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Zusammenfassung

In dieser Arbeit werden auf dem stetigen Produktraum Rd× [0,∞) definierte max-stabile
Prozesse verwendet, um extreme Ereignisse in Ort und Zeit zu modellieren und statistisch
zu analysieren.

Max-stabile Prozesse können als unendlichdimensionale Verallgemeinerung multivari-
ater Extremwertverteilungen betrachtet werden. Diese Arbeit behandelt hauptsächlich
den max-stabilen Brown-Resnick Prozess, der als Grenzwert geeignet reskalierter punkt-
weiser Maxima unabhängiger Gauss-Prozesse gewonnen werden kann, deren Korrelations-
funktion eine zentrale Rolle einnimmt. Es werden keine räumlich isotropen Korrelations-
funktionen vorausgesetzt, welche zu isotropen max-stabilen Prozessen führen. In dieser
Arbeit ist es dem Prozess und damit den lokalen Extremen allgemeiner erlaubt, gewisse
Richtungen vorzuziehen, was in realistischen Situationen vernünftig erscheint.

Im weiteren Verlauf wird eine an die anisotropen Voraussetzungen angepasste paar-
weise Likelihood Methode verwendet, um die Parameter eines Brown-Resnick Prozesses
zu schätzen. Es wird die Konsistenz und asymptotische Normalität der resultierenden
Schätzer unter gewissen Regularitätsbedingungen bewiesen. Mittels einer Simulations-
studie auf einem regulären Gitter wird demonstriert, wie sich die paarweisen Likelihood
Schätzer verbessern, wenn die Seitenlänge des Gitters und die Anzahl der Zeitpunkte
größer werden.

Die Arbeit endet mit einer Anwendung der paarweisen Likelihood Methode auf Radar-
Regendaten aus Florida und zeigt, dass Anisotropie der Regenwetterfronten statistisch
signifikant ist.

Die Arbeit erweitert die Theorie von Davis, Klüppelberg und Steinkohl [2012a,b] und
Steinkohl [2012].
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Abstract

In this thesis we use max-stable processes defined on the continuous domain Rd × [0,∞)
to model and statistically analyse extreme events in space and time.

Max-stable processes can be viewed as the infinite-dimensional generalization of mul-
tivariate extreme value distributions. The thesis mainly considers the max-stable Brown-
Resnick process, which can be obtained as a limit of appropriately rescaled pointwise
maxima of independent Gaussian processes, whose correlation function plays a central
role. We do not assume spatially isotropic correlation functions leading to isotropic max-
stable processes. Instead, we more generally allow the process and therefore the spatial
extremes to have directional preferences, which seems reasonable in realistic situations.

We use a pairwise likelihood estimation procedure adapted to the anisotropic setting
in order to estimate the parameters of a Brown-Resnick process and prove consistency
and asymptotic normality of the resulting estimates under some regularity conditions.

We demonstrate by a simulation study on a regular grid, how the pairwise likelihood
estimates improve, when the size of the grid and the number of time points increase.

We finish the thesis by applying the pairwise likelihood method to radar rainfall mea-
surements taken in Florida and show that the extreme rainfall weather fronts are statis-
tically significantly anisotropic.

This thesis extends the theory of Davis, Klüppelberg and Steinkohl [2012a,b] and
Steinkohl [2012].





ix

Acknowledgments

First of all, I would like to thank Prof. Dr. Claudia Klüppelberg for offering me the possi-
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Chapter 1

Introduction

1.1 Max-stable Processes to model Extremes in Space

and Time

In recent years, several damaging catastrophes have caught our attention. The pictures
of Japan (2011) after the sea earthquake causing a devastating tsunami which in turn
brought about a core meltdown in the nuclear power station of Fukushima are still in
our minds. Furthermore, we remember the residents of New Orleans (2005) who had to
be evacuated and brought to the local football arena after hurricane Katrina had caused
disastrous damages.

Clearly, mathematicians and statisticians feel motivated to try and find ways to model
rarely occurring extreme events in order to be better prepared in the future. The theory of
univariate and multivariate extreme value distributions (limit distributions of appropri-
ately centred and scaled maxima of, for example, a sequence of independent and identically
distributed (i.i.d.) random variables) has been well developed during the past century. A
central problem nowadays, however, is to model extremal behaviour and accounting for
dependence structures in both space and time. A natural generalization of uni- and mul-
tivariate distributions are max-stable processes. Max-stable processes can be a useful help
when the aim is to model extremes on the continuous domain Rd× [0,∞) for some d ∈ N
(the spatial dimension).

As in Davis, Klüppelberg and Steinkohl [2012a,b] and Steinkohl [2012], our focus lies
on the so-called Brown-Resnick process, which can be obtained as the limit of rescaled
pointwise maxima of independent Gaussian space-time processes whose correlation func-
tion satisfies certain regularity conditions. However, we skip the assumption that the
correlation function is spatially isotropic as this suggests that the dependence between
two locations decreases equally, no matter if the second location is in the north of the first
one or any other cardinal direction. In a natural context, it might often seem more reason-
able to assume anisotropy; for instance, in many regions of the world, wind and therefore
clouds and the spread of rainfall have a preferred direction. This impression is also con-
firmed by Figure 1.1, which shows the daily maxima of radar rainfall measurements in
inches in some region in Florida (cf. Figure 6.1). The rainfall does not move “in circles”,
but rather elliptically. A question that arises in the context of this data example is: “can
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Figure 1.1: Daily maxima of rainfall measurements in Florida, September 6 and 7, 1999.

we even reject that extremal rainfall in the observation area behaves isotropically?”

1.2 Outline of the Thesis

The thesis is organized as follows:

In Chapter 2 we summarize basic theoretical statements and statistical tools of uni-
variate and multivariate extreme value theory, so readers do not need specific knowledge
and experience in that area. We introduce the generalized extreme value distribution, the
domain of attraction, the extreme value index and present methods to estimate it. Fur-
ther, we consider representations of multivariate extreme value distributions and ways
to model and quantify the degree of extremal marginal dependence. Important in this
context is the Pickands dependence function.

Chapter 3 introduces max-stable processes and presents examples, such as Smith’s
storm profile model and the construction of the Brown-Resnick process, which the rest of
this thesis deals with. Its connection to Gaussian space-time processes is pointed out.

In the first part of Chapter 4 we discuss different models of the correlation func-
tion of the Gaussian space-time processes underlying the construction of the max-stable
Brown-Resnick process. We particularly focus on anisotropic models and specify neces-
sary assumptions and requirements. The second part of Chapter 4 considers methods of
estimating spatial and temporal parameters of the Brown-Resnick process which are orig-
inally based on the correlation function of the Gaussian processes. The observation area
of the data is assumed to be a regular grid. We adapt the procedure of pairwise likeli-
hood estimation, introduced for isotropic models in Davis et al. [2012b], to the anisotropic
setting. Furthermore we show that the properties of strong consistency and asymptotic
normality of the pairwise likelihood estimates for an increasing number of grid and time
points still hold.
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On the basis of a simulation study, we show in Chapter 5 that the pairwise likelihood
estimates improve when augmenting the number of time points and the side length of the
grid the processes are simulated on. We use line plots, normal qq-plots and boxplots to
confirm the theory of Chapter 4.

The last chapter, Chapter 6, treats real data consisting of radar rain measurements
in Florida from 1999 to 2004. The same data set was already examined by Steinkohl
[2012]. Applying our adapted pairwise likelihood method to daily maxima and hourly
measurements on a chosen region of 120km×120km, we are interested in the question
if the results change considerably compared to to the isotropic estimation. Based on
subsampling methods, we construct asymptotic confidence intervals for the parameters
and can therefore create a hypothesis test stating that isotropy in the extremal rainfall
behaviour can be rejected. On top of that, we present and therefore “update” conditional
probability fields and return level plots of certain reference locations chosen by Steinkohl
[2012]. The plots try to answer questions like: “If the amount of rainfall in Tampa exceeds
some level x, what is the probability that the amount of rainfall in Brandon exceeds the
level y?”

1.3 Outlook and further Extensions

As stated in Section 1.2, we focus on anisotropic models for the correlation function of
the Gaussian space-time processes underlying the construction of the max-stable Brown-
Resnick process, that is, we allow directional preferences of the dependence structure.
In this thesis, we assume and model anisotropy independently for each spatial dimen-
sion. However, a possible extension might be to permit interaction between the different
directions. In Section 4.3, we get back to that issue and explain it in more detail.





Chapter 2

Introduction to Extreme Value
Theory

This chapter provides a short introduction into both univariate and multivariate extreme
value theory and, therefore, forms the mathematical basis of max-stable processes, which
are dealt with in Chapter 3. The theoretical statements in this chapter are mainly based
on Embrechts, Klüppelberg and Mikosch [1997] in the univariate case and Beirlant, Goege-
beur, Segers and Teugels [2004], Sections 8 and 9, in the multivariate part.

2.1 Univariate Extreme Value Theory

2.1.1 Basic Setting

Let X1, . . . , Xn be an i.i.d. sample with common distribution function F . The goal of
extreme value theory is to find the limiting distribution of the sample maximum Mn, that
is, we want to find real normalizing and centering sequences (an)n∈N, an > 0 for all n, and
(bn)n∈N such that

a−1
n (Mn − bn)

D→ Y, n→∞, (2.1)

where Y ∼ G for a non-degenerate distribution function G. By Definition A.1 of conver-
gence in distribution, one can rewrite (2.1) as

P(a−1
n (Mn − bn) ≤ x)→ G(x), n→∞, (2.2)

or as

F n(anx+ bn)→ G(x), n→∞, (2.3)

for all points x ∈ supp(F ) := {y ∈ R : 0 < F (y) < 1}, using that P(Mn ≤ x) = P (X1 ≤
x,X2 ≤ x, . . . , Xn ≤ x) = F n(x).

Definition 2.1 (Univariate Extreme Value Distribution). If (2.1), (2.2) or (2.3) are
satisfied we say that G is a univariate extreme value distribution and F is in its maximum
domain of attraction and write F ∈ MDA(G).

The two fundamental questions are given as follows: What are possible limit distribu-
tions G in (2.2) and what conditions have to be imposed on F such that (2.2) holds?

5
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2.1.2 Important Results and Theorems

Very important in the context of extreme value theory are max-stable distributions.

Definition 2.2 (Max-stable distributions, cf. Embrechts et al. [1997], Definition 3.2.1).
For arbitrary n ≥ 2 let X, X1, . . . , Xn be i.i.d. with common distribution function G. Then
G is called max-stable if there exist sequences (an) and (bn) ∈ R with an > 0 for all n
such that

a−1
n (Mn − bn)

D
= X. (2.4)

A fundamental result is that the set of extreme value distributions and max-stable
distributions coincide. The Fisher-Tippett theorem (see for instance Embrechts et al.
[1997], Theorem 3.2.3), which goes back to Fisher and Tippet [1928], states the possible
types of an extreme value distribution function G.

Theorem 2.3 (Fisher-Tippett). An extreme value distribution G belongs, up to scaling
and centering constants, to one of the following three families of distribution functions:

(I) Fréchet distribution:

Φα(x) =

{
0, if x ≤ 0,

exp {−x−α} , if x > 0
, α > 0. (2.5)

(II) Weibull distribution:

Ψα(x) =

{
exp {−(−x)α} , if x ≤ 0,

1, if x > 0
, α > 0. (2.6)

(III) Gumbel distribution:

Λ(x) = exp{−e−x}, x ∈ R. (2.7)

For a univariate extreme value distributionG, there exists a finite-dimensional parametriza-
tion, the Jenkinson-von Mises representation (von Mises [1936] and Jenkinson [1955]),
which covers all possible types listed in the Fisher-Tippett theorem above.

G(x) = Gγ(x) =

{
exp

{
−(1 + γx)−

1
γ

}
, if γ 6= 0,

exp {−e−x} , if γ = 0,
(2.8)

provided that 1 + γx > 0. Depending on γ, the support of Gγ is given by

supp(Gγ) =


(−γ−1,∞), if γ > 0,

(−∞,−γ−1), if γ < 0,

R, if γ = 0.

(2.9)
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The parameter γ is called the extreme value index. The case γ = 0 leads to the Gumbel
family, if γ > 0 we speak of the Fréchet family with index α := γ−1 and the case γ < 0
results in the Weibull family with index α := (−γ)−1. The Jenkinson-von Mises repre-
sentation is basically the answer to the first fundamental question about possible classes
of an extreme value distribution. The second one, the domain-of-attraction problem, is
solved by the Pickands-Balkema-de Haan Theorem (Pickands [1975] and Balkema and
de Haan [1974]; see also Theorem 3.4.5 in Embrechts et al. [1997]).

Theorem 2.4 (Pickands-Balkema-de Haan). A distribution function F is in the maximum
domain of attraction of an extreme value distribution function Gγ for γ ∈ R if and only
if there exists a positive measurable function a such that for 1 + γx > 0,

lim
u→x?

1− F (u+ xa(u))

1− F (u)
=

{
(1 + γx)−

1
γ , if γ 6= 0

e−x, if γ = 0,
= 1−GPDγ(x), (2.10)

where x? := sup{y ∈ R : F (y) < 1} is the right-end point of the distribution F and GPDγ

is the generalized Pareto distribution with index γ ∈ R.

If F ∈ MDA(Gγ) then the normalizing and centering sequences (an) and (bn) in (2.1)
are chosen in dependence from γ. We have:

(I) If γ > 0 (Fréchet family), then an = F←(1 − 1
n
) and bn = 0 for all n ∈ N. The

sequence (an) can be replaced with any sequence (ãn) such that 1− F (ãn) ∼ 1
n

as
n→∞.

(II) If γ < 0 (Weibull family), then an = x?−F←(1− 1
n
) and bn = x? for all n ∈ N. The

sequence (an) can be replaced with any sequence (ãn) such that 1−F (x?− ãn) ∼ 1
n

as n→∞.

(III) If γ = 0 (Gumbel family), then an = a(bn) and bn = F←(1− 1
n
) for all n ∈ N. Here

a is the function in (2.10).

For the respective proofs, we refer to Embrechts et al. [1997], Section 3.3.

2.1.3 Statistics of Univariate Extremes

In the following we present statistical methods in univariate extreme value theory. The
first part of this subsection deals with estimators of the extreme value index γ of the
extreme value distribution Gγ. The second part presents tail estimators of a distribution
function F that is assumed to be in the maximum domain of attraction of Gγ.

Estimators of the extreme value index

Method of block maxima. Consider a sample of identically distributed (but not neces-
sarily independent) random variables X1, . . . , Xn for n ∈ N. The method of block maxima
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suggests to divide the set into k different groups of size m and take the maximum Yi over
each group i = 1, . . . , k, that is,

Yi =
im∨

r=(i−1)m+1

Xr, i = 1, . . . , k, (2.11)

where m ∈ N is chosen such that km = n holds. For instance, if m = 365 and Xr

is the amount of rainfall on day r for r ∈ {1, . . . , n} at a certain fixed location then
Yi, i ∈ {1, . . . , k}, represents the maximum amount of rainfall in year i. The sample
Y1, . . . , Yk is assumed to be independent and identically distributed with an extreme value
distribution function Gγ,µ,σ for µ, γ ∈ R and σ > 0, given by (cf. (2.8))

Gγ,µ,σ(x) = exp

{
−(1 + γ

x− µ
σ

)−
1
γ

}
, x ∈ R, (2.12)

where 1+γ x−µ
σ

> 0. The parameters µ and σ are scaling parameters. We set θ := (γ, µ, σ).
Now assume to have observed a set of realizations {y1, . . . , yk} of Y1, . . . , Yk and let gθ
denote the density of Gθ. Then, the likelihood L is equal to

L(θ) =
k∏
i=1

gθ(yi)1{1+γ
yi−µ
σ

>0},

and the maximum likelihood estimator θ̂n is obtained by maximizing L with respect to
θ ∈ Θ for a suitable parameter space Θ. As the support of L(θ) depends on θ itself, the
estimation is non-regular. However, Smith [1985] shows that θ̂n is consistent and asymp-
totically normal if γ > −1

2
.

Pickands’ estimator. For n ∈ N, consider a sample of i.i.d. random variables X1, . . . , Xn

with common distribution function F . The non-parametric Pickands’ estimator (Pickands
[1975]) relies on the fact that if F is in the maximum domain of attraction of an extreme
value distribution Gγ, then we have

lim
t→∞

F←(1− 1
2t

)− F←(1− 1
t
)

F←(1− 1
t
)− F←(1− 2

t
)

= 2γ, (2.13)

see for instance Embrechts et al. [1997], Theorem 3.4.5. (c). Under the assumption that
F is continuous and replacing F by the empirical distribution function F̂n, given by

F̂n(t) =
1

n

n∑
i=1

1{Xi≤t}, t ∈ R

= X(k), t ∈ (
k − 1

n
,
k

n
],

where X(1) ≤ X(2) ≤ · · · ≤ X(n) denotes the ordered sample, equation (2.13) yields

γ ≈ 1

log 2
log

F̂←n (1− 1
2

2k
n

)− F̂←n (1− 2k
n

)

F̂←n (1− 2k
n

)− F̂←n (1− 22k
n

)
=

1

log 2
log

X(n−k) −X(n−2k)

X(n−2k) −Xn−4k)

,
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where t is replaced by n
2k

for k = kn < n such that k
n
→ 0 as n→∞. For stability reasons

Pickands’ estimator is chosen as

γ̂
(P )
k :=

1

log 2
log

X(n−k+1) −X(n−2k+1)

X(n−2k+1) −Xn−4k+1)

. (2.14)

For debates on how to choose k, see for example Embrechts et al. [1997], Section 6.4. If

k = kn →∞ and k
n
→ 0 as n→∞, Pickands’ estimator γ̂

(P )
k fulfills the properties of con-

sistency and asymptotic normality, see for instance Embrechts et al. [1997], Theorem 6.4.1.

Tail Estimators

In the following, we suppose again that the distribution function F is in the maximum
domain of attraction of an extreme value distribution Gγ. The purpose of estimating the
tail F̄ := 1 − F of F is that it is accompanied by a p-quantile estimator xp, p ∈ (0, 1),
through the equation 1− p = F̄ (xp). We present a very popular method, the Peaks Over
Threshold (POT) method.

Peaks Over Threshold. The starting point of the POT method is equation (2.10) of the
Pickands-Balkema-de Haan Theorem: For a random variable X ∼ F and a positive mea-
surable function a we have

lim
u→x?

F̄ (u+ xa(u))

F̄ (u)
= lim

u→x?
P
(
X − u
a(u)

> x|X > u

)
= lim

u→x?
F̄u(a(u)x)

(2.10)
= GPDγ(x),

(2.15)

where Fu(y) := P (X ≤ u+ y|X > u) for y > 0 is the excess distribution function. Notice

that F̄u(y) = P (X > u+ y|X > u) = P(X>u+y)
P(X>u)

= F̄ (u+y)

F̄ (u)
, and therefore

F̄ (u+ y) = F̄ (u)F̄u(y). (2.16)

Now the POT procedure is as follows:

(i) Choose a rather high threshold u in such a way that F̄ (u) can still be estimated by
the empirical tail

ˆ̄Fn(u) =
1

n

n∑
i=1

1{Xi>u} =:
Nu

n
. (2.17)

(ii) Use the GPD approximation based on (2.15):

0 = lim
u→x?

sup
0<xa(u)<x?−u

∣∣F̄u(xa(u))−GPDγ(x)
∣∣

y:=xa(u)
= lim

u→x?
sup

y<x?−u

∣∣∣∣F̄u(y)−GPDγ

(
y

a(u)

)∣∣∣∣ (2.18)
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As u and therefore a(u) are fixed, set β := a(u) and interpret β as a scaling param-
eter. This yields

GPDγ

(
y

a(u)

)
=


(

1 + γ y
a(u)

)− 1
γ

=
(

1 + γ y
β

)− 1
γ
, if γ 6= 0,

exp
{
− y
a(u)

}
= exp

{
− y
β

}
, if γ = 0.

= GPDγ,β(y).

(2.19)

(iii) For i ∈ {1, . . . , n} such that Xi > u (i.e. the ith observation is an exceedance), define
Yi := Xi − u as the excess. As Nu denotes the number of exceedances, the excesses
are given by Y1, . . . , YNu . Based on the GPD approximation, one now assumes they
are exactly GPD distributed and estimates the parameters of GPDγ,β by maximum

likelihood estimation. We denote the corresponding estimators by γ̂ and β̂.

(iv) Using the estimators obtained in (iii), it follows from (2.16) and (2.17) that an
estimator of the tail F̄ is given by

ˆ̄F (u+ y) =
Nu

n
GPDγ̂,β̂(y) for y > 0. (2.20)

(v) A remaining problem is the choice of u. One possibility is to consider the mean
excess function of GPDγ,β.

Definition 2.5 (Mean Excess Function, cf. Embrechts et al. [1997], Def. 6.2.3). Let
H be a distribution function. Then its mean excess function eH is given by

eH(u) := EH [X − u|X > u] , 0 ≤ u < sup{y ∈ R : 0 < H(y) < 1}, (2.21)

where X is a random variable with distribution function H.

The mean excess function of GPDγ,β turns out to be linear in u. As for large u it
holds that F̄u(y) ≈ GPDγ,β(y), one can choose u so high that the empirical mean
excess function en, given by

en(u) =
1

Nu

n∑
i=1

(Xi − u)1{Xi>u},

is approximately linear for values larger than u.

The following section deals with the generalization of extreme value theory of one-dimensional
to multivariate samples. The main change is due to the structure of the dependence be-
tween the respective margins of the multivariate distribution under consideration.

2.2 Multivariate Extreme Value Theory

For the definitions of vector operations, such as the componentwise maximum of two or
more vectors, we refer to the list of notations and conventions that can be found in Section
A.1.
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2.2.1 Basic Setting

Let X1, . . . ,Xn be an i.i.d. d-variate sample with common distribution function F . As in
the univariate case, the aim of multivariate extreme value theory is to find the limiting
distribution of the pointwise sample maximum Mn, that is, we want to find normalizing
and centering sequences (an)n∈N, an > 0 for all n, and (bn)n∈N such that

a−1
n (Mn − bn)

D→ Y , n→∞, (2.22)

where Y ∼ G for a non-degenerate d-variate distribution function G. By the definition of
convergence in distribution and exploiting that G is continuous because its margins are
continuous, one can rewrite (2.22) as

P(a−1
n (Mn − bn) ≤ x)→ G(x), n→∞, (2.23)

or as

F n(anx+ bn)→ G(x), n→∞, (2.24)

for all points x ∈ supp(F ) = {y ∈ Rd : 0 < F (y) < 1}, using that P(Mn ≤ x) = F n(x).

Definition 2.6 (Multivariate Extreme Value Distribution). If (2.22), (2.23) or (2.24)
are satisfied we say that G is a multivariate extreme value distribution and F is in its
maximum domain of attraction and write as F ∈ MDA(G).

As the margins of a converging multivariate distribution function necessarily converge
to the respective margins of the limit function, one should note that if F ∈ MDA(G) then
it follows that for all j = 1 . . . d we have Fj ∈ MDA(Gj) and Gj is a univariate extreme
value distribution. Here Fj and Gj denote the marginal distribution functions of F and
G, respectively. Recall that one can therefore parametrize Gj for all j = 1 . . . d using the
usual univariate parametrization (see for example Embrechts et al. [1997], page 294):

Gj(xj) = G
γj
j (xj) =

exp
(
−(1 + γj

xj−µj
σj

)
− 1
γj

)
, if γj 6= 0

exp
(
− exp(−xj−µj

σj
)
)
, if γj = 0, j = 1, . . . , d,

(2.25)

provided that 1 + γjx > 0. Here µj ∈ R and σj > 0 denote the centering and normalizing
parameters, respectively. According to the respective distributions, the case γj = 0 leads
to the Gumbel family, if γj > 0 we speak of the Fréchet family and the case γj < 0 results
in the Weibull family. As in univariate extreme value theory, an important concept in the
multivariate case is the concept of max-stability, see for instance Beirlant et al. [2004],
Section 8.2.1.

Definition 2.7 (Max-Stability). A d−variate distribution function G is called max-stable
if the following condition is satisfied: For all k ∈ N+ there exist vectors αk > 0 and βk
such that

Gk(αkx+ βk) = G(x), x ∈ Rd. (2.26)



12 CHAPTER 2. EXTREME VALUE THEORY

The interpretation is that for an i.i.d. sample Y 1, . . . ,Y k with common max-stable
distribution function G there are centering and normalizing vectors βk and αk such that

applying them toM k(Y ) :=
k∨
i=1

Y i we obtain a random vector whose distribution is again

G, i.e.

α−1
k (M k(Y )− βk)

D
= Y 1, for all k ∈ N+.

Recall that in the univariate case the classes of max-stable distributions and of non-
degenerate extreme value distributions coincide, see for example Embrechts et al. [1997],
Theorem 3.2.2. This also holds for the multivariate setting, for a proof see Beirlant et al.
[2004], Section 8.2.2.
The difference between univariate and multivariate extreme value statistics mainly lies
in the fact that in addition to modelling the distribution of the one-dimensional margins
(for which the univariate techniques can be used), one has to model the class of limiting
dependence structures between them, which is not possible with the help of a finite-
dimensional parametric family like the one in (2.25). The following subsection presents
representations for multivariate extreme value distributions, using models that try to
capture the extremal dependence structure.

2.2.2 Representations of Multivariate Extreme Value Distribu-
tions

For convenience let G be a d-variate extreme value distribution with standard Fréchet

margins, i.e. for all j = 1 . . . d we have P(Gj ≤ zj) = e
− 1
zj for 0 < zj < ∞. If a d-variate

extreme value distribution G̃ does not have standard Fréchet margins, one can standardize
those by setting

G(z) = G̃
(
G̃1
←
(

e
− 1
z1

)
, . . . , G̃d

←
(

e
− 1
zd

))
, z = (z1, . . . , zd) ∈ (0,∞). (2.27)

This standardization relies on the so-called probability integral transform method, accord-
ing to which for a random variable Y with continuous distribution function F and a
random variable U that is uniformly distributed on the interval (0, 1) we have:

(i) F (Y )
D
= U and

(ii) F←(U)
D
= Y.

To obtain (2.27) one has to apply the method as follows:

Let Y = (Y1, . . . , Yd) be a random vector with Yj ∼ G̃j and set Uj := G̃j(Yj)
(i)∼

Unif(0,1) for all j. The inverse of the standard Fréchet distribution function is given
by t 7→ − log(t)−1 for t ∈ (0, 1). So by (ii) we have that the distribution of the random
vector (− log(U1)−1, . . . ,− log(Ud)

−1) has standard Fréchet margins. Furthermore observe
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that for z = (z1, . . . , zd) ∈ (0,∞) we get

P(− log(U1)−1 ≤ z1, . . . ,− log(Ud)
−1 ≤ zd)

= P
[
− log

{
G̃1(Y1)

}−1

≤ z1, . . . ,− log
{
G̃d(Yd)

}−1

≤ zd

]
= P

[
Y1 ≤ exp

(
− 1

z1

)
, . . . , Yd ≤ exp

(
− 1

zd

)]
= G(z)

with G(z) in (2.27).
A max-stable distribution function (i.e. an extreme value distribution) can be represented
via an exponent measure. A proof for the two-dimensional case can be found in Balkema
and Resnick [1977] (Theorem 3).

Theorem 2.8. A d-variate distribution function G with standard Fréchet margins is
max-stable if and only if there exists a σ-finite measure µ on [0,∞)\{0} such that

G(z) = exp {−µ([0, z]c)} , z ∈ [0,∞]. (2.28)

where for a set E ⊂ Rd we denote by Ec its complement in Rd.

Definition 2.9 (Exponent Measure). The measure µ in (2.28) is called exponent mea-
sure.

Remark 2.10 (Homogeneity relation of the exponent measure). From the max-stability
of G one can conclude the following homogeneity relation of µ:

µ(sB) = s−1µ(B), 0 < s <∞, B ∈ B([0,∞)\{0}), (2.29)

where B([0,∞)\{0}) denotes the set of all Borel subsets of [0,∞)\{0}.

By means of the exponent measure we can define the so-called stable tail dependence
function (see for example Beirlant et al. [2004], page 257).

Definition 2.11 (Stable Tail Dependence Function). The stable tail dependence function
of a multivariate extreme value distribution G with exponent measure µ is defined by

l(v) =µ([0,v−1]c) (2.30)

=− logG(v−1), v = (v1, . . . , vd) ∈ [0,∞]. (2.31)

Notice that it follows from (2.27) that in terms of the unstandardized distribution
function G̃ the stable tail dependence function l can be expressed by

l(v) = − log G̃
(
G̃1
←

(exp(−v1)), . . . , G̃d
←

(exp(−vd))
)
, v = (v1, . . . , vd) ∈ [0,∞].

(2.32)

Proposition 2.12 (Properties of the stable tail dependence function). The stable tail
dependence function l as defined in (2.30) has the following properties (cf. Beirlant et al.
[2004]):
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(i) l(sv) = sl(v) for 0 < s <∞, v ∈ [0,∞].

(ii) l(ej) = 1 for j = 1 . . . d where ej is the jth unit vector in Rd.

(iii)
d∨
j=1

vj ≤ l(v) ≤
d∑
j=1

vj for v ∈ [0,∞).

(iv) l is convex.

If l has the form of the lower bound in property (iii) then the margins of G are
completely dependent and if l has the form of the upper bound then they are independent.
In the following we will use pseudo-polar coordinates to introduce the spectral measure
of the exponent measure µ of the multivariate extreme value distribution G. We stick
close to Beirlant et al. [2004], Section 8.2.3. Let ‖·‖1 and ‖·‖2 be two arbitrary norms
on Rd and let S2 := {u ∈ Rd : ‖u‖2 = 1} denote the unit sphere with respect to ‖·‖2.
Furthermore we denote by r := ‖z‖1 and u := z

‖z‖2 the radial and the angular part of the

vector z ∈ Rd\{0}, respectively, and we define T to be the function that maps z onto r
and u, i.e.

T : Rd\{0} → (0,∞)× S2, z 7→ (r,u). (2.33)

The mapping T is invertible and the inverse is given by T−1(r,u) = ru
‖u‖1 . In the context

of this setting we can now define the spectral measure S on the set U := S2 ∩ [0,∞).

Definition 2.13 (Spectral Measure). The spectral measure S on U is defined by

S(B) := µ

({
z ∈ [0,∞) : ‖z‖1 ≥ 1,

z

‖z‖2

∈ B
})

, B ∈ B(U ). (2.34)

Example 2.14. Let d = 2 and ‖·‖1 = ‖·‖2 = ‖·‖∑ where ‖·‖∑ is the sum-norm, that is

‖·‖∑(x) =
d∑
j=1

xj for x ∈ Rd. Then the set U is given by

U = {u ∈ [0,∞) : u1 + u2 = 1} = S2,

where S2 is called the unit simplex.

An important representation of the multivariate extreme value distribution G and its
unstandardized analogue G̃ is based on the spectral measure S.

Theorem 2.15. A multivariate distribution function G with standard Fréchet margins is
a multivariate extreme value distribution function if anf only if G possesses the represen-
tation

G(z) = exp

−
∫
U

d∨
j=1

(
uj
‖u‖1

1

zj

)
S(du)

 , z ∈ [0,∞], (2.35)

with U = S2 ∩ [0,∞] and S defined in (2.34) such that∫
U

uj
‖u‖1

S(du) = 1, j = 1 . . . d. (2.36)
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This representation was proved by de Haan and Resnick [1977].

Remark 2.16. In terms of the unstandardized distribution G̃, (2.35) reads as

G̃(x) = exp


∫
U

d∨
j=1

(
uj
‖u‖1

log G̃j(xj)

)
S(du)

 , x ∈ Rd. (2.37)

Proof of the necessary part (Sketch, cf. Beirlant et al. [2004], pages 258/259). First we
derive the spectral decomposition (2.38) (de Haan and Resnick [1977]) of the exponent
measure µ. From the homogeneity relation (2.29) we can conclude that

µ

({
z ∈ [0,∞) : ‖z‖1 ≥ r,

z

‖z‖2

∈ B
})

= r−1S(B), 0 < r <∞, B ∈ B(U ).

This implies that µ can be written in terms of polar coordinates as a product of measures:

µ ◦ T−1(dr, du) = r−2drS(du). (2.38)

It follows that for any measurable function g : [0,∞)\{0} → R we have:

∫
[0,∞)\{0}

g(z)µ(dz) =

∫
U

∞∫
0

g

(
ru

‖u‖1

)
r−2drS(du)

=

∫
U

∞∫
0

g(ru)r−2dr‖u‖−1
1 S(du). (2.39)

A consequence is that

− logG(z) =

∫
[0,∞)\{0}

1

{
d∨
j=1

yj
zj
> 1

}
µ(dy)

(2.39)
=

∫
U

d∨
j=1

(
uj
‖u‖1

1

zj

)
S(du), z ∈ [0,∞],

where ∫
U

uj
‖u‖1

S(du) = 1, for all j = 1, . . . , d.

Right at the beginning of this section we could have chosen other margins for the mul-
tivariate extreme value distribution G, for instance standard extremal Weibull margins,
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that is Gj(zj) = ezj for zj < 0, j = 1, . . . , d. That choice leads to the following Pickands
representation of G (see Pickands [1981]):

G(z) = exp


∫
U

d∨
j=1

ujzjS(du)

 , z < 0, (2.40)

such that ∫
U

wjS(du) = 1, for all j = 1, . . . , d.

2.2.3 Independence and Complete Dependence

As mentioned at the beginning of this chapter, an important topic in multivariate extreme
value theory is the degree of dependence between the margins of a multivariate extreme
value distribution G.

Recall that G is independent if it factorizes into its margins Gj, j = 1, . . . , d, i.e.

G(x) =
d∏
j=1

Gj(xj), x ∈ Rd.

In terms of the spectral measure S of G (cf. (2.37)) this means that for any S-integrable
function f : U → R we have∫

U

f(u)S(du) =
d∑
j=1

‖ej‖1f

(
ej
‖ej‖2

)
, (2.41)

that is, S is made up of point masses of size ‖ej‖1 at points
ej
‖ej‖2 (see Beirlant et al. [2004],

Section 8.2.3).
Complete dependence of G occurs if

G(x) =
d∨
j=1

Gj(xj), x ∈ Rd.

Let u0 = (u0, . . . , u0) ∈ U ∩ {x = (x1, . . . , xd) ∈ Rd : xj = xk for all j, k = 1, . . . , d}. For
example, taking d = 2 and ‖·‖1 = ‖·‖2 = ‖·‖∑ (see Example 1 above) yields u0 = (1

2
, 1

2
).

Then, independence in terms of S expresses as∫
U

f(u)S(du) =
‖u0‖1

u0

f(u0) (2.42)

for a function f as in (2.41). In that way S results in one single point mass of size ‖u0‖1
u0

at the point u0 (see again Beirlant et al. [2004], Section 8.2.3).
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2.2.4 The bivariate Case

In the following we consider the special case d = 2, that is, the bivariate case. Furthermore
we choose the norms ‖·‖1 = ‖·‖2 = ‖·‖∑ as in Example 1. Recall that under these
conditions the set U is equal to the unit simplex S2 = {(t1, t2) ∈ [0, 1]2 : t1 + t2 = 1} . A
useful tool to measure the dependence between the margins of a bivariate extreme value
distribution is its Pickands dependence function. It can be regarded as the restriction of
the stable tail dependence function, defined in Definition 2.11, to S2.

Definition 2.17 (Pickands Dependence Function (Pickands [1981])). Let G be a bivariate
extreme value distribution function with standard Fréchet margins and l its stable tail
dependence function given by

l(v1, v2) = − logG

(
1

v1

,
1

v2

)
, 0 ≤ v1, v2 ≤ ∞.

The Pickands dependence function A of G is defined as

A(t) = l(1− t, t), t ∈ [0, 1]. (2.43)

Observe that not only is A determined by l, but the opposite holds as well: Let
0 ≤ v1, v2 ≤ ∞ such that v1 + v2 > 0. Then

l(v1, v2)
Prop. 2.12 (i)

= (v1 + v2)l

(
v1

v1 + v2

,
v2

v1 + v2

)
= (v1 + v2)l

(
1− v2

v1 + v2

,
v2

v1 + v2

)
= (v1 + v2)A

(
v2

v1 + v2

)
. (2.44)

Remark 2.18. The Pickands dependence function can alternatively be defined as

A(t) = l(t, 1− t), t ∈ [0, 1]. (2.45)

From the properties of the stable tail dependence function (see Proposition 2.12) we
can conclude the following properties of a Pickands dependence function.

Proposition 2.19 (Properties of a Pickands Dependence Function, cf. Beirlant et al.
[2004], page 268). A Pickands dependence function A satisfies the following two properties:

(i) (1− t) ∨ t ≤ 1 for t ∈ [0, 1].

(ii) A is convex.

Again, the upper bound and the lower bound in (i) are related to independence and
complete dependence of the margins of the underlying extreme value distribution, respec-
tively. The representation of G in terms of the stable tail dependence function l can be
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used to derive a representation in terms of the Pickands dependence function A. We have
that for 0 ≤ z1, z2 ≤ ∞

G(z1, z2)
(2.31)
= exp

{
−l
(

1

z1

,
1

z2

)}
= exp

{
−z1 + z2

z1z2

A

(
z1

z1 + z2

)}
. (2.46)

The relation (2.27) can be used to express (2.46) in terms of the unstandardized distri-
bution function G̃:

G̃(x1, x2)
(2.27)
= G

(
− 1

log G̃1(x1)
,− 1

log G̃2(x2)

)
(2.46)
= exp

{[
log G̃1(x1) + log G̃2(x2)

]
A

(
log G̃2(x2)

log G̃1(x2) + log G̃2(x2)

)}

= exp

log
[
G̃1(x1)G̃2(x2)

]
A

 log G̃2(x2)

log
[
G̃1(x2)G̃2(x2)

]
 . (2.47)

Theorem 2.20 (Connection between the Pickands dependence function and the spectral
measure). In the current context, let G be a multivariate extreme value distribution func-
tion with standard Fréchet margins, S the corresponding spectral measure and l and A its
stable tail dependence function and Pickands dependence function, respectively. Then A
possesses the following representation:

A(t) = 1− t+

∫
(0,t]

S([0, u])du, t ∈ [0, 1]. (2.48)

Proof. Recall that l is given by l(v1, v2) = − logG(v−1
1 , v−1

2 ) for 0 ≤ v1, v2 ≤ ∞. So by the
de Haan-Resnick representation (2.35) we conclude

l(v1, v2) =

∫
S2

u1

u1 + u2

v1 ∨
u2

u1 + u2

v2 S(d(u1, u2))

=

∫
S2

1

u1 + u2

(u1v1 ∨ u2v2) S(d(u1, u2)) (2.49)

where, according to (2.36), the spectral measure S fulfills∫
S2

uj
u1 + u2

S(d(u1, u2)) =

∫
S2

ujS(d(u1, u2)) = 1 for j ∈ {1, 2}.

In the bivariate setting we can identify (u1, u2) ∈ S2 = {(u1, u2) ∈ [0, 1]2 : u1 + u2 = 1}
via (u, 1− u) with u = u1 (or u = u2). So (2.49) turns into

l(v1, v2) =

∫
[0,1]

(uv1 ∨ (1− u)v2)S(du).
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where S satisfies ∫
[0,1]

uS(du) =

∫
[0,1]

(1− u)S(du) = 1. (2.50)

Now the definition of the Pickands dependence function A yields

A(t) = l(1− t, t) =

∫
[0,1]

(u(1− t) ∨ (1− u)t)S(du) (2.51)

= t

∫
[0,1]

(1− u)S(du) + (1− t)
∫

[0,1]

uS(du), t ∈ [0, 1], (2.52)

and by (2.50) we have

∫
(t,1]

uS(du) =

∫
(t,1]

S(du)−
∫

(t,1]

S(du) +

∫
(t,1]

uS(du)

=

∫
[0,1]

u+ (1− u)S(du)−
∫

[0,t]

S(du)−
∫

(t,1]

(1− u)S(du)

=

∫
[0,1]

uS(du) +

∫
[0,1]

(1− u)S(du)− S([0, t])−
∫

(t,1]

(1− u)S(du)

(2.50)
= (2− S([0, t]))−

1−
∫

[0,t]

(1− u)S(du)


= 1− S([0, t]) +

∫
[0,t]

(1− u)S(du), t ∈ [0, 1].

Combining this with (2.52) results in

A(t) = t

∫
[0,t]

(1− u)S(du) + (1− t)
∫

(t,1]

uH(du)

= t

∫
[0,t]

(1− u)S(du) + (1− t)

1− S([0, t]) +

∫
[0,t]

(1− u)S(du)


=

∫
[0,t]

(1− u)S(du) + (1− t){1− S([0, t])}.
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Finally, using that ∫
[0,t]

(1− u)S(du) =

∫
[0,t]

∫
(u,1]

dyS(du)

=

∫
(0,1]

∫
[0,y∧t]

S(du)dy

=

∫
(0,t]

S([0, u])du+ (1− t)S([0, t]),

we end up with (2.48).

Remark 2.21. In a similar way one obtains for a general choice of norms ‖·‖1 and ‖·‖2

the representation

A(t) =

∫
U

{
(1− t) u1

‖(u1, u2‖1

}
∨
{
t

u2

‖(u1, u2)‖2

}
S(d(u1, u2)). (2.53)

2.2.5 Summary Measures for Extremal Dependence

In this chapter we give a brief overview over summary measures of extremal dependence
between the margins Gj, j = 1, . . . , d, of a multivariate extreme value distribution G. The
objective is to summarize the central characteristics of extremal dependence in a rather
small number of parameters that might be more convenient to handle than the infinite-
dimensional measures described in the sections before. Here are some examples described
for instance in Beirlant et al. [2004], Section 8.2.7:

(i) Extremal coefficients. Let S be the spectral measure of G with respect to ‖·‖1, ‖·‖2

and U as introduced in (2.34) and let l be its stable tail dependence function. For
a non-empty set M ⊂ {1, . . . , d} define eM :=

(
1{1∈M},1{2∈M}, . . . ,1{d∈M}

)
. The

extremal coefficient of G with respect to M is defined as

θM := l(eM) = − logG(e−1
M )

(2.35)
=

∫
U

∨
j∈M

(
uj
‖u‖1

)
S(du). (2.54)

We have
P
(
Yj ≤ G←j (p) for all j ∈M

)
= pθM for p ∈ (0, 1),

where Y = (Y1, . . . , Yd) has distribution function G, that is, the smaller the extremal
coefficients, the stronger the extremal dependence, and vice versa.

(ii) Kendall’s tau and Spearman’s rho for d = 2. Let (X1, Y1) and (X2, Y2) be two
independent replications of a random vector (X, Y ) with distribution function F .
Then Kendall’s tau (Kendall [1938]) is given by

τ := P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0], (2.55)
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that is, if X and Y are comonotone (i.e. they tend to increase and decrease together)
then τ is positive and otherwise negative.
Next, we denote by FX and FY the distribution functions of X and Y , respectively.
Recall that according to the probability integral transform method (see Section
2.1.2), U := FX(X) and V := FY (Y ) are uniformly distributed on the interval (0,1).
Spearman’s rho (Spearman [1904]) is defined as

ρS := Corr[U, V ] = 12E[UV ]− 3. (2.56)

(iii) Tail dependence coefficient for d=2. The following definition is rooted in Geffroy
[1958], Geffroy [1959] and Sibuya [1960].

Definition 2.22 (Tail Dependence Coefficient). Let (X, Y ) be a random vector with
distribution function F. Assume that FX and FY , the respective marginal distribution
functions of X and Y , are continuous. Then the tail dependence coefficient of X and
Y is given by

X := lim
u→1

P (FX(X) > u|FY (Y ) > u) . (2.57)

As a short remark, recall that the random variables FX(X) and FY (Y ) are uniformly
distributed on the interval (0, 1). We have 0 ≤ X ≤ 1. If X = 0 then we say
that X and Y are asymptotically independent and if X = 1 we say that they are
asymptotically completely dependent. For a more detailed definition of those two
boundary cases we refer to Section 2.2.6, Paragraph (vii).

Remark 2.23 (Tail dependence coefficient of an extreme value distribution). The
result of a short computation using the representation (2.47) of an arbitrary bivariate
extreme value distribution function G̃ in terms of its Pickands dependence function
A shows that its tail dependence coefficient is given by

X = 2

[
1− A

(
1

2

)]
. (2.58)

If one has an estimate of A (see for instance Section 2.2.7 for some examples), this
nice and closed form can be used to obtain an estimate of X .

2.2.6 The Domain-of-Attraction Problem

Recall the domain-of-attraction equation from the beginning of this chapter: We say that
a d-variate distribution function F is in the maximum domain of attraction (MDA) of a
d-variate extreme value distribution G, if for all x ∈ supp(F )

F n(anx+ bn)→ G(x), n→∞, (2.59)

where an ∈ Rd
+ is a positive normalizing sequence and bn ∈ Rd is a centering sequence.

Having found various representations for the extreme value distribution G in the previous
subsections, the objective is now to find conditions on F such that (2.59) holds. We list
some of them in the following, where we assume that the margins Fj of F are continuous.
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(i) Tail analysis. We start with an analysis of the tail F̄ of F , which is defined as
F̄ = 1− F . Using the max-stability of G it can be shown (see for instance Beirlant
et al. [2004], Section 8.3.1) that there exist vectors αn > 0 and βn such that (2.59)
is equivalent to

F̄ (anx+ bn) ∼ − logG(αnx+ βn) ∼ Ḡ(αnx+ βn), n→∞, (2.60)

for x ∈ supp(G). These equations can be used as a basis for statistical modelling
and inference on F (x) for x = (x1, . . . , xd) ∈ Rd such that its margins Fj(xj) are
close to 1 for all j = 1, . . . , d: From (2.60) one concludes

F (x) ≈ G(αna
−1
n x−αna−1

n bn + βn) =: G?(x),

where G? is another extreme value distribution of the same type as G and therefore
possesses the same stable tail dependence function l, which in turn yields

F (x) ≈ G?(x) = exp {−l(v)} , (2.61)

where v = (v1, . . . , vd) = (− logG?
1(x1), . . . ,− logG?

d(xd)) (cf. (2.32)). There are
plenty of parametric models for the stable tail dependence function l, see Section
2.2.7. If one uses those in connection with the general univariate parametrization
(2.25) for the margins G?

j , one obtains a fully parametric model for F (x) ∈ [u,∞]
where u ∈ Rd is chosen such that Fj(xj) is sufficiently close to 1 for all x =
(x1, . . . , xd) ∈ [u,∞] and all j = 1, . . . , d.

(ii) Exponent measure. It is also possible to relate condition (2.59) to the exponent
measure µ of the multivariate extreme value distribution G. Again we assume that
G has standard Fréchet margins so that µ([0,x]c) = − logG(x) for x ≥ 0. For
X ∼ F and n ∈ N define the measures

µn(·) := nP(a−1
n (X − bn) ∨ 0 ∈ ·). (2.62)

Then we have that (2.59) holds if and only if µn converges vaguely (see for instance
Resnick [1987]) to µ as n→∞ on [0,∞]\{0}, that is,∫

[0,∞]\{0}

f(x)µn(dx)→
∫

[0,∞]\{0}

f(x)µ(dx), n→∞ (2.63)

for all continuous non-negative functions f : [0,∞]\{0} → R+ for which there is a
compact set K ⊂ [0,∞]\{0} such that f(x) = 0 for all x ∈ ([0,∞]\{0}) \K. We
use the notation µn(·) v→ µ(·), n→∞.

(iii) Point Processes . A profound introduction to point processes and Poisson random
measures can be found in Resnick [1986], Resnick [1987] and Embrechts et al. [1997],
Section 5. To get an intuitive overview over point processes, consider a sequence of
random vectors (”points”) (Xn)n∈N with state space E ⊂ Rd which is equipped
with the σ−algebra E := B(E). A point process N counts the number of points in
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subsets of E, i.e. N(A) =
∑
i

1{Xi∈A} for A ⊂ E. Formally, a point process on E

is a measurable map N : (Ω,F ,P) → (Mp(E),Mp(E)), where Mp(E) is the set of
all point measures on E andMp(E) is an appropriate σ−algebra. A special kind of
point process is the Poisson process or the Poisson random measure.

Definition 2.24 (Poisson Random Measure, cf. Embrechts et al. [1997], Definiton
5.1.9). Let ν be a Radon measure on E, that is ν(K) <∞ for compact sets K ⊂ E.
A point process N on E is called Poisson process or Poisson random measure with
mean measure ν (i.e. E[N(A)] = ν(A) for all A ⊂ E) if the following holds:

• For A ∈ E, k ∈ N,

P(N(A) = k) =

{
exp{−ν(A)} (ν(A))k

k!
, if ν(A) <∞

0, if ν(A) =∞.
(2.64)

• For m ∈ N+ and A1, . . . , Am ∈ E with Ai ∩A` = ∅ for all i, ` ∈ {1, . . . ,m}, the
random variables N(A1), . . . , N(Am) are independent.

In the current context of the domain-of-attraction problem (2.59), the theory of
point processes can be used as follows: For i ∈ N+ set X i,n := a−1

n (X i − bn) ∨ 0,
where X i has distribution function F . Define by

Nn(·) :=
∞∑
i=1

1{( in ,Xi,n)∈·}

a point process on [0,∞)× [0,∞]. Then (2.59) is equivalent to

Nn
D→ Poisson random measure N with mean measure ν , n→∞, (2.65)

where the measure ν is defined in terms of the exponent measure µ of the extreme
value distribution G with standard Fréchet margins as

E [N ((s1, s2]× [v1,v2])] = ν ((s1, s2]× [v1,v2]) :=

∫
[v1,v2]

s2∫
s1

dt µ(dx)

= (s2 − s1) · µ([v1,v2]).

for a subset (s1, s2] × [v1,v2] of [0,∞) × [0,∞]. For a proof we refer to Resnick
[1987], Proposition 3.21. The weak convergence in (2.65) is interpreted as follows: For
arbitrary m ∈ N+ let A1, . . . , Am be subsets of [0,∞)×[0,∞] such that P(N(∂Ai) =
0) = 1 for all i, where ∂Ai is the boundary of Ai. Then we have that

P {Nn(A1) = k1, . . . , Nn(Am) = km} → P {N(A1) = k1, . . . , N(Am) = km} , n→∞,

for ki ∈ N, i = 1, . . . ,m.



24 CHAPTER 2. EXTREME VALUE THEORY

(iv) Continuous Index. For t ∈ R, let btc := max{n ∈ N : n ≤ t} denote its integer
part. As t

btc → 1 as t→∞ we can generalize equations (2.59), (2.60) and the vague

convergence of the exponent measure (cf. (2.62) and (2.63)) as follows:
We have that F is in the maximum domain of attraction of G if the following
conditions hold as t tends to infinity:

F t
(
abtcx+ bbtc

)
→ G(x), (2.66)

F̄
(
abtcx+ bbtc

)
∼ − logG

(
αbtcx+ βbtc

)
∼ Ḡ

(
αbtcx+ βbtc

)
, (2.67)

µt(·) = tP
(
X1,btc ∈ ·

) v→ µ(·), (2.68)

where the normalizing and centering sequences are chosen as described in the re-
spective paragraphs.

(v) Multivariate regular variation.

Definition 2.25 (Multivariate regular variation, cf. Beirlant et al. [2004], Section
8.4). Let H be a d-variate distribution function with supp(H)=[0,∞). Set e :=
(1, . . . , 1) ∈ Rd. Then H is multivariate regularly varying on (0,∞) if there exists
a function h : (0,∞)→ (0,∞) satisfying

H̄(tx)

H̄(te)
→ h(x), t→∞, (2.69)

for x ∈ (0,∞).

Now assume one considers an arbitrary distribution function F that is in the maxi-
mum domain of attraction of an arbitrary mulitvariate extreme value distribution G̃.
For convenience one can transform G̃ into a distribution function G with standard
Fréchet margins as done in (2.27). Basically the same approach can be used for F :
One obtains a distribution function F? with standard Fréchet margins by setting

F?(z) := F

(
F←1

(
exp

[
− 1

z1

])
, . . . , F←d

(
exp

[
− 1

zd

]))
, (2.70)

where z = (z1, . . . , zd) ∈ (0,∞). Clearly, the standard Fréchet distribution is in
its own domain of attraction, i.e. F? ∈ MDA(G). Choosing the centering sequences
abtc = (t, . . . , t) and bbtc = 0 it holds that (see (2.67))

F̄?(tz) ∼ − logG(z), z ∈ (0,∞),

as t → ∞, which in turn implies (see for instance Beirlant et al. [2004], Section
8.3.2)

F̄?(tz)

F̄?(te)
→ − logG(z)

− logG(e)
, t→∞, (2.71)

for e = (1, . . . , 1) ∈ Rd and z ∈ [0,∞]. Equation (2.71) means that F̄? is multivari-
ate regularly varying on (0,∞), which is an interesting analogue to the univariate
case. One can even show that there is in fact equivalence between (2.71) and F?
being in the maximum domain of attraction of G.
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(vi) Tail dependence function. The following definition of the tail dependence func-
tion of the distribution function F can be found for example in Beirlant et al. [2004],
Section 8.3.2.

Definition 2.26 (Tail Dependence Function). For u = (u1, . . . , ud) ∈ [0,1] the tail
dependence function of F = (F1, . . . , Fd) is given by

DF (u) = 1− F (F←1 (1− u1), . . . , F←d (1− ud)) . (2.72)

The tail dependence function can be linked to the domain-of-attraction condition
(2.59) in the following way:

Proposition 2.27. The d-variate distribution function F = (F1, . . . , Fd) is in the
maximum domain of attraction of the d-variate distribution function G = (G1, . . . , Gd)
if and only if the following two conditions hold:

(a) For every j = 1, . . . , d there are real sequences (an,j)n and (bn,j)n with an,j > 0
such that for x = (x1, . . . , xd) ∈ supp(F ) we have

F n
j (an,jxj + bn,j)→ Gj(xj), n→∞. (2.73)

(b) For v ≥ 0 we have
lim
s↓0

s−1DF (sv) = l(v),

where l is the stable tail dependence function of G.

(vii) Asymptotic independence and complete dependence. This paragraph exam-
ines the two extreme properties asymptotic independence and asymptotic complete
dependence of F from the point of view of its tail dependence function DF defined
in (2.72).

Definition 2.28 (Asymptotic Independence and Complete Dependence, cf. Beirlant
et al. [2004], Section 8.3.2). A d-variate distribution function F with tail dependence
function DF is said to be asymptotically independent if

lim
s↓0

s−1DF (sv) =
d∑
j=1

vj, v = (v1, . . . , vd) ≥ 0. (2.74)

On the other hand, it is called asymptotically completely dependent if

lim
s↓0

s−1DF (sv) =
d∨
j=1

vj, v = (v1, . . . , vd) ≥ 0. (2.75)

If F is asymptotically independent and its margins fulfill (2.73) then F is in the
maximum domain of attraction of the extreme value distribution G given by G(x) =
d∏
j=1

Gj(xj) for x = (x1, . . . , xd) ∈ Rd. On the other hand, if F is asymptotically

completely dependent it is in the maximum domain of attraction of G where G(x) =
d∧
j=1

Gj(xj)
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2.2.7 Statistics of Multivariate Extremes

This subsection, which sticks to Beirlant et al. [2004], Section 9, summarizes some basic
tools of statistical modelling of multivariate extremes. Both non-parametric and paramet-
ric approaches are presented. The first part of the subsection deals with the method of
block maxima, the respectively largest ones of several groups of observations. The second
part follows with an approach based on threshold exceedances where not only the largest
observation is taken into account, but all observations where at least one component ex-
ceeds the respective threshold component.

Method of Block Maxima

Consider a sample of d-variate observations X1, . . . ,Xn for n ∈ N+. The method of
block maxima suggests to divide the set of observations into k different groups and take
the maximum Y i over each group i = 1, . . . , k, that is,

Y i =
im∨

r=(i−1)m+1

Xr, i = 1, . . . , k, (2.76)

where m ∈ N+ is chosen such that km = n holds. For instance, if m = 365 and Xr,j

is the amount of rainfall on day r for r ∈ {1, . . . , n} at spatial location j ∈ {1, . . . , d}
then the component Yi,j of the block maxima Y i, i ∈ {1, . . . , k} represents the maximum
amount of rainfall in year i at location j. The sample Y 1, . . . ,Y k is assumed to be i.i.d.
with a d-variate extreme value distribution function G̃ which is allowed to have arbitrary
margins G̃1, . . . G̃d. Recall from (2.32) that G̃ can be expressed in terms of its stable tail
dependence function l as

G̃(y) = exp
{
−l[− log G̃1(y1), . . . ,− log G̃d(yd)]

}
, y = (y1, . . . , yd) ∈ [−∞,∞].

(2.77)

The task is to model and estimate the stable tail dependence function l which leads to an
estimate of G̃. We discuss both non-paramteric and parametric approaches to achieve this.

Non-parametric methods. For simplicity we assume d = 2, that is, the bivariate case.
The sample of block maxima {Y 1, . . . ,Y k} consists of random vectors Y i = (Yi,1, Yi,2)
which are independent replicates of a random variable Y = (Y1, Y2) with distribution
function G̃. From (2.44) and (2.47) we conclude that instead of modelling the stable tail
dependence function we can model the Pickands dependence function of G̃, based on the
representation

G̃(y1, y2) = exp

log
[
G̃1(y1)G̃2(y2)

]
A

 log G̃2(y2)

log
[
G̃1(y2)G̃2(y2)

]
 .

Setting ξ := − log G̃1(Y1) and η := − log G̃2(Y2) we have that for t ∈ [0, 1] the random
variable min

{
ξ

1−t ,
η
t

}
is exponentially distributed with mean 1

A(t)
. So it is quite conve-

nient to estimate A(t) via the sample mean. The resulting estimator is called Pickands’
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estimator (Pickands [1981] and Pickands [1989]):

1

ÂP
k (t)

:=
1

k

k∑
i=1

min

{
ξ̂i

1− t
,
η̂i
t

}
, (2.78)

with ξ̂i = − log ˆ̃G1(Yi,1) and η̂i = − log ˆ̃G2(Yi,2) for i = 1, . . . , k where ˆ̃G1 and ˆ̃G2 are
estimators of G̃1 and G̃2, for example the modified empirical distribution functions, given
by

ˆ̃Gj(y) =
1

k + 1

k∑
i=1

1{Yi,j≤y}, y ∈ [−∞,∞], j ∈ {1, 2}. (2.79)

However, this version of the Pickands estimator does not fulfill the properties of a Pickands
dependence function listed in Proposition 2.19, which is a serious drawback. For this reason
reason there exist a couple of extensions of (2.78), for example the Deheuvels estimator
ÂD
k (Deheuvels [1991]) and the Hall and Tajvidi estimator ÂHT

k (Hall and Tajvidi [2000]):

1

ÂD
k (t)

:=
1

k

k∑
i=1

min

{
ξ̂i

1− t
,
η̂i
t

}
− (1− t)ξ̄k − tη̄k + 1 (2.80)

1

ÂHT
k (t)

:=
1

k

k∑
i=1

min

{
ξ̂i/ξ̄k
1− t

,
η̂i/η̄k
t

}
(2.81)

for t ∈ [0, 1]. Here ξ̄k = 1
k

k∑
i=1

ξ̂i and η̄k = 1
k

k∑
i=1

η̂i denote the sample means. Still, those

approaches lead to estimators that do not have the property of complexity (cf. Proposition
2.19) and therefore one final extension can be to replace them by their convex minorants.
Another estimator of the Pickands dependence function A is based on a different approach
by Capéràa, Fougères and Genest [1997] . We have that the expectation of the random
variable log max {tξ, (1− t)η} is given by

E[log max {tξ, (1− t)η}] = logA(t) +

∞∫
0

log(x)e−xdx

for t ∈ [0, 1], so a quite natural procedure is to take the empirical expectation, resulting
in

log ÂCFG
k (t) =

1

k

k∑
i=1

log max
{
tξ̂i, (1− t)η̂i

}
−
∞∫

0

log(x)e−xdx. (2.82)

Parametric methods. We can equally model the stable tail dependence function l or the
Pickands dependence function A (for d = 2) in a parametric way. There are plenty of
different models in the literature. We list three of them in Table 2.1. The arguments v
and t are elements of the intervals [0,∞] and [0, 1], respectively. We denote the parameter
vector that l depends on by θ and write l(v) = l(v;θ) in a general way. Then a fully
parametric model is obtained by connecting the representation of G̃ in terms of l (2.77)
and the general univariate parametrization of its margins G̃j, j = 1, . . . , d:
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Model name Dependence function Reference

Symmetric logistic model l(v) =

(
d∑
j=1

v
1/α
j

)α

, α ∈ (0, 1] Gumbel [1960a] and
Gumbel [1960b]

Asymmetric logistic model l(v) =
∑
c∈Cd

{∑
j∈c

(ψc,jvj)
1/αc

}αc

,

Cd = {c 6= ∅ : c ⊂ {1, . . . , d}},
αc ∈ (0, 1], ψc,j ≥ 0,

∑
j∈c
ψc,j = 1

Tawn [1990]

Polynomial model A(t) =
m∑
u=0

ψut
u, m ∈ N+, certain

restriction on the ψu to ensure the
properties in Prop. 2.19.

Klüppelberg and May
[2001]

Table 2.1: Three parametric models for the stable tail dependence function or Pickands
dependence function

(1) G̃(y) = exp
{
−l[− log G̃1(y1), . . . ,− log G̃d(yd)]

}

(2) G̃j(yj) = exp

{
−
(

1 + γj
yj−µj
σj

)− 1
γj

+

}
, j = 1, . . . , d,

where y = (y1, . . . , yd) ∈ [−∞,∞], γj is the marginal extreme value index and µj ∈ R
and σj > 0 are the marginal centering and normalizing parameters, respectively. Now,
based on the observed sample Y 1, . . . ,Y k where the Y i are assumed to i.i.d. d-variate
random vectors with common distribution function G̃ = (G̃1, . . . , G̃d), one can estimate
the marginal parameters γj, µj and σj and the dependence parameter vector θ simultane-
ously by maximum likelihood. Notice, however, that there are certain conditions ensuring
regularity of the estimation, see for example Beirlant et al. [2004], Section 9.3.2. Another
approach, which separates the estimation procedures of the marginal and the dependence
structure, is based on extreme value copulas. For further details, see again Beirlant et al.
[2004], Section 9.3.2.

Threshold exceedances

As already mentioned, the method of block maxima above has the disadvantage of only
considering the largest values of the blocks. Besides, as the maxima are taken component-
wise, they do not necessarily belong to the sample themselves. The method of threshold
exceedances tries to cope with this. One does not only take into consideration the largest
observed values, but all observations where at least one component exceeds a high chosen
threshold. The setting is as follows: Let X1, . . . ,Xn be independent d-dimensional ran-
dom vectors with common distribution function F . We assume that F is in the maximum
domain of attraction of a d-variate extreme value distribution function G̃. The aim is
to estimate F̄ (x) for x = (x1, . . . , xd) ∈ Rd such that F̄j(xj) is of order o( 1

n
). We can
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approximate F in terms of the stable tail dependence function l of G̃ by

F (x) ≈ exp {−l (− logF1(x1), . . . ,− logFd(xd))}

(see Beirlant et al. [2004], Section 8.3.2.). So by estimating l we get an estimator F̂ of F ,

F̂ (x) = exp
{
−l̂
(
− log F̂1(x1), . . . ,− log F̂d(xd)

)}
, (2.83)

where F̂j is an estimator of the margin Fj for all j = 1, . . . , d, obtained for instance by
using the methods of the univariate case, for example the GPD approach: Let X(1),j ≤
X(2),j ≤ X(n),j denote the ordered version of the marginal sample X1,j, . . . , Xn,j. For a
positive integer k ≤ n (chosen according to the height of the threshold u = (u1, . . . , ud))
set uj := X(n−k),j. Then an estimator for Fj is obtained by fitting a generalized Pareto
distribution:

F̂j(xj) = 1− k

n

(
1 + γ̂j

xj − uj
σ̂j

)− 1
γ̂j

.

For the methods of estimating the GPD parameters γj and σj see Section 2.1 (POT).

Non-parametric methods. Recall the definition of the tail dependence function DF of
F (2.72) and the limit relation to the stable tail dependence function l of G̃:

lim
s↓0

s−1DF (sv) = l(v).

This yields approximately

l(v) ≈ s−1P [∃ j ∈ {1, . . . , d} : Fj(Xj) > 1− svj] .

Setting s = k
n

for k = kn →∞ and k
n
→ 0 as n→∞, a possible estimator l̃ of l is given

by

l̃(v) =
1

k

k∑
i=1

1{∃ ∈{1,...,d}:F̂j(Xi,j)>1− k
n
vj}

=
1

k

k∑
i=1

1{ kn X̂?i 6≤v−1}, (2.84)

where the components of X̂?i are given by

X̂?i,j :=
1

1− F̂j(Xi,j)
, j = 1, . . . , d.

A problem arises because the marginal tail probabilities F̄j(xj) are or order o( 1
n
): The

estimator l̃ in (2.84) involves a region of the sample space with only little data. To cope
with this, one can extend l̃ by setting

l̂(v) := |v|l̃
(
v

|v|

)
, v ∈ [0,∞)\{0}, (2.85)
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using the homogeneity of the stable tail dependence function (cf. Proposition 2.12(i)).
The estimator l̂ can now be plugged into (2.83).

Parametric methods. In this paragraph we present the censored likelihood method (see
for example Beirlant et al. [2004], Section 9.4.2). Consider once again the different models
l(·;θ), where θ is the respective parameter vector, of the stable tail dependence func-
tion presented in Table 2.1. Furthermore, let u = (u1, . . . , ud) be a threshold such that
Fj(uj) = exp(−λj) for a small positive λj. From equation (2.61) we know that we can ex-
press the d-variate distribution function F approximately in terms of l(·;θ) and a d-variate
extreme value distribution G? of the same type as G̃ as

F (x) ≈ exp{−l(v;θ)}, x ≥ u,
vj = − logG?

j(xj)

(2.25)
=

(
1 + γj

xj − µ?j
σ?j

)− 1
γj

+

= λj

(
1 + γj

xj − uj
σj

)− 1
γj

+

,

where σj = σ?j + γj(uj − µ?j). For the margins Fj it follows that

Fj(xj) ≈ exp

{
−λj

(
1 + γj

xj − uj
σj

)− 1
γj

+

}
, xj ≥ uj.

When estimating the marginal parameters (λj, γj, σj) and the dependence parameter vec-
tor θ jointly by maximum likelihood, one has to be careful because the model is only
defined for observations x ∈ [u,∞). If a component xj of an observation x satisfies
xj < uj, it has to be censored from below at uj. The resulting likelihood contribution
L(x) is proportional to

L(x) ∝ P[Xj ∈ dxj, j ∈ {1, . . . , d} : xj > uj;Xj ≤ uj, j ∈ {1, . . . , d} : xj ≤ uj]

∝ ∂mF

∂xj1 · · · ∂xjm
(x ∨ u),

where X = (X1, . . . , Xd) ∼ F , m ∈ {1, . . . , d} and {j1, . . . , jm} is the set of indices
where the corresponding components of the observation x exceed the respective threshold
components.



Chapter 3

Max-stable Processes

In this chapter, we examine a generalization of finite-dimensional multivariate extreme
value distributions to infinite dimensions. The methods explained in Section 2.2 can only
be used for statistical analysis of extreme values and interaction of a finite number of
margins of a random vector. For example, it is possible to model extremal rainfall at only
a finite number of places, i.e. a discrete grid, and a finite number of time points. In order to
overcome this disadvantage, one can use max-stable processes. In the literature, there exist
plenty of different families of max-stable processes. Profound introductions can be found
for example in Brown and Resnick [1977], Deheuvels [1983], de Haan [1984], de Haan and
Pickands [1986], Kabluchko [2009] or Schlather [2002]. In the following section we present
some basic tools and properties of Gaussian space-time processes needed in the course of
the rest of this thesis. We stick close to Davis, Klüppelberg and Steinkohl [2012a].

3.1 Gaussian Space-Time Processes

Let T be an arbitrary index set, for example T = [0,∞). Recall that a standard Gaussian
process X = {Xt : t ∈ T} is a stochastic process with multivariate normally distributed
finite dimensional margins. If one thinks of T as a set of time points, a space-time process
can be regarded as the extension of a stochastic process indexed by T to one with a
second index set S ⊂ Rd for d ≥ 1, which might for instance consist of d-dimensional
spatial locations s. A Gaussian space-time process Z = {Zs,t : s ∈ S, t ∈ T} is a
space-time process such that all finite-dimensional margins (Zsj ,tj)j=1,...,k for all k ∈ N,
s1, . . . , sk ∈ S and t1, . . . , tk ∈ T are multivariate Gaussian. The correlation function C
of Z plays a central role in the connection between Gaussian space-time processes and
max-stable processes.

Definition 3.1 (Correlation Function of a Space-Time Process). The correlation function
of a space-time process Z = {Zs,t : s ∈ S, t ∈ T} is defined as

C (s1, t1; s2, t2) =
Cov [Zs1,t1 , Zs2,t2 ]√
Var[Zs1,t1 ]Var[Zs2,t2 ]

, s1, s2 ∈ S, t1, t2 ∈ T. (3.1)

The correlation function C is called separable if it can be written as the product or

31
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the sum of a spatial correlation function C1 and a temporal correlation function C2, i.e.

C (s1, t1; s2, t2) = C1(s1, s2)C2(t1, t2)

or

C (s1, t1; s2, t2) = C1(s1, s2) + C2(t1, t2).

for s1, s2 ∈ S and t1, t2 ∈ T . From now on we mostly assume S = Rd (the set of spatial
locations) for some d ≥ 1 and T = [0,∞) (the time). Furthermore, we suppose for
convenience that Var[Z(s, t)] = 1 for all s ∈ Rd and t ∈ [0,∞) and that Z is stationary,
that is, its correlation function C only depends on the spatial lag h := s1 − s2 and the
temporal lag u := t1 − t2:

C (s1, t1; s2, t2) = C (s1 − s2, t1 − t2; 0, 0) =: γ(h, u)

for all s1, s2 ∈ Rd and t1, t2 ∈ [0,∞). If γ in turn only depends on the absolute spatial lag
‖h‖ and the absolute temporal lag |u| in such a way that there exists another correlation
function γ̃ that satisfies

γ(h, u) = γ̃(‖h‖, |u|), h ∈ Rd, u ∈ R,

then γ is called isotropic, otherwise anisotropic. Figures 3.1 and 3.2 show an isotropic and
an anisotropic simulated Gaussian space-time process, respectively. The simulation was
achieved in R using the package RandomFields by Schlather [2001].

3.2 Definition of Max-Stable Processes

The definition of max-stable processes is reminiscent of that of max-stable distributions
(see Definition 2.7).

Definition 3.2 (Max-Stable Processes in Space and Time). Let S = Rd, T = [0,∞) for
some d ≥ 1 and X = {Xs,t : s ∈ S, t ∈ T} be a stationary stochastic process. Furthermore,

let X(i) =
{
X

(i)
s,t : s ∈ S, t ∈ T

}
for i = 1 . . . n be independent copies of X. Then X is

called max-stable, if the process M (n) =
{
M

(n)
s,t : s ∈ S, t ∈ T

}
, defined by

M
(n)
s,t :=

n∨
i=1

X
(i)
s,t , s ∈ S, t ∈ T,

satisfies the following condition: There exist sequences
(
a

(n)
s,t

)
and

(
b

(n)
s,t

)
for n ∈ N, s ∈ S

and t ∈ T with a
(n)
s,t > 0 for all n, s and t such that it holds that for all n,

M
(n)
s,t − b

(n)
s,t

a
(n)
s,t

D
= Xs,t, s ∈ S, t ∈ T. (3.2)
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Figure 3.1: Simulated isotropic Gaussian space-time process. The picture shows four con-
secutive time steps from the top left to the bottom right.
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Figure 3.2: Simulated anisotropic Gaussian space-time process. The picture shows four
consecutive time steps from the top left to the bottom right.
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The equality in distribution (3.2) has to be understood in the following way: For
arbitrary k1, k2 ∈ N let s1, . . . , sk1 ∈ S and t1, . . . , tk2 ∈ T be arbitrarily chosen index
points. Then the finite-dimensional version of (3.2) holds:(

M
(n)
si,tj − b

(n)
si,tj

a
(n)
si,tj

)
i=1,...,k1,
j=1,...,k2

D
= (Xsi,tj) i=1,...,k1,

j=1,...,k2

.

In a nutshell, the finite-dimensional margins of max-stable processes are max-stable and
therefore follow extreme value distributions. As in Section 2.2, we assume in the following
that the marginal distributions are standard Fréchet, that is, for all s ∈ Rd and t ∈ [0,∞)
we have

F (x) := P(Xs,t ≤ x) = e−
1
x , x > 0.

In this case, in the definition of max-stable processes (3.2), the sequences
(
a

(n)
s,t

)
and(

b
(n)
s,t

)
are chosen as a

(n)
s,t = n and b

(n)
s,t = 0 for all n ∈ N, s ∈ Rd and t ∈ [0,∞). This is

in accordance with the theory of univariate extremes (cf. the remarks after Theorem 2.4)

because this choice leads to F̄
(
a

(n)
s,t

)
= 1−e−

1
n ∼ 1

n
as n→∞. To prove that a stochastic

process X as above with standard Fréchet margins is max-stable, one needs to show that
(cf. de Haan [1984], equation (1))

P
[
Xs1,t1 ≤ x1, . . . , Xsk1

,tk2
≤ xk1k2

]
= P

[
M

(n)
s1,t1

n
≤ x1, . . . ,

M
(n)
sk1

,tk2

n
≤ xk1k2

]

= P
[

1

n
X

(1)
s1,t1 ≤ x1, . . . ,

1

n
X

(n)
s1,t1 ≤ x1, . . . ,

1

n
X

(1)
sk1

,tk2
≤ xk1k2 , . . . ,

1

n
X

(n)
sk1

,tk2
≤ xk1k2

]
= P

[
1

n
X

(1)
s1,t1 ≤ x1, . . . ,

1

n
X

(1)
sk1

,tk2
≤ xk1k2 , . . . ,

1

n
X

(n)
s1,t1 ≤ x1, . . . ,

1

n
X

(n)
sk1

,tk2
≤ xk1k2

]
=

n∏
i=1

P
[
X

(i)
s1,t1 ≤ nx1, . . . , X

(i)
sk1

,tk2
≤ nxk1k2

]
= Pn

[
Xs1,t1 ≤ nx1, . . . , Xsk1

,tk2
≤ nxk1k2

]
(3.3)

for all n, k1, k2 ∈ N and all s1, . . . , sk1 ∈ Rd, t1, . . . , tk2 ∈ [0,∞). In the second last and
the last step we use that the X(i) are independent copies of X.

Example 3.3 (Smith’s storm profile model). An example of a process that satisfies (3.3)
is constructed as follows: Let {Yk, Tk, k ∈ N} be the points of a Poisson random measure
on R+ × [0, 1] with intensity (dy/y2)dt. Let T be some index set and {ft(·), t ∈ T} be a
set of nonnegative, measurable functions on [0, 1] such that

1∫
0

ft(y)dy <∞, t ∈ T.
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Then the process X = (Xt)t∈T with

Xt := sup
k≥1

ft(Tk)Yk, t ∈ T, (3.4)

is max-stable. To prove that (3.3) holds, one uses the properties of Poisson point processes
(see Section 2.2.6 (iii)). The process in (3.4) was introduced by de Haan [1984] and later
extended by Smith [1990].

In the following, our main focus lies on the max-stable Brown-Resnick process, intro-
duced in Brown and Resnick [1977] and extended in Kabluchko, Schlather and de Haan
[2009].

Definition 3.4 (Brown-Resnick Process). Let {ξi, i ≥ 1} be the points of a Poisson
random measure on [0,∞) with intensity ξ−2dξ. Let W = {Wt : t ∈ [0,∞)} be a Gaussian

process with stationary increments. Furthermore, let Y (i) =
{
Y

(i)
s,t : s ∈ Rd, t ∈ [0,∞)

}
,

i ∈ N, be independent copies of a space-time process Y = {Ys,t : s ∈ Rd, t ∈ [0,∞)}
satisfying

E[Ys,t] <∞ and Ys,t ≥ 0 almost surely for all s ∈ Rd and t ∈ [0,∞).

Then the Brown-Resnick process is defined as

ηs,t :=
∞∨
i=1

ξiY
(i)
s,t , s ∈ Rd, t ∈ [0,∞). (3.5)

The process η := {ηs,t : s ∈ Rd, t ∈ [0,∞)} is max-stable and has Fréchet margins (see
Davis et al. [2012a]).

The next section presents a detailed instruction of how to construct the Brown-Resnick
process and how it can be used as a model for extremes observed in space and time.

3.3 Max-Stable Processes as Models for Extremes

observed in Space and Time

In the first part of this section we show how to construct the Brown-Resnick process
(3.5) as the limit of a sequence of point-wise maxima of independent Gaussian space-time
processes, following Davis et al. [2012a].

3.3.1 Construction of the Brown-Resnick Process

Let Z = {Zs,t : s ∈ Rd, t ∈ [0,∞)} be a stationary Gaussian space-time process with
mean 0, variance 1 and correlation function γ = γ(h, u), h ∈ Rd, u ∈ R, as introduced in
Section 3.1. A central assumption on γ is the following smoothness condition:
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Assumption 3.1 (Smoothness Condition for γ, cf. Davis et al. [2012a], Ass. 2.1). There
exist nonnegative sequences (sn,m)n∈N, m = 1, . . . , d, and (tn)n∈N that satisfy sn,m →
0 and tn → 0 as n→∞, and a nonnegative function δ such that

(log n) (1− γ(sn,1h1, sn,2h2, . . . , sn,dhd, tnu))→ δ(h1, h2, . . . , hd, u) > 0, n→∞,
(3.6)

where h = (h1, . . . , hd) ∈ Rd\{0}, u ∈ R.

For the sake of simpler notation, set

Sn :=


sn,1 0 0 · · · 0
0 sn,2 0 · · · 0
...

...
. . . · · · 0

0 0 · · · sn,d−1 0
0 0 · · · 0 sn,d

 ∈ Rd×d.

The following theorem (cf. Theorem 2.2 in Davis et al. [2012a]) states a possible way of
constructing a Brown-Resnick process (see Definition 3.4), exploiting Assumption 3.1. It
is originally based on Theorem 1 in Hüsler and Reiss [1989] and Theorem 17 in Kabluchko
et al. [2009].

Theorem 3.5 (Construction of a Brown-Resnick Process).

Let Z(i) =
{
Z

(i)
s,t : s ∈ Rd, t ∈ [0,∞)

}
, i ∈ N, be independent copies of the Gaussian

space-time process Z. Suppose that its correlation function γ satisfies Assumption 3.1
with a nonnegative limit function δ. Furthermore, assume the existence of a metric D on
Rd × [0,∞) such that the following condition holds:

δ(s1 − s2, t1 − t2) ≤ D((s1, t1), (s2, t2))2 for all s1, s2 ∈ Rd, t1, t2 ∈ [0,∞). (3.7)

Let Φ be the standard normal distribution function. Setting

η
(n)
s,t :=

1

n

n∨
i=1

− 1

log
(

Φ(Z
(i)
Sns,tnt

)
) , s ∈ Rd, t ∈ [0,∞),

we obtain

η
(n)
s,t

L→ ηs,t :=
∞∨
i=1

ξiY
(i)
s,t , n→∞, (3.8)

where {ξi : i ∈ N} is the set of points of a Poisson random measure as in Definition 3.4

and the Y (i) =
{
Y

(i)
s,t : s ∈ Rd, t ∈ [0,∞)

}
are independent copies of the process Y =

{Ys,t : s ∈ Rd, t ∈ [0,∞)} with Ys,t := exp {Ws,t − δ(s, t)}. The stochastic process W =
{Ws,t : s ∈ Rd, t ∈ [0,∞)} has mean 0, variance 1 and covariance function

Cov[Ws1,t1 ,Ws2,t2 ] = δ(s1, t1) + δ(s2, t2)− δ(s1 − s2, t1 − t2).

The symbol ”
L→” in (3.8) stands for weak convergence on C(Rd × [0,∞)).
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Remark 3.6 (Bivariate distribution functions). For (s1, t1) and (s2, t2) ∈ Rd × [0,∞),
the bivariate distribution functions of the Brown-Resnick process η = {ηs,t : s ∈ Rd, t ∈
[0,∞)} constructed in (3.8) are given by

G(y1, y2) := P(ηs1,t1 ≤ y1, ηs2,t2 ≤ y2)

= exp

− 1

y1

Φ

 log
(
y2

y1

)
2
√
δ(h, u)

+
√
δ(h, u)

− 1

y2

Φ

 log
(
y1

y2

)
2
√
δ(h, u)

+
√
δ(h, u)

 ,

(3.9)

where h = s1 − s2 and u = t1 − t2.

The proofs of Theorem 3.5 and Remark 3.6 can be found in Kabluchko et al. [2009]
and Davis et al. [2012a]. We achieved a simulation of both isotropic and anisotropic max-
stable random fields based on Theorem 3.5 in R, again using the package RandomFields.
Figures 3.3 to 3.6 visualize the results. In the following subsections we apply concepts and
methods of multivariate extreme value theory (see Section 2.2) to the finite-dimensional
margins of the Brown-Resnick process constructed in Theorem 3.5.

3.3.2 Stable tail and Pickands Dependence Functions

Recall that the finite-dimensional margins of a max-stable process η = {ηs,t : s ∈ Rd, t ∈
[0,∞)} follow extreme value distributions. So for k ∈ N, s1, . . . , sk ∈ Rd, t1, . . . , tk ∈
[0,∞) and y1, . . . , yk ∈ [0,∞] it holds that

P (ηs1,t1 ≤ y1, . . . , ηs2,t2 ≤ yk) =: G(y1, . . . , yk)
(2.31)
= exp

{
−l
(

1

y1

, . . . ,
1

yk

)}
,

where l is the stable tail dependence function of G defined in (2.31). In particular, this
applies for the Brown-Resnick space-time process η constructed in (3.8) and the two-
dimensional (k = 2) random vectors (ηs1,t1 , ηs2,t2):

P (ηs1,t1 ≤ y1, ηs2,t2 ≤ y2) = G(y1, y2) = exp

{
−l
(

1

y1

,
1

y2

)}
, (3.10)

where in this case, using the bivariate distribution functions of η given in (3.9), l can be
expressed as

l

(
1

y1

,
1

y2

)
(2.31)
= − logG(y1, y2)

(3.9)
=

1

y1

Φ

 log
(
y2

y1

)
2
√
δ(h, u)

+
√
δ(h, u)

+
1

y2

Φ

 log
(
y1

y2

)
2
√
δ(h, u)

+
√
δ(h, u)

 , (3.11)

where h = s1 − s2 and u = |t1 − t2|. Obviously l depends on δ(h, u), so we write
l(y1, y2) = l(y1, y2; δ(h, u)). Next recall from Section 2.2.4 the role of the Pickands de-
pendence function A of G in the bivariate case and its tight connection to the stable tail
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Figure 3.3: Perspective plot of a simulated isotropic max-stable random field. The picture
shows four consecutive time steps from the top left to the bottom right.
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Figure 3.4: Image plot of the simulated isotropic max-stable random field (cf. Figure 3.3).
The picture shows four consecutive time steps from the top left to the bottom right.
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Figure 3.5: Perspective plot of a simulated anisotropic max-stable random field. The
picture shows four consecutive time steps from the top left to the bottom right.
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Figure 3.6: Image plot of the simulated anisotropic max-stable random field (cf. Figure
3.5). The picture shows four consecutive time steps from the top left to the bottom right.
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dependence function l. Using equation (2.46) we find

G(y1, y2) = exp

{
−l
(

1

y1

,
1

y2

; δ(h, u)

)}
(2.46)
= exp

{
−y1 + y2

y1y2

A

(
y1

y1 + y2

; δ(h, u)

)}
(3.12)

Using the original definition of the Pickands dependence function (cf. (2.45)) we can write

A

(
y1

y1 + y2

; δ(h, u)

)
(2.45)
= l

(
y1

y1 + y2

, 1− y1

y1 + y2

)
= l

(
y1

y1 + y2

,
y2

y1 + y2

)
= l

(
1
y1

y1+y2

,
1
y2

y1+y2

)

(3.11)
=

y1 + y2

y1

Φ

 log
(
y1

y2

)
2
√
δ(h, u)

+
√
δ(h, u)

+
y1 + y2

y2

Φ

 log
(
y2

y1

)
2
√
δ(h, u)

+
√
δ(h, u)

 . (3.13)

3.3.3 Tail Dependence Coefficient

An important summary measure for extremal dependence introduced in Chapter 2 is the
tail dependence coefficient, defined in (2.57). In the current context, for the 2-dimensional
random vectors (ηs1,t1 , ηs2,t2), it is given by

X (h, u) = lim
x→1

P
[
ηs1,t1 > G←ηs1,t1

(x)|ηs2,t2 > G←ηs2,t2
(x)
]
, (s1, t1), (s2, t2) ∈ Rd × [0,∞),

(3.14)

where G←ηsj ,tj for j ∈ {1, 2} is the generalized inverse of the distribution function of

ηsj ,tj , h = s1 − s2 and u = t1 − t2. If X (h, u) = 0 then ηs1,t1 and ηs2,t2 are asymptoti-
cally independent, if X (h, u) = 1, they are asymptotically completely dependent. For the
Brown-Resnick process in (3.8) it turns out that

X (h, u) = 2(1− Φ(
√
δ(h, u))), (3.15)

so if δ(h, u) → ∞ when h (the spatial lag) and u (the temporal lag) change, the com-
ponents tend to be asymptotically independent, and if δ(h, u) → 0, they tend to be
asympotically completely dependent.





Chapter 4

Anisotropic Models for the
Correlation Function γ of the
underlying Gaussian Space-Time
Process and Estimation Techniques

This chapter is divided into three sections: Section 4.1 examines in more detail the cor-
relation function γ of the underlying Gaussian space-time process Z that plays a central
role in the construction of the Brown-Resnick process η in Theorem 3.5. It is based on
Davis et al. [2012a], Section 4, where plenty of possible correlation functions are presented.
However, their focus lies on spatial isotropic correlation functions and they only present
a way of how to adapt those if the anisotropic context is wished. In this thesis we do not
restrict to spatial isotropy but always consider the general case. Section 4.2 deals with
a pairwise likelihood method to estimate the parameters of the correlation model that
underlies the max-stable process: We adapt the pairwise likelihood method introduced in
Davis, Klüppelberg and Steinkohl [2012b] to the anisotropic setting and show that the
theorems of consistency and asymptotic normality still hold.

4.1 Anisotropic Models

We start with a condition ensuring that the smoothness Assumption 3.1 holds, which is
needed for the construction of the Brown-Resnick process in Theorem 3.5.

Assumption 4.1 (cf. Assumption 4.1 in Davis et al. [2012a]). Let h = (h1, . . . , hd) ∈ Rd

and u ∈ R. The correlation function γ of Z possesses the following expansion around
(0, 0):

γ(h, u) = 1−
d∑

m=1

Cm|hm|αm − Cd+1|u|αd+1 +O(
d∑

m=1

|hm|αm + |u|αd+1),

where 0 < αm ≤ 2 and Cm > 0 for all m = 1, . . . , d+1. The constants Cm are independent
of h and u.

45
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The parameters αm in Assumption 4.1 are directly related to the smoothness of the
sample paths of the process Z, see Davis et al. [2012a], Section 4. For instance in the case
d = 2, if α1 = α2 = α3 = 2, then the process is mean-square differentiable, meaning that all
second-order partial derivatives of γ(h1, h2, u) exist in (0, 0, 0). On top of that, Assumption
4.1 ensures almost sure continuity. Another advantage of the proposed expansion is the
fact that the function δ, which arised in Assumption 3.1, turns out to be expressable in
closed form. Under Assumption 4.1 we have for the nonnegative sequences sn,m → 0 and
tn → 0:

(log n)(1− γ(sn,1h1, . . . , sn,dhd, tnu))

= (log n)

[
d∑

m=1

Cm(sn,m|hm|)αm + Cd+1(tn|u|)αd+1 +O

(
d∑

m=1

(sn,m|hm|)αm + (tn|u|)αd+1

)]

= (log n)

[
d∑

m=1

Cms
αm
n,m|hm|αm + Cd+1t

αd+1
n |u|αd+1 +O

(
d∑

m=1

sαmn,m|hm|αm + tαd+1
n |u|αd+1

)]
.

Solving for sn,m and tn in the equations sαmn,m = (log n)−1 and t
αd+1
n = (log n)−1, respec-

tively, we obtain sn,m = (log n)−
1
αm , m = 1, . . . , d, tn = (log n)

− 1
αd+1 and thus,

(log n)(1− γ(sn,1h1, . . . , sn,dhd, tnu))→
d∑

m=1

Cm|hm|αm + Cd+1|u|αd+1 =: δ(h1, . . . , hd, u),

(4.1)

as n→∞. The tightness condition (3.7) is satisfied by choosing the metric D as

D((s
(1)
1 , . . . , s

(d)
1 , t1), (s

(1)
2 , . . . , s

(d)
2 , t2))

= max
{
|s(1)

1 − s
(1)
2 |

α1
2 , |s(2)

1 − s
(2)
2 |

α2
2 , . . . , |s(d)

1 − s
(d)
2 |

αd
2 , |t1 − t2|

α2
2

}
, (4.2)

where s1 = (s
(1)
1 , . . . , s

(d)
1 ) and s2 = (s

(1)
2 , . . . , s

(d)
2 ) ∈ Rd, t1 and t2 ∈ [0,∞).

Examples

In the following, some examples of anisotropic correlation functions satisfying Assumption
4.1 are presented.

(1) The ”stable” class. For h = (h1, . . . , hd), consider the correlation function

γ(h, u) = exp

{
−
∥∥∥(C 1

2
1 h1, C

1
2
2 h2, . . . , C

1
2
d hd, C

1
2
d+1u

)∥∥∥2
}

= exp

{
−

d∑
m=1

Cmh
2
m − Cd+1u

2

}
,

where C1, . . . , Cm+1 are some positive constants. If one insists on C1 = C2 = · · · = Cd
the result is γ(h, u) = exp {−C1‖h‖2 − Cd+1u

2} and γ is spatially isotropic. Notice
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that the choice intuitively makes sense because if the norm of the vector (h, u) tends to
0, i.e. the distance between the points (s1, t1) and (s2, t2) is small, then the correlation
tends to 1 at a certain rate. On the other hand, if the norm gets larger, the correlation
tends to 0. Cleary, the correlation function γ allows for the following Taylor expansion:

γ(h, u) = 1−
d∑

m=1

Cmh
2
m − Cd+1h

2
d+1 +O(

d∑
m=1

h2
m + u2).

So Assumption 4.1 is satisfied with αm = 2, m = 1, . . . , (d + 1), i.e. this is a very

smooth example of a correlation function. As in (4.1) we choose sn,m = tn = (log n)−
1
2 ,

obtaining

δ(h, u) =
d∑

m=1

Cmh
2
m + Cd+1u

2

(2) Iaco-Cesare. The basic version of the Iaco-Cesare correlation function is as follows:

γ(h, u) =
(
1 + θ1‖h‖ν + θ2|u|λ

)−C
,

where ν, λ ∈ [1, 2], C ≥ d+1
2

and θ1, θ2 ≥ 0 (cf. for example the documentation of the R-
package RandomFields by Schlather [2001]). However, the correlation function is still
isotropic. So our intention is to generalize it in the following: Consider a correlation
function γ of the form

γ(h, u) =

(
1 +

d∑
m=1

Cm
C
|hm|νm +

Cd+1

C
|u|λ
)−C

,h = (h1, . . . , hd) ∈ Rd, u ∈ [0,∞),

(4.3)

where νm, m = 1, . . . , d ∈ [1, 2], λ ∈ [1, 2] and C ≥ d+1
2

. Taylor expansion around 0 of
the function f : [0,∞)→ (0, 1], x 7→ 1

(1+x)C
yields

f(x) = 1− Cx+O(x),

leading to

γ(h, u) =

(
1 +

d∑
m=1

Cm
C
|hm|νm +

Cd+1

C
|u|λ
)−C

= f

(
d∑

m=1

Cm
C
|hm|νm +

Cd+1

C
|u|λ
)

= 1− C

(
d∑

m=1

Cm
C
|hm|νm +

Cd+1

C
|u|λ
)

+O

(
d∑

m=1

Cm
C
|hm|νm +

Cd+1

C
|u|λ
)

= 1−

(
d∑

m=1

Cm|hm|νm + Cd+1|u|λ
)

+O

(
d∑

m=1

|hm|νm + |u|λ
)
,
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so Assumption 4.1 is satisfied with αm = νm, m = 1, . . . , d, αd+1 = λ and as in (4.1)
we have, as n→∞,

(log n)(1− γ(sn,1h1, . . . , sn,dhd, tnu))→
d∑

m=1

Cm|hm|αm + Cd+1|u|αd+1 = δ(h, u)

for sn,m = (log n)−
1
αm , m = 1, . . . , d and tn = (log n)

− 1
αd+1 . The function γ as defined

in (4.3) is an example of a non-separable anisotropic correlation function.

Example 4.1 (Iaco-Cesare for d = 2, ν1 = 2, ν2 = 2, λ = 1, C = 2, C1 = 0.03,
C2 = 0.06, C3 = 0.05). Within the given context we have:

• γ(h1, h2, u) =
(
1 + 0.03

2
|h1|2 + 0.06

2
|h2|2 + 0.05

2
|u|
)−2

• δ(h1, h2, u) = 0.03|h1|2 + 0.06|h2|2 + 0.05|u|.

The left columns of Figures 4.1 and 4.2 show different contour plots of correlation functions
of the stable and the Iaco-Cesare class, respectively. The plots were constructed using the
R-functions image.plot and contour of the package fields. For the sake of simplicity
and better comparability we choose d = 2. The parameters of the isotropic stable class
correlation function take the values α1 = α2 = α3 = 2, C1 = C2 = 0.03 and C3 = 0.05.
For the anisotropic case we set C2 = 0.04. The values of the Iaco-Cesare parameters are
chosen as ν1 = ν2 = 2, λ = 1, C1 = C2 = 0.03, C3 = 0.05 and C = 2 in the isotropic case
and in the anisotropic case we slightly change C2 to 0.06. Where h1 is plotted against h2,
the temporal lag u is set equal to 0. What should particular be noticed is the difference
between the isotropic and the anisotropic plots: Whereas in the isotropic case, the plots
look like a quarter of a circle, the anisotropic plots rather yield ellipses. The former circles
are stretched into one direction, which is also remarked in Davis et al. [2012a], Section 4.2.
This also makes sense in a natural context because for instance, wind turns out to follow
a certain direction and not to spread equally into all directions. The right columns of both
figures show the corresponding tail dependence coefficients X (h, u) = 2(1−Φ(

√
δ(h, u)))

(cf. (3.15)) for the respective classes of correlation functions. One can see that they have
basically the same shape as the corresponding correlation functions.

4.2 Pairwise Likelihood Methods

This section is based upon Davis et al. [2012b], Sections 3-5 and Steinkohl [2012], Chapter
4.

4.2.1 Introduction to Pairwise Likelihood Estimation

Recall that we assume the limit function δ, which arised in (3.1) and is directly connected
to the underlying correlation function γ of the Gaussian space-time process, to be of the
following shape:
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Figure 4.1: Stable class correlation function and tail dependence coefficient for d = 2,
isotropic and anisotropic case.
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Figure 4.2: Iaco-Cesare class correlation function and tail dependence coefficient for d = 2,
isotropic and anisotropic case.
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δ(h, u) = δ(h1, . . . , hd, u) = C1|h1|α1 + · · ·+ Cd|hd|αd + Cd+1|u|αd+1 , h ∈ Rd, u ∈ R,
(4.4)

where Cm > 0 and 0 < αm ≤ 2 for all m = 1, . . . , d + 1. As stated in Remark
3.6, the bivariate distribution functions of the max-stable Brown-Resnick process η ={
ηs,t : s ∈ Rd, t ∈ [0,∞)

}
constructed in Theorem 3.5 depend on δ and are given by

G(y1, y2) = P(ηs1,t1 ≤ y1, ηs2,t2 ≤ y2)

= exp

− 1

y1

Φ

 log
(
y2

y1

)
2
√
δ(h, u)

+
√
δ(h, u)

− 1

y2

Φ

 log
(
y1

y2

)
2
√
δ(h, u)

+
√
δ(h, u)

 ,

for h = s1 − s2, u = t1 − t2, s1, s2 ∈ Rd and t1, t2 ∈ [0,∞). Obviously, for fixed (s1, t1)
and (s2, t2), the distribution function of (ηs1,t1 , ηs2,t2) is independent of the function δ, so
we can adopt the results of Davis et al. [2012b], Section 3.2, who computed the bivariate
log-density g, because the difference to the setting here only consists of the different
δ-functions. The log-density g is given by:

log g(y1, y2) = −V (y1, y2) + log (V1(y1, y2)V2(y1, y2)− V12(y1, y2)) , (4.5)

where

V (y1, y2) =
1

y1

Φ

(
log y2

y1

2
√
δ(h, u)

+
√
δ(h, u)

)
+

1

y2

Φ

(
log y1

y2

2
√
δ(h, u)

+
√
δ(h, u)

)
, (4.6)

V1(y1, y2) =
∂V (y1, y2)

∂y1

= − 1

y2
1

Φ

(
log y2

y1

2
√
δ(h, u)

+
√
δ(h, u)

)
− 1

2
√
δ(h, u)y2

1

ϕ

(
log y2

y1

2
√
δ(h, u)

+
√
δ(h, u)

)

+
1

2
√
δ(h, u)y1y2

ϕ

(
log y1

y2

2
√
δ(h, u)

+
√
δ(h, u)

)
, (4.7)

V2(y1, y2) =
∂V (y1, y2)

∂y2

= − 1

y2
2

Φ

(
log y1

y2

2
√
δ(h, u)

+
√
δ(h, u)

)
− 1

2
√
δ(h, u)y2

2

ϕ

(
log y1

y2

2
√
δ(h, u)

+
√
δ(h, u)

)

+
1

2
√
δ(h, u)y2y1

ϕ

(
log y2

y1

2
√
δ(h, u)

+
√
δ(h, u)

)
(4.8)
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and

V12(y1, y2) =
∂2V (y1, y2)

∂y1∂y2

= −
2
√
δ(h, u)−

log
y2
y1

2
√
δ(h,u)

+
√
δ(h, u)

4δ(h, u)y2
1y2

ϕ

(
log y2

y1

2
√
δ(h, u)

+
√
δ(h, u)

)

−
2
√
δ(h, u)−

log
y1
y2

2
√
δ(h,u)

+
√
δ(h, u)

4δ(h, u)y2
2y1

ϕ

(
log y1

y2

2
√
δ(h, u)

+
√
δ(h, u)

)
. (4.9)

The greek letter ϕ denotes the density of the univariate standard normal distribution.
Given data that are assumed to be generated by a max-stable process η as above, the
aim is to estimate the parameters Cm and αm, m = 1, . . . , d + 1 of the function δ. As
standard maximum likelihood estimation is known to be computationally intractable for
max-stable processes, one may use composite likelihood methods instead. Composite likeli-
hood estimation has its origin in Besag [1974] and Lindsay [1988]. The pairwise likelihood
estimation that is presented in the following is a special kind of the composite likelihood
method. For the sake of convenience we first present the derivation of the pairwise likeli-
hood function for the case of d = 2 dimensions, where the function δ has the anisotropic
form

δ(h1, h2, u) = δθ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|u|α3 .

The parameter vector θ = (C1, C2, C3, α1, α2, α3) is part of the parameter space

Θ := {θ = (C1, C2, C3, α1, α2, α3) : Cm ∈ (0,∞), αm ∈ (0, 2], m = 1, 2, 3} .

The space-time setting is modelled as follows: We assume to consider M2 spatial locations
at T different time points, where M and T are positive integers. The spatial locations lie on
a grid and can be summarized in the set {s = (zi1 , zi2) : i1, i2 ∈ {1, . . . ,M}}. We use the
notation (zi1 , zi2) to determine the nature of the grid. For instance, if (zi1 , zi2) = (i1, i2),
we assume the grid to be a regular squarish one. The time points are enumerated in the
ordered way, that is, 0 ≤ t1 < t2 < · · · < tT . In the context of this setting, the pairwise
log-likelihood function can be written in its general form as a function of θ ∈ Θ as

PL(M,T )(θ) =

M∑
i1=1

M∑
i2=1

M∑
j1=i1

M∑
j2=1{j1=i1}i2+1

T−1∑
k=1

T∑
l=k+1

w
(M)
i1,j1

w
(M)
i2,j2

w
(T )
k,l log

{
gθ
(
η(zi1 ,zi2 ),tk , η(zj1 ,zj2 ),tl

)}
,

(4.10)

where log gθ is the log-density computed in (4.5), which depends on the function δ = δθ.

The quantities w
(M)
i1,j1

≥ 0 and w
(M)
i2,j2

≥ 0 denote spatial weights that depend on the
first and the second components of the spatial pairs ((zi1 , zi2), (zj1 , zj2)), respectively,

whereas the temporal weights w
(T )
k,l ≥ 0 depend on the pairs of time points (tk, tl). It seems

natural to only give weight to space-time pairs whose space-time lag (|zi1 − zj1 |, |zi2 −
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zj2|, |tk − tl|) is componentwise smaller than a certain chosen maximal space-time lag
(r1, r2, p) ∈ N3, because observations that lie sufficiently far away in space and time do
not have a noteworthy influence on each other. So the weight of observations where at
least one of the lags exceeds its corresponding maximal lag is set equal to 0, leading to
the following choice of weights:

w
(M)
i1,j1

= 1{|zi1−zj1 |≤r1}, w
(M)
i2,j2

= 1{|zi2−zj2 |≤r2}

and

w
(T )
k,l = 1{|tk−tl|≤p}.

Plugging those weights into (4.10) yields

PL(M,T )(θ) =
M∑
i1=1

M∑
i2=1

M∑
j1=i1

|zi1−zj1 |≤r1

M∑
j2=1{j1=i1}

i2+1

|zi2−zj2 |≤r2

T−p∑
k=1

min{k+p,T}∑
l=k+1

log
{
gθ
(
η(zi1 ,zi2 ),tk , η(zj1 ,zj2 ),tl

)}
.

(4.11)

for θ ∈ Θ. The pairwise likelihood estimate is then given by

θ̂ = (Ĉ1, α̂1, Ĉ2, α̂2, Ĉ3, α̂3) = argmax
θ∈Θ

PL(M,T )(θ). (4.12)

In the following subsections, we show consistency and asymptotic normality of the pairwise
likelihood estimates. However, we assume a regular grid, that is (zi1 , zi2) = (i1, i2) for all
pairs (i1, i2) in {1, . . . ,M} × {1, . . . ,M}. On top of that, we assume equidistant time
points with distance 1; without loss of generality we set tk = k for k = 0, . . . , T . In this
case one can rewrite the pairwise likelihood function in a similar way as done in Davis
et al. [2012b], Section 3.2: In their isotropic setting, they use the design mask (Nott and
Rydén [1999])

Hr = (N2 ∩B((0, 0), r)\{(0, 0)},

where r is a positive integer and

B((0, 0), r) =
{

(h1, h2) ∈ R2 : ‖(h1, h2)‖ ≤ r
}

is the positive part of the ball in R2 with radius r around the origin. However, in the
anisotropic setting we are dealing with here we have to focus on the absolute values of
the single components of the spatial lags rather than on the norm of the whole vector.
We adapt the design mask and come up with a design mask given by

Hr1,r2 =
{

(h1, h2) ∈ N2\{(0, 0)} : h1 ≤ r1, h2 ≤ r2

}
(4.13)

For example, for r1 = 3 and r2 = 2 we have

Hr1,r2 = {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}.
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Using this design mask and the assumption of a regular grid and equidistant time points,
one can rewrite the pairwise log-likelihood function in (4.11) in turn as

PL(M,T )(θ) =
M∑
i1=1

M∑
i2=1

T∑
t=1

∑
(h1,h2)∈Hr1,r2

(i1+h1,i2+h2)≤(M,M)

p∑
u=1

t+u≤T

log
{
gθ
(
η(i1,i2),t, η(i1+h1,i2+h2),t+u

)}

=
M∑
i1=1

M∑
i2=1

T∑
t=1

qθ(i1, i2, t; r1, r2, p)−R(M,T )(θ), θ ∈ Θ, (4.14)

where

qθ(i1, i2, t; r1, r2, p) =
∑

(h1,h2)∈Hr1,r2

p∑
u=1

log
{
gθ
(
η(i1,i2),t, η(i1+h1,i2+h2),t+u

)}
and

R(M,T )(θ) =
M∑
i1=1

M∑
i2=1

T∑
t=1

∑
(h1,h2)∈Hr1,r2

(i1,i2)+(h1,h2)>(M,M)

p∑
u=1

t+u>T

log
{
gθ
(
η(i1,i2),t, η(i1+h1,i2+h2),t+u

)}
.

In order to formulate the pairwise log-likelihood for a general number of dimensions
d, we slightly need to extend the design mask again. For a vector r = (r1, . . . , rd) ∈ Nd

set

Hr =
{

(h1, . . . , hd) ∈ Nd\{0} : h1 ≤ r1, . . . , hd ≤ rd
}
. (4.15)

The parameter vector θ = (C1, . . . , Cd, Cd+1, α1, . . . , αd, αd+1) consists of the parameters
of the function

δ(h1, . . . , hd, u) = C1|h1|α1 + · · ·Cd|hd|αd + Cd+1|u|αd+1 .

The parameter space is

Θ = {θ = (Cm, αm, m = 1, . . . , d+ 1) : Cm ∈ (0,∞), αm ∈ (0, 2], m = 1, . . . , d+ 1} .

The pairwise log-likelihood function turns out to be

PL(M,T )(θ)

=
M∑
i1=1

M∑
i2=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)≤(M,...,M)

p∑
u=1

t+u≤T

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}

=
M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

qθ(i1, . . . , id, t; r, p)−R(M,T )(θ), θ ∈ Θ, (4.16)

where, similarly as in the case d = 2, qθ(·) and R(M,T ) are given by

qθ(i1, . . . , id, t; r, p) =
∑

(h1,...,hd)∈Hr

p∑
u=1

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}
(4.17)
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and

R(M,T )(θ)

=
M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}
.

(4.18)

4.2.2 Strong Consistency of the Pairwise Likelihood Estimates

There has been done some recent work in the field of composite likelihood methods and
especially pairwise likelihood estimation. For instance, Davis and Yau [2011] show strong
consistency of composite likelihood estimates for univariate time series. Padoan, Ribatet
and Sisson [2010] show consistency and asymptotic normality of pairwise likelihood es-
timates for max-stable random fields with independent replications in time. Davis et al.
[2012b] get rid of the assumption of independence in time and prove strong consistency
of pairwise likelihood estimates of the Brown-Resnick process if the space-time domain
increases jointly. However, they consider isotropic correlation functions of the underlying
Gaussian process. In this subsection, we closely follow their proofs and show that the prop-
erties of strong consistency and asymptotic normality still hold if anisotropic correlation
functions are admitted. A central assumption is that we suppose that the Brown-Resnick
process is mixing in time and space.

Definition 4.2 (Mixing processes, cf. Def. 4.1 in Davis et al. [2012b]). A strictly stationary
space-time process
η :=

{
ηs,t, s ∈ Rd, t ∈ [0,∞)

}
is called mixing if for all sets A and B ∈ σ(η) the following

is satisfied:

lim
n→∞

P
(
A ∩ τsn,1,...,sn,d,tn(B)

)
= P(A)P(B) (4.19)

for all sequences {(sn,1, . . . , sn,d, tn), n ∈ N} with max {|sn,1|, . . . , |sn,d|, |tn|} → ∞ as
n→∞. Here, σ(η) is the σ-algebra generated by the process η and τh,u(·), h ∈ Rd,
u ∈ R, denotes the multiparameter shift operator.

In Section 4.1, Davis et al. [2012b] summarize and extend theoretical statements of
Wang, Roy and Stoev [2009] , Krengel [1985], Stoev and Taqqu [2005] and Wang and
Stoev [2010], which are based on extremal integral representations and ergodic properties
of max-stable processes and the Brown-Resnick process in particular, and end up with
the following sufficient condition for a Brown-Resnick processes to be mixing in space and
time:

Proposition 4.3 (cf. Prop. 4.3 in Davis et al. [2012b]). If the correlation function γ of the
underlying Gaussian space-time process in the construction of the Brown-Resnick process
η =

{
ηs,t, s ∈ Rd, t ∈ [0,∞)

}
(Theorem 3.5) satisfies Assumption 3.1, then η is mixing

in space and time.
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Furthermore, the strong law of large numbers holds: For every measurable function f :
R→ R satisfying E

[
|f
(
η(1,...,1),1

)
|
]
<∞ we have

1

MdT

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

f
(
η(i1,...,id),t

)
→ E

[
f
(
η(1,...,1),1

)]
almost surely as M,T →∞.

(4.20)

We can now formulate and prove the analogue of Theorem 4.4 in Davis et al. [2012b]:

Theorem 4.4 (Strong Consistency for large M and T). Let

η =
{
ηs,t : s ∈ {1, . . . ,M}d, t ∈ {1, . . . , T}

}
be a Brown-Resnick process constructed as in Theorem 3.5 with realizations on a regular
d-dimensional grid. Let the correlation function γ of the underlying Gaussian space-time
process satisfy Assumption 4.1 with parameter vector

θ = (C1, . . . , Cd+1, α1, . . . , αd+1).

Furthermore, assume that the true parameter vector

θ? = (C?
1 , . . . , C

?
d+1, α

?
1, . . . , α

?
d+1)

is part of a compact set

Θ? ⊂ {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cm ∈ (c,∞), αm ∈ (0, 2], m = 1, . . . , d+ 1} \{0}
(4.21)

for some c > 0. On top of that, suppose that the following identifiability condition holds:

θ = θ̃ if and only if gθ (ηs1,t1 , ηs2,t2) = gθ̃ (ηs1,t1 , ηs2,t2) (4.22)

for all (s1, t1) and (s2, t2). Then, the pairwise likelihood estimate

θ̂
(M,T )

= argmax
θ∈Θ?

PL(M,T )(θ)

for realizations of η is strongly consistent, that is,

θ̂
(M,T )

→ θ? almost surely as M,T →∞.

Proof. We follow the steps of Davis et al. [2012b]. The proof uses the method of Wald
[1946]. The aim is to show that for some chosen space-time lag (r, p) with r = (r1, . . . , rd) ∈
Nd and p ∈ N,

1

MdT
PL(M,T )(θ)

=
1

MdT

(
M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

qθ(i1, . . . , id, t; r, p)−R(M,T )(θ)

)
→ E[(qθ(1, . . . , 1, 1; r, p)]

almost surely as M,T →∞. This is done by verifying the following three statements:
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(A)

1

MdT

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

qθ(i1, . . . , id, t; r, p)→ E[(qθ(1, . . . , 1, 1; r, p)]

almost surely as M,T →∞, uniformly on the compact parameter space Θ?.

(B)

1

MdT
R(M,T )(θ)→ 0

almost surely as M,T →∞.

(C) The limit function E(qθ(1, . . . , 1, 1; r, p)] is uniquely maximized at the true parameter
vector θ? ∈ Θ?.

Proof of (A):
The convergence holds because qθ(·) is a measurable function of lagged versions of ηs,t for
s ∈ {1, . . . ,M}d, t ∈ {1, . . . , T}. One can therefore directly apply Proposition 4.3. What
remains to be shown is that the convergence is uniform on the compact parameter space
Θ?. To this end, for s1, s2 ∈ {1, . . . ,M}d and t1, t2 ∈ {1, . . . , T}, recall the definition of
the log-density log gθ (4.5) of the joint distribution of ηs1,t1 and ηs2,t2 . For y1, y2 > 0 we
have

log gθ(y1, y2) = −V (y1, y2) + log {V1(y1, y2)V2(y1, y2)− V12(y1, y2)}

with V , V1, V2, V12 defined in (4.6)-(4.9). It follows (with h = s1 − s2 and u = t1 − t2)

| log gθ(y1, y2)| ≤ | − V (y1, y2)|+ | log {V1(y1, y2)V2(y1, y2)− V12(y1, y2)} |

≤ 1

y1

∣∣∣∣∣Φ
(

log y2

y1

2
√
δ(h, u)

)
+
√
δ(h, u)

∣∣∣∣∣+
1

y2

∣∣∣∣∣Φ
(

log y1

y2

2
√
δ(h, u)

)
+
√
δ(h, u)

∣∣∣∣∣
+ |V1(y1, y2)V2(y1, y2)− V12(y1, y2)| (4.23)

By standard multiplication and using that Φ(x) ≤ 1 and ϕ(x) < 1 for all x ∈ R, we
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continue (4.23) and find

| log gθ(y1, y2)|

≤ 1

y1

+
1

y2

+
1

y2
1y

2
2

+
1

2
√
δ(h, u)

(
2

y2
1y

2
2

+
1

y3
1y2

+
1

y1y3
2

+
1

y2
1y2

+
1

y1y2
2

)
+

1

4δ(h, u)

(
2

y2
1y

2
2

+
1

y3
1y2

+
1

y1y3
2

)
+

∣∣∣∣∣
(

log y2

y1

8(δ(h, u))
3
2

+
1

4
√
δ(h, u)

)
1

y2
1y2

+

(
log y1

y2

8(δ(h, u))
3
2

+
1

4
√
δ(h, u)

)
1

y1y2
2

∣∣∣∣∣
≤ 1

y1

+
1

y2

+
1

y2
1y

2
2

+
1

2
√
δ(h, u)

(
2

y2
1y

2
2

+
1

y3
1y2

+
1

y1y3
2

+
1

y2
1y2

+
1

y1y2
2

)
+

1

4δ(h, u)

(
2

y2
1y

2
2

+
1

y3
1y2

+
1

y1y3
2

)
+

1

8(δ(h, u))
3
2

(
1

y3
1 + 1

y3
2

)
+

1

4
√
δ(h, u)

(
1

y2
1y2

+
1

y1y2
2

)
. (4.24)

The fact that for fixed s ∈ {1, . . . ,M}d and t ∈ {1, . . . , T}, the random variable ηs,t is
standard Fréchet ensures that 1

ηs,t
follows an exponential(1) distribution which has finite

moments. We can therefore apply Hölder’s inequality and obtain

E [|log gθ (ηs1,t1 , ηs2,t2)|] ≤ K1 +
K2

2
√
δ(h, u)

+
K3

4δ(h, u)
+

K4

8(δ(h, u))
3
2

, (4.25)

where K1, K2, K3 and K4 are positive finite constants. Using that Θ? is assumed to be
compact, we can bound δ away from 0:

δ(h, u) ≥ min{C1, . . . , Cd+1} (|h1|α1 + · · ·+ |hd|αd + |u|αd+1)

> c (|h1|α1 + · · ·+ |hd|αd + |u|αd+1)

> c̃, (4.26)

where c̃ > 0 is independent of the parameters. From (4.25) we therefore conclude

E [|log gθ (ηs1,t1 , ηs2,t2)|] < K1 +
K2

2c̃
+
K3

4c̃
+
K4

8c̃
3
2

=: K5 <∞. (4.27)

As K5 is independent of the parameter vector θ and (s1, t1) and (s2, t2) were chosen
arbitrarily, (4.26) and (4.27) yield

E
[

sup
θ∈Θ?

∣∣log
{
gθ
(
η(1,...,1),1, η(1,...,1)+(h1,...,hd),1+u

)}∣∣] <∞ for all (h1, . . . , hd) ∈ Rd

and therefore, by the definition of qθ,

E
[

sup
θ∈Θ?
|qθ(1, . . . , 1, 1; r, p)|

]
<∞.
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By Theorem 2.7 in Straumann [2004] we conclude that the convergence in (A) is uniform,
so (A) is proved.

Proof of (B):
Using the definition 4.18 of the boundary term R(M,T )(θ), θ ∈ Θ?, we find

E
[∣∣∣∣ 1

MdT
R(M,T )(θ)

∣∣∣∣]
=

1

MdT
E


∣∣∣∣∣∣∣
M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}∣∣∣∣∣∣∣


≤

1

MdT
E

 M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

∣∣log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}∣∣


=

1

MdT

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

E
[∣∣log

{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}∣∣]
≤

1

MdT

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

K5, (4.28)

where in the last step we used relation (4.27). The number of space-time points used in the
boundary term R is of order Md−1, independent of T . Therefore, there exists a positive
constant K6, independent of M and T , such that

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∑
(h1,...,hd)∈Hr

(i1+h1,...,id+hd)>(M,...,M)

p∑
u=1

t+u>T

K5 ≤ K5K6M
d−1.

All in all, continuing (4.28),

E
[∣∣∣∣ 1

MdT
R(M,T )(θ)

∣∣∣∣] ≤ K5K6

MT
→ 0,

as M,T →∞.
As a next step and for convenience, we rewrite the boundary term R(M,T )(θ). For h =
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(h1, . . . , hd) ∈ Rd and u ∈ R define the set of boundary points GM,T (h, u) as

GM,T (h, u) :={
(i1, . . . , id) ∈ {1, . . . ,M}d : (i1, . . . , id) + (h1, . . . , hd) > (M, . . . ,M)

}
×

{t ∈ {1, . . . , T} : t+ u > T} . (4.29)

Then R(M,T )(θ) is given by

R(M,T )(θ) =
∑
h∈Hr

p∑
u=1

∑
(i1,...,id,t)∈GM,T (h,u)

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}
. (4.30)

Using Proposition 4.3 and (4.27) we have that, uniformly on Θ?,

∑
h∈Hr

p∑
u=1

1

|GM,T (h, u)|
∑

(i1,...,id,t)∈GM,T (h,u)

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}

→ E

∑
h∈Hr

p∑
u=1

∑
(i1,...,id,t)∈GM,T (h,u)

log
{
gθ
(
η(1,...,1),1, η(1+h1,...,1+hd),1+u

)}
almost surely as M,T → ∞. So, using that |GM,T (h, u)| ≤ K6M

d−1 for all h ∈ Rd and
u ∈ R, it follows that

1

MdT
R(M,T )(θ)

≤ K6

MT

∑
h∈Hr

p∑
u=1

1

|GM,T (h, u)|
∑

(i1,...,id,t)∈GM,T (h,u)

log
{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}
→ 0

almost surely as M,T →∞, since

E
[∣∣log

{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}∣∣] <∞.
This is what we want to show.

Proof of (C):
Let θ 6= θ?. For i1, . . . , id ∈ {1, . . . ,M} and t ∈ {1, . . . , T}, Jensen’s inequality and the



4.2. PAIRWISE LIKELIHOOD METHODS 61

identifiability condition (4.22) lead to

E

[
log

{
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)
gθ?
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)}]

< log

{
E

[
gθ
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)
gθ?
(
η(i1,...,id),t, η(i1+h1,...,id+hd),t+u

)]}

= log


∫

(0,∞)2

gθ(y1, y2)

gθ?(y1, y2)
gθ?(y1, y2)d(y1, y2)


= log


∫

(0,∞)2

gθ(y1, y2)d(y1, y2)


= 0,

and it directly follows from the definition (4.17) of qθ that

E[qθ(1, . . . , 1, 1; r, p)] < E[qθ?(1, . . . , 1, 1; r, p)].

As stated by Davis et al. [2012b], there are combinations of maximum space-time
lags that lead to non-identifiable parameters, but the theorem can still be applied to the
other parameters. Exemplified for the case d = 2, Table 4.1 shows which parameters are
identifiable for different maximum space-time lags (r1, r2, p). Note that the identifiability
condition (4.22) depends on the identifiability of the function δ(h1, h2, u) = C1|h1|α1 +
C2|h2|α2 + C3|h3|α3 .

4.2.3 Asymptotic Normality of the Pairwise Likelihood Esti-
mates

In this section we prove asymptotic normality of the pairwise likelihood estimates defined
in (4.12). As in the proof of Theorem 4.4, we follow the lines of Davis et al. [2012b],
Section 5, adapting their work to our setting whenever needed. We start with some basic
results casually needed throughout the rest of the section.

Lemma 4.5 (cf. Lemma 5.1 in Davis et al. [2012b]). Let η := {ηs,t : s ∈ Rd, t ∈
[0,∞)} be the Brown-Resnick process constructed in Theorem 3.5 where the underlying
correlation function γ satisfies Assumption 3.1. Assume that all conditions of Theorem
4.4 are satisfied. Then for s1, s2 ∈ Rd and t1, t2 ∈ [0,∞), the following two results hold:

(i) The gradient of the bivariate log-density satisfies

E
[
|∇θ log gθ(ηs1,t1 , ηs2,t2)|3

]
<∞, θ ∈ Θ?.
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r1 r2 p identifiable param-
eters

1 0 0 C1

0 1 0 C2

0 0 1 C3

1 1 0 C1, C2

1 0 1 C1, C3

0 1 1 C2, C3

1 1 1 C1, C2, C3

> 1 0 0 C1, α1

0 > 1 0 C2, α2

0 0 > 1 C3, α3

> 1 1 0 C1, α1, C2

1 > 1 0 C1, C2, α2

> 1 0 1 C1, α1, C3

1 0 > 1 C1, C3, α3

0 > 1 1 C2, α2, C3

0 1 > 1 C2, C3, α3

> 1 > 1 0 C1, α1, C2, α2

> 1 0 > 1 C1, α1, C3, α3

0 > 1 > 1 C2, α2, C3, α3

> 1 1 1 C1, α1, C2, C3

1 > 1 1 C1, C2, α2, C3

1 1 > 1 C1, C2, C3, α3

> 1 > 1 1 C1, α1, C2, α2, C3

> 1 1 > 1 C1, α1, C2, C3, α3

1 > 1 > 1 C1, C2, α2, C3, α3

> 1 > 1 > 1 C1, α1, C2, α2, C3, α3

Table 4.1: Identifiable parameters for different maximum space-time lags.

(ii) The Hessian matrix of the bivariate log-density satisfies

E
[

sup
θ∈Θ?

∣∣∇2
θ log gθ(ηs1,t1 , ηs2,t2)

∣∣] <∞.
The absolute values are taken componentwise.

Proof. Assume identifiability of all parameters Cm, αm, m = 1, . . . , d + 1. For y1, y2 ∈
(0,∞) and for h = (h1, . . . , hd) ∈ Rd, u ∈ R such that 0 < min{|h1|, . . . , |hd|, |u|},
max{|h1|, . . . , |hd|, |u|} <∞ we have (cf. (4.5)-(4.9)),

∇θ log gθ(y1, y2) =
∂ log gθ(y1, y2)

∂δ(h, u)
∇θδ(h, u)
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Furthermore,

∂δ(h, u)

∂Cm
= |hm|αm ,

∂δ(h, u)

∂αm
= Cm|hm|αm log |hm|, m = 1, . . . d,

and
∂δ(h, u)

∂Cd+1

= |u|αd+1 ,
∂δ(h, u)

∂αd+1

= Cd+1|u|αd+1 log |u|.

Using assumption (4.21) we can bound those first partial derivatives as well as the second
order partial derivatives from above and below. So it remains to be shown that for s1, s2 ∈
Rd and t1, t2 ∈ [0,∞),

Eθ?
[∣∣∣∣∂ log{gθ(ηs1,t1 , ηs2,t2)}

∂δ(h, u)

∣∣∣∣3
]
<∞

and

Eθ?
[

sup
θ∈Θ?

∣∣∣∣∂2 log{gθ(ηs1,t1 , ηs2,t2)}
∂δ(h, u)

∣∣∣∣] <∞,
where the function δ(h, u) = δ can be treated as a constant since one can bound it away
from 0 by (4.21). So, from here on, we refer to the proof of Steinkohl [2012], Lemma 4.6,
since at this place, the only difference consists of the differences between the respective
functions δ(h, u).

As a next step, we need the definition of the α-mixing property. We follow Davis
et al. [2012b], Section 5.2, who use and adapt results of Huser and Davison [2012] and
Bolthausen [1982] to their space-time setting.

Definition 4.6 (Mixing Coefficients and α-mixing). Let {ηs,t : s ∈ Zd, t ∈ N} be a

space-time process. For s1 = (i
(1)
1 , . . . , i

(1)
d ) and s2 = (i

(2)
1 , . . . , i

(2)
d ) set

d((s1, t1), (s2, t2)) := max{ max
1≤m≤d

|i(1)
m − i(2)

m |, |t1 − t2|}.

Further, for Λ1 and Λ2 ⊂ Zd × N let

d(Λ1,Λ2) := inf{d((s1, t1), (s2, t2)), (s1, t1) ∈ Λ1, (s2, t2) ∈ Λ2}.

(i) For k, `, n ≥ 0 the mixing coefficients are defined as

αk,`(n) := sup{|P(A1 ∩ A2)− P(A1)P(A2)| :
A1 ∈ FΛ1 , A2 ∈ FΛ2 , |Λ1| ≤ k, |Λ2| ≤ `, d(Λ1,Λ2) ≥ n}, (4.31)

where FΛi = σ(ηs,t : (s, t) ∈ Λi) for i = 1, 2.

(ii) The process {ηs,t : s ∈ Zd, t ∈ N} is called α-mixing if for all k, ` > 0,

αk,`(n)→ 0, n→∞.
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In the following, we show and use that {ηs,t : s ∈ Zd, t ∈ N} is α-mixing. Then by
definition (4.17) of qθ, we have that the space-time process {∇θqθ(i1, . . . , id, t; r, p) : im ∈
Z,m = 1, . . . , d, t ∈ N}, where r and p are the chosen space and time lags, respectively,
is α-mixing for all θ ∈ Θ?. Based on the central limit theorem of Bolthausen [1982], we
can formulate the following proposition.

Proposition 4.7. Let η = {ηs,t : s ∈ Rd, t ∈ [0,∞)} be the Brown-Resnick process
constructed in Theorem 3.5. Assume the following three conditions to hold:

(1) The process {ηs,t : s ∈ Zd, t ∈ N} is α-mixing.

(2) The α-mixing coefficients in (4.31) satisfy:

•
∞∑
n=1

ndαk,`(n) <∞ for k + l ≤ 4(|Hr|+ 1)(p+ 1)

• α(|Hr |+1)(p+1),∞(n) = o(n−(d+1)).

(3) There exists a positive β such that

• E
[
|∇θqθ?(i1, . . . , id, t; r, p)|2+β

]
<∞ for i1, . . . , id ∈ Z, t ∈ N, and

•
∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
β

2+β <∞.

Then,

1

M
d
2

√
T

M∑
i1=1

· · ·
M∑
id=1

∇θqθ?(i1, . . . , id, t; r, p)
D→ N (0,Σ), M, T →∞, (4.32)

where

Σ =
∞∑

i1=−∞

· · ·
∞∑

id=−∞

∞∑
t=1

Cov [∇θqθ?(1, . . . , 1, 1; r, p),∇θqθ?(i1, . . . , id, t; r, p)] . (4.33)

In what follows, we show that the conditions of Proposition 4.7 hold. To this end we
need the next Lemma, which is based on Corollary 2.2 of Dombry and Eyi-Minko [2012].

Lemma 4.8 (cf. Davis et al. [2012b], Lemma 5.4). The α-mixing coefficients in (4.31)
of a stationary max-stable space-time process {ηs,t : s ∈ Zd, t ∈ N} with tail dependence
coefficient X (h, u) (see (3.14)) satisfy

• αk,`(n) ≤ k` sup
max{

√
d|h1|,...,

√
d|hd|,|u|}≥n

X (h, u) and

• αk,∞(n) ≤ k
∑

max{
√
d|h1|,...,

√
d|hd|,|u|}≥n

X (h, u)

for positive k, ` and n.
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Proof. The statements are based on Dombry and Eyi-Minko [2012], Corollary 2.2 and
Davis et al. [2012b], Lemma 5.4, ensuring that, under the same conditions,

• αk,`(n) ≤ k` sup
max{‖h‖,|u|}≥n

X (h, u) and

• αk,∞(n) ≤ k
∑

max{‖h‖,|u|}≥n
X (h, u).

Note that for h = (h1, . . . , hd) ∈ Rd we have

‖h‖ =
√
|h1|2 + · · ·+ |hd|2 ≤

√
dmax{|h1|2, . . . , |hd|2} =

√
dmax{|h1|, . . . , |hd|}

Therefore, for n ∈ N, presuming max{‖h‖, |u|} ≥ n results in max{
√
d|h1|, . . . ,

√
d|hd|, |u|}

≥ n and finally we have

• αk,`(n) ≤ k` sup
max{‖h‖,|u|}≥n

X (h, u) ≤ k` sup
max{

√
d|h1|,...,

√
d|hd|,|u|}≥n

X (h, u) and

• αk,∞(n) ≤ k
∑

max{‖h‖,|u|}≥n
X (h, u) ≤ k

∑
max{

√
d|h1|,...,

√
d|hd|,|u|}≥n

X (h, u).

The task is now to show that the conditions of Proposition 4.7 hold for the Brown-
Resnick process η constructed in Theorem 3.5. Recall from (3.15) that, for h = (h1, . . . , hd)
∈ Rd and u ∈ R, its tail dependence coefficient is given by

X (h, u) = 2
(

1− Φ
(√

C1|h1|α1 + · · ·+ Cd|hd|αd + Cd+1|u|αd+1

))
.

Proposition 4.9. For the Brown-Resnick process η = {ηs,t : s ∈ Rd, t ∈ [0,∞)}, condi-
tions (1)-(3) of Proposition 4.7 hold.

Proof. (1) Using 1− Φ(x) ≤ exp(−1
2
x2) for x > 0 we find, applying Lemma 4.8,

αk,`(n) ≤ 2k` sup
max{

√
d|h1|,...,

√
d|hd|,|u|}≥n

(
1− Φ(

√
δ(h1, . . . , hd, u)

)
≤ 2k` sup

max{
√
d|h1|,...,

√
d|hd|,|u|}≥n

exp

{
−δ(h1, . . . , hd, u)

2

}
= 2k` sup

max{
√
d|h1|,...,

√
d|hd|,|u|}≥n

exp

{
−1

2
[C1|h1|α1 + . . .+ Cd|hd|αd + Cd+1|u|αd+1 ]

}
≤ 2k` sup

max{
√
d|h1|,...,

√
d|hd|,|u|}≥n

exp

{
−1

2
min{|C1|, . . . , |Cd+1|}max{|h1|, . . . , |hd|, |u|}min{α1,...,αd+1}

}
→ 0 as n→∞ for all k, ` ≥ 0.

By Definition 4.6, η is α-mixing.
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(2) • For k + ` ≤ 4(|Hr|+ 1)(p+ 1) we have, again applying Lemma 4.8,

∞∑
n=1

ndαk,`(n)

≤ 2k`
∞∑
n=1

nd sup
max{

√
d|h1|,...,

√
d|hd|,|u|}≥n

exp

{
−1

2
(C1|h1|α1 + . . .+ Cd|hd|αd + Cd+1|u|αd+1)

}
≤ 2k`

∞∑
n=1

nd exp

{
−1

2
min{C1, . . . , Cd+1}

(
n√
d

)min{α1,...,αd+1}
}

<∞

• Use Lemma 4.8 to obtain

nd+1α(|Hbsyr|+1)(p+1),∞(n)

≤ nd+1(|Hr|+ 1)(p+ 1)
∑
x≥ n√

d

exp

{
−1

2
min{C1, . . . , Cd+1}xmin{α1,...,αd+1}

}
→ 0 as n→∞.

(3) With β = 1, we obtain

• E
[
|∇θqθ?(i1, . . . , id, t; r, p)|(2+β)

]
<∞ because of Lemma 4.5 (i).

•
∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
β

2+β

≤ (2[(|Hr|+ 1)(p+ 1)]2)
1
3

∞∑
n=1

nd exp

{
−1

6
min{C1, . . . , Cd+1}

(
n√
d

)min{α1,...,αd+1}
}

<∞.

Now we formulate the main result in this section.

Theorem 4.10. Assume the same conditions as in Theorem 4.4. Then

√
MdT (θ̂ − θ?) D→ N (0, F−1Σ(F−1)′), as M,T →∞, (4.34)

where
F = E

[
−∇2

θqθ?(1, . . . , 1, 1; r, p)
]

and

Σ =
∞∑

i1=−∞

· · ·
∞∑

id=−∞

∞∑
t=1

Cov [∇θqθ?(1, . . . , 1, 1; r, p),∇θqθ?(i1, . . . , id, t; r, p)] .
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Proof. By Propositions 4.7 and 4.9 we have that the central limit theorem for ∇θqθ holds
in the following sense:

1

M
d
2

√
T

M∑
i1=1

· · ·
M∑
id=1

T∑
t=1

∇θqθ?(i1, . . . , id, t; r, p)
D→ N (0,Σ) as M,T →∞.

Taylor expansion around the true parameter vector θ? of the score function ∇θPL(M,T )(θ)
yields for some θ̃ ∈ [θ?, θ̂] :

0 = ∇θPL(M,T )(θ̂) = ∇θPL(M,T )(θ?) +∇2
θPL

(M,T )(θ̃)(θ̂ − θ?).

Therefore,

M
d
2

√
T (θ̂ − θ?) = −

(
1

MdT
∇2
θPL

(M,T )(θ̃)

)−1(
1

M
d
2T
∇θPL(M,T )(θ?)

)
= −

(
1

MdT

M∑
i1=1

· · ·
M∑
id=1

M∑
t=1

∇2
θqθ̃(i1, . . . , id, t; r, p)−

1

MdT
∇2
θR(M,T )(θ̃)

)−1

(
1

M
d
2

√
T

M∑
i1=1

· · ·
M∑
id=1

M∑
t=1

∇θqθ?(i1, . . . , id, t; r, p)−
1

M
d
2

√
T
∇θR(M,T )(θ?)

)
=: −(I1 − I2)−1(J1 − J2).

Note the following:

• By Proposition 4.7 it follows that J1 converges to N (0,Σ) in distribution as M,T
tend to infinity.

• By assumption and similar arguments as in the proof of strong consistency (Theorem
4.4), the term J2 converges to 0 in probability.

• As {ηs,t : s ∈ Zd, t ∈ N} is α-mixing, the process

{∇2
θqθ(i1, . . . , id, t; r, p) : im ∈ Z,m = 1, . . . d, t ∈ N}

is α-mixing as a set of measurable functions of mixing lagged processes. Uniform
convergence holds because of Lemma 4.5 which states that

E
[

sup
θ∈Θ?

∣∣∇2
θqθ(1, . . . , 1, 1; r, p)

∣∣] <∞.
Furthermore, as θ̃ ∈ [θ̂,θ?] and θ̂ is strongly consistent, we have that I1 converges
to −F almost surely as M and T converge to infinity.

• Concerning I2, the law of large numbers applied on {∇2
θ log{gθ(ηs,t, ηs+h,t+u)}} re-

sults in the fact that, similarly as in the proof of Theorem 4.4, I2 converges to 0
almost surely as M and T raise to infinity.

Finally, summarizing those results, Slutzky’s Lemma yields

M
d
2

√
T (θ̂ − θ?) D→ N (0, F−1Σ(F−1)′) as M,T →∞.
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4.3 Further Extensions to the Correlation Models

Throughout this thesis we mostly assume the limit function δ in Assumption 3.1 to be of
the form

δ(h1, . . . , hm, u) = C1|h1|α1 + · · ·+ Cd|hd|αd + Cd+1|u|αd+1

with Cm > 0 and αm ∈ (0, 2] for m = 1, . . . , d+1. One can say that the spatial anisotropy
is modelled independently for each dimension. However, one might be motivated to do
further research on anisotropic models that allow for interaction between the different
directions. One could generalize our model and assume δ to be (here for notational ease
for the case d = 2)

δ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|h1h2|α3 + C4|u|α4 .

One way to achieve this is by introducing geometric anisotropy, as done in Davis et al.
[2012a], Section 4.2. Consider the isotropic stable class correlation function

γ̃(h1, h2, u) = exp

{
−
∥∥∥(θ 1

2
1 h1, θ

1
2
1 h2, θ

1
2
2 u
)∥∥∥2
}
.

Set

R :=

(
cosϕ sinϕ
− sinϕ cosϕ

)
, T :=

( 1
amax

0

0 1
amin

)
,

where R is a rotation matrix and T a distance matrix in R2 with parameters ϕ ∈ [0, 2π)
and 0 < amin ≤ amax, respectively. Then the spatial anisotropy matrix Ã is given through
R and T as

Ã = TR =

( cosϕ
amax

sinϕ
amax

− sinϕ
amin

cosϕ
amin

)
.

Now define

A :=

(
TR 0
0 1

)
=

 cosϕ
amax

sinϕ
amax

0

− sinϕ
amin

cosϕ
amin

0

0 0 1


and the anisotropic correlation function γ by

γ(h1, h2, u) := γ̃(A(h1, h2, u)′) = exp

{
−
∥∥∥A(θ 1

2
1 h1, θ

1
2
1 h2, θ

1
2
2 u
)∥∥∥2
}
,

where θ1 and θ2 are some positive constants. This yields

γ(h1, h2, u)

= exp

{
−θ1

[((
cosϕ

amax

)2

+

(
sinϕ

amin

)2
)
h2

1 +

((
sinϕ

amax

)2

+

(
cosϕ

amin

)2
)
h2

2

+

(
2

cosϕ sinϕ

a2
max

− 2
cosϕ sinϕ

a2
min

)
h1h2

]
− θ2u

2

}
= exp

{
−θ1‖Ãh‖2 − θ2u

2
}
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Choosing as before sn,1 = sn,2 = tn = (log n)−
1
2 , we have again

lim
n→∞

{(log n)(1− γ(sn,1h1, sn,2h2, tnu))}

= θ1

[((
cosϕ

amax

)2

+

(
sinϕ

amin

)2
)
h2

1 +

((
sinϕ

amax

)2

+

(
cosϕ

amin

)2
)
h2

2

+

(
2

cosϕ sinϕ

a2
max

− 2
cosϕ sinϕ

a2
min

)
h1h2

]
+ θ2u

2

= θ1‖Ãh‖2 + θ2u
2

=: δ(h1, h2, u).

The following two chapters deal with applications of the pairwise likelihood estimation
procedure theoretically introduced throughout Section 4.2. Chapter 5 contains a simula-
tion study, whereas Chapter 6 treats real data. The special interest lies in how the results
differ from those of Davis et al. [2012b] and Steinkohl [2012].





Chapter 5

Simulation Study

In this chapter we test the pairwise likelihood method introduced in Section 4.2 for the
Brown-Resnick process constructed in Theorem 3.5. We assume two spatial dimensions
(d = 2). For the simulation of the Gaussian space-time processes we use again the R-
package RandomFields. However, in the anisotropic context, the package only allows for
simulation of covariance functions γ where the parameters α1 and α2 are equal to two
and therefore lie on the boundary of the parameter space. This is a problem; for example,
estimates above 2 would have to be censored, destroying the normal distribution. So in
the following we fix α1, α2 and α3 and show how the method works for the remaining
parameters C1, C2 and C3.

5.1 Procedure

The following steps are executed 100 times:

(i) We simulate 1000 independent Gaussian space-time processes Zj(Sn(s1, s2), tnt), j =
1, . . . , 1000 with covariance function γ(Sn(h1, h2), tnu) where γ belongs to the stable
class and is given by

γ(h1, h2, u) = exp
{
−
(
C?

1h
2
1 + C?

2h
2
2 + C?

3u
2
)}
.

The true parameters are chosen as C?
1 = 0.02, C?

2 = 0.04 and C?
3 = 0.05. The

processes are simulated on a regular grid {1, . . . ,M}×{1, . . . ,M} for some M ∈ N.
The time points are equidistant and given by the set {1, 2, . . . , T} for some T ∈ N.
As seen in Section 4.1, Assumption 4.1 is satisfied with corresponding limit function

δ(h1, h2, u) = C?
1h

2
1 + C?

2h
2
2 + C?

3u
2.

(ii) We transform the simulated processes to standard Fréchet margins by setting

Z̃j(s1, s2, t) := − 1

log (Φ(Zj(s1, s2, t))}
,

(s1, s2) ∈ {1, . . . ,M} × {1, . . . ,M}, t ∈ {1, . . . , T}.

For justification recall the probability integral transform method.

71
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(iii) To obtain an approximation of the max-stable Brown-Resnick process, take the
pointwise maximum over the generations Z̃j(Sn(s1, s2, tnt) in space and time and
divide by 1000 (the number of simulated Gaussian space-time processes):

η(s1, s2, t) =
1

1000

1000∨
j=1

Z̃j(Sn(s1, s2), tnt), (s1, s2) ∈ {1, . . . ,M}2, t ∈ {1, . . . , T}.

(iv) Obtain estimates (Ĉ1, Ĉ2, Ĉ3) by using pairwise likelihood estimation, as described
in Section 4.2.

5.2 Results

We did the procedure described in Section 5.1 a couple of times, each time slightly chang-
ing the edge length M of the grid and the number of time points T . In the following,
we illustrate how the results change and improve when M and T increase. We present
the estimates obtained in each setting. We write M ×M × T when simulating the pro-
cesses on the regular grid with edge length M during T equidistant time points. What is
conspicuous, is the fact that in the anisotropic setting and for the pairwise log-likelihood
function PL(M,T ) defined in (4.14) we basically need the squared number of grid points as
Davis et al. [2012b] need in their estimation procedure because for estimating the spatial
parameters C1 and C2 we only use data that lie on directional lines, whereas they use
the data quadratically. In their simulation study (Chapter 6), Davis et al. [2012b] point
out that the results improve if, in the pairwise likelihood estimation, one only uses pairs
with rather small spatial and temporal lags. On top of that, when estimating one certain
parameter (for instance C1), one obtains good results if the other lags (here: r2 and p) are
zero. The pairwise likelihood function (4.14) then naturally has a slightly simpler form:
For example, if the maximum space-time lags are chosen as (r1, r2, p) = (r1, 0, 0) with
r1 > 0, then we have

PL(M,T )(θ) =
M∑
i1=1

M∑
i2=1

T∑
t=1

r1∑
h1=1

i1+h1≤M

log
{
gθ(η(i1,i2),t, η(i1+h1,i2,t))

}
and its form is analogous if we choose (r1, r2, p) = (0, r2, 0) with r2 > 0. Similarly, if we
set (r1, r2, p) = (0, 0, p) with p > 0, we obtain

PL(M,T )(θ) =
M∑
i1=1

M∑
i2=1

T∑
t=1

p∑
u=1
t+u≤p

log
{
gθ(η(i1,i2),t, η(i1,i2),t+u)

}
.

We took this to heart in the estimation procedure.

(I) 10× 10× 100.
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The following table summarizes means and root mean squared errors (RMSE) for dif-
ferent spatial and temporal lags up to three. The results always refer to the estimates
(Ĉ1, Ĉ2 or Ĉ3) whose corresponding lag is not zero. For example, the mean of the esti-
mates obtained with maximum lags (r1,r2,p)=(0,2,0) corresponds to the estimate Ĉ2.

max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0) (0,0,1) (0,0,2) (0,0,3)
mean 0.1343 0.1082 0.0948 0.1072 0.0888 0.0795 0.0519 0.0505 0.0489
RMSE 0.1156 0.0894 0.0760 0.0689 0.0504 0.0411 0.0107 0.0106 0.0106

Table 5.1: Simulation step 10× 10× 100. Means and RMSE for the different parameters
and different spatial and temporal lags

Figures 5.1 to 5.2 show line plots, box plots and normal qq-plots of the respective
estimates. What one clearly sees is that the spatial estimates Ĉ1 and Ĉ2 are far away
from the true parameters C?

1 and C?
2 , whereas the temporal estimates Ĉ3 of the parameter

C?
3 have a small RMSE and practically no bias. The reason is that for estimating the two

spatial parameters in the anisotropic way, we have very few data points, as the estimation
procedure does not proceed quadratically. As already mentioned, we need the squared
number of grid points as Davis et al. [2012b] in their isotropic simulation study, so a
10×10 grid is probably not enough. The estimation works fine for the temporal parameter
C3 as we have a lot of time points for only one parameter. For the temporal parameters
the procedure does not change compared to Davis et al. [2012b]. Therefore our results are
similar. What is also noticeable, is the normality of the estimates, which can be concluded
from the QQ-plots. Hoping to get better results concerning the spatial parameters C1 and
C2, we go further and extend the grid successively. To cope with that computationally, we
simulate only one single time point t? and leave out the estimation of the time parameters.
As can be seen above, their estimation already works pleasingly. In this case, the pairwise
likelihood function (4.14) simplifies further and turns out to be (here for the maximum
space-time lags (r1, r2, p) = (r1, 0, 0) with r1 > 0):

PL(M,T )(θ) =
M∑
i1=1

M∑
i2=1

r1∑
h1=1

i1+h1≤M

log
{
gθ(η(i1,i2),t? , η(i1+h1),i2,t?)

}
.

We present the results of the simulation on grid sizes 70× 70 to 100× 100, enlarging the
side length by 10 in each step.

(II) 70× 70× 1.

In the case of a grid of size 70 × 70 the bias and the root mean squared errors are
reduced considerably compared to the case of a 10× 10 grid. Table 5.2 and Figures 5.4 to
5.6 summarize and visualize the results. Especially, the improvements reflect in the box
plots (Figure 5.5), where the green lines are now inside the boxes.
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Figure 5.1: Simulation step 10 × 10 × 100. Plots of the estimates Ĉ1, Ĉ2 and Ĉ3 for
maximum lags 1 to 3.
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Figure 5.2: Simulation step 10 × 10 × 100. Boxplots of the estimates Ĉ1, Ĉ2 and Ĉ3 for
maximum lags 1 to 3.
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Figure 5.3: Simulation step 10× 10× 100. Normal QQ-Plots of the estimates Ĉ1, Ĉ2 and
Ĉ3 for maximum lags 1 to 3.
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max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0)
mean 0.0189 0.0187 0.0185 0.0375 0.0369 0.0362
RMSE 0.0041 0.0043 0.0044 0.0080 0.0084 0.0088

Table 5.2: Simulation step 70×70×1. Means and RMSE for the different parameters and
different spatial lags

(III) 80× 80× 1.

The trend of the pairwise likelihood estimates Ĉ1 and Ĉ2 towards their respective true
values, which was indicated in the simulation step before, is still recognizable. In partic-
ular, the variance is further reduced (cf. Table 5.3). For visualizations see Figures 5.7 to
5.9.

max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0)
mean 0.0190 0.0188 0.0185 0.0373 0.0367 0.0362
RMSE 0.0032 0.0033 0.0034 0.0063 0.0067 0.0072

Table 5.3: Simulation step 80×80×1. Means and RMSE for the different parameters and
different spatial and lags

(IV) 90× 90× 1.

Table 5.4 and Figures 5.10 to 5.12 show that, compared to the simulation step before, the
results are only slightly improved. The best improvement is reflected in the estimate of
the true parameter C?

2 .

max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0)
mean 0.0191 0.0188 0.0186 0.0381 0.0375 0.0369
RMSE 0.0031 0.0032 0.0033 0.0061 0.0064 0.0067

Table 5.4: Simulation step 90×90×1. Means and RMSE for the different parameters and
different spatial lags

(V) 100× 100× 1.

In this last simulation step, the results improve considerably again, which is particu-
larly reflected in the root mean squared errors, which decline a lot compared to the steps
before.

max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0)
mean 0.0198 0.0196 0.0194 0.0394 0.0388 0.0382
RMSE 0.0021 0.0022 0.0023 0.0036 0.0038 0.0042

Table 5.5: Simulation step 100× 100× 1. Means and RMSE for the different parameters
and different spatial lags
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Figure 5.4: Simulation step 70 × 70 × 1. Plots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.5: Simulation step 70×70×1. Boxplots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.6: Simulation step 70× 70× 1. Normal QQ-Plots of the estimates Ĉ1 and Ĉ2 for
maximum lags 1 to 3.
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Figure 5.7: Simulation step 80 × 80 × 1. Plots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.8: Simulation step 80×80×1. Boxplots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.9: Simulation step 80× 80× 1. Normal QQ-Plots of the estimates Ĉ1 and Ĉ2 for
maximum lags 1 to 3.
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Figure 5.10: Simulation step 90× 90× 1. Plots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.11: Simulation step 90×90×1. Boxplots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.12: Simulation step 90 × 90 × 1. Normal QQ-Plots of the estimates Ĉ1 and Ĉ2

for maximum lags 1 to 3.



5.2. RESULTS 87

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Line plot C1, lag 1

Simulation Index

E
st

im
at

e

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Line plot C1, lag 2

Simulation Index

E
st

im
at

e

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Line plot C1, lag 3

Simulation Index

E
st

im
at

e

0 20 40 60 80 100

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Line plot C2, lag 1

Simulation Index

E
st

im
at

e

0 20 40 60 80 100

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Line plot C2, lag 2

Simulation Index

E
st

im
at

e

0 20 40 60 80 100

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Line plot C2, lag 3

Simulation Index

E
st

im
at

e

Figure 5.13: Simulation step 100×100×1. Plots of the estimates Ĉ1 and Ĉ2 for maximum
lags 1 to 3.
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Figure 5.14: Simulation step 100 × 100 × 1. Boxplots of the estimates Ĉ1 and Ĉ2 for
maximum lags 1 to 3.
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Figure 5.15: Simulation step 100× 100× 1. Normal QQ-Plots of the estimates Ĉ1 and Ĉ2

for maximum lags 1 to 3.
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Summary

We finish this chapter by summarizing the results of the different simulation steps, show-
ing how the spatial parameter estimates Ĉ1 and Ĉ2 improve when enlarging the side length
of the grid the processes are simulated on. We only compare the results of the estima-
tion procedures based on a maximum spatial lag of value 1, since they seem better than
those based on higher lags. Tables 5.6 and 5.7 show means and root mean squared errors
of the estimates Ĉ1 and Ĉ2, respectively. The trend towards the true parameter values
C?

1 = 0.02 and C?
2 = 0.04 is recognizable; in particular, the variance definitely decreases

with increasing side length.

side length 10 70 80 90 100
mean 0.1343 0.0189 0.0190 0.0191 0.0198
RMSE 0.1156 0.0041 0.0032 0.0031 0.0021

Table 5.6: Means and RMSE of the parameter estimate Ĉ1 for maximum lag 1 and different
side lengths of the grid

side length 10 70 80 90 100
mean 0.1072 0.0375 0.0373 0.0381 0.0394
RMSE 0.0689 0.0080 0.0063 0.0061 0.0036

Table 5.7: Means and RMSE of the parameter estimate Ĉ2 for maximum lags 1 and
different side lengths of the grid

To confirm those statements, Figure 5.16 presents the different boxplots of the two
estimates for side lengths 70-100. One can see that, with increasing side length, the green
lines (the true parameter values) move more and more inside the boxes. Moreover, the
boxes get smaller, indicating a decreasing variance.

In the next chapter, the pairwise likelihood method is applied to real data, stemming
from rain measurements in Florida, USA.
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Figure 5.16: Boxplots of the parameter estimates Ĉ1 and Ĉ2 for maximum lags 1 and
different side lengths of the grid





Chapter 6

Real Data Application

In this chapter we apply the pairwise likelihood estimation method, which was introduced
in Chapter 4 and tested within the framework of a simulation study in Chapter 5, to real
data. The data set we use in the following is an edited version of a rainfall data base
consisting of radar values measured in inches every two kilometres and every 15 minutes
in some part of Florida (USA) from 1999-2004. The same data set is used by Steinkohl
[2012], Chapter 7, who adapts the set by choosing a square of 120km×120km in the middle
of Florida, completely dividing it regularly into smaller squares of size 10km×10km and
finally calculating the daily spatial maximum and the cumulative hourly values in every
square, ending up with a 12×12 grid for all time points. The time points equal either
the 732 days of the six wet seasons June-September 1999-2004 (in case we consider daily
maxima) or the 2928 hours of the period June-September 1999 (if we deal with hourly
rainfall measurements). Figure 6.1 illustrates the location of the 12×12 grid. In what
follows, we analyse the two adapted versions of the data set, which we denote by{

˜̃η(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 732
}

and {
˜̃Z(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 2928

}
,

respectively. We proceed similarly as Steinkohl [2012], who assumes isotropy in the be-
haviour of rainfall. The special interest lies in the question if the estimation results change
significantly if we allow anisotropy.

6.1 Fitting and Transformation of the Data Set

Daily Maxima

In general, taking maxima in space and time is reasonable since we deal with extreme
values. However, before further analysis of the data set described above is possible, we
need to achieve some transformations, which can be found in Steinkohl [2012], Section
7.2. For completeness, we describe them here as well.

(i) Deseasonalizing the data.

93



94 CHAPTER 6. REAL DATA APPLICATION

Figure 6.1: Map of Florida. The daily maxima are taken over the little red squares, forming
the 12 × 12 grid our further analysis is dedicated to.
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We use a simple moving average to get rid of seasonal effects. One period consists
of a total wet season, i.e. of 122 days. For each fixed location (i1, i2) ∈ {1, . . . 12}2

set

η̃(i1,i2),tk+122(j−1)
:= ˜̃η(i1,i2),tk+122(j−1)

− 1

6

6∑
j=1

˜̃η(i1,i2),tk+122(j−1)
, k = 1, . . . , 122.

Examining autocorrelation plots, Steinkohl [2012] found that there is no temporal
dependence in the time series {η̃(i1,i2),t : t = 1, . . . , 732} for a fixed location (i1, i2).

(ii) Fitting a generalized extreme value distribution.

For each fixed location (i1, i2), we fit a generalized extreme value distribution Gγ,µ,σ

(see (2.12)) to the new data
{
η̃(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 732

}
, where γ =

γ(i1, i2), µ = µ(i1, i2) ∈ R and σ = σ(i1, i2) > 0, obtaining estimates γ̂ = γ̂(i1, i2),
µ̂ = µ̂(i1, i2) and σ̂ = σ(i1, i2). Statistical analysis of Steinkohl [2012] suggests to fit
a Gumbel distribution, that is, we let γ = 0. Recall that

G0,µ,σ(x) = exp

{
− exp

(
−x− µ

σ

)}
, x ∈ R.

(iii) Transformation to Standard Fréchet margins.

By the probability integral transform method, set for each fixed location (i1, i2),

η(i1,i2),t := − 1

log
{
G0,µ̂,σ̂(η̃(i1,i2),t)

} , t = 1, . . . , 732.

Hourly Measurements

Similar transformations need to be achieved when dealing with hourly measurements.

(i) Deseasonalizing the data.

We use a simple moving average to get rid of seasonal effects. One period consists
of one day, i.e. of 24 hours. For each fixed location (i1, i2) ∈ {1, . . . 12}2 set

Z̃(i1,i2),tk+24(j−1)
:= ˜̃Z(i1,i2),tk+24(j−1)

− 1

122

122∑
j=1

˜̃Z(i1,i2),tk+24(j−1)
, k = 1, . . . , 24.

(ii) Fitting a generalized Pareto distribution.

Examining autocorrelation plots, Steinkohl [2012] found that, for a fixed location
(i1, i2), the time series {η̃(i1,i2),t : t = 1, . . . , 2928} is stationary with a short-rate
temporal dependence and can therefore be treated as an IID sequence, since it sat-
isfies additional mixing conditions (see Leadbetter [1974] and Leadbetter [1983]).



96 CHAPTER 6. REAL DATA APPLICATION

For each fixed location (i1, i2), we fit a generalized Pareto distribution GPDγ,β with
γ = γ(i1, i2) ∈ R and β = β(i1, i2) > 0 using the Peaks over Threshold method with
a threshold v = 0.2 (see Section 2.1.3) to the new data{

Z̃(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 2928
}
,

obtaining estimates γ̂ = γ̂(i1, i2) and β̂ = β̂(i1, i2). Recall that

GPDγ,β(x) = 1−


(

1 + γ x
β

)− 1
γ
, if γ 6= 0,

exp
{
−x
β

}
, if γ = 0.

(iii) Transformation to Standard Fréchet margins.

For each fixed location (i1, i2) set

Z(i1,i2),t := − 1

log
{
F̂(i1,i2)(Z̃(i1,i2),t)

} , t = 1, . . . , 2928,

where

F̂(i1,i2)(x) =

1− Nv(i1,i2)
2928

(1−GPDγ̂,β̂(x− v)), if x > v,

1
2928

2928∑
t=1

1{Z̃(i1,i2),t≤x}, if x ≤ v,
(6.1)

with Nv(i1, i2) =
2928∑
t=1

1{Z̃(i1,i2),t>v}.

6.2 Pairwise Likelihood Estimation

Daily Maxima

We want to apply the pairwise likelihood method to the transformed data set{
η(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 732

}
.

We assume that the observations are realizations from a Brown-Resnick process η ={
η(i1,i2),t : i1, i2 ∈ R, t ∈ [0,∞)

}
like in Theorem 3.5 where the function δ satisfies

δ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|u|α3 ,

with h1 = i
(1)
1 − i

(2)
1 , h2 = i

(1)
2 − i

(2)
2 , u = t1 − t2, for two spatial locations (i

(1)
1 , i

(1)
2 )

and (i
(2)
1 , i

(2)
2 ) and two time points t1 and t2. Our goal is to estimate the parameters

C1, C2, C3 ∈ (c,∞) for some c > 0 and α1, α2, α3 ∈ (0, 2]. We did the estimation procedure
for maximum spatial and temporal lags 1 to 3, estimating the respective parameters
separately, meaning that if one lag is allowed to take positive values, the others are set
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equal to 0. This advancement is justified by Davis et al. [2012a], Chapter 6, who state
that the parameters of the underlying space-time correlation function get separated in the
extremal setting. That way, if we set one maximum spatial lag or the maximum temporal
lag equal to 0, it does not affect the respective other parameters. Tables 6.1 and 6.2 present
the results. The notation (a1, a2, a3) for ai ∈ {0, 1, 2, 3}, i = 1, . . . , 3, relates to estimates
of the parameters Caj or αaj , where j is the index of the number aj that is not equal to 0.

max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0) (0,0,1) (0,0,2) (0,0,3)
estimated
value

0.3143 0.3143 0.3179 0.3636 0.3636 0.3685 2.4189 2.4189 2.4353

Table 6.1: Estimates of the parameters C1, C2 and C3 for different maximum spatial and
temporal lags, respectively.

max. lags (2,0,0) (3,0,0) (0,2,0) (0,3,0) (0,0,2) (0,0,3)
estimated
value

0.9437 0.8599 0.9517 0.8521 0.1981 0.1561

Table 6.2: Estimates of the parameters α1, α2 and α3 for different maximum spatial and
temporal lags, respectively.

As one would expect, the estimates of the temporal parameters C3 and α3 above and
the corresponding estimates of Steinkohl [2012] are nearly identical, since in this thesis,
we only changed assumptions concerning the spatial parameters C1, C2, α1 and α2. Their
estimates, however, are at least of the same range as the spatial estimates of Steinkohl
[2012]. The combination of a rather large parameter estimate Ĉ3 and a rather small es-
timate α̂3 implies extremal temporal independence. For a brief explanation based on the
so-called extremal extremogram (see Davis and Mikosch [2009] and Steinkohl [2012], Def-
inition 5.1), we refer to Steinkohl [2012].

Hourly Measurements

We now apply the pairwise likelihood method to the transformed data set of hourly
measurements

{
Z(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 2928

}
. As for the daily maxima, we

assume that the observations are realizations from a Brown-Resnick process and our goal
is to estimate the parameters C1, C2, C3 and α1, α2, α3 of the function δ. We did the es-
timation procedure for maximum spatial and temporal lags 1 to 3, again estimating the
respective parameters separately. Tables 6.3 and 6.4 present the results. The notation
(a1, a2, a3) for ai ∈ {0, 1, 2, 3}, i = 1, . . . , 3, relates to estimates of the parameters Caj or
αaj , where j is the index of the number aj that is not equal to 0.
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max. lags (1,0,0) (2,0,0) (3,0,0) (0,1,0) (0,2,0) (0,3,0) (0,0,1) (0,0,2) (0,0,3)
estimated
value

0.1538 0.1537 0.1559 0.1501 0.1501 0.1517 0.3532 0.3532 0.3505

Table 6.3: Estimates of the parameters C1, C2 and C3 for different maximum spatial and
temporal lags, respectively.

max. lags (2,0,0) (3,0,0) (0,2,0) (0,3,0) (0,0,2) (0,0,3)
estimated
value

0.9630 0.8704 0.9021 0.8311 1.0628 1.1252

Table 6.4: Estimates of the parameters α1, α2 and α3 for different maximum spatial and
temporal lags, respectively.

The temporal parameter estimates of C3 and α3 now clearly indicate dependence,
since they reveal the combination of a small C3 and a large α3. Normally, scaling of the
time domain does not influence the spatial parameters (for an explanation based on the
extremal extremogram we refer to Steinkohl [2012], Section 7.3). So the estimated values
of C1 and C2 based on hourly measurements should more or less accord with those based
on daily maxima. A possible explanation for the fact that this is not the case here might
be that the hourly measurements have not yet reached the Fréchet limit, i.e. they are
maybe not “extreme” enough.

6.3 Conditional Probability Fields and Return Level

Maps

Based on the estimation results in Section 6.2, we want to “update” the conditional proba-
bility fields and return level plots of Steinkohl [2012], Section 7.2. We consider again both
daily maxima and hourly measurements.

Daily Maxima

For some space-time point (i1, i2, t) ∈ {1, . . . , 12}2 × {1, . . . , 732} and some non-negative
rain level zc we consider probabilities of the form

P
(
η̃(i1,i2),t > zc|η̃(i?1,i

?
2),t? > zc

)
,

where (i?1, i
?
2, t

?) and z? are the reference point and the reference level, respectively. The
process

{
η̃(i1,i2),t : i1, i2 = 1, . . . , 12, t = 1, . . . , 732

}
is the deseasonalized process of step (1)

above and assumed to be realizations of a Brown-Resnick process with marginal Gumbel
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distribution G0,µ(i1,i2),σ(i1,i2). Setting p? := P
(
η̃(i?1,i

?
2),t? > z?

)
, we find

P
(
η̃(i1,i2),t > zc|η̃(i?1,i

?
2),t? > z?

)
=

1

p?
P
(
η̃(i1,i2),t > zc, η̃(i?1,i

?
2),t? > z?

)
=

1

p?
[
1− P

(
η̃(i1,i2),t ≤ zc, η̃(i?1,i

?
2),t? ≤ z?

)
− P

(
η̃(i1,i2),t > zc, η̃(i?1,i

?
2),t? ≤ z?

)
− P

(
η̃(i1,i2),t ≤ zc, η̃(i?1,i

?
2),t? > z?

) ]
=

1

p?
[
1− P

(
η̃(i1,i2),t ≤ zc

)
− P

(
η̃(i?1,i

?
2),t? ≤ z?

)
+ P

(
η̃(i1,i2),t ≤ zc, η̃(i?1,i

?
2),t? ≤ z?

) ]
=

1

p?
[
1−G0,µ(i1,i2),σ(i1,i2)(zc)− (1− p?) + P

(
η̃(i1,i2),t ≤ zc, η̃(i?1,i

?
2),t? ≤ z?

) ]
= 1− 1

p?
G0,µ(i1,i2),σ(i1,i2)(zc)

+
1

p?
P
(
− 1

log
{
G0,µ(i1,i2),σ(i1,i2)(η̃(i1,i2),t)

} ≤ − 1

log
{
G0,µ(i1,i2),σ(i1,i2)(zc)

} ,
− 1

log
{
G0,µ(i1,i2),σ(i1,i2)(η̃(i1,i2),t)

} ≤ − 1

log{1− p?}

)
= 1− 1

p?
G0,µ(i1,i2),σ(i1,i2)(zc) +

1

p?
G

(
− 1

log
{
G0,µ(i1,i2),σ(i1,i2)(zc)

} ,− 1

log{1− p?}

)
,

where G denotes the bivariate distribution function of the Brown-Resnick process given in
(3.9). To estimate the conditional probabilities, we use the estimates µ̂(i1, i2) and σ̂(i1, i2)
of the Gumbel distribution parameters and the parameter estimates Ĉ1, Ĉ2, Ĉ3, α̂1, α̂2

and α̂3 for the function G. Figure 6.2 shows four predicted conditional probability fields
for the reference points (1, 1, 1), (5, 6, 1), (8, 10, 1) and (10, 7, 1), i.e. we choose the same
as Steinkohl [2012], Section 7.2. Because of temporal independence (see above), we keep
the time point fixed. Clearly, there are only little changes, because the spatial parameter
estimates only slightly differ and they are more or less of the same range as the isotropic
spatial parameter estimate of Steinkohl [2012]. Basically the same statement holds for the
return level plots in Figure 6.3 for the same reference locations: For given pc and p? ∈ [0, 1]
(in Figure 6.3: pc = p? = 0.01), the conditional return level zc with return period 1

pc
is

obtained by solving for it in the equation

P
(
η̃(i1,i2),t > zc|η̃(i?1,i

?
2),t? > z?

)
= pc,

with z? such that P
(
η̃(i?1,i

?
2),t? > z?

)
= p?. To estimate the return levels, we use again the

estimated versions of the parameters included in its calculation.

Hourly Measurements

For some space-time point (i1, i2, t) ∈ {1, . . . , 12}2×{1, . . . , 2928} and some non-negative
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Figure 6.2: Predicted conditional probability fields based on daily maxima for reference
points (1,1,1), (5,6,1), (8,10,1) and (10,7,1) (form the top left to the bottom right).
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Figure 6.3: Conditional 100-day-return level plots based on daily maxima for reference
points (white squares) (1,1,1), (5,6,1), (8,10,1) and (10,7,1) (form the top left to the
bottom right).
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rain level zc we consider analogously as in the case of daily maxima conditional probabil-
ities of the form

P
(
Z̃(i1,i2),t > zc|Z̃(i?1,i

?
2),t? > zc

)
and predict them by

1− 1

p?
F̂(i1,i2)(zc) +

1

p?
Ĝ

(
− 1

log
{
F̂(i1,i2)(zc)

} ,− 1

log{1− p?}

)
,

where (i?1, i
?
2), t? and z? are the reference point and the reference level, respectively, p? =

P
(
Z̃(i?1,i

?
2),t? > z?

)
, F̂(i1,i2)(·) is given in (6.1) and Ĝ(·) is the estimate of the bivariate

distribution function of the Brown-Resnick process (cf. (3.9)). On top of that, we estimate
the conditional return levels zc obtained by solving for it in the equations

P
(
Z̃(i1,i2),t > zc|Z̃(i?1,i

?
2),t? > zc

)
= pc

for some pc ∈ [0, 1]. Figure 6.4 shows predicted conditional probability fields for the
reference locations (5, 6) and (10, 7). Figure 6.5 shows predicted conditional return level
plots for the reference locations (1, 1), (5, 6) and (10, 7). Both plots visualize four different
time points in a row. Again we choose the same locations as Steinkohl [2012], Section 7.2.

In the following, we consider the natural question that arose in the previous sections:
Can we reject the assumption of isotropy? In other words: Are the parameters C1 and C2

or α1 and α2 significantly different? The next section deals with that question. However,
we only consider the estimation results based on daily maxima because of the remarks at
the end of Section 6.2.



6.3. CONDITIONAL PROBABILITY FIELDS AND RETURN LEVEL MAPS 103

0.0

0.2

0.4

0.6

0.8

1.0

 0.3 

 0.3 

 0.3 

 0.3 

 0.3 

 0.4 
 0.5  0.6 

0.0

0.2

0.4

0.6

0.8

1.0

 0.2 

 0.2 

 0.3 

 0.4 

 0.4 

 0.5 

 0
.6

 

0.0

0.2

0.4

0.6

0.8

1.0

 0.2 

 0
.2

 

 0.2 

 0.25 

 0.25 
 0.25 

 0
.3

 

 0.35 

0.0

0.2

0.4

0.6

0.8

1.0

 0.15 

 0.15 

 0.2 

 0.25 

 0.3 

 0.3 

 0.35 

 0.4 

0.0

0.2

0.4

0.6

0.8

1.0 0.14 

 0.16 

 0
.1

6 

 0.18  0.18 

 0.18 

 0.2 

 0.2 
 0.2 

 0.22 

 0
.2

4 

 0.26 

 0
.3

 

0.0

0.2

0.4

0.6

0.8

1.0

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

0.0

0.2

0.4

0.6

0.8

1.0

 0.12 

 0
.1

2 

 0.12 

 0.14 

 0.14 

 0.14 

 0
.1

6 

 0
.1

8 

 0.
2 

 0
.2

2 

0.0

0.2

0.4

0.6

0.8

1.0

 0.08 

 0
.0

8 

 0.1 

 0.12 

 0.14 

 0.16 

 0.18 

 0.2 

Figure 6.4: Predicted conditional probability fields based on hourly measurement for ref-
erence locations (5,6) (left row) and (10,7) (right row) for four consecutive time points
(from top to bottom).
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Figure 6.5: Predicted conditional return level plots based on hourly measurement for
reference locations (1,1) (left row), (5,6) (middle row) and (10,7) (right row) for four
consecutive time points (from top to bottom).



6.4. TESTING FOR ANISOTROPY 105

6.4 A Hypothesis Test: Can we reject isotropy of the

rainfall weather fronts?

From Chapter 4.2.3 we know that asymptotic normality holds for the pairwise likelihood
estimate

θ̂ = (Ĉ1, Ĉ2, Ĉ3, α̂1, α̂2, α̂3) = θ̂
(M,T )

= (Ĉ
(M,T )
1 , Ĉ

(M,T )
2 , Ĉ

(M,T )
3 , α̂

(M,T )
1 , α̂

(M,T )
2 , α̂

(M,T )
3 )

in the following sense:

M
d
2

√
T





Ĉ1 − C1

Ĉ2 − C2

Ĉ3 − C3

α̂1 − α1

α̂2 − α2

α̂3 − α3




D→ N (0, Σ̃), as M,T →∞, (6.2)

where Σ̃ ∈ R6×6 is the asymptotic covariance matrix. The quantities M and T stand
for the side length of the regular grid of d dimensions and the number of time points,
respectively.

Proposition 6.1 (Asymptotics). Set τM,T := M
d
2

√
T and define A1 := (−1, 1, 0, 0, 0, 0)

and A2 := (0, 0, 0,−1, 1, 0). Then:

τM,T ((Ĉ2 − Ĉ1)− (C2 − C1))
D→ N (0, A1Σ̃A′1) (6.3)

and

τM,T ((α̂2 − α̂1)− (α2 − α1))
D→ N (0, A2Σ̃A′2). (6.4)

Proof. We only prove (6.3); (6.4) is proved analogously. Using the continuous mapping
theorem and (6.2), we obtain

A1


M

d
2

√
T





Ĉ1 − C1

Ĉ2 − C2

Ĉ3 − C3

α̂1 − α1

α̂2 − α2

α̂3 − α3






= M

d
2

√
T (C1 − Ĉ1 − C2 + Ĉ2)

= M
d
2

√
T ((Ĉ2 − Ĉ1)− (C2 − C1))

= τM,T ((Ĉ2 − Ĉ1)− (C2 − C1))
D→ N (0, A1Σ̃A′1).
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Note and recall that Ĉ1, Ĉ2, α̂1 and α̂2 all depend on M and T . For convenience, we
define θC := (C2 − C1), θ̂

(M,T )
C := (Ĉ2 − Ĉ1), θα := (α2 − α1) and θ̂α := (α̂2 − α̂1). In the

following, we test the null hypothesis

H0 : θC = θα = 0

versus the alternative hypothesis

HA : θC 6= 0 or θα 6= 0.

Note that this test scheme is an example of multiple hypothesis testing, as we are about
to test two theses simultaneously on the same data set. In order to come up with this, we
use the Bonferroni inequality.

Proposition 6.2 (Bonferroni Inequality, cf. Lehmann and Romano [2005], Thm. 9.1.1).
For s ∈ N, let {Hk : k = 1, . . . , s} be the set of hypotheses that are about to be tested
simultaneously at some overall confidence level β ∈ (0, 1). Further, let {Hi : i ∈ I} for
some I ⊂ {1, . . . , s} be the set of the true hypotheses. Suppose that each hypothesis Hk is
rejected if P(reject Hk|k ∈ I) ≤ β/s. Then

P(reject any Hk with k ∈ I) ≤ β,

i.e., the overall probability of a first type error is limited by β.

Proof. P(reject any Hk with k ∈ I) ≤
∑
i∈I

P(reject Hi) ≤ |I|βs ≤ β.

As Σ̃ and therefore the limiting distributions of θ̂
(M,T )
C and θ̂

(M,T )
α are not known in closed

form, we need asymptotic confidence intervals to be able to test our two hypotheses. To
achieve this, one can use subsampling methods. In the following, we use the method de-
scribed by Politis, Romano and Wolf [1999], Chapter 5. However, they consider stationary

random fields of the form
{
Xt̃ : t̃ ∈ Gd̃

}
where G ∈ {R,Z}. To make the theory appli-

cable to our setting and the Brown-Resnick process η, we choose G = Z, d̃ = d + 1 and
write {

ηs,t : s ∈ Nd, t ∈ N
}

=:
{
ηt̃ : t̃ ∈ Nd̃

}
,

where d̃ = d+ 1. For m = (m1, . . . ,md̃) ∈ Nd̃ define

Em : =
{
t̃ = (t̃1, . . . , t̃d̃) ∈ Nd̃ : t̃1 ≤ m1, . . . , t̃d̃ ≤ md̃

}
=
{

(s, t) = (s1, . . . , sd, t) ∈ Nd × N : s1 ≤ m1, . . . , sd ≤ md, t ≤ md+1

}
.

The set of observations is given by
{
ηt̃ : t̃ ∈ En

}
with n = (M, . . . ,M, T ). Given an

estimate
ϕ̂ = ϕ̂n = ϕ̂n

({
ηt̃ : t̃ ∈ En

})
of some arbitrary univariate parameter ϕ ∈ R, the goal of subsampling is to calculate
asymptotically correct (1 − β) · 100%−confidence intervals for ϕ for some level β, e.g.
β = 0.05. For an appropriate scaling sequence (ζn), let Jn denote the sampling probability
law and Jn(·) the corresponding distribution function of ζn(ϕ̂n−ϕ). The central and only
requirement concerning Jn is the following:
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Assumption 6.1 (cf. Politis et al. [1999], Assumption 5.3.1). The sampling distribution
Jn converges weakly to a limit law J with corresponding distribution function J(·) as
nj →∞ for j = 1, . . . , d̃.

In our case, as nj = M for j = 1, . . . , d, we can for notational reasons write ζM,T instead
of ζM,...,M,T = ζn, ϕM,T instead of ϕM,...,M,T = ϕn and J (M,T ) instead of J (M,...,M,T ) = Jn.

We choose ϕ = θC or ϕ = θα, ϕ̂M,T = θ̂
(M,T )
C or ϕ̂M,T = θ̂

(M,T )
α and ζM,T = M

d
2

√
T = τM,T .

Then Assumption 6.1 is satisfied by Proposition 6.1. The following steps summarize the
subsampling procedure described in Politis et al. [1999]. For notational ease and as the
procedure is the same for the parameters θC and θα, we use the subscript “l” for either
C or α.

Subsampling Procedure

(1) For i = (i1, . . . , id̃), b = (b1, . . . , bd̃) and e = (e1, . . . , ed̃) ∈ Nd̃ define the blocks
Yi :=

{
ηt̃ : t̃ ∈ Ei,b,e

}
, where

Ei,b,e =
{
j = (j1, . . . , jd̃) ∈ Nd̃ : (ik − 1)ek < jk ≤ (ik − 1)ek + bk, k = 1, . . . , d̃.

}
.

The vectors b and e determine the side lengths of the blocks and the degree of overlap,

respectively. The total number of blocks available is q =
d̃∏
j=1

qj, where qj = bnj−bj
ej
c+1

for j = 1, . . . , d̃. Recall from Section 6.1, that within our context of application, we
have d = 2 (i.e. d̃ = 3), n1 = n2 = M = 12 and n3 = T = 732. Since throughout
this thesis, we only deal with regular grids we choose b1 = b2 = 5. Concerning the
number of time points in each subsample, we take b3 = 600. In order to obtain a large
number of subsamples, we further choose e1 = e2 = e3 = 1, the maximum degree of
overlap. The total number of blocks is therefore given by 8 · 8 · 133 = 8512. Figure 6.6
visualizes this procedure.

(2) Obtain q different estimates θ̂
(M,T )
l,b,i = θ̂

(M,T )
l,b (Yi) by estimating the parameter θl on

the q different block subsamples Yi, i1 = 1, . . . , q1, . . . , id̃ = 1, . . . , qd̃.

(3) Define the subsampling approximation to J (M,T )(x) by

L
(M,T )
b,l (x) :=

1

q

q1∑
i1=1

· · ·
qd̃∑
id̃=1

1{
τb

(
θ̂
(M,T )
l,b,i −θ̂

(M,T )
l

)
≤x
}, (6.5)

where τb is the analogue of τM,T in terms of the smaller subsample. That is, in the
special setting described at the end of (1), this yields

τb = b
d
2
1

√
bd̃ = b1

√
b3 = 5

√
600.
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Figure 6.6: The grid of observations and the time line are divided into smaller subsamples.
The values of the structure determining vectors are chosen as b = (5, 5, 600) and e =
(1, 1, 1). The first picture shows a starting time point t? between 1 and 133 and the
second picture shows the last time point of the subsample t? + 599.

(4) For a chosen confidence level β, set

c
(M,T )
b,l (1− β) := inf

{
x : L

(M,T )
b,l (x) ≥ 1− β

}
. (6.6)

Then the interval [
θ̂

(M,T )
l − τ−1

M,T c
(M,T )
b,l (1− β),∞

)
turns out to be a one-sided asymptotic (1 − β) · 100%−confidence interval for the
parameter θl.

The statement in step (4) is proved by the following theorem.

Theorem 6.3 (One-Sided Asymptotic Confidence Intervals). Assume that, as M and
T →∞:

(I) τb
τM,T
→ 0,

(II) bi →∞, i = 1, . . . , d̃,

(III) b1
M
→ 0, . . . , bd

M
→ 0,

(IV)
bd̃
T
→ 0,

(V) e is constant.

Then the following statements hold:
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(i) L
(M,T )
b,l (x)→ Φ0,σ2

l
(x) in probability as M and T →∞ for all x ∈ R, where Φ0,σ2

l
(·)

denotes the distribution function of the univariate normal distribution with mean 0
and variance

σ2
l =

{
A1Σ̃A′1, if l = C,

A2Σ̃A′2, if l = α.

(ii) sup
x∈R

∣∣∣L(M,T )
b,l (x)− J (M,T )

l (x)
∣∣∣→ 0 in probability as M and T →∞, where J

(M,T )
l (x) =

P
(
τM,T (θ̂

(M,T )
l − θl) ≤ x

)
.

(iii) For a chosen confidence level β, it holds that

P
(
τM,T (θ̂

(M,T )
l − θl) ≤ c

(M,T )
b,l (1− β)

)
→ 1− β as M and T →∞. (6.7)

It follows that an asymptotic (1− β) · 100%−confidence interval for θl is given by[
θ̂

(M,T )
l − τ−1

M,T c
(M,T )
b,l (1− β),∞

)
. (6.8)

Proof. We have to verify the conditions of Politis et al. [1999], Theorem 5.3.1 and Corollary
5.3.1. The central assumption, Assumption 6.1 above, is satisfied by Proposition 6.1.
The limit distribution is normal and therefore continuous. Assumptions (I)-(V) are also
presumed by Politis et al. [1999]. It remains to be shown that

1

n

n?∑
k=1

kd̃−1α̂b(k) =
1

n

n?∑
k=1

kdα̂b(k)→ 0 as M and T →∞, (6.9)

where n =
d̃∏
j=1

nj = MdT , n? := max{M,T}, b :=
d̃∏
j=1

bj and, for ` and k ∈ N, α̂`(k) is a

special kind of mixing coefficient given by

α̂`(k) :=

sup
Λ1=Em,Λ2=Λ1+r

r∈Zd̃,m∈Nd̃

{|P(A1 ∩ A2)− P(A1)P(A2)| : Ai ∈ F(Λi), i = 1, 2, |A1| ≤ `, d(Λ1,Λ2) ≥ k} ,

where d(·, ·) is defined in Definition 4.6. As, for ` ∈ N, we obviously have that α̂`(k) ≤
α`,`(k) with the latter mixing coefficient defined in Definition 4.6, we can proceed similarly
as in the proof of Proposition 4.9, where we use Lemma 4.8, and conclude:

n?∑
k=1

kdα̂b(k) ≤
n?∑
k=1

kdαb,b(k)

≤ 2b2

n?∑
k=1

kd sup
max{

√
d|h1|,...,

√
d|hd|,|u|}

exp

{
−1

2
(C1|h1|α1 + · · ·+ Cd|hd|αd + Cd̃|u|

αd̃)

}

≤ 2b2

n?∑
k=1

kd exp

{
−1

2
min {C1, . . . , Cd̃}

(
k√
d

)min{α1,...,αd̃}
}

<∞ for all n? = max{M,T}.
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Therefore,

1

n

n?∑
k=1

kdα̂b(k) =
1

MdT

max{M,T}∑
k=1

kdα̂b(k)→ 0 as M and T →∞.

Using Theorem 6.3 we can even construct symmetric two-sided asymptotic confidence
intervals for the parameters θl for l ∈ {C, α}.

Corollary 6.4 (Symmetric Two-Sided Asymptotic Confidence Intervals). Proceed as in
steps (1)-(2) of the subsampling procedure above. Further:

(3’) Define

L
(M,T )
b,l,|·| (x) :=

1

q

q1∑
i1=1

· · ·
qd̃∑
id̃=1

1{
τb

∣∣∣θ̂(M,T )
l,b,i −θ̂

(M,T )
l

∣∣∣≤x}. (6.10)

(4’) For a chosen confidence level β, set

c
(M,T )
b,l,|·| (1− β) := inf

{
x : L

(M,T )
b,l,|·| (x) ≥ 1− β

}
. (6.11)

Assume all the conditions of Theorem 6.3. Then the following statements hold:

(i) L
(M,T )
b,l,|·| (x)→ Φ

|·|
0,σ2

l
(x) in probability as M and T →∞ for all x ∈ R, where Φ

|·|
0,σ2

l
(·)

denotes the distribution function of |Z| where the random variable Z follows a uni-
variate normal distribution with mean 0 and variance σ2

l .

(ii) sup
x∈R

∣∣∣L(M,T )
b,l,|·| (x)− J (M,T )

l,|·| (x)
∣∣∣→ 0 in probability as M and T →∞, where J

(M,T )
l,|·| (x)(x) =

P
(
τM,T |θ̂(M,T )

l − θl| ≤ x
)

.

(iii) For a chosen confidence level β, it holds that

P
(
τM,T |θ̂(M,T )

l − θl| ≤ c
(M,T )
b,l,|·| (1− β)

)
→ 1− β as M and T →∞. (6.12)

It follows that an asymptotic symmetric (1− β) · 100%−confidence interval for θl is
given by [

θ̂
(M,T )
l − τ−1

M,T c
(M,T )
b,l,|·| (1− β), θ̂

(M,T )
l + τ−1

M,T c
(M,T )
b,l,|·| (1− β)

]
. (6.13)

The corollary directly follows from Theorem 6.3 and the continuous mapping theorem;
for further details consult Politis et al. [1999], Corollary 3.2 which treats the analogous
subsampling procedure for stationary time series.
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Recall the test scheme:
H0 : θC = θα = 0,

HA : θC 6= 0 or θα 6= 0.

Under H0 we have

• θ̂(M,T )
C − θC = (Ĉ2 − Ĉ1)− (C2 − C1) = (Ĉ2 − Ĉ1) = θ̂

(M,T )
C and

• θ̂(M,T )
α − θα = (α̂2 − α̂1)− (α2 − α1) = (α̂2 − α̂1) = θ̂

(M,T )
α .

Motivated by (6.12), rejection areas for the test statistics τM,T θ̂
(M,T )
C and τM,T θ̂

(M,T )
α are

given by

RejC := (−∞,−c(M,T )
b,C,|·| ) ∪ (c

(M,T )
b,C,|·| ,∞) and Rejα := (−∞,−c(M,T )

b,α,|·| ) ∪ (c
(M,T )
b,α,|·| ,∞).

To perform the test at an overall confidence level β = 5%, we use the Bonferroni inequality
(Proposition 6.2) and test the two individual hypotheses that C1 = C2 and α1 = α2 at
confidence levels of β

2
each. Tables 6.5 and 6.6 present the results of the individual tests

at confidence levels β
2

= 2.5%. We use pairwise likelihood estimates based on maximum

lags 2 and 3. The differences (Ĉ2 − Ĉ1) and (α̂2 − α̂1) can be obtained from Tables 6.1
and 6.2.

max.
lag

τM,T (Ĉ2−Ĉ1) τM,T (Ĉ2−
Ĉ1)

RejC asy. 2.5%-CI
for (C2 − C1)

Reject
C1 = C2?

2 324.666 0.0492 15.9739 (−∞,−14.4016)∪
(14.4016,∞)

[0.0048, 0.0936] yes

3 324.666 0.0506 16.4277 (−∞,−14.4023)∪
(14.4023,∞)

[0.0064, 0.0948] yes

Table 6.5: Test results for parameters C1 and C2. All values are rounded.

max.
lag

τM,T (α̂2− α̂1) τM,T (α̂2−
α̂1)

Rejα asy. 2.5%-CI
for (α2 − α1)

Reject
α1 = α2?

2 324.666 0.0080 2.6105 (−∞,−25.9455)∪
(25.9455,∞)

[−0.0719, 0.0880] no

3 324.666 0.0078 -2.5381 (−∞,−25.5573)∪
(25.5573,∞)

[−0.0865, 0.0709] no

Table 6.6: Test results for parameters α1 and α2. All values are rounded.

Since we can reject the individual hypothesis that C1 = C2 at a confidence level of 2.5%,
we can reject the overall hypothesis H0 at a confidence level of 5% and conclude that the
rain does not behave equally in both directions. So, all in all, we can reject the assumption
of isotropy in the extremal rainfall weather fronts.



Appendix

A.1 List of Notations and Conventions

Throughout this thesis we use the following notations.

(i) We denote by x = (x1, . . . , xd) ∈ Rd a d-dimensional real-valued vector.

(ii) Unless stated differently, vector operations such as xy, x ≤ y, x−1 or x ∨ y are
defined component-wise. Sometimes we consider vectors z where certain entries zj
for j ∈ J ⊂ {1, . . . , d} are equal to 0. In that case we set z−1

j :=∞ for j ∈ J .

(iii) If X1, , . . . , , Xd are real-valued random variables on a probability space (Ω,F ,P)
then we use the bold notation X = (X1, . . . , Xd) for the random vector whose
one-dimensional marginals are Xj, j = 1 . . . d.

(iv) Let X1, . . . ,Xn be a sample of d-dimensional observations. Then the sample max-

imum Mn =
n∨
i=1

X i is defined in the component-wise way:

Mn,j :=
n∨
i=1

Xi,j, j = 1 . . . d.

Note that Mn is not necessarily part of the sample itself.

(v) If F is a distribution function, we use the bar notation F̄ = 1− F for its tail.

(vi) For a non-decreasing function h : I ⊂ R → R we denote by h←(y) = inf{x ∈ I :
h(x) ≥ y} for y ∈ R.

(vii) Let a, b : R→ R be two real-valued functions. We write a(t) ∼ b(t) as t→ z (mostly

z ∈ {0,∞}) if and only if lim
t→z

a(t)
b(t)

= 1.

(viii) For a subset A of Rd for some d ≥ 1 we denote by C(A) the set of continuous
real-valued functions on A. Convergence on C(A) is defined as uniform convergence
on compact subsets K of A.

(ix) We also need the concept of convergence in distribution or weak convergence.
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Definition A.1 (Weak Convergence, cf. Durrett [2010], Section 3.2). Let (Xn)n∈N
be a sequence of random vectors with distribution functions Fn, n ∈ N, respectively.
The sequence is said to converge in distribution or converge weakly to a limit X
with distribution function F if the following holds:

Fn(x)→ F (x), n→∞, (A.1)

for all continuity points x of F . We write Xn
D→X as n→∞.
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Richard Davis, Claudia Klüppelberg, and Christina Steinkohl. Statistical inference for
max-stable processes in space and time. Journal of the Royal Statistical Society B, to
appear, 2012b.

Laurens de Haan. A spectral representation for max-stable processes. Annals of Proba-
bility, 12:1194–1204, 1984.

Laurens de Haan and James Pickands. Stationary min-stable stochastic processes. Prob-
ability Theory and Related Fields, 72(4):477–492, 1986.

114



BIBLIOGRAPHY 115

Laurens de Haan and Sidney Resnick. Limit theory for multivariate sample extremes.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 40(4):317–337, 1977.

Paul Deheuvels. Point processes and multivariate extreme values. Journal of Multivariate
Analysis, 13(2):257–272, 1983.

Paul Deheuvels. On the limiting behavior of the pickands estimator for bivariate extreme
value distributions. Statistics & Probability Letters, 12:429–439, 1991.

Clément Dombry and Frédéric Eyi-Minko. Strong mixing properties of max-infinitely
divisible random fields. Stochastic Processes and their Applications, 122(11):3790–3811,
2012.

Rick Durrett. Probability: Theory and Examples, 4th edition. Cambridge University Press,
2010.
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(eds. Jürg Hüsler and Rolf-Dieter Reiss), pages 262–274, 1989.

Dimitris N. Politis, Joseph P. Romano, and Michael Wolf. Subsampling. Springer-Verlag
New York, 1999.

Sidney Resnick. Point processes, regular variation and weak convergence. Advances in
Applied Probability, 18(1):66–138, 1986.

Sidney Resnick. Extreme Values, Regular Variation and Point Processes. Springer, 1987.

Martin Schlather. Simulation of stationary and isotropic random fields. R-News, 1(2):
18–20, 2001.



BIBLIOGRAPHY 117

Martin Schlather. Models for stationary max-stable random fields. Extremes, 5(1):33–44,
2002.

Masaaki Sibuya. Bivariate extreme statistics. Annals of the Institute of Statistical Math-
ematics, 11:195–210, 1960.

Richard L. Smith. Maximum likelihood estimation in a class of non-regular cases.
Biometrika, 72:67–90, 1985.

Richard L. Smith. Max-stable processes and spatial extremes. Unpublished manuscript,
University of North California, 1990.

Charles Spearman. The proof and and measurement of association between two things.
The American Journal of Psychology, 15(1):72–101, 1904.

Christina Steinkohl. Statistical Modelling of Extremes in Space and Time using Max-Stable
Processes. Dissertation, 2012.

Stilian A. Stoev and Murad S. Taqqu. Extremal stochastic integrals: a parallel between
max-stable processes and α-stable processes. Extremes, 8:237–266, 2005.

Daniel Straumann. Estimation in Conditionally Heteroscedastic Time Series Models.
Lecture Notes in Statistics, Springer, Berlin, 2004.

Jonathan Tawn. Modelling multivariate extreme value distributions. Biometrika, 77:
245–253, 1990.

R. von Mises. La distribution de la plus grande de n valeurs. Reprinted in Selected Papers
Volume II, American Mathematical Society, Providence, R.I. (1954), pages 271–294,
1936.

Abraham Wald. Note on the consistency of the maximum likelihood estimate. The Annals
of Mathematical Statistics, 20(4):595–601, 1946.

Yizao Wang and Stilian A. Stoev. On the structure and representations of max-stable
processes. Advances in Applied Probability, 42(3):855–877, 2010.

Yizao Wang, Parthanil Roy, and Stilian A. Stoev. Ergodic properties of sum-and max-
stable stationary random fields via null and positive group actions. Technical Report,
2009.


	Contents



