
Accelerated Iterative Distributed Controller Synthesis with a
Barzilai-Borwein Step Size

Frederik Deroo∗a, Michael Ulbrichb, Brian D. O. Andersonc and Sandra Hirchea

Abstract— Distributed control of large-scale dynamical systems
poses a new challenge to the field of control driven by the
technological advances of modern communication networks.A
particular challenge is the distributed design of such control sys-
tems. Here, a distributed iterative controller synthesis method
for continuous time linear systems using a gradient descent
method is presented. One of the main contributions is the de-
termination of the step size according to a distributed Barzilai-
Borwein (BB) method. As the control objective, we treat the
finite horizon linear quadratic cost functional. The gradient
approach uses communication only with direct neighbors and
is based on the forward simulation of the system states and the
backwards simulation of adjoint states. The effectivenessof the
approach is shown by means of numerical simulations.

I. I NTRODUCTION

Over the last decade, there has been extensive renewed
interest in the field of the control of large-scale dynamical
systems. Typical application examples are power systems,
water distribution, transportation, or traffic systems. Because
of the spatial distribution and the size of these systems,
communication between all subsystems is generally not pos-
sible thus making centralized classical control approaches not
applicable. Since the 1970s a common approach to deal with
this problem is decentralized control where each subsystem
uses only its own information for the control task [1] while
the influence from other subsystems is usually regarded as
unwanted disturbance. Motivated by the wide-spread use of
modern communication networks more and more research
is now being conducted in the field of distributed control
where, instead of limiting each subsystem to only its own
information, communication between specific – but not all
– subsystems is allowed. The overall goal of distributed
control is to improve performance compared to decentralized
control while maintaining the low complexity compared to
centralized (full information) control.
Interesting approaches for distributed controller synthesis are
for example [2], [3] and [4], and they all have in common
that centralized global knowledge about the system model
is required for the control design. However, for large-scale
interconnected systems, this assumption might not be valid
for several reasons. First of all, the system might be simply

*Corresponding author.
aF. Deroo and S. Hirche are with the Institute of Automatic Control En-

gineering, Technische Universität München, D-80290 München, Germany,
fred.deroo@tum.de, hirche@tum.de

bM. Ulbrich, Chair of Mathematical Optimization, Department of Mathe-
matics, Technische Universitt München, Boltzmannstr. 3,D-85747 Garching
b. München, Germany,mulbrich@ma.tum.de

cB.D.O. Anderson is with The Australian National University
and National ICT Australia, Canberra ACT 2600 Australia.
brian.anderson@anu.edu.au

too large to formulate a central, global model for the whole
system. Second, even if one can assume that a system model
is available, the system might be too large to be handled by
a centralized synthesis method. Third, privacy might be an
issue which means that even though agents might be willing
to collaborate and communicate, they might not be willing to
give away their whole dynamic model to every other agent
in the interconnected system. Lastly, a centralized approach
requires a lot of effort when there are changes in the network,
e.g. when a node is added or removed. A distributed approach
on the other hand could react only in those nodes that are
immediately affected by these changes.
A very promising approach to deal with these problems is
introduced in [5]–[7], where a distributed gradient descent
method is used to iteratively determine a locally optimal
linear feedback matrix which minimizes an LQR cost func-
tional. It is based on the computation of adjoint states
and uses simulated trajectories to compute the gradient.
The agents only require a model for their local dynamics
and exchange measurement information only with direct
neighbors. However, the authors do not give practical details
on a possible step size selection, even though the step size is
a crucial part for every gradient method greatly influencing
the convergence rate. Furthermore their algorithm is not
guaranteed to converge. Additionally, the resulting feedback
matrices are dependent on the initial condition of the state
used during the design process. These disadvantages motivate
the following works of this paper.
This paper presents an accelerated distributed gradient de-
scent method to determine a distributed linear control. The
key contributions of the paper are the following: (1) Im-
portantly, the main contribution is the development of a
distributed step size scheme for this gradient descent based
on the Barzilai-Borwein step size rule, which vastly improves
the performance of the algorithm compared to a constant step
size. This step size is computed in a distributed fashion by
using a consensus phase in each iteration of the gradient
descent algorithm. Further, distributed tests of the Armijo
rule guarantee convergence. (2) In order to gain indepen-
dence of the controller with respect to the initial condition
of the state trajectories needed to compute the gradient, we
introduce averaging over the initial condition. (3) Treatment
of the finite horizon LQR-case. (4) The effectiveness of the
developments presented in the paper is validated through
numerical simulations.
The actual computation of the gradient for the algorithm
builds on the infinite horizon foundation given by [7] which
is the extension of [6] to continuous-time systems. This is

motivated by the fact that many practical applications deal
with continuous-time systems.
The remainder of the paper is organized as follows. In
Section II, the problem formulation is presented. Section III
shows the algorithm to determine the feedback matrix of a
distributed controller. The main results, namely the usageof
a Barzilai-Borwein step size, are introduced in Section IV.
A numerical example is given in Section V, and the paper
concludes with a summary in Section VI.
Notation
Given a matrixA ∈ R

m×n with columnsai, we can give a
vectorized version of the matrix by associating the vector

vec(A) =







a1
...
an






∈ R

nm×1.

The scalar product of two vectorsa, b ∈ R
n is denoted

by 〈a, b〉. A (block-)diagonal combination ofn vectors or
matricesMi is denoted by diag(M1, ...,Mn). The termA•B
denotes the Frobenius inner product of two matricesA,B
which is defined as trace(ABT). The partial derivative of a
matrixA with respect to a matrixB in the direction described
by the matrixC (∂A

∂B
C) is denoted byAB(C).

II. PROBLEM FORMULATION

We consider an interconnected large-scale linear system
consisting ofN subsystems. It is assumed that each agent’s
control signal can only directly influence the respective
agent, but that each agent’s state can be influenced by other
agents’ states. Thus, the dynamics of subsystemi can be
written as

ẋi(t) = Aiixi(t) +Biui(t) +
N
∑

j=1
j 6=i

Aijxj(t), i = 1, ..., N,

wherexi ∈ R
ni , ui ∈ R

mi , Aii ∈ R
ni×ni , Aij ∈ R

ni×nj

andBi ∈ R
ni×mi .

In order to define the set of neighbors of a subsystemi,
we consider the directed graphG(V , E) associated with the
matrixA. The vertex setV is given by the set of subsystems
V = {1, ..., N}, and the edge setE contains the edge(j, i) ∈
E iff Aij 6= 0. This means an edge(j, i) ∈ E iff subsystem
i is influenced directly by the states of agentj. We define
the set of neighboring nodes to nodei as

Ni = {j|(i, j) ∈ E or (j, i) ∈ E} .

Additionally, we define the set of influenced nodes of nodei

asIi = {j|(i, j) ∈ E}. By concatenation of the subsystems’
states, the overall interconnected system can be written com-
pactly as the continuous-time time-invariant linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)

wherex ∈ R
n is the state,u ∈ R

m is the input andx0 ∈
R
n is the initial condition. The matrixA consists of the

blocksAij , andB has the form diag(Bi).The agents form
a partition of the states of the system, so it must hold that
∑N

i=1 ni = n.

The goal is to design a constant linear feedback
u(t) = −Kx(t) minimizing the following cost functional1

J(x, u) =

∫ T

0

xT (t)Qx(t) + uT (t)Ru(t)dt. (2)

The symmetric weighting matricesQ ∈ R
n×n (positive

semidefinite) andR ∈ R
m×m (positive definite) are assumed

to be block-diagonal with the block-dimension corresponding
to the respective subsystem size. Under this assumption, the
cost functional is separable for each agent

J(x, u) =
N
∑

i=1

∫ T

0

xTi (t)Qixi(t) + uTi (t)Riui(t)dt.

As a results the optimization problem to find the optimal
feedback is not coupled in the cost but only in the constraint
to satisfy the underlying dynamics.
Assumption 1:The feedback matrixK is constrained to
have a distributed structure where communication between
subsystems is only allowed among neighbors, so the block
Kij 6= 0 only if j ∈ Ni.
Note that this structure does not in general imply convexity
of the optimization problem with respect to the controller
parameters and that it is not related to any conditions
for convexity like quadratic invariance [8]. The assumption
stems from the idea that physically linked systems are
likely to have a communication connection as well, see e.g.
power line communication in power systems. We define the
communication graph of the controller asGc which is the
undirected version of the graphG. It is furthermore assumed
that the communication signals are not quantized, and are
noise- and delay-free.

III. C ONTROL SYNTHESIS

In this section, we first present a distributed gradient descent
method to solve the finite horizon LQR optimal control
problem to achieve a structured linear state feedback matrix
using only local information. Since the approach depends
on the initial condition of the statex0, an extension is
presented in the second subsection in order to circumvent
this dependency.

A. Gradient descent method

We consider the cost functional (2) wherex satisfies (1) and
u = −Kx. Then the following proposition holds.
Proposition 1: Considering system (1), the gradient of the
cost functional (2) with respect to the entry of the feedback
matrixKij is given by

(∇KJ)ij = (2(RKX0(T)−BTXP (T)))ij (3)

1Given the structure inK imposed below, it may be that non-constant,
e.g. periodicK(t), could achieve a lower value, but this is not considered.
Note also that the optimizingK is x0 dependent, but this point is explored
further below

whereX0(T) andXP (T) satisfy

Ẋ0(t) = AKX0(t) +X0A
T
K + x0x

T
0 , (4)

X0(0) = 0,

XP (T) =

∫ T

0

P (t)eAKtx0x
T
0 e

AT
Ktdt, (5)

and whereP (t) is the solution to the matrix Lyapunov
differential equation

−Ṗ (t) = QK + P (t)AK +ATKP (t), P (T) = 0, (6)

whereAK = A−BK andQK = Q+KTRK.
Proof: Differentiating (6) with respect to the blockKij ,

we get

−ṖKij
(Hij)(t) = ATKPKij

(Hij)(t) + PKij
(Hij)(t)AK

+M(t) +MT (t),

whereM(t) = (KTR−P (t)B)KKij
(Hij). The solution of

this can be given as

PKij
(Hij)(t) =

∫ T

t

eA
T
K(τ−t)(M(τ)+MT (τ))eAK(τ−t)dτ.

The value of the cost functional (2) isJ = tr(P (0)x0x
T
0).

Using the solution of the Lyapunov differential equation (4),
in addition to (5), we get

tr
(

PKij
(Hij)(0)x0x

T
0

)

=tr
(

2KKij
(Hij)

T
(

RKX0(T)−BTXP (T)
))

. (7)

This concludes the proof.
This formulation of the gradient is not very interesting by
itself since the solution of Lyapunov equations requires
global information. So the question is if the(i, j)th block
entry (with j ∈ Ni) of the gradient can be computed by
agenti with information only provided by its neighborsNi.
Using the idea of dynamic dual decomposition, as presented
in [9], this becomes possible by introducing adjoint states.
Proposition 2: Consider system (1). The gradient of the
cost functional (2) with respect to the(i, j)th entry of the
feedback matrix is given by

(∇KJ)ij =− 2Ri

∫ T

0

ui(t)xj(t)
T dt

−BTi

∫ T

0

λi(t)xj(t)
T dt, (8)

where
λ̇(t) = −ATKλ(t)− 2QKx(t),

whereλ(T) = 0.
Proof: Using the solution of the Lyapunov differential

equation ofX0 (4), the first term in (3)(RKX0(T))ij can
be rewritten as
(

RK

∫ T

0

x(t)x(t)T dt

)

ij

= −Ri

∫ T

0

ui(t)xj(t)
T dt. (9)

If nodesi andj are neighbors, nodei can compute this term
using information only about the state of its neighborj, thus
local communication suffices.

The solution of (6) is given by

P (t) =

∫ T

t

eA
T
K(τ−t)QKe

AK(τ−t)dτ,

We can plug this into (5) to obtain

XP (T) =

∫ T

0

(

∫ T

t

eA
T
K(τ−t)QKe

AK(τ−t)dτ

)

×eAKtx0x
T
0 e

AT
Ktdt. (10)

Also, we can give a solution forλ(τ) as

λ(t) = 2

∫ T

t

eA
T
K(τ−t)QKx(τ)dτ. (11)

Plugging this into (10) we see that

XP (T) =
1

2

∫ T

0

λ(t)xT (t)dt,

Now, the following algorithm can be applied.
Algorithm 1: 1) Simulate the statesxi(t) of system (1)

for the finite horizonT by communicating the states
between neighboring nodes using a distributed ODE
solver.

2) Simulate the adjoint statesλi(t) for the same horizon
T with λ(T) = 0 in the backwards direction by com-
municating adjoint states between neighboring nodes.

λ̇i(t) =
∑

j∈Ii

−(AK,ji)
Tλj(t)− 2Qixi(t)

+2
∑

j∈Ii

(K
(k)
ji)TRjuj(t).

3) Every agent calculates the respective entries of the
gradient by

∇KJ
(k)
ij = −2Ri

∫ T

0

ui(t)xj(t)
T dt

−BTi

∫ T

0

λi(t)xj(t)
Tdt.

4) For each neighboring agentj, update

K
(k+1)
ij = K

(k)
ij − γk∇KJ

(k)
ij .

with a scalar step lengthγk, independent ofi, j.
5) If ||(∇KJ)

(k)
ij || < ǫ, stop. Otherwise, increasek and

go back to 1.
The algorithm makes it clear that no global model knowledge
is necessary to obtain the optimal feedback and that only
neighbors need to communicate their respective states, co-
states and inputs.
Our result is quite similar to the one in [7] where the infinite
horizon is treated. However, their computation of the gradient
for the infinite horizon case involves an approximation using
finite state trajectories. It turns out now that their algorithm
is not just an approximation of the infinite horizon case but
in fact identical to the solution to the finite horizon case.
The biggest difference between the finite horizon formulation
presented here and the finite time approximation of the

infinite horizon problem given in [7] is that the infinite
horizon formulation has the formal requirement of an initial
stabilizing feedback since otherwise the cost functional and
the infinite horizon adjoint states are not defined. This may be
difficult to find given the distributed setting of the problem,
and is not necessary in the finite horizon formulation.
Note that the optimization problem is in general non-convex
so the gradient descent method might only result in a local
optimum.
Remark 1:The setup in this paper and the structure of the
closed-loop system matrix(A − BK) also allows optimal
tracking to minimize the cost functional

J =

∫ T

0

uT (t)Ru(t) + (x(t) − r(t))TQ(x(t) − r(t))dt,

wherer(t) is the desired reference trajectory. The optimal
input for tracking [10] is given by

u(t) = −Kx(t)−R−1BT b(t)

whereK is determined by Algorithm 1 and whereb(t) is
the solution of

−ḃ(t) = (A−BK)T b(t) +Qr(t), b(T) = 0.

Clearly, this differential equation can also be solved back-
wards given the presented information exchange topology
and thus, the optimal tracking input can be computed dis-
tributedly without global knowledge.

B. Securing independence from the initial conditionx0
A closer look at Algorithm 1 reveals that two initial condi-
tions need to be selected (Note that this is also true for the
algorithm presented in [7]). The first isK0 which initializes
the actual decision variables, i.e. the entries of the feedback
matrix K. The second isx0 which is used to simulate the
state trajectories in order to determine the gradient in a
distributed fashion. This second initial condition, unrelated
to the decision variables, is unwanted and we want to gain
independence of it for two reasons. First, we would like to
find the optimal feedback matrix independent of a specific
state initial condition because we generally do not know the
actual initial condition of the process in advance during the
controller design, and because it might be quite different
from the one used in the design algorithm. Secondly, a
systematic approach to pick this one specific initial condition
is not obvious.
Another, more model related point can be made. Since the
agents are confined to models of their own dynamics and
have no global model, all the information necessary for the
controller design has to be extracted from the simulation
data. This makes it important that all states are sufficiently
excited using the initial condition of the state trajectory. By
using just one specific, fixedx0 as in the previous section,
only a limited direction of the system behavior could be
excited or the coupling structure of the system could prohibit
the spreading of the signal. Imagine thatx0 happens to be
only a unit base vector, such that only one state of one
agent is excited by the initial condition. If the system is

large, nodes that do not have a direct coupling to the excited
node and are relatively far away will probably get very little
information about the system dynamics and thus will not be
able to determine an appropriate controller for every possible
excitation of the system. Naturally, the resulting controller
will work well for the specificx0 but this is usually not
desired when designing a feedback controller.
In order to get rid of this dependence and to ensure sufficient
dynamical excitation of the system, we propose an averaging
approach. Therefore we make the following assumption
about the initial condition of the statex0. Note that this
assumption is only used for the initial condition of the
simulated trajectories in the design process. This is not
related to the actual initial condition of the online process
and therefore does not change the original problem.
Assumption 2:The initial conditionx0 is a random variable,
uniformly distributed on the surface of then-dimensional
unit sphere with expected valueE[x0xT0] =

1
n
I, whereI is

the identity matrix.
The cost functional (2) has to be changed to the following

J(x, u) = E

[

∫ T

0

xT (t)Qx(t) + uT (t)Ru(t)dt

]

, (12)

whereE represents the expected value with respect to the
initial conditionx0. The value of this cost functional can then
be given byJ = 1

n
trace(P (0)). Thus, the cost functional is

independent of the initial condition of the statex0.
Proposition 3: Considering system (1), and given Assump-
tion 2, the gradient of the cost functional (12) with respect
to the block entry of the feedback matrixKij is given by

(∇KJ)ij = 2((RKX0(T)−BTXP (T)))ij (13)

where the formulasX0(T), XP (T) andP (t) are described
in Proposition 1, with the difference that1

n
I replacesx0xT0

according to Assumption 2.
Proof: The proof is identical to the proof of Proposi-

tion 1 except that the productx0xT0 is replaced by the matrix
1
n
I.

Because the distributed computation in Algorithm 1 depends
on the simulation of states using an initial condition, we use
the fact thatI =

∑n
m=1 eme

T
m, whereei is thei-th unit base

vector and we recognize that Eqs. (4) and (5) are linear in
x0x

T
0 . This enables us to distribute the computation and to

write X0(T) as

X0(T) =
1

n

n
∑

m=1

∫ T

0

xm(τ)xTm(τ)dτ, (14)

wherexm(t) is the simulated state trajectory based on the
initial conditionem. We then define the adjoint stateλ̇m(t) =
−AKλm(t)− 2QKxm(t) and with that we define the whole
gradient as

(∇KJ)ij =
1

n

(

2RK

n
∑

m=1

∫ T

0

xm(τ)xm(τ)T dτ

−BT
n
∑

m=1

∫ T

0

λm(τ)xm(τ)T dτ

)

ij

.

With that result, a new algorithm can be presented.
Algorithm 2: 1) Simulate the statesxm,i(t) of System (1)

for a finite horizonT by communicating the states
between neighboring nodes for every initial condition
em with m = 1, ..., n, and using a distributed ODE
solver.

2) Simulate the adjoint statesλm,i(t) for the same hori-
zon T in the backwards direction (withλm(T) = 0)
by communicating adjoint states between neighboring
nodes.

λ̇m,i(t) =
∑

j∈Ii

−(AK,ji)
Tλm,j(t)− 2Qixm,i(t)

+2
∑

j∈Ii

(K
(k)
ji)TRjum,j(t).

3) Every agent calculates the respective entries of the
gradient by

(∇KJ)
(k)
ij =−

1

n

(

2Ri

n
∑

m=1

∫ T

0

um,i(τ)xm,j(τ)
T dτ

+BTi

n
∑

m=1

∫ T

0

λm,i(τ)xm,j(τ)
T dτ

)

.

4) For each neighboring agentj, update

K
(k+1)
ij = K

(k)
ij − γk∇KJ

(k)
ij

with a suitable step lengthγk
5) If ||(∇KJ)

(k)
ij || < ǫ, stop. Otherwise, increasek and

go back to 1.
Using this algorithm, the resulting controller is independent
of the initial condition of the state at the cost of requiring
some global knowledge about the total number of statesn

in the system so that the agents know how many simulations
they have to run. Also, there has to be some protocol that
determines which unit base vector is used at what time as
the initial condition.
We see that making use of Assumption 2 ensures the point
we made earlier because in the algorithm, it leads to the
simulation of the system with every unit base vector as
an initial condition, thus exciting every state. Thus, the
resulting controller will be optimal given the maximum
possible amount of information about the system dynamics,
without actually knowing the system model. It is important
to note that this does not help to overcome the non-convexity
of the problem with respect to the controller parameters.

IV. STEP SIZE SELECTION

Since the gradient descent method is generally slow, the
selection of a good step size is important. This is difficult in
the presented setup because of the distributed nature of the
solution of the problem. A reasonable method to determine
the step size is the Barzilai-Borwein step size rule because
it only needs first order information which is computed
anyways when using a gradient method. So in this section,
we first present the method to distributedly determine the
Barzilai-Borwein step size. Afterwards, we present a method

to distributedly check a condition that the step size must
satisfy in order to guarantee convergence.

A. Barzilai-Borwein stepsize

The distributed setting of the problem makes finding a good
step sizeγk for the algorithm presented above difficult. The
straightforward approach of doing a line search to find the
optimalγk is not applicable. In addition, the exact line search
involves the solution of an optimization problem in every
iteration step and can be computationally expensive. The
easiest choice for a step size for the algorithm presented
above is a constant step size. However, this choice does not
guarantee convergence to a local optimum and it is rather
slow. A different method for the selection of the step size
is presented in [11] which has since been called “Barzilai-
Borwein”-method. Applied to the presented problem, the
Barzilai-Borwein method gives the step size with

γk =
〈∆vec(K),∆vec(K)〉

〈∆vec(K),∆vec(∇KJ)〉
(15)

where ∆vec(K) = vec(K(k)) − vec(K(k−1)) and
∆vec(∇KJ) = vec((∇KJ)

(k)) − vec((∇KJ)
(k−1)). This

computation requires additional storage because the feedback
matrix and the gradient for the current and the last iteration
are necessary.
This step size, however, cannot be computed in a distributed
fashion using the formula from (15). In [12], a method is
presented to compute the BB-step size distributedly in two
steps. In the first step, each agent will use its own entries of
the feedback and gradient matrix to determine an estimate
of the BB-step sizeγk, and in the second step a distributed
consensus algorithm will give the value of (15). As a first
step, each nodei, i = 1, ...n initializes the two scalar values

ρi(k(0)) =
〈

∆vec(KT
i),∆vec(KT

i)
〉

, (16)

and

ψi(k(0)) =
〈

∆vec(KT
i),∆vec((∇KJ)

T
i)
〉

. (17)

This means that every agent uses its own respective row(s)
of the feedback and gradient matrix to compute the local
parametersρi(k(0)) and ψi(k(0)) corresponding to the it-
eration k. Then the agents start the following consensus
iterations during which information exchange is necessary:

ρi(k(t+ 1)) =Wiiρi(k(t)) +
∑

j∈Ni

Wijρj(k(t)), (18)

ψi(k(t+ 1)) =Wiiψi(k(t)) +
∑

j∈Ni

Wijψj(k(t)). (19)

Here,W is a symmetric, non-negative with strictly positive
diagonal entries, doubly stochastic matrix, compatible with
graphGc. A common choice forW is according to the so-
called Metropolis rule [12], [13]. This leads to the following
proposition [12].
Proposition 4: If graphGc is connected, then

lim
t→∞

ρi(k(t))

ψi(k(t))
= γk, for all i = 1, ..., n. (20)

See [12] for the proof.
The consensus phase stops when the relative difference of
αi :=

ρi(k(t))
ψi(k(t))

between consecutive iterationst and (t − 1)
falls below a pre-specified threshold.
Remark 2: If the system topology contains isolated systems
that cannot participate in the consensus (i.e.Gc is not con-
nected), it might happen that the difference of the respective
entries of the feedback matrices or the gradient matrices
tends to zero, thus yielding anαi which tends to infinity or
not a number. In that case, it is necessary that this isolated
node uses a fixed step size as its own step size while the
other nodes can continue with the BB-step size.
Remark 3: It is quite obvious that this improved step size
can also be used in the algorithm in [6].

B. Convergence

The possible step size choices discussed so far do not
guarantee convergence. In order to guarantee convergence
of the gradient method to a stationary point, the step sizeγk
needs to satisfy the so-called Armijo rule [14] which is stated
as follows

J(K(k) + γks
(k))− J(K(k)) ≤ αγkvec(∇KJ(K

(k)))T s(k)

(21)
whereα ∈ (0, 1), γk is initially the BB step size and where
in our cases(k) = −vec(∇K(k)J(K(k))). It can be shown
that this condition is always satisfied for sufficiently small
γk.
Since both the left and the right hand side of (21) are sepa-
rable for each agent, all agents can compute their respective
summands in the term

Φ(k) :=

N
∑

i=1

J(K
(k)
i − γk∇Ki

J(K
(k)
i))− J(K

(k)
i)

+ αγk||vec(∇Ki
J(K

(k)
i))||22. (22)

Then, a consensus phase is used to determine the average
of this term. The consensus is designed correspondingly to
the one in the previous section. After reaching consensus,
each agent can check whether this term is smaller or equal
to 0. If that is not the case, the step size needs to be reduced
until the condition is satisfied. Each test with a new step size
requires a new consensus phase.

V. NUMERICAL EXAMPLE

In this section, we present two numerical examples to
illustrate the contributions of this paper.

A. Advantage of averaged initial condition

As mentioned in Section III-B, usually, when we are inter-
ested in finding an optimal controller, we want optimality
independently of the actual initial condition of the state.In
the following, we want to investigate the effect of computing
the optimal feedback using an averaged initial condition
according to Algorithm 2 and compare it to the result when
we use the finite horizon version of Algorithm 1. To do
that, we apply the algorithms to 500 randomly created stable
systems. All systems haven = 10 states andm = 10

inputs (B = I), and the time horizonT is set to 10s.
The entries of theA matrices are picked randomly and also
a number of off-diagonal entries are randomly set to zero
to create a distributed structure. On average, 44 entries of
theA matrices are nonzero. The threshold for the consensus
phase in the BB step size determination is set to10−3, as
is the threshold to stop the overall algorithm. The initial
condition for Algorithm 1 is picked randomly. We then
compare the actual cost using the resulting controllers from
both controllers. Note that for fairness reasons and because
we want optimality independently of the initial condition,we
use a different randomly picked initial condition to compute
the cost than the one that was used to compute the gradient
according to Algorithm 1.
It turns out that the controller resulting from Algorithm 2
produces on average only 71.4% of the cost produced by
the controller resulting from Algorithm 1. Of course, if the
same initial condition is used for the cost trajectory as for
the computation of the controller, Algorithm 1 performs
better. However, on average the cost is only 1.5% higher
when the averaged initial condition is used to compute the
controller. This shows the superiority of Algorithm 2 clearly
and motivates its usage.

B. Efficiency of Barzilai-Borwein step size

In order to demonstrate the effectiveness of the new step
size rule, the algorithm (Algorithm 2) is again applied to 500
stable systems. All the system and simulation parameters are
identical to the previous section. We compare the number
of iterations needed with the BB step length and with a
constant step length ofγ = 1. For both step size methods, the
Armijo rule from the previous subsection is used to guarantee
convergence. The comparison shows that the BB step size is
better for every example. On average, the algorithm needs
16 steps with the BB step size and 113 with the constant
step size. We also compute the relative number of iterations
(iterations BB

iterations constant step length), and on average less than 20% of
iterations are needed. When comparing the actual resulting
feedback matrices, the average maximum difference between
the entries is also quite small, being less than 2%. Obviously,
the number of consensus iterations also needs to be taken
into account when considering the overall effort of the
algorithm. The maximum number of consensus iterations in
these simulations is 450 while the average number is 127.
This number is taken over all outer iterations of the gradient
descent. But when we keep in mind that the consensus
iterations are far less demanding than the gradient descent
iterations the computational and communication effort is
drastically reduced, even when considering the effort of
the consensus. Over all iterations, checking the Armijo rule
requires 261 consensus iterations on average for the BB step
size, while 2039 are necessary for the constant step size.
The results are compactly summarized in Table I.
A visualization for the convergence speed can be the evolu-
tion of the cost. To visualize this, we compute the cost for
each example system for every iteration. The costs are then
normalized with respect to the final optimal value and the

TABLE I

COMPARISON BETWEENBB STEP SIZE AND CONSTANT STEP LENGTH

max
(

iterations BB
iterations constant step length

)

[%] 29.09

min
(

iterations BB
iterations constant step length

)

[%] 3.58

Mean
(

iterations BB
iterations constant step length

)

[%] 16.03

Average difference in result [%] 1.81
Maximum number of consensus iterations for BB step size450
Minimum number of consensus iterations for BB step size 53
Average number of consensus iterations for BB step size 127

Iterations

C
os

t
J

BB step size

constant step size

1

2

3

4

10 20 30 40 50 60

Fig. 1. Evolution of the averaged (500 random systems) normalized cost
over the iterations

Iterations

||
K

(
k
)
−
K

o
p

t|
| F

BB step size

constant step size

2

0

4

20 40 60 80 100 120

Fig. 2. Evolution of the averaged (500 random systems) Frobenius norm
of K(k)

−Kopt over the iterations

average is taken. The results for the BB step size and the
constant step size are shown in Figure 1. Again, it becomes
clear that convergence is achieved much faster with the BB
step size.
Additionally, we also plot the Frobenius norm of the
difference between the final resultingKopt and K(k)

(||K(k) −Kopt||F) for each iteration in Figure 2. Here too,
it can be seen very well that the BB step size rule performs
much better than a constant step size.
In principle, it is possible that the feedback matrix is not
stabilizing in every iteration which might lead to numerical
problems since the computation of the gradient is based on
simulations of the system. However, since the Armijo rule
makes sure that the cost is reduced from one iteration to the
next, this problem is not likely to occur and never caused
any issues in the presented simulation results.

VI. CONCLUSIONS

This paper introduces an accelerated distributed gradient
descent method to determine a distributed linear controller.

The approach uses a Barzilai-Borwein step size which can
be determined using only information from neighbors in
a consensus phase. Also, a method is presented to check
the Armijo rule distributedly to determine step sizes that
guarantee convergence. The computation of the search di-
rection is based on the simulation of the trajectories of the
system states and the adjoint states, and independence of the
initial condition of the system state for these simulationsis
achieved. The effectiveness of the new step size is shown
through numerical simulations and the computation effort is
reduced significantly.

VII. A CKNOWLEDGEMENTS

The work of Frederik Deroo, Sandra Hirche, and Michael
Ulbrich is supported by the German Research Foundation
(DFG) within the Priority Program SPP 1305 “Control
Theory of Digitally Networked Dynamical Systems”. The
work of B. D. O. Anderson is supported by NICTA, which
is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council through
the ICT Centre of Excellence program, and the Australian
Research Councils Discovery Project DP- 110100538.

REFERENCES

[1] D. D. Siljak, Large-Scale Dynamic Systems: Stability and Structure.
North-Holland, 1978.

[2] C. Langbort, R. Chandra, and R. D’Andrea, “Distributed control
design for systems interconnected over an arbitrary graph,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1502–1519,
2004.

[3] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over
posets: A state space solution for state-feedback,” inProc. 49th IEEE
Conference on Decision and Control (CDC), 2010.

[4] A. S. M. Vamsi and N. Elia, “Design of distributed controllers realiz-
able over arbitrary directed networks,” inProc. 49th IEEE Conference
on Decision and Control (CDC), 2010, pp. 4795–4800.

[5] K. Martensson and A. Rantzer, “Gradient methods for iterative dis-
tributed control synthesis,” inProc. 48th IEEE Conference on Decision
and Control (CDC) held jointly with 28th Chinese Control Conference,
2009, pp. 549–554.

[6] ——, “Sub-optimality bound on a gradient method for iterative
distributed control synthesis,” inProc. 19th International Symposium
on Mathematical Theory of Networks and Systems, 2010.

[7] ——, “A scalable method for continuous-time distributedcontrol
synthesis,” inProc. American Control Conf. (ACC), 2012, pp. 6308–
6313.

[8] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized Control,”IEEE Transactions on Automatic Control,
vol. 51, no. 2, pp. 274–286, 2006.

[9] A. Rantzer, “Dynamic dual decomposition for distributed control,” in
Proc. American Control Conf. (ACC), 2009, pp. 884–888.

[10] B. D. O. Anderson and J. B. Moore,Linear Optimal Control.
Prentice-Hall, 1971.

[11] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988.

[12] G. Calafiore, L. Carlone, and M. Wei, “A distributed gradient method
for localization of formations using relative range measurements,” in
Proc. IEEE Int. Symposium on Computer-Aided Control SystemDesign
(CACSD), 2010, pp. 1146–1151.

[13] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” inProc. Fourth International
Symposium on Information Processing in Sensor Networks (IPSN),
2005, pp. 63–70.

[14] D. P. Bertsekas,Nonlinear Programming. Athena Scientific, Belmont,
MA, 1999.

