
Trajectory Classification in n Dimensions using Subspace Projection

Thomas Nierhoff - Sandra Hirche

Abstract— This paper presents a novel descriptor for tra-
jectory classification in n dimensions, which is invariant with
respect to scaling and rigid transformation. Using a hierarchical
approach, the descriptor is able to capture both local and
global features of the trajectory. The algorithm iteratively splits
up every trajectory into smaller trajectory segments resulting
in a binary tree. Inspired by the Frenet-Serret formulas, a
projection onto a lower dimensional subspace is performed for
every trajectory segment, providing a characteristic description
of every trajectory. The subspace projection acts as a pseudo-
curvature measure in every dimension. Successful applicability
is shown through classification experiments in three and six
dimensions using an RGB-D camera. For comparison with other
algorithms, the Australian Sign Language dataset is also used
for classification, showing a superior classification rate.

I. INTRODUCTION

Tracking and classifying human movements is an impor-

tant issue for cognitive human-robot interaction if a robot is

supposed to react properly to a human gesture or movement.

If the classification method of the trajectory, e.g. of the

hand, can be spatially invariant but temporal-variant, Hidden

Markov Models or Support Vector Machines are suitable

approaches for classification. Problems occur if the trajectory

to be recognized is allowed to vary also in size, orientation,

and position. Depending on the number of dimensions,

this involves different tasks in various fields of robotics

and computer science: One representative problem in three

dimensions is the distinction between human activities focus-

ing either on whole body movements or only single limbs as

demonstrated in [1]. In two dimensions, the problem includes

handwriting classification and video surveillance tracking

pedestrians or cars [2]. Higher-dimensional problems include

the combination of a 3D position, a 3D orientation and a 6D

wrench, as investigated in [3].

When classifying trajectories, one can distinguish between

several substantially different approaches depending on the

inherited invariance of the trajectory classifier. Without any

invariant descriptor, trajectories have to be identical in the

spatial and temporal domain for being matched perfectly.

For a temporal invariant description of trajectories, Dy-

namic Time Warping as described in [4] is nowadays a

well established method. For a rigid transformation invariant

trajectory description, different approaches do exist. In [5]

a force-field method is presented tackling this problem for

the three-dimensional case. Another method working via

pose normalization by capturing the global shape of the

Thomas Nierhoff and Sandra Hirche are with the Institute of Au-
tomatic Control Engineering (LSR), Faculty of Electrical Engineer-
ing, Technische Universität München, D-80290 München, Germany
{tn, hirche}@tum.de.

trajectory is PCA, see [6], [7]. Curvature-based methods on

the other hand, measuring the torsion and curvature of a

trajectory segment, are able to focus also on local trajectory

properties. Two approaches measuring local trajectory prop-

erties are presented in [8], [9]. Another way for categorizing

descriptors is the distinction between hierarchical and non-

hierarchical descriptors. Non-hierarchical descriptors work at

a certain granularity level of the trajectory usually focusing

on the local features of the trajectory, see [10]. Hierar-

chical descriptors on the other hand begin with a coarse

description of the trajectory but iteratively split it up into

smaller trajectory segments, thus capturing both global and

local properties of the trajectory well. Approaches based

on hierarchical descriptors are introduced in [11] and [12].

In [13] a projection approach is used for classification of

trajectories, which inspired our work presented in this paper.

A common drawback of all presented hierarchical descriptors

so far is that none of them is spatially invariant with respect

to changes in orientation, translation and size and at the same

time able to work in an arbitrary large number of dimensions.

The contribution of this paper is the development of

an spatially invariant hierarchical descriptor for trajectory

classification working in any number of dimensions. For

a n-dimensional trajectory, a set of subspaces of different

lower dimensions is created. By combining this idea with

an hierarchical approach, one can capture both global and

local properties of the trajectory. For this, each trajectory

(segment) is divided iteratively into two smaller trajectory

segments. This results in a binary tree of trajectory segments

for which subspace projection is applied. The resulting

subspace projection distances in combination with additional

supplementary measures (PCA eigenvalues, subspace condi-

tion number) are compared for different binary trees forming

the final similarity measure. The resulting descriptor is scal-

ing and rigid-body transformation invariant. Experimental

studies are based on a dataset with up to 40 different classes

of motions with 5 trajectories for each class recorded by

using an RGB-D camera. Results show that the algorithm

performs well under various conditions with classification

rates up to 94%. Comparison with other descriptors based

on the Australian Sign Language dataset show superior

classification rates of the proposed approach in this paper.

The remainder of this paper is organized as follows: Sec. II

illustrates the general approach of the proposed descriptor.

In Sec. III the feasibility is evaluated through different

classification scenarios. Sec. III-C contains a critical analysis

of the algorithm, discussing both its potential and limitations.

II. CLASSIFIER DETERMINATION

This section describes the three-staged approach for com-

paring two trajectories. Similar to [14] first a hierarchical

description of the trajectory called shape-tree is created in

order to represent the trajectory at different granularity. The

generated curvature-tree then covers all important informa-

tion about the trajectory using a combination of subspace

projection and PCA. By comparing curvature-trees of dif-

ferent trajectories, the final similarity measure is obtained.

A. Shape-Tree

In this section the splitting process is described which will

return a binary tree called shape-tree facilitating the com-

parison of different trajectories. The motivation to construct

the shape-tree is to find a simplified description of every

trajectory at different detail levels. Consequently, the topmost

node (root) of the shape-tree provides only with a rough idea

of what the trajectory will look like whereas the bottommost

level represents an encoding of the entire trajectory.

Let T0p denote a trajectory consisting of an ordered

set of sampling points (t0, . . . , tp) ∈ R
n. For the splitting

process one has to find a sampling point ti ∈ T0p
such that the two resulting lines through (t0, ti)
and (ti, tp) minimize a certain similarity measure. For

this purpose, the original trajectory is split up into two

subtrajectories T0i = (t0, . . . , ti) and Tip = (ti, . . . , tp).
Then the first line L0i through (t0, ti) matches T0i best and

the one second line Lip through (ti, tp) matches Tip best.

Inspired by surface energy considerations the following

approach is proposed: Let t
proj
k be the orthogonal projection

of a sampling point tk ∈ T0i on L0i. Then the weighted

squared length L0i of the trajectory and the sum of squares

S0i is calculated as

L0i = wL

(

∑i−1
k=0 ‖tk+1 − tk, ‖

)2

, (1)

S0i =
∑i

k=0

∥

∥

∥
tk − t

proj
k

∥

∥

∥

2

, (2)

with wL as a weighting factor counting the number of sam-

pling points of the trajectory segment. The same calculation

is done for any point tk ∈ Tip and the second line, resulting

in Sip and Lip. The optimal sampling point ts, named

splitting point, splitting the trajectory into two subtrajectories

is

ts = argmin
ti∈T0p

(L0i + S0i + Lip + Sip), i = 0, . . . , p. (3)

The values S0i (resp. Sip) and L0i (resp. Lip) act as

energy terms stored in the two different types of concurrent

“mechanical springs”: Whereas minimizing S0i and Sip

means to match the trajectory as close as possible to the

two line segments in the least-squares sense (constrained

minimal surface problem), minimizing L0i and Lip centers

the splitting point with respect to the arc length of the

trajectory segment in the case of equidistant sampling points.

The factor w weights L0i and Lip with respect to S0i and Sip

in a suitable way.

t0

t1

t2

t3
t4

t5 t6 t7 = ts
t8 t9

t10

t11

t12

t13

(t0, t7) (t7, t13)

Fig. 1. Determination of ts for the two-dimensional case. A green spring

for

∥

∥

∥
t2 − t

proj
2

∥

∥

∥
and an orange spring for L07 represents the analogy in

terms of an energy minimization.

t0

t0

t0

t1
t3

t3

t3

t6

t7

t7t7

t7
t7

t9

t10

t10

t10

t12

t13

t13

t13
d
=

1
d
=

2
d
=

3

Fig. 2. Creation of the the shape-tree. Each found splitting point divides
a trajectory segment into two subtrajectories. Furthermore, a depth-value
shown on the left side is assigned to each object in the shape-tree.

Each trajectory segment - the overall trajectory and all

splitted subtrajectories - consist of a start point denot-

ing the chronological first point and an end point as the

chronological last point of the trajectory segment. Iter-

atively one can continue with this procedure until each

subtrajectory consists only of two subsequent sampling

points (tj−1, tj), j ∈ (1 , . . . , p). If a trajectory seg-

ment cannot be split up anymore depth-value dcur < dmax,

it will have only one subtrajectory which is identical to the

trajectory segment. The resulting structure can be stored in

a binary tree, called shape-tree. Starting from 1 and ranging

till dmax on for the original trajectory, a depth-value d is

assigned for each subtrajectory depending on its position in

the binary tree.

B. Curvature-Tree

After having created the shape-tree, a similarity measure

between different trajectories needs to be established. For this

purpose, a binary tree called curvature-tree C with similar

structure to the shape-tree is created. Stored in each node

of the curvature-tree are a set of measures explained in this

subsection. In the style of the Frenet-Serret formulas, the

distance between a point and its projection onto a lower-

dimensional subspace for each trajectory segment of the

shape-tree is used as a first measure. It is defined as

Sq = span(ts2 − ts1, . . . , tsq − ts1), q = 2, . . . , n, (4)

ts − ts1 = t‖q + t⊥q, t‖q ∈ Sq, t⊥q ⊥ Sq, (5)

l⊥q = ‖t⊥q‖ , (6)

(7)

with ts being the splitting point, ts1 the start point and ts2

the end point of the trajectory segment. In case of a n-

dimensional space first a set of bases Sq determining sub-

spaces with dimension 1, . . . , n − 1 are defined. Then the

vector ts−ts1 is split up into a normal component t‖q ∈ Sq

and an orthogonal component t⊥q ⊥ Sq . The value l⊥q

forms the principal component for comparing trajectories as

described in the next section.

For n > 2, additional sampling points beside ts2 and ts1

as stated in Eq. (4) have to be defined in order to form

a basis for the subspaces Sq . Two methods are suggested:

For the parent method, new sampling points are selected by

processing the shape-tree towards its root. On the other hand,

the neighbor method adds new sampling points by processing

the adjacent nodes of the same depth.

ts1ts1

ts2ts2 ts3

tsts

l⊥ql⊥q
l‖ql‖q

Fig. 3. Subspace projection for a 1D subspace (left side) and a 2D subspace
(right side).

A problem occurs if the basis for Sq is ill-conditioned,

see Fig. 4. This effect may happen either accidentally if two

sampling points forming an basis vector are very close to

each other or if the subspace projection is degenerated, e.g.

if the entire trajectory lies on a lower dimensional subspace.

To measure the effect, the condition number based on a

SVD of the basis vectors of Sq is calculated. Because it

is unknown whether a basis is ill-conditioned by accident

or due to degeneracy, the eigenvalues λe, e = 1, . . . , n of

the PCA of all sampling points of the trajectory segment are

calculated as well. All values - subspace projection length,

ts1

ts2 ts3

ts

l⊥q

l‖q

Fig. 4. Effect of an ill-conditioned basis. Moving ts3 only slightly along the
trajectory (grey vs. black dot) causes the length of the projection vector l⊥q

to change heavily.

condition number and PCA eigenvalues form the vector of

scalar values stored in each node of the curvature-tree.

C. Curvature-Tree Comparison

Using the scalar values stored in the curvature-tree to

measure the similarity between trajectories, this section treats

how to compare the values of two curvature-trees to obtain

the final similarity measure lf for two trajectories. It is based

on a three-staged approach:

• Find corresponding nodes of the two curvature-trees to

be compared.

• Normalize all scalar values stored in each node.

• Calculate the difference of each scalar value for every

node and corresponding node across the two trajecto-

ries. Sum all differences up to obtain lf .

The first point is a necessary condition for comparing

curvature-trees with dissimilar structure. The second point

allows one to calculate lf as a sum of differences without the

risk of one type of value (subspace projection length, PCA

eigenvalue, condition number) having a too large or small

influence. In addition, it is necessary to make the descriptor

scaling invariant. Last, the third point gives us the similarity

measure lf .

For solving the correspondence problem, let the two trajec-

tories to be compared be denoted sample trajectory (marked

with a superscript a) and reference trajectory (marked with

a superscript b). By introducing a mid-position rm ∈ [0, 1]
representing the chronological order of all nodes of a certain

depth value d{a,b}, the position of each node c{a,b} ∈ C{a,b}

is defined by the tupel (r
{a,b}
m , d

r
{a,b}
m

). If the curvature-

trees of both trajectories have a dissimilar structure, the

corresponding node co ∈ Cb, given ca ∈ Ca is determined

by

co = argmin
cb∈Cb

(|ram − rbm|) subject to dram = drbm . (8)

Determination of the value rm for each node of the

curvature-tree is performed by introducing two additional

indices: The start- and end-position {rs, re} ∈ [0, 1]. The

algorithmic description with superscript root for the root

node, p for every parent node, c1 for every chronologically

first child node and c2 for every chronologically second child

node is shown in Alg. 1.




rs
rm
re



 =





0
0.5
1









0
0.25
0.5









0.5
0.75
1









0.5
0.625
0.75









0.75
0.875
1









0
0.25
0.5









0.5
0.563
0.625









0.625
0.688
0.75









0.75
0.875
1









0
0.25
0.5





Fig. 5. Relative position for each node in the curvature-tree. Depending on
the number of children nodes, the rs, rm and re values are either copied
if there is only one children node or recalculated if there are two children
nodes.

The goal of the normalization process is that subspace

projection length, condition number and PCA eigenvalues

Algorithm 1: rm allocation

Input: C
Output: C with assigned rm values

foreach c ∈ C do

if c = croot then

rroot{s,m,e} = {0, 0.5, 1}

foreach c ∈ C do

if number of children = 1 then

rc{s,m,e}1 = rp{s,m,e}

else if number of children = 2 then

rc1s = rps
rc1m = (rps + rpm)/2
rc1e = rpm
rc2s = rpm
rc2m = (rpm + rpe)/2
rc2e = rpe





rs
rm
re



 =





0
0.25
0.5









0.5
0.563
0.625









0.625
0.688
0.75









0.75
0.875
1









0
0.063
0.125









0.125
0.188
0.25









0.25
0.313
0.375









0.375
0.438
0.5









0.5
0.625
0.75









0.75
0.875
1





Fig. 6. Correspondence of the curvature-tree nodes. Shown are correspond-
ing nodes depending on their rm-value for one depth-level d = 4. Red
lines show the correspondence for the lower curvature-tree as the sample
trajectory, green lines the correspondence for the upper curvature-tree as
the sample trajectory.

are within comparable range of [0, 1]. For the subspace

projection lengths, normalizing all l⊥q values with 2/ls limits

l
{a,b}
s to be within [0, 1] according to

l{a,b}s = ‖ts − ts1‖+ ‖ts2 − ts‖ , (9)

l
{a′,b′}
⊥q =

2l
{a,b}
⊥q

l
{a,b}
s

, q = 2, . . . , n. (10)

Taking the inverse of the condition number κ normalizes it

to [0, 1] as shown in Eq. (11)

κ{a′,b′}
q = 1

κ
{a,b}
q

. (11)

Concerning the PCA values, normalization is performed

according to Eq. (12) by dividing all values with the largest

eigenvalue

λ
{a′,b′}
f =

λ
{a,b}
f

max(λ
{a,b}
f

)
, f = 1, . . . , n. (12)

Calculating the difference is performed by comparing the

normalized values for one node of the reference curvature-

tree and corresponding sample curvature-tree as shown in

Eq. (13) - (15). The denominator 2d normalizes the cumula-

tive influence of nodes of every depth value d.

l′d1 =
∑

q(|l
a′

⊥q−lb
′

⊥q|)

2d
, (13)

l′d2 =
∑

q(|κ
a′

q −κb′

q |)

2d
, (14)

l′d3 =
∑

f (|λ
a′

f −λb′

f |)

2d
. (15)

By summing up all l′d1, l′d2 and l′d3 values for every node

of the curvature-tree and adding them, the final similarity

measure lf between two trajectories is obtained as shown in

Eq. (16)

lf =
∑

∀ca∈Ca

(ld1′ + ld2′ + ld3′). (16)

III. EXPERIMENTAL EVALUATION

Experiments are performed in two ways: In the

first set of experiments, the classification rate is eval-

uated using a proprietary dataset of recorded tra-

jectories. In the second experiment the classification

rate is compared with other methods using the Aus-

tralian Sign Language dataset. For all experiments, it is

wL = number of sampling points of each (sub-)trajectory.

A. Classification of human free space motion

The first set of experiments is conducted using a RGB-

D camera (Kinect) tracking a yellow marker being hold in

one hand in 3D. The obtained dataset consists of 40 different

movement classes as shown in Fig. 7 with 5 samples for each

class. The 8 classes with a red boundary are conceptually

similar to one of the other 32 “base” classes with the

difference that the movement is paused at a certain point of

the trajectory for a short time while still recording data. This

way the temporal influence is investigated. All samples of a

class are recorded varying the orientation, speed and scaling.

Preprocessing of the data consists of an moving-average filter

with a window size of 5 frames and a outlier removal for

single points. The trajectories contain between 62 and 564

sampling points. The ROS openni-kinect interface is used for

interfacing the camera. All other computations are conducted

in Matlab R2010a using an Intel Core2Duo T7500 CPU with

4 GB RAM.

proc. d parent neighbor time [s] time 1:1 [us]

5 93.8% 90.6% 16.6 648
4 92.5% 91.3% 8.36 326
3 89.4% 89.4% 4.33 169
2 80.6% 80.6% 2.32 90.6
1 45.0% 53.1% 1.33 51.9

TABLE I

RESULTS EXPERIMENT 1: 3D TRAJECTORIES, 32 CLASSES, NO NOISE

For the first experiment only the 32 “base” classes (black

sample trajectories in Fig. 7) are considered. Listed in Tab. I

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Fig. 7. Overview of the 40 different 3D classes used for classification. Each class consists of 5 samples. Every black trajectory belongs to one of the 32
“base’ ’classes. Each one of the other 8 red trajectory classes is a variation of one base class with paused movement at a specific point along the trajectory.

are from left to right: The maximum processed (compared)

depth d of the curvature-tree, the percentage of correct

classifications for the parent method and neighbor method,

the average total time for comparing each trajectory with

each other and the average time for comparing a single

trajectory with another single trajectory. Here this equals the

average total time divided by 1602. It is observed that a good

classification is already achieved for a maximum processed

depth of 3 indicating most of the features are not encoded

in the local but in the global properties of the trajectory.

proc. d parent neighbor time [s] time 1:1 [us]

5 86.5% 87.0% 25.8 645
4 86.0% 86.5% 13.5 338
3 81.5% 83.0% 7.00 175
2 73.5% 73.0% 3.58 89.5
1 37.5% 45.5% 2.04 51.0

TABLE II

RESULTS EXPERIMENT 2: 3D TRAJECTORIES, 40 CLASSES, NO NOISE

Classification results for the full dataset of 40 classes

are shown in Tab. II. It displays a decrease in the correct

classification rate compared to Tab. I of around 7%. Ap-

parently, it is more difficult for the algorithm to distinguish

between similar movements with varied recording speed than

expected.

proc. d parent neighbor time [s] time 1:1 [us]

5 90.0% 90.6% 19.0 742
4 90.0% 90.0% 10.1 394
3 84.4% 87.5% 4.40 172
2 74.4% 77.5% 2.53 98.8
1 44.4% 48.8% 1.56 60.9

TABLE III

RESULTS EXPERIMENT 3: 6D TRAJECTORIES, 32 CLASSES, NO NOISE

The third experiment shows classification results for a set

of 160 6D trajectories. In order to obtain 160 6D trajectories

from the dataset of 160 3D trajectories, trajectories from two

different classes are interpolated to have a similar number of

sampling points and concatenated to form a 6D trajectory.

Results are presented in Tab. III. The decrease in the correct

classification rate is around 4% when being compared to

Tab. I.

proc. d parent neighbor time [s] time 1:1 [us]

5 83.1% 80.6% 16.0 625
4 85.6% 85.6% 8.87 346
3 80.6% 80.6% 4.39 171
2 65.0% 68.8% 2.46 96.1
1 36.9% 40.6% 1.40 54.7

TABLE IV

RESULTS EXPERIMENT 4: 3D TRAJECTORIES, 32 CLASSES, WITH NOISE

Tab. IV displays results for the fourth experiment con-

sisting of 160 trajectories in 3D with added Gaussian noise

N (0, 0.002) for every dimension. Some examples of the

noisy trajectories are shown in Fig. 8. Despite the extremely

noisy trajectories, the correct classification rate drops only

by around 10% compared to Tab. I. This sounds reasonable

as it is explained earlier that for the given dataset the main

differences of the trajectories are encoded in the global

features and adding noise mostly affects local features.

Fig. 8. Overview of some noisy trajectories for the fourth experiment.

B. Australian Sign Language Dataset

For a better comparison with other algorithms, our method

is evaluated using the Australian Sign Language dataset

(ASL)1. Similar to Croitoru [5], Vlachos [10] and (with

reservation, as their classes are slightly different) Keogh [15],

a set of 10 classes (“Norway”, “cold”, “crazy”, “eat”, “for-

get”, “happy”, “innocent”, “later”, “lose”, “spend”) with 5

samples per sign is processed. For every possible class

pairing (45 in total), the 10 corresponding sequences are

clustered through group-average agglomerative clustering.

If the highest level of the resulting dendrogram separates

1http://www.cse.unsw.edu.au/˜waleed/tml/data/

the two classes properly, clustering succeeded. The correct

classification rates are presented in Tab. V.

proc. d parent neighbor Croitoru Vlachos (Keogh)

5 62.2% 62.2%
4 60.0% 57.8%
3 51.1% 51.1% 53.1% 46.6% 51.1%
2 33.3% 37.8%
1 2.2% 2.2%

TABLE V

RESULTS EXPERIMENT 5: ASL DATASET

All displayed timings so far considered only the compar-

ison of trajectories in case the shape-tree and curvature-

tree are already created. As a reference: Creation of both

trees takes on average around 400ms per trajectory for the

proprietary dataset and around 60ms for the ASL dataset.

C. Discussion

Experiments show that the proposed approach has a high

classification rate in various number of dimensions and is

only slightly affected by noisy data. Considering computation

time, the algorithm is efficient as creating the curvature-

tree and comparing it can be performed independently.

Consequently, the curvature-tree has to be created only

once for each trajectory and can then be stored for further

comparison. Another advantage is the lack of any tunable

parameters such that the algorithm can be used out of the

box. The real strength of the algorithm is based on the type

of splitting process not just splitting each trajectory into two

subtrajectories of equal length but finding an optimal splitting

point through optimization of a shape matching problem.

One remaining problem considers distinguishing between

similar movements with different temporal information

where the classification rate drops noticeable. Another prob-

lem is the sensitivity to a proper trajectory segmentation.

When creating the shape-tree, t0 and tp form the fixed

start point and end point of the topmost trajectory segment.

Consequently, they have a huge influence on the overall

classification result.

IV. CONCLUSION AND FUTURE WORK

This paper presents a novel descriptor for trajectory clas-

sification in n-dimensional spaces which is invariant under

scaling and rigid-body transformations. By iteratively split-

ting the trajectory up into smaller subtrajectories through op-

timization, a shape-tree stores the hierarchical description of

every trajectory. Then the characteristic properties - subspace

projection distance, condition number, PCA eigenvalues - of

every trajectory and subtrajectory are measured at different

granularity levels both at global and local scale and stored

in a curvature-tree. This allows a quick comparison of

different trajectories. The proposed algorithm succeeded well

in classifying up to 40 different types of real-life trajectories

in three and six dimensions with classification rates up

to 94%. In addition, experiments performed on the ASL

dataset show superiority when being compared to similar

classification algorithms. Future work will be focused on an

improved classification combining the proposed descriptor

with more advanced features.

ACKNOWLEDGEMENT

This work is supported in part within the DFG excellence

research cluster Cognition for Technical Systems - CoTeSys

(www.cotesys.org).

APPENDIX

Here we show that the proposed algorithm is invariant

with respect to rigid transformations and scaling. As a rigid

transformation does not alter the shape and size of the

trajectory, i.e. preserves the distance between every pair of

points, it does not affect the algorithm. To proof scaling

invariance, let every point of the trajectory be multiplied by

a scalar γ. Then Eq. (1) - (2) become

L0i = wL

(

∑i−1
k=0 ‖γtk+1 − γtk, ‖

)2

, (17)

S0i =
∑i

k=0

∥

∥

∥
γtk − γtprojk

∥

∥

∥

2

. (18)

Eq. (3) can be reformulated as

ts = γ2 argmin
ti∈T0p

(L0i + S0i + Lip + Sip), (19)

and is therefore independent of the scaling factor γ. In

addition, due to the normalization in Eq. (9) - (12) the final

similarity measure lf is independent of the scaling γ, too.

REFERENCES

[1] A. Oikonomopoulos, I. Patras, M. Pantic, and N. Paragios, “Trajectory-
based representation of human actions,” in IJCAI, 2007, pp. 133–154.

[2] S. Calderara, R. Cucchiara, and A. Prati, “A dynamic programming
technique for classifying trajectories,” in ICIAP, 2007, pp. 137–142.

[3] J. R. Medina, M. Lawitzky, A. Mörtl, D. Lee, and S. Hirche, “An
experience-driven robotic assistant acquiring human knowledge to
improve haptic cooperation,” in IROS, 2011, pp. 2416 –2422.

[4] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” KAIS, vol. 7, pp. 358–386, 2005.

[5] A. Croitoru, P. Agouris, and A. Stefanidis, “3D trajectory matching
by pose normalization,” in CIKM, 2005, pp. 153–162.

[6] F. I. Bashir, A. A. Khokhar, and D. Schonfeld, “Segmented trajectory
based indexing and retrieval of video data,” in ICIP, 2003, pp. 623–
626.

[7] B. Morris and M. Trivedi, “Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation,” in CVPR, 2009, pp.
312–319.

[8] J. De Schutter, “Invariant description of rigid body motion trajecto-
ries,” in ASME Journal of Mechanisms and Robotics, vol. 2, 2010, pp.
1–9.

[9] S. Wu and Y. Li, “On signature invariants for effective motion
trajectory recognition,” Int. J. Rob. Res., vol. 27, pp. 895–917, 2008.

[10] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” in ICDE, 2002, pp. 673–684.

[11] S. Wu, Y. Li, and J. Zhang, “A hierarchical motion trajectory signature
descriptor,” in ICRA, 2008, pp. 3070–3075.

[12] J.-G. Lee, J. Han, X. Li, and H. Gonzalez, “Traclass: trajectory classifi-
cation using hierarchical region-based and trajectory-based clustering,”
PVLDB, vol. 1, pp. 1081–1094, 2008.

[13] J. gil Lee and J. Han, “Trajectory clustering: A partition-and-group
framework,” in SIGMOD, 2007, pp. 593–604.

[14] P. F. Felzenszwalb, “Hierarchical matching of deformable shapes,” in
CVPR, 2007, pp. 1–8.

[15] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in SIGKDD, 2000, pp. 285–289.

