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Ī unit dyad
I1/2
n cylindrical angular spectra

j imaginary unit
J(r) A/m2 electric current density
J̃(k̂) Am plane wave spectrum
J̃′ef Am assumed error free plane wave spectrum
J̃′err Am error spectrum
J̃′o Am erroneous plane wave spectrum
Jinn (k̂) Am plane wave spectrum, level n, box in

xiii



k 1/m propagation vector, defines direction of plane wave
K 1/m transverse part of k
k 1/m wave number
kx, ky, kz 1/m wave number in x-, y-, and z-direction
kφ, kθ 1/m wave number in φ- and θ-direction
L multipole order
LTL multipole order of translation operator
LAUT multipole order of the AUT
Lφ, Lθ m dimensions of planar measurement surface
Lsmn m far-field pattern function
M,N number of measurement points
P,Q number of integration points
P̄(k̂, rM) m probe correction coefficient
Pin W input power
P m transverse position vector
Pl(x) Legendre polynomial of first kind
Prad W radiated power
Q

(3)
smn

√
W spherical mode coefficients

r m radial distance from the antenna
r, rm m position vector of an observation point
r′, rn m position vector of a point source
rbox m vector AUT- box center on highest level
rFF m far-field distance
rM m measurement distance
rM m position vector of a measurement point
r̃M m vector box center of lowest level

to the measurement point
Rσ,µ,ν probe receiving coefficient

(spherical near-field transformation)
R

(1/2)s
n cylindrical receiving function

of probe 1 and probe 2
s,m, n mode indices, additionally m and n also denote

main and cross components
S(ky, kz, χ) 1/m2 probe characteristics

(planar near-field measurement)
s1

02(k), s2
02(k) receiving parameters of probe 1 and probe 2

TL(k̂, rM) 1/m FMM translation operator
T sn cylindrical wave transmitting function
t10(k) transmitting parameter of the AUT
U(rM) V probe signal
Uo V erroneous probe signal



Uerr V error in the probe signal
Uef V assumed error free probe signal
V m3 integration volume
Vo V input voltage to the AUT
Vprobe m3 volume of the probe
wprobe(r) 1/m2 probe characteristic
W l,n
θ ,Wn

φ quadrature weights
x, y, z Cartesian coordinates
χ ◦ probe polarization angle
ε error in the near field
εo As/(Vm) electric permittivity of free space

≈ (8.8541 ∗ 10−12 As/Vm)
εr relative dielectric permittivity
τ relative residuum of GRMRES Solver
γ factor controlling the accuracy of expansion

of multipole order of the translation operator
φ, θ, r spherical coordinates
η efficiency
λ m wavelength
µo Vs/(Am) permeability of free space (4π · 10−7 Vs/(Am))
ν m antenna factor
π constant (3.1415...)
ρ(r) As/m3 electric space charge density
ρm(r) Vs/m3 magnetic space charge density
σ, µ, ν mode indices in probe coordinate system
σ

1/2
s (k) polarization ratios of probe 1 and probe 2
ω 1/s angular frequency
δx, δy m sample spacing in x- and y-direction
Γl,Γp reflection coefficient of the load and the probe





Abstract

Near-field antenna measurements have been used for quite some time to determine the radiation
pattern of antennas. Low cost, controlled environment, and good accuracy are some of the key
advantages offered by near-field measurements. Standard near-field antenna measurements are
commonly performed on planar, cylindrical, and spherical scanning surfaces to facilitate modal
expansion methods making use of orthogonal modes in the post processing. The post-processing
employs two dimensional Fast Fourier Transform (2D FFT) for an efficient computation. Like any
other measurement technique, a reliable estimate of errors in the near-field measurement is carried
out and there are many contributions in which the far-field uncertainty against these near-field er-
rors using standard transformations techniques is determined. Due to the inability of 2D FFT based
approaches to process near-field data collected on arbitrary grids and the high computational cost
for full probe correction specifically in spherical measurements, equivalent source based transfor-
mation techniques have been developed in the recent past [1], [2], [3]. The Fast Irregular Antenna
Field Transformation Algorithm (FIAFTA) [4] is one such technique which makes use of plane
waves as equivalent sources. The sole algorithm can handle measurements on standard as well as
arbitrary grids efficiently with full probe correction.

FIAFTA is an efficient near-field transformation technique and offers advantages like low com-
putational complexity, full probe correction, near-field measurements on arbitrary grids, etc. In
contrast to other plane wave based approaches FIAFTA utilizes the complete Ewald sphere of
propagating plane waves which makes it more robust. Also, the use of plane waves as equivalent
sources combined with Multilevel Fast Multipole Method (MLFMM) like acceleration makes it an
efficient algorithm because it avoids the step involving the generation of plane waves from other
equivalent sources like electric or magnetic currents.

In this work, a rigorous error analysis for the FIAFTA is performed for the first time. The
performance maturity of FIAFTA is determined against standard near-field measurement errors.
The near-field measurement errors include probe position inaccuracies, errors due to instrumenta-
tion uncertainties, and other general errors like scan area truncation etc. In the first step, the error
analysis is performed for the planar measurements which is then compared with the traditional
transformation technique employing 2D FFT. A common observation implicit in the available lit-
erature is that the error analysis is usually valid only for a given set of antennas and it assumes
a specific scanning geometry. Error equations are not generalized and may not be applicable to
all antennas. Also, the analysis is usually performed with emphasis on estimating the error in the
main beam and in the first side lobe of the transformed far field. The mean and the maximum error
estimation within the valid angle of the transformed far field needs more rigorous analysis. It is
highly desirable to derive an error model which is suitable for arbitrary measurement grids and is
suitable for all kind of antennas. The error model should also provide realistic error estimates and
does not always consider the worst case scenario.

xvii



The challenging task of determining the error behavior of FIAFTA against near-field errors
is analyzed afterwards keeping in view of arbitrary antennas measured on arbitrary scanning sur-
faces. Though we consider FIAFTA in the error analysis, the proposed error model is equally valid
for transformation techniques making use of other equivalent sources like electric currents. These
techniques use a forward operator in the formulation of the transmission equation. The linearity of
the forward operator makes it possible to oversee the effect of near-field errors and to estimate the
mean and the maximum error in the transformed far field. The accuracy of the estimated uncer-
tainty in the far field is dependent on the knowledge of the near-field measurement inaccuracies.
The magnitude of other near-field measurement inaccuracies can be extracted from the data sheets
of the equipment. Once the uncertainties in near-field parameters are known, they can be used to
find the uncertainty in the plane wave spectrum representing the AUT fields and hence the error
in the far field. The novel error model is applied to a synthetically modelled horn antenna whose
near field is collected on planar, cylindrical, and spherical grids. The near field is distorted with
arbitrary errors and is processed using FIAFTA. The computed and the observed far-field uncer-
tainty due to introduced errors are in accordance with each other and thus validate the proposed
error model.

During the standard planar and cylindrical near-field scanning, the samples are mostly col-
lected with a sample spacing of λ/2 in order to avoid errors in the reconstruction of the radiation
pattern using standard 2D FFT based post-processing techniques. However, the regular 2D grid
is only used to facilitate the specific transformation technique and poses a huge computational
burden especially when dealing with electrically large antennas. The number of samples can be
tremendously reduced if only necessary samples distributed efficiently on the scanning surface are
used and the near-field data is post-processed using an efficient equivalent source based technique
like FIAFTA. Such a reduction in the number of near-field samples along with effective scanning
techniques is discussed in the second part of this contribution.

A unique approach to reduce the measurement time by reducing the number of data points
in the near-field antenna measurements is presented. In this technique, the measurement system
adapts itself during the measurement process and based on a given decision threshold, it concen-
trates mainly on the strongly changing near-field regions while skipping data points from smoothly
varying locations. In contrast to the adaptive acquisition techniques proposed previously, the valid
angle is not reduced and as such no extra measurement step is required. However, the extent at
which the measurement time is reduced depends on the near-field distribution. Best results have
been achieved for antennas with smoothly varying near-fields. The irregular grid obtained as a
result of adaptive scanning is processed using the FIAFTA and showed promising results.

In another novel technique, a nonredundant sampling representation on arbitrary surfaces in
near-field antenna measurements is described. The utilized sampling criterion depends on the
electrical size of the antenna under test (AUT) along with the separation between the AUT and
the measurement surface. The minimum number of samples required is directly linked with the
number of unknowns in the linear system of equations derived considering spherical expansion
of radiated AUT fields. Equivalent plane wave sources are used to represent the AUT fields.
Plane wave translations can be directly performed for any arbitrary measurement grid with the
same efficiency. Thus, nonredundant sampling representations can be utilized on any scan surface.
The proposed sampling is applied to near-field measurements using a variety of antennas and the
results are compared to the case of standard sampling. A remarkable decrease in the number
of measurement points is observed with a negligible change in the accuracy of the transformed
pattern, thereby greatly reducing the measurement time and the computational effort.



Chapter 1

Introduction

There has been a massive growth in the field of wireless communications in the last decade. The
use of communication devices like mobile phones [5] [6], PDAs, notebooks, GPS, etc. have in-
creased tremendously and is likely to increase in an exponential manner in the coming years. The
usage and performance of all these devices are majorly linked with the performance of the trans-
mitting and receiving component, i.e. the antenna. With increasing numbers and competition, in-
novative antenna designs with strict requirements are obvious especially in the space industry for
satellite communication and for military purposes. The most effective and widely employed way
to characterize antennas is by antenna measurements. Antenna measurements determine whether
the designed antenna meets the desired specifications or not. Testing of antennas is not only a
tricky business but also requires a lot of care in equipment handling during the measurements. An-
tenna parameters like radiation pattern, gain, bandwidth, and polarization are determined during
the measurements.

Direct far-field measurements, compact range measurements [7] [8] and near-field measure-
ments [9] are widely used for the characterization of antennas. Far-field measurements mostly
involve outdoor ranges for electrically large antennas. The uncontrolled environment in the out-
door ranges limits the applicability of far-field measurements. Additionally, interference from
other sources, reflections, huge land requirement, etc. bound the use of far-field measurements
only for some specific applications. In contrast, compact range measurements are carried out in
a controlled environment in shielded chambers. Reflected signals are also avoided by the use
of proper absorbers and temperature is monitored by using air-conditioning mechanisms. Using
compact ranges, direct measurements of the radiated field are possible in real time and the far-field
condition is emulated at a short distance with the help of a special measurement setup. However,
the expensive setup practically limits the use of compact ranges in general antenna measurements.
The development of near-field scanning as a method of measuring antennas offers the advantage
of using smaller area at lower expenditure as compared to direct far-field measurements. Near-
field measurements are also carried out in a controlled and shielded environment. The collected
near-field data is post-processed using appropriate near-field far-field (NFFF) transformation al-
gorithms to finally determine the radiation pattern of the AUT. Nevertheless, near-field scanning
is prone to errors and needs special care during the measurement. Minute errors in the near-field
data can corrupt the far field depending on the maturity of the NFFF transformation algorithm.

Near-field measurements have gained a lot of importance for the last many decades due to
mentioned advantages like small space requirements, low cost, controlled environment, etc. The
traditional NFFF transformation algorithms mostly make use of modal expansion methods and
utilize orthogonal modes in the post-processing of the acquired near-field data [9]. Afterwards, for
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2 CHAPTER 1. INTRODUCTION

an efficient computation, 2D FFT is employed. However, the use of orthogonal modes limit the
shape of the scanning grids only to canonical surfaces according to the choice orthogonal expan-
sion functions. The use of 2D FFT in the modal expansion methods defines the sampling criteria to
be used during the near-field measurements which may not be the requirement of the NFFF trans-
formation itself. These two serious limitations reduce the flexibility of near-field measurements to
a huge extent. Measurements on the arbitrary grids according to the choice of antenna or the avail-
able equipment along with the least possible number of measurement points are highly desirable.
Afterwards, a reliable estimate of errors considering arbitrary surfaces and arbitrary antennas is of
key concern to establish confidence on the used transformation algorithm. The main focus of this
thesis revolves around these three objectives:

• the use of transformation algorithm based on equivalent sources which is capable of han-
dling measurements on arbitrary grids [1], [2], [3]. We utilize Fast Irregular Antenna Field
Transformation Algorithm (FIAFTA) [10], [4] based on equivalent plane wave sources.

• a comparative error analysis between the FIAFTA and traditional transformation techniques
employing 2D FFT along with a reliable estimate of far-field uncertainties against arbitrary
near-field errors considering arbitrary surfaces and antennas.

• computation of a least number of sampling points and their representation on arbitrary sur-
faces which can reduce the measurement burden to a great extent.

Chapter 2 summarizes the essentials of antenna measurements. Basic antenna parameters are
revised and the necessary formulation of the standard transformation techniques i.e. planar, cylin-
drical, and spherical near-field transformation is described. Similarly, in chapter 3, the summary
of FIAFTA is revisited. The formulation of the transmission equation along with the grouping of
measurement points in an hierarchical structure for efficient computation is explained.

In chapter 4, the behavior of FIAFTA against planar near-field measurement errors is examined
and is compared to the standard planar transformation technique employing two dimensional Fast
Fourier Transform (2D FFT). By using synthetic modelling of the antenna under test (AUT), the
effect of individual errors generated in a realistic way is quantified and the sensitivity of FIAFTA
against these errors is determined. A comparative error analysis between FIAFTA and standard
transformation technique employing 2D FFT showed better performance of FIAFTA against er-
rors like scan area truncation, probe pattern inaccuracy, RF amplitude inaccuracy, etc. The error
analysis is extended in chapter 5 to include errors while considering arbitrary scanning surfaces.
Expressions are derived to estimate the far-field uncertainty using the available near-field data
together with the measurement inaccuracy but, most importantly, without the knowledge of the
reference far field. Error analysis techniques presented so far either assume a specific set of anten-
nas or a specific measurement surface and are difficult to generalize. The error model presented in
chapter 5 is generalized and can handle arbitrary antennas measured on arbitrary surfaces. Exam-
ples are provided afterwards to show the applicability of the proposed error model.

In chapter 6, adaptive near-field acquisition techniques along with scanning methodologies are
presented for planar, cylindrical, and spherical near-field measurements. The near-field measure-
ment errors practically set the number of required near-field samples which is considered in the
adaptive acquisition. The presented technique applies higher sampling density in rapidly varying
near-field regions and skips data points in the smoother regions. Abrupt changes in the near field
are detected by comparing the extrapolated and the measured near-field values at coarser spacing
during the measurements. An empirically derived decision function based on the signal-to-noise
ratio of the measured value is used to determine the threshold difference between the extrapolated
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and the measured near-field value for skipping the sampling point. Several test cases are then
presented on the applicability of the given approach and a significant reduction in the number of
measurement points is observed, thereby reducing measurement time and the computational effort.

Chapter 7 deals with the nonredundant sampling representation on arbitrary surfaces in near-
field antenna measurements considering FIAFTA as the direct near-field transformation technique.
The minimum number of near-field samples required is linked with the number of unknowns in
the linear system of equations used in the formulation of FIAFTA. The sampling criterion is found
dependent on the electrical size of the antenna and the separation between the AUT and the mea-
surement surface. Several examples are presented afterwards showing a negligible change in the
accuracy while marking a huge reduction in the number of required near-field samples.

Chapter 8 concludes all the relevant work and provides an overview of possible extensions.
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Chapter 2

Overview of Antenna Measurements

Antenna measurements are used to determine the radiation characteristics of an AUT. There are
various factors which cannot be considered during simulations while designing the antenna and
therefore antenna behavior must be verified via measurements. Also, the behavior of the antenna
is effectively changed when it is mounted on different objects e.g. vehicles after which full scale
simulations become difficult to perform. Antenna measurements can then be used to ascertain the
insitu performance. Commonly adapted ways for the antenna testing are direct far-field measure-
ments, compact range measurements [7], [8], and near-field measurements [9]. Each technique has
its own advantages and disadvantages. Before reviewing these techniques, we first revise the basic
antenna parameters which are essential for describing the performance of an antenna. The def-
initions are taken from IEEE Standard Definitions of Terms for Antennas [11] and are shown in
quotation marks.

2.1 Antenna Parameters

2.1.1 Radiation Pattern

The radiation pattern C(φ, θ) of an antenna is defined as ”a mathematical function or a graphical
representation of the radiation properties of the antenna as a function of space coordinates. In most
cases, the radiation pattern is determined in the far-field region and is represented as a function of
the directional coordinates.” The far-field distance is commonly approximated as rFF = 2d2/λo,
where d is the diameter of the minimum sphere enclosing the antenna and λo is the wavelength.
The radiation pattern can be quantitatively written as

C(φ, θ) =
E(φ, θ)

Emax
, (2.1)

using the spherical coordinates φ and θ and it is independent of the radial distance [12]. The field
pattern is commonly normalized with the maximum value to obtain the normalized field pattern.
Normally, planar sections of the radiation pattern are shown instead of complete three dimensional
surfaces. Among those two most important views are the E-plane and the H-plane patterns.
The E-plane pattern is a view of the radiation pattern which includes the plane containing the
maximum value of the radiated field and the E-field vector. Similarly, the H-plane pattern is a
sectional view in which the H-field lies in the plane of the section and also contains the direction
of maximum radiation [14]. Fig. 2.1 shows three dimensional (3D) radiation pattern of an horn
antenna in spherical coordinates.

5



6 CHAPTER 2. OVERVIEW OF ANTENNA MEASUREMENTS

Figure 2.1: 3D Radiation pattern of a horn antenna.

2.1.2 Gain and Directivity

The directivity of an antennaD is defined as ”the ratio of the radiation intensity in a given direction
from the antenna to the radiation intensity averaged over all directions. The average radiation
intensity is equal to the total power radiated by the antenna divided by 4π. If the direction is not
specified, the direction of maximum radiation intensity is implied [11].” The directivity

D =
4π∫ 2π

φ=0

∫ π
θ=0 |C|2(φ, θ)sin(θ)dθdφ

(2.2)

can be quantitatively written in terms of radiation pattern. It is often desirable to express the
directivity in decibles (dB) instead of dimensionless quantities. The conversion of directivity from
dimensionless quantity to decibles is

D(dB) = 10log10(D). (2.3)

The gain of the antenna G is closely related with the directivity and takes the antenna efficiency
into account. The antenna efficiency includes the effect of reflection due to mismatch between the
transmission line and the antenna along with the conduction and dielectric losses of the antenna.
Therefore, the gain of the antenna is defined as ”the ratio of the intensity, in a given direction, to
the radiation intensity that would be obtained if the power accepted by the antenna were radiated
isotropically. The radiation intensity corresponding to the isotropically radiated power is equal to
the power accepted (input) by the antenna divided by 4π.” In simple words antenna gain

G = ηD (2.4)

is a a product of the antenna radiation efficiency η = Prad/Pin and the directivity, where Prad is the
total power radiated by the antenna and Pin is the total power accepted by the antenna at its input
terminals.



2.1. ANTENNA PARAMETERS 7

2.1.3 Polarization

”The polarization of an antenna is the curve traced by the instantaneous electric field radiated by
the antenna in a plane perpendicular to the radial direction [12]”. The polarization is generally
classified as elliptical of which the linear and the circular polarizations are special cases. The
electric field is linearly polarized if the vector describing the electric field in space as a function of
time is always directed along the line. The electric field has elliptical or circular polarization if the
figure traced by the field is an ellipse or a circle. The electric field is either traced in a clockwise
or anticlockwise direction and is therefore commonly referred to as right hand (RHP) or left hand
polarization (LHP), respectively [15]. For circular polarization, the terms right hand circular po-
larization (RHCP) or left hand circular polarization (LHCP) are often used. The geometric figures
traced by the sum of the E-field vectors i.e. Ex and Ey over time are shown in Fig. 2.2.

Ey/Ex

Phase angle between E field vectors

Figure 2.2: Polarization as a function of E- and H-field vector and the phase angle [13].

2.1.4 Bandwidth

The bandwidth of an antenna corresponds to ”the range of frequencies within which the perfor-
mance of the antenna, with respect to some characteristic, conforms to a specific standard [16]”.
The antenna bandwidth is a set of frequencies around the center frequency with in which the an-
tenna characteristics do not vary significantly as compared to their values at the center frequency.
The absolute bandwidth is expressed in ”Hz” while the relative bandwidth is denoted in ”%” with
respect to the center frequency.

2.1.5 Input Impedance and Reflection Coefficient

The input impedance of the antenna is ”the impedance presented by an antenna at its terminals or
the ratio of the voltage to current at a pair of terminals or the ratio of the appropriate components
of the electric to magnetic fields at a point.” Input impedance is of prime importance and helps
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in determining the power radiated by the antenna. Considering only the input terminals of the
antenna without any generator, the input impedance is given as

ZA = RA +XA, (2.5)

where RA and XA are the resistance and the reactance at the input terminals of the antenna.
The resistance RA comprises two parts i.e. radiation resistance Rr and the loss resistance RL of
the antenna. The radiation resistance is responsible for radiating the power received at the input
terminals while the loss resistance dissipates power in the form of heat. If a generator with input
impedance Zg = Rg + Xg, with Rg as the resistance of the generator impedance and Xg as
the reactance of the generator impedance (see Fig. 2.3), is attached to the input terminals of the
antenna then the maximum power is transferred to the antenna under conjugate matching of the
impedance. In conjugate matching, the resistance of both the antenna and the generator becomes
equal while the reactances have opposite signs. Half of the maximum power is transferred to the
antenna during impedance matching while half of the power is dissipated as heat by the generators
resistance.

Zg

Antenna

Antenna 
Radiation

a

b

Vg
XA

Xg

Rg RA

Rra

b

Figure 2.3: Representation of antenna input impedance and the generator impedance.

The reflection coefficient of an antenna is defined as the ratio of the amplitude of the reflected
wave to the amplitude of the incident wave. In terms of impedance it can be written as

ΓA =
ZA − ZL

ZA + ZL
, (2.6)

whereZA andZL are the antenna impedance and the load impedance, respectively. In S-parameters
formulation, the reflection coefficient is commonly denoted by S11 also known as input reflection
coefficient. The reflection coefficient along with the input impedance can be characterised using a
synthetic model of the antenna and using electromagnetic simulation software like FEKO [17] or
CST [18]. In practical scenarios, vector network analyzers [19] are used to measure these factors.
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2.2 Antenna Radiation Pattern Measurement Techniques

The field of an antenna is divided into three main regions i.e. reactive near field, radiating near
field, and the far-field region [12], as shown in Fig. 2.4. The radiation field of the transmitting
antenna can be predominantly reactive in the immediate space surrounding the antenna. The field
components decays more rapidly than 1/r, where r is the distance between the AUT and the
observation point. The extent of this region is roughly 0 < r < λ0/(2π), where λ0 represents
the wavelength. The radiating near-field region is bounded by λ0/(2π) < r < 2d2/λ0 (approx.)

Far Field

Minimum Sphere
Diameter d

NEAR-FIELD
MEASUREMENT

FAR-FIELD
MEASUREMENT

NFFFT r®¥

2

0

2d
l

0

2
l

p

Figure 2.4: Antenna field regions.

and involves the diameter d of the minimum sphere enclosing the antenna. It is the region where
the near-field measurements are performed as the mutual coupling between the AUT and the field
probe is usually negligible. The radiation field starts decaying as 1/r near to the boundary of this
region but the radiation pattern is dependent on r. The region is often referred to as ”Fresnel zone”.
Beyond the near-field region i.e. r > 2d2/λo, the radiation pattern is independent of r. The field
in this region is known as the far field and is of most interest. Direct far-field measurements are
performed in this region considering a maximum phase difference of π/8 between the center and
the edge of the antenna for a spherical wavefront. For more accuracy larger separation between the
AUT and the probe is usually desired.

2.2.1 Far-Field Measurements

Far-field measurements are the oldest and perhaps the most frequently used technique for deter-
mining the electromagnetic properties of the AUT. The radiation pattern of the AUT is directly
measured in real time by the field probe placed at a distance greater than 2d2/λo. Quasi plane
waves illuminate the probe at this distance (see Fig. 2.5) and therefore no probe correction is re-
quired.
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2d 2

Figure 2.5: Principle of direct far-field antenna measurements.

The three major outdoor ranges include elevated ranges, slant ranges, and the reflection ranges
[20]. The elevated range is suitable for areas with smooth terrain and requires a clear line-of-sight.
In this configuration the source antenna and the test antenna are mounted at the same height. The
directivity and the side lobe of the source antenna for the elevated range should be carefully se-
lected in a way that the first null of the source pattern should be pointing towards the base of the
test antenna. The elevated range, however, is prone to errors due to reflection of the antenna field
from the ground. Slant ranges, on the other hand, do not suffer from pattern deterioration due
to ground reflections and are more compact as compared to elevated ranges. In this configura-
tion, the AUT is mounted on a non conducting tower while the sources antenna is fixed near the
ground. The main beam of the source antenna is looking towards the AUT, as shown in Fig 2.6.
In the ground reflection ranges, the height of source and test antennas and the distance between
the two are adjusted in a way that the specular reflection from the ground has uniform phase and
the amplitude distribution as that of the direct signal. The direct and the reflected signal interfere
constructively provided the range surface is smooth. Since it is extremely difficult to have a very
smooth outdoor surface, the reflection ranges are commonly used for measurements at lower fre-
quencies.

Many modern devices require accurate results with very tight specifications which can only be
achieved in controlled environments. The multipath propagation, weather conditions, real estate,
electromagnetic interference, security concerns etc. are the major limitations which make these
outdoor techniques unsuitable. However, far-field measurements can also be reliably carried out
in controlled environments for small antennas.

2.2.2 Compact Range Measurements

The use of compact ranges is another effective way of determining the AUT radiation pattern in
real time. Compact range measurements require a collimating surface for transforming the spheri-
cal wavefronts into planar ones in near field distance, as shown in Fig. 2.7. Collimating lenses can
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30 m

30 m

Figure 2.6: Far-field measurement setup for slant ranges.

also be used for this purpose. Due to smaller space requirements, the measurements using com-
pact ranges are performed in a controlled environment. Therefore, higher accuracy as compared
to direct outdoor far-field measurements can be achieved. The lower and the upper operational
frequency is determined by the size and the surface accuracy of the reflector, respectively. A major
drawback associated with compact antenna test ranges (CATR) are the high costs especially when
dual curved reflectors or dual reflector compact ranges are used. The use of dual reflectors in com-
pensated compact ranges (CCR) collimates the beam in two directions and helps to compensate the
cross-polar component. The size of the required reflector increases when measurements at lower
frequencies are desired which also increases the cost appreciably.

Figure 2.7: Principle of antenna measurement using compact ranges.
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2.2.3 Near-Field Measurements

Near-field antenna measurements are a good alternative to space limited far-field measurements
and expensive CATRs for standard antenna measurements. It involves the measurement of the ra-
diating near-field of the AUT and post-processing the obtained near-field data using a suitable near-
field far-field (NFFF) transformation algorithm. Like compact ranges, near-field measurements are
carried out in a controlled environment and therefore offer higher accuracy. NFFF transformation
algorithms make use of Huygens’ principle which states that if the tangential field values are
known on a closed test surface, the field outside the closed volume can be computed. This means
that if the radiating object is replaced by the equivalent sources (as shown in Fig. 2.8) and the field
distribution on a closed surface is computed, the measured near field can be used to determine the
far field. Various equivalent sources can be used for reproducing the radiated AUT field and the
choice of the equivalent sources ascertain the geometry of the near-field scanning surface. Planar,
cylindrical, and spherical scanning surfaces are most commonly used and often make use of pla-
nar [22], cylindrical [24], and spherical [25] modal expansions, respectively. However, any other
arbitrary surface can also be used [10], [2], [26] to measure the radiating near field of an AUT.
Apart from the determination of the radiation pattern, near-field measurements can also be used
to determine other antenna parameters like the gain of an antenna after NFFF transformation [27],
[28].

Figure 2.8: Representation of an antenna using equivalent sources.

The field probe in near-field measurements integrates the field around the measurement point
rM rather than measuring at a discrete point due to its finite extension [29], as shown in Fig. 2.9.
The probe output can be represented as

U (rM) =
y

Vprobe

wprobe (r) · E (r) dV, (2.7)

where Vprobe is the volume and wprobe is the spatial weighting function of the probe. The effect of
the probe must be considered during the transformation and is known as probe correction.

Near-field measurements have gained much importance in the last five decades due to increased
accuracy, lower cost, controlled environment, antenna diagnostic capabilities [31], [32], [33], [34],
[35], etc. Measurements of side lobe levels 50 dB below the maximum level have also been made



2.2. ANTENNA RADIATION PATTERN MEASUREMENT TECHNIQUES 13

Figure 2.9: Measurement of electric near-field and probe output signal at discrete points [30].

possible using the same technique [36]. Maturely designed near-field measurement systems are
already available [37], [38] and have been commonly employed at various test facilities [39], [40],
[41], etc. However, the efficiency and effectiveness of near-field measurement techniques mainly
depends on the accuracy of the obtained near field and the complexity of the NFFF transformation
algorithm. In the following, we review the basics of near-field measurements on standard surfaces
and their transformation into the far field.

Planar Near-Field Measurements:

Planar near-field measurement is, perhaps, the most simplified technique in terms of NFFF trans-
formation. It is suitable for medium and high gain antennas. Measurements are performed on
a finite scan plane placed at a suitable distance from the AUT. The AUT is normally fixed and
the probe moves on a planar surface by stepping in one direction and sweeping in the orthogonal
direction. High planarity is usually required and is of the order of 0.01λo-0.02λo. Due to such
strict requirements, highly sophisticated mechanical equipment is required which comprises ca-
bles, moving parts, receiver, etc. Commonly used planar scanners are either vertical or horizontal.
In an ideal case, measurements on an infinite scan plane are desired. However, practical con-
cerns such as the size of the scanner or the anechoic chamber limit the coverage area. Therefore,
measurements are carried out until a certain boundary which limits the reliable region in the trans-
formed far-field pattern as well. The boundary of the scan plane is normally chosen in a way that
it provides less than -35 dB pattern level at edges so that the error in the transformed pattern can
be reduced. The valid far-field angular region can be computed by using simple formulas which
are already theoretically analyzed and experimentally validated [42]. Fig. 2.10 shows the setup of
planar measurements with limited angular region in φ and θ. The valid angles

φvalid = tan−1

(
Lφ − dφ

2a

)
, (2.8)

θvalid = tan−1

(
Lθ − dθ

2a

)
(2.9)
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Figure 2.10: Planar near-field measurement setup with limited scan plane dimensions [42].

can be written in terms of the length Lθ and the width Lφ of the scan plane, where a is the separa-
tion between the AUT and the measurement surface and dφ and dθ are the dimensions of the AUT.

Another important consideration in planar measurements is that the probe does not always
point towards the AUT. When shifted away from the AUT, the main signal of AUT can be received
by a side lobe. However, when the probe faces the AUT, the main signal is received by the main
beam of the probe, as shown in Fig. 2.11. Therefore, the probe signal should be correctly weighted
by the radiation pattern of the probe.

AUT
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Figure 2.11: Probe influence in planar near-field antenna measurements.
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The planar near-field transformation mostly makes use of plane waves for the expansion of
radiated AUT fields. The transmission equation for planar measurements

U1,2(P) = F 1,2V0

x
t10(K) · s1,2

02 (K)ejγdejK·PdK (2.10)

relates the measured near-field data U1/2(P) in terms of transmitting parameter t10(K) of the
AUT and the receiving parameters s1

02(K) and s2
02(K) of two independent probes [22], as shown

in Fig. 2.12. P is the transverse position vector at z = d plane and V0 is the input voltage of the
AUT. F 1, F 2 are the impedance mismatch factors between the respective probes and the load port
connected to the probes and are given as

F 1 =
1

1− ΓlΓ1
p

, F 2 =
1

1− ΓlΓ2
p

(2.11)

where Γl,Γ
1
p, and Γ2

p are the reflection coefficients of the load, the first probe, and the second
probe, respectively. K is the transverse part of the propagation vector k

K = kxx̂+ kyŷ = k− γẑ (2.12)

with γ representing the z-component of k.

y
x
z

S0
S1

S'2

S'0
U0

V0

U1

K=0

Uy(K)
Ux(K)

AUT Probe
d

V1

Figure 2.12: Scattering matrix representation for planar near-field measurements.

Fourier transform of the measured near-field data is performed to determine the angular spectra

D1,2(K) = t10(K) · s1,2
02 (K) =

e−jγd

4π2F 1,2V0

x
U1,2(P)e−jK·PdP (2.13)

which can be written in the discrete form as

D1,2(K) =
e−jγdδxδy

4π2

∑
m

∑
n

U1,2(xm, yn)e−j(kxxm+kyyn) (2.14)

with proper sample spacing δx and δy in x and y direction, respectively. Probe correction can
then be performed to obtain probe corrected ”main” and ”cross” components of AUT transmitting
coefficients

t10m(K) =

D1(K)
s102m(K)

− D2(K)
s202c(K)

ρ1
s (K)

1− ρ1s (K)
ρ2s (K)

, (2.15)
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t10c(K) =

D2(K)
s202c(K)

− D1(K)
s102m(K)ρ2s (K)

1− ρ1s (K)
ρ2s (K)

, (2.16)

where ρ1
s (K) and ρ2

s (K) are the polarization ratios of both orthogonal probes. The terms ”main”
and ”cross” are chosen to denote two orthogonal components of vectors t10 or s02. The probes
are chosen such that the first probe couples primarily to the m-component while the second probe
couples to the orthogonal c-component. It should be noted that above relations are derived by
considering negligible multiple reflections between the AUT and the probe. Once the AUT trans-
mission coefficients are characterized, the electric far field of the AUT can be computed as [43]

EFF(r,K) =
jkV0e

jkr

r
t10(K) cos θ. (2.17)

Fig. 2.13 shows the schematic of a near-field far-field transformation for a medium gain horn an-
tenna operating at 10 GHz.

Planar NFFF transformation

Near field of an horn antenna at 10 GHz

Transformed far field
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Figure 2.13: Planar near-field far-field transformation.



2.2. ANTENNA RADIATION PATTERN MEASUREMENT TECHNIQUES 17

Cylindrical Near-Field Measurements:

Cylindrical near-field measurements are suitable for fan beam antennas having a broad beam in
one plane and a narrow beam in the orthogonal plane. The NFFF transformation often makes
use of a cylindrical modal expansion for representing the radiated AUT fields. Measurements are
performed on a cylindrical surface by either sweeping the probe in a vertical direction (step in
φ)(see Fig. 2.14) or by rotating the AUT in φ direction (step in vertical direction).

AUT

Pr
ob
e

Figure 2.14: Cylindrical near-field measurement setup. The probe is moving in vertical direction
while stepping in φ-direction.

Due to practical limitations, a cylindrical surface of finite height can be traversed by the probe.
Therefore, truncated near field data is obtained which limits the transformed far-field to a certain
valid region, similar to the planar case. The angular region is defined by

θvalid = tan−1

(
Lθ − dθ

2a

)
(2.18)

and

φvalid = φt − arcsin
(ρ0

a

)
, (2.19)

where a and Lθ are the radius and length of the cylindrical surface, respectively, while ρ0 is
the radius of the minimum cylinder enclosing the AUT. The diameter of the minimum cylinder
enclosing the AUT is represented by dθ and φt is the angle for the near-field measurement. The
suitable size of the cylindrical measurement surface is chosen in relation with the truncation level
of the near field at the edges. The commonly accepted value for the truncation level at the edges
is -35 dB. Although performing measurements at a smaller distance from the AUT increases the
SNR and the valid angular region but it also results in increased multiple reflections. Multiple
reflections involve interactions of AUT and probe fields which results in the reflection of signals
back and forth. This phenomenon is considered in more detail in coming chapters. Fig. 2.15 shows
the variation in the valid angular region of a cylinder by varying the radius.

As stated earlier, the cylindrical NFFF transformation often makes use of a cylindrical modal
expansion and the electric field is represented by superposition of the cylindrical waves. The
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Figure 2.15: Representation of valid angle in cylindrical measurements.

transmission equation

U1,2(φ0, z0) = F 1,2V0

∞∫
−∞

∞∑
n=−∞

2∑
s=1

R(1,2)s
n (γ)T sn(γ)ejnφ0ejγz0dγ (2.20)

using scattering matrix theory [24] is derived, where T sn(γ) andR(1/2)s
n (γ) are the AUT cylindrical

wave transmitting coefficients and probe cylindrical receiving coefficients, respectively. The first
probe data

I1
n(γ) =

2∑
s=1

R1s
n (γ)T sn(γ) =

1

4π2V0

∞∫
−∞

2π∫
0

U1(φ0, z0)e−jnφ0e−jγz0dφ0dz0 (2.21)

and the second probe data

I2
n(γ) =

2∑
s=1

R2s
n (γ)T sn(γ) =

1

4π2V0

∞∫
−∞

2π∫
0

U2(φ0, z0)e−jnφ0e−jγz0dφ0dz0 (2.22)

can be rewritten using Fourier series for n and Fourier integral for γ. For both vertical and hori-
zontal polarization represented by s=1 and s=2 the probe data

In(γ) =
2∑
s=1

Rsn(γ)T sn(γ) = R1
n(γ)T 1

n(γ) +R2
n(γ)T 2

n(γ) (2.23)

can be reformulated to determine the AUT cylindrical wave transmitting functions

T 1
n(γ) =

I1n(γ)

R
(1)1
n (γ)

+ I2n(γ)

R
(2)2
n (γ)

R
(1)2
n (γ)

R
(1)1
n (γ)

1− R
(1)2
n (γ)

R
(1)1
n (γ)

R
(2)1
n (γ)

R
(2)2
n (γ)

(2.24)
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and

T 2
n(γ) =

I2n(γ)

R
(2)2
n (γ)

+ I1n(γ)

R
(1)1
n (γ)

R
(2)1
n (γ)

R
(2)2
n (γ)

1− R
(1)2
n (γ)

R
(1)1
n (γ)

R
(2)1
n (γ)

R
(2)2
n (γ)

. (2.25)

Once the transmitting coefficients are characterised the far electric field is determined using

EFF(φ, θ, r) =
−2kV0 sin θejkr

r

∞∑
n=−∞

(−j)n
[

T 1
n(k cos θ)eφ

−jT 2
n(k cos θ)eθ

]
ejnφ. (2.26)

The near field of an elongated antenna operating at 3 GHz is measured and transformed using a
cylindrical transformation for representation purposes, as shown in Fig. 2.16.
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Figure 2.16: Cylindrical near field of an elongated antenna operating at 3 GHz processed using
NFFF transformation and the transformed far-field.

Spherical Near-Field Measurements:

Spherical near-field antenna measurements are theoretically suitable for all kinds of antennas and
often make use of spherical modes for reconstructing the radiated AUT field. The near field is
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collected on a spherical surface by traversing the AUT in one direction (θ or φ) while stepping in
the other direction (φ or θ). The probe is usually fixed and points towards the AUT, as shown in
Fig. 2.17. The spherical near-field measurement is occasionally carried out on a non-closed surface

x

z

y

Probe

AUT

Figure 2.17: Spherical near-field measurement setup. The probe sweeps in φ-direction while
stepping in θ-direction.

when the complete radiation pattern is not desired or due to practical limitations. Therefore, the
reliable region in the transformed far-field is limited and can be determined by computing

φvalid = φt − arcsin

(
a

ds

)
(2.27)

and

θvalid = θt − arcsin

(
a

ds

)
, (2.28)

where a and ds are the radii of the minimum spheres enclosing the AUT and the measurement
surface, respectively. θt and φt are angles for the near-field measurement, as shown in Fig. 2.18.

There are several possible ways of spherical near-field scanning. The most common scanning
techniques involve φ over θ scanning, θ over φ scanning, and scanning using spherical arch roll.
The AUT can be mounted on the scanner according to its design. Factors like gravity in space
born antennas should be considered while mounting. The two possible ways include polar point-
ing and equator pointing. In θ scanning of a polar pointing setup, each scan passes through the
aperture region and contributes to the aperture field. The signal is rapidly varying and therefore,
high receiver bandwidth is required. The φ scanning, on the other hand, involves scanning within
the aperture or outside the aperture with slowly varying signals. Similarly, in the equator pointing
setup, θ and φ scanning involve some scans through the equator region with rapidly varying signal.
Therefore, the spherical scanning setup is majorly dependent upon the design of the antenna, scan
area of interest, and other practical limitations.

The spherical transmission equation

U(φ, θ, r, χ) =
1

2

∑
smn
σµν

Q(3)
smne

jmφdnµm(θ)ejµχCsnσµν(kr)Rσµν (2.29)
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Figure 2.18: Cross-sectional view of spherical near field measurement surface truncation.

is formulated by considering spherical mode coefficients Q(3)
smn = V0Tsmn, where Tsmn is the

AUT spherical wave transmitting coefficient [25]. The other parameters used in the transmission
equation represent

• ejmφ→ rotation of spherical wave function in φ

• dnµm(θ)→ rotation coefficient for rotation of spherical wave function in θ

• ejµχ→ rotation of spherical wave function in χ

• Csnσµν(kr)→ translation coefficient.

Full probe correction using the spherical transmission equation can be performed via matrix inver-
sion and is computationally cumbersome [25]. To reduce the complexity, either first order or odd
order probe correction [56] are normally applied. After a tedious mathematical analysis [43], [25]
which employs Fast Fourier Transform, the transmitting behavior of the AUT is characterized and
the electric far field

EFF(φ, θ, r) =
√
ZF0

1√
4π

ejkr

r
V0

∑
smn

TsmnLsmn(φ, θ) (2.30)

can be represented using the far-field pattern function

Lsmn(φ, θ) = lim
kr→∞

[√
4π
ejkr

r
F(3)
smn(φ, θ, r)

]
, (2.31)

where Fsmn represents spherical wave functions. Fig. 2.19 shows the spherical near-field distribu-
tion of an horn antenna operating at 10 GHz along with the transformed far field processed using
spherical NFFF transformation.
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Figure 2.19: Representation of spherical near-field measurement of an horn antenna operating at
10 GHz and the transformed far-field pattern.

Arbitrary Near-Field Measurements

Near-field measurements can be performed on arbitrary surfaces as well but will required a suitable
transformation algorithm. The use of 2D FFT in the traditional modal expansion based transfor-
mation techniques can not be utilized due to their limitation of using only canonical surfaces.
Transformation techniques based on equivalent sources can, however, be utilized to post-process
the near-field data collected on arbitrary grids. Equivalent sources like electric or magnetic cur-
rents [2],[3],[1],[52] or plane waves [10], [4] can be used to regenerate the radiation pattern of
the AUT. These methods use Fast Multipole Method (FMM) like procedure to optimize the com-
putational complexity of the algorithm which is further accelerated using Multilevel FMM [46].
Though the computational cost is still more than the FFT but advantages like full probe correction
and the ability to process near-field data collected on arbitrary grids makes these techniques more
attractive.

The fundamental principle of equivalent sources based transformation techniques is based on
the fact that The AUT can be represented by an equivalent electric source current distribution J(r)
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and the resultant electric field

E(r) =
y

VAUT

Ḡ(r, r′) · J(r′)dV ′ (2.32)

is obtained by utilizing the volume of the AUT i.e. VAUT and the dyadic Green’s function of free
space [48]

Ḡ(r, r′) = −j
ωµ

4π

(
Ī +

1

k2
∇∇

)
e−jk|r−r′|

|r− r′|
. (2.33)

The angular frequency ω, free space wavenumber k, and unit dyad Ī are used in the computation
of the Green’s function. In the near-field region, the field probe takes the weighted average of the
field around the measurement point and together with its receiving characteristics the output signal

U (rM) =
y

Vprobe

wprobe (r) · E (r) dV (2.34)

is acquired at the measurement point rM. Vprobe is the probe volume and wprobe contains the
spatial weighting function of the probe. In this way, the probe output and the field generated by
the equivalent current sources can be related. Now the appropriate selection and distribution of the
equivalent sources i.e. electric currents in this case will generate the same field as it is generated by
the AUT. Once the equivalent sources have been characterized, the AUT field can be determined
at any arbitrary distance.

It should be mentioned here that the MLFMM acceleration of the equivalent current method
first requires generation of plane waves from the equivalent currents in order to perform the trans-
lations. The direct use of plane waves as equivalent sources avoids this mentioned step and also
offers reduced computational complexity, thus making it an excellent choice for direct near-field
transformation. In the next chapter, we revisit the essentials for plane wave based NFFF transfor-
mation.

Summarizing the discussion on near-field measurements, it has been seen that the standard
transformation algorithms are based on scattering matrix theory of antenna-antenna interactions
and employ FFT to compute the transmission coefficients of the AUT. Planar, cylindrical and
spherical modal functions are used for representing the radiation characteristics and make use of
canonical surfaces. The sample spacing required for acquiring near-field data on these surfaces is
determined in a way to avoid aliasing errors. The aliasing errors become apparent if the sample
spacing is lower than the Nyquist sampling criterion while using the FFT for the near-field transfor-
mation. The measurement industry is still reluctant to adopt NF transformation techniques which
can transform the near-field data acquired on arbitrary measurement grids. Also, probe correction
can get computationally inefficient if higher order probes are used.
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Chapter 3

Fast Irregular Antenna Field
Transformation Algorithm

In this chapter, a plane wave based near-field transformation technique which is also known as
Fast Irregular Antenna Field Transformation Algorithm (FIAFTA) [10][4] is reviewed. The tech-
nique is derived from a spherical expansion of radiated AUT fields but the spherical modes are
not directly used. Spherical modes are expanded into propagating plane waves using a similar
procedure as described in the Fast Multipole Method (FMM) [46][47]. Therefore, the algorithm
directly works with the far-field pattern of the AUT and translates the radiated plane waves of the
AUT into incident plane waves at the probe. Afterwards, the far-field pattern of the probe can be
directly used to weight the individual plane waves to obtain the probe output. In this unique way,
full probe correction can be achieved in an efficient way in contrast to significant computational
complexity required for higher order probes in classical transformation algorithms. Additionally,
plane wave translations can be carried out to any arbitrary measurement grid with high efficiency
after computing FMM translation operators. In the following, we review the essentials of FIAFTA.

As discussed in the Chap. 2, the electric field can be computed by utilizing equivalent electric
source current distribution and the dyadic Green’s function of free space. The probe output signal

U (rM) =
y

Vprobe

wprobe (r) · E (r) dV (3.1)

is acquired by considering spatial weighting function of the probe taking the weighted average
of the field around the measurements point. The Gegenbauer’s addition theorem is then used
together with an expansion in propagating plane waves, as described in [46][47] to project the
spatial integral into a spectral integral over the Ewald sphere according to

U(rM) = −j
ωµ

4π

{
TL(k̂, rM)P̄ (k̂, r̂M) · (Ī − k̂k̂) · J̃(k̂)dk̂2, (3.2)

where P̄(k̂, r̂M) contains the far-field pattern of the probe for probe correction, (Ī − k̂k̂) · J̃(k̂)
are the equivalent plane wave sources, and TL(k̂, rM) is the translation operator known from
FMM [46]. Unlike the classical plane wave based approaches for planar scan surfaces, the sub-
jected FIAFTA technique utilizes the complete Ewald sphere of propagating plane waves. Fig. 3.1
shows the plane wave representation of the AUT and the probe along with the translation of plane
waves from the AUT to the field probe employing the translation operator TL(k̂, rM). The trans-
lation operator

TL(k̂, rM) = −j
k

4π

L∑
l=0

(−j)l (2l + 1) h
(2)
l (krM) Pl(k̂ · r̂M), (3.3)
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Figure 3.1: Equivalent plane wave sources representing AUT field and their translation to field
probe by employing translation operator TL.

simply converts the radiating plane waves from the AUT to the incident plane waves at the field
probe residing at observation point rM, where h

(2)
l is the spherical Hankel function of second kind

and Pl is a Legendre polynomial. The multipole order L for the diagonal translation operator is
dependent on the electrical size of the AUT and of the probe [50].

Two orthogonal polarizations of radiated AUT fields are commonly required [49]. Therefore,
two complex voltages are introduced and the spectral integral over the Ewald sphere is evaluated
by numerical quadrature [46] with discrete representation according to

U1,2 (φm, θn, rM) = −j
ωµ

4π

∑
kφ

∑
kθ

TL(k̂, rM)W (kθ)

P 1,2 (kφ, kθ, φm, θn) · (Ī− k̂k̂) · J̃ (kθ, kφ) ,

(3.4)

whereW (kθ) is a weighting factor. For several measurement poinst, it is possible to set up a linear
system of equations

U ′ = −j
ωµ

4π
||C|| · J̃ ′ (3.5)
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from the discrete representation. The measured voltage vector

U ′ =



U1(φ1, θ1, rM )
.
.
.

U1(φM , θN , rM )

U2(φ1, θ1, rM )
.
.
.

U2(φM , θN , rM )


(3.6)

and the plane wave amplitudes of the AUT

J̃
′
=



J̃φ(kφ1, kθ1)

J̃θ(kφ1, kθ1)
.
.
.

J̃φ(kφP , kθQ)

J̃θ(kφP , kθQ)


(3.7)

are related with the coupling matrix

||C|| =



C1
φ(kφ1, kθ1, φ1, θ1) . . . C1

θ (kφP , kθQ, φ1, θ1)

. . .

. . .

. . .
C1
φ(kφ1, kθ1, φM , θN ) . . . C1

θ (kφP , kθQ, φM , θN )

C2
φ(kφ1, kθ1, φ1, θ1) . . . C2

θ (kφP , kθQ, φ1, θ1)

. . .

. . .

. . .
C2
φ(kφ1, kθ1, φM , θN ) . . . C2

θ (kφP , kθQ, φM , θN )


(3.8)

in the system of linear equations. The coupling matrix elements are given as:

C1,2
φ,θ(kφp, kθq, φm, θn) = TL(k̂, r̂M )W (kθq)P

1,2
φ,θ (kφp, kθq, φm, θn), (3.9)

where

• m = 1,...,M : no. of observation points (φ-direction),

• n = 1,...,N : no. of observation points (θ-direction)

• p = 1,...,P : no. of integration points (φ-direction),

• q = 1,...,Q: no. of integration points (θ-direction).

The equation system is solved by employing the Generalized Minimum Residual Solver (GM-
RES) [51] in a least mean square sense (LMS) [77] as

‖C‖H · U′ = −j
ωµ

4π
‖C‖H · ‖C‖ · J̃′, (3.10)
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where ‖C‖H is the complex conjugate transpose of the coupling matrix. It is worth mentioning
here that the coupling matrix ‖C‖ is typically not explicitly computed. It is rather constructed in
an on-the-fly manner. Once the plane wave spectrum has been obtained, the AUT is completely
characterized and the field values at any arbitrary distance can be evaluated. The residuum of the
GMRES solver

τ =
norm(‖C‖H ‖C‖ J̃′final − ‖C‖

H U′)
norm(‖C‖H U′)

(3.11)

determines the relative residual error during the computation while the near-field error

ε = norm(J̃′final − ‖C‖
H U′) (3.12)

helps in determining that how well the radiated fields of the equivalent plane wave sources repro-
duce the given near-fields.
For enhanced computational complexity, near-field measurement points are grouped together to
form a hierarchical structure similar to the Multilevel Fast Multipole Method (MLFMM) [47] as
described in [4]. The grouping of measurement points in an hierarchical structure decreases the
complexity from O(N2) to O(N logN), where N is the number of measurement points. Field
translations can now be carried out on the coarsest level contrary to the single level case. The
plane wave spectra

J̃iNN
(
k̂
)

= TL

(
k̂, rbox

)(
Ī− k̂k̂

)
· J̃
(
k̂
)
, (3.13)

are received at the highest level boxes iN and are processed using disaggregation and anterpolation
to the lower levels as shown in Fig. 3.2. The combined anterpolation and disaggregation operator

n  1

level

level

Figure 3.2: Cross-section of hierarchical multilevel measurement setup.

D̄in
n

(
k, rinn

)
is used in

J̃inn
(
k̂
)

= D̄in
n

(
k, rinn

)
·
(

Ī− k̂k̂
)
· J̃in+1

n+1

(
k̂
)

(3.14)

for the recursive operation and to obtain the plane wave spectra at the lower level box center
in. Disaggregation implies a phase shift from coarser to finer level box centers until the measure-
ment point is reached while anterpolation is an adjoint operation of interpolation and is used for
reducing the sampling rate, as explained in [4]. After the completion of the disaggregation and
anterpolation process, the probe output
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U (rM) = −j
wµ

4π

∑
k̂

W
(
k̂
)
e−j̃rM·kP̄

(
k̂, r̂M

)
·
(

Ī− k̂k̂
)
· J̃i00

(
k̂
)

(3.15)

is obtained by utilizing the probe correction coefficient. Gauss-Legendre quadrature is used for the
evaluation of the integrals along with the corresponding weight factors W

(
k̂
)

and the algorithm is
implemented in an iterative manner using the Generalized Minimum Residual Solver (GMRES) [51]
in an on-the-fly manner.

FIAFTA has already been verified using simulations as well as using measurement data [4]. How-
ever, an employment of FIAFTA in the antenna measurement industry requires a more rigorous
analysis to determine its performance maturity. The behavior of FIAFTA against measurement
errors must be determined to find out how robust FIAFTA is against these errors. Therefore, in
the following chapters the error behavior of FIAFTA against measurement errors is thoroughly
investigated and is compared to the traditional transformation techniques.
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Chapter 4

Comparative Planar Near-Field
Measurement Error Analysis

The development of FIAFTA opened new possibilities of using a sole algorithm for the standard
as well as arbitrary near-field measurement grids. The reduced computational complexity makes it
suitable for electrically large antennas and above all full probe correction can be achieved for any
arbitrary grid without any major increase in the complexity. It is emphasized here that transforma-
tion techniques employing equivalent current sources e.g. [1], [2], [3], [52], etc. can also handle
measurements on arbitrary grids and with arbitrary probes but with bad numerical complexity and
they will require huge computation times for large problems. The available computational com-
plexity of integral equation based approaches utilizing equivalent currents is O((ka)4), where k is
the wavenumber and a is the radius of the minimum sphere enclosing the AUT. The multilevel fast
multipole method (MLFMM) acceleration reduces the computational cost to O((ka)2log(ka)2),
as reported in [53] and [54]. However, the MLFMM acceleration of the equivalent current method
first requires generation of plane waves from the equivalent currents in order to perform the trans-
lations. The direct use of plane waves as equivalent sources avoids this mentioned step and also of-
fers reduced computational complexity i.e. O((ka)2log(ka)2), thus making it an excellent choice
for direct near-field transformation. Other economical approaches may involve a recently pro-
posed spherical NFT [55] which takes higher order probe correction into account and makes use
of a renormalized least square approach in two ways. It either applies an iterative approach us-
ing conjugate gradient method or a normal method where the matrix is inverted explicitly. In both
cases,O((ka)3) complexity with little overhead is observed. Nevertheless, along with higher com-
putational cost, the approach is only applicable to spherical grids. Spherical 1st/3rd order probe
correction reported in [56] can also be achieved with O((ka)3) computational complexity but with
an additional probe orientation, which requires more measurement time. Table 4.1 summarizes the
complexities of near-field transformation algorithms providing economical computational cost.

As stated earlier, apart from the computational cost, the behavior of FIAFTA against measure-
ment errors along with its comparison with already established techniques is essentially required
to determine its performance maturity. Therefore, this is the main focus of this chapter. Planar
near-field measurement errors are generated individually in a realistic manner and their exclusive
effect on the transformed far-field is determined. The error behavior is then compared with the
traditional planar transformation technique employing 2D FFT.

In practice, several measurement and environmental errors occur during near-field measure-
ments whose effect is carried in the transformation and, therefore, cause errors in the resulting
radiation pattern. It is extremely important for an accurate measurement to identify the individual

31
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Table 4.1: Complexity of Near-Field Transformation Algorithms

Algorithm Complexity

Multilevel plane wave based NFT O((ka)2log(ka)2)

Spherical NFT with higher order probes [55] O((ka)3)

Equivalent electric current based NFT [2] O((ka)4)

Spherical 1st/3rd order probe correction [56] O((ka)3)

Planar scanning with arbitrary probe O((ka)2log(ka)2)

sources of errors and their exclusive effect on the far-field pattern of the AUT. An error model con-
sisting of 18 errors is defined by the National Institute of Standards and Technology (NIST) (for-
merly called National Bureau of Standards) for planar near-field measurements [42]. The planar
measurement errors are classified into three major categories i.e. general errors [1], instrumentation
errors [2], and probe parameter errors [3][4] according to the way they influence the near field. All
the errors are generated in a realistic manner using the measurement equipment specifications and
are introduced in the near-field data which is synthetically generated using electric dipoles. Using
the synthetic data approach, the effect of most of the measurement errors can be analyzed without
the influence of other errors. It helps in determining the sensitivity of the transformed radiation
pattern against the specific measurement error. Thus, a more reliable error estimate in the actual
far-field pattern can be achieved. The perturbed near-field is then processed using both 2D FFT
based approach and FIAFTA.

4.1 Synthetic Antenna Modeling

The AUT used in the error analysis is a synthetically modeled electrically large (64λ) parabolic re-
flector operating at 40 GHz. Electric dipoles are used to model the AUT using a proper magnitude
profile and geometrical arrangement of electric dipoles, as described in [60]. The dipole distri-
bution is shown in Fig. 4.1. The dipoles are distributed in two different planes separated by λ/4
distance. Additionally, 90◦ phase difference between the dipoles of the two planes produces the
antenna field only in the forward direction. The arrow thickness represents the magnitude and the
phase information is provided by the arrow color. The dipoles are arranged in concentric equidis-
tant circles with exponential decay in the magnitude from inner to the outer circle. The magnitude,
however, remains the same within one circle. The antenna aperture is 0.48 m. The cumulative
fields of all source dipoles determine the electric field

E (rM) = −j
wµ

4π

iAUT∑
i=1

(
Ĩ +

1

k2
∇∇

)
· di

e−jk|rM−rd,i|

|rM − rd,i|
, (4.1)

at the measurement point rM by evaluating the Green’s function of free space, whereas rd,i repre-
sents the position of source dipoles and di represents their complex amplitude and orientation.
The near-field of the parabolic reflector is collected on the xz-plane placed at y = −2 m, as shown
in Fig. 4.2.
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Figure 4.1: Electric dipole distribution synthesizing a 40 GHz parabolic reflector. The size and the
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Figure 4.2: Planar near-field measurement setup.

With a similar modeling of the probe like the AUT, the probe signal

U(rM) =

iprobe∑
i=1

E(rM − rp,i) · pi (4.2)

is received by the probe dipoles, as shown in Fig. 4.3. As can be seen, the probe output is just
a superposition of electric fields received by various probe dipoles constituting a more realistic
probe. The resulting orthogonal near-field distributions i.e. containing ex and ez components using
above mentioned arrangements are shown in Fig. 4.4.

4.2 Planar Near-Field Measurement Errors

In this section, the error behavior of FIAFTA against planar near-field measurement errors is de-
scribed. The effect of each individual error is discussed1 assuming all the other errors either zero
or having negligible effect on the transformed pattern due to utilization of the synthetic data. It is

1The effect of measurement area truncation error is inevitable and will be inherent in the analysis.
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(a)

(b)

Figure 4.4: Near field ex (a) and ez (b) distribution [dB] of parabolic reflector operating at 40 GHz.
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important to mention that the accuracy of the transformed pattern can be controlled via parame-
ters2 like residuum of the iterative GMRES solver, number of box levels, grouping scheme, etc.
However, better accuracy also results in increased runtime. The following parameter values are
used for all transformations

• Residuum = 0.000034,

• AUT multipole number = 219,

• Number of box levels = 4.

4.2.1 General Errors

Scan Area Truncation

The finite scan plane is one of the unavoidable sources of error in planar measurements and limits
the reliability of the radiation pattern to a certain angular region bounded by

θvalid = tan−1

(
Lθ − d

2s

)
(4.3)

φvalid = tan−1

(
Lφ − d

2s

)
, (4.4)

whereLφ andLθ are the length and the width of the scan plane, respectively, and s is the separation
between the AUT and the measurement surface. A cross-sectional view of the scan plane is shown
in Fig. 4.5 for the reliable region in θ-direction. Equations (4.3) and (4.4) are both theoretically

s = 2 mAUT

valid

d 
= 

0.
48

 m

L

M
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s. 
su

rf
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e

Figure 4.5: Measurement area truncation.

analyzed and validated by extensive measurements conducted by NIST [61][62]. The near-field
discontinuity due to a finite scan plane introduces errors within the valid region as well. To estimate
the error, the near field is computed on different square shaped scan planes with side lengths 0.5 m,
0.6 m, 0.7 m, 0.9 m, and 1.1 m. The centerline near-field data for 1.1 m ∗ 1.1 m scan surface is
shown in Fig. 4.6.

2The detailed analysis about these parameters is carried out in the next chapter dealing with error estimation for
arbitrary grids. Here we will only focus on the measurement errors rather than on computational errors.
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Figure 4.6: Centerline near-field data on 1.1 m ∗ 1.1 m measurement surface.

A smooth decaying curve is observed with some ripples near the edges. The collected near field
is transformed to the far field using FIAFTA and the classical technique employing 2D FFT. The
error in the side lobe level (SLL) of resulting patterns is shown in Fig. 4.7 (a). It may seem strange
that the SLL error increases on increasing the scan plane from 0.6 m to 0.7 m for 2D FFT but
Fig. 4.7 (b), showing a part of the enlarged radiation pattern at side lobe region for 0.5 m, 0.6 m,
and 0.7 m, explains the behavior. It is merely a coincidence that 0.6 m scan length shows a better
performance at the first side lobe whereas the whole pattern is worse than for 0.7 m. Thus, for
more insight the complete radiation pattern should be compared.

Fig. 4.8 shows the transformed far-fieldE-plane cut for 0.7 m ∗ 0.7 m scan plane along with the
reference. The reference far field is directly computed at a far field distance approaching 10 km by
accumulating electric dipole fields. The maximum observed error, within the valid region, for FI-
AFTA and 2D FFT approaches is -72.62 dB and -55.862 dB, respectively. The error level increases
as we move away from the valid region. If the scan plane size is further reduced from 0.7 m ∗ 0.7 m,
the difference in the error levels of both techniques increases i.e. the transformed pattern for the
2D FFT technique becomes worse. The error levels become comparable if the scan plane size is
further increased from 0.7 m ∗ 0.7 m.

The dominant performance of FIAFTA against area truncation error comes from the fact that
FIAFTA first determines equivalent plane wave sources on the complete Ewald sphere from the
given measurement data and, in the second step, it utilizes equivalent sources to ascertain the far
field. This is in contrast to the traditional technique in which the truncated measurement data is
transformed to the far field by performing 2D Fourier transform in the first step. FIAFTA does not
assume/utilize zero fields or periodic repetition outside the scan plane which results in a systematic
error in the computations involved in the modal expansion theory. The use of complete Ewald
sphere and the fact that FIAFTA does not transform the measured data in the first step helps in
reducing the truncation error and avoids ripples in the far-field pattern, as described in [63].
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Figure 4.7: Length of the scan area vs SLL error (a) and enlarged reference and transformed
E-plane cut with 0.5 m , 0.6 m, and 0.7 m scan length 2D FFT (b).
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Data Point Spacing

The distance between near-field sampling points greatly controls the accuracy of the transformed
pattern. In the 2D FFT based approach, the incremental data going from the integral of Eq. (1.5) to
the discrete Fourier Transform Eq. (1.6) is exact if the Fourier Transform of the measurement data
is band-limited between band limits kx and ky, and the data point spacing specify the sampling
criteria

δx ≤
π

kx
, δy ≤

π

ky
(4.5)

corresponding to those band limits [42][64]. If the measurement plane is located at a region in
space where there are no evanescent waves, then the maximum wave numbers are kx = ky = k0 =
2π/λ and therefore δx = δy = λ/2 [64]. If the given sampling criteria is violated, it directly results
in an aliasing error, thus deteriorating the far-field. It must be noted here that the given sampling
criterion is independent of the size of the antenna and requires equidistant spacing between the
measurement points. FIAFTA, on the other hand, gives the freedom of using irregular grid and the
sampling criterion for FIAFTA is dependent on the size of the antenna and the separation between
the AUT and the measurement plane3. To demonstrate the effect of irregular spacing between
measurement points, a normally distributed sampling error with standard deviation σ = 2.5λ is
superimposed in the position data of a λ/2 measurement grid. The resulting position distribution
is shown in Fig. 4.9 with white pixels marking the position of measurement points. The spacing
between the consecutive rows in x or z equals λ/2. It can be seen in Fig. 4.9 that the scattered
black spots between the white pixels represent larger measurement point spacing compared to λ/2.
The near field is computed using the irregular position data and is transformed using FIAFTA. The
resulting E-plane cut is shown in Fig. 4.10 (a). The negligible change in the error level confirms
the insensitivity of the FIAFTA against the irregularity. In addition, the effect of coarser sampling
on transformed patterns is analyzed. The near-field data is again collected on an equally spaced

3Extensive analysis regarding the derivation of sampling criterion of FIAFTA is explained in Chap. 6, for current
error analysis λ/2 sample spacing is considered for fair comparison between FIAFTA and the traditional technique
employing 2D FFT.
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Figure 4.9: Scan plane representing the distribution of measurement points (white pixels denote
the position of sampling points and the consecutive distance between two rows is λ/2).

measurement grid but, with coarser sampling i.e. 2.5λ and the near-field horizontal cut is shown
in Fig. 4.6. The transformed patterns are shown in Fig. 4.10 (b) for both FIAFTA and 2D FFT
approaches. Apart from the boresight region, where the accuracy of FIAFTA approach can be
increased by more number of interpolation points, the error level of 2D FFT increases probably
due to the aliasing effect.

Position Inaccuracy

In an ideal near-field measurement, the radiated field of the antenna should be measured on the
scan plan with exact information about the position of the data points. However, in reality, the
measurement position is not exactly known and no matter how small the position error is, it results
in erroneous phase and magnitude information. Although, in state-of-the-art measurement setups,
laser interferometers are used to control the position but with accuracy of several tens of µm. To
account for the effect of the position inaccuracy, we generate an erroneous measurement grid by
superimposing a normally distributed error in the position data similar to the previous sub-section
but now with σ = 100µm. Afterwards, the near field is collected on the erroneous grid and is then
transformed using correct positions of the measurement points thus incorporating the position in-
accuracy effect. In the first step, the displacement is introduced in the in-plane coordinates i.e. x
and z (refer to Fig. 4.2) and the transformed E-plane cuts are shown in Fig. 4.11 for FIAFTA and
2D FFT based approaches, respectively. The transformed patterns for transverse position inaccu-
racy show a negligible change in the error level and thus suggest the fact that in-plane position
inaccuracy of 100µm at 40 GHz frequency does not contribute a major error in the radiation pat-
tern.

The second step involves the inaccuracy introduced in the longitudinal i.e. y-position (refer to
Fig. 4.2). In this case, the in-plane coordinates are kept at their original position while using the
erroneous longitudinal position in the computation of the radiating near field. The transformed pat-
terns in Fig. 4.12 shows the effect of the longitudinal position inaccuracy. The error level increases
to maximum values of -54.62 dB and -53.89 dB for 2D FFT and FIAFTA techniques, respectively.
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Figure 4.10: E-plane cut for 0.9 m ∗ 0.9 m scan plane with irregular sample spacing (a) and with
2.5λ sample spacing (b).

It clearly shows that both approaches are equally sensitive to the phase inaccuracy produced by the
error in the longitudinal position. Any error in the position of the measurement points in the di-
rection of propagation results in an inaccurate phase measurements and thus results in deteriorated
transformed far field for both cases.

4.2.2 Instrumentation Errors

One of the major set of errors during near-field measurements is introduced by the measurement
equipment itself. The probe signal is measured using a receiver i.e. a vector network analyser
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Figure 4.11: Transformed E-plane using erroneous transverse position in 2D FFT based transfor-
mation (a) and FIAFTA (b).

by connecting it with the probe using a RF cable. The inherent noise of the receiver and the
movement of the probe along with the cable introduce errors in the magnitude and phase of the RF
signal. The effect of instrumentation errors which limit the accuracy of measured amplitude and
phase is analyzed using both FIAFTA and the traditional approach. Random as well as systematic
phase errors due to the receiver and flexing cables are considered, respectively. The errors are
superimposed on synthetically generated error free near-field data. The deterioration in the far
field then directly indicates the influence of the imposed errors.
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Figure 4.12: Transformed E-plane using erroneous longitudinal position in 2D FFT based trans-
formation (a) and FIAFTA (b).

RF Amplitude Inaccuracy

Inaccuracy in the measured RF amplitude is greatly dependent on the signal-to-noise ratio (SNR)
of the measured signal. Therefore, a unique way of introducing the amplitude error is applied in
relation with SNR. Normally distributed magnitude error based on SNR of the received signal is
superimposed on the near-field data. An assumed SNR value (x dB) is assumed at the normal-
ized 0 dB pattern level and is decreased down to (x-30) dB at 30 dB below the maximum pattern
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level. The intermediate points are linearly interpolated and the standard deviation

σ = 20log10

(
1

3

(
1 +

√
0.5

10(SNR/10)

))
(4.6)

is computed empirically with the assumed SNR. The random error obtained using the given stan-
dard deviation is added to the near-field data. Fig. 4.13 (a) shows the horizontal near-field cut of a
0.9 m ∗ 0.9 m planar scan plane with and without error clearly showing the error level as well. This
unique way of introducing magnitude error in the near field incorporates the effect of absolute
noise added by the receiver. The SNR is decreased when the signal strength is decreased while
the absolute noise of the receiver is assumed constant. The assumed SNR value at the maximum
pattern level can be varied according to the given specifications of the receiver. The SNR is varied
from 60 dB to 20 dB at 0 dB normalized pattern level with corresponding decrease at the lower
pattern levels. The collected erroneous near-field data are processed using FIAFTA and the clas-
sical approach utilizing 2D FFT. E-plane cuts of both transformed patterns are compared with
the reference, as shown in Fig. 4.13 (b). Due to symmetry of the near field (see Fig. 4.6), similar
results have been seen in the H-plane pattern.

Afterwards, the maximum error in the valid side lobe region and in the main beam of the
transformed far field is obtained and the error level comparison with the reference is shown in
Fig. 4.14. The difference in the maximum error for both transformation techniques increases with
increase in SNR at 0 dB normalized pattern level. As observed, FIAFTA works better as compared
to 2D FFT technique at higher SNR while the performance becomes comparable at lower SNR
in the valid region. The dominant performance in the side lobe region mainly comes from the
reduced scan area truncation error in the FIAFTA approach. The use of the entire Ewald sphere
of propagating plane waves facilitates a reduction of the scan area truncation error as compared to
2D FFT technique as explained in the scan area truncation error.

Receiver Phase Error

The error in the measured phase can be both random or systematic due to receiver’s limitation
of accurate measurement and flexing cables/rotary joints, respectively. Both errors are considered
as independent errors and are generated using a normally distributed phase error with 3σ varying
from 1◦ to 10◦. The error is superimposed on the phase values of the acquired near-field data. The
transformed patterns using classical and the FIAFTA technique show similar sensitivity against
random phase errors, as shown in Fig. 4.15. A similar conclusion was made against longitudinal
position inaccuracy. The random inaccuracy in longitudinal position used to compute the near field
data also results in random phase errors and thus supports the current observation.

Systematic Phase Error

The use of flexing cables in the vertical direction of the scan plane results in a linear increase in
the phase error. A simple model is used to replace the effect of phase errors produced by flexing
cables. A systematic phase error increasing from 0◦ to 10◦ in equal steps along the vertical points
of the measurement grid is superimposed in the near-field data, hence accommodating the effect
of flexing cables. The proposed model representing the systematic increase in the phase error up
to 5◦ is shown in Fig. 4.16 (a). As expected, the E-plane transformed pattern gets worse while
a negligible change in the H-plane transformed pattern is observed for the systematic errors. The
maximum error level with systematic phase errors for the valid region of the transformed E-
plane pattern is shown for both the FIAFTA approach and the standard 2D FFT technique in
Fig. 4.16 (b). It can be observed that FIAFTA shows more stability in the side lobe region.
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Figure 4.13: Horizontal cut of near-field data considering 50 dB and 20 dB SNR at 0 dB and -30 dB
normalized pattern level, respectively (a) and transformed far-field E-plane cut using erroneous
near-field (b).

4.2.3 Probe Parameter Errors

In FIAFTA, the radiating plane waves from the AUT are translated into incident waves at the probe
(see Fig. 3.1). Therefore, any error in the position would directly result in a wrong translation of
the plane waves. Also, errors in the probe far-field pattern would affect probe correction during the
transformation while in case of probe alignment errors, misaligned values of the probe pattern will
be utilized. The probe-AUT interaction at small separation distance results in an erroneous near
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Figure 4.14: SNR at 0 dB normalized pattern level (used to generate random amplitude error)
vs. max. error level in the main beam (a) and max. error level in the valid side lobe region (b).

field due to superposition of reflected fields. In this section, the effect of each individual probe
error is analyzed using FIAFTA and the results are compared with those from the traditional 2D
FFT technique.

In order to incorporate the effect of probe parameter errors, a medium gain horn like antenna
is modeled using electric dipoles in a similar way to the AUT. Electric dipoles are arranged in
concentric circles and the diameter of the probe is 0.029 m. The far field of the horn antenna
is shown in Fig 4.17. The designed antenna has a relatively lower beam-width as compared to
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Figure 4.15: Maximum error level in the main beam and the side lobe region of transformed
E-plane pattern cut using the 2D FFT and FIAFTA for random phase errors.

standard probes normally used at 40 GHz to visualize even the minute effect of probe errors on the
transformed far field of the AUT.

Probe Pattern Inaccuracy

The measured or the transformed far-field pattern normally used for the probe correction contains
uncertainty due to instrumentation errors. The corrupted values of the probe far field are realized
by introducing a SNR based amplitude error in a similar way as that for the RF amplitude in-
accuracy in the measured near-field magnitude for the AUT. The normally distributed magnitude
error with empirically derived standard deviation is superimposed on the far-field pattern magni-
tude. The phase error is also distributed randomly with increasing standard deviation in steps of
0.5◦ according to

σph = 0.5◦, ..., 2.5◦. (4.7)

Fig. 4.18 shows the erroneous probe far-field pattern cut considering 25 dB SNR at normalized
0 dB pattern level. Similarly, variable SNR values can be used according to the given uncertainty
in the probe far field along with phase errors. The SNR value at maximum pattern level is varied
from 20 dB to 60 dB along with 0.5◦ to 2.5◦ variation in the standard deviation for the phase er-
ror. The maximum error in the transformed E-plane pattern cut is plotted for the classical and the
FIAFTA approach in Fig. 4.19.

As expected, results show better performance at higher SNR and small phase errors as com-
pared to lower SNR and large phase errors. The main difference between the performance of both
techniques comes from the fact that in the traditional 2D FFT based approach, the relation between
the error in the transformed pattern and the error in the probe pattern is one-to-one [42]. It means
that an error in any given direction of the transformed pattern directly depends on the probe pat-
tern error in exactly the same direction. Since the FIAFTA approach takes the whole probe pattern
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Figure 4.16: Representation of systematic increase in phase error along vertical direction (index
length of 62 represents one column of measurement plane) (a) Maximum error level in the main
beam and (b) side lobe region of transformed E-plane pattern cut using 2D FFT and FIAFTA.

into account, normally distributed error is compensated to some extent and results in an increased
accuracy.



4.2. PLANAR NEAR-FIELD MEASUREMENT ERRORS 49

0

50

100

150

200

250

300

350

050100150

Ph
i [

°]

 

Theta [°]

 −100

−80

−60

−40

−20

0

(a)

0

50

100

150

200

250

300

350

050100150

Ph
i [

°]

 

Theta [°]

 

−100

−80

−60

−40

−20

0

(b)

Figure 4.17: Eθ and Eφ component patterns of the probe far field [dB] operating at 40 GHz.

Probe Polarisation Ratio

The polarisation ratios ρ1
s(K) and ρ2

s(K) used in the probe correction formulation (1.7) and (1.8)
represent the ratio of the Eθ and the Eφ for the two orthogonal probes according to

ρ1
s(K) =

s1
02cr(K)

s1
02co(K)

, ρ2
s(K) =

s2
02cr(K)

s2
02co(K)

, (4.8)
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Figure 4.18: Probe far-field pattern cut considering 25 dB SNR at 0 dB normalized pattern level.
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Figure 4.19: Maximum error level in the valid region of transformed E-plane pattern cut in refer-
ence to the assumed SNR at maximum pattern level and σph.

where s02 represent the receiving pattern of the probe. Therefore, any error in the polarization
ratio due to non-ideal probes directly effects the probe correction. However, the effect of probe
polarization error can be considered as a part of probe pattern inaccuracy, as explained in the
previous section. The magnitude and phase error was added in both probe components and is
hence inherently contained the effect of probe polarization error as well.
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Probe Alignment Error

The probe receiving pattern is related to the probe coordinate system used during the measure-
ment. If the probe is not precisely aligned with the reference coordinate system during the near-
field measurement, a shifted pattern is utilized in the transformation and hence degenerates the
AUT radiation pattern. To realize the misalignment, the alignment error in the three rotations
i.e. azimuth, elevation, and polarization is introduced according to the nomenclature shown in
Fig. 4.20.

z

x

y

AZ

EL
POL

Figure 4.20: Reference alignment configuration.

A normally distributed error is introduced in the probe rotation with standard deviation varying
from 0.5◦ to 2.5◦. The erroneous alignment information is applied and the maximum error in the
resultant E-plane cut is shown for all the three cases in Fig. 4.21.

Similar error behavior is observed for both transformation techniques and minor deterioration
in the transformed pattern is observed for the given error in the alignment. Since the probe pattern
is slowly varying and a small scan size is utilized, the rotation misalignment did not affect the AUT
pattern significantly. However, for accurate results one can estimate the fluctuations provided that
the uncertainty in the probe alignment is known.

Probe-AUT Interaction

It is a common practice to place the measurement plane near to the AUT so that the valid angle
can be increased. The decreased separation results in a strong interaction between the AUT and
the probe field. A part of the field is reflected back and forth causing multiple reflections error. The
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Figure 4.21: Maximum error level in the valid region of transformed E-plane pattern cut with
reference to σerr used for generating alignment error.

reflected signal is superimposed on the original field and tends to deteriorate the result. In the
current scenario, 15% of the total field is considered as a reflection due to probe-AUT interaction
and is superimposed on the ideal data set. The resultant E-plane transformed pattern cut is shown
in Fig. 4.22. As can be seen, the error level of both techniques shows similar sensitivity to the
reflection error.

4.2.4 Two Planes Method for Reduced Probe-AUT Interaction

As already stated, reduced separation between the probe and the AUT increases the valid angle
at the cost of multiple reflections error. The reduction in the error is commonly accomplished by
collecting near-field data at a series of closely spaced planes separated by λ/2. The mean of the
transformed field then averages out the error and gives more accurate results. However, increase in
the measurement time gets immense. A unique way to reduce multiple reflections while keeping
less measurement time consumption is proposed. It is recognized that the effect of the multiple
reflection error is maximum in the region where the probe and the AUT directly face each other and
decreases as the probe sweeps away from the center, as shown in Fig. 4.23. Also, it is well known
that the error decreases as the separation between the AUT and probe is increased. Therefore, for
reduced multiple reflections, the near field is collected on two separate planes. The central near-
field data is collected on a surface S1 at a suitable distance d1 away from the AUT while the
surface S at shorter distance d gathers the near field from the boundary region (see Fig. 4.24). The
combined valid angle using the entire surface S is given as

θv = tan−1

(
L− a

2d

)
(4.9)

where L is the length of the square shaped measurement plane and ”a” is the antenna aperture. The
omitted central portion of surface S can be projected backward at a larger separation and the near
field is collected on surface S1. The length L1 and the separation d1 of the surface S1 can be
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Figure 4.22: Transformed E- and H-plane cut considering 15% reflection due to probe-AUT
interaction.

computed using the valid angle of the omitted central portion of surface S according to

θv1 = tan−1

(
xa− a

2d

)
= tan−1

(
L1 − a

2d1

)
(4.10)

⇒ L1 =
1

d
(ad1(x− 1) + ad), (4.11)

where ”xa” is the length of the omitted central portion of surface S in relation with the antenna
aperture. Using appropriate parameters according to the given setup one can effectively reduce the
multiple reflection error. Fig. 4.25 shows the transformed pattern using three techniques i.e. single
plane with multiple reflections (15%), mean of the far field using measurements on four planes
and using measurements on two partial planes. For comparison purposes, 5% reflection is assumed
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Figure 4.23: Multiple Reflections due to interaction between probe and AUT.
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Figure 4.24: Proposed setup for reduced probe-AUT interaction consisting of two partial planes.
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for the near field measurements on two partial planes. However, this value varies according to the
choice of the probe, the area of the central omitted portion from the near scan plane, and the sep-
aration between the AUT and the probe. One can choose the parameters according to the required
accuracy in the far field and the given limitations in the measurement setup. As observed, the error
due to the two partial planes method is comparable with the method utilizing measurements on
four planes and is even better at the nulls.
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Figure 4.25: Transformed E-plane pattern cut using single plane, averaged field of four planes,
and the near field collected on two partial planes.

4.3 Combination of Errors

The degradation in the accuracy of the transformed far field due to corrupted near field because
of the combined measurement errors is of most interest. Therefore, most of the above mentioned
errors were combined and incorporated in the obtained near field. The values of the near-field
measurement error chosen are realistic and are as follows:

• Sample Spacing Error: σss = 5λ/3

• Measurement Position Inaccuracy (xyz): σxyz = 200µm/2

• Random RF Phase Inaccuracy: σph = 5◦/3

• RF Amplitude Error:

σamp = 20log10

(
1

3

(
1 +

√
0.5

10(SNR/10)

))
(4.12)

considering 60 dB and 30 dB SNR at 0 dB and -30 dB at normalized pattern level.

• Measurement Surface Irregularity (z): σz = 0.05 m/3
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• Probe Pointing Inaccuracy φEL: σEL = 1.5◦/3

• Probe Pointing Inaccuracy φAZ: σAZ = 1.5◦/3

• Probe Pointing Inaccuracy φPO: σPOL = 1.5◦/3

• Probe Pattern Inaccuracy: in the same manner as RF amplitude error but considering 30 dB
and 0 dB SNR at 0 dB and -30 dB normalized pattern level.

Transformed E- and H-plane pattern cuts using the disturbed near field processed using FI-
AFTA are shown in Figs. 4.26 and 4.27. The reference far field is computed directly at a far field
distance of 10 km while the reference transformation includes NFFF transformation using FIAFTA
without introducing any error. It has been observed that the maximum error level increased from
-75 dB to -60 dB because of the introduction of above mentioned errors. However, still a good
accuracy is observed even with the introduction of subjected errors thus employing the fact that
FIAFTA offers a robust performance provided the magnitude of the measurement errors is under
a certain limit.
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Figure 4.26: Transformed E-plane pattern cut using a corrupted near-field data with combined
measurement errors.

4.4 Short Summary

The complete comparative analysis of planar near-field measurement errors between FIAFTA and
the traditional transformation technique employing 2D FFT revealed the following important facts:

1. The use of the complete Ewald sphere of propagating plane waves helps FIAFTA to perform
better against scan area truncation errors as compared to the 2D FFT based approach. The
same reason facilitates FIAFTA to perform better against RF amplitude inaccuracy as well
in the side lobe region.
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Figure 4.27: Transformed H-plane pattern cut using a corrupted near-field data with combined
measurement errors.

2. FIAFTA can work with irregular grids and provides good results even if the near-field sample
spacing is increased from the standard λ/2 sample spacing. This conclusion assisted us to
determine the sampling criterion for FIAFTA on the arbitrary surfaces and is explained in
Chap. 5.

3. The effect of probe pattern inaccuracy has a negligible effect on the performance of FIAFTA
as far as random error is considered in the probe pattern. The dominant performance comes
from the fact that FIAFTA considers the whole probe pattern for the probe correction which
is in contrast with the traditional technique.

4. The multiple reflection error can be significantly reduced by using FIAFTA if the measure-
ment is performed on two partial planes separated by a suitable distance from the AUT. The
classical technique has the inability to simultaneously handle the data collected on two dif-
ferent planes.

For all other errors FIAFTA shows similar sensitivity when compared with the 2D FFT based
technique. It must be emphasized that the given results are valid only for the planar scanning
geometry and for the given antenna. The error behavior varies according to the type of the antenna
and the scanning surface. Therefore, a general technique which can estimate the error for any
scanning geometry and is valid for all kind of antennas is highly desirable. Also, in the above
analysis, the synthetic approach is used which gave the opportunity to use the ideal far field which
is not available in real life. Estimating uncertainty in the far field without the knowledge of the
ideal far field is rather demanding. These issues are tackled in the next chapter where a general
technique is formulated using FIAFTA to determine the far-field uncertainty with the knowledge
of the extent of error in the near field.
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Chapter 5

Estimation of Far-Field Uncertainties
for Arbitrary Near-Field Errors

In the last chapter, the error behavior of FIAFTA was compared with that of the standard tech-
nique employing 2D FFT for planar near-field measurements. Assuming a similar comparative
response for the cylindrical and spherical measurement errors, a rather demanding analysis for
the estimation of far-field uncertainties due to arbitrary near-field measurement errors is now per-
formed [10]. Fortunately, the formulation of FIAFTA allows to alienate the effect of any arbitrary
near-field error using the erroneous near-field data along with the knowledge of the extent of the
error. Before going into the detail of the error estimation techniques using FIAFTA, we first review
the available methods of error estimation using standard techniques.

5.1 Review of Error Estimation Techniques

A major computer simulation based study for planar near-field measurement errors has been per-
formed by Rodrigue et al. in [66]. The hypothetical near-field is perturbed with position and in-
strumentation errors to determine the far-field behavior. Newell and Crawford estimated the scan
area truncation error by utilizing the measured near-field data in [62]. The first concrete error anal-
ysis for planar near-field antenna measurements has been performed by Yaghjian [61] to determine
the upper bound errors in the far-field parameters. With a rigorous theoretical analysis, he derived
expressions for estimating uncertainties in the far field due to scan area truncation, probe posi-
tioning inaccuracies, instrumentation errors effecting amplitude and phase of the probe output,
as well as the multiple reflection error. However, the analysis is only valid for electrically large
antennas (>10λ) and it is assumed that the size of the scan plane is appreciably larger than the
antenna size. Also, for the probe position inaccuracy, the worst case error is assumed in the di-
rection of observation involving the side lobe region. A similar concept is valid for other errors
as well. Therefore, the resulting error estimates predict a worst case error which becomes unre-
alistically high. Newell performed a more realistic error analysis in [42] making use of a known
spatial dependency of errors. The comprehensive analysis identifies the significant errors and also
estimates the magnitude of all near-field error sources. Error equations are derived afterwards to
determine the relationship between the measurement errors and the far-field results. However, the
analysis is again valid only for planar scanning surfaces and assumes antennas with electrical size
>4λ for the derivation of the error equations. A more rigorous methodology is presented in [67] for
the accuracy qualification of near-field measurement ranges. The methodology involves computer
simulation, component certification, self tests, and comparison tests to determine upper bound far-
field errors due to near-field measurement errors. Afterwards, a near-field error budget is proposed
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for each near-field system component.

A detailed error analysis for spherical near-field measurements is presented in [25]. Mechan-
ical inaccuracies, spherical area truncation, receiver errors, probe parameter error etc. are consid-
ered and the results of computer simulations with known inaccuracies are compared with inaccura-
cies in real measurements. The emphasis of the analysis is mainly on errors occurring in the main
beam and in the first side lobe region. Nevertheless, it is stated that the results are applicable only
for directive spot-beam antennas and may only be considered as guidelines. There are many other
contributions in which authors address the individual error sources and propose their compensa-
tion techniques e.g. regarding probe positioning errors [68], [69], [70] effect of random errors [71],
measurement area reduction compensation [72][73], analysis of system phase errors [74], methods
to reduce leakage errors [75], etc.

A common observation implicit in the available literature is that the analysis is valid only for
a given set of antennas and it assumes a specific scanning geometry. Error equations are not gen-
eralized and may not be applicable to all antennas. Also, the analysis is usually performed with
emphasis on estimating the error in the main beam and in the first side lobe of the transformed far
field. The mean and the maximum error estimation within the valid angle of the transformed far
field needs more rigorous analysis. It is highly desirable to derive an error model which is suitable
for arbitrary measurement grids and is suitable for all kinds of antennas. The error model should
also provide realistic error estimates and should not always consider the worst case scenario.

In this chapter, an extensive error analysis is performed for arbitrary near-field measurements
which is valid for all kinds of antennas. Though we consider FIAFTA in the error analysis, the
error model is equally valid for transformation techniques making use of other equivalent sources
like electric currents. These techniques use a forward operator in the formulation of the trans-
mission equation. The linearity of the forward operator makes it possible to oversee the effect of
near-field errors and to estimate the mean and the maximum error in the transformed far field. The
accuracy of the estimated uncertainty in the far field is dependent on the knowledge of the near-
field measurement inaccuracies. The magnitude of the near-field measurement errors is usually
available for near-field measurement ranges, e.g. the corrected planarity (RMS) of a planar NSI
scanner 300V-6×6 is 0.025 mm [37]. Also, the uncertainty in the received near-field magnitude
via Rohde & Schwarz vector network analyzers R&SrZVL for 6-13.6 GHz frequency range is
<0.2 dB for pattern levels from 0 dB to -50 dB [76]. Similarly, the magnitude of other near-field
measurement inaccuracies can be extracted from the data sheets of the equipment. Once the un-
certainties in near-field parameters are known, they can be used to find the uncertainty in the plane
wave spectrum representing the AUT fields and hence the error in the far field.

5.2 Arbitrary Near-Field Error Analysis

The error behavior of FIAFTA is analyzed by setting up a linear system of equations

U′ = −j
ωµ

4π
‖C‖ · J̃′ (5.1)

using (3.4), where U′ is the vector containing the probe output for all measurement points and J̃′

contains the plane wave coefficients of the AUT. The diagonal translation operator TL(k̂, r̂M), the
weighting factor W (kθ) and the probe correction coefficient P̄(k̂, r̂M) are combined to form the
coupling matrix ‖C‖. The given set of linear equations is solved using the Generalized Minimum
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Residual Solver (GMRES)[51] in a least mean square sense (LMS) [77] as

‖C‖H · U′ = −j
ωµ

4π
‖C‖H · ‖C‖ · J̃′, (5.2)

where ‖C‖H is the complex conjugate transpose of the coupling matrix. The near-field errors are
divided into three major categories based on their influence on the probe output, probe correction
coefficient, and the translation operator. The other two categories include computational errors due
to inappropriate selection of parameters during the transformation and the miscellaneous errors
like aliasing error, scan area truncation, etc.

5.3 Synthetic AUT and Probe Antenna Design

The AUT used in the current analysis is an electrically small antenna (3.8λ) and is designed in
a similar manner as described in section 4.1. The dipoles are arranged in concentric circles and
the magnitude of the source dipoles follows a cosine profile from the inner to the outer circle.
The AUT represents a medium gain horn like antenna operating at 10 GHz with a directivity of
19.34 dB. The antenna aperture is 11.6 cm and the total number of source dipoles used is 162. The
probe used for the given AUT is an open ended wave guide (OEWG) also operating at 10 GHz.

It must be emphasized here that the arbitrary near-field error analysis presented here is equally
valid for practical measurements. The only reason for using the synthetic approach is to compare
the estimated errors with that of the observed errors in reference to the ideal far field and thus
determine the performance of the provided error model. In addition the effect of each near field
error on the transformed far field can be isolated using the synthetic approach.

5.4 Computational Errors

It is conventionally assumed that the errors due to theoretical approximations are negligible, how-
ever, there are various parameters involved in the formulation of FIAFTA which determine the
accuracy of the transformed far-field. The choice of optimum parameters is necessary to assume
negligible errors in the transformed far field. The major factors are discussed here along with their
effect on the transformed results.

5.4.1 Number of Levels and Buffer Boxes

There are few factors like the number of levels in the multilevel approach1 and the number of
buffer boxes [78] which effect the transformed pattern. The number of levels is chosen keeping
in view the size of the AUT and the probe. The optimum choice of the number of levels varies
from case to case e.g. for planar scanning surfaces a cubical box structure with minimum box size
chosen according to the size of the probe and maximum box size chosen according to the minimum
separation between the AUT and the probe gives the optimum result. If the hierarchical structure is
not chosen properly, the multilevel approach might even consume more time instead of improving
the computational time. The effect on the accuracy, however, remains negligible. The buffer boxes
are used to maintain a certain distance between the minimum spheres enclosing the AUT and the
probe. The minimum spheres must not overlap in order for the representation to converge. For a
good accuracy a larger separation between the AUT and the probe is recommended and is achieved
by increasing the number of buffer boxes.

1In the multilevel approach the computational complexity is reduced and the translations are performed on the
coarsest level and are processed through various levels to arrive at the observation point (see [4] for more details.)
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5.4.2 Multipole Order of AUT and TL

The multipole order used to compute the translation operator also effects the accuracy of FI-
AFTA. A semi-empirical formula to compute the multipole order LTL is [50]

LTL = kd/2 + 1.8d2/3
o (kd)1/3, (5.3)

where d = da + dp is the sum of diameters of the smallest spheres enclosing the AUT and the
probe antenna, respectively, while do = log(1/γ) is the factor controlling the desired accuracy of
the expansion. In a similar fashion, the AUT multipole order is approximated as [25]

LAUT ' kda/2 + 10. (5.4)

The translation operator incorporates the effect of both the probe and the AUT and requires larger
spectral content. Therefore, the multipole order of the translation operator is larger than the mul-
tipole order of the AUT. The accuracy of the multipole expansion is controlled by γ. Choosing
a very low value of γ results in insufficient spectral content for accurate representation of the
radiation pattern. On the other hand, a very high value makes the second order Hankel function
h(2)
l (krM) to approach infinity quickly and thus deteriorates the resultant pattern. The maximum

error level observed in the transformed field of the horn antenna operating at 10 GHz against vari-
able multiple order is shown in Fig. 5.1. A similar analysis has been carried out for a variety of
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Figure 5.1: Multipole order vs. max. error level in E- and H-plane of horn antenna.

antennas (electrical size varying from 4λ to 64λ) and an empirically deduced value of ε is found
to be '10−4. The observed maximum error level for the same value of ε for the horn antenna is
≤-90 dB in both E and H plane pattern cuts (see Fig. 5.1 for multipole order = 24).

5.4.3 Residuum of GMRES Solver

As already stated FIAFTA is implemented in an iterative fashion using the GMRES solver. The
optimum selection of the relative residuum

τ =
norm(‖C‖H ‖C‖ J̃′final − ‖C‖

H U′)
norm(‖C‖H U′)

(5.5)
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of the GMRES solver is extremely important both in terms of time and accuracy. Therefore, once
the unknown plane wave coefficients are determined, the near-field error

ε = norm(J̃′final − ‖C‖
H U′) (5.6)

is determined to compare the near field reproduced by plane wave sources with the given near
field. It has been found empirically that when the residual error is <10−3 and when the difference
between the residuum of GMRES solver in two consecutive iterations tends to remain the same,
the error level

Error level = 20 log10(abs (|Eref (θ, φ) | − |Etrans (θ, φ) |)) (5.7)

is usually <-70 dB. A similar criterion is applied for the synthetic horn antenna using a spherical
measurement and at 38th iteration it satisfies the above described condition. Fig. 5.2 shows the
logarithmic decrease in the residuum of the GMRES solver versus number of iterations. As ob-
served, the residuum decreases rapidly in the beginning but after a certain number of iterations the
convergence rate is very slow and stays almost constant.
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Figure 5.2: Residuum vs. no. of iterations of GMRES solver for horn antenna.

The transformed pattern cuts of the horn antenna using 6 hierarchical levels, 3 buffer boxes,
and 10−4 accuracy of the multipole expansion of the translation operator are shown in Fig. 5.3. In
the spherical setup, the AUT is looking in -y direction and the whole spherical surface is consid-
ered. A near-field error ε of less than 10−4 is observed and as can be seen, the difference between
the ideal and the transformed far field using FIAFTA is approaching -90 dB which can be consid-
ered negligible. The average iteration time observed is 2.1 s per iteration.

5.5 Errors Affecting the Probe Output

The errors described in this section mainly involve inaccuracies due to the RF measurement sys-
tem and directly affect the magnitude and phase of the probe output. The errors include receiver
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Figure 5.3: Transformed E- and H- plane pattern cuts of horn antenna operating at 10 GHz.
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amplitude and phase non-linearity, RF leakage and cross talk, random amplitude and phase er-
ror, temperature effects etc. The degree of inaccuracy in the magnitude 4a and the phase 4ψ is
normally provided by the receiver manufacturers. Therefore, the probe output can be written as

Uo(rM) = (a(rM) +4a(rM)) ej(ψ(rM)+4ψ(rM)), (5.8)

where rM is the measurement point. Since the exact error magnitude is unknown, one can replace
4a and4ψ by their respective standard deviations σmag(rM) and σph(rM)

Uo(rM) =
(
a(rM) + σmag(rM)

)
ej(ψ(rM)+σph(rM)) (5.9)

and assuming the Gaussian distribution. The standard deviations σmag and σph can now be defined
according to the corresponding instrumentation error and its order of magnitude. For instance, we
select the random error in the magnitude arising due to the noise addition by the receiver. A unique
and effective way of representing the standard deviation is by considering the SNR of the measured
signal, as defined in [2]. The available absolute noise of the receiver is taken into account and the
empirically derived SNR based standard deviation is given as

3σmag = 20log10

(
1 +

√
0.5

10
SNR
10

)
. (5.10)

An SNR of 60 dB at normalized maximum pattern level (i.e. 0 dB) produces ±0.006 dB inaccu-
racy using (5.10). Similarly, at -30 dB normalized pattern level the inaccuracy is ±0.2 dB. The
SNR value at the maximum pattern level can be varied according the specification of the given RF
measurement setup.

The effect of any other instrumentation error can be introduced in a similar way. Once the
standard deviation of the amplitude and the phase error is available, the error in the probe output
Uerr can be approximated from the available erroneous near-field data. The probe output can then
be represented as Uo = Uef + Uerr, where Uef is the assumed error free near-field data. Using the
linearity of the problem, the probe output

U′o = −j
ωµ

4π
‖C‖ · J̃′o (5.11)

can be modified as
U′ef + U′err = −j

ωµ

4π
‖C‖ ·

(
J̃′ef + J̃′err

)
. (5.12)

The error in the plane wave spectrum J̃′err is computed by solving

U′err = −j
ωµ

4π
‖C‖ · J̃′err (5.13)

and utilizing the amplitude and the phase error distributions of the near field. The normalized error
spectrum J̃′nerr is obtained by utilizing J̃′o as

J̃′nerr =
J̃′err

max(|J̃′o|)
. (5.14)

Since the plane wave coefficients directly represent the far field of the AUT, the estimated maxi-
mum and mean error can be calculated as

Eest
max = max

(
20log

(
|J̃′nerr|

))
, (5.15)
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Eest
mean =

∑(
20log

(
|J̃′nerr|

))
no. of plane wave coefficients

. (5.16)

It is emphasized that the given procedure is equally valid for arbitrary near-field measurements
and only requires the commonly available uncertainty in the measured probe output. The coupling
matrix ‖C‖ takes care of the plane wave translations to the measurement points of the arbitrary
grid. Therefore, the estimated error in the plane wave spectrum for the same inaccuracy in the
probe output can differ for different measurement surfaces.

The use of the synthetic approach allows us to compare the estimated error with that of the
actually observed error in the plane wave spectrum. The reference plane wave spectrum J̃′ref using
ideal near-field data is compared with the erroneous plane wave spectrum J̃′o and the ”reference”
maximum and mean errors are computed as

Eref
max = max

(
20log

(
|J̃′o| − |J̃

′
ref|
))

(5.17)

Eref
mean =

∑(
20log

(
|J̃′o| − |J̃

′
ref|
))

no. of plane wave coefficients
. (5.18)

The directivity

DAUT = 10log

 4π∑
kφ

∑
kθ

J̃′2(kφ, kθ)W (kθ)

 (5.19)

of the AUT is also computed following the same methodology and the estimated error in the direc-
tivity is computed using J̃′nerr. The reference error Dref

err in the directivity is obtained by subtracting
Dref from Do. The normalized plane wave spectra were used to compute the erroneous and the
reference directivities. The W (kθ) factor in (5.19) represents the weighting factor of the Gauss-
Legendre quadrature used for the discrete representation of the spectral integral [46].

To validate the given error model, we superimpose randomly distributed magnitude errors
(given by (5.10)) assuming 50 dB SNR at the normalized maximum pattern level and phase errors
with a standard deviation σph = 1◦ on the unperturbed near-field data of the horn antenna. A dif-
ferent realization but with the same standard deviation is used to compute the error in the plane
wave spectrum. The observed error in the plane wave spectrum using perturbed near-field data
and the estimated error using only the error distribution in the probe output for spherical measure-
ments are then compared. The behavior is shown in Fig. 5.4. The analysis is extended to cylin-
drical and planar near-field measurements as well and the resulting error values are composed
in Table 1. A square shaped planar measurement surface (xz) at y=-0.4 m is used to collect the
near-field data. The length and the width of the planar surface are 1.5 m each which makes a valid
angle of 60◦. Similarly, the radius and the height of the cylindrical surface used is 0.4 m and 1 m,
respectively, with AUT looking in -y direction and makes a valid angle of 48◦ in the E-plane pat-
tern. The good agreement noticed in the estimated and the observed uncertainty in the transformed
pattern clearly shows that if the magnitude of the near-field error is known, one can estimate the
uncertainty in the far field very accurately.

5.6 Errors Affecting the Probe Correction Coefficients

Probe parameter errors include errors affecting the probe correction coefficients P(.,.,.,.) in (4). The
errors include probe pattern inaccuracy, probe polarization ratio, probe gain, and probe alignment
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Figure 5.4: Transformed E- and H-plane pattern cuts of horn antenna using spherical near-field
data contaminated with random magnitude and phase error.

errors. Any such error directly affects the accuracy of the coupling matrix elements

Cφ/θ(kφp, kθq, φm, θn) = TL(k̂, rM)W (kθq)P (kφp, kθq, φm, θn) (5.20)

and in turn deteriorates the transformed radiation pattern. The number of integration points p =
1, ..., P and q = 1, ..., Q in φ- and θ-direction, respectively, are used in the above equation. Us-
ing an analogous procedure as described in the previous section, we split the erroneous probe
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Table 5.1: Far-field uncertainty [dB] in the transformedE- andH-plane pattern cuts due to random
errors for horn antenna operating at 10 GHz.

Grid

Random Errors
E-plane H-plane DAUT

mean err max err mean err max err error
est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical -57 -56 -43 -43 -56 -57 -41 -42 0.01 0.01
Cylindrical -59 -59 -48 -49 -59 -60 -45 -45 0.01 0.01
Planar -69 -66 -48 -44 -70 -71 -49 -52 0.00 0.00

correction coefficient into an error free Pef(.,.,.,.) and a probe error part Perr(.,.,.,.) according to

Cφ/θ(kφp, kθq, φm, θn) = TL(k̂, rM)W (kθq)

[Pef (kφ, kθ, φm, θn) + Perr (kφp, kθq, φm, θn)] .
(5.21)

Accordingly, the coupling matrix elements can also be divided into two parts

Cef(kφp, kθq, φm, θn) + Cerr(kφp, kθq, φm, θn) = TL(k̂, rM)W (kθq)

[Pef (kφ, kθ, φm, θn) + Perr (kφp, kθq, φm, θn)]
(5.22)

and the probe output is modified as

U′o = −j
ωµ

4π
(‖C‖ef + ‖C‖err) · J̃

′
o. (5.23)

A known uncertainty in the probe alignment, probe pattern inaccuracies and other probe errors
allow us to compute ‖C‖err which in combination with the plane wave spectrum J̃′o gives the
uncertainty in the probe output

U′err = −j
ωµ

4π
‖C‖err · J̃

′
o. (5.24)

Once the uncertainty in the probe output is obtained, the error in the plane wave spectrum J̃′err can
be computed using

U′err = −j
ωµ

4π
‖C‖ · J̃′err. (5.25)

The directivity, estimated mean and the maximum error can then be computed using (5.17), (5.18),
and (5.19).

To examine the effectiveness of the given procedure, we introduce randomly generated mag-
nitude error in the probe patterns used for the probe correction of the horn antenna. The erroneous
plane wave spectrum J̃′o is determined using the perturbed probe patterns. The uncertainty in the
J̃′o/p is then approximated by using another randomly generated error distribution2 and following
the above mentioned procedure. The observed and the estimated error in the transformed E and
H-plane cuts for spherical measurements is shown in Fig. 5.5. The transformed pattern shows
stability against magnitude errors in the probe pattern and good agreement in the observed and
the estimated errors is seen. Table 2 summarizes the estimated and the reference error values for
spherical, cylindrical, and the planar scanning surfaces.

2The standard deviation used to generate the error distribution, however, is the same and uses 50 dB SNR at the
normalized maximum pattern level.
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(a) E-plane pattern cut
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Figure 5.5: Transformed E- and H-plane pattern cuts of horn antenna using near-field data con-
taminated with probe pattern errors.

5.7 Errors Affecting the Translation Operator

The positioning system used in near-field measurements can mark the position of the measurement
point with an accuracy of several tens of micrometers. No matter how small the position error is,
it results in the inaccurate translation of the plane wave spectrum and introduces uncertainties in
the transformed pattern. The relative error in the x, y, and z coordinates i.e. δx, δy, and δz of
the probe position can be determined using optical measurements. We make use of the position
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Table 5.2: Far-field uncertainty [dB] in the transformed E- and H-plane pattern cuts due to probe
pattern error for horn antenna operating at 10 GHz.

Grid

Probe Pattern Error
E-plane H-plane DAUT

mean err max err mean err max err error
est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical -100 -100 -71 -71 -105 -99 -98 -86 0.00 0.00
Cylindrical -85 -87 -66 -67 -90 -90 -66 -66 0.00 0.00
Planar -105 -104 -64 -66 -101 -99 -62 -63 0.00 0.00

inaccuracy to determine the uncertainty in the transformed pattern. The erroneous measurement
point

rM + δrM = (x+ δx)ax + (y + δy)ay + (z + δz)az (5.26)

is now a combination of the actual measurement point rM and the inaccuracy δrM. Consequently,
the modified translation operator is rewritten as

TL(k̂, rM + δrM) =− j
k

4π

L∑
l=0

(−j)l (2l + 1)

h
(2)
l (k (rM + δrM)) Pl(k̂ · ˆ(rM + ˆδrM)).

(5.27)

It is worth mentioning here that one cannot use the error in the probe position δrM directly to
compute the error in the translation operator. This would simply mean as if the translations are
performed considering the position error as the actual position. The inaccuracy in the translation
operator

TLerr = TL(k̂, rM +4rM)− TL(k̂, rM) (5.28)

is used to compute the erroneous coupling matrix

Cerr(kφp, kθq, φm, θn) = TLerrW (kθ)P (kφ, kθ, φm, θn). (5.29)

Afterwards, the error in the probe output

U′err = −j
ωµ

4π
‖C‖err · J̃

′
o (5.30)

U′err = −j
ωµ

4π
‖C‖ · J̃′err (5.31)

and the error in the plane wave spectrum is used along with (5.17), (5.18), and (5.19) to compute
the estimated mean and the maximum error.

The behavior of FIAFTA against probe positioning errors is analyzed by adding a randomly
distributed error in the probe coordinates. A realistic standard deviation in the probe coordinates
σx=σy=σz= 50µm is chosen and the resulting error in the transformed pattern is compared with
the estimated mean and maximum error. The transformed E- and H-plane pattern cuts of the horn
antenna with observed and estimated error for spherical measurements are shown in Fig. 5.6. A
slightly high error level is noticed for the spherical transformation in the equator region. It is due
to the fact that equidistant spacing in θ and φ is used to generate the spherical grid for the near-
field acquisition. Such equidistant distribution tends to accumulate more sampling points along
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Figure 5.6: Transformed E- and H- plane pattern cuts using spherical near-field data of horn
antenna incorporating probe position inaccuracy.

the polar region. Any error in the probe position is compensated to some extent due to redundant
information at polar regions with more samples while the equator i.e. the main beam and the back
lobe region directly reflects the error behavior. The analysis is also extended for the cylindrical and
planar scanning surfaces and the error values are summarized in Table 3. Again, a good agreement
in the estimated and the references error values is seen.

The schematic summarizing the analysis for instrumentation, probe parameter, and probe po-
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Table 5.3: Far-field uncertainty [dB] in the transformed E- and H-plane pattern cuts due to probe
position error for horn antenna operating at 10 GHz.

Grid

Probe Position Error
E-plane H-plane DAUT

mean err max err mean err max err err
est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical -61 -54 -43 -42 -64 -64 -43 -43 0.01 0.02
Cylindrical -70 -68 -49 -53 -58 -59 -36 -43 0.00 0.00
Planar -70 -70 -52 -48 -70 -74 -53 -52 0.01 0.00

sitioning errors is shown in Fig. 5.7. By following the mentioned steps one can estimate the maxi-
mum and the mean uncertainty in the transformed far-field pattern.

5.8 Other Errors

The errors falling in this category do not directly effect probe output, probe radiation pattern, or
the translation operator but have an inherent effect in near-field measurements. In the following,
we discuss these errors with their effect on the transformed pattern along with any correction
technique available.

5.8.1 Measurement Area Truncation

Scan area truncation is one of the unavoidable sources of error in planar and cylindrical near-field
measurements. As explained before, the inability to measure the near field on a surface with infi-
nite extent results in limiting the radiation behavior of the AUT to a certain reliable region. The
assumption of zero near field outside the scan area or its periodic repetition introduces errors
within the valid region as well. However, the behavior of FIAFTA against scan area truncation is
found to be more robust [1] as compared to the traditional transformation techniques. The better
performance comes from the fact that, unlike other plane wave based approaches, FIAFTA uses
the entire Ewald sphere for the representation of the plane wave sources. Also, FIAFTA first trans-
forms the measured data to the source plane to determine the coefficients for equivalent sources
from which the far field is ascertained. The use of the complete Ewald sphere and the fact that
FIAFTA involves an intermediate step to determine equivalent plane wave sources, unlike 2D FFT
based approaches, helps in reducing the truncation error [63] and avoids ripples in the far-field
pattern. The ripples can also be eliminated by using a direct non-redundant NFFF transformation
in a cylindrical scanning geometry as proposed by D’Agostino et al. in [100]. The overall effect
of scan area truncation can be assumed negligible if the truncation level at the edges of the scan
plane is ≤-40 dB. Since FIAFTA can handle measurements on arbitrary grids, the valid angle of
the radiation pattern can be significantly increased by utilizing adaptive sampling in planar and
cylindrical measurements [2][6]. In the adaptive sampling, a certain measurement area is scanned
in the beginning with the regular sampling and afterwards an SNR based decision criterion helps
us to determine the key locations from where the near field should be acquired using adaptive
sampling. The measurement burden can be reduced by decreasing the number of sampling points
as much as 47%. More details about the adaptive technique will be explained in Chap. 6.
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Figure 5.7: Schematic of the near-field measurement error analysis.

5.8.2 Sample spacing

The spacing between the sample points on the near-field scanning surface greatly affects the ac-
curacy of the transformed far field. λ/2 sample spacing is commonly adopted along the length of
the cylinder in the standard cylindrical and in the planar measurements due to FFT usage. Sample
spacings coarser than λ/2 result in aliasing errors [42]. However, no such limitation applies to
FIAFTA and the sample spacing is computed in relation with the number of unknowns required to
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solve the linear system of equations. The required spacing in θ and φ is

4φ = π/(α1LAUT) (5.32)

4θ = π/(α2LAUT) (5.33)

where α1 and α2 are the proportionality constants with empirical values3 slightly greater than 1
and LAUT = kda/2 + 10 is the antenna multipole number with da as the diameter of the mini-
mum sphere enclosing the antenna. Once the spacing in θ and φ is determined, the samples are
efficiently distributed on the spherical surface and can then be mapped to planar [8], cylindrical, or
any arbitrary surface. As long as the given sampling criteria are satisfied, negligible errors in the
transformed pattern are observed. The extensive analysis for the determination of sampling criteria
is carried out in Chap. 6.

5.8.3 Multiple reflections

As described in Chap. 4, it is common practice to place the scan plane near the AUT so that the
valid angle can be efficiently increased. Nonetheless, it results in strong interaction between the
AUT and the probe and the resulting multiple reflections deteriorate the measured data especially
for planar measurements. Yaghjian in [61] tried to establish the upper bound due to multiple re-
flection errors which predicts very large errors. Estimating multiple reflection errors is extremely
difficult as it varies according to the choice of the probe and the separation between the AUT and
the probe. However, it can be reduced by acquiring the central near-field data on a plane at a large
distance and at another plane at smaller distance but collecting the near field from the boundary
region and processing the acquired data using FIAFTA. In this way, one can reduce the effect
of multiple reflection errors while keeping a larger valid angle and less time consumption. The
concept is validated in [4] for planar measurements and is equally applicable for cylindrical mea-
surements (see Fig. 5.8). The length L1 of the outer cylinder can be determined in a similar fashion
as described in [4] and is given as

L1 =
1

r
(ar1(x− 1) + ar) (5.34)

where r1 and r are the radius of the outer and the inner cylinder, respectively.

5.8.4 Room scattering

The near-field probe receives direct as well as multipath signal scattered from different objects. The
effect on the measured near field is more pronounced if the measurement is performed in a semi-
anechoic chamber. However, FIAFTA has the ability to alienate the contribution of multipath sig-
nals by attributing the echo contributions to scattering centres with or without the knowledge of
the location of echo sources [79]. The modified linear system of equations is

U ′ = −j ωµ
4π
‖C‖AUT · J̃ − j

ωµ

4π

NSC∑
i=1

‖C‖SCi · J̃SCi, (5.35)

where ‖C‖SCi represent the coupling matrices for the ith scattering center andNSC is the number of
scattering centres employed. Significant improvement has been reported in comparison to the case
when no echo suppression is applied [79]. The NFFF transformations based on the nonredundant
representation of electromagnetic field also allow to cut away the echo contributions outside the
antenna spatial bandwidth, due to the low pass filtering properties of the employed interpolation
functions, as stated in [80].

3The optimum value of α1 and α2 depends on the noise conditions and other systematic errors.
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Figure 5.8: Proposed measurement setup for reduced AUT-probe interaction in cylindrical near-
field measurements.

5.9 Short Summary

It has been shown that the effect of any arbitrary near-field error can be determined by making
use of the erroneous near-field data and the magnitude of the error. The formulation of FIAFTA
allows us to differentiate between the contribution of errors in the transformed far field. The errors
have been broadly divided according to their direct effect on the probe output, probe correction
coefficients, and the translation operator. Apart from that, other errors inherent in the near-field
data have also been discussed.
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Chapter 6

Adaptive Near-Field Data Acquisition

It has been observed during the error analysis of FIAFTA that it can handle a larger sample spac-
ing than λ/2 which is usually applied in planar measurements and in the vertical direction of the
cylindrical measurements. However, there are various concerns in the practical setup which should
be considered. The practical limit on the number of required samples is set by the noise and error
conditions during the measurements. For instance, consider the testing of phased array antennas
with some faulty arrays. In a normal setup, the abrupt changes in the near-field magnitude will go
unnoticed if a coarser sampling is applied in the region containing variations due to faulty arrays.
Therefore, an intelligent scanning is required which tend to decrease measurement burden while
capturing the essential information. Many techniques have been proposed in the past but with
some concerns. In the following, these techniques are reviewed.

As earlier stated, planar near-field antenna measurements are appropriate for medium and high
gain antennas and ideally require measurements on an infinite plane. Reducing the scan plane size,
due to practical limitations, reduces the reliable region of the far-field pattern and also introduces
truncation errors within the reliable region [42]. On the other hand, increasing the scan plane
size would directly result in an increased testing time. Several methods have been proposed in
the recent past to cope with the truncation effects. This would allow a larger reliable region while
keeping the smaller scan size, hence reducing the measurement time. One method [85] uses a set of
equivalent magnetic currents over a fictitious planar surface to characterize the antenna. The near-
field is related to the equivalent magnetic currents using integral equation. This method provides
a larger reliable region as compared to modal expansion methods in which radiated antenna fields
are expanded in terms of planar wave functions [63]. As stated by the author, the method is not
suitable for highly directive antennas [85] dissolving the major benefit of planar near-field (PNF)
measurements. Another method in [72] utilizes a priori information i.e. the size of the antenna
and ”recovers” the lost information content due to the area truncation by employing the sampling
theory. However, the effectiveness of this method depends on the fact that the probe can also move
in a direction perpendicular to the measurement plane which eventually increases measurement
time. The Gerchberg-Papoulis iterative algorithm is applied in [86] to extrapolate the plane wave
spectrum of the field radiated by the antenna to overcome the truncation problem. Back-projections
and re-adjustments are recursively applied to the originally determined plane wave spectrum until
the given convergence criterion is met. This method of projections is prone to so-called traps and
tunnels and may not converge [87]. In another approach in [73], the near-field data is extrapolated
outside the measurement region by employing the optimal sampling interpolation (OSI) expan-
sions instead of cardinal series (CS) ones. The comparison between OSI and CS based approach
is performed afterwards using numerical simulations and significant enlargement of the valid far-
field region is reported. A similar non-redundant sampling representation in an electromagnetic

77
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field based approach is applied in bipolar scanning for extrapolating near-field values outside the
measurement plane in [88]. The external data is estimated by employing a singular value decompo-
sition method and using OSI expansions. A significant decrease in the truncation errors occurring
in near-field far-field transformations is reported for bipolar scanning.

An effective planar spiral scanning technique described in [89] utilizes ellipsoidal modelling
of the source [90] instead of the spherical one. The said technique gives the freedom of considering
measurement planes at distances smaller than one half of the antenna size and therefore increases
the valid angle associated with the size of the scan plane for quasi-planar antennas. The technique
works well as long as the decreased separation does not increase the multiple reflections between
the AUT and the probe. The planar wide-mesh scanning is applied in [92] with sample spacing
greater than half-wavelength when moving away from the center of the scanning region. The
amount of required near-field data is significantly reduced without decreasing the accuracy and
no drastic change is required in an existing plane-rectangular facility. Although the number of
sampling points are reduced, the effect on the acquisition time is not reported.

Recently, an adaptive acquisition technique has been proposed in [93] to reduce the measure-
ment time by rectangular spiral scanning of the probe. It considerably reduces the measurement
time by terminating the measurement process when a specific accuracy is reached dependent on a
decision factor. The decision factor, as explained in [93], is based on either the first side lobe level
pattern difference or the directivity of the given AUT. It is shown that a considerable decrease in
the acquisition time can be achieved if the measurement process is terminated optimally [94]. Nev-
ertheless, if the measurement is terminated at a smaller scan plane size the reliable region is also
reduced accordingly. Also, NFFF transformations after each rectangular ring acquisition make it
difficult to use transformation algorithms employing integral equations which usually require long
computation times.

In this chapter, we present a simple approach to reduce the measurement time in PNF measure-
ments. In contrast to the adaptive acquisition in [93], the valid angle is not reduced and as such no
extra measurement step is required. The measurement system adapts itself during the measurement
process and based on a given decision threshold, it concentrates mainly on the strongly changing
near-field regions while skipping data points from smoothly varying locations. However, the ex-
tent at which the measurement time is reduced depends on the near-field distribution. Best results
have been achieved for antennas with smoothly varying near-fields. The irregular grid obtained as
a result of adaptive scanning is processed using the FIAFTA.

6.1 Near-Field Acquisition

6.1.1 Rectangular Spiral Planar Acquisition

It is recognized that the distribution of the near field on the measurement plane is of prime im-
portance containing more degrees of freedom in suddenly changing regions compared to smoothly
varying locations within the scan plane. Therefore, avoiding data points from smooth areas and
thereby saving measurement time will have a negligible effect on the radiation pattern of the
AUT. To determine sudden variations during the measurement process, a ring shaped data ac-
quisition approach is proposed for planar measurements. The data acquisition starts from the
center of the scan plane and steps in the outward direction away from the center. In the beginning,
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the main beam data is obtained until the mth ring.1 Using the acquired data, the magnitude of the
near-field U (m+2)

ext is extrapolated at the measurement points of the (m+2) ring while skipping the
(m + 1) ring. Afterwards, sampling points of (m + 2) ring are measured providing U (m+2)

meas . The
logarithmic differences between the extrapolated and the measured values

D(m+2) = 20 log10(abs(U
(m+2)
ext − U (m+2)

meas )) (6.1)

determine whether the corresponding points from the (m + 1) ring can be skipped or not. The
list containing sampling points is constantly updated and once the probe finishes traversing the
(m+2) ring, it steps back to the (m+1) ring and measures only the non-skipped points. It is worth
mentioning here that extrapolated near-field values are only used to locate the unexpected change
in the near field magnitude and are not used in the NFFF transformation itself so any standard
extrapolation technique can serve the purpose. We utilize Piecewise Cubic Hermite Interpolation
(pchip) to extrapolate out of range values. Fig. 6.1 shows a measurement plane divided into a
rectangular ring structure.

(m+3)

(m+1) 

 Measured 
 Meas. + Extrap. 

 Extrapolated 

Figure 6.1: Measurement plane dividing sampling points into rectangular rings. Depending on the
difference in the extrapolated and the measured values of (m+2) ring points, selected points have
been measured in (m+1) ring.

6.1.2 Adaptive Cylindrical Scanning Methodology

The standard sampling criterion used for cylindrical measurements includes the radius of the min-
imum cylinder containing the AUT as

4φ ≤ 2π

2N + 1
with N = k

d

2
+ 10, (6.2)

where d is the diameter of the minimum cylinder enclosing the antenna. For cylindrical measure-
ments, λ/2 spacing is used in the vertical direction. A standard cylindrical scanning technique

1It is assumed here for simplicity that the main beam lies in the center of the scan plane. However, if the main beam
does not lie in the center or the exact location of the main beam is not known, data acquisition can be started from any
other part of the scan plane provided that the main beam would lie in that specific portion acquired in the beginning.
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involving movement the probe in the vertical direction while sweeping in φ is chosen with a little
amendment. After acquiring a specific number of vertical lines ((m±1) in our case) from the main
beam direction (mth line), the (m + 3)th line is extrapolated to obtain U (m+3)

ext . Near-field mea-
surement at (m + 3) then provides U (m+3)

meas . The logarithmic difference between the extrapolated
and the measured values

D(m+3) = 20 log10(abs(U
(m+3)
ext − U (m+3)

meas )) (6.3)

now determines whether the corresponding values from the (m + 2)th line can be skipped or
not. Once the probe finishes traversing the (m + 3)th line it steps back to the (m + 2)th and
measures only the required points. Both traditional and proposed scanning techniques are shown
in Fig. 6.2. Blue dots represent extrapolated as well as measured points while the red dots mention
only the measured points. A similar technique can also be applied for cylindrical scanning which
involves sweeping the AUT in φ while stepping in z-direction.

m m
 +

2

m
 -2

measured
measured + extrapolated

Figure 6.2: Traditional vs. proposed cylindrical scanning.

6.1.3 Adaptive Spherical Near-Field Acquisition

Spherical scanning involves movement of the probe in one angular direction (φ or θ) while stepping
in the other one. The spacing in φ and θ are the same and given as

4φ,4θ ≤ 2π

2N + 1
with N = k

d

2
+ 10. (6.4)

Only one case of spherical scanning is described here (i.e. scan in φ and step in θ) and a similar
approach can be extended for the second case. Like cylindrical scanning, a specific number of
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circular rings ((m ± 1) in our case) are acquired in the beginning from the centre. After skipping
an intermediate ring the near field is extrapolated and measured at the (m+ 3)th ring. Eq. (6.3) is
then used to find the logarithmic difference between the two and the (m+2) ring points are skipped
accordingly. Fig. 6.3 shows the geometrical arrangement of the proposed spherical scanning.

m

m - 2

m + 1

measured
measured + extrapolated

x

z

y





Figure 6.3: Proposed spherical scanning.

6.1.4 Decision Criterion

A suitable choice of decision criterion will determine the threshold difference (D(m+2)
th for planar

and D(m+3)
th for spherical and cylindrical near-field acquisition) for skipping data points. Obvi-

ously, one cannot use a fixed value for all the data points as it should vary with the near field
magnitude for reliable results. A unique way is introduced to define the decision criterion based
on signal-to-noise ratio (SNR) of the received signal. An SNR of 60 dB2 (can be varied) is as-
sumed at the maximum pattern level and is decreased down to 30 dB at 30 dB below the maximum
pattern level. The intermediate points can be linearly interpolated and the threshold difference is
empirically computed as

D
(m+2)
th = 20 log10

(
1

3

(
1 +

√
0.5

10
SNR
10

))
. (6.5)

Afterwards, the threshold difference is compared with the computed difference as

D(m+2) −D(m+2)
th =

{
< 0 skip point
≥ 0 include point

(6.6)

2The SNR value is deduced empirically from practical measurements.
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and the corresponding points from ring (m + 1) are skipped according to the given condition.
Fig. 6.4 shows the schematic of the designed algorithm3. The process is recursively repeated until
the boundary of the scan plane is reached when it terminates. The given procedure is equally valid
for square as well as rectangular grids. The only difference occurs in acquiring the initial data
from the center which is in accordance with the shape of the grid.

6.2 Performance Evaluation

6.2.1 Case I: Planar

In order to assess the performance of the proposed procedure, synthetic as well as measured data
is utilized. Electric dipoles are used to model the AUT with proper magnitude profile and geomet-
rical arrangement as explained in [60]. A high gain parabolic reflector (64λ) and a medium gain
horn (4λ) are designed with source dipoles arranged in concentric circles. The near-field distri-
bution of both antennas collected in the xz-plane and placed at y = −1.5 m with half-wavelength
sample spacing is shown in Fig. 6.5. As observed, the near field of the high gain antenna varies
smoothly but the medium gain horn contains fluctuations.

Afterwards, the proposed planar adaptive approach is applied considering 20 dB SNR at max-
imum amplitude in the decision threshold and is decreased down accordingly, as explained in
section 6.1.4. The resulting near-field distribution is shown in Fig. 6.6. Apart from part of the main
beam acquired in the beginning, it can be seen that every alternate near-field ring for the parabolic
reflector is skipped making a full-wavelength sample spacing. Sudden changes in the horn near
field distribution are successfully detected at run time, hence data is acquired accordingly.

For realistic comparisons, we also use measured data of a broad beam and a shaped beam
antenna operating at 4 GHz and 12 GHz, respectively. The proposed procedure is applied to the
measurement data and the adaptive near-field distribution is shown in Fig. 6.7. A significant re-
duction of data points can be seen in the field distribution of the broad beam antenna while less
reduction of data points is observed for the shaped beam antenna.

To get more insight into the effect of changing the SNR in the decision criterion, the SNR is
varied from 80 dB to 20 dB at the highest near-field amplitude. On decreasing the SNR the number
of measurement points also decreased. However, less reduction of measurement points is observed
for the shaped beam antenna due to abrupt changes in the near-field distribution.

Adaptive and regular near-field data of both synthetic and real antennas are processed using FI-
AFTA. The transformed far field of all the AUTs is obtained by considering various SNR values in
the decision threshold. The transformed pattern obtained using regular near-field data is compared
with the transformed pattern using adaptive acquisition and the error level is computed as

Error level = 20 log10(abs((|Ereg (θ, φ) | − |Eadap (θ, φ) |)). (6.7)

Fig. 6.9 shows the transformed E-plane pattern cuts of the broad-beam antenna with lowest 20 dB
SNR at maximum pattern level. As observed, good results have been obtained even with approx.
45 % decrease in the number of measurement points. To clearly show the effect of varying SNR in
the decision threshold, the maximum error in the transformed E- and H-plane pattern cuts versus

3The schematic is shown for planar measurements. For cylindrical and spherical near-field acquisition a similar
concept is applied.
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Figure 6.4: Schematic of the proposed adaptive acquisition techniques’ procedure.

SNR at maximum pattern level is shown in Fig. 6.10. The percentage reduction in the number of
measurement points is also shown on the right side of Fig. 6.10. As expected, the accuracy of the
transformed pattern increases by increasing the SNR value which in turn also increases the num-
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Figure 6.5: Near-field distribution of high gain parabolic reflector (a) and medium gain horn (b)
operating at 40 GHz and 10 GHz, respectively.

ber of measurement points. A similar behavior is seen for all the antennas under test. The lowest
accuracy at lowest SNR i.e. 20 dB is tabulated in Table 1 for bothE- andH-plane pattern cuts. The
SNR can be increased for higher accuracy at the expense of more measurement points.

In a traditional measurement setup, the near field is acquired by linear motion of the probe in
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(a) Adaptive near-field acquisition of high gain parabolic reflector

(b) Adaptive near-field acquisition of medium gain antenna

Figure 6.6: Adaptive near-field acquisition of high gain parabolic reflector (a) and medium gain
horn (b). White rings denote the location of skipped data.

vertical direction while stepping in the horizontal, or vice versa. Assuming the same scan speed
v of the probe in the vertical and the horizontal direction, the total acquisition time ttot can be
expressed as

ttot =
Lt

v
+ Ntmp + ntdelay (6.8)

where Lt is the total length traversed by the probe in the vertical and the horizontal direction, N is
the total number of measurement points, tmp is the acquisition time at one measurement point, n
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(a) Adaptive near field acquisition of the broad beam antenna

(b) Adaptive near field acquisition of the shaped beam antenna

Figure 6.7: Adaptive near field acquisition of the broad beam (a) and the shaped beam antenna (b).
White rings denote the location of skipped data.

is the number of times when the probe changes its direction while stepping, and tdelay represents
the delay due to a single change. The black spots in Fig. 6.11 mark the position of the probe when
it changes its direction.

The ring shaped adaptive data acquisition can be achieved by traversing the probe in a rect-
angular spiral locus while starting from the center of the scan plane and stepping in the outward
direction away from the center. The total acquisition time for the adaptive approach can also be ex-
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(a) E-plane pattern cut (main polarisation)
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(b) E-plane pattern cut (orthogonal polarisation)

Figure 6.8: E-plane transformed far-field pattern cut for the main polarisation (a) and the or-
thogonal polarisation (b) using regular and adaptive processing of measured near-field data of the
broad-beam antenna.

pressed using Eq. (6.8) but with varying Lt and N according to the given decision threshold. The
state-of-the-art RF equipment allows data acquisition by moving the probe in an on-the-fly manner
due to negligible processing time at one single point. Therefore, one can neglect the term (N tmp)
from Eq. (6.8) as it is considerably smaller than the other two factors. The length L traversed
by the probe in the traditional measurement can be calculated as Ltrad = (length of one vertical
column)(no. of vertical columns), whereas for the adaptive measurements it can be calculated by
measuring the length of the rings traversed during the measurement. Since all the rings have dif-
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(a) H-plane pattern cut (main polarisation)
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(b) H-plane pattern cut (orthogonal polarisation)

Figure 6.9: H-plane transformed far-field pattern cut for the main polarisation (a) and the or-
thogonal polarisation (b) using regular and adaptive processing of measured near-field data of the
broad-beam antenna.

ferent lengths, the right knowledge of the skipped ring must be known for the correct length Ladap.
It is worth mentioning here that even if a measurement is required at few points in one ring only,
it is assumed that the whole ring is measured for computing the measurement time.

Table 6.2 summarizes the length traversed by the probe during traditional and adaptive mea-
surements considering 20 dB SNR at maximum pattern level. Due to simplicity, we assume that
the delay arising from changing the probe direction is the same for both cases, as can be seen from
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Figure 6.10: SNR at maximum pattern level versus maximum error level in the transformed E-
and H-plane pattern cuts of the broad beam antenna (left y-axis) along with the reduction in the
number of measurement points (right y-axis).

Table 6.1: Maximum error levels in the valid region of transformed E- and H-plane pattern cuts
with adaptive acquisition of near-field data assuming 20 dB SNR at maximum pattern level.

AUT
Maximum Error Level [dB]

E-plane H-plane
Main-pol. Orth.-pol. Main-pol. Orth.-pol.

Medium gain -67.30 -98.99 -64.77 -105.40
High gain -68.18 -131.70 -67.17 -93.76
Broad-beam -52.15 -75.36 -46.23 -68.42
Shaped-beam -48.54 -65.80 -44.50 -58.80

Fig. 6.11. However, less delay is expected in adaptive measurements if many measurement rings
are skipped.

The efficiency in the measurement time is also shown in Table 6.2. As observed, best results
have been achieved for the high gain antenna with smoothly varying near field distribution while
the worst case with zero efficiency is seen for the shaped beam antenna. The probe has to traverse
the whole scan plane for the shaped beam antenna as not a single ring can be skipped according to
the given decision function. Nevertheless, no extra time is needed as compared to the traditional
technique and since the whole scan plane is traversed one can utilize the whole near field informa-
tion for the maximum accuracy.

The sample spacing in the planar near-field acquisition can be further increased by using the
adaptive approach [11]. If the number of skipped points in the (m + 1) ring are greater than a
defined threshold, then in the next iteration two consecutive rings i.e. (m + 3) and (m + 4) can



90 CHAPTER 6. ADAPTIVE NEAR-FIELD DATA ACQUISITION

Figure 6.11: Traditional versus adaptive scanning technique (worst case). Black spots mark the
position where the probe has to stop and change direction, thus causing an additional delay.

Table 6.2: Comparison between traditional and adaptive measurement in terms of number of mea-
surement points and length L traversed by the probe assuming 20 dB SNR at maximum pattern
level.

AUT
Meas. Points Length Lt [m]

Meas. Time
Tradi. Adap. Tradi. Adap. Efficiency

Medium gain 70756 36847 1068 655.45 38.63 %
High gain 34969 18329 131.6 69.94 46.85 %
Broad-beam 6889 3772 251 154.88 38.29 %
Shaped-beam 23345 16596 290 290 0.00 %

be skipped and so on, which is in contrast to the previous case where alternate measurement rings
were skipped. Therefore, a huge decrease in the number of data points is possible. This process
continues until the boundary of the scan plane is reached. Fig. 6.12 shows a measurement plane
divided into a rectangular ring structure with adaptive acquisition.

The adaptive near-field distribution of a medium gain antenna is shown in Fig. 6.13. It can be
seen that the abrupt changes in the near field are determined successfully and the adaptive sample
spacing increased from λ/2 to 2λ where it stays constant. A regular (4 m × 4 m) grid with λ/2
sample spacing at 10 GHz requires 70 756 data points. The number of measurement points have
been reduced to only 20 722 marking 70.7% reduction in the number of measurement points. The
previously reported reduction in the sampling points by skipping alternate rings was 47.9%. The
transformed pattern cuts are shown in Fig. 6.14 clearly showing negligible change in the pattern.

6.2.2 Case II: Cylindrical

The assessment of adaptive cylindrical sampling is performed by designing an elongated antenna
(15λ) operating at 3 GHz using electric dipoles. The near field is collected with the antenna look-
ing in −y direction. The height and the radius of the measurement cylinder are 4 m and 1.5 m,
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Figure 6.12: Measurement plane dividing sampling points into rectangular rings skipped adap-
tively.

respectively. Fig. 6.15 and Fig. 6.16 show the traditional and the adaptive acquisition of the near
field of the elongated antenna, respectively. The SNR at the maximum pattern level is 30 dB and
is decreased down to lower values at lower pattern level, as explained earlier. It is evident from
Fig. 6.16 that almost every alternate column of the cylinder can be skipped for the elongated an-
tenna. The number of measurement points is reduced from 9 801 to 5 117 marking 48% decrease
in the number of measurement points. Since almost every alternate column is skipped, the mea-
surement time is also reduced to nearly 48%.

Transformed E- and H-plane cuts of the elongated antenna considering 30 dB SNR at max-
imum pattern level are shown in Fig. 6.17 for cylindrical measurements. Further increase in the
accuracy can be obtained by increasing the SNR at maximum pattern level as evident from the
valid angle region (non-shaded) in Fig. 6.18.

6.2.3 Case III: Spherical

For the spherical case, the near field of a fan beam antenna i.e. a Kathrein base station antenna
of type 742445 (8.3λ× 1.3λ) operating at 1.92 GHz using an NSI near-field scanner is used. The
adaptively acquired near-field distribution with strong variations on the spherical grid for the fan
beam antenna is shown in Fig. 6.19. The strong variations in the near field have been detected
successfully at the cost of less data reduction. Fig. 6.20 and 6.21 show the transformed E- and H-
plane pattern cut of the fan beam antenna. As can be seen, good accuracy is achieved with much
reduction in the number of measurement points.
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Figure 6.13: Near-field distribution of horn like antenna [dB] using adaptive sampling grid. White
rings show the position of skipped measurements points.

It must be mentioned here that the explained near-field acquisition techniques are empirically
derived and as such cannot assure a certain accuracy. The SNR value used to define the decision
threshold is directly related with the number of sampling points to be acquired during the near
field scanning and therefore also controls the transformed far-field accuracy. Nevertheless, the
proposed technique can be applied to the cases when a rough estimation of radiation pattern is
required using minimum acquired near-field samples.



6.2. PERFORMANCE EVALUATION 93

220 240 260 280 300 320

−80

−60

−40

−20

0

Theta [°]

FF
 [

dB
] Reg spac.

Adap. spac.
Error

(a) E-plane pattern cut

220 240 260 280 300 320
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Phi [°]

FF
 [

dB
]

Reg spac.
Adap. spac.
Error
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Figure 6.14: Transformed E- and H-plane pattern cuts for the medium gain antenna considering
30 dB SNR at maximum pattern level.
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Figure 6.15: Cylindrical near-field distribution [dB] of elongated antenna at 3 GHz.

Figure 6.16: Adaptive cylindrical near-field acquisition [dB] of elongated antenna (3 GHz) consid-
ering 30 dB SNR at maximum pattern level (white spaces show the location of skipped near-field
data).
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(b) H-plane pattern cut

Figure 6.17: Transformed E- and H-plane pattern cuts for the elongated antenna considering
30 dB SNR at maximum pattern level.
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(a) E-plane pattern cut
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(b) H-plane pattern cut

Figure 6.18: Transformed E- and H-plane pattern cuts for the elongated antenna considering
65 dB SNR at maximum pattern level.
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Figure 6.19: Adaptive spherical near-field acquisition [dB] considering 50 dB SNR at maximum
pattern level for fan beam antenna at 1.92 GHz (white spaces show the location of skipped near-
field data).
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(b) H-plane pattern cut

Figure 6.20: Transformed E- and H-plane main polarisation pattern cuts of fan beam antenna
considering 50 dB SNR at maximum pattern level.
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Figure 6.21: Transformed E- and H-plane orthogonal polarisation pattern cuts of fan beam an-
tenna considering 50 dB SNR at maximum pattern level.



100 CHAPTER 6. ADAPTIVE NEAR-FIELD DATA ACQUISITION



Chapter 7

Nonredundant Sampling
Representation for Arbitrary
Measurement Grids

As stated in the Chap. 6, the adaptive near-field acquisition technique is empirically derived and
cannot assure maximum accuracy. Therefore, the exact sampling criterion still needs to be deter-
mined. Since FIAFTA can handle measurements on arbitrary grids, the data point distribution on
the arbitrary scanning surfaces should be determined. In this chapter, these basic concerns are ad-
dressed and the sample spacing criterion is derived in relation with the number of unknown plane
wave coefficients. Before moving forward, the summary of the literature already available on the
nonredundant sampling for the arbitrary measurements grids is described.

A valuable contribution regarding nonredundant sampling representation on arbitrary surfaces
with theoretical analysis has been performed by Bucci et al. in [96]. It has been shown that the
electromagnetic (EM) field radiated by bounded sources can be accurately represented over ar-
bitrary surfaces with a finite number of samples even with unbounded observation domain. The
approach makes use of spatially band-limited functions to approximate the EM field provided
the phase propagation factor is extracted from the field expression and proper parametrization is
used to analytically define the surface [97]. It is also observed in [97] that the number of samples
required for a given analytical surface is of the same order as needed for the spherical wave ex-
pansion. The given results have been utilized in various contributions, e.g. [92], [98], [99], [73],
and many others outline the reduction in the number of required near-field samples as compared
to classical transformation techniques. The key factor involved in the utilization of nonredundant
sampling for evaluation of the far field is the use of optimal sampling interpolation (OSI) to deter-
mine the intermediate samples. The near-field distribution can then be used by fast transformation
algorithms. A recently proposed direct transformation [100] utilizes the acquired nonredundant
near-field data directly for cylindrical geometries. A far-field OSI expansion is proposed from an
efficiency point of view. The described far-field OSI expansion reconstructs the antenna pattern
from a limited number of far-field samples and is only suitable for cylindrical surfaces [101].

7.1 Nonredundant Sampling Representation

To reconstruct the radiation pattern of the AUT using equivalent plane wave sources, an efficient
sampling representation must be defined. Obviously one cannot use an infinite number of samples
so a certain sample spacing criterion providing sufficient accuracy in the reconstructed pattern is

101
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desirable. In this section, a nonredundant sampling representation is determined which is equally
valid for arbitrary surfaces. As explained in Chap. 3, the spectral integral over the Ewald sphere
is evaluated by numerical quadrature with discrete representation using (3.4). A linear system of
equations can then be developed for many measurement points as

U′ = −j
ωµ

4π
‖C‖ · J̃′, (7.1)

where U′ is the measured voltage vector containing all measurement points with both orthogonal
polarizations and J̃′ contains the plane wave samples of the AUT. The diagonal translation oper-
ator TL(k̂, r̂M), weighting factor W (kθ), and probe correction coefficient P̄(k̂, r̂M) are combined
to form the coupling matrix ‖C‖. It is worth mentioning here that in the multilevel approach, the
coupling matrix ‖C‖ is no more explicitly computed. The set of plane waves J̃′ (forward operator)
is used to compute U′ in an on-the-fly manner. The normal system of equations is solved in the
solution stage of the GMRES solver. Therefore, the adjoint operator is applied to the result of the
forward operator. The adjoint operator starts from the probe signal at a measurement point and
superimposes the contributions of each measurement point to the overall spectrum of the AUT
using aggregation and interpolation as adjoint operations to disaggregation and anterpolation in
the forward operator.

The number of unknowns i.e. plane wave coefficients in φ and θ direction are directly influ-
enced by the size of the antenna given by the AUT multipole order LAUT according to

P = 2α1LAUT, Q = α2LAUT (7.2)

where

• P = no. of plane wave coefficients (φ-direction),

• Q = no. of plane wave coefficients (θ-direction),

• α1 = proportionality constant relating P and LAUT,

• α2 = proportionality constant relating Q and LAUT.

The number of plane wave coefficients in φ are twice the number of coefficients in θ to represent
the equivalent plane wave sources on the complete sphere. The AUT multipole order is commonly
approximated as

LAUT = kd/2 + 10 (7.3)

with d as the diameter of the minimum sphere enclosing the AUT [25]. The number of sam-
ples used to solve the given system of equations should ideally at least equal the number of un-
knowns. Accordingly, the number of samples1 in φ and θ is

M = χ1P = 2χ1α1LAUT (7.4)

N = χ2Q = χ2α2LAUT + 1 (7.5)

where

• M = no. of near-field samples (φ-direction),

1It should be mentioned that the total number of measurement points is 2MN where 2 represents two orthogonal
polarizations for each measurement point. The same applies for the total number of unknowns.
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• N = no. of near-field samples (θ-direction),2

• χ1 = scaling factor for P ,

• χ2 = scaling factor for Q.

We choose χ1 = χ2 = 1 to fulfill the minimum requirement for the number of unknowns. For
practical measurements,N samples in θ are taken in the 0 ≤ θ ≤ π interval whileM samples over
the complete 2π interval i.e. 0 ≤ φ < 2π are used. Consequently, the uniform sample spacing in
φ and θ using (7.4) and (7.5), respectively, is given as

4φ = 2π/M ⇒4φ = π/(α1LAUT) (7.6)

4θ = π/(N − 1) ⇒,4θ = π/(α2LAUT). (7.7)

The empirical values of the proportionality constants α1 and α2 vary from 1 to slightly higher val-
ues depending on the noise conditions of the given measurement environment. It is worth noticing
here that the number of samples required is of the same order as determined in [96] by considering
equivalent sources on a minimum sphere. Since the plane wave based near-field transformation is
equally valid for any scanning geometry, we can utilize the sampling representation on the sphere
based on the derived sampling criterion and project the data points to any arbitrary surface. It
should be mentioned that the given sampling criterion is derived by considering the equivalent
sources on the minimum sphere enclosing the AUT. Further decrease in the number of samples
may be still possible if volumetric redundancy of the convex domain enclosing the sources is also
considered [96]. The least number of samples can be obtained if an arbitrary convex domain with
some rotational symmetry according to the shape of the AUT is used along with the measurement
surface with the same symmetry [90]. It is also worth mentioning that the equidistant angular spac-
ing in θ and φ produces closely spaced samples at the poles and relatively larger sample spacing on
the equator. An alternative sampling strategy for thinning the number of closely spaced samples at
the poles could also be used, as described in [25]. Other uniform distributions may include equal
area based partitions on the spherical surface [102]. We employ the equidistant angular spacing,
but the equator region is utilized to map the samples from spherical to arbitrary surfaces for rigor-
ous analysis. In the following, the mapping of these sampling points over planar, cylindrical, and
an arbitrary surface is described with reference to the valid angle requirements.

The boundaries of the scan plane in the PNF measurement are defined by selecting a valid
angle for the reliable region of interest. The simple relation (Eq. 4.9) containing separation be-
tween the AUT and the measurement plane dp, radius of minimum sphere enclosing AUT a, and
the length of the square shaped scan surface L has been already validated using theoretical and
measurement results [61]. Similarly, area truncation can be carried out on a spherical surface with
the corresponding valid region given as [25]

θvs = θt − sin−1

(
a

ds

)
, (7.8)

where θt is the angle until which the near field shall be sampled3 and ds is the radius of the spherical
surface as shown in Fig. 7.1 (a). Combining and rearranging (4.4) and (7.8) gives the length of the
planar scan plane

L = 2dp tan

(
θt − sin−1

(
a

ds

))
+ a (7.9)

2To include samples at the poles, a constant value ”1” is added in the number of points in θ-direction
3The extent of sampling in φ can be computed in the same way. We assume the same valid angle for φ as it is

assumed for θ.
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for acquiring the near field in the region of interest. The samples obtained by dividing θt by 4θ
are mapped to the planar surface as shown in Fig. 7.1 (b).
Unlike the traditional technique employing 2D FFT for planar measurements, the sample spac-
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Figure 7.1: Region of validity for spherical truncation (a) and mapping of sample points from
spherical to planar surface (b).

ing increases gradually as the probe moves in the outward direction from the center. Also, the
λ/2 spacing as utilized in the classical approach is independent from the size and the separation
between the AUT and the measurement plane which increases the measurement burden greatly
for large antennas. The measurement grid obtained as a result of efficient sampling is shown in
Fig. 7.2.

In a similar fashion, the number of measurement points can be dramatically reduced as com-
pared to the traditional technique by projecting the samples over a cylindrical scanning surface
[12]. The separation between each φ ring is increased gradually from the center as shown in
Fig. 7.3. The height of the cylinder is calculated according to the valid region of interest while
the angular spacing between samples in each φ ring remains the same.

The spacing between two consecutive samples in irregular grids is computed separately due to
varying distance between the AUT and the measurement surface. The trigonometric relations

a23 =
√
d2

2 + d2
3 − 2d2d3 cos(4θ) (7.10)

a12 =
√
d2

1 + d2
2 − 2d1d2 cos(4φ) (7.11)

are used for this purpose where dp with p = 1, 2, 3, 4 are the variable separations of the irregular
surface S from the AUT (see Fig. 7.4). In this way, one can either compute the projected distri-
bution of angular spacing over any arbitrary irregular surface or verify the minimum sampling
requirement if the measurement grid is already available.
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Figure 7.2: Traditional vs. projected nonredundant sampling on a planar grid. The sampling points
shown on the nonredundant sampling grid are only for representation purposes and are not to the
scale.
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Figure 7.3: Data points projection from spherical to cylindrical measurement surface.

7.2 Planar Near-Field Measurements

7.2.1 Case I : Shaped Beam Reflector

The performance of the proposed sampling representation is assessed using both synthetic and
real measurement data. The near field of a shaped beam antenna (as seen in Fig. 7.5) operating at
12 GHz is collected on a regular planar surface xz of size 1.8 m ∗ 2 m with λ/2 sample spacing in
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Figure 7.4: Nonredundant sampling representation over an arbitrary irregular surface.

both x- and z-directions, as shown in Fig. 7.6. The total number of measurement points consid-
ering λ/2 sample spacing equals 145 ∗ 161. The antenna is looking in -y-direction and is placed
at dp = 1.1 m. The length and width of the shaped reflector is 0.5 m and 0.8 m, respectively. The
translation of the plane wave spectra was processed using 4 hierarchical levels using the multi-
level approach. Afterwards, the nonredundant sampling distribution is generated on the same scan
surface in a way that it collects the near field in three increasing steps in the spacing from λ/2 to
3λ/2 in both x and z, thereby greatly reducing the number of measurement points from 23 345
to only 7 921. The average iteration time with the code implemented in C and using an Intel(R)
Core(TM) i7 CPU 920 @2.69 GHz processor was 58 s and 37 s using regular and nonredundant
sampling, respectively. A total number of 110 iterations was employed.

Near-field data collected using regular and nonredundant sampling are processed using FI-
AFTA. The transformed pattern obtained using regular near-field data is compared with the pat-
tern using the reduced data set. Fig. 7.7 and Fig. 7.8 show the transformed E-plane and H-plane
pattern cuts for the shaped-beam antenna along with the error level.

As observed, good results have been obtained even with 66% decrease in the number of mea-
surement points. In a standard planar measurement setup, the near field is acquired by linear
motion of the probe in vertical direction while stepping in the horizontal, or vice versa. Assum-
ing the same measurement setup for the given example, the number of columns the probe has
to traverse reduces from 161 to 97 and thus saving 40% of the measurement time. It should be
mentioned here that only the number of columns is used to compute the reduction in measurement
time since the probe traverses the columns in an on-the-fly manner. Therefore, any reduction in
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Figure 7.5: Shaped-beam antenna mounted in an anechoic chamber.

Figure 7.6: Near-field distribution [dB] of shaped-beam antenna on a planar surface.

the number of measurement points within the columns does not help in reducing the measurement
time unless some intelligent scanning technique is adopted.

7.2.2 Case II : Medium Gain Antenna

In the second test case, we chose a medium gain antenna to confirm the proposed sampling cri-
terion. The near field of the antenna operating at 11.95 GHz is collected on a planar surface xz
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(a) E-plane pattern cut
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(b) H-plane pattern cut

Figure 7.7: TransformedE- andH-plane pattern cuts for the main polarisation of the shaped-beam
antenna using a planar surface.

placed at dp = 1.8288 m. The length of the square shaped planar surface is 2.26 m. The antenna
is looking in −y direction and the near field distribution using the regular λ/2 sampling and the
nonredundant sampling is shown in Fig. 7.9. The samples are mapped from a spherical to the pla-
nar grid in a same way as before i.e. the sample spacing increases in three steps from λ/2 to 3λ/2
causing remarkable reduction in the number of measurement points as evident from the white
spaces in Fig. 7.9 (b). The white spaces represent the skipped samples in reference to the regular
λ/2 spacing. The AUT multipole order is 170 and along with 4 hierarchical levels in the multilevel
setup, the average iteration time reduced from 124 s to 77 s using regular λ/2 and nonredundant
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(a) E-plane pattern cut
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(b) H-plane pattern cut

Figure 7.8: TransformedE- andH-plane pattern cuts for the orthogonal polarisation of the shaped-
beam antenna using a planar scan surface.

sampling, respectively.

The near-field data collected using both regular and nonredundant sampling is processed by
FIAFTA. Fig. 7.10 and Fig. 7.11 show the transformed E- and H-plane main and orthogonal po-
larisation pattern cuts along with the error. The error level is computed by taking the logarithm of
the difference between the normalized pattern magnitude using regular sampling and normalized
pattern magnitude using nonredundant sampling. As obvious from the results, good agreement in
the valid region of both patterns is observed even with 62% decrease in the number of sampling
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Figure 7.9: Near-field distribution [dB] of medium gain antenna on a planar surface with regular
λ/2 (a) and the proposed nonredundant sampling (b).

points. Subsequently, the reduction in the measurement time is 40% as discussed in the previous
example.

7.3 Cylindrical Near-Field Measurement

For the cylindrical case, a base station type antenna (11λ) with broad and narrow beam in φ- and
θ-direction, respectively, is modeled using the synthetic modelling technique. The near field of
the base station type antenna operating at 3 GHz is collected on a cylindrical surface at a radial
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(a) E-plane pattern cut
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(b) H-plane pattern cut

Figure 7.10: Transformed E- and H-plane pattern cuts for the main polarisation of the medium
gain antenna.

distance of 1.5 m. The height of the cylindrical surface is 4 m and both regular and nonredundant
sampling representations are used for the computation of the near field. The AUT multipole order
is 44 and the average iteration time consumed for a total of 69 iterations is 17 s and 9 s for regular
and nonredundant sampling, respectively. The same processor as described in the planar mea-
surement is used with the translation operator recursively processed at 3 hierarchical levels. The
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(a) E-plane pattern cut
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(b) H-plane pattern cut

Figure 7.11: Transformed E- and H-plane pattern cuts for the orthogonal polarisation of the
medium gain antenna.

transformed pattern cuts are compared with the reference, as shown in Fig. 7.12 and Fig. 7.13. 55%
measurement data reduction along with good accuracy in the valid region have been achieved. The
number of φ-rings to be traversed by the probe is reduced from 81 to 37 and therefore also results
in 55% reduction in the measurement time consumption.
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Figure 7.12: TransformedE- andH-plane pattern cuts for the main polarisation of the base station
type antenna using a cylindrical scanning surface.

7.4 Measurements on Arbitrary Grids

In order to prove the effectiveness of the sampling representation over arbitrary surfaces, a semi-
spherical surface is created by varying the radial distance of each measurement point from the
AUT. The extent of the sampling region (θt, φt) is computed using (7.9) to fulfill a 10◦ valid
angle. The variation in the radius rab (θ, φ) of each measurement point from the AUT is realized
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Figure 7.13: Transformed E- and H-plane pattern cuts for the orthogonal polarisation of the base
station type antenna using a cylindrical scanning surface.

as

rab (θ, φ) = rsph + rand
(
f
(
rsph;µ, σ2

))
(7.12)

where rsph is the radius of the perfect spherical surface and f
(
rsph;µ, σ2

)
is the Gaussian function

used to superimpose a deviation in the mean radial distance. We use σ = 0.2 m as a standard de-
viation to a mean radial distance µ of 1 m. The ”rand” function randomly selects a value from the
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Gaussian distribution with given parameters4. The AUT used is a synthetically modeled parabolic
reflector (64λ) operating at 40 GHz. The near-field distribution over a perfectly planar surface
(with λ/2 spacing) and over the semi-spherical surface with nonredundant sampling is shown in
Fig. 7.14.

The equivalent planar representation for the arbitrary surface is shown over a valid angle of 10◦

and the variation in the magnitude profile of the arbitrary surface directly reflects the variation in
the radial distance from the AUT. The sampling criterion is fulfilled in the same way as explained
in section 3. The transformed E- and H-plane cuts are shown in Fig. 7.15 and Fig. 7.16. The
best efficiency in the number of measurement points is observed as compared to the previous
scenarios. To cover the same valid angle on a planar surface placed at 1 m using the traditional
technique requires 51 000 data points while nonredundant sampling reduced it to only 8 649 data
points and thus achieving a reduction of 83%. For this case, the translation operator was recursively
processed through 5 different levels. A good accuracy was achieved after 12 iterations and can be
further improved by employing more interpolation points and choosing an even lower GMRES
residuum. The average iteration time for processing the irregular distribution of measurement
points was 238 s.

4Though it is difficult to realize the described measurement surface practically, we consider it as a hard test case.
Thereby, showing that even if the sampling representation is applied to such a corrupted surface the transformation
results are not affected.
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(a)

(b)

Figure 7.14: Near field [dB] collected on a regular planar surface (a) and over an arbitrary surface
(b).
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Figure 7.15: Transformed E- and H-plane pattern cuts for the main polarisation of high gain
parabolic reflector using an arbitrary scan surface.
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Figure 7.16: TransformedE- andH-plane pattern cuts for the orthogonal polarisation of high gain
parabolic reflector using an arbitrary scan surface.



Chapter 8

Summary and Future Work

A rigorous error analysis for near-field antenna measurements was performed for a recently de-
veloped multilevel plane wave based near-field far-field (NFFF) transformation algorithm also
known as Fast Irregular Antenna Field Transformation Algorithm (FIAFTA). FIAFTA makes use
of equivalent plane wave sources to reconstruct the antenna radiation pattern. It applies the Fast
Multipole Method (FMM) for translating the plane waves from a complete Ewald sphere to the
measurement points. The computational complexity is further reduced by grouping the measure-
ment points in an hierarchical structure by utilizing a multilevel FMM (MLFMM) like procedure.
The major advantages of FIAFTA include measurements on arbitrary grids, since the plane wave
translations can be carried out to arbitrary measurement points, and full probe correction.

The performance of FIAFTA was evaluated in comparison with the traditional planar near-
field transformation technique making use of two dimensional Fast Fourier Transform (2D FFT).
The 2D FFT based NFFF approach is efficient but limited to regular grids like planar, cylindrical,
and spherical. Also, the computational complexity worsens when full probe correction is required
in spherical transformation. During the error analysis, it was found that FIAFTA offers robust
performance against planar near-field measurement errors like scan area truncation, probe pattern
inaccuracies, fluctuations in data point spacing, RF amplitude inaccuracy, etc. The multiple re-
flection error could also be reduced by taking measurements on two partial planes rather than on
four planes and using traditional transformation techniques as previously adopted. A huge reduc-
tion in the measurement time could thus be obtained while maintaining the accuracy level. The
dominant performance of FIAFTA mainly comes from the fact that it utilizes the complete Ewald
sphere of propagating plane waves and, unlike the 2D FFT based approach, it does not assume
zero field outside the scan plane or a periodic repetition. Also, in the probe correction the whole
probe pattern is used even for computing the near field at a single point. This is in contrast to the
traditional transformation technique employing 2D FFT which reinforces the error by considering
the inaccuracy in a specific direction.

The error analysis was, however, based on a single antenna and assumed only planar near-field
measurements. Therefore, a rather demanding analysis was carried out by proper formulation of
transmission equations so that the uncertainty in the far-field pattern and in the directivity of the
antenna can be determined, most importantly, without the knowledge of the ideal far field. The
linearity of the forward operator, used in the formulation of the transmission equation of FIAFTA,
allowed to oversee the effect of near-field errors and to estimate the mean and the maximum error
in the transformed far field. The analysis considered all kinds of antennas using arbitrary scanning
grids and it also took computational errors into account. It was found that the accuracy of the
estimated uncertainty is dependent on the knowledge of the near-field measurement inaccuracy,
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which is usually available. The proposed model was applied to several antennas and the computed
uncertainties were summarized in tabular form. The estimated far-field uncertainties showed good
agreement with the reference far-field errors. In this way, by providing the input near-field data
along with the magnitude of measurement inaccuracies, FIAFTA not only determines the radiation
pattern but also provides the uncertainty in the pattern, directivity, etc. at the same time. The only
a priori information required is the size of the antenna to determine the multipole order. Apart
form the error analysis, a method to compute optimum parameters is described. Parameters like
multilevel hierarchy, number of buffer boxes, residuum of GMRES solver, etc. are discussed based
on the gained experience.

The second major part of the thesis dealt with the efficient sampling techniques to be utilized
in the near-field measurements. Intelligent scanning techniques have been proposed for mea-
surements on planar, cylindrical, and spherical scanning grids. The fundamental concept used in
the scanning was to focus more on the regions with strong near-field variations as compared to
smoothly varying regions. In this way, not only one can determine the antenna behavior but can
also try to decrease the measurement burden to a great extent. An empirically derived decision
criterion based on signal-to-noise ratio of the measured value was utilized to determine the abrupt
changes in the near field. The proposed planar scanning involved moving the probe in rectangular
spiral locus starting from the center and acquiring near-field data in the form of rings. Based on
the near-field distribution, the alternate rings were measured and compared with the extrapolated
values. The difference between the two then determined whether the skipped ring should be mea-
sured or not. Similarly, for cylindrical scanning, measurements in the form of vertical columns
were proposed and based on near-field distribution specific columns were skipped. The analogy
was then extended to the spherical scanning technique. Several examples using synthetic and
measurement data were presented taking into account the reduction in the number of samples, the
measurement time efficiency, and the obtained transformed far-field accuracy. The results showed
promising behavior in relation to FIAFTA. The proposed procedure, however, cannot assure a cer-
tain accuracy in the transformed far field as it is empirically derived. Nevertheless, it can be used
to roughly estimate the radiation pattern of the antenna by acquiring near field on a lower number
of sampling points with minimum effort.

The exact derivation of the suitable sample spacing criterion and the representation of sampling
points on arbitrary scanning grids was discussed afterwards. Adaptive acquisition of near-field
measurement data along with innovative scanning techniques were also proposed. The sampling
criterion was found depending on the electrical size of the antenna under test (AUT) and on the
separation between the AUT and the measurement surface. The minimum number of samples
required were directly linked with the number of unknowns in the linear system of equations de-
rived considering spherical expansion of radiated AUT fields. The minimum number of samples
were distributed on a sphere with uniform θ and φ spacing. These samples were then mapped to
the planar and cylindrical scanning grids using the equator region of the sphere. The projections
can also be carried out for any arbitrary grids. It was found that the sampling points were mainly
concentrated in the central region of the scan plane and the data point spacing increased gradually
in the outer region. A similar observation is valid for the cylindrical surfaces as well in which
the sample spacing gradually increases from the center to the outer surface along the length of
the cylinder. The sampling distribution was assessed using both synthetic and measured data and
showed dramatic decrease in the number of data points and the measurement time.

The measured data utilized for the evaluation of the derived sampling criterion used sampling
steps of λ/2, λ, and 3λ/2 since the near field is traditionally acquired on a λ/2 grid. Therefore,
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the maximum reduction in the sampling burden achieved was limited until 62%. A special mea-
surement setup acquiring near-field data exactly at the projection points can determine the full
strength of the proposed criterion. The near-field scanner should be programmed in a way that it
traverses the probe in a rectangular spiral locus for planar measurements and skip the intermediate
rings based on the decision criterion described in the thesis. For cylindrical and spherical mea-
surements, a similar concept can be adapted which only measures the necessary points.
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