comparison of several methods for curved object reconstruc-
tion. The results obtained by the method by Prasad et al. are taken from

[84].
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Ostrich

-

Zhang et al. [114]

Proposed Minimal Surface with Volume Prior [9]

Figure 6.12: Continuation of Figure 6.11.
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Proposed Minimal Surface with Volume Prior [9]

Figure 6.13: Continuation of Figure 6.12.
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highest demand on user experience and modeling times, see Table 6.2. Although Zhang
et al. and Igarashi et al. rather belong to the category of modeling tools, they differ
largely in the required user effort. This is because with the method of Zhang et al.
the user has a variety of choices for surface manipulations. These include position and
normal constraints for fixing depth values and normal directions at selected points, dis-
continuity constraints for modeling sharp edges, planar region constraints for modeling
planar surfaces and manual mesh-subdivision for increasing the resolution locally. Usu-
ally many of these constraints are necessary for reasonable reconstructions leading to
modeling times of several minutes to hours even for experienced users. As moderately
experienced users, 20-40 minutes were spent for each of the examples shown in Figure
6.11 - 6.13.

Similarly, the method by Prasad et al. requires concise input and expert knowledge
(see Figure 6.14): the user has to assign parts of contour lines to lines in the parameter
space, which becomes harder for objects of higher genus. Moreover, for volume inflation
one needs to define a set of interpolation constraints. In subsequent steps the user can
add further constraints for allowing surface creases, which are also represented as lines in
parameter space. During optimization the constraints for the silhouette consistency may
be violated, which makes it necessary to manually add a so called spillage correction.

Surface Representation and Topology. A comparison to Zhang et al. is problematic
in that only height maps can be modeled as opposed to closed surfaces. Also, no seg-
mentation is done of the object silhouette, which is why the background is part of the
height field. Igarashi et al. allow only for genus zero surfaces as they model meshes
explicitly. This can lead to mesh inconsistencies as can be seen for the neck of the os-
trich in Figure 6.12. To allow for holes during modeling extensions such as FiberMesh
[78] were proposed. Prasad et al. can theoretically represent surfaces of higher genus,
but are practically limited to genus two (e.g. the teapot) due to the parametric surface
representation. The proposed minimal surface approaches are the only ones that can
reconstruct surfaces of arbitrary topology. However, even though they are capable of
representing arbitrary surfaces, in practice reconstructions will be height fields mirrored
along the symmetry plane, e.g. there will be no self-occlusion in viewing direction due
to the minimal surface assumption. This problem will be addressed in Chapter 8.

Prasad et al. compute a non-trivial surface parametrization from user input (see
Section 3.2.1). This is beneficial as the parametrization can encode unique characteristics
of the object in combination with non-planar contour generators. Drawbacks are the
required user effort. In addition, uniformly distributed points in parameter space can
end up being stretched or compressed on the object surface leading to oscillations such
as those in the teapot in Figure 6.13 or difficulties in modeling thin structures such as
the legs of the ostrich in Figure 6.11.
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» 188

a) Contour b) Silhouette c) Parameter d) Inflation
Extraction Constraint Space Curves

N

e) Spillage f) Surface  g) Surface h) Contour
Correction Constraints Constraints Extraction

Figure 6.14: a)-f): User input required by Prasad et al. [86] for the genus 1 version of
the teapot example (figures are taken from [84]), a) Contour extraction,
b) Lines of the contour have to be related to lines in the parameter space
in ¢), d) Input for the inflation heuristic, e) Spillage correction, f) Final
reconstruction with inflation constraints in yellow, g) User input for the
method by Zhang et al. Yellow crosses are position constraints, red ones
denote discontinuity constraints, h) User input for the method by Igarashi
et al. which consists only of the contour extraction.

Assumptions on the Input Image. The proposed minimal surface approaches and the
method by Igarashi et al. both make the assumption that the object in the input image
is symmetric with respect to the image plane. This implies that the contour generator
is planar. If this assumption is violated, reconstructions can still look pleasing, but are
erroneous (see e.g. the donut, or the banana). The approach by Prasad et al. [86] allows
for non-planar contour generators and, thus, in some cases for slightly more general view
points than just a side-view. The approach by Zhang et al. works for the broadest range
of images but at the same time results in the most unrealistic reconstructions.

Quality. It is difficult to assess the quality of the reconstructions. One criterion is
how geometrically close the reconstructions come to the real objects. In that respect
Prasad et al. and the minimal surface approaches are clearly dominating. Still there
are also subjective differences in quality that are hard to measure. The teapot example
by Prasad et al., e.g., suffers from surface over-oscillation at the handle, whereas the
minimal surface approaches have problems with the reconstruction of the donut since
the image is not taken from a side perspective. An advantage of the method by Zhang
et al. is the large freedom in modeling details such as, e.g., the round shaped eye of the
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fish Dory in Figure 6.11 or its side fin which bends away from its body.

The method by Igarashi et al. is the only one not capable of modeling creases and
sharp edges. This lowers the quality of some reconstructions such as the tail fin of Dory
in Figure 6.11 or the top and bottom of the vase (Figure 6.11) and the teapot (Figure
6.12).

Runtimes. Zhang et al. and Prasad et al. use thin plate spline energies to compute
minimal surfaces, which is done in a matter of seconds on modern CPUs as it amounts
to solving small systems of linear equations. Igarashi et al. construct their surface by
a heuristic, for which probably the lowest computational effort is needed among the
discussed approaches. In the proposed minimal surface approaches large systems of
variables have to be solved and the computational complexity rises cubically with a
growing reconstruction volume. By parallelizing the computation on graphics hardware
runtimes between below one second and several seconds are obtained depending on the
resolution of the reconstruction volume.

6.6 Conclusion

A second single view 3D reconstruction approach was proposed in this chapter that is
based on the idea of Cheeger sets, i.e. minimal surfaces for a fixed user-specified volume.
To this end, the minimal surface idea in Chapter 4 was extended by a constraint on
the volume contained by the reconstruction surface. The resulting variational problem
was solved via convex relaxation and either PD or ADMM algorithms. The proposed
thresholding scheme delivers a binary solution that complies with the volume and is
provably within bounds from the global optimum.

In an experimental evaluation we showed that the results are qualitatively comparable
to the shape prior approach of Chapter 5 but without the drawback of imposing a
bias on the reconstruction shape. In this way, the weight of the total variation will
have a bigger impact on the surface locally and can be used to model sharp edges and
protrusions with the help of simple user strokes. Finally, it was shown that the convex
approaches compare equally well or favorably over existing state-of-the-art single view
3D reconstruction methods for curved surfaces.

There are several drawbacks of the Cheeger set approach. The computational com-
plexity rises cubicly with the resolution of the optimization volume, which, therefore,
should be kept small. Small resolutions, however, will result in discretization artifacts.
Another problem is that the thresholding scheme does not guarantee a global optimum
of the combinatorial problem.

Other problems concern the flexibility of the approach and the quality of the results:
no additional shape information enters the reconstruction process, which is why firstly,
reconstructions tend to be roundish and secondly, they do not allow for more complex
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shapes such as occlusions or protuberances, and they are always representable as mir-
rored height fields.

The latter line of drawbacks will be addressed in Chapter 8, while the next chapter
will deal with the remaining issues.
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7 A Globally Optimal Minimal Surface
Approach Based on Height Fields

We have seen that formulating single view 3D reconstruction as a silhouette based min-
imal surface problem requires to have some inflation stimulus to avoid trivial flat so-
lutions. Up to this point two approaches were presented, one of which is based on a
parametric shape prior (Chapter 5), the other one on a volume constraint (Chapter 6).
We found the latter approach favorable in most cases as it is simpler, less heuristic,
avoids the shape prior bias and has only one parameter with intuitive effect on the
reconstruction surface.

However, the presented globally optimal height field approach comes with a couple of
drawbacks, which have already been indicated in the last chapter:

e The volumetric representation is computationally more involved than other state-
of-the-art minimal surface based single view 3D reconstruction approaches. For
moderate resolution reconstructions the method requires more than a second of
computation time despite an efficient GPU-accelerated primal-dual algorithm. As
a consequence, higher-resolution 3D models cannot be generated at interactive
speeds.

e Although the Cheeger set method was shown to provide smooth and volume-
consistent solutions, the algorithm is still based on convex relaxation and thresh-
olding. Consequently, in the absence of a threshold theorem, the method is not
guaranteed to provide a globally optimal minimal surface of specified volume. Fur-
thermore, despite the compactness of the solution it is not clear whether subsequent
thresholding of the relaxed solution actually leads to a spatially coherent structure
(rather than a scattered set of voxels).

e Low resolutions of the optimization volume lead to discretization artifacts since
depth is discretized into a finite number of voxels.

Contributions. In this chapter a reformulation of the Cheeger set approach is proposed
which solves the issues outlined above. The method exploits the observation that the
surfaces computed by the fully volumetric Cheeger set approach are representable as
height fields (mirrored along the image plane to obtain a closed reconstruction). More
precisely the contributions are the following:
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e The proposed single view 3D reconstruction approach is based on a height field
representation. As a consequence, depth values are represented continuously.

e Requirements on memory and computation time are substantially reduced with
a quadratic rather than a cubic complexity. This enables us to compute high
resolution reconstructions based on high resolution input images and silhouettes
within interactive runtimes.

e In contrast to the fully volumetric Cheeger set approach the proposed method does
not require a convex relaxation or thresholding. As a consequence, the algorithm
provably computes globally optimal silhouette-consistent minimal surfaces of a
specified volume.

This approach was published in [4].

In the following we will introduce a proper mathematical formulation for a height field
approach to volume-constrained minimal surfaces and will consider suitable methods for
optimizing the problem efficiently. Finally, we will evaluate the method qualitatively,
compare it to related approaches and examine runtimes.

7.1 A Globally Optimal Minimal Surface Approach Based on
Height Fields

7.1.1 Variational Formulation

The paradigm shift in the following approach is to avoid the implicit formulation of the
reconstruction surface. Instead, we assume that the surface can be fully described as a
height map defined on the silhouette domain 3 (see Chapter 4)

u:X =R, TCQ. (7.1)

The function u assigns a depth value u(x,y) to each point (x,y) € X of the silhouette
which is a subset of the image domain 2. As shown in the schematic plot in Figure 7.1,
an infinitesimal surface area element dA of the surface represented by the function u is
given by

dx 0
dA = 0 x| dy =14 |Vul2dzdy . (7.2)
Uy dx Uy dy

The overall area of the surface u is obtained by summing over all its surface elements.
Since we wish to minimize the surface area we define the following energy

E(u):/dA:/E\/lJrVusza: : (7.3)
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Figure 7.1: Area of an infinitesimal surface element dA computed in (7.2) based on the
partial derivatives of w.

For brevity, d?z now denotes a two dimensional variable of integration. The task of
computing a minimal surface enclosing the volume V is, therefore, equivalent to the

following problem
/ ud*r=V 3 . (7.4)
)

Proposition 11. The two-dimensional fixed volume minimal surface problem defined
n (7.4) is convex.

migE(u), with C = {u € CHLRY)
ue

Proof. The volume constraint on wu is obviously a linear constraint, thus the optimization
domain is convex. Moreover, the functional E is convex because for any functions u
and uz and any « € (0,1) it holds:

E(au; 4+ (1 — a)ug)
— / \/1 + \(aVul +(1- a)Vug) |2 >z

[

= S 1) e (772 @
< [o|C)] - (7)) 2
= /a 1+ |V |2 + (1 — a)\/1 + [Vuy|? d*z
= aF(u;) + (1 - a)E(u2)
O
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In contrast to the Cheeger set formulation (6.1) proposed in the last chapter, the two-
dimensional height field formulation is convex. As a consequence, we do not need to
revert to the generally suboptimal strategy of finding a convex relaxation and subsequent
thresholding. Instead, we can directly compute globally optimal solutions by solving
(7.4).

7.1.2 Theoretical Analysis of Solutions for the Disc Case

Before we detail how this can be done efficiently in the next section, let us undertake a
theoretical analysis of basic solutions to problem (7.4). This will be examined for the
case where the silhouette ¥ is a disc. Consider the following

Proposition 12. Given a silhouette the shape of a disc with radius R, the solution
to problem (7.4) for given volume V < %’NRS is a sphere segment. For V = %WRS the
minimal surface becomes a hemisphere of radius R.

Proof. For the special case of a disc, problem (7.4) becomes rotationally invariant and
we can revert to a one-dimensional formulation. To this end, we substitute

w(@) =v(z))  and  Vu() = (|z)) =

= (7.6)

with v : R — R, so that integral (7.3) reads as

Ix!

[ Vi [

x—/\h+w\ﬂ|f (7.7)

From this, we can reduce the constant volume minimal surface problem to its one-
dimensional form (without loss of generality we will assume a disc of unit radius R = 1)

mmc / /14 0(r)2dr st :{v c-/olrv(r)dr:V} , (7.8)

where c is the area of a unit circle. We add the constraint as a Lagrange multiplier A
to the energy functional. Then, the optimality conditions for a solution composes of the
Euler-Lagrange equations on the one hand and the derivative with respect to A on the
other:

Y " U/QU// \ v
— —r — +A=0 re|0,1 7.9
1 + "2 /1 + 2 m% [ ] ( )

c- /rv(r) -V=0 (7.10)
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Now, a sphere segment is given by the function
v(r) = R‘Q/ —r2 —my (7.11)

where Ry is the radius and my the shift in y-direction that depend on the given volume
V. It is easy to see that for given V < %W, Ry and my are determined uniquely (for a
sagitta of length two, i.e. v(—1) =v(1) =0). Since we choose v(r) to describe a sphere
segment of volume V', Equation (7.10) is trivially satisfied. In order to show that v(r)
satisfies condition (7.9) we plug in the derivatives

V' (r) = —r(R% — 7“2)_% (7.12)
V' (r) = —(R} — 7“2)_% —r?(R% — 7’2)_% (7.13)
and end up with
—r(RY — %) e e U e A
f— —_— 7” —
(1+72(R%, —r2)-1)3 (1+72(R —r2)~1)2
R ) R
(1+7r2(RZ —r2)~1)"2
1 r? r? r !
sr—-rl-—————++-—5+ Ar =0 7.14
" ""< Ry RV(R%—T2)+R%/+R%/(R%/—T2)>+ " (7.14)
1 r? ((R%/ —7?) >) !
sr—rl-—-—=|-—=—"—=—-1) ]+ =0
< Ry R} \ (R —r?)
1
which can be satisfied for all r by choosing A = — (1 + ﬁ)
O

7.2 Efficient Optimization

Globally optimal minimal solutions of the convex problem (7.4) can be obtained by solv-
ing the Euler-Lagrange extremality condition given by the partial differential equation

dE 1
— =—div| ——=Vu | =0 . 7.15
du <\/1+ |Vu|? ) (7.15)

Solving this equation with respect to the function u will yield the global optimum due to
the convexity of problem (7.15). Note, however, that theoretically there may be several
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solutions of the same energy. Condition (7.15) is a nonlinear diffusion equation which
is similar to the well-known model by Perona and Malik [80] for edge-preserving image
smoothing, but with a different diffusivity g(x) = 1/4/1 + |Vu|? which was proposed by
Charbonnier et al. [24].

Deriving the diffusion (7.15) from Equation (7.4) therefore provides a geometric in-
terpretation of the Perona-Malik diffusion with the Charbonnier-diffusivity: in image
diffusion the image gray values can be interpreted as a height map whose surface area
is being minimized as the diffusion proceeds (see also [95] for more details).

However, here we use Equation (7.4) in a completely different setting. Instead of
using a data term we impose a global volume constraint and special boundary conditions
which are derived from the input silhouette. In the following we will describe how these
constraints are chosen and incorporated into the numerical optimization of Equation

(7.15).

7.2.1 Numerical Schemes for Finding the Global Optimum

There are multiple optimization schemes for solving problem (7.4). In the following
we will present four different numerical algorithms. We will explain their theoretical
properties, point out their relations, detail their implementation and compare their per-
formance in the context of single view 3D reconstruction. The first numerical algorithm
for solving the minimal surface energy (7.3) was given as early as 1967 by Paul Concus
[28], however, he did not consider a volume constraint in his formulation.

Projected Gradient Descent. A simple iterative scheme for solving constrained energy
minimization problems is projected gradient descent, which is similar to gradient descent
as described in Chapter 2, only that in each iteration the solution is projected onto the
feasible set C, i.e.

U1 = Prox,, <ut -7 Zf) (7.16)
where 7 is the step size and prox,, is the Euclidean projection onto the convex set C.
In each step the energy of the solution will decrease. The algorithm converges when
the solution does not change anymore. Since the minimization problem (7.4) is convex,
the gradient descent method will converge to the global optimum of the constrained
energy. We will discuss later how the projection can be computed analytically. For
faster convergence, the projection is usually performed only every [-th iteration with
[>1.

Fast Iterative Shrinkage-Thresholding Algorithm - FISTA. As reviewed in Chapter 2,
the fast iterative shrinkage-thresholding algorithm [14] is a splitting method capable of
solving minimization problems with non-differentiable components. Energy (7.4) has no
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non-differentiable term which in our case makes FISTA equivalent to the Nesterov scheme
[79] of which it is a generalization. Nesterov introduced an over-relaxation step, which
leads to a faster convergence by over-shooting the current solution into the direction of
its recent change. The over-relaxation step size is adapted in each iteration by a special
scheme which can be shown to guarantee a global convergence rate of O(1/t?), t being
the iteration.

Ut Zﬂt—T'%d%(ft)
rn =4 (14 VT )
U] = Prox, . (Ut + :tt:ll (Ut - Ut—l))

Here L is a Lipschitz constant of the functional F. Again, the projection in the last step
is not required in each step.

Primal-Dual. The first order primal-dual scheme presented in [21] and reviewed in
Chapter 2 solves problems of the form

ig/F(Ku) +G(u) . (7.17)

We can apply the algorithm to the minimal surface problem (7.4) by substituting the
variables as follows:

K : CHQ;R) — CHLR?), u— Vu

F:Cl(Q;RQ)—>R,v»—>/\/1+<v,v>d2m (7.18)

G=0.

The following Proposition derives the primal-dual formulation of the height field minimal
surface approach with volume constraint for single view 3D reconstruction.

Proposition 13. The corresponding primal-dual problem for the energy in (7.4) reads
as
inf sup / <Vu, € > +/1— < &E>d*x + ) (/ u d?x — V) . (7.19)
b b

U glEloo<t
AR

Proof. With substitutions (7.18) the primal-dual formulation of problem (7.17) takes
the following form (cf. Equation (2.19))

migsup < Vu,§ > —F*(¢) . (7.20)
ue I3
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It remains to calculate the Legendre-Fenchel dual F™* to the function F'. To this end, we
seek to solve the following problem

F*(¢) = sgp/ <v,€> —\/1+ <v,v > d*x. (7.21)

The Euler-Lagrange equations to this problem are given by £(1+ < v,v >)% =v, Yz €
for which the larger solution is v = ﬁ Inserting this solution into Equation (7.21)
yields

e {—fﬁ— <EES dr i <1 (722)

00, otherwise

Finally, the volume constraint in (7.4) is added to (7.19) by means of a Lagrange mul-
tiplier A\. This concludes the proof. O

A straightforward application of the primal-dual algorithm to problem (7.19) yields
the following optimization scheme.

k41 _ k ik ¢k
& =g <§ + 7 (Vu W))
MNAL = X\F 47y ([ @" de - V) (7.23)
bt = uF — o - (—=diver Tt 4 \EFD
ak-i-l — Quk—i-l o ’U,k

However, care has to be taken with the gradient ascent step of the dual variable £ in
the implementation of the scheme. The term \/#7 is not defined for [|£|l, =1. As a

<>
remedy, one can subtract a small value € in the denominator ﬁ, although this
numerical correction prevents us from finding exact solutions to (7.4) and thus renders
the primal-dual approach suboptimal for this functional. Interestingly, the primal-dual
formulation for the fully volumetric approach in Chapter 6 did not have this problem,
instead, the gradient descent scheme to the primal problem had.

The primal-dual scheme has the advantage that no explicit projection onto the feasible
set of volume compliant surfaces has to be performed.

Successive Over-Relaxation by Means of Lagged-Diffusivity. The lagged-diffusivity
approach was already discussed in Chapter 5. By keeping the diffusivity 1/4/1 + |Vul|?
in Equation (7.15) constant the problem turns into a sparse linear system div(Vu) = 0,
which can be solved efficiently with numerical solvers such as Jacobi, Gauss-Seidel or
Successive Over-Relaxation (SOR). The diffusivity is updated every few iterations.
This numerical algorithm will not provably converge to the global optimum when
applied to our constrained problem (7.4) because of the additional projection step that
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7.2 Efficient Optimization

is needed (a projection was not necessary in the unconstrained case of problem (5.6)).
Intuitively, with projection step the convergence is only guaranteed if in each step the
solution is modified in the direction of the negative gradient. Nevertheless, we will
explore this scheme further in the following as it leads to low runtimes and good results.

7.2.2 Implementation Details

We solve optimization problem (7.4) with each of the methods mentioned above and
compare their performance. Prior to this, we discuss several implementation details of
the algorithms in this section.

Projection Scheme. Except for the primal-dual scheme, each presented algorithm in-
volves an orthogonal projection onto the convex set C of volume compliant height fields.
This projection was devised in Chapter 6, Section 6.2.3 for implicit surfaces. An equiv-
alent scheme applies to the case where the surface u represents a height field.

Boundary Conditions. We apply Dirichlet boundary conditions at the silhouette bound-
ary 02 and Neumann boundary conditions if the silhouette coincides with the image
boundary 0€2:

Z—Z(w) =0 if z€0Q . (7.24)

u(z) =0 Ve dX;
The first condition ensures silhouette consistency of the solution, together with the fact
that we only optimize over the silhouette . The second condition makes the object

surface touch the borders of the reconstruction volume orthogonally (see experiments
below).

Discretization and Parallel Implementation. For numerical stability, we employed a
non-negative discretization for the projected gradient descent and the FISTA algorithm.
This works as follows. The expression v(z) := ——2“— inside the divergence is com-

V14| Vul?

puted for discrete positions v, _ V; i1 and v, j—10n the basis of the following
’ 2 % 2

EUARCENE
stable derivatives of u:
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Figure 7.2: Tllustration of the discretization scheme used for the FISTA implementa-
tion. Left: finite differences scheme used to compute the derivatives of u left
(and right) of the target pixel in y-direction (red) and z-direction (blue) (cf.
Equations (7.25) and (7.26)). Center: the analogous scheme used for the
derivatives in u above (and below) the target pixel in z-direction (red) and
y-direction (blue) (cf. Equations (7.27) and (7.28)). Right: the divergence
for the central pixel is finally computed by central differences.

QD
S

— i — U 7.25
<8$1>z—§,j e et ( )
( Ou > -1 ((Ui—l,j+1 + wij1)  (Uim1-1+ ui,j—l)) (7.26)
Ors ), 1, 2 2 2

< Ou ) _ 1 _ <(ui+1,j1 + Uit1,41) _ (ui—1,j-1+ Uil,j)> (7.27)
0r1 ), ;1 2 2 2
ou

= Ug 5 — Uj j— 2
<6:c2>z',j—; gt (7:28)

where the subscripts (i — 5,4), (4,j — %) denote the derivatives defined “on the grid”.
Definitions (7.28) and (7.25) can be understood as the central difference between two
mean values (see Figure 7.2, left and center). The other two discretizations denote

simple backward differences. The derivatives (@ - and (%)i,j +1 are defined equiv-

acp)i—&—%,]
alently for directions z1 and x2. Once the v(z) are computed from these derivatives, the
divergence is calculated simply by central differences (see Figure 7.2, right).

For the implementation of the primal-dual scheme, the discretization was chosen equiv-
alently to the volumetric case - see Chapter 6 for details. For parallelization of the SOR
method a Red-black scheme was implemented. All minimization methods described in

Section 7.2.1 were parallelized on recent graphics hardware using the CUDA framework
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including the projection step.

7.3 Experimental Results

In the following the proposed minimal surface approach (7.4) is applied to several real
world images. First we discuss the integration of the formalism within an interactive
framework for single view 3D reconstruction. Then, in the first part of the experiments
the results are discussed and qualitatively compared to the implicit Cheeger set approach
of the last chapter and to selected related single view 3D reconstruction approaches
reviewed in previous chapters. The second part of the experimental section concentrates
on the runtimes of the proposed minimal surface approaches and the performance of the
discussed optimization algorithms.

[114] Prasad et al. [84]  Implicit [9] Height Field

z

Input Image  Zhang et al.

Figure 7.3: Qualitative comparison of the proposed height field approach to several single
view methods.
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7 A Globally Optimal Minimal Surface Approach Based on Height Fields

7.3.1 Interactively Controlling Volume and Smoothness

The reconstruction volume is controlled by the user in the same way as described in
Chapter 6. However, compared to the implicit formulation, the substantially reduced
computation times of the height field approach make the volume adaptation much more
convenient. This will be verified in the experimental section below.

We can control the amount of surface smoothness locally by introducing a weighting
function similar to the weighted total variation in (6.1). Equation (7.3) then becomes

E(u):/zg(:c)\/1+\Vu|2d2:v . (7.29)

Fortunately, the introduction of the weighting function g(z) : ¥ — R* does not affect
the convexity of the energy. This can be seen by a straightforward extension of the proof
in Proposition 11. Modification of g(x) is done by a scribble based system similar as in
the implicit approaches.

7.3.2 Qualitative Comparison

Figures 7.3 and 7.4 show reconstruction results of the height field method for various
input images. The examples represent objects with very different properties reaching
from natural to man-made objects.

Solutions of the proposed algorithm are qualitatively similar to the ones of the im-
plicit approach of Chapter 6. Differences can be found mainly in the resolution of the
reconstructions. Since for the proposed height field method less memory and computa-
tion time is needed, input images with considerably higher resolution are feasible which
result in more highly detailed silhouettes and reconstruction meshes as can be seen in
most examples shown. Also, surfaces of the height field method appear smoother (see
e.g. the balloon), since continuous depth values are computed. In contrast, depth values
in the implicit approach have to be discretized into a finite number of voxels.

No weighting function was used for the experiments in Figures 7.4 and 7.3. This is
different in Figure 7.6 where the user scribbles were used to define locations of reduced
surface smoothness. Setting the surface weight g(x) to less than 1 locally allows for
sharp edges and surface extrusions such as the airplane wings.

7.3.3 Runtime Evaluation

We employed a gradient descent scheme, FISTA and SOR for solving problem (7.4) as
described in Section 7.2.1. All experiments were done on a PC with a 2.27GHz Intel Xeon
CPU, 12GB RAM equipped with a NVIDIA GeForce GTX480 graphics card running a
recent Linux distribution.

For comparing runtimes of the respective optimization algorithms, each was run on a
reconstruction example until convergence. For each time step ¢ the distance d(ug, u*) of
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Input Image Geometry Textured Geometry
Height Field Implicit Height Field Implicit

Figure 7.4: Reconstruction results of the proposed height field approach in this chap-
ter are similar to the results of the implicit approach but are obtained
with higher resolutions, less memory, lower computation times and increased
depth precision.

the intermediate result u; to the precomputed converged result u* was plotted.
dlur’)i= [ (uay) ~ ' (e,y) Pdody (7.30)
(zy)eX

The convergence criterion for all experiments was set to

'E(Ut—l) — B(w)

5w <6 (7.31)
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7 A Globally Optimal Minimal Surface Approach Based on Height Fields

with # = 10~1%. Figure 7.5 shows the results for three optimization schemes. The lagged
diffusivity SOR approach of section 7.2.1 is clearly the most efficient algorithm. It also

— Gradient Descent b
-=--FISTA
--=SOR 1

distance d(us, u*)

time ¢ [sec]

Figure 7.5: Runtime comparison of different algorithms minimizing Equation (7.4) mea-
sured on the teapot example without user-scribbles.

example implicit height field | speedup
teapot size | 131x101x58 | 131x101

time | 1.82s 0.14s 13.0

size | 179x137x79 | 179x137
arch .

time | 6.24s 0.99s 6.3
ladybug s.ize 151x122x27 | 151x122

time | 1.62s 0.15s 10.8
bird size | 157x244x4 157x244

time | 2.12s 0.2s 10.6
balloon size | 82x97x44 82x97

time | 2.65 0.15s 17.7

Table 7.1: Runtime comparison of the height field and the implicit minimal surface ap-
proach for the experiments in Figure 7.4
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7.4 Conclusion

Figure 7.6: Reconstruction results for the input images based on relaxed local smooth-
ness at the locations of the user scribbles.

has the steepest convergence curve, i.e. it quickly attains a surface that is near to the
converged solution. The FISTA algorithm is only slightly faster than gradient descent.
The performance gain stems from the adaptive over-relaxation step. Note that due to
the constraints on the feasible set, we have no proof that SOR converges to the global
optimum (see the point Projection Scheme above). However, the results of SOR are
almost identical to the those from methods that provably attain the global optimum.

The computational efficiency of the globally optimal height field approach is compared
to that of the implicit minimal surface methods from Chapters 5 and 6 in Table 7.1. For
the height field version the fastest optimization scheme was employed. The table lists
runtimes for the experiments in Figure 7.4. It clearly shows that the proposed height field
method is significantly faster than the implicit version. This difference mainly stems from
the fact that the height field approach is two-dimensional, whereas the implicit versions
are three-dimensional.

7.4 Conclusion

In this chapter a globally optimal height field based method for single view reconstruc-
tion was presented. In contrast to its implicit version of Chapter 6 it directly computes
continuous depth values on a height field making the algorithm several orders of mag-
nitude faster and provably globally optimal while offering similar solutions with higher
resolution. The speedup is ideally suited to support the interactivity of the approach
enabling instant user feedback for volume adaptation. To obtain maximum efficiency
multiple numerical algorithms for solving the optimization problem (7.4) were introduced
and compared against each other. SOR outperformed the other algorithms, although we
were not able to show global optimality of this method.
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7 A Globally Optimal Minimal Surface Approach Based on Height Fields

Obviously, all these advantages come with the main drawback that the complexity of
the set of reconstructable surfaces is limited, which means, e.g., that no self-occlusion or
protuberances can be modeled. In the next chapter we will, therefore, revisit the implicit
minimal surface approach and explore how shape constraints can be formulated in order
to extend the flexibility and versatility of variational single view 3D reconstruction based

on minimal surfaces.
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8 Single View 3D Reconstruction with
Relative Volume Constraints

Up to this point three different approaches to single view 3D reconstruction were pro-
posed and discussed all of which were based on computing minimal surfaces complying
with a given silhouette. Although the two implicit methods presented in Chapters 5
and 6 are theoretically capable of representing arbitrary surfaces in 3D, we observed
that due to the minimal surface assumption and the lack of an additional shape prior
reconstructions are limited to height fields. As a consequence, in Chapter 7 we looked
into an equivalent volume-constrained minimal surface approach formulated on the basis
of a height field representation. In spite of the advantages that came with this formula-
tion (global optimality, strongly reduced computation times and higher precision) more
complex reconstructions that cannot be represented by height fields, e.g. self-occluding
objects, protrusions or dents, could not be handled, yet. In addition, an important
source of shape information, i.e. the shading information in the image, has not been
exploited so far. These points will be addressed in the following chapter in order to
extend the class of reconstructable objects while reducing the required user guidance.

Contributions. To account for the general ill-posedness in 3D reconstruction from a
single image, in this chapter we will introduce the notion of relative volume constraints.
This concept will lead to two additional constraints on the minimal surface approach
of Chapter 6, one that directly imposes shape knowledge on the reconstruction surface
and one that relates the volume of different object parts. The imposed shape can either
be determined by user sketches or by semi-automatically extracting it from shading
information in the image. In this context the following contributions will be made:

e We impose characteristic object shape by means of relative depth profiles and
partial volume ratios.

e The reconstructions are not limited to height maps and allow for self-occlusions,
protuberances, dents and holes.

e A semi-automatic method is proposed to infer depth profiles from the shading
information in the input image.
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8 Single View 3D Reconstruction with Relative Volume Constraints

These contributions are embedded into the variational framework and optimized within
bounds from the global optimum via convex relaxation. The approach is easily paral-
lelized and can be run on graphics hardware. It was published in [8].

The chapter will be structured as follows: firstly, an intuition is given on how the
newly introduced constraints can be used for modeling reconstruction surfaces. We
then formalize the relative volume constraints mathematically, discuss their integration
into the variational framework in Chapter 6 and detail the efficient optimization of the
resulting problem. In Section 8.4 the new method for semi-automatic profile estimation
from shading data is presented. Finally, the approach will be evaluated qualitatively
and results will be compared to related methods.

8.1 Absolute and Relative Volume Constraints

In Chapter 6 a constraint on the surface volume was introduced as a means for inflating
the reconstruction. This volume constraint is absolute in the sense that the specified
volume does not depend on any other quantity. In the following relative volume con-
straints will be defined which introduce dependencies between object part volumes. In
particular, two types of shape priors are derived from these relative volume constraints:

e user defined or shading based relative depth profiles, which define the object
shape along its cross sections and

e volume ratio constraints, which specify the volume ratio of object parts with
respect to the full object.

Intuition Behind the Constraints. To give a clear idea of the reconstruction process
based on relative volume constraints, an example of the reconstruction of the watering
can is shown in Figure 8.1. Figure 8.1 a) shows the original image of the watering can.
If we apply the reconstruction method from Chapter 6 and look for a minimal surface
that is consistent with the object silhouette while imposing a global constraint on the
object volume we obtain the ball shaped reconstruction with flat handle in Figure 8.1 b).
To improve the result we introduce a depth profile constraint, which defines the rough
shape of the object along a cross section. In the example above, the profile in Figure 8.1
c) is imposed along the vertical cross section of the can indicated in red in Figure 8.1 a).
It can either be given by the user or estimated from shading information. By imposing
this profile (see Section 8.1) we obtain the result with handle in Figure 8.1 d). The
object shape now resembles a realistic watering can instead of a ball. Yet, the handle
is reconstructed as a solid object. To further improve the reconstruction we apply a
volume ratio constraint. "Volume ratio’ means that we restrict the object volume within
the indicated pink region to a specific ratio of the full object volume, e.g. to 0 for the
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8.1 Absolute and Relative Volume Constraints

a) Original b) Volume c) Depth  d) Partial  e) Volume  f) Result
Constraint Profile Result Ratio

Figure 8.1: 3D reconstruction of the watering can using absolute and relative volume
constraints, see text for explanation.

region below the handle indicated in pink in Figure 8.1 e) in order to obtain a hole. We
finally obtain the improved reconstruction in Figure 8.1 f).

Note that the imposed profile constraints define relative instead of absolute depth
values, i.e. the depth of one pixel is proportional to the depth of a reference pixel within
the profile. Since the depth values are relative the profiles and thus the object shape
automatically scale with increasing volume. An example is shown in Figure 8.2.

In the following both constraints will be devised formally and integrated into the
variational framework for single view 3D reconstruction.

8.1.1 Relative Depth Profiles

Relative depth profiles indicate the shape of the object along a given cross section. Such
a profile consists of two ingredients:

e the profile line which marks the location of the profile in the image plane (see the
red line in Figure 8.1 a) )

e the desired qualitative (not absolute) depth values (depth profile) along the line
(see the pink sketch in Figure 8.1 ¢) )

The depth profile can either be sketched by the user or computed from shading infor-
mation (see Section 8.4).

Let C C X denote the profile line across the object within the image plane, which
indicates the desired location of the shape profile. Let

R, :={zx e R®|n(x) =y} (8.1)

denote the ray of all voxels which project onto the image pixel y € C'. Let the depth ratio
¢y € Rar indicate the depth of the object at pixel y with respect to that of a reference
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8 Single View 3D Reconstruction with Relative Volume Constraints

a) Input Profile b) 20% Volume c¢) 40% Volume

Figure 8.2: Application of the shape profile in a) to a spherical 2D shape with b) 20%
and c) 40% volume. Since the depth constraints are relative, the shape scales
naturally with increasing volume.

profile pixel, which can be picked arbitrarily from those within the profile C. We set
crof = 1 for the ray Ryos at the reference pixel. The constraint set of all reconstruction
surfaces that obey the relative depth profile is defined as

ref

Uc := {u € BV(R3?;{0,1}) ‘ /R u(z)d3x = cy/R u(z)d®z , Yy € C’} . (8.2)

Equivalent constraint sets can be defined for additional relative depth profiles specified
with respect to other profile lines C;. Their concatenation defines the set of surfaces
that comply with all these relative depth profiles simultaneously. However, one has to
take care not to define contradicting relative depth constraints as their intersection will
result in the empty set.

8.1.2 Relative Volume Ratios

The second type of constraint are relative volume ratios. A volume ratio constraint
defines a fixed volume ratio for part of the surface with respect to the whole object,
e.g. we can define that the wings of the plane in Figure 8.8 should contain 25% of the
volume of the whole plane. Such relative volume constraints allow for protuberances,
dents, self-occlusions and holes in the reconstruction.

Let T C R? denote the set of voxels on which the volume ratio constraint is imposed.
This set can be indicated interactively by the user as discussed in the following section.
The constraint set can then be defined as follows

Ur == {u € BV(R?;{0,1}) ( /Tu(x)d3m - rp/u(x)d?’x}. (8.3)

Again, each volume ratio constraint will yield one such set. The intersection of these
sets will be the set of surfaces that comply with all volume ratio constraints.
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8.2 Efficient Optimization via Convex Relaxation

In this section the final energy minimization problem with respect to the reconstruction
surface u is derived. A convex relaxation approach similar to the one in Chapter 6 will
be taken.

We follow the definition (6.4) of the relaxed set U" of surfaces that are compliant with
silhouette and global volume V' and relax constraint sets (8.2) to U/, and (8.3) to Uj
accordingly by reverting to u : R® — [0, 1]. Taking the intersection of all the constraint
sets we arrive at the following optimization problem

: 3
ueUTIgl{lJr%ng/g(x)Wu]d x. (8.4)
The constraints for the global volume, the depth profiles and the volume ratios are all
linear and thus their constraint sets as well as their intersection are convex. For efficient
optimization we consider the primal-dual formulation of (8.4) by introducing Lagrange
multipliers v, uf, and fy; for each constraint. This results in the following saddle point
problem:

max min/—u div ¢ Bz +v /u B -V )+
l€(2)|<g(x) u€Us;
vy HtER

Z Z% (/ uddz — c;/ u d3x> + (8.5)
Ry chfi

i yel;

Z,ui </T‘ud3az—r;/ud3x>.

Again, optimization is done with the primal-dual method by Chambolle and Pock [21].
It consists of alternating a gradient descent with respect to the function v and a gradient
ascent for the dual variables &, v, v, and p interlaced with an over-relaxation step on
the primal variable. For the sake of readability we will regard the case for only one given
depth profile and one given volume ratio constraint with respective Lagrange multipliers

vy and p.

(&5 = Mgy, <g(a) (€F + 7¢ - V¥)

I/k“:I/k—i-Ty-(fﬂk dx — V)

prtt = pb o ([b do -y [UF da)

W=y 7y ([p, @ dr—cy [y 0* dx)

W = ey (0 — o(—dive™! + oML (1 )1 4 509t (1 - e)1c)

k1l — gkl _ ok

(8.6)
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8 Single View 3D Reconstruction with Relative Volume Constraints

where IT4 denotes the projection onto the set A and 14 is its indicator function. Note
that the projection for the primal variable v now reduces to a clipping operation. Pro-
jection of £ is done by simple clipping as well. The discretization is done as described in
Chapter 6.

8.3 Interactive Modeling with Relative Volume Constraints

We have already provided an intuition on how relative depth and volume ratio con-
straints can be used for improving the quality of single view 3D reconstructions. This
section deals with the details of how these constraints are implemented in an interactive
framework.

8.3.1 Relative Depth Profiles

Obtaining the Profiles. Relative depth profiles help to define the shape of the recon-
struction. The question remains how the profiles themselves can be obtained. For simple
object shapes, rough profile sketches can easily be outlined by the user, e.g. the profile
of the watering can in Figure 8.1 ¢). This is done by specifying control points of splines
or piecewise linear curves. A method to semi-automatically estimate the profiles from
shading data in the image is given in the next section.

Application of the Profiles. Although in principle profiles can be applied along arbi-
trary curves C' C X, for simplicity we let the user either define profiles along vertical or
horizontal lines in the input image whose position is specified by a simple mouse click.

Since we wish to impose the profile shape upon the whole object - not only the marked
cross-section - a copy of the relative depth profile specified by the user is applied to each
object cross-section parallel to the reference line. In the watering can example in Figure
8.1 profile ¢) was specified along the vertical cross-section in a) and then the same
profile was applied to every parallel column in the input image. Solving problem (8.4)
with the corresponding constraints will result in a smooth reconstruction surface since
the profiles only specify relative depth within each cross-section. Another example for a
surface constructed with this strategy is given in Figure 8.2.

Profile Attenuation. One can also choose to soften the profile constraints with increas-
ing distance to the reference cross-section. To this end, we suggest to put a limit on the
Lagrange multipliers for each profile constraint depending on its distance to the refer-
ence profile. The Lagrange multiplier limits can be chosen according to a function with
maximum value on the reference cross-section and decreasing values along neighboring
cross-sections, e.g. a Gaussian. Let C denote the user indicated reference cross-section.
Then for any neighboring profile constraint C,, we compute the minimum distance d,
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between C,, and C to obtain the limit L,,(C),) on the Lagrange multiplier for each
cross-section C,

Lin(Ch) =m (1 - max‘idn}f. (8.7)

Here m is the maximum Lagrange multiplier for any of the profiles. Setting m to
infinity yields the same user indicated hard depth profile constraint for each of the
cross-sections. The following proposition gives a theoretical justification for pruning the
Lagrange multipliers:

Proposition 14. Confining the Lagrange multiplier of a volumetric constraint in the
primal-dual formulation (8.5) amounts to an Ly soft constraint.

Proof. We regard the minimal surface problem with a global volume constraint, whose
Lagrange multiplier is confined by k:

max min/—udiv§d3x+u</ud3x—V>
[§(@)|<g(z) U
lv|<k

= max min/—u div € d®z + v (/u d*z — V) — 0 1<k(v)

[§(@)|<g(z) U
U

= max min/—udivfdgm—i—kz'/udg:n—‘/‘
[E(x)|<g(z) v

where for the second equality we used that the Fenchel-dual of max, v -z — 0| |<x(v) is

given by k|z|.

Multiple Profiles. It can make sense to define profiles for multiple parallel (vertical or
horizontal) cross-sections. In 8.3 e), e.g, relative depth profiles for multiple horizontal
cross-sections are specified for the watering can. For the cross-sections that lie between
two different profile definitions, the profile constraints are linearly blended. This will
result in a smooth transition of the profiles. The result for the watering can after
optimization can be seen in Figure 8.7.

8.3.2 Volume Ratio Constraints

Defining Volume Ratios Interactively. To indicate the part of the object, where the
volume ratio constraint is imposed, the user draws a region into an arbitrary 3D view
of the reconstruction as shown by the pink region in Figure 8.1 e). Then he specifies a
volume ratio r,, relative to the overall object volume V. Each voxel in the reconstruction
volume is then projected onto the viewing plane of the camera. All voxels in R? which
project into the user drawn region constitute the constraint set 7 C R? on which the
volume ratio constraint is imposed.
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Modes of Optimization. Constraints on volume ratios can either be imposed as an
additional constraint from the beginning or as a subsequent optimization problem after
convergence of the original problem. For the latter case optimization is done only within
the voxel set T'. This can be used to limit the effects of the subvolume constraint to the
selected voxels.

8.4 Estimating Relative Depth Profiles from Shading
Information

Rather than drawing the depth profiles by hand, which can be tedious, in this section a
method is proposed, which estimates them directly from the shading information in the
input image. The following assumptions are made:

e At the locations where we estimate the profiles, the object is made of a homoge-
neous material with constant albedo.

e The distances of the light sources to the object are large compared to the object
size.

The last assumption is given for most scenes. These two assumptions imply that points
with similar normals result in similar irradiance. In general, our framework allows for
arbitrary reflectance properties including shiny objects with specular surfaces.

The proposed interactive approach for estimating the profile consists of three steps,
which are illustrated in Figure 8.3. In the first step the reflectance function of the target
object is estimated from user given samples. In the second step the user defines the
profiles to be estimated by marking their respective locations in the input image. Finally,
relative depth along the profiles is computed automatically by finding the shortest path
in a specific graph. In the following we will detail these steps.

Estimation of Reflectance Function. The process of estimating the reflectance func-
tion is illustrated in Figure 8.3 a) and b). For performing regression on the reflectance
function p : S? — R3, which maps each normal direction to its corresponding reflected
color, we need samples. These are specified by pairs of curves si, s : [0,1] — R? given
by the user. The first curve of each pair is drawn onto the input image, the second one
onto the image of a sphere, whose points represent normal directions. For each pair,
the sequence of colors from the input image described by s; is mapped to the normal
directions given by ss. This step is illustrated in Figure 8.3 a).

Given the color samples, we perform regression on the reflectance function. To this
end, we represent it as a sum of spherical harmonics basis functions and obtain their
coefficients through a least squares estimate (see Figure 8.3 b). Each color channel is
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W
&

a) b)

e)

Figure 8.3: The different steps for extracting profiles from an input image using shading
information: a) The user provides color samples of the reflectance function
by marking corresponding scribbles in the input image and on a sphere. b)
The color samples are used to estimate the complete reflectance function
of the input object by means of regression. c¢) The user marks horizontal
lines in the input image for which the height profiles will be estimated. d)
For estimating a single profile a shortest path is computed on the graph
indicated. Each node in the graph combines a profile pixel with a possible
normal direction at this point. e) Each shortest path then corresponds to a
sequence of normals and thus a depth profile which determines the shape of
the watering can .

estimated separately. After drawing a new curve pair, regression can be recomputed on
the fly. For our experiments we used spherical harmonics up to degree 5.

Marking Profile Locations. In the second step the user marks the profile lines in the
input image for which relative depth profiles will be estimated (Figure 8.3 c¢). The lines
are arbitrary as long as they start and end at contour points and the corresponding
profiles do not contradict. For each of the profile lines we estimate the corresponding
depth profile by computing a shortest path in a graph, which is described in the following.

Depth Computation on a Graph. We start by defining the set D = {ny,na,...,ny} € R3
of uniformly sampled normal directions and the color sequence ci, ca, ...,cyr € R? along
the profile line C'. The graph consists of a set of M connected domes (half spheres), one
dome for each pixel in the profile line C' (see Figure 8.3 d). Each dome consists of N
nodes, each representing one possible normal direction of the set D. Thus, the node v;;
in the graph represents the j-th sampled normal direction in dome ¢ for profile pixel 1.
Each node of dome ¢ is connected to the neighborhood of the same node in dome ¢ + 1
containing all nodes of similar normal directions (see the neighborhood connections of
node v in Figure 8.3 d).

Each path in the graph consists of M nodes (one in each of the domes, i.e. one normal
direction for each pixel in the profile) representing one possible sequence of surface
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8 Single View 3D Reconstruction with Relative Volume Constraints

normals from the start to the end point of the profile line. The start and end normals
are known, since the start and end points of the profile line lie on the object contour.
Hence, their normals coincide with those of the silhouette at these points.

We assume that the most likely path connecting the start and end normal is the one
with minimal color difference between reflectance value and image color for each node
and minimal surface curvature in the sequence. The weight for each edge in the graph
is, therefore, defined as

w(vij, Uz‘+1k) =\ HCi_H - p(nk)H + cos ! < ng,ng > . (88)

The first term ensures that the color reflected in normal direction ny is similar to the
observed pixel color ¢;y+1. The second term penalizes large deviations of neighboring
normals along the profile. We compute the shortest path in this graph with Dijkstra’s
algorithm to obtain the most likely sequence of normals (ji, .., jar) € D™ by minimizing
the energy
M—1
By, 0Mn) = D (03 vig1iy,): (8.9)
i=1

If the desired profiles are symmetric we can increase the stability and accuracy of the
algorithm by adding the constraint that each normal in the first half of the sequence
must be the mirrored version of its corresponding normal in the second half. Symmetric
profiles do not only occur for symmetric objects, as there are many non-symmetric
objects that exhibit symmetric parts.

After the sequence of normals have been computed for the profile, we integrate it to
obtain the relative depth values.

For A = 0 in (8.8), minimizing energy (8.9) will result in the geodesic on the unit
sphere from the start to the end normal. This regularizer is motivated by the reasonable
assumption that the curvature of objects, i.e. the variation of their surface normals, is
minimized.

Differences to Shape-from-shading Approaches. The proposed approach has some
points in common with shape-from-shading algorithms, since the ultimate goal is to
derive shape from reflectance. It was already mentioned in Section 3.1 that in general
the shape-from-shading problem [49] has ambiguous solutions. To overcome the inherent
ambiguities interactive methods have been proposed such as the one by Zeng et al.

[113]. Although our method is interactive as well, the approach differs from existing
shape-from-shading methods mainly in the following point: by estimating shape profiles
from shading information we directly infer qualitative shape knowledge instead of taking
the detour over numerically accurate dense normal maps to obtain shape information.
In this way several drawbacks of typical shape-from-shading methods are avoided:
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e The computation of shape profiles is simpler than the computation of dense normal
maps and thus less error prone.

e The proposed method of estimating reflectance functions is well suited for deriv-
ing qualitative shape characteristics instead of numerically accurate ones. The
approach is not designed to compute accurate height-fields as even for state-of-
the-art shape-from-shading methods real world images pose a serious challenge
(see e.g. [35, 115]).

e In contrast to common shape-from-shading algorithms which mostly assume Lam-
bertian reflectance properties, the proposed method assumes the object to be made
of a homogeneous but otherwise arbitrary material with constant albedo only at
those locations where depth profiles are to be estimated. Thus, our reconstruction
approach can deal with textured objects, color and shadows. Since the user only
indicates profile lines in regions of constant albedo reasonable profile estimates can
be computed and then propagated to textured and shadowed regions by means of
the smoothness assumption on the surface. For this task, flexible scalable shape
profiles are much better suited than point-wise absolute normal information.

e User input in our approach is not used to improve the surface normal inference,
but merely to estimate the reflectance function of the object.

8.5 Experimental Results

In this section 3D reconstruction results with imposed relative volume constraints, i.e.
profile constraints and volume ratios, are presented. Examples come with the following
constraints (in addition to global volume)

e manually sketched relative depth profile constraints (attenuated and constant)

e multiple, semi-automatically estimated relative depth profile constraints

e volume ratio constraints

e relative depth profile constraints and volume constraints in combination
Results are also compared to related single view 3D reconstruction approaches as well
as to the approaches presented in Chapters 6 and 7.
8.5.1 3D Reconstruction Results with Relative Volume Constraints

Without shape constraints such as relative depth profiles or volume ratios the recon-
struction approach from Chapter 6 fails in many situations. This is illustrated in Figure
8.4.
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8 Single View 3D Reconstruction with Relative Volume Constraints

Figure 8.4: Top: Input images, Bottom: 3D reconstruction results obtained by comput-
ing minimal surfaces with constant volume (see Chapter 6). With no further
shape constraints the reconstructions fail for various reasons.

These poor results are due to various reasons: the shoe, e.g., lacks the characteristic
curved shape in viewing direction. Similar problems occur with the pyramid profile,
the vase and the handle of the watering can. For some objects, the minimal surface
assumption turns out to be an unsuitable prior. E.g, the wheels of the car collapse to a
thin layer. The same happens with the watering can handle. Finally, self-occlusion as
in the handle of the watering can and the plane wings cannot be reconstructed.

Figures 8.5 and 8.8 show reasonable improvements of the reconstructions from Figure
8.4 after adding relative volume constraints. Details are given in the following.

Relative Depth Profiles

User Drawn Profiles. Relative depth profiles determine the basic shape of an object
along an arbitrary cross-section. Figure 8.5 shows several reconstruction results based
on user drawn depth profiles. Since the profiles scale with the global volume, it suffices
to indicate the profile line on the image plane (here in red) together with a rough
sketch of the corresponding depth profile (here in pink). The same relative depth profile
constraints are then applied to each parallel cross-section in the way explained in Section
8.3.1.

The profile of the shoe, for example, indicates that the shoe is wider at the front and
back and narrow in the center. The profile imposed on the vase makes it slimmer and
more bulgy at the top. The profile constraints of the vase are, in addition, attenuated by
Lagrange multiplier pruning towards the left and right (see Section 8.3.1 and Equation

(8.7)).
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8.5 Experimental Results

Figure 8.5: 3D reconstruction results with relative depth profile constraints. a) The 2D
input images with respective profile locations (in red). b-d) Reconstructions
with corresponding depth profiles drawn in pink.

For the pyramid, the value of the weight function g was reduced along the base line
(see energy (8.4)) in a first step to obtain the sharp edge at the bottom. The result
is similar to the pyramid in Figure 8.4. To model the pyramid’s triangular shape we
additionally imposed the shape profile indicating a linear depth increase from the top to
the bottom (see pink line in Figure 8.5), which results in the reconstruction shown.

For the watering can we first imposed a user drawn vertical profile as shown in Figure
8.1. The depth profile constraints were attenuated with increasing distance from the
reference profile.

Shading Based Profiles. To obtain shading based depth profiles the reflectance func-
tion of the object has to be estimated in a first step. Examples of estimated reflectance
functions for various input images are shown in Figure 8.6. The corresponding user pro-
vided samples are presented in the center row. For the orange, the porcelain mug and
the watering can the reflectance functions could be estimated easily from a few simple
user strokes. The estimated reflectance function for the watering can is shown in Figure
8.3. Although high frequent reflectance functions such as that of the metal mug can
be reconstructed reasonably, many samples and a high number of spherical harmonics
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Figure 8.6: Estimated reflectance functions for several examples. Top: smoothed input
images, Center: shading samples extracted by the user. Bottom: estimated
reflectance function (even for tiny and textured objects), see Section 8.3.1
for details.

basis functions are necessary. The teapot is an example for a partially textured object.
Samples are only taken from untextured regions. The shown reflectance function thus
represents the homogeneous porcelain material the teapot is made of. One can see that
the reflectance function has a yellowish glow at the top and a darker shading at the bot-
tom. These colors stem from the lighting in the original image and help to distinguish
normal directions.

Based on these reflectance functions shading based reconstructions can be computed.
Figure 8.7 shows reconstruction examples based on depth profiles which were computed
from the estimated reflectance functions. To this end, the semi-automatic procedure
described in Section 8.3.1 was used. No further constraints have been manually applied.
Note that we can estimate the depth profile equally well on shiny (mug) and diffuse
(watering can) materials since we estimate the reflectance function of the target object
prior to the object shape. The estimated depth profiles for the watering can are shown
in Figure 8.3 e). The examples were computed with 0.01 < A < 0.1 (see Equation (8.8)).

Relative Volume Ratio Constraints

Volume ratio constraints can be imposed to obtain protuberances, dents, self-occlusions
and holes.
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Figure 8.7: 3D reconstruction results with automatically estimated relative depth pro-
file constraints based on shading information. The center row shows the
reconstruction geometry without texture.

Figure 8.8 shows the reconstruction of a tuba with a zero volume ratio constraint
for modeling the opening and a 30% volume constraint for inflating the thin tubes and
reducing the inflation of the lower part of the opening.

For the airplane example, without relative volume constraints the only chance to model
the wings is by reducing the weight g. However, they turn out unnaturally rectangular
that way (see Figure 8.4). By adding volume ratio constraints for the wings requiring
the side wings to contain 25% and the tail wing 5% of the object volume we obtain
the results with self-occluding wings on the right. The characteristic wing bending was
achieved by positioning the camera to show the plane slightly from behind. Then the
wing is marked in that view so that all voxels that project into this drawn 2D region
belong to the wing and are inflated.

In the car example the reconstruction without additional volume constraints after
reducing the weight g along the tire borders yields two very long tires instead of four
normal ones. By adding a volume ratio constraint with fraction zero we can separate
the tires.
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8 Single View 3D Reconstruction with Relative Volume Constraints

a) b) c) d)

Figure 8.8: 3D reconstruction results with application of volume ratio constraints. a)
Original images with relative depth profiles marked in red (location) and
pink (depth function), b-d) Reconstructions with application of volume ratio
constraints.

For the watering can we increased the thickness of the spout by adding a 4% volume
ratio constraint.
8.5.2 Comparison to State-of-the-art Reconstruction Approaches

Finally the approach with relative volume constraints is compared to the state-of-the-
art single view 3D reconstruction approaches reviewed in Chapter 3. Figure 8.9 shows
reconstructions by Prasad et al. [86], Zhang et al. [114] and the fully volumetric approach
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Figure 8.9: Different 3D reconstruction results obtained with a) the method by Prasad
et al. [86], b) the approach in Chapter 6, c) the method by Zhang et al. [114]
and d) the proposed method with relative volume constraints.

in Chapter 6. All reconstructions are based on the same input images. Note that by
comparing to the fully volumetric minimal surface approach, we indirectly also compare
to the height field method of Chapter 7 as they yield qualitatively very similar results.

The results show that the proposed method compares well to previous approaches,
e.g. some reconstructions are less ball shaped and thus look more realistic than for
other methods. In addition, the approaches by Zhang et al. and Prasad et al. require
substantially more user input.

8.6 Conclusion

In this chapter we introduced relative volume constraints into 3D reconstruction from
a single image and added them to the implicit minimal surface approach presented in
Chapter 6. Two types of such constraints, relative depth profiles and volume ratios,
allow to impose shape knowledge on the object. Due to their relative nature it suffices
to let the user sketch the profiles by hand. In addition, we showed how to exploit shading
information in the image for semi-automatic profile estimation in order to reduce the
required user guidance in the reconstruction process.
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8 Single View 3D Reconstruction with Relative Volume Constraints

The new shape constraints were designed to address shortcomings of the volumetric
minimal surface approaches in earlier chapters. With the novel approach shape knowl-
edge can now be introduced along object cross sections, balloonish reconstructions are
prevented and self-occlusions as well as dents and protuberances can occur in the recon-
structions.

The presented shape constraints were introduced into the optimization framework in
Chapter 6 by adding Lagrange Multipliers and optimizing with the primal-dual scheme
reviewed in Chapter 2. Although an increasing runtime could be observed stemming
from the additional constraints, reconstructions can still be computed within a matter
of seconds.
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9 Conclusion

The goal of this thesis was to show that variational convex optimization methods can
be used to formulate elegant and simple approaches to interactive single view 3D re-
construction. To this end, four different algorithms were proposed that are based on
the idea of searching for surfaces with weighted minimal area under constraints whose
projections onto the image plane are congruent with the object silhouette. To avoid
trivial solutions, additional constraints were conceived and evaluated.

The proposed single view approaches are interactive by design, but a premise was
to keep user input intuitive and as simple as possible. The basic common workflow
starts by extracting the object silhouette with the help of scribble-based segmentation.
A silhouette compliant minimal surface is then computed by minimizing a continuous
energy functional under constraints with efficient optimization algorithms. Computed
reconstructions can be edited by adapting the reconstruction parameters and recom-
puting the surface. In addition, the framework allows the user to adapt the weight
of the surface area term in the energy for inducing sharp edges or protrusions in the
reconstruction.

For optimization provably convergent algorithms were employed that were parallelized
on graphics hardware. Convex formulations were devised for all proposed energy min-
imization problems that can be optimized either globally or within bounds from the
global optimum. One major advantage of these convex relaxation approaches is that
their results do not depend on the initialization.

Except for the approach in Chapter 7, all proposed minimal surface formulations
represent the reconstruction surface implicitly in the form of a binary valued function
defined on R3, indicating inside and outside of the surface. This representation enables
reconstructions of arbitrary topology. Moreover, it can easily be transformed into relaxed
formulations that lead to convex energies.

For the first silhouette compliant minimal surface approach to single view 3D recon-
struction presented in Chapter 5 a parametric data affiliation term was constructed that
served as a shape prior and at the same time inflated the reconstruction surface. The
resulting formulation is equivalent to a binary 3D segmentation problem and can be
solved globally optimally. The extremality condition of the relaxed segmentation en-
ergy is a partial differential equation that is solved by means of lagged diffusivity and
a successive over-relaxation scheme. Although experiments showed that the algorithm
could be used to reconstruct objects from quite different areas in man-made and natural
environments, it also became evident that the data affiliation term introduced a strong
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shape bias, which inhibited modeling flexibility and exhibited too many parameters.

Therefore, in Chapter 6 the shape prior term was replaced by a hard constraint on
the surface volume. This approach comes with several advantages: it is based on a
non-heuristic inflation technique, required user input is reduced, shape naturally evolves
by computing a weighted minimal surface with fixed volume and weight adaptation can
be used more effectively for influencing the surface shape allowing for protrusions and
box shaped objects. Although the corresponding combinatorial energy minimization
problem cannot be globally optimized by convex relaxation, we presented a threshold-
ing scheme leading to solutions that adhere to an energy bound with respect to the
global optimum and comply with the user specified target volume. For optimization
two algorithms were proposed, one based on the primal-dual scheme, the other based on
the ADMM algorithm. Although both algorithms are similar, they differ in runtime and
memory consumption. We showed that reconstructions can be computed within a matter
of seconds depending cubicly on the resolution of the reconstruction volume. Experi-
ments showed that the proposed approach leads to reconstructions that are qualitatively
comparable to the approach with shape prior.

The fact that the volume based algorithm results in reconstructions that are repre-
sentable as a height-field (mirrored along the image plane) inspired two different direc-
tions. On the one hand an equivalent height-field based energy minimization formulation
was proposed in Chapter 7 to reduce the complexity of the original approach, and on the
other hand further constraints to the fully volumetric approach were introduced in Chap-
ter 8 to enable reconstructions of more complex objects, which are not representable by
height fields.

For the first direction an energy minimization approach was introduced to compute
weighted minimal height-fields with fixed volume. For optimization different algorithms
were compared, among them FISTA, primal-dual and successive over-relaxation. In par-
ticular, the reconstruction surfaces are globally optimal solutions that can be computed
without convex relaxation techniques. Although the algorithms exhibited different run-
times for the problem, they all lead to speed-ups of several orders of magnitude compared
to the fully volumetric approach. As a direct consequence we were able to reconstruct
objects using a significantly higher resolution with quadratic complexity. Furthermore,
depth values could be computed on a continuous domain without the need for an implicit
voxel-based representation, which raises the quality of reconstruction surfaces.

Although the height-field based reconstruction formulation is globally optimal, ele-
gant and fast, its extendability to more complex reconstructions is limited. Therefore,
in the last chapter we returned to the fully volumetric, fixed volume, weighted minimal
surface formalism and extended it by relative volume constraints. Two additional shape
constraints were introduced: relative depth profiles and volume ratio constraints. The
former impose manually drawn or semi-automatically inferred shape profiles on the re-
construction that scale with the global reconstruction volume. The latter relate sizes of
object parts and can be drawn by the user. The additional constraints are introduced by
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means of Lagrange multipliers into the primal-dual optimization scheme. Experiments
show that the constraints strongly increase the versatility of the minimal surface recon-
struction approach and are still easy to handle for the user. Furthermore, a graph-based
shortest path algorithm was proposed in order to estimate the relative depth profiles
automatically from shading data in the image and thus compute reconstructions auto-
matically based on estimated reflectance functions. A big advantage of the approach
compared to shape-from-shading algorithms is that shape information from shading can
be propagated to textured or shadowed regions of the object and that qualitative shape
information are sufficient in contrast to exact normal maps.

In a nutshell, this thesis intended to show mainly two things. Firstly, that the simple
idea of weighted minimal surfaces together with convex relaxation methods leads to
powerful and versatile interactive reconstruction frameworks even without high-level
learning approaches. And secondly, that these frameworks are sustainable in the sense
that they can be extended by more dynamic constraints that can incorporate further
information and cues from the input image.
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Appendix: Derivation of the Shrinkage
Formula

In the following we will derive the closed form solution of the following minimization
problem

1
argmin ||v]| g + g v — x| 2% = prox —®(x) =: shrink g(z, 7)
T

v

where

®(v) = llvllg =) gillvill 2

1€Q)

First, we will calculate the convex conjugate ®*(v). It is given by the indicator function
of the dual norm ball. The dual norm is given by

[v]l g% = sup g; [|vi| 2
1€Q
SO we arrive at
®*(v) =we(v)  C={v:[jv]2<g; VjeQ}
Now we have by using Moreau’s identity in the second step

1 1 1 1
S®(x) =2 — - prox —®*(rz) = — —
Prox (x) == — prox (tx) ==z = proxg(rz)

Point—wise this evaluates to

1 0 |zl 2 < £
(prox ;@(95))1‘ :{ z;— % T else.
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