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1 Introduction

Recent advances in robotics research render the prospeabatic assistants en-
tering weakly structured, daily-life domestic, and indigtscenarios within reach
of the next decade. Some of the most challenging problemim dhe area ofro-
active and goal-directed physical robotic assistarteethe human. The physical
coupling between the robot and the human imposes partichklenges in terms
of real-time capability, adaptability, uncertainty of hambehavior, and safety of
the decision making and negotiation algorithms.

It is well known that the estimation of the human partnerteiion is crucial for
intuitive physical human-robot interaction [7]. Methodsestimate human intention
based on the minimum-jerk assumption [8] are often deplg¥8d4]. Within the
programming-by-demonstration framework a significantypoimethods to learn
motion patterns from human demonstration, to recognizb and to estimate hu-
man intention are developed. The closest related worksharéacally Weighted
Regression [26], Dynamic Movement Primitives [13, 23], altg Weighted Projec-
tion Regression [31], Gaussian Processes [32], and Gaugskiure Models [10].
The Gaussian Mixture Regression approach is recentlyegpfiia coaching setting
in physical human-robot interaction [18], see [2] for anallant survey. Motion
planning in the context of physical robotic assistants fiadly little reference in
the literature. Tix et al. recently presented a method improve the sampliagesty
of a path planner through haptic input while supporting thean guide to find the
goal in a two-dimensional virtual reality scenario [29].eBback motion planning
for haptic guidance using a cell-decomposition method appsed by [24] in the
context of computer-aided design. So far, most of the egstiorks investigate in-
dividual algorithms for planning [29, 24], learning/pretion [19, 4, 10, 18], and
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control [27, 16, 15, 15, 34, 6] for physical human-robot iatgion (pHRI) in a sep-
arate way. Only very few works consider the combination aféng and control
in pHRI [11, 20]. Another substantial difference in pHRI tassical robotics is the
need for human user studies to evaluate the robot behavadriman-centered way.

The contribution of this work is twofold: i) We present a répirototyping experi-
mental environment for quick and easy development of imtegrplanning, learning
and control algorithms for pHRI, their objective evaluatiand psychological eval-
uation in large-scale user studies. It includes a highifidelo degrees-of-freedom
device and seamless transfer to a highly integrated binhamahile robot with a
modular software system, which is used in studies wiflvanasers. ii) We present
novel results on theombinationof planning and learning mechanisms in phys-
ical human-robot interaction using this rapid-prototypsetup. In particular, the
complementary properties of a learning and motion preaticsiigorithm [3] and a
feedback-planning algorithm [33] are examined, in ordeddave strategies for a
synergetic combination of these two different approaches.

Most of the existing approaches toward motion generatiomdbotic physical
assistants can be described as either a) planning-baseshabps or b) approaches
based on the reproduction of human behavior from obsenatieeedback-planning
approaches suit the need for instant decision making, nimen¢gal learning algo-
rithms allows to adapt to a human partner’s (changing) peefges. As prototypical
task we investigate the cooperative transport of an objeat fan initial to a final
configuration through a cluttered environment. Similatisgs are found in mobil-
ity assistance to humans, physical rehabilitation, andmder-aided assembly. Our
proposed approach is structured as five-layered framewotiedding pluggable
algorithms for the individual layers. The algorithms araleated in human user
studies on a two-dimensional setup as well as in a full-ssitelimensional task
with a human cooperating with a mobile manipulator.

The remainder of this paper is organized as follows: After phoblem setting
and our approach are described in Section 2, the results@serged in Section 3.
Section 4 explains the experimental setup used, followethbymain insights of
this work in Section 5.

Notation: Bold characters are used for vectors and matrices. The coafign
space of the manipulated rigid object is dendggéevhich is a manifolds’ = R? in
two-dimensional case without rotation a#it= R3 x RP* in the three-dimensional
case with rotation. Thebstacle regions denotedéyn,s € €. The leftover configu-
rations are calleftee spacevhich is denote@see = € \ Gobs

2 Technical Approach

The quality of assistance benefits from goal-oriented rdlediavior — in contrast
to purely reactive behavior — as shown for example in a cadperload transport
task [17, 22]. For simplicity and clarity we focus here on gtgsical assistance in
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the redundant degrees of freedom of the task, i.e. a moragiige robot reduces the
required human effort to solve the task. Our proof-of-cqstudies show that plan-
based [14] as well as motion reproduction strategies [2D¢@4 successfully gen-
erate goal-oriented behaviors in full-scale cooperatimagport tasks and improve
assistance. These results expose complementary prertile as adaptation to hu-
man preferences in case of learning approaches and exqaitsideration of envi-
ronment knowledge in planning-based approaches indg#impotential for syner-
gies. In this work we experimentally investigate repreatve: algorithms from each
field, the sampling-based neighborhood graph (SNG) feedpknning [33] and
Gaussian mixture regression (GMR) [3] uncovering their pmentary strenghts
in the context of physical robotic assistance in coopegatianipulation tasks. In
addition, we will present a novel approach combining thage approaches and
evaluate this experimentally in a user study using the rppitbtyping setup.

Problem setting We consider the problem of a human-robot dyad cooperatively
moving an object from a start configurati®(D) € %fee to a different final configu-
rationX(tgoal) € Giree through a cluttered environment.

The articulated geometric model with six DoF approximatimg human, object
and robot for a cooperative transport task is depicted inEighe object itself can
be moved in all six degrees of freedom (DoF). For simpliaityhis work we assume
that a human partner and a robot control their posture swathitby keep a constant
configuration relative to the table on the two-dimensiomaugd planeXp,yo). As-
pects of approximation of person-object-robot represems for motion planning
are discussed in [5].

0 | )
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Fig. 1: 6-DoF reduced geometric model of the cooperatiotnpas and the object
used for calculation of free configuration sp&ge

We assume a robotic assistant is feedback-controlled swathtie commonly
manipulated object follows a virtual object impedance thaendered with inertia
matrix M, and virtual viscous frictiom.

MX + DX = U, + Uy, 1)
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wherex denotes the object pose amglandu, the effective wrenches by human and
robot, respectively. Both cooperation partners are asdumbave their individual
planstyq) n(s) and 1, ( (s) with indexs € [0, 1]. Due to continuous plan negotia-
tion the executed path regularly deviates from the initiabmputed plarty ) 1(S)
andty o), (s) and the plan has to be re-computed@), which is indicated by the
subscript.

To address the plan-generation problem, we investigataraileg-based and a
planning-based strategy. In a learning-based approachotiat initially behaves
passivei.e. u; = 0 during the task execution and observes the executedtoajec
which can be assumed to be close to the human partner’s edeyathty ) (S). In
subsequent trials the robot adopts this as its own motiamg|g, , (S) < Tx(0),n(S)-
Note that the space of learned trajectories is generally ardubspace of the free
space, but generally the subspace of learned trajectariEsger than the space
of demonstrated trajectori€giemo C Gleam € Giree, S€€ Fig. 2. Algorithms for mo-
tion learning and reproduction have limited generalizatiapabilities and can thus
cover regions neighboring the demonstrated trajectories.

In a planning-based approach the robot computes its motamlgased on en-
vironmental constraints and possibly under consideradiomanipulability con-
straints by the human partner. In consequence the robotwilagenerally differ
from the human plamy) , (S) # Ty«),n(S) @and an online negotiation is required. In

%)obs

Fig. 2: Subsets of the configuration spate= R?

contrast to path planning, feedback motion planning sjiateprepare the goal-
directed robotic assistant for this property through a iomious adjustment of the
robot’s desired patl ) ((s) from the current configuration to the goal configura-
tion.

A rapid prototyping experimental system is developed in which complex algo-
rithms for pHRI can be tested plug-and-play - also in usedistu- using modular
building blocks. In a first stage those algorithms are tested 2-Dof haptic device
in a virtual haptic environment and later directly transeéerto a large-scale an-
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thropomorphic robotic system with integrated visual tiagkand laser-range based
localization schemes, see Section 4. Interchangeableotdbcks such as an ad-
mittance and a novel risk-sensitive optimal-feedbackradier [21], are used.

We propose a five-layered taxonomyfor the modules of physical robotic assis-
tants. The topmost abstraction layer observes the envienhand the interaction
partner and generates models of both. States of the mode¢saimated and mod-
els are updated within this layer. The second layer geredgsired motion pat-
terns given a common goal for the cooperative transport hednteraction state.
Multiple implementations of this layer can be evaluatedotorently. The resulting
directions of motions are merged in the deliberative lapet tlecides among dif-
ferent generated motion patterns. From the robot’s desiggelctory, the resulting
necessary external forces on the commonly manipulatediodje calculated. The
required effort is distributed among the cooperating agnThe lowest abstraction
layer handles the reactive control of the human-robot dijahsures that any devi-
ation between the human intention and the robot’s desiratbmeesults in smooth
force/motion trajectories.

Table 1: Layers for rapid prototyping of physical robotisiatants

Layer Example implementations

Perception and modeling layer ~ Plan negotiation, intentgimetion

Generative layer Feedback planning, motion reproduction
Deliberative layer Blending, multi-criterion decision madgin
Interaction control layer Effort sharing, redundant objecse control
Reactive layer Admittance control, position-based forcerobnt

With our rapid prototyping experimental system, differatiérnative implemen-
tations of each layer are experimentally evaluated: Jdamtrpng through automatic
segmentation and verbal communication in combination imitgntion recognition
implements perception and modeling of the task and the @alb@havior [20]. Mo-
tion generated from the learned human motion model and ttimaged human
intention or plan-based alternatives [14] implement theegative layer. Two al-
ternatives are further investigated in this work. Conaurimplementations of the
generative layer generate different desired motion ttajexs. The decision on ei-
ther one single option or a blend of multiple options is lefttie deliberative layer.
Potential methods for decision and blending are propos#dsmwork. The interac-
tion control layer can be implemented as static role alioogieader/follower) [17]
or dynamic effort sharing strategy [22]. Alternatively,iskrsensitive optimal feed-
back control scheme can be applied to generate an intu@het force contribution
depending on observed human execution variability [21{hé&following, two con-
current implementations of the generative layer, the sagylased neighborhood
graph (SNG) for feedback planning [33] and the time-basedH{HMM) learn-
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ing, recognition and a learning-based framework [18, 28]tarefly reviewed, and
two alternatives for the deliberative layer are proposed.

Feedback motion planning A feedback motion planning algorithm generates a
feedback functiorK (x) for all positionsx € %tee in the accessible configura-
tion spacesiee. The SNG is a very comprehensible method, sufficiently effici
to cover higher-dimensional configuration spaces appkcédr settings with 6-
dimensional object poses at a viable resolution as reqfiiredur large-scale sce-
nario. In brief, the method consists of the following steps:

For each new map given W ee

1. Cover%ee With n-dimensional hyper balls until a specified percentade.g.
99%) is covered with desired probabiligy (e.g. 99%).
2. Create a graph representing connectedness of hyper balls

For each new goalyoal.

3. ldentify hyper ball containinggoal
4. Generate priority graph e.g. using Dijkstra’s algorithm

During execution
5. Calculate direction to next best hyper ball

Given a desired magnitude of velocity and a desired maxinabuotrforce level,
the forcé vector Uplan is calculated straightforwardly with the virtual objecirs
verse dynamical model.

Learning from demonstration Learning-based approaches to active physical as-
sistance aim to imitate the human partner’s behavior dud@rgonstrations in order
to take over the task effort instead of planning a task-tiedehavior. In contrast
to planning-based approaches, this straightforwardlp&sda human preferences.
The tHMM framework is shown to encode human trajectory destrations
efficiently and most importantly constrains motion repretithn to the configura-
tion spac€6iearn C %tee (i.€. a zone of influence) around the demonstrated con-
figurations $gemo € %learn AS proposed in [18], we combine Hidden-Markov-
Models (HMM) with Gaussian Mixture Regression (GMR) in arcriemental-
learning framework that allows modeling and reproductibisrmooth trajectories
and is well suited to ensure intuitive motion generation litygical human-robot
cooperation [20].
We investigate, how the complementary properties of thesealgorithms for
motion generation discussed above can be beneficially ecmulsiuch that synergies
arise.

Two methods to exploit synergiesare derived in the following:

1 Force in the 2D case, wrench in the 6D case



Rapid Prototyping of Planning, Learning and Control in pHRI 7

Prediction-quality-based homotopy blending exploits the probabilistic charac-
teristics of the motion recognition and prediction aldamit As recognition uncer-
tainty grows, the goal-oriented fall-back solution gemedaby the feedback plan-
ning algorithm is activated. A homotopy”(t, y) blends between the two output
functions:

Ur = YU+ (1—y)up

with prediction certaintyy € [0,1]. The outputs of the planning algorithm and the
learning algorithm are denoteg, andu, respectively. Similar to [30], we regard
the the unnormalized likelihood of the state estimate as asome for certainty.
This strategy overcomes the limitation of the learningeobalgorithm to produce
active task contributions only within the zone of influer¥gyn and blends contin-
uously into the feedback motion plan valid for the entireessible configuration
SpaC‘i‘lﬂﬂfree-

Cost-based fusion of strategiesis based on the parallel evaluation of the strate-
gies and a cost-based fusion using a sophisticated higatchulti-criteria deci-
sion making (MCDM) algorithm on the efficient (Pareto) friemt Two different
utility criteria are evaluated, one from the planning-lthapproach and one from
the learning-based approach. The utility functi@f(x,X,u) of the planning algo-
rithm is calculated through simulation of the effects offetiént forcesu on the
cost to gaby querying the feedback plan. The utility is maximized force vectors
along the planning algorithm outpup and and minimized for the opposite direc-
tion. The utility value of 0 is cost-neutral and is reacheddivections orthogonal to
the planned direction of motion.

The utility function of the learning-based algorithm is diéised by the prediction
certaintyy € [0,1]. The certainty value of 1 is reached at the mean directiohef t
motion prediction according to the unnormalized likelidaad the prediction.

A hierarchical MCDM-scheme inspired by [25] is deployedeTdutput of the
learning-based approach is evaluated for its utilityx,x, u;). In case the utility
is positive, the output of the learning-based approach ¢e@ted,u; = u;. Oth-
erwise, the closest direction tg on the efficient frontier with non-negative util-
ity 7 (x,X,uy) > 0 is selected

u= argmax u'u. 2)
ue{ui|Z (x,X,ui)>0}

Control architecture The control algorithm embedding the algorithms proposed
above is depicted in Fig. 3. Both methods continuously pcedurenchesip, u

that act on a virtual admittance in superposition with thenan partner’s forcer,
exerted through the object on the end effector of the robot.
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Fig. 3: Architecture for integrated planning, learning aaatrol in pHRI

Fig. 4: Evolution of quantitative parameters over trials
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3 Results

Trial number

The proposed approaches are evaluated in experiments @ggfecating humans.
This section describes the evaluation criteria and thetifative results. For illus-
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tration, the feedback plan as well as the learned task man@lRI in the small
scale experiment in 2DoF are shown in Figs. 5(a)-5(c), anthiolarge scale setup
in 6DoF in Figs. 5(d) -5(f).

A small pilot study in a virtual reality scenario was condrttyielding the results
depicted in Fig. 4. Seven non-paid participants (age meah; &d: 15) were asked
to move a virtual point mass object of 100kg, through a simpdee from a starting
configuration to a final configuration through the scene withamlliding with the
virtual obstacles visually and haptically displayed. Tlrtual object was exposed
to a virtual viscous friction of 400 Nsn.

Each participant repeated the experiment five times per effite conditions
after five training trials without assistance: a) assistgdeledback planning, b) as-
sisted by learning-based algorithm, c) prediction-quadiased homotopy blend-
ing, d) multi-criteria decision making, and e) learningséd, but pre-initialized with
simulated feedback planning.

Quantitative measures We evaluate the following criteria in order to rate the per-
formance of the proposed approaches:

e Mean root-mean-square (RMS) deviation from the partidipgrath 1y 15 after

five trials
1 /7
X =4| =
RMS T/O

2

X(t) —argmin|x(t) — x¢|||| dt.

X7E€Tx H5

This measure represents the required amount of adaptatitmethuman from
trial to trial. Larger values indicate a higher amount of @déon from trial to
trial.

e Mean disagreemeniy which can be defined orientation invariant:

—(un)
up = ¢ ||unll
0, otherwise.

“Up, ifup-ur <OA uy#0

Larger values of disagreemauy indicate that the human and the robotic partner
produce a higher amount of counteracting, and therefoféaret forces.
e Mean completion tim@neanas indicator of efficiency of the cooperation.

The evaluation of the properties of the planning-based aathing-based ap-
proaches in terms of physical measures are depicted in FiRedarding the RMS
deviation over trials, it is visible that the conditions cpidotopy blending and
d) MCDM require the least adaptation and are in a similar eaag the b), the
pure learning-based approach. Condition a), the planbasgd approach leads to
stronger adaptation of the human. The measurements of nisagreement show
that the conditions a), c) and d) perform equally well. Theamédisagreement of
these conditions is lower than in the pure learning-basediton. The completion
times of the fusion strategies c) and d) are similar to thdshe planning-based
approach and lower than in the learning-based strategy.
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Discussion: From the quantitative results it is visible that the fusidrategies

¢) and d) combine the strengths of the planning-based ank:#éneing-based ap-
proaches a) and b). These fusion methods outperform theipahased approach
regarding the required adaptation of the human and leadm#dl slisagreement
compared to the learning-based approach. The completrmunder these condi-
tions is on the level of the planning approach throughoutials and is significantly

lower than the unassisted condition in the first trial of #&rhing-based approach.

4 Experimental Setups

The approaches are first tested in a small-scale 2DoF vateslario and then trans-
ferred to a large-scale setup with a human-sized anthrogaritomobile robot.

Experiments in a 2 DoF Virtual Scenario with a linear haptic device, see Fig. 6,
have been conducted as a user study yielding the resultstedepn Fig. 4. The
participants had to move a virtual point mass object of 10@#gugh a simple
maze from a starting configuration to a goal configuratiooulgh the scene with-
out colliding with the virtual obstacles visually and hapliy displayed. For quick
haptic rendering of arbitrary scenes the scene informatamported from any
standard monochrome pixel or vector graphics file and israatically rendered
as stiff environment. The control algorithm is implementedVatlab/Simulink’s
Real-Time Workshopnd executed ohinux Preempt/RTat a frequency of 1kHz.
Four conditions are tested: a) assisted by feedback plgnb)rassisted by motion
reproduction, and c) assisted by a combined strategy whetiemreproduction is
pre-initialized with simulated feedback planning, d) haopy switching based on
prediction certainty, and e) a multi-criterion decisionking algorithm.

The virtual-reality interface consists of a two
degrees-of-freedom (anteroposterior and medi-
olateral plane of the user standing in front),
linear-actuated devic& hrustTubgwith a free- T
spinning handle (superoinferior direction of the:
user) at the grasp point. Attached to the ha
dle, a force/torque sensodR3 measures the
human contact force. The virtual scene is v
sually represented on a display placed on tq
of the interface, see Fig. 6. The scene inform - S
tion can be imported from virtually any stan-
dard monochrome pixel or vector graphics file Fig. 6: 2-DoF VR platform
and is automatically rendered as stiff environ-

ment. A virtual rigid polygon or ellipsoid object

with distributed grasp points can be specified and simulated
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Experiments in a full-scale scenarioare con- __
ducted within the highly integrate€oTeSys
multi-robot lat? in exemplary domain of a car-

arise when the algorithms are applied to an a |
tual cooperative load transport task. Proper

robustness to sources of noise in autonomous
mobile manipulation and safe behavior outside
the expected motion corridor are evaluated in
our highly integrated experimental system that
has been instrumental to validate different as-
pects of human-robot collaboration. As an exemplary donveérchose a classic-car
repair setting. The mobile robot used in this experimer#,/Hg. 7, locomotes with

its four-wheeled omni-directional mobile platform whicfiess roughly human-like
maneuverability and smooth motion [12]. Two identical anffomorphic 7DoF ma-
nipulators provide a human-like working space [28]. Modntato aJR3wrench
sensor, the manipulator is equipped witlsehunk PG7@wo-finger parallel grip-

per which allows a tight grasp of the object. A point cloud lo¢ £nvironment is
acquired using a tiltetHokuyo UBGIaser range finder. Tw8ick S300aser range
finders scan for obstacles above the surrounding floor. Angedamera system
covering a space of 10x10m supports the localization of menzend robots. The
cooperative transport of lflini’s steel bumper is considered through the cluttered
lab environment, see Fig. 4 for a map. More information onrtht®ot used can

be found in [20]. The cooperatively manipulated object,2ni longMini’s steel
bumper (b) weighing Dkg. The distance between the pre-defined grasp points of
human and robot is.1m.

Fig. 7: Full-scale setup

The software framework used in this experiment is based on the modular real-
time architecturd RCADE[1] suited for rapid prototyping of perception-cognition-
action loops in complex human-robot teams scenarios. drfaxtes toROSin a
seamless manner; for exampl®Salgorithms are utilized for self-localization. The
admittance-type control algorithm is implemented analsyto the VR setup and
communicates with other software modules through the bayidwidth real-time
data bas®TDB[9] at a frequency of 1 kHz.

Similar to the VR scenario, a virtual admittance is rendéneglorld coordinates
at the robot’s end effector. The mobile platform locomoteshsthat the end effector
can be controlled freely through the environment.

2Seeht t p: / / wwwv. cot esys. or g/ newsr oond vi deos for videos of pHRI experiments.
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5 Main Experimental Insights

Our rapid prototyping environment is instrumental to idigna number of crucial
properties relevant to the application of cooperative lradsport and to identify
strategies to exploit synergies between the two approachestigated. Some of
the complementary properties of the evaluated plannisgdb@and learning-based
approaches are presented in Table 2 with the focus on themgéneration.

Table 2: Qualitative properties of feedback motion plagn{osing SNG) and
learning-based approach (using tHMM) for robotic partnehndvior generation in
physical human-robot cooperation

Property Planning Learning-based approach
Initial behavior Goal oriented forée Observing
Long-term behavior Goal oriented fofte Precise reproduction of the hu-

man partner’'s preferred trajec-
tory, adapted to object dynamics
Behavior outside the presoal oriented forc® Observing
ferred corridor
Environment representation Explicit fgf-space calculation Implicit/rough through training
data
Parameter set Desired velocity, precision Number of states; number o
Gaussians per state; weighting of
input importance
Scalability Complexity of state space apemplexity grows linearly with
proximation grows exponentiallyyput dimension
with output dimension
Computational effort Pre-computation effort per sceflBgpectation maximization after
planning effort per new goal; neg@ach observation; Viterbi and re-
ligible execution time effort gression during execution

@ neglecting object dynamics and human preferences

Our large-scale experiment is used to validate the appesaptesented in Sec-
tion 3 in a lifelike scenario® For fast computation, parallelized implementations
on anintel Core i7 920 at 2.67GHwere utilized. The computation times for our
prototypical 6D-problem are given in Table 3.

In conclusion we demonstrate that the proposed modular, layered frankefmor
prototyping of pro-active physical robotic assistants edswell various different
approaches on different levels and gives an immediate ehtmevaluate the in-
terplay between modules. The evaluation in human userestuah a high-fidelity
haptic interface allows for short development cycles andkgacquisition of scien-
tific results. The transfer to the large-scale six-DoF sdenaorks seamlessly with
computational complexity remaining the greatest chakehgthe future, we intend

3 The video attachment shows the experimental setup used for tiafids the planning-based
and learning-based approaches.
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Table 3: Computation times of SNG and tHMM for robotic partbehavior gener-
ation in 6D

Computation step SNG tHMM
Calculation of neighborhood graph from point clowd=£ P. = 0.985) 639s

Planning per new goal configuration <1s

Expectation Maximization after each observation ~5s
Direction lookup per control iteration < 50us

Viterbi and regression during execution < 500us

to investigate more deeply possible options for the deditdex layer as it is to the
best of the authors’ knowledge a novel aspect in the confgtiysical human-robot
interaction but shows great potential to enhance coopergtiality significantly.
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Fig. 5: Motion generation algorithms in a 2DoF virtual haptiaze (a)-(c), and in
6DoF in the 10x10m cluttered labspace mapped by a laseefamder (d)-(f).



