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Abstract— Goal-directed physical assistance to the human is
one of the most challenging problems in the area of human-
robot interaction. Planning and learning from demonstration
represent two conceptually different approaches to achieve
goal-directed behavior. Here we examine the properties of a
planning-based and a learning-based approach in the context
of physical robotic assistance for the prototypical task of
cooperative object maneuvering. In order to exploit the comple-
mentary strengths of planning and learning-based approaches
we derive three novel synergy strategies. The algorithms are
experimentally evaluated in a human user study in a planar
virtual-reality scenario and in a proof-of-concept study with a
human-sized mobile robot with two 7DoF arms. The results
show that combinations of planning and learning algorithms
are superior over the individual approaches.

I. INTRODUCTION

Physical robotic assistance has a high potential for ap-
plication in various areas ranging from intelligent transport
in domestic and industrial settings to mobility assistance
for elderly. In order to assist beyond the functionality of
a purely reactive follower as for example in [?], the robotic
partner must exhibit goal-directed assistive behavior. Several
methods to equip a robot with necessary task knowledge
for physical manipulation assistance are explored in the
literature. Most of these approaches fall into the category of
either a) planning-based methods, or b) motion reproduction
based on imitation learning, each having different advantages
and disadvantages. To the best of the authors’ knowledge,
there are no works on the combination of planning and
learning in physical human-robot interaction (pHRI), which
is the focus of this paper.

Even motion planning for physical robotic assistants itself
finds only little reference in the literature. In [?] a heuristic
method to improve the sampling strategy of a path planner
through haptic input is presented. Feedback motion planning
for haptic guidance using a cell-decomposition method is
proposed by [?] in the context of computer-aided design. As
a result, a channel similar to Virtual Fixtures [?] is generated
by a planning algorithm to guide a user in virtual reality from
start to goal [?]. None of these methods, however, allow
the human partner to deviate freely from the pre-planned
path in order to suit the human’s motion preference. Instead,
the focus of these methods is the attraction to the distance-
optimal path. In order to address this issue and the need for
instant decision making due to the physical coupling, here

Fig. 1: Experimental setup with mobile manipulator used in evaluation

we propose a feedback-planning approach inspired by [?].

Within the programming-by-demonstration framework a
significant body of methods to learn motion patterns from hu-
man demonstration, to recognize such, and even to estimate
the human intention are developed e.g. in [?], [?], [?], [?].
It is well-known that the estimation of the human partner’s
intention is crucial for intuitive physical human-robot inter-
action [?] and outperforms low-stiffness position tracking
regarding subjective quality of assistance [?]. Programming-
by-demonstration through a teleoperation system is explored
by [?]. Interaction motion is reproduced based on previous
observations on point-to-point level [?] and along a single
dimension [?]. In our own earlier work [?] an incremental
learning approach based on time-based hierarchical Hidden-
Markov-Models is considered to estimate human intentions
in more complex cooperative object maneuvring tasks. An
exhaustive survey on general motion reproduction algorithms
is provided in [?].

The contribution of this work is a novel approach to
facilitate goal-directed behavior in physical human-robot
interaction (pHRI) based on the synergetic combination of
planning- and learning-based approaches. To this end we
investigate the complementary properties of a learning-based
motion prediction algorithm [?], [?] and a feedback-planning
algorithm [?] in the context of pHRI, where the physical
coupling between the robot and the human imposes partic-
ular challenges in terms of real-time capability, adaptability,
and safety of the decision making scheme. Exploiting the



complementary strength of planning- and learning-based
approaches we explore three different synergetic strategies
based on 1) plan-based initialization of the learning scheme,
ii) homotopy-blending of planning and learning strategies
based on the human motion prediction quality, and iii) a
cost-based fusion of planning and learning strategies. As a
prototypical task we investigate the cooperative transport of
an object from an initial to a final configuration through a
cluttered environment. We experimentally evaluate the novel
approaches in a human user study in a planar virtual-reality
setup and present an experimental proof-of-concept study in
six degrees of freedom (DoF) with a human-sized mobile
platform equipped with two 7-DoF anthropomorphic arms.
The results show that combinations of planning and learning
algorithms are superior over the individual approaches.

The remainder of this paper is organized as follows: Sec-
tion II investigates planning and learning strategies in pHRI,
which are then combined in novel synergetic strategies in
Section III. The experimental setups described in Section IV
are used to generate the results presented in Section V.

Notation: Bold characters are used for vectors and
matrices. The configuration space of the manipulated rigid
object is denoted C which is a manifold C = R? in two-
dimensional case without rotation and C = R? x RP? in the
three-dimensional case with rotation. The obstacle region is
denoted Cqyps C C. The leftover configurations are called free
space which is denoted Cgee = C \ Cops-

II. PLANNING AND LEARNING IN PHRI

Our studies of physical robotic assistants show that the
quality of assistance benefits from a goal-oriented robot
behavior in load transport tasks [?], [?]. In this context,
plan-based [?] as well as motion reproduction strategies [?]
successfully generate goal-oriented behaviors in full-scale
cooperative transport tasks. In the following we will highlight
the complementary strength of both approaches in order to
derive suitable ways of combining them in a synergistic way.
Therefore the general problem setting is presented first.

A. Problem setting

We consider the problem of a human-robot dyad coop-
eratively moving a rigid object from an initial configura-
tion €(0) € Cre to a final configuration @(te0) through a
cluttered environment. We assume the robotic assistant is
feedback controlled such that the commonly manipulated
object follows a virtual object impedance that is rendered
with inertia matrix M, and virtual viscous friction D

Mz + Dx = up + ur, (1)

where @ € Cpe. denotes the object pose and wj;, and u, the
effective wrenches by human and robot, respectively.

Both cooperation partners have fixed grasp points and
are assumed to have their individual plans T, 5 (s)
and 7). (s) with index s € [0,1] that is dependent on
the current pose x(t). This implies that the object’s pose
trajectory x(t) is the result of a continuous plan negotiation
through the corresponding input forces u; and w, of the

@
Fig. 2: Subsets of the configuration space C = R?

human and the robot partner. In the most general case the
object pose trajectory deviates from the initially desired
paths 7,0y 1 (s) and 7(),-(s) at the starting position 2(0)
of the human and the robotic partner. The challenge is now to
find the appropriate plan 7, to generate the robot force
contribution, which considers human-preferences as well as
environment constraints.

To address this problem, we first investigate a planning-
based and a learning-based strategy individually.

In a planning-based approach the robot computes its
motion plan based on environmental constraints. In con-
sequence, the robot plan will generally differ from the
human plan 7,(;),(s) # Tz(:),»(s) and online negotiation
is required. As a result the motion of the dyad may deviate
from the robot plan 7,4) ,.(s) as determined from the current
pose x(t). Feedback motion planning strategies - in contrast
to path planning strategies - prepare the goal-directed robotic
assistant for this property through a continuous adjustment of
the robot’s desired path 7 ,-(s) from the current configura-
tion to the goal configuration. Furthermore, feedback motion
planning suits the need for instant decision making due to
the physical coupling. In contrast to path planning, feedback
motion planning strategies prepare the goal-directed robotic
assistant for this property through a continuous adjustment of
the robot’s desired path 75;) ,(s) from the current configu-
ration x(t) to the goal configuration & (g ). The robot uses
the desired path 7, -(s) to compute its contribution pja,
as one option for u,..

In a learning-based approach the robot initially behaves
passive u, = 0 during the task execution and observes the
executed trajectory which can be assumed to be close to the
human partner’s intended path 7,y 5, (s). In subsequent trials
the robot adopts the human preferred path as its own motion
plan 74(0),r(8) = Tw(0),n(5). Note that the space of learned
trajectories is generally only a subspace of the free space, but
generally the subspace of learned trajectories is larger than
the space of demonstrated trajectories Cgemo C Ciearn < Crrees
see Fig. 2.

Two representative algorithms from each field, the
sampling-based neighborhood graph (SNG) for feedback
planning [?] and the time-based HMM (tHMM) learning,
recognition and a motion prediction framework [?], [?] are
considered in the following and briefly reviewed.
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Fig. 3: 6-DoF reduced geometric model of the cooperation partners and the
object used for calculation of free configuration space Cree

B. Feedback motion planning

A feedback motion planning scheme generates a feed-
back function k(x) for all positions & € Cpgee in the
accessible configuration space Cpee. The SNG is a very
comprehensible method, sufficiently efficient to cover higher-
dimensional configuration spaces applicable for settings with
6-dimensional object poses at a viable resolution as required
for our large-scale scenario. A navigation function is pre-
computed such that goal-directed behavior during execution
requires only straightforward lookups. In brief, the method
consists of the following steps:

For each new map given by Cpee
1) Cover Cgee with n-dimensional hyper balls until a
specified percentage a (e.g. .99) is covered with desired
probability P, (e.g. .99).
2) Create a graph representing connectedness of hyper
balls.
For each new goal g,

3) Identify hyper ball containing goa

4) Generate priority graph e.g. using Dijkstra’s algorithm.
During execution

5) Calculate direction to next best hyper ball

Given a desired magnitude of velocity 4 and a desired
maximum robot force level, the force! vector Uplan 18 calcu-
lated straightforwardly using the feedback control law

e k(@]
Applying the result according to (1) with u, = upa, results
in the pure planning-based behavior.

The articulated geometric model with six DoF approximat-
ing the human, object and robot for a cooperative transport
task is depicted in Fig. 3. The object itself can be moved in
all six degrees of freedom (DoF). For simplicity in this work
we assume that a human partner and a robot control their
posture such that they keep a constant configuration relative
to the object on the two-dimensional ground plane (zg,yo).
Aspects of this topic are discussed in [?].

. )

C. Learning from demonstration

Learning-based approaches to active physical assistance
aim to imitate the human partner’s behavior during demon-
strations in order to take over the task effort instead of
planning a task-directed behavior. In contrast to planning-
based approaches, this can adapt to human preferences.

IForce in the 2D case, wrench in the 6D case

The tHMM framework is encodes human trajectory
demonstrations  efficiently and  most importantly
constrains motion reproduction to the configuration
space Cieamn C Cpee (6. a zone of influence) around the
demonstrated configurations Cgemo < Clearn- We combine
Hidden-Markov-Models (HMM) with Gaussian Mixture
Regression (GMR) in a probabilistic incremental-learning
framework that allows modeling and reproduction of smooth
trajectories and is well suited to ensure intuitive motion
generation in physical human-robot cooperation. Observed
force and motion signals are encoded in time-based hidden-
markov models, see [?], [?]. These models are then used to
recognize previously observed patterns and the generalized
output of the model is used to generate a short-term
prediction of the human desired trajectory. To this end the
Viterbi algorithm is used for state estimation in time domain.
The predicted mean position/velocity setpoint [ preq ipred]T
for time serves as tracking reference in a PD control scheme

Ulearn = Kp(mpred - :E) + Kd(a-jpred - :I)), (3)

where K, and K; denote the proportional and deriva-
tive control gains, respectively, to generate the control in-
put Ujeun. The pure learning-based behavior is synthesized
following w, = Ujean. For a detailed explanation of this
method, see [?].

III. SYNERGIES OF MOTION GENERATION ALGORITHMS

The planning and learning-based approaches described
in Section II generate an active contribution behavior for
cooperative manipulation tasks. With respect to a number of
properties however, these schemes show different and even
complementary strengths. In the following, some of these
aspects are discussed and a set strategies exploiting these
strengths are derived.

A. Properties of motion generation schemes

Most obviously, the learning-based approach is restricted
to zones of influence Ci,y around previous observa-
tions Cgemo- This renders the assistant completely reactive for
any first demonstration of a path. In contrast, the feedback
motion planning algorithm allows the robotic assistant to
contribute anywhere in the entire reachable set Cgee. As the
planning strategy does not incrementally evolve or adapt to
the user over time, any improvement of team performance
occurs due to the human partner. In contrast, the incremental
learning algorithm tHMM adapts not only to human prefer-
ences. Those preferences might even change and adaptation
is still provided through task repetition. This assumes that
there is a stable mutual adaptation process and path demon-
strations remain homotopic (i.e. can be continuously warped
from one demonstration to another) which is due to the fact
that the environment information is only implicitly contained
in the learned models. The problem of furcations in demon-
strations is addressed in [?] but excluded from this paper for
the sake of simplicity. Nevertheless, the number of design
parameters of the learning-based approach is significantly
larger and requires more expertise than the parameter space
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Fig. 4: Region of high confidence around mean generalized output & of the
learned trajectory model derived from previous demonstrations.

of the planning algorithm. While the SNG approach requires
only desired values for precision and coverage, the learning
framework requires a desired number of states, number of
Gaussians per state and a weighting of input importance.
The computational complexity of the the learning framework,
however, scales linearly with the input dimension while
the SNG free space approximation in planning complexity
scales exponentially with the output dimension. However,
the high computational effort of free space approximation
is necessary only once per scene and can be prepared in
advance. The remaining computational effort per new goal
configuration is tractable in our envisaged scenarios, the
lookup of the control input during execution is negligible.
The learning framework requires reasonable computational
effort for Expectation Maximization after each observation
as well as Viterbi and regression during execution.

B. Synergy strategies

We investigate, how the complementary properties of these
two algorithms for motion generation discussed above can
be beneficially combined such that synergies arise. Three
methods to exploit synergies are derived in the following:

1) Plan-based initialization: The learning algorithm is
initialized with a simulated trajectory of the feedback plan-
ner. This allows the learning-based approach to render a goal-
oriented behavior at the first execution of a specific task.
This is supposed to overcome the inability of the learning-
based method to assist actively during the first demonstration
of a path or sub-path. Therefore, one trajectory from start
configuration to goal configuration is simulated with human
force uj, = 0 and u, = wpja, according to (1). This artificial
observation serves as initial guess.

2) Prediction-quality-based homotopy blending: This
strategy exploits the probabilistic characteristics of the mo-
tion recognition and prediction algorithm. As recognition
uncertainty grows, the goal-oriented fall-back solution gen-
erated by the feedback planning algorithm is activated. A
homotopy H(t,~y) blends between the two output functions

Ur = YUlearn + (1 - '7)uplan7

with prediction certainty « € [0, 1]. The outputs of the plan-
ning algorithm and the learning algorithm are denoted wpjay

Fig. 5: 2D example of force vectors and solution according to MCDM fusion

and Ujearn respectively. Similar to [?], we regard the unnor-
malized likelihood of the state estimate as a measure for
certainty . This strategy overcomes the limitation of the
learning-based algorithm to produce active task contributions
only within the zone of influence Cie,, and blends contin-
uously into the feedback motion plan valid for the entire
accessible configuration space Cpyee.

Fig. 4 depicts two examples for the selection of wu,
depending on the confidence gained from observations (dot-
ted lines). Trajectories in the region Cie,y around previous
demonstrations result in high confidence values and wjeum
dominates the control input. Note that for the sake of clarity
Fig. 4 depicts only the = and y position components of the
example whereas velocity and force signals are equally part
of the learning, recognition and prediction algorithm and
influence the level of confidence.

3) Cost-based fusion: This method is based on the parallel
evaluation of learning and planning-based strategies and a
cost-based fusion using a hierarchical multi-criteria decision
making (MCDM) algorithm on the efficient (Pareto) frontier.
Two different utility criteria are evaluated, one from the
planning-based approach and one from the learning-based
approach.

The utility function U(x, &, w) of the planning approach
is calculated through simulation of the effects of different
forces u on the cost to go by querying the feedback plan.
The utility is maximized for force vectors along the planning
algorithm output wp,, and and minimized for the opposite
direction. Values are normalized to the interval [—1, 1]. The
value of 0 is cost-neutral.

The utility function of the learning-based algorithm is
described by the prediction certainty v € [0, 1]. The certainty
value of 1 is reached at the mean direction of the motion
prediction according to the unnormalized likelihood of the
prediction. Both utility functions are convex.

A hierarchical MCDM-scheme is deployed: The output
of the learning-based approach is evaluated for its util-
ity U (x, &, Wieam )- In case of positive utility, the output of the
learning-based approach is accepted, ®, = Ujearn. Otherwise,
the closest direction to wjeam On the efficient frontier with
non-negative utility is selected, U (x, &, u,) > 0.

W, = arg max uTulea.rn “)

Ue{uilu(wviaui)zom‘ui‘glu]eam‘}
Fig. 5 depicts an exemplary output ., of the feedback-
planning algorithm and corresponding directions with non-
negative utility U (x, &, w,.) > 0. Any output by the motion



Fig. 6: Subject operating 2-DoF virtual-reality setup

reproduction algorithm weqm + With non-negative utility is ac-
cepted. Outputs of the motion reproduction algorithm ey, -
with negative utility are rotated to the closest direction with
non-negative utility.

C. Control architecture

The control algorithm embedding the algorithms proposed
above is depicted in Fig. 7. Both methods continuously
produce wrenches Upjan, Uiearn that act on a virtual admittance
in superposition with the human partner’s force w;, exerted
through the object on the end effector of the robot.

IV. EXPERIMENTAL EVALUATION

In order to examine the complementary properties of
the proposed approaches, two experiments are conducted:
a human user study in a two-dimensional virtual scenario is
used to evaluate the approaches in terms of physical mea-
sures under controlled conditions. Furthermore, we examine
the feasibility in a large-scale setting involving kinesthetic
interaction between a human and a human-sized mobile robot
with manipulators.

A. 2-DoF Virtual Scenario

A small pilot study in a virtual reality scenario was
conducted to evaluate the performance of our proposed
approaches. Seven non-paid participants (age mean: 27.1,
std: 1.5) were asked to move a virtual point mass ob-
ject of 100kg, through a simple maze from a starting
configuration to a final configuration through the scene
without colliding with the virtual obstacles visually and
haptically displayed. The virtual object was exposed to

L U query |
Planning  dtpian 1
Algorithm w
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Fig. 7: Control structure

(a) Left-to-right HMM (b) Feedback motion plan

Fig. 8: The utilized motion generation algorithms in 2D

a virtual viscous friction of 400Ns/m. Each participant
repeated the experiment five times per each of five condi-
tions after five training trials without assistance: a) assisted
by feedback planning, b) assisted by learning-based algo-
rithm, c¢) learning-based, but pre-initialized with simulated
feedback planning, d) prediction-quality-based homotopy
blending and e) multi-criteria decision making. The virtual-
reality interface consists of a two degrees-of-freedom (an-
teroposterior and mediolateral plane of the user standing
in front) linear-actuated device (ThrustTube) with a free-
spinning handle (superoinferior direction of the user) at
the grasp point. The control algorithm is implemented in
Matlab/Simulink’s Real-Time Workshop and executed on
Linux Preempt/RT at a sampling rate of 1kHz. Attached
to the handle, a force/torque sensor (JR3) measures the
human force input. The virtual scene is visually represented
on a display placed on top of the interface, see Fig. 6.
The displayed task to transport a virtual object is visually
represented by a filled red circle and the target position in
the upper left corner of the maze (blue dot), see Fig. 8(a).
Collisions with the virtual walls should be avoided. For
illustration, a two-dimensional feedback plan is depicted in
Fig. 8(b) where the hue represents the direction towards
the goal which is expressed as constant desired velocity
vector. Table I exhibits the constants used to parameterize
the experiment.

B. Quantitative measures

We evaluate the following criteria in order to rate the
performance of the proposed approaches:

e Mean root-mean-square (RMS) deviation from the par-
ticipant’s path 7, g5 after five trials

1 T
IRMS = T/ d(w(t),Tw7H5)2dt
0

with distance for point x(t) to path 75 5

d(@(t), T2, 15) = MiNG, 7y s |27 — 2(D)]]-
This measure expresses the required amount of path
adaptation by the dyad over trials.

e Mean disagreement up which is defined orientation



Constant Equation Value
Simulated object mass M (1) 100kg - I
Simulated viscous friction D (1) 400 % - Io
Desired velocity magnitude x4 (2) 0.025 %
Proportional gain K, 3) 300 N
Derivative gain K 4 3) 60 NIE?

TABLE I: Control parameters used in 2-DoF experiment

invariant:
—uy

[ |
0, otherwise.

., ifwup -u. <OA up#0
up =

e Mean completion time 7jnean.

C. Quantitative results from human user study

The evaluation results of the properties of the planning-
based and learning-based approaches in terms of physical
measures are depicted in Fig. 9.

Regarding the RMS deviation over trials, it is visible
that the conditions d) Homotopy blending and e¢) MCDM
require the least adaptation and are in a similar range as
the b), the pure learning-based approach. Condition a), the
planning-based approach leads to stronger adaptation of the
human. The measurements of mean disagreement show that
the conditions a), d) and e) perform equally well. The mean
disagreement of these conditions is lower than in the pure
learning-based condition. The completion times of the fusion
strategies d) and e) are similar to those of the planning-
based approach and lower than in the learning-based strategy.
Condition c), the plan-initialized learning method performs
better than the pure learning-based approach in the first trial.

From the quantitative results it is visible that the fusion
strategies d) and e) combine the strengths of the planning-
based and the learning-based approaches a) and b). These
fusion methods outperform the planning-based approach
regarding the required adaptation of the human and leads
to small disagreement compared to the learning-based ap-
proach. The completion time under these conditions is on
the level of the planning approach throughout all trials and
is significantly lower than the unassisted condition in the first
trial of the learning-based approach.

A pre-initialization of the learning algorithm is simple
to implement but trains the trajectory models according to
the robotic desired solution which deviates from the human
solution. This deviation is uncomfortable for the human user
and vanishes only after a larger number of repetitions.

V. EXPERIMENTS IN 6 DEGREES OF FREEDOM

Challenges arise when the proposed methods are applied
to a cooperative load transport scenario. Properties such
as scalability to higher degrees of freedom, robustness to
sources of noise in autonomous mobile manipulation and
safe behavior outside the expected motion corridor are eval-
uated in a proof-of-concept implementation on our highly

e,

P

(a) Feedback motion plan

(b) Left-to-right HMM

Fig. 10: Motion generation algorithms in 6D (zo/yo components)

integrated experimental system that has been instrumental to
validate different aspects of human-robot collaboration?.

The mobile robot used in this experiment (see Fig. 1)
locomotes with its four-wheeled omni-directional mobile
platform which offers roughly human-like maneuverability
and smooth motion [?]. Two identical anthropomorphic
backlash-free 7-degrees-of-freedom manipulators are front-
mounted at the top of the main chassis to provide a human-
like working space [?]. Mounted onto JR3 wrench sensors,
the manipulators are equipped with Schunk PG70 two-finger
parallel grippers that allow a tight grasp of the object.
Lithium-ion polymer batteries power the system for long
periods without recharging. A point cloud of the environment
is acquired using a tilted Hokuyo UBG laser range finder.
Two Sick S300 laser range finders scan for obstacles above
the surrounding floor. The cooperatively manipulated objects
are a 1 m x 0.5 m Styrofoam board and a Mini’s 1.1 m long
steel bumper. They are moved by the human-robot dyad
through the cluttered 10m x 10 m laboratory environment.
A protoypical path is depicted in Fig. 10(b).

The software framework used in this experiment is based
on our ARCADE framework [?] suited for rapid prototyping
of perception-cognition-action loops in complex human-
robot teams scenarios. ROS is utilized for self localization.
The admittance-type control scheme is implemented in Mat-
lab/Simulink’s Real-Time Workshop and is executed on Linux
Preempt/RT at a sampling rate of 1kHz.

A. Results from experiments in 6D

For fast computation, parallelized implementations on an
Intel Core i7 920 at 2.67GHz are utilized. The computation
times for our prototypical 6D-problem are given in Table II.
A projected feedback plan is depicted in Fig. 10(a). Our
proof-of-concept implementation shows the feasibility of the
approach for large-scale human-robot setups in the domain
of cooperative load transport. The evaluation of different start
and goal configurations shows how the planning algorithm
suggests to tilt the transported Styrofoam board in order to
pass through a narrow door.

2see http://www.cotesys.org/newsroom/videos
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Computation step SNG tHMM
Calculation of neighborhood graph 6395

from point cloud (o = P. = 0.985)

Planning per new goal configuration <l1s

Expectation Maximization after ~5s
each observation

Direction lookup per control iteration < 50 s

Viterbi and regression during execution < 500 ps

TABLE II: Computation times of SNG and tHMM in 6D

VI. CONCLUSION

In this paper we propose a novel approach to goal-directed
behavior in physical human-robot interaction (pHRI) which
is based on the synergetic combination of planning and
learning-based approaches. In particular, a feedback planning
scheme is suggested for pHRI. A qualitative comparison with
learning-based approaches for the same application unveils
opportunities for fusion of both approaches to overcome lim-
itations of the individual algorithms. From our experiments
in two and six degrees of freedom, we can summarize a
number of crucial properties relevant to the application of
cooperative load transport. Experimental results show that
both investigated fundamental strategies, a learning-based as
well as a planning-based approach yield feasible implemen-
tations of active robotic assistants for lifelike tasks in six
degrees of freedom. From our quantitative evaluation, we
can state that both approaches can benefit from each other,
given a fusion algorithm that blends or switches between the
two approaches depending on the situation.
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