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1 Introduction

Recent advances in robotics research render the prospect ofrobotic assistants en-
tering weakly structured, daily-life domestic, and industrial scenarios within reach
of the next decade. Some of the most challenging problems arein the area ofpro-
active and goal-directed physical robotic assistanceto the human. The physical
coupling between the robot and the human imposes particularchallenges in terms
of real-time capability, adaptability, uncertainty of human behavior, and safety of
the decision making and negotiation algorithms.

It is well known that the estimation of the human partner’s intention is crucial for
intuitive physical human-robot interaction [7]. Methods to estimate human intention
based on the minimum-jerk assumption [8] are often deployed[19, 4]. Within the
programming-by-demonstration framework a significant body of methods to learn
motion patterns from human demonstration, to recognize such and to estimate hu-
man intention are developed. The closest related works are the Locally Weighted
Regression [26], Dynamic Movement Primitives [13, 23], Locally Weighted Projec-
tion Regression [31], Gaussian Processes [32], and Gaussian Mixture Models [10].
The Gaussian Mixture Regression approach is recently applied to a coaching setting
in physical human-robot interaction [18], see [2] for an excellent survey. Motion
planning in the context of physical robotic assistants findsonly little reference in
the literature. Täıx et al. recently presented a method improve the sampling strategy
of a path planner through haptic input while supporting the human guide to find the
goal in a two-dimensional virtual reality scenario [29]. Feedback motion planning
for haptic guidance using a cell-decomposition method is proposed by [24] in the
context of computer-aided design. So far, most of the existing works investigate in-
dividual algorithms for planning [29, 24], learning/prediction [19, 4, 10, 18], and
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control [27, 16, 15, 15, 34, 6] for physical human-robot interaction (pHRI) in a sep-
arate way. Only very few works consider the combination of learning and control
in pHRI [11, 20]. Another substantial difference in pHRI to classical robotics is the
need for human user studies to evaluate the robot behavior ina human-centered way.

The contribution of this work is twofold: i) We present a rapid prototyping experi-
mental environment for quick and easy development of integrated planning, learning
and control algorithms for pHRI, their objective evaluation, and psychological eval-
uation in large-scale user studies. It includes a high-fidelity two degrees-of-freedom
device and seamless transfer to a highly integrated bimanual mobile robot with a
modular software system, which is used in studies with naı̈ve users. ii) We present
novel results on thecombinationof planning and learning mechanisms in phys-
ical human-robot interaction using this rapid-prototyping setup. In particular, the
complementary properties of a learning and motion prediction algorithm [3] and a
feedback-planning algorithm [33] are examined, in order toderive strategies for a
synergetic combination of these two different approaches.

Most of the existing approaches toward motion generation for robotic physical
assistants can be described as either a) planning-based approaches or b) approaches
based on the reproduction of human behavior from observations. Feedback-planning
approaches suit the need for instant decision making, incremental learning algo-
rithms allows to adapt to a human partner’s (changing) preferences. As prototypical
task we investigate the cooperative transport of an object from an initial to a final
configuration through a cluttered environment. Similar settings are found in mobil-
ity assistance to humans, physical rehabilitation, and computer-aided assembly. Our
proposed approach is structured as five-layered framework embedding pluggable
algorithms for the individual layers. The algorithms are evaluated in human user
studies on a two-dimensional setup as well as in a full-scalesix-dimensional task
with a human cooperating with a mobile manipulator.

The remainder of this paper is organized as follows: After the problem setting
and our approach are described in Section 2, the results are presented in Section 3.
Section 4 explains the experimental setup used, followed bythe main insights of
this work in Section 5.

Notation: Bold characters are used for vectors and matrices. The configuration
space of the manipulated rigid object is denotedC which is a manifoldC = R

2 in
two-dimensional case without rotation andC = R

3×RP
3 in the three-dimensional

case with rotation. Theobstacle regionis denotedCobs⊆ C . The leftover configu-
rations are calledfree spacewhich is denotedCfree= C \Cobs.

2 Technical Approach

The quality of assistance benefits from goal-oriented robotbehavior – in contrast
to purely reactive behavior – as shown for example in a cooperative load transport
task [17, 22]. For simplicity and clarity we focus here on thephysical assistance in
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the redundant degrees of freedom of the task, i.e. a more pro-active robot reduces the
required human effort to solve the task. Our proof-of-concept studies show that plan-
based [14] as well as motion reproduction strategies [20, 21] can successfully gen-
erate goal-oriented behaviors in full-scale cooperative transport tasks and improve
assistance. These results expose complementary properties such as adaptation to hu-
man preferences in case of learning approaches and explicitconsideration of envi-
ronment knowledge in planning-based approaches indicating the potential for syner-
gies. In this work we experimentally investigate representative algorithms from each
field, the sampling-based neighborhood graph (SNG) feedback planning [33] and
Gaussian mixture regression (GMR) [3] uncovering their complementary strenghts
in the context of physical robotic assistance in cooperative manipulation tasks. In
addition, we will present a novel approach combining those two approaches and
evaluate this experimentally in a user study using the rapidprototyping setup.

Problem setting We consider the problem of a human-robot dyad cooperatively
moving an object from a start configurationx(0) ∈ Cfree to a different final configu-
rationx(tgoal) ∈ Cfree through a cluttered environment.

The articulated geometric model with six DoF approximatingthe human, object
and robot for a cooperative transport task is depicted in Fig. 1. The object itself can
be moved in all six degrees of freedom (DoF). For simplicity in this work we assume
that a human partner and a robot control their posture such that they keep a constant
configuration relative to the table on the two-dimensional ground plane (x0,y0). As-
pects of approximation of person-object-robot representations for motion planning
are discussed in [5].

x0

y0z0

φ

θ
ψPerson

Object

Robot

Fig. 1: 6-DoF reduced geometric model of the cooperation partners and the object
used for calculation of free configuration spaceCfree

We assume a robotic assistant is feedback-controlled such that the commonly
manipulated object follows a virtual object impedance thatis rendered with inertia
matrixM , and virtual viscous frictionD.

Mẍ+Dẋ = uh+ur , (1)
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wherex denotes the object pose anduh andur the effective wrenches by human and
robot, respectively. Both cooperation partners are assumed to have their individual
plansτx(t),h(s) andτx(t),r(s) with index s∈ [0,1]. Due to continuous plan negotia-
tion the executed path regularly deviates from the initially computed planτx(0),h(s)
andτx(0),r(s) and the plan has to be re-computed atx(0), which is indicated by the
subscript.

To address the plan-generation problem, we investigate a learning-based and a
planning-based strategy. In a learning-based approach therobot initially behaves
passive, i.e. ur = 0 during the task execution and observes the executed trajectory
which can be assumed to be close to the human partner’s intended pathτx(0),h(s). In
subsequent trials the robot adopts this as its own motion plan τx(0),r(s)← τx(0),h(s).
Note that the space of learned trajectories is generally only a subspace of the free
space, but generally the subspace of learned trajectories is larger than the space
of demonstrated trajectoriesCdemo⊆ Clearn⊆ Cfree, see Fig. 2. Algorithms for mo-
tion learning and reproduction have limited generalization capabilities and can thus
cover regions neighboring the demonstrated trajectories.

In a planning-based approach the robot computes its motion plan based on en-
vironmental constraints and possibly under considerationof manipulability con-
straints by the human partner. In consequence the robot planwill generally differ
from the human planτx(t),r(s) 6= τx(t),h(s) and an online negotiation is required. In

Cobs

Cfree

Clearn

Cdemo

Fig. 2: Subsets of the configuration spaceC = R
2

contrast to path planning, feedback motion planning strategies prepare the goal-
directed robotic assistant for this property through a continuous adjustment of the
robot’s desired pathτx(t),r(s) from the current configuration to the goal configura-
tion.

A rapid prototyping experimental system is developed in which complex algo-
rithms for pHRI can be tested plug-and-play - also in user studies - using modular
building blocks. In a first stage those algorithms are testedon a 2-Dof haptic device
in a virtual haptic environment and later directly transferred to a large-scale an-
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thropomorphic robotic system with integrated visual tracking and laser-range based
localization schemes, see Section 4. Interchangeable control blocks such as an ad-
mittance and a novel risk-sensitive optimal-feedback controller [21], are used.

We propose a five-layered taxonomyfor the modules of physical robotic assis-
tants. The topmost abstraction layer observes the environment and the interaction
partner and generates models of both. States of the models are estimated and mod-
els are updated within this layer. The second layer generates desired motion pat-
terns given a common goal for the cooperative transport and the interaction state.
Multiple implementations of this layer can be evaluated concurrently. The resulting
directions of motions are merged in the deliberative layer that decides among dif-
ferent generated motion patterns. From the robot’s desiredtrajectory, the resulting
necessary external forces on the commonly manipulated object are calculated. The
required effort is distributed among the cooperating partners. The lowest abstraction
layer handles the reactive control of the human-robot dyad.It ensures that any devi-
ation between the human intention and the robot’s desired motion results in smooth
force/motion trajectories.

Table 1: Layers for rapid prototyping of physical robotic assistants

Layer Example implementations

Perception and modeling layer Plan negotiation, intention estimation
Generative layer Feedback planning, motion reproduction
Deliberative layer Blending, multi-criterion decision making
Interaction control layer Effort sharing, redundant object-pose control
Reactive layer Admittance control, position-based force control

With our rapid prototyping experimental system, differentalternative implemen-
tations of each layer are experimentally evaluated: Joint planning through automatic
segmentation and verbal communication in combination withintention recognition
implements perception and modeling of the task and the partner behavior [20]. Mo-
tion generated from the learned human motion model and the estimated human
intention or plan-based alternatives [14] implement the generative layer. Two al-
ternatives are further investigated in this work. Concurrent implementations of the
generative layer generate different desired motion trajectories. The decision on ei-
ther one single option or a blend of multiple options is left to the deliberative layer.
Potential methods for decision and blending are proposed inthis work. The interac-
tion control layer can be implemented as static role allocation (leader/follower) [17]
or dynamic effort sharing strategy [22]. Alternatively, a risk-sensitive optimal feed-
back control scheme can be applied to generate an intuitive robot force contribution
depending on observed human execution variability [21]. Inthe following, two con-
current implementations of the generative layer, the sampling-based neighborhood
graph (SNG) for feedback planning [33] and the time-based HMM (tHMM) learn-
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ing, recognition and a learning-based framework [18, 20] are briefly reviewed, and
two alternatives for the deliberative layer are proposed.

Feedback motion planning A feedback motion planning algorithm generates a
feedback functionK(x) for all positionsx ∈ Cfree in the accessible configura-
tion spaceCfree. The SNG is a very comprehensible method, sufficiently efficient
to cover higher-dimensional configuration spaces applicable for settings with 6-
dimensional object poses at a viable resolution as requiredfor our large-scale sce-
nario. In brief, the method consists of the following steps:
For each new map given byCfree

1. CoverCfree with n-dimensional hyper balls until a specified percentagea (e.g.
99%) is covered with desired probabilityPc (e.g. 99%).

2. Create a graph representing connectedness of hyper balls.

For each new goalxgoal.

3. Identify hyper ball containingxgoal

4. Generate priority graph e.g. using Dijkstra’s algorithm

During execution

5. Calculate direction to next best hyper ball

Given a desired magnitude of velocity and a desired maximum robot force level,
the force1 vectoruplan is calculated straightforwardly with the virtual object’sin-
verse dynamical model.

Learning from demonstration Learning-based approaches to active physical as-
sistance aim to imitate the human partner’s behavior duringdemonstrations in order
to take over the task effort instead of planning a task-directed behavior. In contrast
to planning-based approaches, this straightforwardly adapts to human preferences.

The tHMM framework is shown to encode human trajectory demonstrations
efficiently and most importantly constrains motion reproduction to the configura-
tion spaceClearn⊆ Cfree (i.e. a zone of influence) around the demonstrated con-
figurationsCdemo⊆ Clearn. As proposed in [18], we combine Hidden-Markov-
Models (HMM) with Gaussian Mixture Regression (GMR) in an incremental-
learning framework that allows modeling and reproduction of smooth trajectories
and is well suited to ensure intuitive motion generation in physical human-robot
cooperation [20].

We investigate, how the complementary properties of these two algorithms for
motion generation discussed above can be beneficially combined such that synergies
arise.

Two methods to exploit synergiesare derived in the following:

1 Force in the 2D case, wrench in the 6D case
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Prediction-quality-based homotopy blending exploits the probabilistic charac-
teristics of the motion recognition and prediction algorithm. As recognition uncer-
tainty grows, the goal-oriented fall-back solution generated by the feedback plan-
ning algorithm is activated. A homotopyH (t,γ) blends between the two output
functions:

ur = γul +(1− γ)up

with prediction certaintyγ ∈ [0,1]. The outputs of the planning algorithm and the
learning algorithm are denotedup andul respectively. Similar to [30], we regard
the the unnormalized likelihood of the state estimate as a measure for certainty.
This strategy overcomes the limitation of the learning-based algorithm to produce
active task contributions only within the zone of influenceClearn and blends contin-
uously into the feedback motion plan valid for the entire accessible configuration
spaceCfree.

Cost-based fusion of strategiesis based on the parallel evaluation of the strate-
gies and a cost-based fusion using a sophisticated hierarchical multi-criteria deci-
sion making (MCDM) algorithm on the efficient (Pareto) frontier. Two different
utility criteria are evaluated, one from the planning-based approach and one from
the learning-based approach. The utility functionU (x, ẋ,u) of the planning algo-
rithm is calculated through simulation of the effects of different forcesu on the
cost to goby querying the feedback plan. The utility is maximized for force vectors
along the planning algorithm outputup and and minimized for the opposite direc-
tion. The utility value of 0 is cost-neutral and is reached for directions orthogonal to
the planned direction of motion.

The utility function of the learning-based algorithm is described by the prediction
certaintyγ ∈ [0,1]. The certainty value of 1 is reached at the mean direction of the
motion prediction according to the unnormalized likelihood of the prediction.

A hierarchical MCDM-scheme inspired by [25] is deployed: The output of the
learning-based approach is evaluated for its utilityU (x, ẋ,ul ). In case the utility
is positive, the output of the learning-based approach is accepted,ur = ul . Oth-
erwise, the closest direction toul on the efficient frontier with non-negative util-
ity U (x, ẋ,ur)≥ 0 is selected

ur = argmax
u∈{ui |U (x,ẋ,ui)≥0}

uTul . (2)

Control architecture The control algorithm embedding the algorithms proposed
above is depicted in Fig. 3. Both methods continuously produce wrenchesup, ul

that act on a virtual admittance in superposition with the human partner’s forceuh

exerted through the object on the end effector of the robot.
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Planning
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Human
Partner

Learning
Algorithm
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Admittance

Pos.-Controlled
Robot w. Object
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U query

Fig. 3: Architecture for integrated planning, learning andcontrol in pHRI

Fig. 4: Evolution of quantitative parameters over trials
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3 Results

The proposed approaches are evaluated in experiments with cooperating humans.
This section describes the evaluation criteria and the quantitative results. For illus-
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tration, the feedback plan as well as the learned task modelsin pHRI in the small
scale experiment in 2DoF are shown in Figs. 5(a)-5(c), and for the large scale setup
in 6DoF in Figs. 5(d) -5(f).

A small pilot study in a virtual reality scenario was conducted yielding the results
depicted in Fig. 4. Seven non-paid participants (age mean: 27.1, std: 1.5) were asked
to move a virtual point mass object of 100kg, through a simplemaze from a starting
configuration to a final configuration through the scene without colliding with the
virtual obstacles visually and haptically displayed. The virtual object was exposed
to a virtual viscous friction of 400Ns/m.

Each participant repeated the experiment five times per eachof five conditions
after five training trials without assistance: a) assisted by feedback planning, b) as-
sisted by learning-based algorithm, c) prediction-quality-based homotopy blend-
ing, d) multi-criteria decision making, and e) learning-based, but pre-initialized with
simulated feedback planning.

Quantitative measures We evaluate the following criteria in order to rate the per-
formance of the proposed approaches:

• Mean root-mean-square (RMS) deviation from the participant’s pathτx,H5 after
five trials

xRMS =

√

√

√

√

1
T

∫ T

0

∥

∥

∥

∥

∥

x(t)−argmin
xτ∈τx,H5

‖x(t)−xτ‖

∥

∥

∥

∥

∥

2

dt.

This measure represents the required amount of adaptation by the human from
trial to trial. Larger values indicate a higher amount of adaptation from trial to
trial.

• Mean disagreementuD which can be defined orientation invariant:

uD =







−(uh)

‖uh‖
·ur , if uh ·ur < 0∧ uh 6= 0

0, otherwise.

Larger values of disagreementuD indicate that the human and the robotic partner
produce a higher amount of counteracting, and therefore inefficient forces.

• Mean completion timeTmeanas indicator of efficiency of the cooperation.

The evaluation of the properties of the planning-based and learning-based ap-
proaches in terms of physical measures are depicted in Fig. 4. Regarding the RMS
deviation over trials, it is visible that the conditions c) Homotopy blending and
d) MCDM require the least adaptation and are in a similar range as the b), the
pure learning-based approach. Condition a), the planning-based approach leads to
stronger adaptation of the human. The measurements of mean disagreement show
that the conditions a), c) and d) perform equally well. The mean disagreement of
these conditions is lower than in the pure learning-based condition. The completion
times of the fusion strategies c) and d) are similar to those of the planning-based
approach and lower than in the learning-based strategy.
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Discussion: From the quantitative results it is visible that the fusion strategies
c) and d) combine the strengths of the planning-based and thelearning-based ap-
proaches a) and b). These fusion methods outperform the planning-based approach
regarding the required adaptation of the human and leads to small disagreement
compared to the learning-based approach. The completion time under these condi-
tions is on the level of the planning approach throughout alltrials and is significantly
lower than the unassisted condition in the first trial of the learning-based approach.

4 Experimental Setups

The approaches are first tested in a small-scale 2DoF virtualscenario and then trans-
ferred to a large-scale setup with a human-sized anthropomorphic mobile robot.

Experiments in a 2 DoF Virtual Scenario with a linear haptic device, see Fig. 6,
have been conducted as a user study yielding the results depicted in Fig. 4. The
participants had to move a virtual point mass object of 100kgthrough a simple
maze from a starting configuration to a goal configuration through the scene with-
out colliding with the virtual obstacles visually and haptically displayed. For quick
haptic rendering of arbitrary scenes the scene informationis imported from any
standard monochrome pixel or vector graphics file and is automatically rendered
as stiff environment. The control algorithm is implementedin Matlab/Simulink’s
Real-Time Workshopand executed onLinux Preempt/RTat a frequency of 1kHz.
Four conditions are tested: a) assisted by feedback planning, b) assisted by motion
reproduction, and c) assisted by a combined strategy where motion reproduction is
pre-initialized with simulated feedback planning, d) homotopy switching based on
prediction certainty, and e) a multi-criterion decision making algorithm.

Fig. 6: 2-DoF VR platform

The virtual-reality interface consists of a two
degrees-of-freedom (anteroposterior and medi-
olateral plane of the user standing in front)
linear-actuated device (ThrustTube) with a free-
spinning handle (superoinferior direction of the
user) at the grasp point. Attached to the han-
dle, a force/torque sensor (JR3) measures the
human contact force. The virtual scene is vi-
sually represented on a display placed on top
of the interface, see Fig. 6. The scene informa-
tion can be imported from virtually any stan-
dard monochrome pixel or vector graphics file
and is automatically rendered as stiff environ-
ment. A virtual rigid polygon or ellipsoid object
with distributed grasp points can be specified and simulated.
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Fig. 7: Full-scale setup

Experiments in a full-scale scenario are con-
ducted within the highly integratedCoTeSys
multi-robot lab2 in exemplary domain of a car-
repair and with the algorithms being transferred
from the small scale setup. Practical challenges
arise when the algorithms are applied to an ac-
tual cooperative load transport task. Properties
such as scalability to higher degrees of freedom,
robustness to sources of noise in autonomous
mobile manipulation and safe behavior outside
the expected motion corridor are evaluated in
our highly integrated experimental system that
has been instrumental to validate different as-
pects of human-robot collaboration. As an exemplary domain, we chose a classic-car
repair setting. The mobile robot used in this experiment, see Fig. 7, locomotes with
its four-wheeled omni-directional mobile platform which offers roughly human-like
maneuverability and smooth motion [12]. Two identical anthropomorphic 7DoF ma-
nipulators provide a human-like working space [28]. Mounted onto aJR3wrench
sensor, the manipulator is equipped with aSchunk PG70two-finger parallel grip-
per which allows a tight grasp of the object. A point cloud of the environment is
acquired using a tiltedHokuyo UBGlaser range finder. TwoSick S300laser range
finders scan for obstacles above the surrounding floor. A ceiling camera system
covering a space of 10x10m supports the localization of humans and robots. The
cooperative transport of aMini’s steel bumper is considered through the cluttered
lab environment, see Fig. 4 for a map. More information on therobot used can
be found in [20]. The cooperatively manipulated object, a 1.2m longMini’s steel
bumper (b) weighing 1.9kg. The distance between the pre-defined grasp points of
human and robot is 1.1m.

The software framework used in this experiment is based on the modular real-
time architectureARCADE[1] suited for rapid prototyping of perception-cognition-
action loops in complex human-robot teams scenarios. It interfaces toROSin a
seamless manner; for exampleROSalgorithms are utilized for self-localization. The
admittance-type control algorithm is implemented analogously to the VR setup and
communicates with other software modules through the high-bandwidth real-time
data baseRTDB[9] at a frequency of 1kHz.

Similar to the VR scenario, a virtual admittance is renderedin world coordinates
at the robot’s end effector. The mobile platform locomotes such that the end effector
can be controlled freely through the environment.

2 Seehttp://www.cotesys.org/newsroom/videos for videos of pHRI experiments.
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5 Main Experimental Insights

Our rapid prototyping environment is instrumental to identify a number of crucial
properties relevant to the application of cooperative loadtransport and to identify
strategies to exploit synergies between the two approachesinvestigated. Some of
the complementary properties of the evaluated planning-based and learning-based
approaches are presented in Table 2 with the focus on the motion generation.

Table 2: Qualitative properties of feedback motion planning (using SNG) and
learning-based approach (using tHMM) for robotic partner behavior generation in
physical human-robot cooperation

Property Planning Learning-based approach

Initial behavior Goal oriented forcea Observing
Long-term behavior Goal oriented forcea Precise reproduction of the hu-

man partner’s preferred trajec-
tory, adapted to object dynamics

Behavior outside the pre-
ferred corridor

Goal oriented forcea Observing

Environment representation Explicit forC -space calculation Implicit/rough through training
data

Parameter set Desired velocity, precision Number of states; number of
Gaussians per state; weighting of
input importance

Scalability Complexity of state space ap-
proximation grows exponentially
with output dimension

Complexity grows linearly with
input dimension

Computational effort Pre-computation effort per scene;
planning effort per new goal; neg-
ligible execution time effort

Expectation maximization after
each observation; Viterbi and re-
gression during execution

a neglecting object dynamics and human preferences

Our large-scale experiment is used to validate the approaches presented in Sec-
tion 3 in a lifelike scenario.3 For fast computation, parallelized implementations
on anIntel Core i7 920 at 2.67GHzwere utilized. The computation times for our
prototypical 6D-problem are given in Table 3.

In conclusion we demonstrate that the proposed modular, layered framework for
prototyping of pro-active physical robotic assistants embeds well various different
approaches on different levels and gives an immediate chance to evaluate the in-
terplay between modules. The evaluation in human user studies on a high-fidelity
haptic interface allows for short development cycles and quick acquisition of scien-
tific results. The transfer to the large-scale six-DoF scenario works seamlessly with
computational complexity remaining the greatest challenge. In the future, we intend

3 The video attachment shows the experimental setup used for validation of the planning-based
and learning-based approaches.
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Table 3: Computation times of SNG and tHMM for robotic partner behavior gener-
ation in 6D

Computation step SNG tHMM

Calculation of neighborhood graph from point cloud (α = Pc = 0.985) 639s
Planning per new goal configuration < 1s
Expectation Maximization after each observation ∼ 5s
Direction lookup per control iteration < 50µs
Viterbi and regression during execution < 500µs

to investigate more deeply possible options for the deliberative layer as it is to the
best of the authors’ knowledge a novel aspect in the context of physical human-robot
interaction but shows great potential to enhance cooperation quality significantly.
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Fig. 5: Motion generation algorithms in a 2DoF virtual haptic maze (a)-(c), and in
6DoF in the 10x10m cluttered labspace mapped by a laser-range finder (d)-(f).


