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Abstract—While humans can manipulate deformable objects
smoothly and naturally, this is still a challenge for autonomous
robots due to the complex object dynamics. The presence
of rigid environment constraints and altering contact phases
between the deformable object, the manipulator, and the
environment makes this problem even more challenging. This
paper presents a framework for deformable object manipula-
tion that makes use of a single human demonstration of the
task. The recorded trajectories are automatically segmented
into a sequence of haptic control primitives involving contact
with the rigid environment and vision-guided grasp primitives.

The recorded motion/force trajectories serve as reference for
a compliant control scheme in contact situations. In order
to cope with positioning uncertainties a variable admittance
control is proposed. The proposed approach is validated in an
experimental mounting task for a deformable linear object with
multiple re-grasping. The task is demonstrated with a multi-
modal teleoperation system and transfered to a robotic platform
with a pair of seven degrees of freedom manipulators.

I. INTRODUCTION

While the manipulation of rigid objects is a well studied

field in autonomous robotics, handling of deformable ob-

jects is still challenging. The control laws for rigid object

manipulation cannot directly be applied to flexible object

manipulation tasks, mainly due to the changing shape of the

object. Additionally, manipulation planning for deformable

objects requires complex calculations as the object dynamics

are typically approximated by FEM models which have a

large number of states. In this work we address the problem

of inserting a deformable linear object (DLO). DLOs are a

special class of flexible objects with the property that their

length is a multitude of their diameter. The solution of this

problem would be very beneficial for industrial production

processes, where the manipulation of DLOs like cables,

wires, or tubes is still mostly performed by human workers.

The existing work on manipulation of DLOs can be sep-

arated into approaches that i) apply modeling and planning

methods and ii) approaches, which utilize human demonstra-

tions. Prior work mainly focuses on modeling of DLOs and

planning algorithms for their manipulation. In [1] a physical

static model for DLOs based on differential geometry is

presented The model is extended to a dynamic model for the

two-dimensional case in [2]. But the complexity of the model

prevents using it for re-planning during manipulation. In [3]

a motion planner for the bi-manual manipulation of ropes is
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proposed. In an experimental setup this planner is used to tie

several knots. However, this approach is limited to knotting

problems. In general, one can conclude that, especially in

the domain of deformable objects, mathematical models

describing the objects are computationally expensive. This

makes an on-line re-planning during the execution infeasible.

Furthermore, the existing planners are often restricted to

special domains.

This suggests to investigate programming by demonstra-

tion methods. They make direct use of an expert’s experience

and transfer it to a technical system. In [4] a skill controller

in form of an event-driven hybrid controller is realized in

order to solve a hose insertion task. The control parameters

are identified from human demonstrations. Changes in the

contact state are used as events for the switching policy,

but the events are manually labeled in the continuous data

profiles. An approach for an automatic program generation

for a “DLO-in-hole” task is presented in [5]. There, a

sequence of topological contact states of the DLO and

the environment is extracted from a user demonstration in

a virtual environment. One restriction here is that a very

precise virtual model of the DLO is needed. Furthermore,

positioning inaccuracies are difficult to handle. In summary,

programming by demonstration techniques offer a promising

way of teaching manipulation skills. However, they are in

general not robust against position uncertainties in the envi-

ronment and initial state differences between demonstration

and autonomous execution.

The contribution of this paper is a framework for au-

tonomous deformable object manipulation based on the

programming by demonstration paradigm. Instead of using

a pure replay of the complicated manipulation task demon-

strated by a human on a trajectory level, we suggest to find

a sequence of controllers for which the demonstrated tra-

jectory is an attractor. An automatic segmentation approach

decomposes task into several haptic primitives and basic

skills, including vision-guided grasping. In order to cope with

position uncertainties a variable admittance control scheme

is proposed for the haptic control primitives. The approach

is experimentally evaluated with a bi-manual DLO insertion

task on a robot with two anthropomorphic 7-DoF arms.

The remainder of this paper is structured as follows: Sec-

tion II briefly defines the manipulation problem considered

in this work. In Section III we propose our framework for the

autonomous execution of the manipulation task and describe

the methods used. Section IV introduces the experimental

setup followed by the experimental evaluation.



II. PROBLEM DEFINITION

In this paper we consider bi-manual manipulation tasks

which involve multiple contact phases of the robot with the

deformable object as well as with the rigid environment

through the deformable object. The task is demonstrated once

by a human expert. In order to provide the human demonstra-

tor with a realistic impression of the task, a teleoperation sys-

tem with visuo-haptic feedback is used for the demonstration.

Hereby, we assume the demonstrating user does not grasp or

manipulate simultaneously with both arms or perform any

manipulation steps useless for accomplishing the task. The

tele-operated robot is also used for the autonomous task

execution. This has the advantage that constraints of the

robotic system and avoidance of unwanted collisions with

the environment are implicitly considered when executing

the task autonomously.

The output of the demonstration is the time se-

ries P = {pt = (xt, ft) : t ∈ [0, T ]} for each of the two

arms representing the trajectory of the end-effector’s pose

x ∈ R
3 × RP

3 and wrench f ∈ R
6 in the robot coordinate

frame from the initial time 0 to T . In order to be able to

grasp the DLO at the same position aiming at a reproducible

behavior during manipulation, we store the time series

Y = {yt : t ∈ [0, T ]} of grasping points y ∈ R expressed in

the DLO coordinate system. The DLO coordinate is defined

as the distance from the starting point to the specified point

along the DLO curve. If the tube is not grasped at time t,
this is indicated by yt = ∅.
Due to the presence of uncertainties a direct position re-

play of trajectories recorded from a complex demonstration is

likely to fail. As the task imposes multiple contact phases of

the robot with the DLO, the time series P is decomposed into

chunks Pi = {pt : t ∈ [ti,start, ti,end]} from contact state

to contact state. This yields a sequence of control primitives

necessary to accomplish the task, i.e. the task plan. A control

primitive is defined as a reference trajectory (or setpoint) and

an associated control which makes the reference an attractor.

As a consequence of the decomposition of the task into a

sequence of control primitives we face two major research

challenges to be addressed in this paper: i) How to design

the control for the haptic control primitives (i.e. involving

contact), which renders the demonstrated trajectory a stable

attractor despite positioning uncertainties, and ii) how to

automatically extract the task plan in terms of a sequence

of control primitives from the demonstrated trajectories.

III. AUTONOMOUS DLO-MANIPULATION FRAMEWORK

For bi-manual DLO manipulation tasks we identify four

control primitives for each of the two robot manipulators:

the grasp primitive, the support primitive for re-grasping,

the manipulate primitive and the idle primitive. The grasp,

support and idle primitives are quite common and can be

solved by standard techniques like position control, either

visual guided for grasping or based on a reference pose.

However, the parametrization of the haptic control primitive

for manipulation is not trivial and is described in the follow-

ing.

A. Haptic Control Primitives with Variable Admittance

In the idealized case of exactly the same conditions as in

the demonstration, a simple position control scheme would

suffice to track the desired pose given by the demonstrated

trajectory. However, due to uncertainties in the platform and

consequently manipulator positioning with respect to the

task this approach is infeasible. Therefore, we propose a

compliant control scheme which renders the demonstrated

pose/wrench trajectory an attractor. The haptic control prim-

itive consists then of the desired (demonstrated) trajectoryPi

and the compliant feedback control scheme, proposed in this

section.

The task of inserting a DLO results in unilateral constraints

in some directions in the workspace. The constrained di-

rections are not known beforehand but directly result from

the uncertainties during task execution. Compliant control

schemes with high stiffness provide high position accuracy

in free space, however, high forces may occur in contact in

the direction of the position error. In those directions a lower

stiffness is desirable. Therefore, here we propose an error-

dependent position/force-based admittance control scheme to

track position and force reference trajectories while at the

same time providing compliance to cope with uncertainties.

Hereby we assume control errors are caused from contact of

the DLO with the rigid environment. The control renders the

virtual admittance

Mx(e(t))ẍ(t) +Dx(e(t))ẋ(t) +Kx(e(t))ex(t) = ef (t),
(1)

where x ∈ R
3 × RP

3 is the 6D-pose of the end-effector,

ex =
(

eT eTr
)T

the 6D position error composed of the

translational error e(t) = xp(t) − xp,d(τ(t)) ∈ R
3 and the

rotational error er(t) ∈ RP
3. The error in the wrench is

denoted by ef (t) = f(t) − fd(τ(t)) ∈ R
6, where f(t) ∈ R

6

is the wrench measured with a force-torque sensor located at

the end-effector. The error-dependent time warping τ(t) is

explained later. The desired pose/wrench point (xd, fd) ∈ Pi

is part of a position/force trajectory recorded during the

demonstration, and

Mx(e(t)) = diag(M(e(t)),Mo),

Dx(e(t)) = diag(D(e(t)),Do),

Kx(e(t)) = diag(K(e(t)),Ko),

are the rendered inertia, damping and stiffness, respectively.

Hereby, M(e(t)),D(e(t)) and K(e(t)) ∈ R
3×3 are the

translational components and Mo,Do and Ko ∈ R
3×3

the rotational components. Note that for simplicity of no-

tation we introduce the error-dependent adaptation of the

admittance only in the translational degrees of freedom. An

extension to the rotational degrees of freedom is feasible.

The parameters for the rendered admittance (1) are adapted

depending on the translational control error according to

M(e(t)) = M+R(e(t))(Am‖e(t)‖)R−1(e(t))

D(e(t)) = D+R(e(t))(Ad‖e(t)‖)R
−1(e(t))

K(e(t)) = K+R(e(t))(Ak‖e(t)‖)R
−1(e(t)), (2)
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Fig. 1. Effect of the adaptation law for the rendered stiffness (solid
ellipsoid) compared to the basic stiffness (dashed ellipsoid).

under the constraints M(e(t)) ≻ 0, D(e(t)) ≻ 0 and

K(e(t)) ≻ 0. Here, R(e(t)) is a rotation matrix that aligns

the world coordinate frame’s x-axis with e(t), i.e

R(e(t)) =
(

rx(e(t)) ry(e(t)) rz(e(t))
)

with

rx(e(t)) = e(t)/‖e(t)‖,

ry(e(t)) =
(

1 0 0
)T

× rx(e(t)) and

rz(e(t)) = rx(e(t))× ry(e(t))
1.

Further, M, D and K are the basic mass, damping, and

stiffness matrices. Additionally we define the matrices

Am =





pm 0 0
0 0 0
0 0 0



 ,Ad =





−pd 0 0
0 0 0
0 0 0



 ,

Ak =





−pk 0 0
0 0 0
0 0 0



 , (3)

where pm, pd and pp ≥ 0 are appropriate adaptation

gains. For the sake of simplicity we will consider uncou-

pled, isotropic admittance properties, i.e. M = diag {m},
D = diag {d} and K = diag {k} with fixed parame-

ters m, d and k. Note that in this case one can write, e.g.

for the stiffness matrix

K(e(t)) = K+R(e(t))(Ak‖e(t)‖)R
−1(e(t))

= R(e(t))(K+Ak‖e(t)‖)R
−1(e(t))

and positive definiteness can be achieved by saturating the

matrix entries according to

(K+Ak‖e(t)‖) =





max{kmin, k − pk‖e(t)‖)} 0 0
0 k 0
0 0 k





with the minimum stiffness kmin. The same property holds

for M(t), D(t). Fig. 1 exemplary shows the effect of the

adaptation for the stiffness ellipsoid in the two-dimensional

case. A large position error ‖e(t)‖ indicates contact of

the manipulator or the grasped DLO with the environment.

By applying the variable admittance parameters the system

becomes more compliant in the directions of the tracking

error, i.e. in constrained directions, whereas the basic com-

pliance in unconstrained directions results in a good tracking

performance. Mass and damping are also adapted to keep the

system stable and well-damped.

1If ‖e(t)‖ = 0 or e(t) is in the direction of the x-axis, then R(e(t)) is
the identity matrix.
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Fig. 2. State machine with possible state transitions for the DLO mounting
task.

The potential large tracking errors of this system are

reduced by an error-dependent time-warping τ(t) of the

reference trajectory’s time index according to

τ(0) = 0

τ(t) = τ(t − 1) + max{∆τmin,∆τ − pτ‖e(t)‖}, (4)

with ∆τ > 0 the nominal index increment when there is no

position error (∆τ = 1 if the nominal increment corresponds

to the increment of the demonstrated trajectory), ∆τmin

the minimal increment and pτ ≥ 0 is a proportional gain.

Accordingly, the task is performed faster when the actual

situation closely corresponds to the recording, whereas the

execution speed is reduced under large deviations increasing

task success rate.

B. Automated Plan Extraction

In an off-line step we analyze the recorded data in order

to extract the plan for the given task. Therefore, we define a

set with a finite number of discrete states S = {G,S,M, I}
in which each state represents one of the above control

primitives given by a desired trajectory and an appropriate

control law.

Based on the state definition a time series of discrete states

Sl = {sl,t : t ∈ {0, · · · , T }, sl,t ∈ S} for the states of the

left manipulator and analogously Sr for the right manipulator

is obtained. We define the combined state st = (sl, sr) ∈ S2

to compactly describe the system state in the bi-manual

system. A state st = ∅ means the state for time t is

not defined yet. Admissible state transitions are defined

according to expert knowledge of the task. In Fig. 2 the

combined state machine for both manipulators is shown.

An algorithm based on heuristic rules is used to extract the

state sequences Sl and Sr from the time series of grasping

points Yl and Yr, where the indexes l and r indicate the

left or the right arm. It is executed once for each arm and

exemplary given for the left manipulator in the flowchart

diagram in Fig 3. During the execution the sequence S is

used to determine the next control primitive.

IV. EXPERIMENTAL VALIDATION

In order to validate the automatic state extraction and the

variable admittance control scheme (in comparison to con-

stant admittance) a tube mounting task using an autonomous

robot is considered. It involves bi-manual manipulation of

the deformable object, multiple contact phases with the

deformable object and the rigid environment including peg-

in-the-hole type tasks, and multiple grasping primitives.
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Fig. 3. Flowchart of the state extraction algorithm.

The testbed can be seen in Fig. 4. The goal of the

manipulation task is to insert the tube through the two

constraints and bring it to the final configuration. In this

section we briefly describe the experimental setup before

presenting our experimental procedure and obtained results.

A. Setup

The hardware setup used in the experiment consists of

an autonomous robot which is also used as teleoperator, a

human-system interface, and a central tracking system. These

systems are described in the following. Furthermore, the used

software architecture, the controller used in teleoperation

mode, as well as the approach used for vision based grasping

are briefly presented.

1) Teleoperator and Autonomous Robot: The robot is

shown in Fig. 5(a). The main components are a camera

head, two arms with grippers and a mobile platform. The

camera head is equipped with a pair of wide-angle stereo

cameras and a RGB-D camera (Mircosoft Kinect) providing

depth information. The head itself is a pan tilt unit, but

for the experiment we keep the head pose fixed. A pair of

7DoF anthropomorphic arms is mounted on the robot main

chassis providing a human-like working space [6]. Attached

xy

z

Fig. 4. The setup for the tube mounting task. The goal of the task is to bring
the tube from a starting configuration to the depicted final configuration by
grasping and manipulating the tube at the two-colored markers.

to each arm is a JR3 force-torque sensor and a Schunk PG70

two-finger gripper. The main chassis is based on a four-

wheeled omni-directional mobile platform [7]. For relative

localization of the robot with respect to the setup we use the

LED-based VisualeyezTM VZ4000 motion measurement and

tracking system by PhoeniX Technologies Inc.

2) Human-System Interface: For the teach-in we use a

stationary human-system interface presented in [8] which is

shown in Fig. 5(b). The images from the robot’s camera

pair are displayed via a head-mounted display. This grants

the expert a natural view of the scene. The robot manipu-

lators are coupled to two hyper-redundant haptic interfaces

VISHARD10 [9]. These cover a human-like workspace and

can display high impedances as are present in the examined

task. Finger flection is captured by CyberGloves in order to

control the robot grippers.

3) Software Architecture: Our real-time control frame-

work [10][11], which is based on the KogmoRTDB real-time

database [12] is used during demonstration and autonomous

task execution. In addition to synchronized data management

it allows to record and replay data streams.

4) Control in teleoperation mode: In teleoperation mode a

bilateral control architecture couples the master and the slave.

Hereby, we use position-based admittance controllers which

are well suited to compensate the non-linear dynamics of an

admittance-type haptic interface or robot [9]. On the master

side a position-based admittance controller with force input

is used and on the slave side a position-based admittance

controller with position input. Using this architecture, forces

from the master side and the slave side are both applied to

one virtual admittance. Position control is then used to track

the position of the virtual admittance on the master side. On

the slave side, an additional impedance allows for some com-

pliance when interacting with high impedance environments.

The architecture runs at a sampling rate of 1 kHz. For more

details on this control architecture see [13].

5) Vision Based Grasping: The grasping is implemented

as look-and-move position control using the artificial markers

on the DLO. The colored markers are detected with the

RGB-D camera unit. As the markers are rotation-symmetric

only the longitudinal axis n is known and the grasping

pose is under-determined. In order to solve this problem,

the grasping pose is chosen to be as close as possible

to to the pose of the recorded reference. Given the rota-

tion matrix from world coordinates to end-effector coordi-



(a) (b)

Fig. 5. The robot used in the experiment (a) and the two VISHARD10
haptic interfaces [9] used for tele-operation (b).

nates
0
R′

E =
(

n′ s′ a′
)

of the reference grasp, where n′

is the reference longitudinal axes of the tube2, the desired

transformation 0RE =
(

n s a
)

is obtained by

s =
s′ − (s′ · n)n

‖s′ − (s′ · n)n‖
and

a = n× s.

The marker position and the rotation defined by 0RE are

used as the setpoint for the position control. This choice has

the benefit of avoiding additional torsion compared to the

demonstration.

B. Procedure

The DLO used for the experiment is a flexible tube made

of silicone rubber with a waved surface. Plastic deformations

are negligible. It has an outer radius of R = 20mm, a

length of 1.25m, and a mass of 1.25 kg. The two constraints

used consist of two parallel walls of length 0.12m and

height 0.10m. The distance of two corresponding walls

is 0.05m.

In a first step, a user demonstrates the task using teleop-

eration. During the demonstration, the robot’s mobile base

position is fixed to not introduce additional variance in

the recorded data due to base motion. The complete robot

state including manipulator positions and forces, gripper

states and the poses of the robot and the testbed is stored

during demonstration using the KogmoRTDB. The markers

are subsequently applied to the DLO at the positions the user

was grasping. The plan extraction is applied to the recorded

data yielding the state sequence and the sequence of control

primitives.

Next, the DLO insertion task is executed autonomously.

The standard parameters m, d and k are set to m = 8 kg,
d = 600Ns/m, k = 400N/m. The rotational admittance

parameters are set to Mo = diag(0.3 0.3 0.3) Nms2, Do =
diag(40 40 40) Nms and Ko = diag(40 40 40) Nm. Three

different conditions for the variable admittance parameter

gains in (3) are evaluated (see Table I). The three conditions

are labeled zero for fixed parameters, normal for moderate

values, and high for gains five times the moderate ones.

The parameters in (4) controlling the execution speed are

set to ∆τ = 1.2, ∆τmin = 0.2 and pτ = 10m−1. The

robot platform is positioned once for all conditions in order

to yield comparable results. The accuracy of positioning is

2Here we assume, the demonstrating user aligns the end-effector with the
tube.

condition pm (kg/m) pd (Ns/m2) pk (N/m2)

zero 0 0 0

normal 100 500 1000

high 500 2500 5000

TABLE I

PARAMETER SETS USED FOR THE EXPERIMENTS.

t

y t
S

20 40 60 80 100 120
I

M
S
G
0

1

Fig. 6. Grasping sequence (top) from the demonstration and extracted
states (bottom) for the left (solid) and the right (dashed) manipulator.

chosen to be ±0.01m for the position and ±0.001 rad for the
orientation. Furthermore, the tracking system has a variance

of ±0.005m.

C. Results

The demonstrating user performs the task in

about 121 s. The extracted state sequence is S =
(IlIr , GlIr, SlGr, IlMr, IlIr, IlGr, GlSr, SlGr, IlMr, IlIr).
The grasping sequence from the demonstration and the

extracted series of discrete states can be seen in Fig. 6.

The autonomous task execution is performed twice with

each parameter set. For each trial, Table II shows the execu-

tion time and the success of insertion into the two constraints.

Note that the execution time is not directly comparable to the

human demonstration, as waiting periods of several seconds

occurred when searching in the recorded data.

condition trial time constraint 1 constraint 2

zero 1 137 s fail fail

zero 2 138 s fail fail

normal 1 143 s success fail

normal 2 140 s success success

high 1 198 s success fail

high 2 196 s success fail

TABLE II

QUALITATIVE RESULTS OF THE EXPERIMENTS.

D. Discussion

A clear advantage of the variable admittance controllers

(conditions normal and high) is evident compared to the fixed

admittance controller (condition zero) as latter is never suc-

cessful at inserting the tube into a constraint. This suggests

that the fixed admittance controller is not able to overcome

the uncertainties introduced by inexact positioning of the

platform, the inaccurate vision-based grasping, and other

noisy data.

However, a task-appropriate choice of the variable admit-

tance parameters is crucial as observable from the decreased

performance for the condition high compared to the condition

normal. With this parametrization, the actual trajectory drifts
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Fig. 7. Results for the error-based variable admittance control scheme.
7(a) to 7(d) show the y- and the z-coordinates of the according pose and
wrench trajectories of the haptic control primitive P1 (dashed lines) and
the actual trajectories performed by the robot (solid lines). 7(e) shows the
evolution of the admittance parameters.

away from the desired trajectory, making a successful task

execution impossible.

In Fig. 7 trajectories and admittance parameters for the

insertion of the DLO into the first constraint are shown for

the first trial of the condition normal. The similar shape of

the desired and the actual trajectories indicate that the desired

position and force is compliantly tracked. Between 65 s

and 73 s the tube is pushing against the obstacle in negative

z-direction (i.e. down) which is mainly visible in the positive

force in z-direction. It can be observed that movement in

negative z-direction (i.e. slipping into the constraint) occurs

at a different time for the recorded case and autonomous

insertion which is probably due to positioning errors of

the robot. Repeated successfull insertion using our variable

admittance controller indicates that the controller is well

suited to handle DLO insertion tasks with such uncertainties.

Fig. 7(e) shows an example of the evolution of the admittance

parameters starting at the standard values for m, d and k.

V. CONCLUSIONS

In this paper we present a systematic approach for transfer-

ring a complex deformable object manipulation task from a

human demonstration to an autonomous robot. By analyzing

the demonstration sequence a task plan is obtained consisting

of the sequence of control primitives. The control primitives

consist of a reference trajectory (or setpoint) and an appro-

priate feedback control. In order to cope with positioning un-

certainties in contact phases, we propose an error-dependent

admittance control scheme, which reduces the compliance

in the direction of the error occurring from environment

constraints. As a result, high tracking accuracy is achieved

in free-space motion while providing limited internal forces

and stability in contact situations. The approach is validated

in a bi-manual mounting task for deformable objects. For

the future, a systematic robustness analysis with respect to

positioning errors and a stability proof is planned.
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