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Abstract— A novel and simple network model that is capable
to reproduce quasi-stationary behavior and propagation phe-
nomena in electric power grid dynamics is introduced. A new
Kuramoto approximation to distributed generator dynamics
is obtained from combining a continuous spatial interaction
function with a discrete lattice model representing generator
positions and network structure over a continuous spatial
domain. At hand of model properties and a numerical study
quasi-stationarity of electric power grid dynamics results,
being related to non-vanishing fluctuation and oscillations in
stationary state.

I. INTRODUCTION

Developing innovative distributed controls is considered as

major challenge to guarantee operational stability of the fu-

ture bulk power supply. Solving this control problem rests on

acquiring an understanding of global dynamic mechanisms in

order to be able to define appropriate dynamic coordination

of spatially separate local controls. Comprehension of global

dynamics essentially resorts to finding conceptual models

that explain diverse observed spatio-temporal phenomena,

as for instance presented in [1]: so-called “global European

modes” extend over the spatial domain of continental Eu-

rope, representing non-homogeneous vector fields that induce

rotatory power flow over the whole spatial domain; their

shape, capacity, and frequency characteristics are assumed

to strongly depend on the large geographical scale, and to

affect operational stability.

Electric power grid dynamics are usually studied as system

of differential algebraic equations

ẋ = f(x,y), (1a)

0 = g(x,y), (1b)

where the state dynamics (1a) induce a flow on a compact

manifold defined by g. Algebraic variables are assumed to

be kept at a stationary value ys, due to local control of

reference frequency, or voltage. Physically, (1a) and (1b)

interact and evolve continuously, producing dynamics over

the whole geographical scale of the network. One way to

model such a behavior is by partial differential equations

(PDEs). Simple PDE models have been proposed to acquire

a deeper understanding of electric power system behavior,
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see [2], [3]. These models are capable to reproduce observed

phenomena such as electromechanical wave propagation at

finite speed (order 102km/s), but lack detailed insight on

their origin and the role of local dynamics together with

an interconnection structure. Simple network models, on the

other hand, use local descriptions of dynamics and the inter-

action is described by a weighted graph that represents the

electric interconnection structure [4], [5]. These interaction

types rely on assumptions such as constant impedance loads,

and constant power flow or voltages [5]–[7]. A general con-

cern about dynamic consistency of such electric power grid

models is raised in [7], due to interaction of the transmission

system phasor dynamics with load phasor dynamics bearing

the possibility to cause instability.

In this paper we propose a spatially embedded network

model of Kuramoto oscillators that mimics the electric

power grid dynamics close to an equilibrium solution. Local

oscillators are ordered in a regular lattice. The interaction of

local dynamics ensues in a mean field approach through the

aggregate system. The effect of varying network variables is

examined by means of a numerical simulation. The simula-

tions indicate that dynamics converge rather to an oscillatory

motion than to a static equilibrium characterized by (1).

The remainder of this paper is organized as follows:

The classical equations of electric power grid dynamics

are presented in II, and enhanced by a spatial context. A

Kuramoto approximation as special instance of diffusively

coupled oscillators is given. In III the spatially embedded

Kuramoto model is introduced and spatio-temporal solution

properties are examined. In IV transient and stationary dy-

namics are studied, and generic trade-offs between reactivity

and robustness are discussed on the basis of numerical

simulations.

Notation: A graph G(V , E) comprises of vertices in-

dexed as i, k ∈ V (also called buses), and edges ik ∈ E
(also called branches), and k|ik ∈ E refers to indices k
that are adjacent to i. A dynamic variable indexed as (·)ik
denotes difference (·)i−(·)k , a function of dynamic variables,

and static parameters indexed as such denote property across

the branch ik. The sets C,R, Z, and N refer to the set of

complex, real, integer, and natural numbers. Complex valued

variables are indicated by capital letter with an upper bar,

j :=
√
−1, and (·)∗ denotes the complex conjugate. By that

Z̄ ∈ C, Z̄ = a+ jb, a, b ∈ R, in phasor notation is Z∠ϑ :=
Zejϑ, Z := |Z̄| =

√
a2 + b2, ϑ := atan2(b, a). Capital letter

without bar denotes magnitude. Variables at certain (initial)

time t0, are associated to a stationary solution of (1), and

they are marked as (·)0. Bold symbols denote vector valued



quantities. The function d(·, ·) denotes distance, and || · ||
represents the Euclidean norm.

II. REPRESENTATION AND DYNAMICS OF ELECTRIC

POWER SYSTEMS

The standard model approximation of the physical net-

worked dynamics in electric power systems is presented and

enhanced by a spatial extend. A Kuramoto approximation to

the classical electric power system description is given in the

context of diffusively coupled oscillator dynamics.

A. Spatially Enhanced Classical Model Equations

The basis for electric network studies is power balance,

that is achieved by solving the complex power flow (or load

flow) problem which has the form (1b). The complex power

S̄i = Pi + jQi = V̄iĪ
∗
i , where P is active and Q reactive

power, and V̄ and Ī are voltage and current. Representing

the electric network as graph G, the power flow problem is

to balance power injections at each network bus with power

flow across branches in dependence of the electric network

parameter admittance Ȳ = Y ejγ = G+jB, where G denotes

conductance, B susceptance, and voltages Vi∠Θe,i at buses

P 0
e,i =

∑

k|ik∈E

V 0
i V

0
k

[

Gik cosΘ
0
e,ik + jBik sinΘ

0
e,ik

]

,

(2a)

Q0
e,i =

∑

k|ik∈E

V 0
i V

0
k

[

Gik sinΘ
0
e,ik − jBik cosΘ

0
e,ik

]

.

(2b)

The subscript (·)e denotes electrical quantity. The con-

nection of a mechanical generator to the electric network

is commonly modeled using the constant voltage behind

transient reactance model, see [8]. Then, the real electric

power output of machine i is

Pe,i = (V 0
i )

2Yii cos γi +
∑

k|ik∈E

V 0
i V

0
k Yik sin(Θe,ik + ϕik)

= (V 0
i )

2Gi +
∑

k|ik∈E

V 0
i V

0
k [Gik cosΘe,ik + jBik sinΘe,ik]

:= Pe,ii + Pe,ik (3)

where ϕik := π/2− γik.

The local generator dynamics result from the mechanical

swing equation

MiΘ̈m,i +DiΘ̇m,i = Pm,i − Pe,i(t) := Pa,i(t), (4)

where Θm,i is the mechanical rotor angle, Pm,i the mechan-

ical power input, which is assumed to be constant, Di is a

damping constant, Pa,i the accelerating power, Ji the mo-

ment of inertia, Mi := Jiω0 the inertia constant, and ω0 the

angular velocity of the rotating reference frame. Assuming

the rotor angle being equivalent to the voltage angle behind

transient reactance results in the relation Θm,i , Θe,i := Θi,

see [8].

Remark 1: Referring to I, (1a) ∼ (4), and (1b) ∼ (2),

where active and reactive power are linked via voltages, and

x , Θ, y , V .

The classical model for dynamics of a generator i relative

to an infinite bus, indexed as (·)∞, is obtained by multiplying

the swing equation (4) with 2Θ̇i, assuming damping to be

negligible Di = 0, see [8], and rewriting as

d

dt

[

Θ̇2
i

]

=
2

Mi
Pa,i∞Θ̇i,

⇒ Θ̇i =

√

2

Mi

∫ Θi

Θ0
i

Pa,i∞dΘ. (5)

Classically the infinite bus is a static approximation of a

large utility or network that rests at constant voltage and

frequency after any disturbance occurs. In (5), the integration

limits depend only on Θi, as Θ∞ is a static quantity and Θi

evolves relativ to it. Stationarity requires the local angular

velocity Θ̇i in (5) either be zero (when acceleration due

to Pa,i∞ is zero) or opposing the rotor motion (Θ̇i(t) is

decreasing along Θi(t), and the rotor decelerates), so that

Pa,i∞ ≤ 0 determines convergent motion. Moreover, power

balance for only one generator connected to an infinite bus

assumes ∃Θmax
i :

∫ Θmax
i

Θ0
i

Pa,i∞dΘ = 0. This condition is

known as equal area criterion [8]. Relaxing (5) such as to

represent the relative dynamics against the aggregate non-

static electric power system instead of an infinite bus, power

balance does not only depend on local angles at generator

i, as the reference angles at k 6= i, Θk, can no more be

considered as static. By that, a variable Θmax
i can no more

be defined locally, but only in a global sense as it depends

on all buses in the interconnected electric power system.

Additionally, power is transported between buses i and k
over branches ik. Capacity, and impeding characteristics of

branches, and thus their contribution to global dynamics,

depend continuously on the line length, i.e. the distance

between i and k. Due to this dependence of power flow and

interaction on continuous distance in space we introduce a

continuous spatial domain Ω ⊂ R2 equipped with continuous

spatial coordinates z. Generators are placed at z(i), and local

angles find their continuation over the branches ik along

curves in space zik, i.e. ∀i, k ∈ V , k|ik ∈ E

∃Θ̃(z ∈ zik, t) : Θi(z(i), t) < Θ̃ < Θk(z(k), t), (6a)

Θ̃(z(i), ·) = Θi(·), and

∫

zik

∂Θ̃

∂z
dz = γik, (6b)

lim
z→z(k)

Pe,ik(Θ(z(k)), Θ̃(z))(t) = 0. (6c)

From (6a) and (6b) Θ̃ can be seen as the continuous interpo-

late between Θi and Θk over the branch along zik. Together

with (6c) continuation of power flow means vanishing power

exchange with vanishing distance, as angle differences, and

by that potential differences vanish. Hence,
˙̃Θ is the transport

of the continuous angle distribution Θ̃(z, ·) over Ω in time,

and Θ is its lumped parameter approximate. Referring to (5),

we formally state the spatially enhanced version

Θ̇i =

√

2

∫

Ω

Pa,i(Θ̃(z))

Mi(z(i))
dz. (7)



describing the relative generator dynamics against all other

continuously connected, spatially separated generators.

B. Diffusive Coupling and Kuramoto Approximation

Swing dynamics (4) have been shown to be related

to diffusively coupled oscillator networks described by a

Kuramoto model [5]. The classical Kuramoto model is

the canonical form for synchronization schemes of phase-

coupled oscillators. It is an all-to-all coupled, i.e. global

information algorithm [9], where local information is ex-

changed between every subsystem at each instant in time

Θ̇i = ωi +
1

N

∑

k∈V

Kik sinΘki = ωi +
K

N

∑

k∈V

sinΘki (8a)

= ωi +KΠsin(Ψ−Θi), Π̄ = ΠejΨ =
1

N

∑

k∈V

ejΘk .

(8b)

The parameter ωi is called natural frequency, the parameter

Kik = K ∈ R is a constant coupling gain, the constant

N denotes the cardinality of V ,
∑

k∈V sin(·) is the phase

interaction function, the parameter Ψ the mean phase, and

the parameter Π ∈ [0, 1] is a measure of synchrony, i.e. phase

uniformity gives Π = 1 and maximum phase divergence

yields Π = 0, see [9], [10]. The pair (Ψ,Π) is called

mean field, and (8b) is obtained from multiplying Π̄ with

e−jΘi and substituting the imaginary parts into (8a) [10].

Kuramoto dynamics are a special instance of diffusively

coupled dynamics

Θ̇i = ωi + Γi(G,K,Θ) = ωi +
∑

k|ik∈E

Γik(Kik,Θik), (9a)

Γik(Kik,Θik) =
1

2π

∫ 2π

0

δi(Ψ)pik(Ψ,Ψ+̟)d̟. (9b)

Here, interaction is formally represented by the function Γi,

and pairwise phase interaction defined by a function Γik

relates to averaging of mutual phase perturbations defined by

the perturbation function δi with a phase response curve pik
over a full phase cycle. Diffusive interaction as an averaging

approach is valid when mutual perturbations stemming from

interactions are small w.r.t natural frequencies, i.e. interaction

is weak [10].

Remark 2: In (8) pairwise interaction over a graph is

equivalent to local interaction with the mean field, as

Γi(G,K,Θ) ,
∑

k|ik∈E

Γik(Kik,Θik) , Γi((Ψ,Π),Ki,Θi),

where Ki :=
∑

k|ik∈E Kik.

The modified version of (8a) termed non-uniform Ku-

ramoto model has been applied to the synchronization prob-

lem in electric power systems in [5] as

Θ̇i =
ωi

Di
−

∑

k∈V

P 0
ik

Di
sin(Θik + ϕik), P 0

ik = P 0
ki. (10)

The natural frequency ωi := Pm,i − V 2
i Gii is associated

to the i-th generator’s effective power input in (4), and

the symmetric coupling weights P 0
ik := V 0

i V
0
k Yik > 0

correspond to the maximum power transferred between two

generators i and k, where voltages relate to a static solution

of (2). The original sparsity structure of the connected

electric network is reduced to an effective all-to-all coupled

graph with constant weights Kik = P 0
ik/Di. The quantities

Pe,ii, γii are set to zero by convention [5]. It is termed

non-uniform as the effective coupling gains and sinusoidal

coupling functions are non-symmetric, i.e.

P 0
ik

Di
6= P 0

ik

Dk
, (11a)

sin(Θik + ϕik) + sin(Θki + ϕki) 6= 0. (11b)

In this paper we seek to find a Kuramoto-type approximation

of (7) and interpret electric power grid dynamics on that

basis.

III. SPATIALLY EMBEDDED KURAMOTO DYNAMICS

We consider a symmetric, two-dimensional continuous do-

main Ω =
{

(z1, z2)|z21 , z22 < R2, R ∈ R
+
0

}

. For the sake of

simplicity, we assume here that
√
N ×

√
N,

√
N ∈ N gener-

ators are ordered in a square lattice graph G({1, . . . ,
√
N}×

{1, . . . ,
√
N}, {{ik, ln} : |i − l| + |k − n| = 1}), where

z(i) , i are the positions of generators that coincide with

nodes of G. Generators interact with each other through the

network, i.e. local differences at i first affect the continuous

transmission system before a generator k reacts.

A. Properties of Interaction between Spatially Distributed

Generators

Due to propagation phenomena local dynamics interact

with respect to distance-dependent, constant delays τik ∝
d(i, k) := d(z(i), z(k)) := ||zik||. The regular lattice is

spatially invariant, see [11], as translation results in the

symmetry property

τi(i+k) = τi(i−k). (12)

A transmission delay induces a phase shift

|ϕik| ∝ |Θik(t)− [Θi(t− τik)−Θk(t)]| ∝ d(i, k). (13)

The translational symmetry property of delayed interaction

is related to rotation symmetry of phase-shifts as

ϕi(i+k) = −ϕi(i−k). (14)

Under the convention Pii, γii = 0, see II-B, (3) can be

written as

Pe,i =
∑

k∈V,k 6=i

P 0
ik sin(Θik+ϕik) ⇒ P 0

ik =
Pe,ik

sin(Θik + ϕik)
,

(15)

and hence, the coupling gain Kik =
P 0

ik

Di
in (10) is related to

power flow (2a) across branches as

Kik =
P 0
e,ik

Di sin(Θ0
ik + ϕik)

= const. (16)

Here, we consider power flow being continuous in space,

due to the continuation property of local angles over lines,



see (6). By means of losses stemming from transfer conduc-

tances, Kik as coupling by power transfer between generators

i and k becomes a distance-dependent continuous function

that decreases with spatial distance. A spatial kernel function

describing a local generator i’s coupling with the spatially

distributed generators k 6= i over the electric interconnection

structure is a two-dimensional Gaussian

Ki(z) = Ae−
z
2
1
+z

2
2

B > 0, (17)

parameterized by constants A and B, and centered at z(i).
Associating coupling kernels (17) to each generator i, cen-

tered at z(i), the coupling K is no more constant in an

absolute, i.e. an Eulerian reference frame, but constant from

a local, i.e. Lagrangian view, as maximum coupling presides

between least distant generators from the perspective of

each moving generator i. An absolute coupling function can

formally be stated in terms of a mean field description as in

(8b), together with the interaction equivalences in Remark 2

Γi(K(Ψ,Π)(z),Θi) ,
∑

k∈V

Γik(Ki(z),Θ) (18)

where the distributed global mean phase Ψ(z) evolves in

space and time.

Other than in II-B, continuity and differentiability prop-

erties of the relative coupling kernel (17) allow to consider

higher order effects, bearing for instance the natural inter-

pretation of accompanying diffusion of power through the

interconnection structure. In that respect, the Laplacian of

the relative spatial coupling kernel is of interest

∆Ki(z) := L(Ki), L :=
∂2

∂z21
+

∂2

∂z22
. (19)

Remark 3: In view of (13) and (2, coupling (17)

with Ki(d(i, k)) ∼ Ki(P
0
ik) , Ki(ϕik, V

0
i , V

0
k ) ,

Ki(Θik, τik, V
0
i , V

0
k ) respects both distance dependent losses

and phase-shifts due to delays.

B. Dynamics and Stationary Solutions

Starting from (9) and using (17) with (18), dynamics under

diffusive coupling can be written as

Θ̇i = ωi + Γi, (20a)

Γi = −K(Ψ,Π)|z(i)pi (20b)

, −
∑

k|ik∈E

Ki(z) ◦ pik (20c)

= −
∫

Ω

Ki(z1, z2)pi(Θi, ̟(z1, z2))d(z1, z2) (20d)

∝ −
∫ 2π

0

Ki(z)pi(Θi, ̟(z))
dz

d̟
d̟. (20e)

While the local to global interaction is formally stated in

(20b) as interaction at z(i) with some locally evaluated

global mean field, in the step (20c) the more practical

interaction over the graph is used. However, it is unclear

how the distributional local coupling functions are to be

connected with pair-wise phase interaction function over the

graph. In the step towards (20d) we took advantage of the

homogeneous space and replace the sum over the symmetric

lattic graph with a convolution integral. Here, the kernel

function satisfies
∫

Ω K(z1, z2)d(z1, z2) = const., and 0 ≥
K(z1, z2) and hence it is a stochastic kernel, operating on the

continuous spatial domain. Finally, in (20e) the domain of

integration is mapped to the circle, due to radial symmetry

in the system (point symmetry of the circle, and angular

coordinates). Due to homogeneity, the Jacobian of the spatial

parameterization dz/d ˜̟ = const everywhere, and without

loss of generality it is set to one.

Remark 4: Interestingly the family of closed curves s :=
ejt + const, t ∈ [0, 2π) , ∂Ω(R = 1), after a conformal

mapping to the unit disk. By that, (20d) ❀ (20e) assumes the

integrand to satisfy a mean-value property, being related to

the calculus of variations and the divergence theorem, see for

instance [12]. The divergence theorem relates to the existence

of a conservation law, that acts as generator of a vector

field that induces conservative flow [13]. Such families of

trajectories are minimzers of an availabe energy functional.

Assuming sinusoidal phase response as in (8a), and applying

the trigonometric identity sin(a ± b) = sin(a) cos(b) ±
cos(a) sin(b) yields

Γi =−
∫

Ω

cosΘiKi(z) sin(Θi −̟(z))dz

+

∫

Ω

sinΘiKi(z) cos(Θi −̟(z))dz (21a)

=− cosΘi

∫ 2π

0

Ki(z) sin(Θi −̟)d̟

+ sinΘi

∫ 2π

0

Ki(z) cos(Θi −̟)d̟ (21b)

:=Γi,att(K,Θ) + Γi,rep(K,Θ). (21c)

Here, Γi,att refers to attractive (synchronizing) interaction,

and Γi,rep refers to repulsive (desynchronizing) interaction,

see [5], [8], and (21b) is the spatial interaction function for

the Kuramoto dynamics (20a studied in IV. The Kuramoto

approximation (10) is a special case of the spatio-temporal

Kuramoto dynamics (21). Expanding the interaction in (10)

results in

Θ̇i =
ωi

Di
−

∑

k∈V

Kik [cosϕik sinΘik + sinϕik cosΘik] ,

(22)

which is (21) after evaluation only at buses. Hence, (22) is

a lumped parameter version of dynamics with distributional

interaction function in (21).

Remark 5: In (22) interaction precisely separates into

pairwise coupling gains, phase shifts, and the harmonic

terms which are multiplied appropriately. In contrast to

this vector case, the continuous approach (21) intertwines

coupling gains and delayed phase interaction in the context

of convolution integrals. A vector approximates a contin-

uous function. Any error resulting from such a lumped-

parameter approximation will affect the global dynamics in

the convolutive setting due to conservation properties of the

interaction with the stochastic kernel over Ω. Here, errors



will be induced on a numerical basis reflecting discrepancies

of the (locally) finite-state but infinite domain setting.

A stationary solution Θ
s(t) is defined in terms of the set

of equivalent equilibria

EΘs :=
{

Θ ∈ T
N |Θ = Θ

s + λ1, λ ∈ R
}

, T
N := R

N/ZN ,
(23)

where Θ
s satisfies

ωi = −
∑

k∈V

Γik(Ki(z),Θ
s). (24)

Assuming identical generators ωi = ωk := ω̂ = const,
condition (24) corresponds to vanishing interaction along

trajectories Θ(t) = ω̂t1 + Θ
s. In that moving frame we

define the non-dimensional global mean phase frustration as

χΩ(Θ̃(t)) :=
χ̂Ω(Θ̃)

Nχ̂Ω(Θ̃)
, χ̂Ω :=

∑

i∈V

|Γ̂i,att + Γ̂i,rep|. (25)

At Π = 1, χΩ ≅ 0, however χΩ does not relate to a degree of

synchrony, but it is a measure for aggregated local coupling

tension, where local tension manifests in local phase angle

velocity. Stationarity (24) and independence in the cyclic

coordinate ω̂ is equivalent to the conditions

||χΩ(t)|| = 0, s.t.
∂χΩ

∂ω̂
= 0 ⇔ χΩ(t) = const, (26a)

(Γ̂i,att + Γ̂i,rep) = 0 ⇔ |Γi,att + Γi,rep| = const. (26b)

Due to the distributional setting the inner product and thus

the norm is evaluated via a spatial integral. Thus the norm

vanishes over that integral, but may locally be non-zero, as

long as all non-zero contributions constitute some harmonic

function over the integral domain. Condition (26b) suggests

quasi-stationarity as varying χΩ(t) where in intervals n 2π
ω̂ ≤

t < (n + 1)2πω̂ , n ∈ N attraction and repulsion balance up

to a constant to yield arbitrary small oscillations as follows:

Frequency entrainment corresponds to exponential synchro-

nization to some bounded frequency Θ̇s ∈ [Θ̇min, Θ̇max],
and phase locking to positive invariance of the set of

bounded phase differences
{

Θ ∈ T
N : maxik∈E |Θik| ≤ γ

}

,

see [5]. Assume exponentially small differences of the form

Θi − Θi−k = Θi − Θi+k, and substituting into the lumped

parameter dynamics (22) gives together with (14) for the

sinusoidal phase interaction

N
∑

k=1

cosϕik sin(Θi −Θk)

=

N/2
∑

k=1

cosϕi(i−k) sinΘi(i−k) +

N/2
∑

k=1

cosϕi(i+k) sinΘi(i+k)

=

N/2
∑

k=1

cosϕi(i+k) sinΘi(i+k) +

N/2
∑

k=1

cosϕi(i+k) sinΘi(i+k)

=

N
∑

k=1

cosϕik sin(Θi −Θk),

0

10

10
1

5

5

15

t[s]

χ
Ω

10

1

5
t[s]

χ
Ω

Fig. 1. Global phase frustration over time; R = 7.5, dt = 0.01s

while the cosine interaction term expanded similarly results

in
N
∑

k=1

sinϕik cos(Θi −Θk) = 0.

A stationary solution of (22), and (21) then has the form

Θ̇i = ω +
∑

k∈V

Kik cos(ϕik) sin(Θi −Θk). (27)

This corresponds to a non-trivial traveling wave solution,

which is stabilized in a balance between attraction due to

Kik sin(Θi − Θk) terms and impeding terms Kik cos(ϕik),
where pairwise phase-interaction contributes homogeneously

to a global rotatory motion (27). This type of stationarity is

called quasi-stationarity.

Remark 6: Note that when the limit N → ∞ is taken,

then the continuous domain will be densly filled with os-

cillators, so that local phase difference will vanish, too , i.e.

|Θik → 0 as τik → 0. When N rests finite small mismatches

due to nonvanishing delays will in general always be present.

IV. NUMERICAL STUDY

In the following, 20× 20 Kuramoto oscillators are simu-

lated, being ordered in a regular lattice, where each square

relates to one generator phase. Dynamics evolve under in-

teration (21b, and dt refers to the discrete time step size.

The system is initialized with uniform natural frequencies

ωi = 2π/s and the phase angles are initialized uniform

random. We apply the parameterization A = R/
√
N , and

B = R2.

In Fig 1 a typical transient behavior of (21) is depicted.

The initial phase frustration of value 1 is first strongly ampli-

fied until fast convergence sets in. The converged solution is

prone to strong fluctuations in global phase frustration, which

eventually leads to sharp peaks as can be seen at 9.8s.

In Fig 2 a snapshot at that critical moment is depicted.

Although the global phase frustration exceeds the initial

value of 1, phase angle difference is globally bounded and



small. Global stress manifests in periodic, increased local

coupling tension. These fluctuations increase in frequency
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Fig. 2. Phase angles (left), and local coupling tension (right) in [rad/s],
corresponding to Fig 1 at t = 9.8s; dt = 0.01s

with refined step width dt, but do not vanish and do not

change in magnitude. According to (15), fluctuations in the

interaction function are related to power flow variations.

In fact, power flow oscillations are constantly observed in

steady state operation of large power systems, see [8]. In

the same sense as synchronization dynamics are studied on

grounds of a static power balance solution, next we illustrate

the tendency of angle dynamics due to power diffusion at t0.

For that we apply an interaction function proportional to the

Laplacian (19) of the original coupling kernel. In Fig 3 a

stationary solution is depicted. Traveling waves move across

the spatial domain, with the directions indicated in the left il-

lustration. Comparing with the coupling tension on the right,

it can be seen, that locally the fronts are moving according

to a spatial gradient in adjacent velocity differences. Hence,

the global traveling wave solution organizes not from all-

to-all interaction but from generator dynamics being driven

by only local coupling tension in stationary state. From an

energetic point of view and related to the physics of electric

power grids, strong coupling tension as in Fig 1 should

be minimized simultaneously by damping due to inertias

and global oscillations corresponding to power diffusion. An

 

 

 

 

10

10

10

10

−0.5 0 0.5

1
1

1
1

20

20

20

20

0 ±π

Fig. 3. Phase angles (left), and local coupling tension (right) in [rad/s]
due to interaction with L(Ki)

observation in that direction is that the transient overshoot in

global tension initially is much lower for the case pictured

in Fig 3, as shown in Fig 4. In control, transient overshoot

corresponds to good tracking behavior, i.e. reactivity, but at

the same time it causes sensitivity to disturbances. Hence

a robust stationary solution, i.e. phase angles and global

phase frustration are both bounded simultaneously, consists

in a trade-off of the behavior due to interaction with Ki and

L(Ki). By that, peaks in Fig 1 above a certain limit should

physically manifest in spatial drift as in Fig 3, leading to

power flow variations that interfere with constant base power

flow. Small non-vanishing fluctuations are also observed for
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Fig. 4. Global phase frustration over time corresponding to Fig 3 at t =
2.4s; R = 7.5, dt = 0.01s

interaction with L(Ki), as shown in Fig 4, however, these are

less aggressive with respect to sudden peaking phenomena.

Interestingly, the traveling wave solution minimizes phase

frustration to the same level as a quasi-homogeneous solution

as in Fig 1,2. Note the smallness of local coupling tension

in Fig 3 relative to those in Fig 2 and compare with the

magnitudes of the respective transient overshoots. Transient

overshoots result from instantaneous coupling strength as can

be seen from Fig 5. An increase in R yields an increase of

10

0
0 0.5 1

20

t[s]
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Fig. 5. Global phase frustration for increasing R; from right to left R =
5, 7.5, 10, 12.5; dt = 0.001s

the amplification factor A. At the same time the width of

the Gaussian coupling function Ki increases as the number

of generators N stays constant. Consequently the degrading

of coupling strength with distance is lowered. The peak

magnitude appears to be bounded despite further increase

in R.

Remark 7: Non-uniform Kuramoto dynamics (10) are re-

lated to those of network models for power systems via

a toplogical equivlance only of the equilibria, not the full

dynamics [14]. In that light the phenomenon of peaking

becomes more interesting, because it develops on grounds of

an “almost” (i.e. up to numerical errors) phase synchronized

(equilibrium) solution. In the same context, strong transient

overshoot can be interpreted as sensitivity of an equilibrium

subjected to disturbances represented in form of the chosen

initial condition.



V. CONCLUSION AND FUTURE OUTLOOK

Motivated by local generator dynamics relative to an infi-

nite bus, and recent advances in modeling electric power grid

dynamics in a Kuramoto oscillator framework, we approx-

imate electric power grid dynamics in terms of a spatially

embedded Kuramoto model. Interaction of spatially separate

generators is mediated by the global electric transmission

system. In numerical simulations we observe predicted quasi-

stationary behavior, and additionally spontaneous peaking

phenomena.

Future work is related to analyzing dynamic stability in

terms of transport of spatial energy distributions and their

gradients.
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