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Abstract— Distributed control of large-scale dynamical systems too large to formulate a central, global model for the whole
poses a new challenge to the field of control driven by the system. Second, even if one can assume that a system model
technological advances of modern communication networksA is available, the system might be too large to be handled by

particular challenge is the distributed design of such conbl sys- . . . . .
tems. Here, a distributed iterative controller synthesis nethod & Centralized synthesis method. Third, privacy might be an

for continuous time linear systems using a gradient descent iSSue which means that even though agents might be willing
method is presented. One of the main contributions is the de- to collaborate and communicate, they might not be willing to
termination of the step size according to a distributed Bar#ai- give away their whole dynamic model to every other agent
Borwein (BB) method. As the control objective, we treat the in the interconnected system. Lastly, a centralized amproa
finite horizon linear quadratic cost functional. The gradient . ’ .
approach uses communication only with direct neighbors and requires a lot of effort when there are Changes, in the network
is based on the forward simulation of the system states and ¢1  €.9. when a node is added or removed. A distributed approach
backwards simulation of adjoint states. The effectivenessf the  on the other hand could react only in those nodes that are
approach is shown by means of numerical simulations. immediately affected by these changes.

l. INTRODUCTION A very promising approach to dgal_with these.problems is

) introduced in [5]-[7], where a distributed gradient descen

Over the last decade, there has been extensive renewgdy, . is ysed to iteratively determine a locally optimal

interest in thg field of.the_ control of large-scale dynamica“near feedback matrix which minimizes an LQR cost func-
systems. Typical application examples are power SySteMgsnal. It is based on the computation of adjoint states

water distribution, transportation, or traffic systemsc®ese .4 ses simulated trajectories to compute the gradient.
of the spatial distribution and the size of these systemsy . agents only require a model for their local dynamics
communication between all subsystems is generally not pogay eychange measurement information only with direct
sib Ie. thus ma.kmg centralized classical control approaciog neighbors. However, the authors do not give practical Betai

apphcable. S|_nce the 197_05 a common approach to deal W'(t)rrll a possible step size selection, even though the stepssize i
this proble_m IS de(_:entrallz_ed control where each SUbsysteﬁncrucial part for every gradient method greatly influencing

uses only its own information for the control task [1] whiley, convergence rate. Furthermore their algorithm is not

the mfluzngg frobm other sqbsys(‘;etr)ns r'ls us_léally regférded %?aranteed to converge. Additionally, the resulting femdb
unwanted disturbance. Motivated by the wide-spread use pf,ices are dependent on the initial condition of the state

modern cqmmumca‘uon n_etwork; more a_nd_more researﬁlged during the design process. These disadvantages taotiva
is now being conducted in the field of distributed controlhe following works of this paper
where, instead of limiting each subsystem to only its OWhhis paper presents an accelerated distributed gradient de

mforrganon, cor_nmu”mcat(ljon k;]etween Tlpec'f'lc _f %l_‘t ngt alécent method to determine a distributed linear control. The
— subsystems is allowed. The overall goal of distributegle, -,nributions of the paper are the following: (1) Im-

control is to improve performance compared to decent""iliz%ortantly, the main contribution is the development of a

contro:_wkglef Ta'?ta'n'ng the low clomplexny compared Oyistributed step size scheme for this gradient descentdbase
centralized (full information) control. on the Barzilai-Borwein step size rule, which vastly impgev

Interesting approaches for distributed controller sysithare performance of the algorithm compared to a constant step

for example [2], [3] and [4], and they all have in commong;,o This step size is computed in a distributed fashion by

that centralized global knowledge about the system mods ing a consensus phase in each iteration of the gradient

is required for the control design. However, for Iarge'ecaldescent algorithm. Further, distributed tests of the Aomij

interconnected systems, this assumption might not be, Valligle guarantee convergence. (2) In order to gain indepen-
for several reasons. First of all, the system might be S'mpléfence of the controller with respect to the initial conditio
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motivated by the fact that many practical applications dedlhe goal is to design a constant linear feedback
with continuous-time systems. u(t) = —Kx(t) minimizing the following cost functional

The remainder of the paper is organized as follows. In
Section I, the problem formulation is presented. Sectibn |
shows the algorithm to determine the feedback matrix of a
distributed controller. The main results, namely the usafge

a Barzilai-Borwein step size, are introduced in Section IVThe symmetric weighting matrice € R"*" (positive

A numerical example is given in Section V, and the papetémidefinite) andz € R™*™ (positive definite) are assumed
concludes with a summary in Section VI. to be block-diagonal with the block-dimension correspagdi

Notation to the respective subsystem size. Under this assumptien, th
Given a matrix4 € R™*" with columnsa;, we can give a Cost functional is separable for each agent
vectorized version of the matrix by associating the vector

T
J(:C,u):/o 2T (1)Qx(t) + uT (t)Ru(t)dt.  (2)

N T
o Jwu) =3 / T () Qss(t) + uT (£) Rows (£)dt.
veqA) = | : | e R"™*L i=1"0
an As a results the optimization problem to find the optimal

The scalar product of two vectors b € R" is denoted feedback is not coupled in the cost but only in the constraint

by (a,b). A (block-)diagonal combination of. vectors or to safisfy the underlying dynamics.

matrices); is denoted by dia@\/1, ..., M,). The termAe B Assumption 1:The feedback matrixK is constrained to
denotes tr:e Frobenius inner pré)dl’JCt %f two matrices have a distributed structure where communication between

which is defined as tra¢d BT). The partial derivative of a SuPsystems is only allowed among neighbors, so the block
matrix A with respect to a matri® in the direction described i # 0 only if j € A;.

by the matrixC' (24C) is denoted byA(C). Note that this structure does not in general imply convexity
of the optimization problem with respect to the controller
Il. PROBLEM FORMULATION parameters and that it is not related to any conditions

We consider an interconnected large-scale linear systefior convexity like quadratic invariance [8]. The assumptio
consisting of N subsystems. It is assumed that each agentg&ems from the idea that physically linked systems are
control signal can only directly influence the respectivdikely to have a communication connection as well, see e.g.
agent, but that each agent's state can be influenced by otlpawer line communication in power systems. We define the
agents’ states. Thus, the dynamics of subsystecan be communication graph of the controller & which is the
written as undirected version of the graggh It is furthermore assumed

N that the communication signals are not quantized, and are

&i(t) = Auwi(t) + Bawi(t) + Y _ Ayyx;(t), i =1,..,N,  noise- and delay-free.

=
wherez; € R™, u; € R™, A; € R%*™, A;; € R™>™
and B; € R™ixmi, In this section, we first present a distributed gradient elesc
In order to define the set of neighbors of a subsysiem method to solve the finite horizon LQR optimal control
we consider the directed graghV, £) associated with the problem to achieve a structured linear state feedback xatri
matrix A. The vertex seV is given by the set of subsystemsusing only local information. Since the approach depends
V = {1, ..., N}, and the edge sét contains the edggj,i) € on the initial condition of the state;, an extension is
& iff A;; # 0. This means an edgg, ) € € iff subsystem presented in the second subsection in order to circumvent

i is influenced directly by the states of agentWe define this dependency.
the set of neighboring nodes to nodas

Ni = {jl(i,5) € € or (j,i) € E}. A. Gradient descent method

IIl. CONTROL SYNTHESIS

Additionally, we define the set of influenced nodes of nc')deWe consider the cost funct.ional ) whgzrsatisfies (1) and
asZ; = {j|(i,j) € £}. By concatenation of the subsystems? = — /. Then the following proposition holds.

states, the overall interconnected system can be written coProposition 1: Considering system (1), the gradient of the
pactly as the continuous-time time-invariant linear syste cost functional (2) with respect to the entry of the feedback

matrix K;; is given by
z(t) = Azx(t) + Bu(t), z(0) = xo, (1)

wherex € R” is the statex € R™ is the input andry €
R™ is the initial condition. The matrixA consists of the
blocks Aija and B has the form diagBi).The agents form lGive‘n the structure i imposed below, it may be_ that non-constant,

L. f th f th . hold th e,g. periodicK (t), could achieve a lower value, but this is not considered.
a evartmon of the states of the system, so It must hold t éP\Fote also that the optimizind< is x¢ dependent, but this point is explored
Do N =M. further below

(ViJ)ij = 2(RKXo(T) - B"Xp(T)))i;  (3)



where X (T') and X p(T) satisfy The solution of (6) is given by

Xo(t) = Ax Xo(t) + Xo Ak + mox (4) P(t) = /T AR oA (=0,
Xo(0) =0, ¢ ’
T We can plug this into (5) to obtain
Xp(T) = / P(t)e i zoal eARdt, (5)
0

T T
_ AT (r—t) Ag(T—t)
and whereP(¢) is the solution to the matrix Lyapunov Xp(T) _/O (/t e Qe dT)
differential equation

—P(t) = Qg + P()Ax + ALP(t), P(T) =0, (6)
wheredx = A — BK andQx = Q + K"RK.

xeAK frowd eAktdt. (10)

Also, we can give a solution fok(7) as

Proof: Differentiating (6) with respect to the blodk;;, M) =2 /T eA;((Tft)QKx(T)dT_ (11)
we get t
_PKU (Hi)(t) = A}QPKH (Hij)(t) + Prc,, (Hi)(t) Axc Plugging this into (10) we see that

+M(t) + MT(1), Xp(T) _%/T)\(t):cT

whereM (t) = (KT R — P(t)B)Kk,,(H;;). The solution of

this can be given as u

. Now, the following algorithm can be applied.
Pre, (Hij)(1) 7/ eAIT((‘rft)(M(T)_FMT(T))eAK(Tft)dT Algorithm 1: 1) Simulate the states;(¢) of system (1)
ij \tteg - :

¢ for the finite horizonT' by communicating the states
The value of the cost functional (2) i = tr(P(0)zoz]). beltween neighboring nodes using a distributed ODE
solver.

Using the solution of the Lyapunov differential equatioi, (4

in addition to (5), we get 2) Simulate the adjoint states (¢) for the same horizon

T with A(T') = 0 in the backwards direction by com-
tr (P, (Hij)(0)zox{) municating adjoint states between neighboring nodes.
T
=tr (2K, (Hi;)" (RKXo(T) — B*Xp(T))). (7) Jalt) = 3 —(Ares) ™A () — 2Qus(t)

This concludes the proof. ] JEL;
This formulation of the gradient is not very interesting by +2 Z k) TR i (t).
itself since the solution of Lyapunov equations requires
global information. So the question is if tHe, j)th block
entry (with j € N;) of the gradient can be computed by
agent; with information only provided by its neighboys;.
Using the idea of dynamic dual decomposition, as presented
in [9], this becomes possible by introducing adjoint states
Proposition 2: Consider system (1). The gradient of the T
cost functional (2) with respect to the, j)th entry of the - BZT/ Ai(t)z; () dt.
feedback matrix is given by 0

JEL;

3) Every agent calculates the respective entries of the
gradient by

T
VKJi(;C) = _2Ri/ ui(t)z; ()" dt
0

4) For each neighboring agent update

T
(VKJ)ij =—2R; A ui(t)xj(t)Tdt Ki(Jl_chl) _ KZ(Jk) . ’kaKJi(f)-
T r T with a scalar step lengthy, independent of, ;.
Bi /0 Ai(t); (1) dt, ®) 5) If ||(VKJ) )| < ¢, stop. Otherwise, increase and
where go back to 1
/'\(t) = —ALA#) — 2Qk (1), The algorithm makes it clear that no global model knowledge

is necessary to obtain the optimal feedback and that only

whereA(T) = 0. neighbors need to communicate their respective states, co-

Proof: Using the solution of the Lyapunov differential states and inputs.
equation ofX, (4), the first term in (3 RK Xo(T))i; can  Qur result is quite similar to the one in [7] where the infinite

be rewritten as horizon is treated. However, their computation of the geatli
o T - for the infinite horizon case involves an approximation gsin
RK/ dat) = —Ri/ ui(t)z;(t)"dt. (9) finite state trajectories. It turns out now that their algori
ij 0 is not just an approximation of the infinite horizon case but

If nodesi andj are neighbors, nodecan compute this term in fact identical to the solution to the finite horizon case.
using information only about the state of its neighbpthus The biggest difference between the finite horizon formatati
local communication suffices. presented here and the finite time approximation of the



infinite horizon problem given in [7] is that the infinite large, nodes that do not have a direct coupling to the excited
horizon formulation has the formal requirement of an ihitianode and are relatively far away will probably get very dittl
stabilizing feedback since otherwise the cost functiomal a information about the system dynamics and thus will not be
the infinite horizon adjoint states are not defined. This may kable to determine an appropriate controller for every fasi
difficult to find given the distributed setting of the problem excitation of the system. Naturally, the resulting coréol
and is not necessary in the finite horizon formulation. will work well for the specificzy but this is usually not
Note that the optimization problem is in general non-convesaesired when designing a feedback controller.
so the gradient descent method might only result in a locéh order to get rid of this dependence and to ensure sufficient
optimum. dynamical excitation of the system, we propose an averaging
Remark 1:The setup in this paper and the structure of thapproach. Therefore we make the following assumption
closed-loop system matrikA — BK) also allows optimal about the initial condition of the state,. Note that this
tracking to minimize the cost functional assumption is only used for the initial condition of the
T simulated trajectories in the design process. This is not
J :/ u? () Ru(t) + (x(t) — r(t)T Q(x(t) — r(t))dt, related to the actual initial condition of the online proges
0 and therefore does not change the original problem.
wherer(t) is the desired reference trajectory. The optimaRssumption 2:The initial conditionz, is a random variable,
input for tracking [10] is given by uniformly distributed on the surface of the-dimensional
unit sphere with expected vallgzozl] = 11, wherel is
ult) = ~Ka(t) = R~ BT the donity matr

where K is determined by Algorithm 1 and wheldt) is The cost functional (2) has to be changed to the following

the solution of T . .
i) = (A — BE)b(t) + Qr(t). B(T) = 0. J(xz,u) =E l/o z- ()Qx(t) + v (t)Ru(t)dt|, (12)

Clearly, this differential equation can also be solved backvhereE represents the expected value with respect to the
wards given the presented information exchange topolod#itial conditionz,. The value of this cost functional can then
and thus, the optimal tracking input can be computed di®e given by.J = LtracgP(0)). Thus, the cost functional is

tributedly without global knowledge. independent of the initial condition of the statg.
o o - Proposition 3: Considering system (1), and given Assump-
B. Securing independence from the initial conditian tion 2, the gradient of the cost functional (12) with respect

A closer look at Algorithm 1 reveals that two initial condi-to the block entry of the feedback matriX;; is given by

tions need to be selected (Note that this is also true for the . T

algorithm presented in [7]). The first &, which initializes (Vicd)ij = 2(REXo(T) = BZXp(T)))is (13)

the actual decision variables, i.e. the entries of the faeklb where the formulas{,(7"), Xp(7') and P(t) are described

matrix . The second is;, which is used to simulate the in Proposition 1, with the difference that/ replaceszoz

state trajectories in order to determine the gradient in &ccording to Assumption 2.

distributed fashion. This second initial condition, uatet Proof: The proof is identical to the proof of Proposi-

to the decision variables, is unwanted and we want to gafion 1 except that the produehz; is replaced by the matrix

independence of it for two reasons. First, we would like to,lgf- u

find the optimal feedback matrix independent of a specifiBecause the distributed computation in Algorithm 1 depends

state initial condition because we generally do not know th@n the simulation of states using an initial condition, we us

actual initial condition of the process in advance during ththe fact thatl = >=7" _, e,,e/,, wheree; is thei-th unit base

controller design, and because it might be quite differettector and we recognize that Egs. (4) and (5) are linear in

from the one used in the design a|gorithm_ Seconc"y, .ﬁozg This enables us to distribute the Computation and to

systematic approach to pick this one specific initial cdodit Write Xo(T) as

iS not obvious. 15 [T

Another, more model related point can be made. Since the Xo(T) = — Z/ @ (T) 3, ()T, (14)

agents are confined to models of their own dynamics and m=1"0

have no global model, all the information necessary for thethere z,,,(t) is the simulated state trajectory based on the

controller design has to be extracted from the simulatiomitial conditione,,. We then define the adjoint state, () =

data. This makes it important that all states are suffigfent—Ax A, (t) — 2Q k2., (t) and with that we define the whole

excited using the initial condition of the state trajectddy  gradient as

using just one specific, fixed, as in the previous section, 1 n T

only a limited direction of the system behavior could be (Vrd)ij =— <2RK Z/ Lo (T) 2 (7) T dT

excited or the coupling structure of the system could pribhib n m=1"0

the spreading of the signal. Imagine that happens to be L

only a unit base vector, such that only one state of one - BT Z/O )\m(T)CCm(T)TdT>
m=1

agent is excited by the initial condition. If the system is ij



With that result, a new algorithm can be presented. to distributedly check a condition that the step size must
Algorithm 2: 1) Simulate the states,, ;(¢) of System (1) satisfy in order to guarantee convergence.
for a finite horizonT by communicating the states

between neighboring nodes for every initial conditio
em With m = 1,...,n, and using a distributed ODE The distributed setting of the problem makes finding a good

solver. step sizey, for the algorithm presented above difficult. The
2) Simulate the adjoint states,, ;(¢) for the same hori- straightforward approach of doing a line search to find the

zon T in the backwards direction (with,,(7") = 0)  Optimaly; is not applicable. In addition, the exact line search

by communicating adjoint states between neighborinjvolves the solution of an optimization problem in every

nA. Barzilai-Borwein stepsize

nodes. iteration step and can be computationally expensive. The
. easiest choice for a step size for the algorithm presented
Ami(t) =Y —(Ak i) Amj () = 2QiTm.i(t) above is a constant step size. However, this choice does not
JEL; guarantee convergence to a local optimum and it is rather

49 Z(K_](‘f))TRjum,j(t)- slow. A different method for the selection of the step size

JET, is presented in [11] which has since been called “Barzilai-

. . Borwein”-method. Applied to the presented problem, the
3) Every agent calculates the respective entries of tqfarzilai-Borwein met'?]% d gives the Etep size wri)th

gradient by
X N . e = (Aveq K), Aved K)) (15)
<vKﬂ$”—“<ﬂﬂ§:/’wmunmnﬂ@h (Aved K), AvedV i J))
" m=1"0 where AvedK) = vedK®) — veqK*-1) and
n T k k—1 i
AvedViJ) = ved(VgJ)®) — ved(VgJ)*#—D). This
T _ AT
+ B 2_:1/0 Am.i(7)2m, 5 (7) dT)' computation requires additional storage because the éetdb

_ _ matrix and the gradient for the current and the last iteratio
4) For each neighboring agept update are necessary.

KD _ (k) kaKJ@ This step size, however, cannot be computed in a distributed
* * K fashion using the formula from (15). In [12], a method is
with a suitable step lengthy presented to compute the BB-step size distributedly in two
5) If ||(VKJ)§;-“)|| < ¢, stop. Otherwise, increageand steps. In the first step, each agent will use its own entries of
go back to 1. the feedback and gradient matrix to determine an estimate

Using this algorithm, the resulting controller is indepentl of the BB-step sizey, and in the second step a distributed

of the initial condition of the state at the cost of requiringconsensus algorithm will give the value of (15). As a first

some global knowledge about the total number of states Step, each nodg i = 1,...n initializes the two scalar values

in the system so that the agents know how many simulations T T

they ha)\//e to run. Also, thgre has to be some )r/)rotocol that pi(k(0)) = <Avec(Ki ) AvedK; )>’ (16)

determines which unit base vector is used at what time and

the initial condition. T T

We see that making use of Assumption 2 ensures the point vi(k(0)) = <Aveo(Ki ), Aved(VicJ); )>' (17)

we made earlier because in the algorithm, it leads to thHEhis means that every agent uses its own respective row(s)

simulation of the system with every unit base vector asef the feedback and gradient matrix to compute the local

an initial condition, thus exciting every state. Thus, thearameters;(k(0)) and ;(k(0)) corresponding to the it-

resulting controller will be optimal given the maximumeration k. Then the agents start the following consensus

possible amount of information about the system dynamicierations during which information exchange is necessary

without actually knowing the system model. It is important

to note that this does not help to overcome the non-convexity 2i(F(t +1)) = Wiipi(k(t)) + Z Wijpj(k(t)),  (18)

of the problem with respect to the controller parameters. JEN:

Gilk(t+1)) = Wit (k(£) + Y Wiy (k(1).  (19)
JEN;

Since the gradient descent method is generally slow, thsre 117 is a symmetric, non-negative with strictly positive

selection of a good step size is |mportent._ This is difficalt i diagonal entries, doubly stochastic matrix, compatiblénwi

the presented setup because of the distributed nature of %phgc. A common choice fol¥ is according to the so-

solution of the problem. A reasonable method to determingyjjeq Metropolis rule [12], [13]. This leads to the follavg

the step size is the Barzilai-Borwein step size rule becau oposition [12].

it only needs first order information which is Comp“te‘g?roposition 4: If graph G, is connected, then

anyways when using a gradient method. So in this section,

we first present the method to distributedly determine the lim pi(k(t)) =, foralli=1,..n. (20)

Barzilai-Borwein step size. Afterwards, we present a metho t—00 ;(k(t)) ’ T

IV. STEP SIZE SELECTION




See [12] for the proof. inputs (B = I), and the time horizorl" is set to 10s.

The consensus phase stops when the relative differenceTdfe entries of thed matrices are picked randomly and also
o = p?(’;(?) between consecutive iterationsand (¢t — 1) a number of off-diagonal entries are randomly set to zero
falls below a pre-specified threshold. to create a distributed structure. On average, 44 entries of
Remark 2:If the system topology contains isolated systemthe A matrices are nonzero. The threshold for the consensus
that cannot participate in the consensus @Ggis not con- phase in the BB step size determination is set@o?, as
nected), it might happen that the difference of the respectiis the threshold to stop the overall algorithm. The initial
entries of the feedback matrices or the gradient matricemndition for Algorithm 1 is picked randomly. We then
tends to zero, thus yielding am; which tends to infinity or compare the actual cost using the resulting controllen fro
not a number. In that case, it is necessary that this isolatbdth controllers. Note that for fairness reasons and becaus
node uses a fixed step size as its own step size while the want optimality independently of the initial conditiome

other nodes can continue with the BB-step size. use a different randomly picked initial condition to comput
Remark 3:It is quite obvious that this improved step sizethe cost than the one that was used to compute the gradient
can also be used in the algorithm in [6]. according to Algorithm 1.

It turns out that the controller resulting from Algorithm 2
produces on average only 71.4% of the cost produced by
The possible step size choices discussed so far do nfie controller resulting from Algorithm 1. Of course, if the
guarantee convergence. In order to guarantee convergereene initial condition is used for the cost trajectory as for
of the gradient method to a stationary point, the step gize the computation of the controller, Algorithm 1 performs
needs to satisfy the so-called Armijo rule [14] which isetht petter. However, on average the cost is only 1.5% higher
as follows when the averaged initial condition is used to compute the
TK® £ 4s®) — J(K®)) < avpved Ve J(K?))Ts®) controlle_r. This.shows the superiority of Algorithm 2 cliyar
21) and motivates its usage.

wherea € (0, 1), v is initially the BB step size and where B Efficiency of Barzilai-Borwein step size
in our cases™®) = —veqV xuw J(K®)). It can be shown

B. Convergence

. e - - In order to demonstrate the effectiveness of the new step
that this condition is always satisfied for sufficiently smal _. . . : . .

size rule, the algorithm (Algorithm 2) is again applied t@®50
Y- stable systems. All the system and simulation parameters ar

Since both the left and the right hand side of (21) are SCPentical to the previous section. We compare the number

rable for ea(_:h agent, all agents can compute their respectl(\)/f iterations needed with the BB step length and with a
summands in the term .

constant step length af = 1. For both step size methods, the
Armijo rule from the previous subsection is used to guamante
convergence. The comparison shows that the BB step size is
better for every example. On average, the algorithm needs

k
+ oy ved Ve, J (KM 3. (22) 16 steps with the BB step size and 113 with the constant

Then, a consensus phase is used to determine the averﬁtf@ si.tze.t.WeBglso compute the relative number of iterations
. i . i iterations 0,
of this term. The consensus is designed correspondingly {erations consiant siep lengn @d On average less than 20% of

the one in the previous section. After reaching consensytgrations are needed. When comparing the actual resulting
each agent can check whether this term is smaller or eqd§fdback matrices, the average maximum difference between

to 0. If that is not the case, the step size needs to be reducltf entries is also quite small, being less than 2%. Obwousl
until the condition is satisfied. Each test with a new step siZN® Number of consensus iterations also needs to be taken

N
M =" J(EPD — Vi J(EN)) — J(ED)

i
=1

requires a new consensus phase. into gccount When_ considering the overall eff_ort Qf thg
algorithm. The maximum number of consensus iterations in

V. NUMERICAL EXAMPLE these simulations is 450 while the average number is 127.

In this section, we present two numerical examples tdhis number is taken over all outer iterations of the gratdien
illustrate the contributions of this paper. descent. But when we keep in mind that the consensus
iterations are far less demanding than the gradient descent

A. Advantage of averaged initial condition iterations the computational and communication effort is

As mentioned in Section IlI-B, usually, when we are interdrastically reduced, even when considering the effort of
ested in finding an optimal controller, we want optimalitythe consensus. Over all iterations, checking the Armije rul
independently of the actual initial condition of the stdte. requires 261 consensus iterations on average for the BB step
the following, we want to investigate the effect of compgtin size, while 2039 are necessary for the constant step size.
the optimal feedback using an averaged initial conditioifhe results are compactly summarized in Table I.

according to Algorithm 2 and compare it to the result wher\ visualization for the convergence speed can be the evolu-
we use the finite horizon version of Algorithm 1. To dotion of the cost. To visualize this, we compute the cost for
that, we apply the algorithms to 500 randomly created stab&sach example system for every iteration. The costs are then
systems. All systems have = 10 states andn = 10 normalized with respect to the final optimal value and the



TABLE |
COMPARISON BETWEENBB STEP SIZE AND CONSTANT STEP LENGTH

iterations BB 0
max (iteralions constant step Ieng)h [A)] 29.09
: iterations BB 0,
min (iterationsconstantstep leng, [/0] 3.58
iterations BB 0
Mean( iterations constant step Ieng)h [A)] 16.03
Average difference in result [%] 1.81
Maximum number of consensus iterations for BB step size450
Minimum number of consensus iterations for BB step sigze 53
Average number of consensus iterations for BB step siZe 127
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Fig. 2.
of K(k) — Kopt over the iterations

average is taken. The results for the BB step size and the
constant step size are shown in Figure 1. Again, it becomel§
clear that convergence is achieved much faster with the BB

step size.

Additionally, we also plot the Frobenius norm of the

difference between the final resulting(oy and K*)

(I|K® — Kop| ) for each iteration in Figure 2. Here too,
it can be seen very well that the BB step size rule perform?Q]

much better than a constant step size.

Evolution of the averaged (500 random systems) FriaBenorm

The approach uses a Barzilai-Borwein step size which can
be determined using only information from neighbors in
a consensus phase. Also, a method is presented to check
the Armijo rule distributedly to determine step sizes that
guarantee convergence. The computation of the search di-
rection is based on the simulation of the trajectories of the
system states and the adjoint states, and independence of th
initial condition of the system state for these simulatiiss
achieved. The effectiveness of the new step size is shown
through numerical simulations and the computation effort i
reduced significantly.
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