
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Bioinformatik

Machine Learning of Timed Automata

Jana A. Schmidt

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. R. Westermann

Prüfer der Dissertation:
1. Univ.-Prof. Dr. B. Rost
2. Univ.-Prof. Dr. St. Kramer

Johannes Gutenberg Universität Mainz

Die Dissertation wurde am 27.05.2013 bei der Technischen Univer-
sität München eingereicht und durch die Fakultät für Informatik am
25.11.2013 angenommen.

Ich versichere, dass ich diese Dissertation selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 17.05.2013

Abstract

This dissertation investigates the applicability of automata in the do-
main of process mining. Process mining is a part of machine learning that
aims to describe, discover and to predict dynamic systems. It can be used
especially in the domain of biology and medicine where many processes are
still not fully understood. The main problem here is that the processes are
very complex and that many factors interact with each other. Usually, one
tries to model these factors by variables that influence each other. There-
fore, a kind of dependency structure of the variables within a specific model
is optimized to best reflect the measured data. In contrast, this work aims
at modeling the variables’ values change without explicitly assuming the
inter-dependencies. This aim is achieved by a new type of model, which
is based on automata. Automata are finite state models that are normally
used to express formal grammars, to model and to detect languages that
rely on discrete events. However, we expand the power of automata, as a
first step towards modeling dynamic multivariate processes. Therefore, one
part was to find a method (Prta), which automatically identifies states and
transitions of the given process. This is necessary because usually, the defi-
nition of states, i.e., the current characteristics of the system, are not known
or have not been described before. To this end, the states of an automaton
are annotated with so-called profiles, which describe the current stage of the
system. The main idea for the automatic identification of the profiles is to
extract frequent patterns of the process variables’ characteristics. Moreover,
the time component of the process should also be captured, which is done by
the implementation of clock guards that define in which time frame a change
in the states may take place. A subsequent problem is the scalability of the
approach for large data sets. Therefore, a method (Sprta) that uses on-
line maximum frequent pattern based clustering is presented. To include
existing background knowledge, a new type of constraint was developed and
also implemented in the proposed approach (CSprta). Such constraints are
based on the characteristics of the process and basically define the proper-
ties of the final states. Lastly, an improvement towards a genuine online
induction method is presented (Oprta). It may also detect concept drift in
the underlying system. All of these approaches are evaluated with respect to
scalability, accuracy, and, if appropriate, predictability. We hope that this
kind of model may find some applications in biological and medical process
mining.

Zusammenfassung

Diese Dissertation beschäftigt sich mit der Frage, ob Automaten für das
Lernen von dynamischen Prozessen anwendbar sind. Der Bereich des soge-
nannten ’Process Mining’ als Teil des maschinellen Lernens versucht diese
Prozesse zu beschreiben, zu entdecken und auch deren Verlauf vorherzusagen.
Besonders in der Biologie und Medizin kann das Anwendung finden, da dort
viele Prozesse noch nicht ausreichend verstanden werden. Die Hauptur-
sache dafür liegt darin, dass diese Prozesse sehr komplex sind und viele Fak-
toren miteinander interagieren. Bis jetzt versuchte man hauptsächlich, diese
Faktoren mittels voneinander abhängigen Variablen und einer Abhängig-
keitsstruktur in bestimmten Modellen nachzubilden, so dass die gemessenen
Daten möglichst optimal reproduziert werden können. Im Gegensatz dazu
versucht diese Arbeit die Änderung der Variablenausprägungen zu mod-
ellieren, ohne direkt Abhängigkeiten zwischen den Variablen anzunehmen.
Dazu wurde ein neues Modell basierend auf Automaten entwickelt. Auto-
maten sind endliche Zustandsmaschinen, die hauptsächlich darin Anwen-
dung finden, formale Grammatiken zu beschreiben und Sprachen zu model-
lieren bzw. zu entdecken, die auf diskreten Ereignissen beruhen. Trotzdem
haben wir in dieser Arbeit, Automaten dahingehend erweitert, dynamis-
che multivariate Prozesse abbilden zu können (Prta). Dazu war es zuerst
nötig, eine Methode zu definieren, die aus den gegebenen Daten automatisch
Zustände des Modells induziert, da solche Zustände, d.h. die derzeitigen
Eigenschaften des Systems, u.U. nicht bekannt sind oder noch nicht konso-
lidiert wurden. Dafür werden die Zustände im Automaten mit sogenannten
Profilen annotiert, die den derzeitigen Zustand des Systems beschreiben.
Die zugrunde liegende Idee bei der Identifikation der Zustände und ihrer
Profile ist, häufige Muster in den Eigenschaften des Prozesses zu entdecken.
Daneben soll auch die zeitliche Komponente in das Modell einbezogen wer-
den, was durch ’clock guards’ - einem Zeitintervall für mögliche Übergänge
- erreicht wird. Als nächster Schritt wurde diese Methodik auch für größere
Datensätze skalierbar gemacht (Sprta), wozu ein neues Clusteringverfahren
basierend of maximalen häufigen Itemsets vorgestellt wird. Weiterhin sollte
es ermöglicht werden, Hintergrundwissen in das Modell einfließen zu lassen
(CSprta), wofür eine neue Art von Bedingungen entwickelt und ins Modell
eingeschlossen wurde. Diese Bedingungen beschreiben die finalen Eigen-
schaften der Zustände. Im letzten Teil der Arbeit, wurde der Prta auf
inkrementelle und prinzipiell unendliche Datenströme angepasst (Oprta),
so dass auch eine Veränderung des Konzeptes im unterliegenden Prozess ent-
deckt werden kann. All diese Ansätze wurden hinsichtlich der Skalierbarkeit,
Genauigkeit und ggf. Vorhersagekraft untersucht, so dass wir hoffen, dass
diese Modell in einigen biologischen oder medizinischen Fragestellungen An-
wendung findet.

Acknowledgements

This dissertation would not have been possible without the guidance and
help of a set of individuals who spent a lot of time to assist me when I
needed help, to inspire me when there was a lack of focus, to discuss and
to evaluate several ideas, to push me when I was lazy, to share my concerns
when there was too much work and to believe in a happy ending. There-
fore, first of all I want to thank my parents Dr. Ursula Schmidt and Dr.
Wolf-Dieter Schmidt for their continuing support and strong beliefs in their
daughter. They made a happy study time and a very challenging PhD pe-
riod possible and always stood by my side reassuring myself.
Beside my parents, I also want to thank my remaining family and friends,
who supported me by sharing their similar experiences in their lives and
PhD-times and continuously pushed me forward.
However, I will not forget to thank all of the students, who did some very in-
teresting projects with me during their Diploma, Master or Bachelor thesis,
for long discussions, critical questions and the immense work they managed:
Constanze Schmitt for sharing the first impressions in process mining and
continuing our discussions as a later colleague, Elisabeth Braendle and Sonja
Ansorge for the implementation of some crazy ideas, Huang Xiao, Christian
Mertes and Goukun Zang for the gain of knowledge in totally different do-
mains. Besides, a thank is also to be contributed to all of my colleagues
and especially Marianne Mueller, who supervised my Diploma thesis and
encouraged me to follow a scientific career.
For many years Andreas Hapfelmeier has supported, discussed, reviewed,
and sometimes even rescued my way through the scientific and industrial
jungle. Especially, in the last (midnight) hours before a deadline he always
was a friend, whom no thank can appreciate.
Last but not least I want to thank my supervisor Prof. Dr. Stefan Kramer
for the motivation and inspiration to dig into Data Mining and Machine
Learning in the domain of process mining. I think that the knowledge that
I gained during this time will help and guide me all my life, from which
probably the most important thing is that he encouraged me to follow such
a new field of research.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization of the work . 3

2 Related Work 7

2.1 Graphical causal models . 8

2.1.1 Causal networks . 9

2.1.2 Bayesian Networks . 10

2.1.3 Markov Random Fields 11

2.1.4 Factor Graphs . 13

2.2 Process Mining . 14

2.2.1 Hidden Markov Models 14

2.2.2 Dynamic Bayesian Nets 17

2.2.3 Petri Nets . 18

2.3 Automata . 20

2.3.1 Grammatical Inference 20

2.3.2 Automata Induction 23

2.4 Applicability to the problem setting 31

2.4.1 Combining the best of the presented approaches . . . 32

3 Preliminaries: Materials and Quality Measures 33

3.1 Data . 33

3.1.1 Synthetic data . 33

3.1.2 Real World Data Sets 35

Disease Group Data Set I 35

Disease Group Data Set II 35

Hepatitis Data Set . 36

Yeast metabolism data 36

Zoo Data Set . 37

3.2 Quality Measures . 38

vii

viii CONTENTS

4 Learning PRTAs from Multi-Attribute Event Logs (PRTA) 41

4.1 Probabilistic Real-Time Automata 41

4.1.1 Accepting Words . 43

Definition of Words 43

Solving the Word Problem 44

4.1.2 Induction of a PRTA 45

4.1.3 Predicting with an Automaton 50

4.2 Experimental Results . 51

4.2.1 Distance Measure for Medical Applications 51

4.2.2 Results . 52

4.2.3 Proof of Concept . 53

4.2.4 Extraction of an Automaton on Real World Data . . . 54

4.2.5 Empirical Evaluation 62

Cut-off Dependencies 62

Dependency on the Number of Input Sequences 63

Runtime Evaluation 64

4.2.6 Comparison with an Multi-Output HMM 64

4.2.7 Comparison with Process Mining Algorithms 65

4.3 Conclusion . 68

5 Scalable Induction of Probabilistic Real Time Automata
(SPRTA) 71

5.1 Algorithm . 72

5.1.1 Problem setting . 72

5.1.2 Basic Algorithm . 73

5.1.3 Finding the Best Suited Cluster 76

Preliminaries . 76

A Decision Function for the Online Clustering 77

Example . 78

5.1.4 Postprocessing . 79

5.2 Experiments . 79

5.2.1 Performance on the Synthethic Data Set 79

Identification of a Known Automaton 80

Parameter Dependence 81

Stability Analysis . 83

Quality of the Online Approach 85

5.2.2 Performance of the Online Approach on a Real World
Example . 86

Yeast Gene Expression 86

Hepatitis Data . 86

5.3 Conclusion . 88

CONTENTS ix

6 Augemented Itemset Trees 91

6.1 Related Work . 92

6.2 Problem statement . 93

6.3 Proof of main concept . 94

6.4 Main idea of the used data structure 96

6.5 Definition of the AIST . 96

6.5.1 InsertPattern . 98

SetNextNode . 99

UpdateMoreGeneralCounts 101

6.5.2 Deleting MFPs . 102

6.6 Experiments . 103

6.6.1 Data sets . 103

6.6.2 Empirical evaluation 104

6.7 Conclusion . 110

7 Using Constraints on the Attribute Level for PRTA Induc-
tion (CSPRTA) 111

7.1 Main Idea of Attribute Level Constraints 111

7.1.1 Problem Setting . 112

7.2 Implementation . 113

7.2.1 Implementation of must-link 113

7.2.2 Implementation of must-link-exclusive 115

7.3 Experiments . 115

7.3.1 Synthetic Constraints 115

7.3.2 Yeast Constraints . 117

7.3.3 Hepatitis Constraints 120

7.4 Conclusion . 122

8 Attribute Constrained Clustering 123

8.1 Related Work . 124

8.2 Constraints on the Attribute Level 125

8.2.1 Problem Description 125

8.2.2 Must-Link . 126

8.2.3 Must-Link-Excl . 128

8.2.4 Convergence of Attribute Constrained Clustering . . . 130

8.2.5 Extension of Attribute Constrained Clustering 130

8.3 Experiments . 130

8.3.1 Data Sets . 131

8.3.2 Evaluation of Constrained Clustering 132

8.3.3 Constraint Specification Costs 133

8.3.4 Results must-Link and must-Link-Excl 133

Results numAttr . 133

Results numConstraints 135

Results numFixedAttr 135

x CONTENTS

Results numInstances 139
Results on the Real-World Data Set 141

8.4 Conclusion . 143

9 An Online Approach for PRTA Induction (OPRTA) 145
9.1 Online Induction of PRTAs Based on MFP Clustering 146

9.1.1 Problem Setting . 146
9.1.2 Overview of the Approach 147
9.1.3 Creating the PRTA Online 149

Function fNN . 150
9.1.4 Adaptation For an Unbounded Data Set With Con-

cept Drift . 151
The Repeated World Data Stream Setting 151
The Continuous World Data Stream Setting 153
Algorithmic Adjustments 154

9.2 Experiments . 155
9.2.1 Performance on Stream Setting Without Concept Drift 155

Stability Analysis . 155
Performance on the Real World Data Sets 160

9.2.2 Performance on Stream Setting With Concept Drift . 161
9.3 Conclusion . 162

10 Summary and Outlook 165
10.1 Summary . 165
10.2 Outlook . 167

11 Bibliography 169

Chapter 1

Introduction

1.1 Motivation

Recent years have shown a surge of interest in the evaluation and analy-
sis of temporal data in many areas of science and industry. In the field of
medicine, for instance, the evaluation of temporal data can help to under-
stand the stages [79] and the progression of diseases. Another example is
given by the domain of molecular biology, where time labeled data may pro-
vide insights into cellular processes. This work was essentially motivated by
these two real world problems. For understanding the progression of diseases
in a population, the challenge is to determine how the health status of each
individual of the population will evolve in the future, and more general, to
find a model for the overall disease progression of the entire population. A
model that describes and identifies the patterns of diseases may be valuable
for general practitioners, because it enables them to adjust their therapy,
control therapy guidelines and quantify side effects. Moreover, the inclu-
sion of many measurements leads to a model that is not biased by selection
effects as is common in traditional medical studies. One challenge of the
model is that the prediction time point is unknown in the training phase.
Consider a physician that treats a patient. He wants to receive a short term
prediction of the health status of his patient to optimize the therapy or to
consult a specialist. However, another physician that is involved in a study
may be interested in a long term prediction of the disease progression, to
decide whether or not the patient should be enrolled in a new drug therapy
trial. Therefore, a model that incorporates the prediction for a continuous
time frame is desired. The problem of disease progression is additionally
complex, because a set of variables (diseases) has to be predicted depending
on their current configuration. Thus, there is a multivariate dependency of
the current variables, which may (partly) influence each other. The same
is true for the second real world application: the gene expression profiles of
cells. Here again, the genes’ expression values are considered as variables

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the general problem setting

that influence each other. By learning from known gene expression patterns,
it is possible to identify the influence of gene configurations on future gene
expressions. Both problem settings require a model that shows the influ-
ence of variables (here genes and diseases) on each other, without assuming
a specific dependency function apriori. Typically, the data provided for this
purpose includes the description of stages (or states) as well as their tem-
poral relation.

Figure 1.1 illustrates the problem setting: process modeling and predic-
tion for the provided data set type. The input consists of a set of instances
(here three rows of rectangles) having specific properties (indicated by the
color). In the first real world problem, the instances reflect the individuals
of a population, in the second setting, individual cells of a cell colony. Their
properties are the diseases they have, or in the second setting, the genes that
are currently expressed. As time passes, these characteristics can change.
For example, there may be diseases that are cured and others that arise
or deteriorate. Likewise, there are genes that are currently expressed and
that also influence the expression level of other genes in the future. This is
illustrated by the change in color of each instance from left to right. Note,
that the instances are observed at different points of time. Moreover, the
measurement of the instances is not necessarily at a fixed frequency. This
leads to another model requirement: Since the data set contains measure-
ments at individual time points for each instance, the model must be able
to generalize from different observation time frames.
In the lower part of the figure, the two main problem settings are illustrated.
First, a general, easy-to-understand model shall be elaborated, so that an

1.2. ORGANIZATION OF THE WORK 3

Figure 1.2: Mindmap of this thesis

educated user can inspect the patterns that are found in the process that
alters the instances. This is depicted in the lower left hand side of the fig-
ure. The other problem is to predict the characteristics of the instances in
the future (lower right hand side). Therefore, the induced model should be
used. One possible way of representing such complex temporal phenomena
is by timed automata [4], which are finite state models explicitly modeling
time. They can be linked to domain concepts and help to reason about real
time processes. Until now, experts construct such models by hand, which
can be time-consuming and error-prone. The situation is even more com-
plicated if the states of the process are described by multiple attributes. In
fact, in such a setting, even the definition of a state is unclear. To deal
with the problem of an automatic extraction of meaningful, expressive and
temporally ordered states, we propose a new algorithm based on finding real-
time automata. Formally, the observations consist of a multi-dimensional
attribute vector and a corresponding time point, denoting when the state
was observed. The implicit modeling of time, e.g. by an untimed model like
Hidden Markov Models (HMMs) would result in a combinatorial explosion
of states. The same is true for modeling multiple state characteristics. This
problem is solved by adding profiles to states that represent all their events
and the states’ characteristics. The annotation of states makes the problem
feasible and additionally makes the resulting model easier to understand.

1.2 Organization of the work

This work addresses several aspects of automata learning. Figure 1.2 shows
a high-level mind map of the organization of this thesis. There are four

4 CHAPTER 1. INTRODUCTION

main projects: (1) the description of the basic model: probabilistic real
time automata (PRTA), (2) its adaptation to large, sparse data sets, (3) its
extension to data streams with concept drift and (4) the incorporation of
background knowledge.
Chapter 2 reviews related work and puts this dissertation in the context of
automata. As the described problem setting is closely related to graphical
causal models, this chapter gives a short overview of the main approaches
of this field. This includes Bayesian networks, Markov Random Fields and
Factor Graphs. Although, these approaches model the dependency of spe-
cific variables, a short explanation shows why they were not adopted in this
work. Second, the domain of process mining that already addresses the
inclusion of several instances in time will be discussed. Here, we focus on
Hidden Markov Models and Petri Nets as they are the most commonly used
models. Third, an extended overview of the domain of automata detection
will be given. This also includes grammars and formal languages, but mainly
focuses on the basis of this work: (timed) automata. Different induction al-
gorithms are presented as well as applications. Finally, a summary reviews
the necessary requirements for the algorithms that may tackle the problem
setting and indicates how this may be tackled.
Chapter 3 summarizes all data sets that are used for the evaluation of the
algorithms, which include synthetic and real world data sets. Mostly, the
synthetic data sets are taken to address complexity and runtime issues, while
the real world data sets (covering disease and gene expression data) show
how the resulting model can be interpreted. This helps to point out the ben-
efits and shortcomings of the approaches. Additionally, we present quality
measures that enable the comparison of the different types of algorithms.
This includes runtime, similarity to an original automaton and interpretabil-
ity.
Chapter 4 introduces the basic model: probabilistic real time automata
(PRTA). The problem setting and the type of automata is formally defined.
In the following chapter a description of how the basic function, the word-
acceptance problem, of an automaton is solved. Section 4.1.2 describes the
induction algorithm of PRTAs and provides details about the used prefix tree
acceptor (PTA), the underlying clustering, and the merge-function. The for-
mal description of a PRTA concludes a presentation of how PRTAs can be
used to predict future events. A subsequent experimental section evaluates
the applicability of the proposed PRTA.
Chapter 5 makes the PRTA scalable for large sparse data sets using an
online clustering algorithm. The approach is then referred to as scalable
PRTA (SPRTA). An appropriate clustering method is discussed along with
the necessary mathematical functions. The basic idea is to find clusters
that share as many frequent patterns as possible. The patterns are found in
the instances that belong to a cluster. If large patterns are shared between
the instances, they are very similar and form distinguishable profiles of the

1.2. ORGANIZATION OF THE WORK 5

states. Experiments again show the applicability of this approach.
Chapter 6 describes the basic data structure that is needed for the SPRTA
algorithm: the augmented itemset tree (AIST). It is used to efficiently mine
maximal frequent itemsets in an online setting, i.e. instances are observed
one by one and each instance is only observed once. The AIST data struc-
ture is evaluated under different points of view and its efficiency is analyzed
for various types of data sets. The main conclusion is that it is most appli-
cable for sparse data sets consisting of large frequent patterns.
Chapter 7 shows how background knowledge can be incorporated into the
process of automata induction (constrained SPRTA CSPRTA). The idea
behind that is that for, e.g. medical data sets there are already some ex-
pectations or even focus groups that a physician wants to explore. Such
expectations can be easily described by using attribute constraints, i.e. con-
straints that define the properties of the result. For example, consider an
automaton having a cluster with persons suffering from diabetes. Two dif-
ferent types of constraints must-link and must-link-exclusive are defined and
implemented into the induction algorithm. Some experiments show which
types of constraints can be defined and used for this domain.
The following Chapter 8 presents the basics for such a constrained induction
of automata. Here, the two constraints must-link and must-link-exclusive are
defined and evaluated in the k-medoids algorithm, which serves as a proof
of concept. The constraints are then applied on synthetic and real-world
data sets, which show how the performance of a clustering algorithm can be
improved if some background knowledge is taken into account.
Chapter 9 presents the last extension of the PRTA, an approach that adapts
it to a genuine online setting (online PRTA OPRTA method). To do so, the
main idea of the SPRTA-setting is adjusted to avoid the construction of the
PTA. Additionally, the method is adjusted to include concept drift. Con-
cept drift means that the underlying data generating process changes over
time. For the two examples, this may be the case when a new therapy is
used that may cure a disease or its side effects, or if a new environmental
factor stresses the cell so that other gene expression patterns are observed.
In either case, this would change the underlying automaton structure so that
the OPRTA-algorithm also has to adopt to such shifts.
Chapter 10 summarizes the presented work, discusses the introduced algo-
rithms and experiments and gives an outlook on future work.
Finally, the contribution of this thesis can be summarized as follows:

• We present a new model to capture multivariate processes.

• We make this approach scalable and also provide an online induction
method.

• Therefore, we introduce a new algorithm for online maximum itemset
mining.

6 CHAPTER 1. INTRODUCTION

• Finally, we propose a new type of constraint to include background
knowledge for the proposed methods.

For each approach, a separate chapter formally defines the problem setting,
the induction method and gives the results of the experiments on synthetic
and real world data sets.

Chapter 2

Related Work

Today, temporal data are becoming available in many domains, where only
little is known about the processes generating the data. Example domains
include the internet (click paths), medicine (disease progressions) and bi-
ology (life cycles of organisms, biochemical pathways). In this thesis, a
process is assumed, described by states (or events) that are labeled with a
time stamp and a multi-attribute vector holding M variables. The problem
is to identify a model that fully represents the data and additionally forms a
hypothesis about the underlying process. Additionally, it should be possible
to infer predictions. A potential solution to the problem comes from the field
of graphical models. They give a compact representation of the processes
and are easy to understand and interpret by the user. Although there exist
learning algorithms for graphical models, they are often still created by an
expert (e.g. HMMs), which is unsuitable for an automatic and unbiased
model creation.
The general task is to infer a probabilistic model, i.e. a model that provides
a probability for the observation of a given instance, from data set S. The
data set consists of several sequences: S = s1, . . . , sn, where a sequence con-
sists of various symbols si = 〈si1, . . . , sik〉, sik ∈ Σ, and Σ is an alphabet.
However, in the presented real world problems an element of Σ is not a single
symbol but an attribute vector. Therefore, each of the presented approaches
is also evaluated whether it is also capable of modeling a multivariate (time)
sequence. A multivariate sequence si does not only consist of single symbols
but of a sequence of feature vectors having m attributes sik = (a1, . . . , am).
As a first step towards such complex time-series descriptions this work fo-
cusses on binary feature vectors: al ∈ {0, 1}. Moreover, the multivariate
sequences that are considered in this work are labeled with time stamps, i.e.
si is a sequence of symbol-time pairs si = 〈(si1, t1), . . . , (sin, tn)〉.
One problem that inspired this work is based in medical data mining: A pop-
ulation of individuals is monitored over time. At individual-specific time-
points, each person gives feedback about its health-status, which is a binary

7

8 CHAPTER 2. RELATED WORK

feature vector that indicates whether a specific disease is present. Usually,
this monitoring is done at a physician who writes down all diseases that a
person suffers from. So, if a specific disease is not coded, the person is not
considered to have it. Such visits may occur at different time steps, depend-
ing on the person’s characteristics, so that the time intervals between the
‘measurements’ may also vary. However, there will be a timepoint, where
someone wants to know in advance how this population will progress. This
could be a health care provider to plan capacities and utilization or health
care sponsors for budget planning. Then, a forecast of the population’s
health status has to be done, using an adequate model. To show different
approaches to this problem setting, graphical causal models and approaches
from process mining with their benefits and shortcomings are presented.
Subsequently, the approach of using automata is introduced and the current
limitations are described in this section. Last, we give a short description
of how the benefits of all presented models could be combined into an au-
tomaton.

2.1 Graphical causal models

Graphical models are used to model a complex system by describing the
topology of its components. That means that the dependencies of the com-
ponents are described, i.e. which component influences another. A next
aim is to validate assumptions about the graph components and of course
to induce algorithms that make use of the topology in an efficient way. Be-
sides, such a model should be translatable into a different form and moreover,
should be understandable by other persons. In general, graphical models are
depicted by different types of entities: nodes and edges. Nodes represent
random variables (that may also be hidden) and edges reflect the dependen-
cies between them. Hidden variables are a special type of the nodes and are
frequently used to model noise or unknown characteristics of the system.
More formally, graphical causal models are (un)directed (acyclic) graphs on
a set of random variables (RV). As these models should be as simple as
possible, RVs are grouped if they express similar dependencies. This makes
it much easier for the user to identify which variables are independent from
another under specific circumstances.
To learn such a model from the training data one commonly expresses the
conditional distributions or potentials as parameterized functions. By a
smart choice of such a parameterized function, the computation of the model
parameters is much easier although the resulting type of model then is re-
stricted. Usually a graphical model is constructed with prior knowledge
about the model parameters. Each parameter that is known or believed to
contribute to the process behavior is included in the model. This is done
by considering each parameter as a random variable and then modeling the

2.1. GRAPHICAL CAUSAL MODELS 9

dependencies between these random variables. Each parameter can either
be an observable variables v = (v1, . . . , vT) or a hidden variable (h(t)) with
parameter θ, where T reflects the number of instances. Then, training data
is used to find the best setting of parameters. The best setting is the one
that maximizes the probability of the training data:

P (h, v) = P (θ)
T∏
t=1

P (h(t), v(t)|θ)

This formalization can also be used in a time-related problem setting. Then
the parameters can be considered as random variables at specific timepoints
that change over time:

P (θ(t)|θ(t−1))

There, the current value of a RV depends on the values of another set of
RVs. Using uniform priors often makes the computation of the remaining
dependencies much easier by using only the likelihood. Conjugate priors also
offer this advantage but moreover, allow for the inclusion of stronger prior
knowledge. After having specified the parameters and variables of such a
system, algorithms are needed that calculate the specific values of the pa-
rameters to find the best model. Often, correct algorithms are intractable
in the computational costs and therefore, heuristics and approximations
(like the expectation maximization algorithm) are applied. One application
where such models are used is the detection of image segments [33] and gene
network inference [19]. In the following, several different types of graph-
ical networks will be presented. They all model the relationship between
variables in a (slightly) different way. After a short review of these meth-
ods, each of them is examined whether it is possible to model time-series of
multivariate event structures.

2.1.1 Causal networks

Causal networks (CNs) are a class of models that are based on directed
acyclic graphs (DAGs) that model the dependency between variables. In
the following, Bayesian networks, Markov Random Fields and Factor Graphs
are described to illustrate how variables can be modeled. For all of these
types of models, one essential task is structure learning. Structure learning
is necessary, if the true underlying causalities, i.e. which variable affects an-
other, is not known. Of course, such a model should be as small as possible
but should include all conditional dependencies of the given variables. The
IC-algorithm [68] achieves that by first identifying all pairs of independent
variables (a, b) for which an undirected graph is created that has an edge
between a and b. Then a third variable c is tested whether it is dependent
on the previous ones and if so, is added to the graph with v-like structure.
Several additional constraints have to hold, and many improvements have

10 CHAPTER 2. RELATED WORK

Figure 2.1: Illustration of a Bayesian network that models the dependency
of someone’s mood on the current weather and the lunch quality.

been proposed like the FD2CN algorithm [105]. It first extracts conditional
independencies and then combines them via the chain and Markov bound-
ary rule to infer a CN. This approach is able to infer relationships among
variables and therefore the structure of the model. However, it is not ap-
plicable to multi-attribute events and noisy data, which is one of the key
requirements to handle the addressed problem setting. Moreover, it is hard
to reason about the underlying process that created the data set and also
to evaluate the time courses of the events.

2.1.2 Bayesian Networks

Bayesian networks (BN) are a type of graphical causal models. They con-
sist of nodes (which represent random variables) and transitions between
the nodes and form a directed acyclic graph. The transitions represent the
dependencies of the variables. Additionally, each node (or RV) is annotated
with a conditional probability function from its parents P (RV |Pa(RV)),
where Pa denotes the set of RV ’s parents. The distribution of these depen-
dencies can in fact be arbitrary, but in general Gaussian distributions are
used. Figure 2.1 shows an example of a Bayesian network (circles represent
the variables and arcs their dependencies). The current mood of a person
depends on the current weather and the lunch quality. Next to each node, a
dependency table is given that shows the (conditional) probabilities for each
variable value. Using these parameters it is possible to estimate the current
mood of a person. Moreover, BNs can express the probability for a data set
– its joint probability distribution which is the product of all probabilities
that can occur in the model

P (BN) =
N∏
i=1

P (RVi|Pa(RVi)).

For easy problems (like the one given in Figure 2.1), Bayes’ rule can be
applied to fit the parameters (dependencies) between the data variables.

2.1. GRAPHICAL CAUSAL MODELS 11

However, in more complex systems this may lead to an intractable number
of variable combinations and thus to an enormeous runtime of the inference
algorithm. To overcome such problems, one solution groups the variables
accounting for their dependency relations and then exactly fits the parame-
ters for this much smaller variable set. Second, an adequate splitting or even
the elimation of variables can lead to more simple models. This can be ap-
plied if some variable can be ruled out by background knowledge to have an
effect on the overall process. Third, approximations can be used to estimate
the parameters. Most commonly, maximum likelihood estimation is used
for incomplete probability models. In contrast, a maximum-a-posteriori es-
timation is used for complete BNs. To estimate the local maxima of the
likelihood (or a-posteriori) functions, standard optimzation algorithms like
gradient descent algorithms are used. In the case that there are missing
values in the data set, the EM-algorithm (expectation-maximization) can
also be applied to the induction of BNs. However, all these methods are
based on a given underlying RV-dependency structure. If this structure is
not known it has also to be inferred. Usually, this is then done in a greedy
fashion. Elements (nodes and transitions) are added/deleted to the network,
if a network specific score increases [34]. Then, this change is fixed in the
network structure. Such a score can for instance be related to the mini-
mum description length (MDL) principle, which leads to the smallest model
producing the least errors. BNs have been applied exentensively to model
causal relationships. One example is the domain of genetic inference [19],
where the interaction of genes shall be explored. However, BNs still model
single variables and have not yet been applied to modeling several discrete
variables in parallel, i.e. the dependency of a set of variables is modeled in
one node. Therefore, BNs remain unsuitable for the given problem setting.

2.1.3 Markov Random Fields

Markov Random Fields (MRF) also represent a set of random variables, but
as a main difference from the previously introduced models, it is based on
an undirected graph. Thus it may also be cyclic. There are three additional
properties that make an undirected graph a MRF:

1. Any two non-adjacent variables are conditionally independent given
all other variables.

2. A variable is conditionally independent of all other variables given its
neighbours.

3. Any two subsets of variables are conditionally independent given a
separating subset.

The basic idea behind MRF is to model a set of variables, where the variables
are influenced by each ‘neighbours’. Moreover, there is an external ‘field’

12 CHAPTER 2. RELATED WORK

that also influences the behaviour of the variables [51]. This model was first
introduced by Ising, a german physicist, who wanted to model magnetism
of different metals. However, this idea could be very nicely applied to other
problems, especially it could be transformed into a temporal relationship,
because it can be shown that the Gibbs measure and the Markov chain
measure are the same[51] under specific conditions. To apply MRF for
other domains, it was applied on a graph, including its parameterization.
Therefore, MRF that can be factorized according to cliques of the graph are
used, because these probability distributions are much easier to establish.
Along with the random variables a potential function (or clique potential)
for each maximal clique is given gk(RVCk

), where Ck are the elements of
the kth maximal clique. Of course, such an MRF can also model the joint
distribution. In this case, the joint distribution is expressed by the product
of all potential functions divided by a normalization constant Z which gives
the partition function

P (MRF) =
1

Z

K∏
k=1

gk(RVCk
),

where

Z =
∑

RV1,...,RVN

(

K∏
k=1

gk(RVCk
)).

Note that one essential difference to Bayesian networks is that in BNs the
product of conditional probabilities is automatically normalized (Z = 1).
Using the partition function Z for many concepts from statistical mechan-
ics, such as entropy is very straight forward in MRFs because it gives an
intuitive understanding of the process. Moreover, if one wants to examine
the effects of additional variables (like driving forces in statistical mechan-
ics), i.e., how the system reacts on a pertubation, this is also done with the
Z-function. To infer the conditional contribution the same estimation as for
BNs can be done. Given one set of variables RV ′ for which the distribution
has to be inferred one takes another set RV ′′ and sums over all possible
assignments u /∈ RV ′, RV ′′. One application example for MRFs is the do-
main of genome wide association studies [57]. The key idea is to include the
effect of linkage disequilibrium for single nucleotide polymorphisms (SNPs).
A graph is created that holds an edge for each pair of SNPs that are consid-
ered to be linked. If not, their occurence is considered independent. Then,
a random binary variable is introduced for each SNP that shows whether
a SNP is associated with a specific disease. Then, if SNP are in linkage
disequilibrium their values are encouraged to have the same values. Li et al.
[57] applied this model to a neuroblastoma data set containing 1032 cases
and 2043 controls. From approximately 32.000 genes 5 could be identified
to have a high correlation with neuroblastoma and linkage disequilibrium.

2.1. GRAPHICAL CAUSAL MODELS 13

Figure 2.2: Illustration of the presented types of graphical models [60] for
the factorization p(u,w, x, y, z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x).

2.1.4 Factor Graphs

Factor graphs (FG) subsume Bayesian Networks and Markov Random fields
[33]. This also implies that BNs and MRFs can be translated into FGs.
A FG is a bipartite graph for a set of RVs and a set of nodes that corre-
spond to functions, where the product of all factors is the desired global
function, while the factorized functions (nodes) correspond to local func-
tions. However, there is also an alternative presentation of factor graphs
by Forney (Forney-style factor graphs [FFG]) that use half-edges instead of
node-functions. Figure 2.2 illustrates a FFG and moreover, shows how such
a FFG can be expressed as a MRF or a BN. Essentially, a factor graph can
be formed by applying the following rules [60]:

• There is a unique node for every factor.

• There is a unique (half-) edge for every variable.

• The node representing a factor g is connected with the edge (or half
edge) representing a variable x iff g is a function of x.

The joint probability is equal to that of MRFs. The expression of functions
by the nodes is very useful in the field of message passing algorithms (like
belief propagation) and has many applications in the field of coding or sig-
nal processing like Kalman-filtering, which produces a model by stepwise
measurements and parameter estimations.

14 CHAPTER 2. RELATED WORK

To sum up graphical models, one important fact is that they are a very
powerful tool to model variables and their dependencies. However, to the
large number of variable combinations they may be inappropriate to model
the influence of a set of variables on a set of other variables. Moreover, time
constraints or a generalization of observations cannot be incorporated into
such an approach.

2.2 Process Mining

Process mining tackles the identification of processes within a system with
no external information. This also includes the identification of the elements
of the process and their temporal relation. For example, it may be unknown
how a process is actually conducted while another task may be to validate
a predefined workflow. However, the main application is to find out the
underlying mechanisms of a specific process. Examples for such a problem
are given by electronic medical records (EMRs1) that arise in hospitals or
the transaction logs of an enterprise resource planning system. Using such
logs an analyst can identify the underlying sequences of frequently occurring
tasks and derive optimizations or compare it to a predefined rule set to detect
errors or abnormalities.
For the process induction of simple logs, of the shelve tools already exist2

that include a variety of algorithms, like Petri nets and Hidden Markov
Models (HMM). The tools can be applied to process logs consisting of simple,
predefined events. They assume that it is possible to record events, i.e. they
need a sequence of totally ordered events as input, which means that the
events occur one after another. Such event sequences are collected in so-
called event logs, which then serve as data basis for the process mining
algorithms. Depending on the kind of process the user has to decide which
type of model he expects. As one example, parallelism (when events can
occur in parallel) can only be detected by Petri nets, while switch or redo-
tasks can also be modeled by HMMS. In contrast, Petri nets usually do not
offer probability distributions of the events/sequences that can occur or the
frequency of path-choices. In the following, two approaches – HMMs and
Petri nets – for the induction of processes or sequence patterns are presented.

2.2.1 Hidden Markov Models

Hidden Markov Models (HMMs) are a special case of graphical models.
Algorithms for graphical models were extended to first order HMMs (e.g.,
for the MAP and inference problem [72]). First order HMMs consist of

1http://www.practicefusion.com/
2http://www.promtools.org/prom6/

2.2. PROCESS MINING 15

hidden state variables (H) and observable variables (O), where the hidden
variables define the underlying model. Hidden variables are connected by
directed edges. Each hidden variable has exactly one predecessor and an
associated observable variable, which is only dependent on the precedent
variables (Markov property). An HMM can be defined by a triple λ =
(A,B, π). A is the matrix of state transition probabilities, B the observation
symbol probability and π the initial state distribution. Such a model is
very closely related to automata (cf. Section 2.3.2 as it can also provide
estimations of the probability of sequences si (also denoted as words). Such
a probability can be calculated using HMMs by Equation (2.1) when the set
of possible state sequences that may produce a word Q∗ is known.

P (si|λ) =
∑
v∈Q∗

P (si, v|λ) =
∑
v∈Q∗

P (si|v, λ)P (v|M) (2.1)

The fitting of the parameters of an HMMs (A,B, π) is achieved by maximum
likelihood estimation using the Forward-Backward algorithm [6] (also known
as the Baum-Welch algorithm) that converges to a local maximum. Given
the observation sequence S and the model parameters λ, P (S|λ) is to be
maximized. This can also be viewed as choosing the hypothesis or model Â
of all hypotheses A that maximizes P (S|λ) [30].

λ̂MAP = arg max
λ̂∈L

P (λ̂|S) = arg max
λ̂inL

P (S|λ)P (λ̂). (2.2)

Essentially this type of formulation arises from the Bayes framework that
tries to optimize the tradeoff between the sample likelihood and the prior
probability. If all models are considered as equally likely then this frame-
work chooses the model with the maximal likelihood, which is depicted in
Equation

λ̂ML = arg max
λ

P (Ŝ|λ) = arg max
λ

m∏
i=1

P (si|λ)P (λ̂). (2.3)

Interestingly, maximum aposteriori learning is the same as learning under
the minimum description length principle because Equation 2.2 can be re-
formulated as

λ̂MAP = arg min
λ̂∈L

−log2P (S|λ̂)− log2(λ̂). (2.4)

Both terms show the encoding of the errors given the data set and the en-
coding of the model.
Although there exist quite a few solving schemes for the parameter fitting
for HMMs, the model learning task is a more complex problem. Addition-
ally, there exist four further tasks: Evaluating, predicting, smoothing and

16 CHAPTER 2. RELATED WORK

decoding an HMM. Evaluation identifies the probability P (h|S, t) of a hid-
den state h at a time point t dependent on an observed sequence S. This
can be calculated with the Forward algorithm. The second task, prediction,
can also be solved by the Forward algorithm. Here, the probability P (h|S)
of being in state h at time point t + δ (a time point in the future) is cal-
culated, given t, δ and the emission sequence S. In contrast, smoothing
calculates the probability of being in state h at a earlier point in time t− δ
and is achieved by the Backward algorithm. The last task, decoding, calcu-
lates the most likely hidden state sequence that produces a given emission
sequence S at the time point t. The Viterbi algorithm was devised for this
task. Both algorithms, the Baum-Welch and the Viterbi algorithm can also
be applied in the domain of automata (when standard-sequences are mod-
eled), especially in the case of probabilistic deterministic finite automata.
There, the problem setting is even simpler as there exists only one path for
each word so that the computational complexity is reduced. In order to
model time-labeled states of a process, where the states are described by a
multi-dimensional attribute vector, a fully connected ergodic HMM could
be used. Due to the fact that standard HMMs model only one-dimensional
variables, there are two possibilities of what a state emits in this problem
setting. Either each state emits exactly one variable (symbol) or each state
holds a probability distribution over all variables O. Actually, the first case
is a special case of the second case, where each emission probability is set
to zero except one, which is the one of the desired symbol.
In the first mentioned model (one symbol per state), the structure of the
HMM is defined as the set of all possible 2|O| states that are fully connected.
Each state models one subset of variables. The resulting emission matrix B
is easy to determine: only one entry of the matrix is set to one, because each
state emits exactly one of the 2|O| combinations of variables. The determi-
nation of the transition matrix is computationally more expensive because
there are |O|2 connections within the model. Therefore, A will be large and
there is no guarantee that each connection is represented in the data.
The second HMM design for the given problem is to use only a certain num-
ber of states which may emit all events. Here, all parameters have to be
estimated from the data, especially the emission probability of each variable
in each state. Thus A is quite small and B ≈ |M | ∗ |O|, but the number
of states has to be defined by an expert. If the designer follows inadequate
hypotheses, the modeling will never be appropriate. However, in both cases
the complexity of the parameter estimation is mainly dependent on the num-
ber of variables |O|. In the domain of multidimensional events, as it is the
case in our problem setting, the number of events (variables) is proportional
to the number of possible combinations of each variable dimension. Even
in the easiest case, where each event is described by d binary variables (so
each event is of dimensionality d), the number of possible states is equal
to 2d. This quickly becomes infeasible with growing dimensionality [56] and

2.2. PROCESS MINING 17

makes multidimensional problems very hard for standard HMMs. To handle
the dimensionality problem, DT-HMMs [62] were proposed. However, they
are still not capable of modeling variables with more than two dimensions.
So, other approaches to the two main drawbacks (multidimensionality and
structure learning) of HMMs were presented. To handle multi-dimensional
input and output, Multi-Output HMMs [10] were proposed. However, to
train them, a hand-made structure has to be given a priori. For every
problem, a hand-tweaked model is assumed, which strongly depends on the
ideas and intuitions of an expert. Nevertheless, there are tools like MoCaPy,
which can be used to model Multi-Output HMMs and to fit models to given
observation sequences. To learn the structure of HMMs, algorithms have
been studied extensively, but rely on one-dimensional sequences [86] only.
So, they are not appropriate for the problem setting that was outlined in
Section 1.1 in their current form.

2.2.2 Dynamic Bayesian Nets

Dynamic Bayesian Nets (DBN) are a generalization of HMMs that use re-
cursive HMMs to model time series. Here, several HMMs, possibly having
the same structure, are combined via cross connections, so that each HMM
models one time step [38] of a multivariate timed sequence. Such networks
consist of output nodes Yt, hidden states Ht and can optionally address in-
put variables (Xt). The hidden states Ht in the DBN reflect multivariate
attributes instead of a single random variable only (like it is the case for
HMMs). Thus, the output variable Yt can also be multivariate. Although
this type of model can express very complex settings, the creation of such a
net can be difficult. One aspect of the model is that one may have to know
upfront how many timesteps to include in the model. If, e.g., the model only
captures t timesteps, a prediction for the (t + 1)st timestep is not possible,
because there was no training for this step. Moreover, the conditional de-
pendency tables for such models may become very large, if Yt covers many
dimensions: each possible combination of feature values must be estimated
from the training data, depending on the hidden states’ Ht variable setting
(and the setting of Xt, respectively). Even for binary multi-dimensional
variables, this may become intractable. Nevertheless, algorithms that learn
the structure of a DBN were proposed, like Bayesian model averaging [45]
that estimates whether features (e.g., an edge in a graph) exist. Moreover,
standard feature selection algorithms, such as forward or backwards step-
wise selection for the identification of edges in such a model, or the leaps
and bounds algorithm [42] can be applied, if the system is fully observable.

18 CHAPTER 2. RELATED WORK

Figure 2.3: Illustration of a Petri net.

2.2.3 Petri Nets

Petri nets [93] address the problem of identifying models from discrete event
logs. These models can later be used to explain and transfer the acquired
knowledge. In general, Petri nets will only present the structural depen-
dency, but will not give the joint probability P (si|λ) for an event sequence
si. Nevertheless, Petri nets can be used to learn log-based model structures.
To describe Petri nets, there exist some variants, here Place/Transition net-
works will be introduced, which are based on nodes and transitions. For-
mally, a Petri net is a pair (N, s), where N is a tuple (P, T, F) of places P ,
transitions T (P∩T = ∅) and directed edges (flow relation) F ⊆ P×T∪T×P .
The parameter s denotes the marking of the net. A marking is a bag over
the set of places P, i.e. it is a function from P to the natural numbers
f : P → N that shows how many markers are given in the net. A node x
can be an input (or an output) node of another node y if there is an arc
going from x to y (or vice versa). The set of all input nodes X of a node y
is denoted as follows: •x = {y|(y, x) ∈ F}, and the set of all output nodes
as x• = {y|(x, y) ∈ F}, for any x ∈ P ∪ T . The dynamics of Petri nets
are given by firing rules that define when a transition is enabled: Transi-
tion t ∈ T is enabled (indicated by (N, s)[t >), iff •t ≤ s. The firing rule
[> ⊆ N ×T ×N is the smallest relation for any (N = (P, T, F), s) ∈ N 3

and any t ∈ T, (N, s)[t >⇒ (N, s)[t > (N, s − •t + t•). Figure 2.3 shows
an example Petri net. Places are illustrated as circles while transitions are
given by rectangles. There is also a token in this net, it resides in the source
place (the leftmost node), which is illustrated by the additional black circle
in this node. In this example the source node is enabled and firing the tran-
sition would move the token from the input place and puts it to the output
place. As a result of this firing, place E and the AND-Split are enabled.
Note that in a Petri net, tokens are consumed and produced, they do not
travers the net. This can be illustrated in the AND-Split: if this transition
fires then one token is consumed while there are two tokens produced. A
sequence s is modeled (accepted) by a Petri net (N, s0), if there exists a
sequence of enabled transitions whose firing leads from s0 to s, given the

3N is the set of all marked, labeled Petri nets.

2.2. PROCESS MINING 19

Figure 2.4: Examples of a net (left) that cannot be detected by the α-
algorithm, but a similar net is returned (right)

structure of the net and its markers [94]. There exist other characteristics
of Petri nets like connectedness, boundedness, safeness and liveness, which
will not be described here. The structure of a Petri net is not only com-
posed of places and transitions. As already shown in Figure 2.3, there are
also standard building blocks like AND-splits/joins or OR-splits/joins4 that
were used to model the parallel, sequential or conditional processes. There,
tasks are modeled by transitions while causal dependencies are modeled by
places and arcs. Places can therefore also be considered as conditions that
must take place before tasks. The structure of a Petri net is usually derived
by first finding an ordering relation of the events and then combining them
into an overall model. This does not include the frequency counts of the
transitions nor an automatic distinction of the events. All Petri net miners
must be given the set of events that may occur in an event log. Let’s consider
the α-algorithm as an example. First, the ordering of the events is extracted.
This can simply be done by inspecting the ordering the events occur in the
log. If A always follows B than there can be established an sequential or-
dering A→ B. Analogous, parallel orderings or even an unknown ordering
can be extracted. However, it is assumed that the log is always complete
and that every possible relation between two events is observed at least once
if there is a relation. In contrast, it is not necessary to observe every firing
sequence, because this may be impossible in a net with loops. Having these
causal relations, places between them are created, which is the essential
property of many Petri net induction algorithms. However, places have to
be merged, if an OR-split/join is present. Moreover, short loops (of length
one or two) are also a problem for the α-algorithm, which is also true for
invisible tasks. Figure 2.4 shows an example of a so-called non-free choice
net that cannot be identified by the α-algorithm. However, a similar net
is returned instead. Although the α-algorithm cannot handle all types of
net-types there exists work that has tackled some of the shortcomings of

4AND-constructs only have exactly one in (or outgoing) transition, while OR-constructs
always have multiple in and outgoing transitions

20 CHAPTER 2. RELATED WORK

the α-algorithm. The problem of short loops (α+ -algorithm) and implicit
dependencies (α]-algorithm) was solved [28, 103]. To include invisible tasks,
they are first separated into SIDE, SKIP, REDO and SWITCH constructs
and then a new ordering relation that reflects the invisible tasks is intro-
duced. The α++ -algorithm is also able to mine short loops by changing
the definition of log completeness (Loop-complete workflow log [28]) and by
adapting the pre- and post-processing phases. There, the short loops are
identified in a last step that connects the short loops to the existing places
of the net.
However, for more complex logs, e.g. numeric logs, the structure is fixed,
while the parameters of the net are estimated [104, 52]. Although Petri nets
were successfully applied to model business processes and biological path-
ways, they are not applicable for the given problem setting (cf. Section 4).
First, they are usually based on events that consist of one variable only and
are therefore unable to model multi-dimensional events, and second, model
selection and capacity control remain essential open problems. While, one
straight forward way to handle multi-dimensional events would be to cluster
them first, and then to learn the net structure (cf. Section 4.2.7) a solution
for the net constraints like, e.g. liveliness, was not elaborated, yet.

2.3 Automata

This section introduces grammars and languages together with their induc-
tion algorithms and fields of application and discusses present methods for
the retrieval of automata.

2.3.1 Grammatical Inference

Grammars are very closely related to abstract automata and consist of rule
sets that describe how words can be built up. Chomsky was the first scientist
that explored the properties of formal grammars. Nowadays, grammars are
the basis of important software components like compilers and are essential
for the understanding of the capabilities of software and to verify all kinds
of systems like communication protocolls. Especially for programs that are
built in a recursive structure. Consider the following example of a typical
rule: S → S + S. This expression means that a term can be created by
combining two other arbitrary terms by a ’plus’. Such a rule is very typical
for the way, how software is implemented. Another important application
for grammars is to validate the structure of data, which is done by regular
expressions. They describe in a symbolic way how valid data must be setup.
Such a problem can be handled by regular grammars. A grammar (or a
language) L is defined over an alphabet Σ: L ⊆ Σ∗ and describes a final set
of symbol sequences. Chomsky described a hierarchy of grammars, following
different properties that can also be considered as automata. Figure 2.5

2.3. AUTOMATA 21

Figure 2.5: Chomsky hierarchy of grammars and their corresponding types
of automata

shows the hierarchy of grammars as they were proposed by Chomsky and
the corresponding type of automata (cf. Section 2.3.2). They differ in their
characteristics, i.e. in the types of operations that can be applied to them
and in the type of rules that are allowed for describing the grammar. The
smaller the type of the grammar, the more expressive is its language because
the number of constraints increase with the grammar type.
A grammar is usually represented by a set of rules of type N → [N |T]∗ where
N denotes a non-terminal symbol and T is a terminal symbol. Depending
on the grammar type, there are constraints on how the right hand side of the
rule may look like. Regular grammars are the most restrictive ones, while
Turing machines allow for every possible language.

Grammars can be used to describe, compress or model data. One ad-
vantage is that a grammar can handle unbounded sequences and that the
resulting models are quite understandable [27]. One main focus in the field
of grammatical inference is the induction of regular grammars in a vari-
ety of settings, like the induction of only positive examples. The reason
why research mainly focussed on the induction of regular grammars is that
it seems that learning context free grammars cannot be done in polyno-
mial time. Inductive inference, the complexity of learning algorithms, active
learning and PAC-learnability of grammatical inference are very frequently
adressed topics [43]. However, heuristic methods for the induction of gram-
mars were more successful [44]. Inducing algorithms for linear languages
seems nevertheless promising and a number of postitive results have been
published [84]. Using machine learning for the induction of grammars yields
many approaches including work on VC-dimensions, version spaces, genetic
algorithms and also state merging procedures (cf. Section 2.3.2). Some ap-
proaches rely on the Gold paradigm [21], which assumes that every word of

22 CHAPTER 2. RELATED WORK

the target language occurs at least once in the training data set S of strings
S ⊆ Σ∗. Using the provided examples one by one the learner constructs
a model Ml that converges to the final solution. It stops when there is
an example sn for which the induced target concept does not change any
more ∃n ∈ N : Mn = Mm, n < m. Usually, the following notation is used:
Σ (and ∆) refer to non-empty finite alphabets. Σ∗ is equal to the set of
all strings over Σ and λ is the empty string (it is the only word having
length 0 and is included in every language). A language L is a subset of
Σ∗ : L ⊆ Σ∗. Let u and w be two strings, u, v ∈ L, then their concatenation
is illustrated by uv. A context (l, r) is an element of Σ∗ × Σ∗ which can be
wrapped around a string: (l, r)� v = lvr. Languages can be concatenated:
LM = {uv|u ∈ L, v ∈ M}. The set of all substrings of a word w (sub(w))
can be defined as follows: {u | ∃l, r ∈ Σ∗, lur = w}. If applicable this is ex-
tended to sets of strings. This notation is used to deduce whether a word is
part of a language. Depending on which deduction rule is applied, a partic-
ular set of languages can be derived. This can be achieved by implementing
rule schemas. For example, a schema could define whether a word can be
deduced to be in a language by knowing that another word is in the lan-
guage. By using a set of such rules [21] a language can be identfied. Chain
rules are used to simplify the induction process. The link equivalence classes
of rule sets then essentially describe the same languages. Rules can either
be correct, certain or defeasible. The first rules are always considered to be
correct, either by axioms or by the combination of information. However,
if there is enough information to conclude that a rule is not correct then
it is considered as wrong. Still, the problem remains, whether an infinite
language contains a certain word. As such a word may be very long, it may
be impossible to conduct whether a rule is true or false. Therefore, each
rule is considered as defeasible until there is evidence that it is wrong. To
define whether a specific word is part of the language L, proofs are derived
from the rules. Clark et al. [21] present a genetic algorithm that uses such
a rule system to find a grammar for a (in general unbound) set of examples
by retrieving information from a so-called oracle that defines whether or not
an string is part of the language so far. This is similar to the famous L*
algorithm by Angluin [9] (cf. Section 2.3.2). Using this type of notation
and proof formalism many types of languages can be inferred, e.g. Multiple
Context-Free grammars or even linear grammars.
There also exists an extension to stochastic grammars, where a probability
density function over Σ∗ ist given, i.e. there is a probability for each word
w ∈ Σ∗ to occur in the language L. The stochastic grammars that form
such a stochastic language need and additional factor: a probability that
the grammar L creates the string/word w which is defined recursively:

p(X ⇒ λ) = p(X → λ)

p(X ⇒ aw) = p(X → aY)p(X ⇒ w)

2.3. AUTOMATA 23

To find such a grammar the RLIPs -algorithms was introduced that finds
the equivalent automaton (cf. Section 2.3.2). It was applied to speech recog-
nition with noise or other random errors. Another application for stochastic
grammars is the identification of structural elements by markups in text
documents [106]. One nice property of this approach is that the grammar
evolves as new examples arrive and thus a better interactive tuning of the
result is possible.

2.3.2 Automata Induction

The term automata was introduced in the 1930s by Alan Turing, who studied
which problems can be computed and which not. This is also formalized by
the term determinable that includes all problems that can be solved with
computers. The second questions is, which problems can be managed by
computers, i.e. can be solved within a time span that grows slowly with
the size of input. Slowly means that the time can be approximated by a
polynomial function. However, this work will not discuss such problems but
aims at describing how automata can be used to formally describe processes
or systems. In general automata can be considered as a system that consists
of a set of states that describe some important properties of the system.
Moreover, the system is described in a way that it is exactly in one state
at each time point. As there is no memory, former states of the system are
‘forgotten’ when a new state is reached. Given an input sequence, which may
be any symbol of an alphabet, the automaton changes its state according to
the provided symbols. Note that there exist only a specific set of start states,
i.e. states which ‘accept’ the first symbol. Final (Accepting) states describe
whether the system is in a valid state. If such a state is reached after an
input sequence, the sequence is considered as valid. Figure 2.6 shows a very

Figure 2.6: Example automaton

simple example automaton that consists of five states. If this automaton
receives as input the letters t−h− e−n it reaches the only accepting state.
Thus, this automaton is built to parse (or to identifiy) the word then.

Types of Automata To describe the class of automata more formally,
let’s consider one main distinction of automata first: determinism. An
automaton is deterministic if it can reside in exactly one state at each
point in time. Formally a deterministic finite automaton (DFA) is a tu-
ple Γ = (Q,Σ, δ, q0, F), where

24 CHAPTER 2. RELATED WORK

(a) Example DFA

(b) Example NFA

Figure 2.7: Top: Example of a DFA. Bottom: Example NFA. Both automata
accept the language of words that end with 01

• Q is a final set of states

• Σ is a final alphabet

• δ is a transition function δ : Q,Σ → Q) that defines for each state
q ∈ Q and symbol a ∈ Σ the next state q′ ∈ Q

• q0 is the start state q0 ∈ Q

• F is the set of final states F ⊆ Q

A DFA can decide, whether a word (sequence of symbols) is part of a lan-
guage – whether the word is accepted. If a langugae, i.e. a set of words is
a accepted by a DFA, this language is called regular language (cf. Figure
2.5). Nondeterministic finit automata (NFA), i.e. automata that can reside
in several states simultaneously, also accept regular grammars, but are of-
ten easier to describe. This can be proven by the fact that each NFA can
be transformed in a DFA. Such a type of automaton can be in two states
simultaneously because there may be states that have several alternatives
when a specific symbol is read. That means that there is more than one
next state. Figure 2.7b shows an example for such an automaton. The dif-
ference to a DFA is that there are states for which there is no next state
for some symbol σ ∈ Σ. Thus, the definition of such an automaton dif-
fers only in function δ : Q,Σ → Q∗. One important subclass of automata
of DFAs are distinguishable automata. This property is fullfilled if there
are no two states s and s′ and their corresponding trajectories Ps and Ps′ ,
where the two trajectories are too similar concerning one similarity metric
m: m(Ps, Ps′) ≥ µ,∀s, s′ ∈ Q.

2.3. AUTOMATA 25

Probabilistic automata (PA) were developed to model probabilistic sys-
tems [87] and subsume Markov chains and Markov decision processes as
well. Given an NFA a PA can be constructed with it by adding a probabil-
ity distribution to each state’s transitions that define the probability p(qi, a)
that symbol a is observed after state qi. As usual the sum of probabilities
of the transitions leaving each state sum up to one.

Learning Automata As described before, automata, grammars and graph-
ical causal models (like HMMs) are very closely related and can be used for
similar problems. Due to their intuitive structure HMMs were the initial
choice for modeling time series in many domains. However, for their correct
parameter induction (usually the EM-algorithm is used), which is indeed
only locally optimal, the correct underlying topology must be known. This
is not necessary when inducing automata [36]. Note that in general each
HMM can be transformed in (or at least approximated by) an equivalent
automaton (having the same number of states) and vice versa (while here
the HMM has not necessarily the same number of states) [36]. When in-
ducing the structure of automata, there exist three main streams in the
literature, using the state merging method [12], algorithms that guarantee
PAC-learnability [22] (more generally probabilistic models) and a set of algo-
rithms similar to the L∗ algorithm [9]. The aim when learning probabilistic
automata is the induction of a distribution from a sample that is as similar
as possible to the (unknown) target distribution. In the easiest case some
prior knowledge is given to the learner so that the topology of the model
can be fixed before the parameter estimation. If this is not possible, then
structure learning and topology modeling has to be done together [30]. Such
approaches have already been shortly introduced in Section 2.2.1 and can
also be adopted for specific classes of automata as HMMs can be transformed
into automata (PDFAs).
The second main type of the induction of automata is derived from the L∗

algortihm, which learns a minimal DFA for a given regular language. The
main idea behind such methods is that there exists a learner that has to pro-
vide the final automaton. The learner may ask questions to a teacher who
knows the correct automaton as well as a so-called oracle that can decided
whether the proposed automaton is correct. This setting is schematically
illustrated in Figure 2.8. The L∗ algorithm is based on two sets U ⊆ Σ∗

(words that are candidates for identifying states) and V ⊆ Σ∗ (words to
distinguish states). The learner identifies candidate words from (U ∪UΣ)V
and queries the teacher whether they are part of the language. The result
of this query is stored in a table T = (T ,U ,V). The learner tries to identify
a closed and consistent language H from this table and queries the oracle
whether this is correct. If the automaton is not correct, the oracle returns a
counterexample that is used to update the sets U and V accordingly. This

26 CHAPTER 2. RELATED WORK

Figure 2.8: Illustration of the problem setting for by the L∗ algorithm [9]

leads to the creation of new membership queries until the language is again
closed and consistent. This is repeated until the correct language is identi-
fied.
Although there exists much theoretic work about the bounds and quality ap-
proximations using such algorithms, the third induction group (state merg-
ing methods) has proven well in practice. They require a significant smaller
sample size to infer the given automataon (or grammar) [14]. Automata
induction methods that rely on the state merging strategy are based on a
so called prefix tree acceptor [30], which is a DFA that can only generate
the data set S, i.e. no generalization is present. Upon such a structure the
merging procedure is applied. Nodes of the PTA are merged (combined into
one state) successively. The search space of such a method is given by all
automata that can be derived by merging the states of a PTA, from which
the best fitting model has to be selected. How ‘best’ is considered will be de-
scribed in the following sections and is different in the specific approaches.
Nevertheless, Algorithm 1 shows a generic learning scheme for induction
methods relying on the state merging procedure. It uses the given data
set S and a precision parameter that is dependent on the specific merge-
criterion. The basic steps are first, the selection of pairs of nodes that are
considered for merging (SelectStates), then the evaluation whether they are
compatible (which is also depending on the specific algorithm) and if so the
update of the current automaton. The update is essentially the merging of
q and q′. The following algorithms can be considered as specifications of one
of these main steps each. One example of algorithms that implements this
basic structure is the Alergia algorithm [12]. The sequences are selected
in alphabetical order and evaluated in pairs whether to be merged. This is
the case when the following condition, derived by the Hoeffding bound, is
fullfilled:

∀a ∈ Σ :

2.3. AUTOMATA 27

Algorithm 1 General state merging method (Histories H, precicion param.
µ)

1: Γ← PTA
2: while stopping criterion not satisfied do
3: (q, q′)← SelectStates(Γ)
4: if Compatible(q,q’,µ) then
5: Γ← Update(Γ, q, q′)
6: end if
7: end while
8: return Γ

∣∣∣∣C(q, a)

C(q)
− C(q′, a)

C(q)

∣∣∣∣ <√1

2
ln

2

µ

(
1√
C(q)

+
1√
C(q′)

)
.

This condition compares the outgoing transitions of state q and state q′ re-
spectively and also recursively the successore states of q and q′. If q and
q′ are compatible, they – as well as their successors, if appropriate – are
merged to eliminate non-determinism. This strategy is therefore called de-
terminization by merging. This algorithm identifies the class of probabilistic
determininistic regular languages in the limit.
The basic algorithm was also modified to induce acyclic automata [73] re-
flecting finite languages. There, candidate states must be in the same depth
of the PTA to be merged to ensure the acyclicity. Besides, states must be
frequent to be merged. Otherwise they are combined into one state that
reflects exceptions. Finally the transition probabilities are corrected by the
maximum likelihood estimates:

ϕ(q, a) =
C(q, a)

C(q)
(1− (|Σ|+ 1)ϕmin) + ϕmin

, where ϕmin is the minimal transition probability in the automaton. An-
other adaptation is the MDI algorithm [88] that aims at finding of minimal
sizes and small deviations from the data set S. Here again the two states q
and q′ are merged to a temporary solution Γ1 and eventually with additional
states to solution Γ2. This is done if the divergence increment relative to
the new (smaller) size of the automaton is less then µ:

D(Γ0||Γ2)−D(Γ0||Γ1)

|Γ1| − |Γ|
< µ,

where D(Γ0||Γ2) reflects the divergence of the automata Γ1 and Γ2.
The RLIPs- algorithm [13] also uses the state merging method on a prefix
tree acceptor to find the minimal stochastic automaton for a given stochas-
tic regular language from a positive data set only. Therefore, a branch
and bound algorithm is used. This type of algorithm is also able to identify

28 CHAPTER 2. RELATED WORK

cyclic structures of an automaton and was proven to converge having a lower
bound on the provided data set. In 2006, Gavalda et al. proposed a frame-
work (based on an algorithm of Clard and Thollard [22]) that is based on
a state merging and splitting strategy [36]. The induction strategy of such
algorithms is incremental although the necessary statistics are computed in
a batch mode. Starting from an automaton that includes all knowledge that
could be collected up to this timepoint, a new sequence is mapped against
the automaton until its end is reached or one symbol of the sequence reaches
a so called candidate node u. This is the case when there exists no transition
labeled with σi out of the current (safe) node w. If there is no safe node v
such that u is similar to v (which is tested every time after reaching u) then
u is promoted a safe node and added to the list of final states of the au-
tomaton. This can be summarized as described in Algorithm 2. Moreover,

Algorithm 2 CT Algorithm (Trajectories D) [36]

1: for all d ∈ σ0, . . . , σk do
2: while σi matches a state s do
3: a safe state can be reached
4: i++
5: end while
6: if i < k then
7: candidate state s is reached
8: if s is not large/frequent then
9: retain node s

10: else if s has a similar state s′ then
11: merge node s with s′

12: else
13: promote s a new safe state
14: end if
15: else
16: add σi+1, . . . , σk to Dsσi

17: end if
18: end for

this algorithm ensures that

For every PDFA M with n states, with distinguishability µ > 0, such that
the expected length of the string generated form every state is less than L ,
for any δ > 0 and ε > 0 , the PDFA-Learn algorithm will output a hypoth-
esis PDFA M’ such that, with probability greater than 1 − δ, the maximum
difference in the probability assigned by the PDFA to any string is at most
ε .[36]

However, the algorithms proposed by Castro et al. [14] differs in one main

2.3. AUTOMATA 29

aspect from previous work: they need smaller sample sizes but still provide
the quality estimates of [36]. The algorithm presented by Clard and Thol-
lard (for brevity the CT-algorithm) required all quality bounds as an input
from the user and then calculated the required data set size that had to be
provided afterwards. This could of course lead to significant drawbacks, if
such a data set size does not exist for real world applications. Then such
a method cannot be applied. The improved CT-algorithm requires as in-
put the alphabet Σ, an upper bound L of the expeted length of emmitted
strings of the target (the true underlying automaton), an upper bound n on
the number of states of the target and the quality parameters δ (confidence)
and ε (precision). The aim of the algorithms is to induce an isomorphic
graph G to a subgraph A of the true target such that all frequent states of
A have a corresponding state in G as well as frequent transitions. Addition-
ally, the symbol emission rates deviate at least ε1 (which is one parameter
to form ε) from the predefined ones. By using these user specific thresholds
quality guarantees can be given. This algorithm was tested on small sample
sizes and indeed showed that it requires far less input to deduce the correct
automaton. Moreover, first experiments with real world data sets (web log-
file) showed that interpretable but non trivial structures can be identified.
Just to mention remaining work, other methods to induce automata are
based on the state splitting or error-correcting method. However, as this
thesis does not include such strategies they will not be revised here.

Recently, a new type of automata inducing algorithms have been pro-
posed [98, 95] that rely on the state merging procedure but do not claim
quality constraints. The state merging procedure was chosen because it is
currently considered the best solution for the task of learning a DFA [27].
The main advantage is that the structure of the model can be learned auto-
matically. It does not need to be specified manually. Additionally in these
algorithms, time information is incorporated into the final model, which is
a deterministic real-time automaton (DRTA) [29]. The input for the algo-
rithm is an event sequence τ = (~e1, t1)(~e2, t2) . . . (~en, tn), where each event
~ei has an associated time stamp ti, which reflects the time that has elapsed
since the last events. Although the structure of a DRTA is like a DFA,
each transition has a delay guard assigned. A delay guard is defined as an
interval t1, t2 in N and specifies for which times the transition is allowed to
take place. This is the case when time t lies in the interval defined by t1 and
t2. Real-time automata are defined as a tuple A = 〈Q,Σ, T, q0, F 〉; a set of
states (Q), an alphabet (Σ), a set of transitions (T), a start state (q0) and fi-
nal states (F ⊆ Q). The automaton is deterministic because there is exactly
one transition 〈q, q′, a, φ〉 ∈ T for a state q, every symbol a and every time
value t ∈ N. To identify the automaton that is the smallest one, consistent
with the input, a timed prefix tree is created. To define the final states of the
model, the states of the prefix tree are merged, which means that two states
are combined into a single one. The merging procedure is mainly dependent

30 CHAPTER 2. RELATED WORK

on the final structure of the automaton. Automata not including a delay
guard may use (k, h)-contextuality [3] to identify the states to be merged.
Here, similar paths are identified and then k − h + 1 states of the paths
are merged. However, for automata with delay guards, the deterministic
constraint can be violated after a merge: There may be two transitions with
the same symbol and delay guard. This mismatch is resolved by a splitting
procedure that creates two paths in the prefix tree with non-intersecting
delay guards. Although state merging is currently state of the art, there
exist different methods of how to merge and split states and transitions.
One possibility is to do splits and merges depending on their consistency
(derived by a χ2 test [96]) and apply a rule set to identify whether a merge
or a split is the best next step. Note that this algorithm relies on positive
data only, which means that all input data are expected to be part of the
language that is formed by the automaton and thus must be accepted by it.
Another method to find the best split or merge is to compute the likelihood
of an overlap of the two tails of a state in the prefix tree [99]. Again, a score
is computed to select the best operation (merge or split). This operation is
based on the red blue algorithm.
Still, one has to remark that automata and causal models are closely re-
lated. Comparing, e.g. automata to HMMs, the parameter λ of the au-
tomaton is again a transition matrix B, which is derived by ML estimation
(parameter learning problem). It covers transition probabilities depending
on multi-dimensional symbols and time: bij = P (transitionij |~ek, tk). The
introduction of probabilities offers the possibility to construct a generative
(automaton based) model and to compute the probability P (S|λ) for each
observation sequence S depending on the model parameter λ. Moreover,
prediction (although in general not important for automata) is also a de-
sired function in this work and will be discussed in depth in Section 4.1.3. In
contrast, the evaluation task has no true equivalent in the world of automata.
The same is true for smoothing and decoding. In general, it is not important
to know in which state an automaton resides but if the automaton accepts
the sequence S. This shows whether a sequence S is part of the language
that is modeled by the given automaton. Moreover, deterministic automata
provide no transition probabilities, so the calculation of state sequences is
straightforward. Considering non-deterministic probabilistic automata, it
is possible to compute P (h|S) depending on the transition probabilities, so
that smoothing, decoding and evaluation can in principle be conducted as in
the domain of HMMs. However, as stated above, answering these questions
is not the main task of automata. It is only of interest whether a sequence
S is accepted by an automaton.

2.4. APPLICABILITY TO THE PROBLEM SETTING 31

2.4 Applicability to the problem setting

The main idea of this work, was to enable the temporal analysis of biological
and medical data sets. The important subdomains here are first the pre-
diction of disease progressions in a population (cf. Chapter 2) and second
the identification of relationships between genes. One task is to find out in
which sequence a cell expresses which genes. Another task is to find out
how the genes interact with each other and the resulting metabolic state of
the cell. This also includes the transduction of signals within a cell, which is
very complex and by no means already understood. Nowadays, microarray
experiments allow for the simultaneous evaluation of several thousands of
genes over a specific time period under various environmental constraints.
Then, the genetic interactions and cell-responses to stress can be observed.
Therefore, the information of how genes interact and depend on each other
is very interesting and there are quite a lot of approaches to deal with such
problems. One possibility is the extraction of temporal association rules
(TARM)[65]. However, most of the approaches suffer from the problem that
there exist very many genes but only a few timepoints of observations. Thus,
using analytical/Bayesian approaches (covariance analyses and so forth) may
not result in appropriate results as the number of training instances is very
small and there may be too few observations for an approximately correct
estimation. Besides, the incorporation of time constraints is also one essen-
tial point. The user wants to specify which time periods has to be modeled,
i.e., how the gene expression ratios develope after, e.g. 10 minutes. The
next issue is that the events or characteristics are not necessarily known
upfront, so that the desired algorithm must find out states or appropriate
variable settings without prior knowledge. One obstacle here is that there
may be noise, which blurs events and lets them seem different although they
are actually the same. One example here is that a genetic experiment in-
correctly returns a negative expression for a gene because it was just not
sensitive enough. Therefore, we define a list of characteristics that have to
be covered by an approach to produce an understandable model that can
handle the discussed problems. The model should

• produce a probabilistic generative graphical model,

• handle multi-dimensional variables,

• consider time stamps,

• allow for cycles, and

• generalize similar events due to noise.

Up to now, all the discussed approaches can deal with one or more of the
desired properties, but all of them have limitations that are not easy to

32 CHAPTER 2. RELATED WORK

solve. However, automata have already been extended to take into account
the time constraint. Therefore, we decided to push this extension forward
and to create an automaton-based model that not only automatically defines
its states from the given set of events, but also may address noise and cyclic
structures.

2.4.1 Combining the best of the presented approaches

All existing automaton based algorithms are made for one-dimensional events
only. Nevertheless, only few modifications are required to deal with multi-
attribute events. To do so, an approach to combine probabilities with au-
tomata was presented [96]. It models one-dimensional symbols and time
by using interdependent probability distributions, but transition intervals
must be given in advance, which leads to a model with many parameters.
In contrast, we solve the problem of multi-dimensional attributes by an-
notating states with dynamic profiles instead of symbols, and derive joint
probabilities for transitions during the merge operation. In this way, selected
properties of HMMs (transition probabilities, Markov property), causal net-
works (graphical representation), Petri nets (cyclicity) and automata (delay
guards) are combined with a generalization approach, to obtain the desired
functionality. Definition and inference of such an automaton will be pre-
sented in Chapter 4 and its subsequent extensions for large sparse data sets
(Chapter 5) and to incoporate background knowledge (Chapter 7). Last,
an approach to handle data streams, even with concept drift is presented
(Chapter 9). These algorithms and their results are summarized and, fur-
ther, interesting work, like an algorithm improvement for dense data sets,
will be introduced.

Chapter 3

Preliminaries: Materials and
Quality Measures

3.1 Data

In this section we briefly introduce the synthetic and real world data sets we
used for the evaluation of the algorithms. Synthetic data are used to evaluate
the correctness of the method and real-world data are used to examine the
descriptive power. The real-world datasets encompass medical and biological
data. Data sets that were used exclusively for the evaluation of specific parts
of the PRTA induction are described separately in the specific chapters.

3.1.1 Synthetic data

A first benchmark is always whether the proposed algorithm can reproduce
a predefined structure, i.e. an automaton, like it was done in existing work
[36]. To show that the algorithm rediscovers an automaton that is known,
histories were produced by a synthetic automaton (cf. Section 4.1 for the
nomenclature of used automata). To do so, we created an automaton with
10 states and 10 attributes. This automaton produced 100 synthetic his-
tories by traversing the states corresponding to the transition probabilities.
For each history the profiles of the visited states were saved. Afterwards,
those histories were used as input for the algorithm. Additionally, with an
error ratio of 0.1, we randomly generated errors in the profiles to see if the
automaton will be detected correctly although the states are not completely
equal. With a probability of 0.1, each attribute of a profile is changed into
its opposite. If it is one, it will be changed to zero, and vice versa. The
goal of the introduction of errors is to test if the algorithm will nevertheless
produce the correct structure although noise is present. The handling of
errors is important because real-world data is expected to be error-prone.
Figure 3.1 shows the synthetic automaton that produced the synthetic his-

33

34 CHAPTER 3. PRELIMINARIES

Figure 3.1: Illustration of the synthetic automaton used in the experiments.
Each circle is a state, each arrow a transition. The actual profile of each state
is given in brackets and each transition is labeled with its probability. For
simplicity, the delay guard (not illustrated) on each transition is φ = [1, 1].

tories. Transitions are labeled with probabilities, and next to the states all
attributes that are equal to one are shown (in brackets). They correspond
the profiles. Delay guards are always equal to one and can therefore be
neglected in this case. The described automaton was also used for a proof
of concept and further stability analyses (cf. Section 4.2). Therefore, a data
set containing 100 histories of average length 10 was produced by traversing
the automaton corresponding to the transition probabilities. For a stabil-
ity analysis (cf. Section 5.2), ten more synthetic data sets were created in
the same manner. They serve as a starting point for a bootstrap analysis.
From each of these ten data sets, 100 derived data sets are created by the
bootstrap method. Thus, 1000 data sets are used in the stability analyses.
To examine the algorithm’s scalability for data streams, even larger data
sets were created (cf. Section 9.2). They range from 50 to 100,000 histories,
where the history length was fixed to be 100. Again, to account for data
set variability, for each number of histories 10 data sets are created. To
address the stability of the algorithms when noisier data sets are present,
the synthetic automaton was also used to create data sets having a differ-
ent amount of noise. This error ratio ranges from 0.1% to 10%. Another
analysis addresses the algorithms dependency on the length of the histories.
Thus, the synthetic automaton also served as a basis for data sets having
different history lengths. They were varied between 10 an 1000, while the

3.1. DATA 35

data set size was fixed to 10,000.

3.1.2 Real World Data Sets

Disease Group Data Set I

The first real-world, proprietary dataset comprises diagnosis data from 1000
persons from four years. Each diagnosis was grouped into one of 106 medi-
cally motivated disease groups (DGs) and saved with its timepoint, namely
the year it occurred in. The grouping is based on the similarity of dis-
ease patterns and the probable progression, relying on the three-digit WHO
ICD101 codes of chronic conditions. For each timepoint, we obtain 106 at-
tributes that represent the event of the timepoint (cf. section 4.1). However,
the attributes of events are quite sparse: Just 28 out of 106 DGs occur in
more than 5% of the instances, 66% of all events just have one or two DGs
set, and 99% of the events incorporate less than 11 DGs. Thus, only DGs
that occur often (in more than 5% of the instances) were used to define
events. Because this data set shows the progression of diseases, only in-
stances having at least one timepoint with an event e where |~e| > 0 were
incorporated into the histories.

Disease Group Data Set II

The last (non-public) data set covers historic diagnoses from 147’656 pa-
tients within four years on a quarterly basis2. Thus, this data set shows
the progression of diseases within a population. As there are about 15’000
diagnoses (ICD codes), each provided diagnosis was grouped into one of 111
clinically homogeneous diagnosis groups that combine several diagnoses cor-
responding to their similarity and expected outcome. Using this compressed
medical representation enables the user to manually inspect and judge the
resulting states of the automaton. Therefore, a history is a feature vector for
a patient and timepoint t describing the set of disease groups at timepoint
t. We used two derived data sets to build the automaton. The first data
set only contains disease groups (DGs) that occurred in at least 10% of all
patients (22 attributes) in order to obtain the most frequent and important
disease patterns (P10). The second data sets includes all disease groups
that occurred in at least 1% of all patients to allow for a more extended in-
spection (76 attributes, P01). The final PRTA then shows which diseases an
specific population suffers from and which transitions between such disease
states occur and how often. This may enable physicians to better foresee
future impairments.

1http://apps.who.int/classifications/apps/icd/icd10online/
2We gratefully acknowledge Gesundheitsforen Leipzig GmbH

36 CHAPTER 3. PRELIMINARIES

Figure 3.2: Illustration of the binary yeast cell cycle data, the rows represent
features, columns instances/different timepoints. If an attribute is equal to
one, it is represented by the corresponding (colored) number.

Hepatitis Data Set

The next data set is the 2004 ECMLPKDD Hepatitis challenge data set3. It
contains blood test results for 1236 patients suffering from either Hepatitis
B or C between 1982 and 2001. Next to some demographic information
like age and sex, the results of up to 36 tests are given for each individual
examination. Some patients are only recorded once while others have a
history of 401 records. However, 95.7% of the patients provide a history of
at least two events, where one event is considered as the examination result
of one day. The fillgrade of the attributes in this data set varies strongly.
To obtain meaningful results, only the attributes that are present in at least
80% of the events were included in the histories. Moreover, each attribute
was discretized in three subtypes: blood test result below normal, normal
and above normal. For missing test results none of the attribute’s values
was set. Thus, the final events consist of 33 attributes (cf. Table 7.2 for a
short overview). To evaluate the algorithm’s scalability, several data sets of
different sizes (50, 100, 150, 200, 300, . . ., 900, 1000, 1236 histories) were
created.

Yeast metabolism data

A further real-world data set holds the gene expression values of budding
yeast [74] (GEO ID: GSE3431) that were recorded using Affymetrix chips
(GPL90) for 36 timepoints with a delay of 25 minutes each. The data set
covers the expression rates of 9335 genes of a synchronized (all cells start in
the same state) cell culture and is freely available4. As cells also change in
their metabolism, genes are expressed (used) at different time steps, reveal-
ing expression peaks in the data. These peaks give information about the
current state of the cell, e.g. which metabolism is currently activated. How-
ever, the data is given as an expression series of continuous variables and
not as zero/one vectors (gene is off/on). Therefore, the expression profiles

3http://lisp.vse.cz/challenge/ecmlpkdd2004/
4ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/GSE3431/

3.1. DATA 37

Figure 3.3: Illustration of the binary zoo data set, the rows represent fea-
tures, columns instances. Each attribute that is equal to one is illustrated
with a black box for each instance. The numbers at the bottom illustrate
the class label.

were discretized via a sliding window approach (cf. Figure 3.2). A peak is
considered as a raise of the expression level compared to the surrounding
timepoints. Following this intuition, a gene’s expression level was set to one
(peak) at a timepoint ti if the expression level L(ti) is higher than the average
in the surrounding window. There are genes that show a periodic behavior,
and they expose peaks in a maximal 12 time steps frame. Thus the window
size was set to 12, meaning that the average was taken of the 12 timepoints
before and after ti. Note that other discretization methods (as discretization
by mean and standard deviation) may not be as expressive because some
peaks could be left out, due to their relatively lower height. To describe
the state of a cell, only genes that are expressed at specific timepoints are
considered interesting. This means that their expression level should clearly
change over the monitored timepoints. Furthermore, each time step should
be described by at least one expressed gene so that only genes were selected
that reveal peaks and, moreover, peaks at different time steps. Because most
genes are expressed at the same time steps, the selection only covers seven
well-investigated genes. A Z-score normalized expression profile of these
genes is illustrated in the lower part of Figure 4.7 while a binary illustration
of this data set is shown in Figure The genes are numbered and highlighted
with color at a timepoint, if their expression level was high enough.

Zoo Data Set

The zoo data set describes 101 animals by their morphologic features like,
e.g. feathers or breathing and is used to assess the quality of the resulting
clustering. Altogether, the data set contains 17 features, thereof 16 binary.
The remaining feature (number of legs) was transformed into five binary
features (’has 2 legs’, etc.) to fit the given problem setting (cf. Figure

38 CHAPTER 3. PRELIMINARIES

3.3). Additionally, a class (the corresponding genus) is provided so that a
cluster quality assessment is possible. The data set can be found in the UCI
Machine Learning Repository5.

3.2 Quality Measures

The quality of the automaton is measured by several indicators. For the
synthetic data sets the true underlying structure is known. Therefore, the
recovery rate (RR) specifies how many states were correctly identified by the

automaton: RR = |Qcorr|
Qtotal

, where the state is correctly identified when its
set of MFPs corresponds to an original state. Additionally, the runtime and
the final number of states of the approach is given. To evaluate the quality
of the induced clustering, the Adjusted Rand Index [46] (ARI) is measured.
It computes the overlap between a predefined clustering and the induced
one. It is an adjusted version of the Rand Index [50] (RI). While the Rand
index shows how many of the instances were grouped together (and apart
respectively), the adjusted Rand index also compares these numbers to the
amount of expected overlaps. The ARI also overcomes the limitation of
the RI that its expected value is not constant. Let C = {C1, . . . , Cz} be
the partition induced by the cluster algorithm and P = {P1, . . . , Pz} the
predefined partition. Then, each pair of instances can be assigned to the
same cluster or to two different clusters in each partition. Let a be the
number of pairs belonging to the same cluster in C and to the same cluster
in P . The ARI rates the agreement between C and P following Equation
3.1,

ARI(C,P) =
a− exp(a)

max(a)− exp(a)
(3.1)

max(a) =
1

2
(|π(C)|+ |π(P)|) exp(a) = 2

|π(C)| · |π(P)|
p(p− 1)

|π(C)| = 1

2

z∑
k=1

|Ck|(|Ck| − 1) |π(P)| = 1

2

z∑
k=1

|Pk|(|Pk| − 1),

where p is the number of instances and |Ck| gives the number of elements
in the cluster Ck. Notice that when ARI(C,P) = 1, we have identical
partitions. To judge the quality of the resulting transitions, the F -Measure
is used.

F =
2 ∗Recall ∗ Precision
Recall + Precision

(3.2)

It is based on the number of correctly inferred transitions of all transitions
to be found (Precision) and the fraction of correctly identified transitions
(Recall). The better the prediction (or selection) of transitions the closer

5http://archive.ics.uci.edu/ml/datasets/Zoo

3.2. QUALITY MEASURES 39

is the F-measure to one. An F-measure of zero indicates that no transition
was identified correctly. Besides, the accuracy of the induced states must be
evaluated. If the underlying structure of the automaton is known, it can be
compared to the induced structure. First, the number of induced states is
compared to the number of states in the original automaton (∆States). Then,
the distance of each induced state to one original state having most similar
profile is calculated. The average Eucledian distance is then expressed by the
term LStates. These two measures have already been proposed in a similar
form in existing work [14], where for the most frequent states of the target a
corresponding state in the induced automaton should be induced. However,
as the aim of this work is also to include infrequent events and thus states,
a representative for each state of the true underlying automaton should be
found. As described in the previous Section 3.1, when an evaluation is
performed, where the underlying automaton is known, it is ensured that
each event and thus state occurs at least once in the synthetic data set.
Additionally, the runtime of the proposed method is monitored to evaluate
its performance. Finally, the resulting models are visually inspected, to
judge how good they can capture the information residing in the data sets
and whether a user understands the resulting model. This is for instances
evaluated by a selection of paths and their corresponding profiles. This can
be compared to existing knowledge in medicine or biology.

40 CHAPTER 3. PRELIMINARIES

Chapter 4

Learning PRTAs from
Multi-Attribute Event Logs
(PRTA)

This chapter describes the fundamentals of PRTA learning. First, PRTAs
are defined and subsequently, two basic problems in the theory of automata
learning are presented along with their solution. That is how words of a
language can be described with such an automaton and second how they can
be tested whether they are accepted by a PRTA. Then, the basic algorithm
for the induction of PRTAs is presented and last, the possibility to make
predictions with such a model will be described. The last section evaluates
the proposed model by several experiments on synthetic and real world data
sets.

4.1 Probabilistic Real-Time Automata

In this section, we present an algorithm for learning probabilistic real-time
automata (PRTAs) which is, like the currently best method for learning au-
tomata [27], based on state merging in a prefix tree. Our type of automaton
models a discrete event system (DES) [98]. Let dataset D of instances I
be given D = {I1, . . . , In}, where each instance Ii represents a sequence of
timed events: Ii = (~e1, t1)(~e2, t2) . . . (~ek, tk). This event sequence, ordered
by the time of occurence, is called a history. An event ei is a binary vector
~ei = (ai1, . . . , aim) that specifies whether attribute aij is observed (aij = 1)
in this event. Because the events ei have a time stamp ti assigned, a timed
language model is created. Each event (~ei, ti) can also be described by a
conjunction of all attributes that are present at time ti

1. Let |~ei| denote the
number of attributes equal to one in this event. Every time-stamp value

1This is similar to an itemset representation.

41

42 CHAPTER 4. PRTA INDUCTION

Figure 4.1: Event annotation of transitions and states. Each state’s profile
consists of the events that are incorporated in the state. Each transition from
state qi to qj is labeled by the difference of the events that were observed
between states qi and qj .

ti ∈ N represents the time that has elapsed since the previous event of the
instance has occurred. A PRTA is a directed graph with states Q and tran-
sitions T . Each state qi holds its set of events Ei and is – for simplicity of
notation – annotated by a so-called profile fi. The profile shows the mean
attribute/feature vector of all events that are mapped to qi:

~fi =

∑
e∈Ei

e

|Ei|
. (4.1)

In other words, a profile is just a summary of these events. Transitions tij ∈
T of the PRTA connect two states qi and qj and are annotated with a delay
guard to reflect the observed time intervals between the connected states.
A delay guard is defined as an interval [t1, t2] with t1, t2 ∈ N, where t1(t2)
defines the minimal (maximal) number of time steps when this transition
can be passed. Additionally, transitions ti,j of the PRTA are labeled with the
set TLi,j that describes the changes of the profiles from state qi to qj . These
changes are expressed in the so-called delta notation: TLi,j = ∆(Ei, Ej),
where

∆(Ei, Ej) =
⋃

~ek∈Ei,~el∈Ej

δ(~ek, ~el) (4.2)

and δ(~ek, ~el) is defined as the difference of the binary vectors ~ek und ~el:
δ(~ek, ~el) = ~ek − ~el. Thus, the label is the set of differences between the ele-
ments of Ei and Ej and can be interpreted as the set of change vectors that
are necessary to reach qj from qi. Figure 4.1 gives an example of how tran-
sitions and states incorporate the events and the corresponding differences.
To complete the transition, it has assigned a probability pi,j of occurrence.
The sum of all probabilities of outgoing transitions of a state is equal to
one. In general, automata have a set of start (S) and final states (F) that
are a subset of all states in the automaton (S ⊂ Q ∧ F ⊂ Q). In a PRTA,
S = Q and F = Q, because each state is allowed to be a start or final state.
A PRTA is then formally defined as follows:

Definition 1 A PRTA Γ is a tuple Γ = (Q,
∑
, T, S, F), where

4.1. PROBABILISTIC REAL-TIME AUTOMATA 43

• Q is a finite set of states

• Σ is a finite set of events to label the transitions

• T is a finite set of transitions

• S = Q is the set of start states

• F = Q is the set of final states

A state qi ∈ Q is a pair 〈Ei, ~fi〉 where Ei is its set of events (Ei = {~ek : ~ek ∈
Ci}) 2 and ~fi is an attribute vector called its profile. Σ are all events ~e that
are observed in the input data. A transition t ∈ T is a tuple 〈q, q′, TL, φ, p〉
where q, q′ ∈ Q are the source and target states, TL = ∆(Ei, Ej) and φ
is a delay guard defined by an interval [t1, t2] with t1, t2 ∈ N. p defines a
probability p ∈ [0, 1] that this transition occurs.

4.1.1 Accepting Words

One task of automata is to decide whether they accept a given word of a
language. This section will describe how this problem can be solved for a
PRTA using the ∆-notation.

Definition of Words

Let Σ = {~e1, . . . , ~ek} be an alphabet over binary vectors. Then L ⊆ (Σ,N)+

is a language over pairs of the alphabet Σ and time points of N, and
(~ei, tj)(~ek, tl) . . . (~em, tn) is a word with time labels from L. In such lan-
guages, a time point ti denotes when its corresponding element ~ei has oc-
curred. Timepoints are given relatively, i.e. each time point reflects the time
that has elapsed since the last event. As an example, consider language

L = {(~e1, 4)(~e4, 2)(~e18, 1), (~e2, 3)(~e1, 6)(~e5, 3), (~e9, 10)}

Further, let the ∆-notation for a word w = (~ei, tj) . . . (~em, tn) be given by

∆(w) = (δ(~e1, ~e2), t2)(δ(~e2, ~e3), t3), . . . , (δ(~em−1, ~em), tm) (4.3)

Again, it shows the difference from one event to the next, and the time
that has elapsed. The problem of deciding whether an automaton Γ accepts
a word w (if w is part of the language L modeled by Γ) is transformed
into a check if there exists a valid sequence G = q0T1T2 . . . Tm−2Tm−1 of
transitions, which comprises the word w in ∆-notation.

(δ(~ei, ~ei+1), ti+1) ∈ (LTi , φi) ↔ δ(~ei, ~ei+1) ∈ LTi ∧ ti+1 ∈ φi
The first transition must leave state q0 that represents w1: w1 ∈ E0. A
sequence is valid if and only if succeeding transitions share states (are adja-
cent):

∀ Ti, Ti+1 ∈ G : Target(Ti) = Source(Ti+1) (4.4)

Source(Ti) (Target(Ti)) names the source (target) state of a transition Ti.

2Ci is a cluster of events and will be described in more detail in Section 4.1.2

44 CHAPTER 4. PRTA INDUCTION

Solving the Word Problem

The language of a PRTA is given by: Lµ = {w ∈ (Σ,N)+ | Pw > µ}, where µ
is a probability threshold. Pw describes the probability for a word w, given
its state sequence (q1, . . . , qm) and p(qi, qj), the probability of a transition
from qi to qj :

Pw =
m−1∏
i=0

p(qi, qi+1) (4.5)

In the case of a PRTA, Q = Qaccept and µ = 0, i.e., there must exist a path
leaving from q0 (with a joint probability greater than zero) that ‘consumes’
word w. State q0 is exactly the state that represents ~e1: ~e1 ∈ E0. For this
problem, it is easy to give an algorithm that terminates after a finite number
of steps. Algorithm 3 shows the initialization of the problem (finding the

Algorithm 3 ParseWord (PRTA Γ, ArrayList w)

q0 = findFirstState(PRTA, w[1])
if q0 is not null then

accept = ParseRemainingWord(q0, w)
else

return 0
end if
return accept

Algorithm 4 ParseRemainingWord (State q, ArrayList w)

t = TransitionWithDeltaAndTimeLabel(q, δ(w[1], w[2]), time(w[2]))
if t = ∅ then

return 0
end if
w = w\w[1]
if |w| == 0 then

return 1
end if
return p(t)× ParseRemainingWord (Target(t), w)

initial state q0) and then calls the search for a transition sequence. Algorithm
4 describes this search3 and the stopping criterion. If there is no edge with
the required label, the automaton does not accept the word. In contrast,
if the ‘last’ edge is found, the automaton accepts the word and returns the
probability of the word.

3|w| gives the length of the word w, w[x] the xth event of word w, and time(w[x]) the
time stamp of w[x].

4.1. PROBABILISTIC REAL-TIME AUTOMATA 45

4.1.2 Induction of a PRTA

In the following, we describe how PRTAs can be learned. The top-level
algorithm is shown in Algorithm 5. As input, the algorithm expects a finite
set of histories. From the histories, the algorithm first constructs a prefix

Algorithm 5 InducePRTA (Histories H, Parameter params)

prefixTree ← createPrefixTree(H)
M ← calculateDistanceMatrix(prefixTree)
res ← cluster(M , params)
while res 6= {} do
C ← getNextCluster(res)
prefixTree = mergeStatesInPrefixTree(C)
res ← deleteFromResult(C)

end while
computeQualityMeasure(prefixTree)
return prefixTree

tree acceptor (PTA). A PTA is a PRTA in the form of a tree in which exactly
one path exists to any state. Each leaf represents one or more instances from
the input set. If input histories have the same prefix, then they share the
path of this prefix, while the suffix has its own path. When a new history
is put in the PTA, there are the following possibilities:

1. No prefix of the history is represented by an existing path in the PTA.

2. There is a path that represents a prefix of the history.

3. There is a path that represents the whole history.

In the first case, a new path starting at the root from the prefix tree is
inserted in the PTA. The probabilities of all transitions on the path are set
to one, and all delay guards are set to the current time stamp. In the second
case (if the PTA shares a prefix with the history), all probabilities on the
equivalent path are updated corresponding to the annotated probabilities.
Consider a transition from state qi to qj on the prefix path of the history
and assume that qi has k other outgoing transitions. For the transition that
is covered by the new history, the according probability p′ is updated to

p′ =
|qj |+1
|qi|+1 , where |q| denotes the frequency of a state. This ratio actually is

the maximum likelihood estimation bij = P (transitionij |~ek, tk) introduced
in section 2.2.1. For all remaining outgoing transitions tl(l = 1, . . . , k) of

state qi, the probability p′l is recomputed by p′l = |ql|
|qi|+1 . If the time constraint

t of the history does not meet the time constraint of the existing transition,
the delay guard φ′k is expanded so that it includes the new time constraint:
φ′k = [a, b], where a = min(φk, φl) and b = max(φk, φl). If the end of
the path that reflects the shared prefix is reached, a new path with the

46 CHAPTER 4. PRTA INDUCTION

remaining events of the history is appended, following the description of
case one. In the third case, all transition probabilities and delay guards are
updated as described for the second case, but no additional path is added
to the PTA (this procedure is also referred to as determinization). After
creating the PTA with all input histories, the goal is to produce a PRTA
that is minimal. Minimal means that a minimum number of states should
be derived, but reflecting a maximum of information. This condition is
heuristically motivated by Occam′s Razor. The parameter that leads to the
minimal model is usually given by the user, in our case, a certain distance
threshold between mergeable states (the distance measure is discussed in
section 4.2.1).
To obtain a compact model, merges of nodes in the prefix tree are performed.
A merge is an operation where two states qi and qj are combined into one
new state qk. Because homogeneous states shall be identified, clustering is
applied. In general, a merge step is the aggregation of all states belonging
to a cluster into one new state with a new profile. A merge combines all
profiles ~fi of the states qi to be merged into one single profile ~fk by their
weighted mean:

~fk =
1∑

qi∈Ck
|Ei|

∑
qi∈Ck

|Ei| × ~fi (4.6)

Which states are to be merged is identified via clustering. Therefore, a clus-
ter assignment for each state in the prefix tree must be found.4 In general,
the input for a cluster algorithm is a distance matrix (or a distance function
and the instances respectively). However, when constructing an automaton,
the input for the clustering is a prefix tree. During the clustering, each state
of the prefix tree is handled as an individual instance. The attributes of the
instance are the values of the state’s histogram (cf. equation 4.1). They
can be used as a basis for the computation of distances between states. Let
us consider the clustering as a function c (cf. equation 4.7) that maps each
state q to a cluster identifier k ∈ N.

c(q) : Q→ {1, . . . , k} (4.7)

Then it is possible to evaluate each possible clustering ci(q) with some qual-
ity function G (consider, e.g. the silhouette coefficient or an optimal in-
ter/intra cluster distance). The result of the clustering algorithm is the
mapping c∗(q) that maximizes the quality function.

c∗(q) = argmaxi G(ci(q)) (4.8)

Note that depending on the application domain, the user can decide which
distance function, clustering algorithm and quality function is best suited.
By using the best function c∗(q), the merge procedure creates for each clus-
ter identifier k one new state in the prefix tree by merging all states q which

4In general, the order of PTA construction and clustering is irrelevant, they are just
required before the state merging is started.

4.1. PROBABILISTIC REAL-TIME AUTOMATA 47

are mapped to cluster k. Formally, the inverse function c−1(q)∗ returns for
each cluster identifier k the set of states that are mapped to it. The automa-
ton is created by merging all states q of clusters k one after the other. To
preserve consistency, update operations on transitions have to be performed.
If two states qi and qj are to be merged and there are no transitions tk where
tk = 〈qk, q′k, TLk

, φk, pk〉 and tl = 〈ql, q′l, TLl
, φl, pl〉 with qk = ql, q

′
k = qi and

q′l = qj (they do not share a predecessor), change tk to 〈ql, q′k, TLl
, φl, pl〉

(re-link the transition) and compute the new profile of qi using equation
4.1. qj can be deleted from the prefix tree. If there exist two transitions tk
and tl with q′k = qi ∧ q′l = qj ∧ qk = ql (they share the same start but not
end state), the transitions have to be merged additionally. This means that
〈qk, q′k, TLk

, φk, pk〉 is to be updated to 〈qk, q′k, TLk
, φ′k, pk + pl〉. φ′k = [a, b],

where a = min(φk, φl) and b = max(φk, φl).
5 The updated probability p′ is

again calculated with the counts of the states p′ =
|q′k|+|q

′
l|

|qk| = pk + pl. Note
that the labels of the transitions are not updated until the end of the merge
procedure. Then, each state holds its set of events and the labels TLk

can be
easily computed by calculating the difference between the two sets Ei and
Ej . Algorithm 6 shows this procedure.

Algorithm 6 CreateTransitionLabels (qi, qj)

for each ek ∈ Ei do
for each el ∈ Ej do

add δ(ek, el) to labels of transition t(qi, qj)
end for

end for

One additional property of PRTAs is that a label δl ∈ TLk
is only present

on exactly one outgoing transition of a state qi. Given that the underlying
distance based clustering optimizes the inter and intra cluster distance, re-
spectively, it can be shown that @ δl : δl ∈ TLk

∧ δl ∈ TLm . The proof
works by contradiction: consider the case where there exist three states
q0 = 〈{x1, x2}, f0〉, q1 = 〈{y1}, f1〉 and q2 = 〈{y2}, f2〉, with the transi-
tions t1 = 〈q0, q1, δl, φ1, p1〉 and t2 = 〈q0, q2, δl, φ2, p2〉, i.e. two transitions,
each holding label δl. Moreover, let δl be defined as δ(x1, y1), y1 /∈ E2 and
y2 /∈ E1. Let us further assume, without loss of generality, that δl consists
of three consecutive blocks, e.g., δl = (+1 + 1 − 1 − 1000). Let k be the
first position of the 0-block at the end. Following the assumption that δl
exists on both transitions, we can specify constraints for x2 and y2. First,
x1j := x2j and y1j := y2j for all j < k, because there is only one possibility
for yj − xj to be equal to -1 (and 1) in a binary setting. Second, y2j := x2j

for j ≥ k, because otherwise δlj is not 0. Additionally, there must exists at

5In other words, we conduct the least general generalization on the time intervals to
be merged.

48 CHAPTER 4. PRTA INDUCTION

least one x1j 6= x2j to ensure that y2 6= y1. Otherwise, y1 and y2 are equal
and thus clustered together, so t2 cannot exist. With these constraints: (1)
x1j = x2j , y1j = y2j (i < k), (2) y2j := x2j (i ≥ k) and (3) y1 6= y2 the
distance d(x1, y1) reveals to be equal to d(x2, y2), because the distance for
parts i ≤ k is 0 (2) and the remaining distances are equal (1). As y1 and
y2 must reside in different clusters, the clustering then returns a solution
where pairs of objects with the same distance are clustered together once,
and not a second time. This is inconsistent and also shows that the inter
and intra cluster distance in this clustering cannot be optimal. This leads
to the conclusion that for all suitable distance based clusterings there is no
δl that occurs on more than one outgoing transition of one state q0. Finally,
this conclusion even allows to check each learned automaton whether the
intra cluster distances are above a threshold to ensure that each δl occurs
only once.
The delay guard generalization is motivated by the use of positive instances
only. Remember that all input instances shall be accepted by the automa-
ton, indicating that they are positive. Furthermore, we assume that when
no continuous timeframe is present in the data, it is not because it does not
exist, but because of lack of data.6 However, the profiles of the states qi and
qj have to be updated with their weighted mean. Transition tl is deleted.
The same operations have to be applied on all outgoing transitions of states
qi and qj . After all merges are conducted, a quality measure of the cluster-
ing is computed. Like in every clustering problem, the proportion of inter-
and intra-cluster distances is of interest. The silhouette coefficient (SC) [47]
evaluates this proportion independent of the number of resulting clusters
and is a measure for the homogeneity of the states of the automaton. The
SC of a state qj representing a cluster C is calculated in the following way:

SCC =
∑
o ∈ C

b(o)− a(o)

max {a(o), b(o)}
(4.9)

a(o) is the distance to the own cluster center, while b(o) denotes the distance
to the second next cluster center. The SC for the automaton is computed
by averaging the SC for each state. It always holds that −1 ≤ SC ≤ 1.
Good results are expected above an SC of 0.5. However, a high SC does
not necessarily reflect the best clustering, since SCC = 1 for all |C| = 1 or
|C| = X where X is the number of all instances. Generally, SCC increases
with smaller clusters, because SCC = 1 for all states C that consist of one
example only.
The clustering method can be different for each use case. We decided to
cluster with a divisive hierarchical cluster algorithm because it enables us to

6This assumption can be made in the medical application domain presented below.
Here data is not recorded in regular time steps but whenever people go to the physician.
So, there are gaps in the data recording process, which are taken into account by the
above assumption.

4.1. PROBABILISTIC REAL-TIME AUTOMATA 49

Figure 4.2: Example creation of a PRTA

define a distance threshold that has to be fulfilled by the clustering. Further-
more, correlations between states can be investigated, and upper and lower
distance thresholds can be set according to domain-specific constraints. In
contrast, it will not be possible to tell a priori how many states are to be ex-
pected. This is why k-means like clustering methods are not appropriate in
our scenario. Diana [47] is a divisive hierarchical clustering algorithm which
computes a final dendrogram that shows how ‘related’ the states are.7 With
this dendrogram and a specific distance constraint, the user can create a
suitable clustering. The dendrogram is cut according to the distance con-
straint, and all objects that are still connected form a cluster. Nevertheless,
one critical point for any clustering is to choose an appropriate distance
measure. As this is domain-dependent, it will be discussed in the section on
experimental results.
In Figure 4.2, a merge step during the construction of a PRTA is illustrated.
We see here that the states are annotated with a profile and that transitions
consist of all observed possibilities to end in a state, a path probability and
a delay guard. The upper part of the figure displays three sample histories
in a prefix tree before the merging starts. For simplicity, the root of the pre-
fix tree is not shown. The number in the states indicates to which cluster
the states belong to. Two of them are in cluster one, three are in cluster
two and only one state in cluster three. On all transitions only one event

7Preliminary experiments with a variety of other clustering algorithms like K-medoids
[47], DBScan [5], EM, and Farthest First did not produce any usable results.

50 CHAPTER 4. PRTA INDUCTION

that leads from the left to the right state and the delay guard is displayed.
A delay guard of [1,1] means that the event followed exactly one time step
after the first event. The annotation of A2, A5, A6 on the transitions means
that these attributes were observed after this state. The lower part of the
figure shows the automaton after the merging step (without the root). The
transitions and delay guards are updated following the rules. The number
behind the colon reflects the probability of this path. In this case, they are
always equal to one because there exists no splitting transition.

4.1.3 Predicting with an Automaton

In this section, we explain how such an automaton can be used to make
predictions. With a PRTA, we cannot only map processes that are reflected
in the data but also make predictions about how the next state of an instance
will be. Of course, it is also possible to predict series of subsequent states.
The task of the prediction for a new instance can be formalized as follows:
Given an instance x denoted by its feature vector ~fx = (f1, f2, . . . , fn), we
want to identify the profile ~f∗ = (f∗1 , f

∗
2 , . . . , f

∗
n) it will develop after l time

steps. A prediction for an instance is done by first identifying the state in
the PRTA that is most similar to the given event distribution of the instance.
This is the start state qstart for the prediction:

qstart = argminqid(~fx, ~fi) (4.10)

Distance function d will be introduced in a subsequent section. Given an
arbitrary state q, let q1, . . . , qk denote the states with incoming transitions
from q, and p1, . . . , pk be the probabilities on those transitions. Moreover,
let [t1,1, t1,2] to [tk,1, tk,2] denote the delay guards for the transitions. Then
the predicted profile given l time steps starting with state q is defined as:

f∗(q, l) =
∑
ti,2>l

pi × fq +

∑
ti,2≤l

pi × f∗(qi, l − ti,2)

The next state is predicted according to the transition probabilities and
their delay guards. The first summand represents the case where state q
is not left, because it consumes all the ‘remaining’ time. Thus, no other
following state is considered for the prediction. The second sum represents
the case where the state has to be left. In the latter case, this means that
the predicted profile of the next state is used. If q does not have any out-
going transition, then f∗(q, d) = fq, i.e. the profile on the state itself. To
obtain a prediction for the test instance, we apply f∗ to qstart. Note that we
make the assumption that the automaton stays maximally long in a state,
i.e. the transition is made as late as possible. Moreover, to leave a state,
the delay guard has to meet the time constraint l: l > [tk,1, tk,2]. Then,

4.2. EXPERIMENTAL RESULTS 51

the remaining time l′ for the next steps is reduced by the maximum of the
delay guard l′ = l − ti,2. These constraints lead to a definite prediction of
the profile: There is only one possible solution for the prediction. Another
assumption would be that a transition is made as early as possible. Again,
one definite prediction is achieved. However, an arbitrary time consumption
of each state could be desired as well. In this case, the prediction would be
dependent on all (valid) possible time consumptions of each state. Accord-
ingly, the prediction is the averaged profile of all resulting predictions. Using
the later approach may result in an exponential number of possible results
and a highly blurred predicted profile. That is why a definite prediction
was chosen in this chapter. However, the choice of a prediction constraint is
likely to be highly domain-dependent. By calculating joint profiles, we can
predict the change of attributes depending only on the instance’s attribute
setting. However, if one is interested in the development of a certain state,
the automaton gives probabilities for future states. This is a main advan-
tage of the automaton, because many comparable algorithms only give one
prediction. Consider a system that has alternatives for each state (e.g., med-
ical therapy options and outcomes or biochemical pathways), meaning that
a certain percentage of instances will take either the one or the other path.
So, a distribution of resulting states is the desired output. The automaton
aims at modeling such alternatives and their corresponding probabilities.

4.2 Experimental Results

In this section, we present the results of two experiments to test the algo-
rithm. First, a proof of concept is conducted and subsequently an applica-
tion to real-world medical data is presented to investigate the descriptive
and predictive power. Afterwards, a quantitative analysis of the algorithm
is presented. Last, a comparison to Multi-Output HMMs is presented. To
adapt the approach to a given application, we now have to be more specific
about the distance measure used for clustering. Therefore, we first elaborate
on such a measure for our medical application.

4.2.1 Distance Measure for Medical Applications

In general, every distance measure can be applied to the learning algorithm
but they should be adjusted to the application domain of interest. In the field
of medicine, where an event reflects morbidities, the presence of a disease
is more important than its absence, because the development of diseases
shall be explored. For this purpose, the design of a distance measure shall
reflect that, when an attribute is present, it influences the distance stronger
than its absence. If it is absent, it means that the person does not suffer
from a certain disease. This is further underlined by the fact that most
diseases are comparatively rare. Most people of a population are healthy

52 CHAPTER 4. PRTA INDUCTION

(have no chronic conditions). This is why the presence of diseases should
receive more weight than the absence of diseases. To design a distance
measure with this property, assume two events ~ei and ~ej . Similarity should
increase when the intersection of attributes that are equal to one in ~ei with
the set of attributes that are equal to one in ~ej increases. If |~ei| grows,
but |~ei ∩ ~ej | stays the same, the similarity should decrease, because the
proportion of the intersection is lower. As |~ei ∩ ~ei| approaches |~ei| or |~ej |,
the similarity should also grow. All these requirements are fulfilled by the
Tanimoto coefficient. Nevertheless, if the proportion of the intersection of
~ei and ~ej is equal to the intersection of two other states ~ek and ~el, but
|~ei| < |~ek| and |~ej | < |~el|, the similarity of ~ek and ~el should be lower because
there are more attributes set than in the other vector. They are just more
morbid than the compared ~ei and ~ej . This property is not met by the
Tanimoto distance and therefore we have to introduce an additional term
that captures the size of |~ei|. The Hamming distance is a measure that
compares unequal attributes and adjusts a lower similarity in this case. A
distance function that meets all the discussed requirements can be expressed
as a combination of the two distances Tanimoto and Hamming. Tanimoto
captures the relative distance (magnitude of intersection) and Hamming
reflects the absolute distance (number of equal attributes). Introducing a
parameter α ∈ [0, 1], the influence of Tanimoto and Hamming on the final
distance can be controlled. The resulting distance function is:

d(x, y) = αdrel(x, y) + (1− α)dabs(x, y). (4.11)

If α is one, we obtain a Tanimoto distance, if it is zero, we obtain the
Hamming distance. We chose α to be equal to 0.75, so we will obtain a high
influence of Tanimoto (equation 4.12) and a rather small one of Hamming
(equation 4.13):

drel(x, y) = 1− n11

nx1 + ny1 − n11
(4.12)

dabs(x, y) =
n01 + n10

n
(4.13)

In equations 4.12 and 4.13, n11 is the number of attributes set in both events,
nx1 (resp. ny1) is the number of events set in event x (resp. y), and n01

(resp. n10) is the number of ones set in x but not in y (resp. set in y but not
in x). The resulting distances lie between zero and one. Another adaptation
to the domain of the algorithm is that events that do not have any attribute
equal to 1 are left out of the history. We assume that an instance that
already had an event with |~e| > 0 will always have at least an event with
|~e| > 0 afterwards. Otherwise, this indicates an error in the data.

4.2.2 Results

This section focuses on the results of the algorithm with Diana clustering on
synthetic and real-world data. The a priori definition of cut-off thresholds

4.2. EXPERIMENTAL RESULTS 53

and an evaluation of the predictive accuracy is presented. At first, a proof
of concept is demonstrated. In this section the accuracy of the model in
terms of the number of states and transitions as well as their annotation
is examined. Experiments on the real-world data sets give results of how
meaningful the automaton is from the application point of view, e.g. if the
structure reflects the known disease progressions and if it can predict future
states correctly.

4.2.3 Proof of Concept

As described in Section 4.1 the induction of a PRTA is based on clustering.
It therefore needs a distance constraint, indicating how similar events must
be to form a cluster. This constraint is the cut-off in the dendrogram that
is returned by Diana clustering. As the correct structure of the automaton
is known in this experimental setting, a lower and upper limit for the cut-
off can be set. A cut-off of 0.3 would lead to a merge of states 5 and 9,
which is not desired. To clarify this upper limit constraint, remember state
5 ([2, 5, 6, 7, 8, 9]) and state 9 ([2, 5, 6, 7]). Their distance is composed of the
Tanimoto part (cf. equ. 4.12) which is equal to 1

3 and the Hamming contri-
bution that is 0.2. Their weighted sum (according equation 4.11) is 0.3. To
follow the requirement that they must not be merged, the cut-off must be
lower than 0.3. Additionally, it should also be greater than 0.21 to merge
state 2 ([1, 3, 4]) with a (possible) state that holds one additional attribute
(e.g., [1, 2, 3, 4]). Thus a good automaton is expected with a cutoff between
0.21 and 0.3. When exploring the resulting number of clusters and the SC
for the clustering in the interval between 0.26 and 0.3, a plateau of 10 states
and an SC of 0.97 arises. This indicates that a stable automaton can be
found in this interval. For higher cut-offs, the number of clusters and the
SC is dropping sharply. Lower cut-offs lead to more clusters that are purer
but do not incorporate exceptions in the states. The resulting automaton
for a cut-off of 0.3 is shown in Figure 4.3. It matches the true automaton
structure perfectly. There is only one exception in the structure. There
exists a transition from state 2 to state 7 that is not present in the original
automaton. This is due to the data. Remember that random errors were
introduced in the data to check whether the automaton is able to find excep-
tions in states. This causes state 2 to be followed by event [3,4,5] instead of
[3,5] in one sequence. So event [3,4,5] matches the profile of state 7 ([3,4,5])
perfectly and was merged with state 7 instead of state 3. Additionally, the
SC shows that the states are homogeneous. The annotation of the states
in the PRTA shows that events ‘with errors’ were actually included in the
state. There are profiles that exhibit low frequencies of ‘wrong attributes’.
However, this finding shows that the algorithm works correctly because it
has to group similar events. This makes the automaton less prone to data
errors and produces stable results. Moreover, the user can identify the main

54 CHAPTER 4. PRTA INDUCTION

Figure 4.3: Results of algorithm on synthetic dataset. The layout is anal-
ogous to Figure 4.2. Each node is labeled with an internal number that is
computed by our implementation.

properties of a state and check how often an attribute occurs. The main
properties of a state are those attributes that occur commonly, while excep-
tions are all attributes that have a low frequency in a profile. Exceptions
might be errors in the data but may also reflect rare cases in a system pro-
gression. Finally, the probabilities on the transitions match those of the
original automaton quite well. We encounter at most a deviation of 0.15 in
the annotation of probabilities, where the largest deviations are apparent
for small transition probabilities. This experiment shows that the algorithm
can rediscover the correct structure of an automaton.
To quantify the stability of the algorithm (not illustrated), we repeated this
experiment 1000 times on different synthetic datasets that were obtained
from the predefined automaton. The correct number of states of the au-
tomaton was induced in 31,8% of the cases, while in 50% of all runs the
automaton’s number of states resided between 10 and 12. Altogether, the
number of states of the final automaton varies between 9 and 14 states. The
Euclidean distance of the induced states to their closest original lies between
0 and 0.25, which indicates that the induced profiles are very similar to the
true ones. The states that were identified worst are states 9 and 7, because
they are very similar to states 5 and 3, respectively. This also led to a bad
identification of the transitions of these states (only in about 50% of the
cases), while the remaining transitions were almost always correctly iden-
tified. These numbers indicate that the algorithm finds automata that are
correct or very close to the original one.

4.2.4 Extraction of an Automaton on Real World Data

4.2. EXPERIMENTAL RESULTS 55

Results on diagnostic data To test our algorithm on real-world data, an
automaton was built on 1000 samples of the real-world diagnostic dataset.
Again, a priori assumptions are needed to define an upper and lower bound
for the clustering cut-off. Here they were based on medical assumptions.
States with |~e| = 1 (only one attribute is equal to one) shall not be merged
with states where |~e| = 2. The motivation for this constraint is that in-
dividuals with one disease shall be separated from those that have already
acquired two or more diseases and are thus multimorbid. This distinction
can show the beginning and the progression of diseases and will help to in-
terpret results. Furthermore, the cut-off should be set greater than zero.
This constraint enables the automaton to merge states that are similar, but
not the same (due to errors in the recording of the data). This constraint
cannot be fixed any further because the profiles of the resulting states are
not known in advance. Thus, meaningful automata are expected with a cut-
off ≤ 0.4 . We computed the automaton for several cut-offs and extracted
its corresponding silhouette coefficient (SC). As expected, the silhouette co-
efficient drops as the cut-off increases. The higher the cut-off, the higher is
the variance in the clusters. This leads to an approximation of inter/intra
cluster distances and thus a reduction of the SC. However, it is interesting
to notice that at a cut-off of 0.38 there is a sharp drop of the SC of about
approximately 18% and a drop of the number of clusters (20%). Therefore,
one can assume that a meaningful cut-off threshold is reached and thus more
states are merged. The same behavior can be observed when we apply the
algorithm to only 100 instances. Therefore the cut-off 0.38 was chosen to
create the PRTA. The resulting automaton contains 518 states and has an
SC of 0.83.
The first quality criterion of the automaton is its potential to reflect typical
medical knowledge with its structure. The resulting automaton contains 19
states that are highly connected to other states (also called hubs, cf. section
4.2.5). They are mostly states with only one or two DGs (e.g., hyperten-
sion and lung disease [e.g., COPD or asthma]). States like this are very
frequent in the histories, so it is evident why those states are connected to
many others. Besides hubs, loops and paths are created. A loop is a path
in the automaton where start and end states are the same. The inspected
loops resemble individuals with multiple diseases (multimorbid), which do
not change their general morbidities (e.g., diabetes, heart failure, hyperten-
sion), but differ in their comorbidities (e.g., urologic disorders). Moreover,
progression of diseases as well as improvements that reflect typical medical
‘careers’ are present in the automaton. We conclude that the automaton
shows meaningful medical patterns.
A second quality parameter is the predictive power of the automaton. To
evaluate the predictive power of the algorithm, the dataset was split into a
training (75%) and a test (25%) set. The split was provided as part of an
industrial case study. For each of the k histories with n events of the test

56 CHAPTER 4. PRTA INDUCTION

Figure 4.4: Loss of predictions depending on cut-off value

sample, n − 1 predictions are executed. First, the history’s start state is
taken to predict its second state. Then the second state is chosen for predic-
tion and is evaluated by the third state. This is repeated until the end of the
history and results in 360 one step predictions. To predict the profile for all
examples starting in state q, the joint predicted profile is calculated. Sub-
sequently, this joint predicted profile is compared to the true joint profile of
these instances by computing the quadratic loss. For the whole automaton,
the average loss is computed by the weighted average of the quadratic loss
of all states. Each loss is weighted by the number of instances that start in
state q. Using other scoring functions for the evaluation of predicted proba-
bilities, like Kullback Leibler or information loss, is not appropriate because
they rely on the log function which is not defined for zero.
We compared the results to the well-established method of logistic regres-
sion, which is considered a standard in this application domain. Here, the
prediction of events is achieved by applying one logistic regression for each
attribute (DG), which results in 28 logistic regression models. The input
for the logistic regression is the known state profile of the preceding state
which is a feature vector. The logistic regression will lead to one prediction
for each attribute of the output vector, which together form the profile of
the prediction. Again, the resulting profile is compared to the true pro-
file for groups of the same input vector. For both methods, histories that
only contain one state were excluded from prediction, because no valida-
tion sample is present. Note that in both methods the Markov assumption
holds, both methods predict the next state depending only on the current
feature distribution. The automaton’s loss lies between 0.89 and 0.97 for
similarity cut-offs up to 0.4 (cf. Figure 4.4). Logistic regression achieves
an average loss of 1.42 between the true and predicted profiles. This in-

4.2. EXPERIMENTAL RESULTS 57

state A46 A56 A58 A19 A80 A91 A83 A84 A86 A92 A131

1259 A46 A56 A19 A80 A91

1256 A46 A56 A58 A19 A80 A91

934 A46 A58 A19 A80 A91 A83 A84 A86 A92 A131

932 A19 A80 A91 A84 A86 A92 A131

835 A19 A80 A91 A83 A84 A86 A92 A131

929 A19 A80 A91 A84 A92 A131

Table 4.1: Example of the development of multimorbids: The features are
as follows: A46 coagulation disorder, A56 psychosis, A58 depression, A19
Diabetes, A80 heart failure, A91 hypertension, A83 heart attack, A84 coro-
nary heart disease, A86 other heart problems, A92 arrhytmia, A131 renal
failure

dicates that the automaton may find better predictions than the logistic
regression approach. Regarding the predictive power with higher cut-offs,
the loss slightly increases but when the cut-off exceeds 0.8, the average loss
quickly decreases again. This is because there are so many different states
in the clusters, that groups resembling the average population are created.
Of course, they will also get predictions for the average population, which is
better in the predictive power, but will not enable predictions on a person
but only on a group level. However, predicting the profiles for single persons
is a main use case, and thus higher losses must be accepted. Compared to
the synthetic automaton, the real-world data automaton is worse in its pre-
dictive power because it has more attributes and a higher variability in the
states and histories. The synthetic automaton has quite the same predictive
ratio at each cut-off because of the small variability in the data. So, smaller
predictive errors can be observed for the synthetic automaton. Initial exper-
iments on the prediction accuracy showed that for smaller testsets (e.g. in
a 10fold cross validation setting) the average prediction accuracy decreases.
This may be caused by the fact that neither in the true test set nor in the
prediction the average population profile is computed but only a fraction
of all possible profiles are considered. Thus the variation is high and the
difference between the true and predicted profile may increase. However, a
detailed exploration of the predictive power remains for future work.

Investigating patterns of a (real-world) diabetes automaton In
this paragraph we illustrate the medical knowledge represented by an au-
tomaton. We focus on a qualitative evaluation, not on a quantitative at this
point. An automaton for patients suffering from diabetes was created on 100
randomly sampled patients. The data was available for 4 years and states
were derived on a half-year basis. One state comprises data from quarter
two and three of a year or quarter four and the subsequent first quarter, for
seasonal reasons. Only frequent (occurring in more than 5% of all patients)

58 CHAPTER 4. PRTA INDUCTION

Figure 4.5: Results of a diabetes population

attributes were considered. The resulting automaton is displayed in Figure
4.5. There are five patients, which cover states that no other patient has.
That is why they form separate small components. They are shown at the
upper right part of the figure. Overall, the automaton contains 115 states.
The SC of this automaton is 0.62. It is interesting that there are many
states that form cycles as well as self-loops. That means that patients al-
ternate between those states. This also reflects the normal coding behavior
of physicians, which often diagnose the same diseases in successive quarters.
However, we can now choose a state in the automaton, analyze its proper-
ties and check which development it can undergo. Because this automaton is
built only for patients with diabetes, most states cover a diabetes attribute.
But this is not true for all states. Some of them are pre-diabetic states or
are produced from patients that were once misclassified as diabetic patients
but did not again receive this diagnosis. Of course, it is most interesting
if typical disease progressions can be found in the automaton. Therefore,
we picked a path of the automaton. It shows possible developments of the
health status when having diabetes. The attributes in the states belonging
to this path are presented in Table 4.1. The headline defines all attributes
that show up in the path. If an attribute is present in the state, it occurs

4.2. EXPERIMENTAL RESULTS 59

Figure 4.6: Automaton for the yeast cell data: In the center the automaton
is displayed; for each state the corresponding profile is given. The height of
the bar shows the probability of the events and the bars correspond to the
genes in Fig. 4.7.

in the cells. Bold attributes indicate that 100% of the instances clustered in
this node hold this attribute. The path highlighted in the upper left part of
Figure 4.5 begins at node 1259 and ends at node 929. It shows how the pa-
tients’ diseases shift from a diabetes and rather mild heart disorder to severe
heart problems along with diabetes. Attribute 46 reflects a coagulation dys-
function which is a risk factor for myocardial infarction and coronary heart
disease (CHD A84). As time progresses, a heart attack may occur (A83),
but in every case it leads to CHD and further heart problems (A86). Ad-
ditionally, renal problems (A131) are present when coagulation dysfunction
persists. However, as more diseases appear, the coagulation dysfunction
is no longer present. This could have two reasons. First, it is not coded
anymore, because it is not severe enough. Second, because it is a strong
risk factor it will be treated and thus does not occur anymore. Regarding
this path and the overall structure, we can conclude that the algorithm finds
meaningful patterns that reflect current medical knowledge. When applying
the algorithm to other data, equivalent medical patterns were found as well.

60 CHAPTER 4. PRTA INDUCTION

Results yeast metabolism data In this paragraph, another application
based on yeast cell data is presented. It will illustrate how automata can be
used to infer knowledge about biological processes. In this experiment, gene
expression data of the budding yeast is modeled by an automaton, which is
displayed in Figure 4.6. It consists of 11 states and 21 transitions with an
SC of 0.87. The cutoff was set to 0.224. It was derived by the fact that
due to the quite low number of attributes, states shall be very pure (and
distinct) and thus merges shall be allowed only when there are at least four
attributes in a state, which is more than half of all attributes. Inspecting
the structure of the automaton, the most apparent fact is that it is a cycle.
Thus, the automaton presents a periodic pattern that the organism passes
through, which can also be discovered in the original data. This is known
to be the cell cycle of the budding yeast. In a well nourished culture, yeast
grows and divides in a constant manner. The process is divided into four
coarse steps: the G1, S, G2 and M phase. During the G1 phase the cell is
growing, and then the DNA is duplicated in the S phase. Subsequently, the
cell prepares for division in the G2 phase and finally divides in the M phase.
In each phase specific genes are expressed that control the processes of the
cell. Investigating the expression profiles of each state in the automaton,
specific expression profiles can be found. Comparing these profiles to known
activation gene patterns (cf. Figure 4.7 upper part), the stages of the cell
cycle can be annotated to the states [74]. The profiles show that each gene
is expressed at a specific stage and that genes also have a specific temporal
ordering. Most importantly, state 1 represents the start of a cell cycle and
state 11 is its end.
But not only the structure of observed biological processes, also temporal
characteristics can be reflected by the automaton. Usually, cells rest some
time after a division, which leads to a lag before the next cell cycle starts.
This prolonged resting phase is captured by the delay guard on the transition
from state 11 to state 1. It does not only allow for immediate transitions but
also a delayed transition after two time steps. Moreover, stages lasting more
than one time step (e.g., G2) can be visited more than once, represented
by a self loop. This means that the cell stays in a state for a while. Addi-
tionally the automaton captures the possibility that expression peaks/drops
may occur faster or slower. These alternatives are illustrated by, e.g. the
transition from state 5 to 8 via state 6 or 7 respectively. While state 7 still
holds gene SWE1, it is not present in state 6, which shows that here the
expression rate has dropped faster than in the former case. Comparing this
to the original data in Figure 4.7, the quick drop of gene SWE1 can be seen
at timeframe 11 to 13, while a slower drop occurs in timeframe 22 to 26.
Such an alternative is also presented in the transition from state 1 to state
3 (traversing state 2 potentially). The direct connection shows that genes
SWE1 and CLN2 are expressed at the same time, while state 2 shows that
gene SWE1 comes first. However, the probabilities on the transitions indi-

4.2. EXPERIMENTAL RESULTS 61

Figure 4.7: Expression profiles of seven selected genes of the yeast data set:
The lower part shows the Z-score normalized raw values of the genes. The
color (and style respectively) of the lines matches the gene’s name in the
upper part (e.g., the red (dashed) line corresponds to gene PCL9, the line
style in the lower part appears again at the border line style of the shapes).
In the upper part, the expression peaks of all genes for one timeframe are
displayed. The timeframe spans from time point 8 to time point 20. Each
gene’s expression peak occurs three times.

cate that the first one is more frequent and thus to be expected. Using such
information, this experiment shows that the automaton can uncover biolog-
ical processes by their recorded characteristics. Even more, the automaton
provides the possibility of combining data from different cell cultures that
are not synchronized. Until now, cells have to be in the same state before the
experiment can take place. Using automata, it would be possible to combine
data from different phases because equal expression profiles will be mapped
to the same state. Nevertheless, it has to be noted that results may of course
differ, depending on the data quality and discretization method. However,
the method shows even more potential if the time resolution and recording
length is further improved. With a higher time resolution, the states can be
further explored (e.g., by substates) and an extended recording could show
rare cases and alternative transitions.

62 CHAPTER 4. PRTA INDUCTION

(a) Structure for different cutoffs (b) Number of states for different input data
sizes

(c) Structure for different input data sizes (d) Resulting loss with different input data
sizes

Figure 4.8: Structural dependencies for different cutoffs and numbers of
input data

4.2.5 Empirical Evaluation

In this section, some empirical properties of the algorithm are explored. The
behavior depending on its main parameters, the number of histories (input
sequences) and cut-off values, are studied in detail. Additionally, a runtime
analysis will be presented. First, the correlation between the number of
states (and other structural features) and increasing cut-offs of the clustering
will be shown. Second, an investigation of those features depending on the
number of input sequences is presented.

Cut-off Dependencies

To evaluate the structural features of the resulting automata, the number of
hubs, singletons, dead ends and start states relating to the cut-off is presented
(cf. Fig. 4.8a). We define a hub as a state that has transitions to at least
10% of the remaining states in the automaton. Singletons are states that
do not have a transition to another node. Start and dead end states only
have outgoing and incoming edges respectively. With an increasing cut-

4.2. EXPERIMENTAL RESULTS 63

off, similar states are clustered and therefore the number of hubs increases
as well. This is because the number of states drops while the number of
transitions stays constant. However, for the highest cut-offs the number
of hubs drops again, because even hubs are combined into fewer states.
Singletons become fewer with increasing cut-off. Again, they are merged
with other states that have a connection to other states and thus they are
no singletons no more. The same is true for dead end states. The number
of states in the final automaton drops linearily (after a cut-off of 0.1) as the
cut-off of the hierarchical clustering increases (not shown). For cutoff values
greater than 0.9, only one state appears in the resulting automaton. The
reason for this is that with a higher cut-off, states that are less similar will
be clustered and thus form fewer states.

Dependency on the Number of Input Sequences

Figures 4.8b to 4.8d show how the number of input sequences affects the re-
sulting automaton. In Figure 4.8b, the number of final states in the resulting
automaton is shown. It is interesting to note that the number of states does
not grow linearly but seems to converge to an upper limit. This may be ex-
plained by rare disease characteristics which are only present after a certain
sample size. For low sample sizes, many frequent patterns are discovered
and so the number of states increases rapidly. But subsequently, mostly
rare cases are incorporated into the model, which leads to a slower growth
rate of the automaton. However, the final number of states should then not
significantly increase further. Regarding the number of hubs, Figure 4.8c
shows that with an increasing number of input sequences the number of
hubs (left axis) that appear in the final automaton is quite stable. Keeping
in mind that a hub occurs when a state is connected to more than 10% of
the remaining states, this indicates that a certain number of disease states
frequently appear in the histories. This can be true for, e.g. a ‘hyperten-
sion’ diagnosis or a metabolic problem, which are both frequent, alone and
in combination with other diseases. The frequency of singletons, dead ends
and start states (right axis) drops with an increasing number of input se-
quences. That indicates that even rare cases are observed more frequently
and therefore occur in more sequences, which leads to a higher transition
rate in these states. Finally, the quadratic loss of the predicted histograms
with a growing number of input data is evaluated. The results of these
experiments are illustrated in Figure 4.8d. The calculated interpolation of
the data points indicates that the overall loss of the predicted histograms
decreases with more input data. This can be explained by the inclusion of
rarer cases which only appear in larger datasets. Thus, events that need
rare information can be predicted more accurately.

64 CHAPTER 4. PRTA INDUCTION

IS 50 100 200 400 600 800 1000

RT (s) 4 3 6 23 60 120 240

Table 4.2: Runtime (RT) depending on number of input sequences (IS)

Runtime Evaluation

We determined the runtime for a varying number of input sequences. All
experiments were conducted on a 1.7GHz machine with 2GB RAM where
the PRTA is implemented in Java with an interface to R and Weka to use
the clustering algorithms. As Table 4.2 shows, PRTAs can be created within
acceptable time frames. The runtime of the algorithm is mainly impacted
by the clustering method. So, the decision for one or the other clustering
method can result in significantly higher or lower running times. As Diana
clustering is used in this approach, the runtime is bounded by O(n2). This
is also reflected in Table 4.2, where the runtime is illustrated.

4.2.6 Comparison with an Multi-Output HMM

Although HMMs do not provide multi-attribute structure learning, a com-
parison of the automaton to a Multi-Output HMM (MOHMM) [10] is pre-
sented here, which is a special case of DBNs [38]. We used the implemen-
tation in MoCaPy8 to create a state-space HMM that allows to be trained
with 28-dimensional input vectors. The result is a 28-dimensional output
vector described by 28 discrete output nodes. The output nodes are only
dependent on the hidden node in one slice. The structure was chosen a
priori, following a suggestion by one of the developers. Because we assume
independence of attributes, no dependencies in the output layer were intro-
duced. Furthermore, because the prediction is only dependent on the given
event, one hidden node per slice is considered appropriate. The MOHMM
was trained on the disease group data with exactly the same training and
test sets as the ones for the automaton. To look for the best possible so-
lution, we changed the internal node size of the hidden node from 2 to 50.
The resulting loss is shown in Table 4.3. We calculated the prediction by a
500-fold sampling of the MOHMM and selected the sequence with the best
log likelihood. Again, the quadratic loss was computed. The best predic-
tion was achieved with a node size of 20 which resulted in a quadratic loss of
3.22. This is due to the fact that the MOHMM has a higher probability of
predicting the presence of attributes, although they are not observed in the
data. Additionally, the internal node size allows for more variables which
at first improves the loss but eventually causes the performance to degrade
slightly. To explore how the loss depends on the number of nodes per slice,
MOHMMs with 2 and 3 nodes per slice were computed and evaluated as

8http://sourceforge.net/projects/mocapy/

4.2. EXPERIMENTAL RESULTS 65

NS 2 3 5 10 20 28 50

Loss 4.4 3.7 3.5 3.5 3.2 3.3 3.3

Table 4.3: Loss for different node sizes (NS) using MOHMMs

described before. No improvement over the given results could be achieved;
the resulting loss ranges between 3.98 and 4.54. This may also be due to
the higher number of parameters which cannot be adjusted accurately.

4.2.7 Comparison with Process Mining Algorithms

The detection of automata is not only closely related to HMMs but also
to the field of process mining. One standard algorithm is alpha++ [102]
that discovers Petri nets from event logs. It is implemented in the ProM
framework [92], which was used for a comparison here. As described in
section 2.2.3, Petri nets are able to reveal process progression, and thus it
is very interesting to compare the capabilities of such a miner within the
given problem setting. However, alpha++ does not include an automatic
event grouping mechanism like the clustering in the presented approach.
The group an event belongs to has therefore be defined by the user. That is
why we follow a slightly different procedure here, to compare automata with
process models and to use the original algorithms of Petri net detection. To
derive the corresponding Petri net of a given log sequence, two consecutive
steps are needed (cf. Figure 4.9). First, a group (cluster) membership for
each event has to be identified in the original data. Then, a new log has to be
derived by the original log and the cluster assignments of each event. This
is done by replacing each event ID with the cluster ID it belongs to. Last,
the altered log is used to create the process model. With this approach the
parallel clustering and modeling step was separated into consecutive steps:
first clustering and then model construction. Following the experiments of
Section 4.2.2, the first step is to check whether a given structure can be
rediscovered with the alpha++ algorithm. Again, the synthetic model (cf.
section 3.1.1) was used to extract a log sequence that can be handled by
the ProM framework. It was ensured that the log contained all events and
connections as well as all needed sequences for loops. For a self-loop on
event qi, alpha++ needs at least one sequence sx = q0 . . . qiqi . . . , qk, while
for a 2-loop structure between states qi and qj there must be a sequence
sy = q0 . . . qiqjqi, . . . qk. Applying the two-step strategy, a first evaluation
shall reveal if the alpha++ algorithm can recover a known structure with a
perfect log sequence, meaning that there are no noisy events in the log. With
this constraint, the clustering step can be left out, because of the absence of
noise, there are no ‘similar’ events. Each event is expected to be recorded
correctly. Therefore, all events ei would be assigned to cluster Ci, which is
trivial to implement. Moreover, if the miner finds the correct model of a

66 CHAPTER 4. PRTA INDUCTION

Figure 4.9: Illustration of the sequential approach. In the upper left corner,
the original input sequences are displayed. Events are first clustered (right)
by treating each event of the sequence as an individual instance. Again,
a mapping of each event to a cluster identifier is achieved. By using this
mapping and the sequence information of the original data, a dataset as
input for a process miner can be derived (lower left part): In each sequence
the event identifier is replaced by the corresponding cluster identifier.

noise-free log, it will also be able to find the correct structure in a noisy log
with a preceding clustering. In this case, the quality of the model is mainly
dependent on the clustering and not of the alpha++ algorithm itself.
The alpha++ algorithm was applied to noise-free synthetic data; its result-
ing Petri Net is displayed in Figure 4.10 B. Inspecting the model, there
are two main errors. Transition9 2 and 5 are not at all connected to other
transitions. There is only one connection to the start place (and end place
respectively). Second, there is a connection from state 7 to the input place
of 6 and 4. This indicates that 4 may come after 7, which is neither indicated
in the model nor in the log. The reason why alpha++ places this connection
is that there is no other possibility to connect 6 and 7 without risking that
markers may become stuck in the net (e.g., by inserting an additional place
between 6 and 7). This requirement is induced by the demand that only

9In the field of Petri nets, states are called transitions. They model discrete events.
Events are connected via places that describe conditions. They enable transitions via
markers that are produced and consumed in the net. Transitions are displayed as rectan-
gles, places as circles.

4.2. EXPERIMENTAL RESULTS 67

Figure 4.10: Resulting models using alpha ++ (B) and alpha # (C) com-
pared to the given synthetic model (A)

valid Petri nets shall be discovered. Moreover, in the alpha++ algorithm
there is no check if invalid connections exist. This leads for example to the
connections between 8, 9 and 10 where all required connections are modeled
but there is now an additional direct connection between 8 and 10, which is
not present in the original model. In fact, this misplacement can be handled
by the alpha # algorithm [103]. It was designed to detect invisible tasks
that can model SIDE, SKIP, REDO and SWITCH constructs. To check the
beneficial impact of the invisible tasks, alpha # was subsequently applied to
the same log. The resulting Petri net is displayed in Figure 4.10 C, where
white rectangles are invisible tasks. It shows major improvements over the
first Petri net: state 2 and 5 are included correctly, the connections between
8, 9 and 10 are correctly discovered and the wrong connection from 7 to 4
is left out. Nevertheless, there are errors as well. First, connections from
and to transition 4 are missing. Only 3 to 4 and 4 to 5 are included in the
model. Both two-loop structures between 1 and 4 as well as 4 and 10 are
completely missing in the Petri net, although these connections were actu-
ally present in the log. Alpha # here fails to assign the correct connections.
This is a serious error, because the model is simply incorrect and moreover,
such two-loop structures are frequently present in the underlying domain
(cf. Figure 4.5 for examples). Second, the Petri net is quite confusing due
to many invisible tasks that were inserted to model all dependencies. This
can be illustrated by looking for the self loop of transition 5. It is indeed

68 CHAPTER 4. PRTA INDUCTION

present in the model but stretches over two invisible tasks and thus may
not be practical for users to infer information about unknown systems. The
same can be detected at the 8 to 5 connection. Such connections can easily
be overlooked or even misinterpreted by the user.
Summarizing these results, both algorithms are not able to correctly reveal a
known structure in the domain of automata detection. The main reason for
this is that they are designed to detect discrete distributed systems. Their
main purpose is to model parallelism in a quite linear ordering, which might
not be given in a more complex system. Additionally, Petri nets have to sat-
isfy constraints regarding liveliness, reachability and boundedness. Induced
Petri nets should avoid dead transitions and thus exclude desired connec-
tions or over-generalize, respectively. To provide the same possibilities as in
the presented automaton, all transitions should be reachable from the start
place. This will allow the modeled system to enter at arbitrary states. To
do so, there must be a connection from the start place to each transition in
the Petri net. This is only possible, if each event is at least once the first
event in a history, which cannot be guaranteed a priori. A further question
is how to model probabilities on connections. Consider the input place of 5
in Figure 4.10 C. There are four possibilities of how the input place can be
reached from other transitions. However, there is only one connection from
the place to transitions 5. Thus, the transition can only be labeled with
one event. If delay guards and probabilities of the incoming connections are
different, it cannot be properly deployed on one connection, because once
the place was visited, one cannot decide which connection was used. In con-
trast, making small modifications, labeling of definite connections would be
possible as well as the annotation of transitions with profiles. Regarding all
discussed issues, we can conclude that Petri nets first do not always discover
all dependencies of events in complex systems (as in the presented medi-
cal domain), and second, are not yet adapted to handle varying transition
probabilities of precedent events, while still satisfying the standard model
constraints. Due to these limitations, Petri nets cannot yet be used for the
given problem statement.

4.3 Conclusion

In this chapter, we proposed a new method for learning process models
in the form of probabilistic real-time automata (PRTA) for multi-attribute
event logs. To learn such models, a prefix tree is created, in which states
are merged when similar enough. State merging is employed because it is
currently the best method for learning finite automata in grammatical in-
ference [27]. In order to identify states to be merged, a divisive hierarchical
clustering method is used. The algorithm was evaluated on synthetic data,
for which the true underlying process was known. Moreover, it was tested

4.3. CONCLUSION 69

on real data from a medical and a biological application domain to examine
the resulting structure. The experiments showed that the automaton, in
particular its hubs, paths and loops, but also its overall structure, can be
related to domain knowledge. To compare the ability of structure identifica-
tion, standard process mining algorithms were applied on the same synthetic
data set. However, they were not able to reveal the correct structure of the
underlying process, because of the additional constraints they have to fulfill.
Finally, to evaluate the predictive power of the PRTA, the distance of the
predicted profiles to the profiles of the true next states was computed. The
predictions of the PRTA were compared to the predictions of a combined lo-
gistic regression approach, which is considered a standard in this application
domain. Additionally, a Multi-Output HMM was trained and tested for its
predictive power. The results suggest that the automaton-based prediction
performs favorably compared to both logistic regression and Multi-Output
HMMs. In the future, we want to further explore the automaton’s proper-
ties (like the stability, representation of domain knowledge and predictive
power) depending on different dataset characteristics. Moreover, we would
like to investigate the use of pattern mining techniques for the creation of
states (cf. Chapter 5 and 9) and the annotation of states by predicates [49].

70 CHAPTER 4. PRTA INDUCTION

Chapter 5

Scalable Induction of
Probabilistic Real Time
Automata (SPRTA)

The induction of real time automata (RTA) was introduced recently [96,
95, 97] and is currently based on a state merging procedure. The PRTA
(cf. Chapter 4 [81]) is derived from this type of automaton, but additionally
includes profiles and transition labels as well as transition probabilities in
the model. Thus, it is able to handle multi-attribute event logs, contrary to
RTAs. This enables modelling organism or population development instead
of only the relation between, e.g. genes or organisms. To induce a PRTA, the
state merging procedure uses the result of a prior clustering step (DIANA
[40]). DIANA is a batch clusterer and performs best compared to a variety
of other cluster algorithms like k-Medoids, DB-Scan and EM that have also
been considered for the induction of automata [81]. DIANA is the only
clustering algorithm that was able to induce reasonable results, i.e., find
more than one cluster, without using a predefined cluster number, but only
relying on a distance constraint. Moreover, so far no clustering with a
symbolic description (e.g., frequent patterns) was applied to the induction of
automata. In contrast, in the field of regular clustering, there are examples
that also group time series data where the final clusters have a symbolic
description [31]. The clustering is achieved in a two-step process: first, a
local pattern mining method constructs patterns on the attributes of the
instances. These patterns are then used to construct predictive clustering
trees (PCTs). Next to that, Itemset Constrained Clustering (IC-Clustering)
[85] finds clusters having an itemsets description. It uses a branch and bound
approach to come up with its results. Co-clustering (bi-clustering, formal
concepts) also finds clusters of objects that share frequent patterns and
was intensively explored for the standard setting of binary data [7], n-ary
relations [15], numeric data sets [70] and useful applications [8]. In graph

71

72 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

mining there also exists an approach (Robin) that finds sets of nodes that
share a similar itemset [35]. This idea is similar to one part in the automata
induction, namely the merge procedure and thus, gives a nice hint of how to
improve this step. All of these methods need several scans over the database,
which makes them impractical for massive data sets. However they inspired
us to propose an efficient one-pass clustering algorithm that finds clusters
of objects sharing a maximal set of attributes for the induction of PRTAs.

5.1 Algorithm

This section first, defines the desired model (Section 5.1.1) and second, gives
the general approach of how to induce it (Section 5.1.2). Then, a detailed
description of the proposed clustering – the essential step of the induction
– and especially the used decision function is given in Section 5.1.3. Last, a
method to postprocess the resulting clustering is presented.

5.1.1 Problem setting

The task is to model a timed language model over a database D. Let
D be a database of histories Hi: D = {H1, . . . ,Hn}. A history Hi is a
sequence of timed events Hi = (~e1, t1) (~e2, t2) . . . (~el, tl). The event sequence
is ordered corresponding to the time label (tj) of the events. Note that the
time labels need not necessarily form equal intervals, thus a varying amount
of time can pass between successive events. An event ei is a binary vector
~ei = (ai1, ai2, . . . , aij) consisting of j attributes, where aij is equal to one if
the attribute was observed in this event.1 We define a probabilistic real-time
automaton (PRTA) as a directed graph, where each state qi is annotated
by a profile fi that represents the events Ei that are mapped to this state.
Thus, the profile shows the mean attribute/feature vector of all events that
are mapped to qi:

~fi =

∑
e∈Ei

e

|Ei|
. (5.1)

Transitions tij ∈ T of the PRTA connect two states qi and qj and reflect
changes of events via annotated labels TLj . These changes are expressed in
the so-called delta notation: TLi,j = ∆(Ei, Ej), where

∆(Ei, Ej) =
⋃

~ek∈Ei,~el∈Ej

δ(~ek, ~el) (5.2)

and δ(~ek, ~el) is defined as the difference of the binary vectors ~ek und ~el:
δ(~ek, ~el) = ~ek − ~el. The transitions also restrict the time during which such
changes may occur via a delay guard φj = [t1, t2] that denotes the minimal

1This is similar to the notation of itemsets and thus an event can also be regarded as
an itemset.

5.1. ALGORITHM 73

and maximal time steps when this transition can be passed. Moreover, a
transition is annotated with a probability pj of occurrence. The sum of the
probabilities of all outgoing transitions of one state is equal to one.

Definition A PRTA Γ is a tuple Γ = (Q,
∑
, T, S, F)

• Q is a finite set of states

• Σ is a finite set of events to label the transitions

• T is a finite set of transitions

• S = Q is the set of start states

• F = Q is the set of final states

A state qi ∈ Q is a pair 〈Ei, ~fi〉 where Ei is its set of events and ~fi is an
attribute vector called its profile. Σ are all events ~e that are observed in D.
A transition t ∈ T is a tuple 〈q, q′, TL, φ, p〉 where q, q′ ∈ Q are the source
and target states, TL is its label and φ is a delay guard defined by an interval
[t1, t2] with t1, t2 ∈ N. p defines the probability p ∈ [0, 1] that this transition
occurs. The goal is to induce a probabilistic real time automaton Γ that
models D and is minimal. Minimal means that the least number of states
with respect to some parameter setting must be found [81, 96].

5.1.2 Basic Algorithm

In this section, the basic algorithm for the creation of a PRTA is explained.
Algorithm 7 shows the subsequent steps of the approach which is further
illustrated in Figure 5.1. The main steps of the induction are (1) the creation
of a prefix tree acceptor, (2) the clustering of the nodes of the PTA and (3)
the merge of all nodes in a cluster. In the following each step is explained
in more detail.

1. The PRTA is induced by first creating a prefix tree acceptor (PTA)
[95, 81]. A PTA is a tree of histories, where shared history prefixes
are merged to one path. Thus, each node si ∈ PTA corresponds to a
set of events Ei. Moreover, a profile is added to each node in the PTA
which is equal to Ei. Note that during the PTA creation the data set
is only accessed once, while the remaining steps are conducted on the
PTA itself. Therefore, the performance is mainly dependent on the
following steps.

2. After the PTA creation, the next step is to cluster the nodes of the
PTA. In this chapter, we propose to use an online clustering method
for this task, for which the motivation is now briefly described and
further explained in detail in Section 5.1.3. To cluster the nodes of
the PTA, each node si of the PTA is treated as an individual instance,

74 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Figure 5.1: General overview of the PTA creation. Top: input data - a
set of histories consisting of multi-attribute events. The black and white
boxes indicate a binary event (α, β or γ). An event is fully described by this
binary feature vector. Bottom: successive steps of the PRTA creation. First
a PTA is created (left) and then its nodes are clustered (middle). Relying
on this clustering, the nodes of the PTA are merged to form the final states
(right). For state 1 the profile and for transition t1,2 the delay guard and
the probability are given, exemplarily.

for which a decision function fNC(si, C) (presented in Section 5.1.3)
identifies whether si belongs to a cluster Cj in the current clustering
C (Alg.7, line 4). If this is the case (k 6= −1), then the instance is
added to cluster Cj (cf. line 6). Otherwise, a new cluster is created
and instance si is put into the new cluster (cf. line 8). The function
fNC(si, C) that decides whether an instance belongs to a cluster is
based on the following basic idea: The instance is to be placed in that
cluster whose maximal frequent patterns (MFPs) best cover the new
instance. Then, all instances in a cluster share a maximal amount of
properties and are thus very similar. As usual, a pattern is frequent if
its frequency exceeds a minimum support threshold of θ and maximal
if it is not a subset of another frequent pattern [40]. For the given
problem setting, any online MFP identification algorithm can be used
that finds a cluster’s new set of MFPs after a new instance is placed in
the cluster. However, in this chapter, a method is applied that finds

5.1. ALGORITHM 75

Algorithm 7 SIPRTA (Histories H, double θ)

1: PTA pta = createPTA(H)
2: C = createEmptyClustering();
3: for all si ∈ pta do
4: k = fNC(si, C)
5: if k 6= −1 then
6: C[k].addInstance(si, θ)
7: else
8: k = C.addNewCluster();
9: C[k].addInstance(si, θ)

10: end if
11: end for
12: validateAssignments(pta, C)
13: for all Cj ∈ C do
14: mergeAllInstancesOfCluster(Cj)
15: end for

the updated MFPs by only regarding the known MFPs and the new
instance [80] and thus perfectly fits the given problem setting.
After each node si ∈ PTA is assigned to a cluster Cj , a postprocessing
step validates these assignments (cf. line 12). This step is discussed in
more detail in section 5.1.4. The general idea is to identify nodes that
were incorrectly assigned to a cluster early in the clustering process
and to reassign them to another (better) cluster.

3. Finally, all nodes belonging to the same cluster Cj ∈ C are merged (cf.
line 14) and annotated with a profile of their corresponding events. A
merge is an operation that combines two states qi and qj into one new

state qk by joining the profiles ~fi and ~fj in a single one ~fk which is
equal to their weighted mean:

~fk =
1∑

qi∈Ck
|Ei|

∑
qi∈Ck

|Ei| × ~fi (5.3)

Depending on the states that are merged, associated transitions tl
and tk potentially also must be merged if they have the same source
and target state. This is done by joining the labels, fusing the delay
guards to a new delay guard φ′k = [a, b], where a = min(φk, φl) and
b = max(φk, φl) and adjusting the transition probabilities. The final
PRTA is the PTA, where all nodes belonging to a cluster have been
merged.

76 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

5.1.3 Finding the Best Suited Cluster

This section describes in detail how the decision function works that iden-
tifies the best cluster for an instance (cf. Algorithm 7, line 4). First, the
necessary notation is introduced, then two desired properties of the result-
ing clustering are described and third, the decision function is explained in
detail. Last, an example illustrates the decision function.

Preliminaries

The identification of the best cluster for an instance is based on the com-
parison of the instance and the set of MFPs of each cluster Ci (denoted
as pCi). To compare an instance with a pattern p (a set of features), the
coverage relation is used. In general, a pattern p covers an instance Ii if
each item (attribute) of the pattern is also present (equal to one) in the
instance. Function cov(Ii, p) (coverage, Equation 5.4) returns the number
of items of the pattern p that also occur (are equal to one) in instance Ii:

cov(Ii, p) = |{aij | aij = 1} ∩ p| (5.4)

Similarly, function covRatio(Ii, p) (coverage ratio) gives the fraction of p’s
features that are covered by instance Ii:

covRatio(Ii, p) = cov(Ii, p)/|p|

. If covRatio(Ii, p) is equal to one, the pattern covers the instance. Along
the same lines, the coverage can be defined for one instance and a set of
patterns. This is necessary, if a cluster Cj has several MFPs PCj . Then, the
maximal coverage of all patterns is calculated similarly to a complete linkage
approach: cov(Ii, PCj) = maxpl∈PCj

cov(Ii, pl). Moreover, the coverage can

be constrained to only consider patterns with a coverage above a cluster
specific threshold ξCj ∈ [0, 1] that defines the minimal coverage of a pattern:

covξ(Ii, PCj) = max
pl∈PCj

{cov(Ii, pl) | cov(Ii, pl) ≥ ξCj ∗ |pl|}

Finally, the function that identifies the best suited cluster k for instance Ii
should lead to two clustering properties:

1. There must be one MFP for each final cluster to charaterize all states:
∀Ci ∈ C : PCi 6= ∅

2. Each instance must belong to the cluster with the best corresponding
coverage ratio to produce clusters with a low intra cluster distance:
Ii ∈ Ck ↔ Ck = argmaxCi∈C covRatio(Ii, PCi)

In the following, we will show how each of these conditions is fulfilled by the
proposed decision function and the additional postprocessing step.

5.1. ALGORITHM 77

A Decision Function for the Online Clustering

In this section the function fNC is presented. It selects the best suited
cluster for an instance during the clustering process. As the clustering takes
place in an incremental manner, the best or final MFPs for each cluster are
not known in advance. Thus, at the beginning of the clustering process some
amount of uncertainty should be allowed. This means that a new instance
does not need to be covered by the pattern(s) of a cluster, but only to a
specific coverage ratio. The more instances a cluster comprises, the higher
should the associated coverage ratio be to ensure that large, meaningful
and well-covering patterns are found. The uncertainty term is expressed
by the minimal coverage ratio ξ and depends on the number of instances
that already belong to a cluster. For small clusters it should be small, while
the minimum coverage ratio must increase for large cluster. Moreover, for
clusters containing only one instance, at least half of its pattern should be
covered. The idea behind this is that the instances in a cluster should share
at least half of the items. Thus, the coverage ratio for clusters with one
instance |Cj | = 1 must be equal to 0.5. Equation 5.5 shows how the term ξ
is currently set:

ξ = f(Cj) = 1− 1

1 + |Cj |4/5
(5.5)

For larger clusters only instances that are mainly covered by the MFP(s)
can be added to the cluster as ξ is approaching one for |Cj | → ∞. Of
course, any other function that satisfies the described properties could be
used. However, we chose this function because the root-term parameters of
Equation 5.5 do not grow as quickly as, e.g. 1 − 1

1+n for larger |Cj |, but
still quickly enough. Moreover, this function ensures condition 1). As there
is an overlap of at least one item between a new instance and the MFP of
a cluster, there is always a MFP that consists of at least one item. The
final decision function for the online clustering algorithm that incorporates
all previous conditions is shown in Equation 5.6:

fNC(Ii, C) = arg max
j

{
max{covξ(Ii, PCj)}

| arg maxpl∈PCj
covξ(Ii, pl)|

}
(5.6)

In other words, if there are several clusters with patterns having the maxi-
mum overlap, we pick the one where also the biggest portion of this pattern
is covered (see also the subsequent example). For instance Ii, the cluster
having the largest and best covering MFP is preferred, to keep the MFPs
as large as possible. This leads to large differences between the final states,
and they are thus easier to interpret.

78 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Figure 5.2: Example instance assignment. Top: Instance Ii and clusters
with the corresponding MFPs. The patterns are drawn with dashed lines.
Bottom: The two main steps of the decision function. Left: The calculation
of the coverage for every pattern and the selection of patterns that satisfy
the minimum coverage constraint ξCj (black font). Right: The coverage
ratio calculation finally gives the best cluster (red font).

Example

This section gives a short example to illustrate the proposed decision func-
tion. Figure 5.2 shows the main steps that are conducted when a new
instance is to be assigned to a cluster. The top of the figure shows the in-
stance (indicated by a partially filled rectangle, each filled square indicates
that attribute Iij = 1) and the four existing clusters along with their cor-
responding MFPs (slashed rectangles). For simplicity, we assume that each
cluster contains the same number of instances and that ξ is equal to 0.8 for
each cluster. Below the horizontal line, the two main steps of the decision
function are illustrated. First, the coverage cov(Ii, p) for each pattern p in
cluster cj is computed. All patterns (and clusters respectively) having a
coverage larger than the corresponding minimum coverage ξ ∗ |p| are further
processed, the remaining are not considered (indicated by light gray). The
pattern(s) with a maximum coverage are selected (black font). Note that
C1 is not further considered although cov(Ii, p) exceeds ξCj ∗ |p| because it is
not maximal. If there is more than one pattern with a maximum coverage,

5.2. EXPERIMENTS 79

the coverage ratio is computed to choose one final cluster. This is the sec-
ond step. The pattern (and the corresponding cluster) that has the highest
coverage ratio (indicated by red) is selected.

5.1.4 Postprocessing

Because the best separation of the instances (and the corresponding MFPs)
is not known in advance, wrong assignments can occur at the beginning
of the clustering. This is due to the small minimum coverage for small
clusters. This leads to clusters that contain outliers, i.e. instances that
would fit better in another cluster after all instances were processed which
again would violate condition (2). To address this problem, a postprocessing
step is conducted (validateAssignments in Algorithm 7 line 12). For each
instance (node si) the assigned cluster is validated whether the coverage of
its MFPs is maximal compared to all other clusters. If this is not the case,
si is assigned to the cluster with the highest coverage. Thus, condition (2)
is also fulfilled by the proposed method.

5.2 Experiments

This section first introduces the data sets that were taken for the evaluation
of the proposed induction method. Then, the performance of the approach
is presented based on a synthetic data set. This includes the rediscovery of
a known automaton, a stability analysis and specifically, a cluster quality
examination. Last, the proposed method is tested on real-world data sets to
evaluate its informational content. Moreover, the results are compared to
an existing method of automata induction (using DIANA), if applicable. All
experiments were conducted on a 2.7GHz machine (Ubuntu) with 2GB main
memory. The quality of the automaton is measured by several indicators.
If the true underlying automaton structure is known, the recovery ratio
(RR) specifies how many states were correctly identified by the automaton:

RR = |Qcorr|
Qtotal

. A state q is correctly identified (q ∈ Qcorr) if its set of
MFPs corresponds to the binary profile of an original state. To judge the
accuracy of the resulting transitions, the F -Measure is used. The quality of
the induced clustering is measured by the Adjusted Rand Index [46] (ARI).
Additionally, the runtime and the final number of states are given.

5.2.1 Performance on the Synthethic Data Set

First, the resulting structure of the automaton on the synthetic data set is
shown. Second, the runtime and structural dependence on the number of
input histories and the minimum support θ are presented. Third, a stability
analysis shows how often a correct automaton can be found and which states
are hardest to detect. A comparison to the DIANA based approach is also

80 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Figure 5.3: Resulting automaton for the online approach with postprocess-
ing (Software screenshot). Again, the circles represent the states, arrows
transitions. The states are aligned corresponding to the circles in Figure 3.1
having the most similar profile.

given. Last, the quality of the induced online clustering is compared to the
DIANA based induction via the ARI difference.

Identification of a Known Automaton

First, a known automaton is to be rediscovered which was already success-
fully accomplished by the induction method based on the DIANA clustering
[81]. The automaton given in Figure 3.1 is used for this analysis. Figure 5.3
shows the induced automaton. For the final automaton we observe the fol-
lowing. The MFPs of the final clusters (and thus states) exactly match the
predefined states and all transitions are inferred correctly (not illustrated).
There is only one exception: transition [1,3,4] to [3,4,5] (state 2 to state 7)
is not present in the original automaton. Because of the introduced errors in
the data, event [3,4,5] was created instead of [3,5] after event [1,3,4]. This of
course matches the later profile so that it is not assigned to state [3,5] but to
[3,4,5]. However, this is a data induces error and not a systematic drawback
of the algorithm. The transitions and the corresponding probabilities were
also identified correctly, with the largest deviation of 0.15. The benefit of
the induction of automata becomes more evident if such a timed data set
shall be modeled with other process models, like e.g., Petri nets. We thus
also compare the proposed approach to the alpha# [103] algorithm that is
an improvement of the alpha++ algorithm. As such process miners do not
include an automatic event grouping mechanism (like the clustering), the
data set was preprocessed for this task and the resulting states were pre-

5.2. EXPERIMENTS 81

Figure 5.4: Resulting Petri nets using alpha++ (B) and alpha# (C) com-
pared to the given synthetic model (A), cf. Figure 3.1.

sented to the algorithm. Thus only the states’ relations and not the states
themselves had to be found. Figure 5.4B and C show the resulting models
for the alpha++ and alpha# algorithm. Note that there, the squares are
called states while the circles are called places. Moreover, Figure 5.4 C also
includes hidden states (white squares) to model e.g., switches. Although
the overall structure is identified correctly, there are states in both models
that do not correctly reflect the data: e.g., alpha++ fails to correctly infer
the relations of state 2 and 5 while alpha# does indeed better, but also
misses transitions (e.g., from state 7 to state 4). This is due to the fact that
Petri nets have to satisfy constraints regarding liveliness, reachability and
boundness. Therefore, for more complex temporal relationships as given in
the current problem setting, such models are not appropriate.

Parameter Dependence

This section analyzes some structural properties of the automaton for the
parameters: minimum support and number of input instances. Figure 5.5
shows two important properties of the resulting automaton when varying
the minimum support θ in the clustering step. First, for a higher θ, the
number of states decreases. This is the result of the decreasing size of the

82 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Figure 5.5: Recovery ratio (RR) for states 1, 3, 7 and 10 of the synthetic
automaton.

Figure 5.6: Runtime and final number of states with increasing data set
sizes for the synthetic data sets.

5.2. EXPERIMENTS 83

MFP found in the clusters. As there are exceptions in the data, not every
concept of the state is present in each event. Thus the frequencies of large
patterns decrease and only small MFPs are found. These small MFPs are
of course better to cover than large ones even if the cluster size is large
and thus less clusters are necessary for a good coverage ratio. The number
of transitions (not shown) decreases simultaneously, because the number of
states is also decreasing. Second, there are states that are identified better
than others. The lines in Figure 5.5 exemplarily give the RR for the states
1,3,7 and 10. State 7 is very difficult to recover due to two reasons: a)
it is very similar to state 3, thus a separation is not always possible and
b) it only has one incoming transition with a small probability. Therefore,
this event is not often present in the data and can also be regarded as an
exception of state 3. Additionally, state 10 is harder to find with increasing
minimum support. Again, this is due to the similarity to state 5. For the
remaining states a quite stable recovery ratio is observed, but the detection
rate decreases with increasing minimum support, due to the smaller MFPs.
Another important parameter is the number of input histories, and how this
number affects the runtime of the approach. This is shown in Figure 5.6
once for the presented online approach as well as for the approach based on
DIANA clustering. We tested our approach on up to 40,000 histories, which
corresponds to a data set having 220,000 events (because each history has
5.5 events on average). Note that the traditional approach (using DIANA
clustering) can handle only 2000 histories of the same length due to its
high complexity. The runtime of the online approach is divided into three
separate runtimes: the time that is needed for the PTA construction, the
time for the clustering and the time of the postprocessing step. For the
DIANA approach only the time for the clustering is given, because the
PTA construction time is the same and moreover, no postprocessing step is
conducted. As expected, the runtime increases for larger data sets for both
approaches. However, the runtime difference for large data sets between the
online approach and DIANA is tremendous. The clustering part of the online
approach now is the fastest step. Considering the number of final states,
both methods result in too many states. This can be explained by exceptions
in the data. As more data is available, rare events, i.e. events that strongly
differ from their original states, are observed more often. Thus, they are
also clustered in a separate group. However, the number of final states for
both methods converges, but altogether the online approach identifies fewer
states than the DIANA based induction. This indicates that it may be able
to better find the main information in a data set.

Stability Analysis

In this section the stability of the online approach is presented. Figure 5.7
shows the result of a bootstrap analysis. Figure 5.7b gives the difference

84 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

●

●

●

●●●●●●

●

●●●●

● ●●

●

●●

●

●

●

●●●

●●

●●●

●

●

●●●●

●

●●●●

●

●●●●●

●●●

●

●

●●●●●●● ●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●●

●●

●

●

●

●●●

●

●●●

●

●●●

●●

●●●●●●

●

●

●

●

●

●●●

●●

●

●●

●●●

●●

●

●

●

● ●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●●

●

●●●

●

●●●●●●●●●●●●

●●

●

●

●●●

●

●●

●

●●●

●

●●

●●

●●●

●

●●

●

●●●●●

●

●●●●

●

●

●

●●

●●●●●●

●●●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●●●

●●●

●

●●

●

●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●●●

● ●●●●●

●

●

●●

●●

●

●

●

●

●●

●●●●●

●

●●

●

● ●

●●

●

●●

●

●

●●

−
8

−
6

−
4

−
2

0
2

4

sampling with replacement
percentage sampled

di
ffe

re
nc

e
in

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(a) Boxplot: Difference of states DIANA

●●●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●

●

●●●●

●●●

●●

●

●●●●●

●

●

●

●●

●

●●

●●

●● ●●●

●

●●●●●

●

●

●

●●

●●●●

●

●

●

●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●● ●●●

●

●

●

●

●

●

●● ●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●●●

●●●●●●●

●●●

●●●

●●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●●

●

●●●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●

●●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●●●●●●●

●

●

●

●

●●

●

●

●

●●●●●● ●●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●●●●

−
8

−
6

−
4

−
2

0
2

4

	sampling with replacement
percentage sampled

di
ffe

re
nc

e
in

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(b) Boxplot: Difference of states online

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

sampling with replacement
percentage sampled

eu
cl

id
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(c) Loss of learned states DIANA

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

	sampling with replacement
percentage sampled

eu
cl

id
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(d) Loss of learned states online

F−Measure Transition Learning

F−Measure

F
re

qu
en

cy

0.6 0.7 0.8 0.9 1.0

0
20

40
60

80
10

0

(e) F-Measure of transitions DIANA

F−Measure

F
re

qu
en

cy

0.6 0.7 0.8 0.9 1.0

0
20

40
60

80
10

0
12

0
14

0

(f) F-Measure of transitions online

Figure 5.7: Bootstrap analysis: Structural dependencies for the DIANA
based clustering compared to the online approach, (DIANA c = 0.3, online
θ = 0.5)

5.2. EXPERIMENTS 85

between the number of learned and expected states (10) on the 10 synthetic
data sets of 100 histories. The higher the sample size, the more likely the
correct number of states is found. Although the average number of states is
10 for a sample size above 75%, there are exceptions that find 11 or 9 states.
A smaller number of states can be due to a missing example in the data, a
higher number of final states may be due to exceptions in the data that are
placed in a separate cluster. Figure 5.7d shows the average distance between
the learned states and the most similar states of the original automaton. For
small sample sizes, this distance can be large, but it rapidly decreases for
larger data sets. Figure 5.7f shows how often the transitions were identified
correctly. For this figure, only automata that induced the correct number
of states were regarded: DIANA found the correct number of states in 318
cases, while the proposed online approach successfully found the 10 states
in 369 cases. Each learned state is mapped onto its most similar original
state. Then, the corresponding transition between the learned states can be
validated whether they are correct or wrong and thus whether true or false
positives/negatives are identified. The figure shows that in most cases the
transitions are identified correctly. Precision and recall (not displayed) are
mostly above 80%. However, recall is the limiting factor as it has a worse
distribution than precision. This indicates that the found transitions are
correct, however some transitions are missing. Comparing these results to
the DIANA based induction (cf. Figure 5.7a - 5.7e bottom) the presented
online approach outperforms it in each category: The number of inferred
states is closer to the original (cf. Figure 5.7b bottom: DIANA overestimates
the number of states) and has a smaller variance. Moreover, the distance of
the states to their closest original is smaller (cf. Figure 5.7d bottom) while
fewer data samples are necessary to reach this quality (for sample sizes of
20% the final state distance is already achieved). Thus, also the transitions
are learned better (cf. Figure 5.7e bottom: the distribution of the F-Measure
of DIANA is shifted to the left).

Quality of the Online Approach

Another parameter to evaluate the quality of the online clustering approach
is the resulting ARI. The zoo data set is used for this task because it
also has a class label assigned to each instance. To validate exclusively
the clustering, only the resulting clustering for the nodes of the PTA is
inspected, and not the automaton itself. Table 5.1 shows the resulting ARI
for a DIANA based induction and the online approach. Note that the results
for the different parameters (c = distance cutoff and θ = minimum support)
cannot be compared directly because they have a different influence on the
clustering. However, the results show that a similar quality can be achieved
by the online approach. Its best ARI of 0.84 reaches the best value of the
DIANA approach. Moreover, the online approach achieves at least an ARI

86 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

D c = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0.17 0.35 0.47 0.49 0.58 0.86 0.80 0.48 0.22 0.0

O θ = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0.40 0.36 0.56 0.50 0.60 0.58 0.77 0.84 0.63 0.7

Table 5.1: ARI for the DIANA clustering (D) and online clustering (O)
depending on their primary parameter for the zoo data set

of 0.36, which is better than the DIANA clustering. Finally, these numbers
show that although the online approach induces fewer clusters than DIANA,
these clusters also make sense and thus the clustering informative.

5.2.2 Performance of the Online Approach on a Real World
Example

In this section, examples of how to use such an automaton on real world
data are given. Moreover, the runtime and structural dependence on the
number of input histories for these data sets are presented.

Yeast Gene Expression

A first experiment addresses the knowledge one can gain from such a type
of automaton. Figure 5.8 presents the automaton (with the corresponding
profile for each state) that was induced for the yeast gene expression data
set. The first important point that can be observed from this figure is that it
shows a cyclic structure, which is known to be the cell cycle. The automaton
is thus capable of correctly identifying the stages of life in a population or of
individuals. Second, each state is annotated with a specific gene expression
profile that shows the current metabolism of the cell. Following the cycle,
one can easily observe which genes are activated after another and which
genes are co-expressed. Third, a resting phase between state 1 and 2 is
identified via the delay guard (φ = [1, 2]) on the corresponding transition.
This shows that the cell can rest between two cell dividing phases. There
is only one state that could be better separated from the other state: the
profile of state 6 is not as specific as the others. This is due to the fact that
there is one instance included that should occur as a separate state before
state 6. This also leads to state 7 being a loop structure. However, this
assignment is due to the initial variability in the clusters.

Hepatitis Data

This section presents the results of the online approach on the Hepatitis data
set. To test the performance, differently sized data sets from the original one
were derived. Compared to the synthetic data set, the Hepatitis data set is

5.2. EXPERIMENTS 87

Figure 5.8: Automaton for the yeast data set. For each resulting state (cir-
cle) the corresponding profile of the state is given. The profile is illustrated
by the boxes next to each state where each gene’s expression values is indi-
cated by a grey-scaled square. The expression profile for gene i is given by
the ith square, beginning from the left. The darker, the higher is the gene’s
expression value.

a difficult one, because it is very dense and has more attributes. Moreover,
the histories are long and the resulting PTA is also very large, because only
few histories have the same prefix. Figure 5.9 gives the runtimes for the
Hepatitis data set for the presented approach. (The results for DIANA are
not displayed as only the smallest data set could be processed.) Even for
the smallest number of histories (50), DIANA needs longer (218 s) than the
online approach (173 s) for the largest data set (1236 histories). This is
caused by the huge number of states on which DIANA operates: 2465 states
in the PTA must be clustered for the smallest data set. Although this is
still feasible, DIANA runs out of memory for the larger Hepatitis data sets.
But also for the online approach, the runtimes are higher. Note that the
1236 histories lead to a PTA with 51,699 states. However, comparing the
number final states (188) of the online approach for 1236 histories to the
DIANA clustering with only 50 histories (338 final states), again a more
compact representation can be inferred. Another interesting aspect of the
online approach is the distribution of the number of MFPs per final cluster
and their lengths. Figure 5.10 shows how these distributions vary for more
and more input histories. Note that for a better visualization not every data
set size result is displayed. Figure 5.10 shows that the majority of clusters is
represented by long MFPs: mostly more than two attributes contribute to

88 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Figure 5.9: Runtime and number of states of the online approach for the
Hepatitis data sets.

a MFP. This distribution is quite constant over the different data set sizes.
Next to that, in most cases, only few representatives are induced by the
clustering (cf. the lines in Figure 5.10). Moreover, the more histories are
used for the creation of the automaton, the fewer MFPs are present in the
clustering. This indicates that instances sharing large patterns are grouped
together, and thus homogeneous states are found.

5.3 Conclusion

We presented a scalable method of learning probabilistic real-time automata
(PRTAs), a new type of model that captures the dynamics of multi-dimensional
event logs. It is based on a state merging process, which is the current state
of the art in automaton induction. As the state merging is guided by a
clustering in our approach, the clustering procedure needs to scale well to
make the overall approach scalable. Therefore, we employ an online clus-
tering procedure as a plug-in that is based on maximum frequent patterns
(MFPs) to decide where to assign states. The approach is compared to in-
duction variant using DIANA clustering. The proposed online method is
faster than the one based on DIANA, computes a more compact automaton
structure and also works for significantly larger data sets. In future work,

5.3. CONCLUSION 89

Figure 5.10: Distribution of the length of MFPS (number of items in a
pattern) and number of MFPs per cluster (seconday axis).

we would like to improve the creation of the PTA, which is currently another
bottleneck in the induction of automata.

90 CHAPTER 5. SCALABLE INDUCTION OF PRTAS

Chapter 6

Augemented Itemset Trees

Data streams are ubiquitous today due to the surge of data produced by
sensor networks, social networks and high throughput methods in biology
and medicine, to name just a few areas of interest. For streams of binary
data, one of the most basic and fundamental data types, online versions
of classical data mining methods for itemset mining have been developed
[17, 91]. These methods allow for mining patterns in sliding windows or for
the full amount of data via, e.g. data buckets. While the sliding windows
approach addresses the task of concept drift and does not provide exact
solutions over the complete data stream so far, the approach based on buck-
ets faces a number of problems. First, it is not feasible if main memory is
limited (below the expected data set size) or I/O operations are expensive.
Second, it is not incremental in the strict sense of the word, with updates
using newly observed instances. Third, the detection of change is not easy,
because either it is delayed due to large buckets, or the mining process is
slowed down due to small buckets for which the pattern extraction step must
be repeated frequently. In this chapter, we consider the incremental case of
maximum frequent pattern (MFP) mining where the set of solutions is avail-
able after each instance without having to store previous instances explicitly.
This can also be seen as a step towards a batch-incremental algorithm for
online MFP mining, in which the solution set is updated after a batch of
instances. Algorithms for online MFP mining can be useful for various pur-
poses, e.g. for building fast incremental clustering algorithms on 0/1 data
with maximal frequent itemsets as cluster representatives, in analogy to a
graph clustering approach that was proposed recently [83]. More specifically,
we introduce the Augmented Itemset Tree (AIST), a new data structure that
helps mining maximum frequent patterns incrementally. It is a mixture of
itemset trees (IST) [39] and FP-Trees [41], combining advantages of both:
a canonical ordering of patterns and a connection between patterns sharing
the same items. The first idea is that search starts with maximal pattern
candidates P , which is opposite to traditional search strategies, beginning

91

92 CHAPTER 6. AUGEMENTED ITEMSET TREES

with 1-itemsets and iteratively increasing the length of the candidate pat-
terns. But if the maximal patterns are expected to be large, i.e. consist of
more than half of all possible items, a top-down search strategy is more ap-
propriate: the number of candidates of the pattern space in each candidate
level is symmetric

(
n
k

)
=
(
n

n−k
)

(e.g. |P1| = |Pn−1|). If maximal patterns
are large, then fewer candidates are evaluated, when starting with maximal
patterns instead of beginning with patterns of size one. A second strategy is
that the set of candidates is composed of all former MFPs and the patterns
of the new instance. These patterns serve as a starting point for the search
of the new maximal frequent patterns, which prevents unnecessary patterns
from evaluation.

6.1 Related Work

Frequent pattern mining is a well-studied problem and many improvements
have been achieved since its introduction [1]. In this part of the thesis, we
consider the case that the set of maximal frequent patterns is to be identified
in an incremental manner. This also includes that instances are presented to
the algorithm one by one, i.e. no instances are kept in memory and only one
data scan is allowed. In the following, we discuss various solutions that were
proposed for an online setting. The earliest approach, Apriori [16], relies
on a candidate generation and test procedure involving several scans over a
database. This is of course not possible for the incremental case, because
the final size of the data set is not known in advance. However, there are
adaptations that are based on Apriori via piece-wise mining of bags of in-
stances or using a graph structure to identify the positive or negative border
in modified databases [90, 91]. Han et al. [41] developed an algorithm that
uses a tree-like structure for the mining process, the so-called frequent pat-
tern tree (FP-tree). It stores the content of the given data set by scanning
the database twice and creating a pattern tree, where the items are included
corresponding to their frequency. This property forces the second database
scan. Next, the FP-tree uses the pattern growth technique to derive fre-
quent patterns. Each path of the tree stores items in decreasing frequency.
A main disadvantage of such a tree structure for the incremental case is that
the frequency of the patterns is not known in advance. This implies that
the tree must always be restructured [55] when the frequency of itemsets
changes. If a reordering occurs frequently, such an algorithm will be less
efficient for incremental data. An approach to use FP-trees in an incremen-
tal setting was proposed [17], but does not reach the performance of other
methods [55]. Another group of algorithms mines frequent patterns using a
data structure similar to itemset trees. An efficient algorithm, CanTree, that
incrementally mines frequent itemsets in a finite database was proposed re-

6.2. PROBLEM STATEMENT 93

cently [55]. It outperforms FP-based algorithms and also explains why a tree
with a given canonical ordering is to be preferred in an incremental setting:
No reorganization of the data structure is necessary. However, CanTree is
not designed to keep track of the current maximal frequent itemsets, which
is the problem addressed here. Instead, the mining step is only conducted
after the database scan is finished. In a possibly infinite online setting, this
may never be the case. Therefore, a modified version of the CanTree has
been developed that is able to keep track of the current maximal frequent
patterns. We apply a technique similar to previous work that describes how
to mine frequent closed patterns for data streams [54] based on the current
closed sets and a new instance. However, this theoretical work neither pro-
poses an efficient data structure nor provides an experimental evaluation.
Approaches to mine frequent patterns incrementally, but in a different set-
ting, were also proposed in recent years (Moment [18], SWIM [63], DISC [20],
FLAME [32], DSM-MFI [58] and CP-tree [53]). Moment, SWIM, DSM-MFI
and DISC find frequent patterns in a sliding window over data streams and
use instances for later evaluations. FLAME and CP-tree identify approxi-
mate patterns. Moment uses the closed itemset tree (CET) data structure
that represents the border of frequent patterns in its nodes. Four node
types differentiate between frequent patterns and promising patterns, i.e.
patterns that are not yet frequent but may become frequent. Although its
node frequency update strategy is very efficient, it needs to keep track of
the current transactions of the sliding window. Otherwise it is not able to
update relevant node counts for patterns that were not yet incorporated
into the CET. The same argument applies to the SWIM algorithm [63] and
the DISC strategy [20]. For unrecorded patterns that may become frequent,
additional passes over the current window are necessary. Similarly, MFP
Mining based on the SG-Tree [59] also stores the itemsets that were ob-
served but uses the same top down strategy to find the MFPs. In contrast
to these approaches, the AIST works for the instance-incremental setting,
where each instance is only observed once, patterns over the complete data
stream are of interest and an immediate response is necessary.

In the remaining of this chapter, we describe the problem setting and
the data structure to support the solution. Subsequently, each of the main
steps of the algorithm is explained in detail.

6.2 Problem statement

Let D be a data stream of instances xi, each instance being a vector of l
binary attributes (xij ∈ {0, 1}). We assume that one instance is observed
after the other, starting with x1, x2, The goal is to find all MFPs for the
data stream part Dm = 〈x1, . . . , xm〉, in other words, for each new instance
xm, the updated set of maximal frequent patterns. In the following, we

94 CHAPTER 6. AUGEMENTED ITEMSET TREES

will use the itemset notation for patterns and instances: Each instance xi is
transformed into an ordered itemset Ii = ι1, . . . , ιz, where item ιj is included
in the itemset if xij = 1. This turns a data set into a multiset of itemsets. As
usual, the support of an itemset Ii, support(Ii), is defined as the percentage
|Y |/|Di| of itemsets Y in Di such that Ii ⊆ Yj . Informally, this is the relative
frequency of instances that include the itemset Ii. All patterns exceeding
the minimum support constraint (minsup constraint) θ ∈ [0, 1] are frequent
(F), infrequent otherwise (F̄). The more general relation p ≺ q implies an
ordering upon patterns p and q [1]. Pattern p is more general than pattern
q iff p occurs whenever q occurs, i.e. all items of p are also included in q
but not vice versa. For the pattern domain of items, p ≺ q is defined by set
inclusion p ⊂ q. Pattern p is called subpattern of q, while q is a superpattern
of p. Let the set of all patterns p that are more general than q be denoted
by G:

G(q) = {p | p ≺ q} (6.1)

Accordingly, S(q) comprises all patterns that are more specific than g. A
pattern p is maximal if there is no other pattern q that is frequent and a
superpattern of p.

p ∈MFP ↔ p ∈ F ∧ ¬∃q : q ∈ F ∧ p ≺ q (6.2)

If a pattern p is a subset of an instance Ii, we say that the patterns covers
the instance, or alternatively, occurs in the instance. The final problem can
hence be expressed as: For a data set of instances I, successively update the
set of MFPs with respect to a given minimum support threshold θ.

6.3 Proof of main concept

The basic assumption of the approach is that the updated MFPs are de-
termined by the MFPs known up to that point and subsets of the new
instance. Similar approches also make use of this property [54, 75] To prove
that this is sufficient, we first summarize how the set of updated frequent
patterns is identified and then, how the corresponding MFPs can be derived.
Therefore, we divide the set of all patterns P into four subsets P1, . . . , P4

that define whether a pattern is frequent (F) and covered (C) by a new
instance (cf. Figure 6.3, right): P1 = {p|p ∈ F ∩ C̄}, P2 = {p|p ∈ F ∩ C},
P3 = {p|p ∈ F̄ ∩ C} and P4 = {p|p ∈ F̄ ∩ C̄}.

Theorem The set of (M)FP (F ′) including a new instance, is a subset
of the patterns of (1) all former (M)FP (F) and (2) all patterns occurring
in the new instance (C).

Proof Start of induction, A(1), regarding the first instance
There are no frequent patterns in an empty set: F = ∅, F̄ = ∅. The set

6.3. PROOF OF MAIN CONCEPT 95

Figure 6.1: Left: Each pattern initially belongs to either the set of frequent
(F) or infrequent (F̄) patterns (white). A new instances induces the set
of contained patterns (C, light grey). The updated set of frequent patterns
(F ′, dark grey) then is a subset of F and C. Right: HeaderTable (left) with
the first links for each item ι. Dashed arrows indicate the nextNodeList.
Right: pattern tree.

of frequent patterns (F’) of a one-instance (I1) set is equal to all patterns
p that occur in the instance I1, C = {p|p ∈ G(pI1)}, because they all have
frequency one. As condition (2) applies here, the claim is true for an initially
empty set. The first MFP is pI1 .
Induction step, A(n+1), regarding the next instance
For each subsequent instance the following is given: There are n patterns in
the observed patterns set (P), without the new instance In+1. A pattern is
called observed, if it was covered by one of the instances I1 . . . In. For each
observed pattern p ∈ P with absolute frequency k, the relative frequency
is known: f(p) = k

|I| . Each pattern belongs either to the set of frequent

(F) or infrequent patterns (F̄), F ∪ F̄ = P . Incorporating instance In+1,
the frequency of a set of patterns (p ∈ C ⊆ F ∪ F̄) is increased (cf. Figure
6.3). All patterns in set P4 cannot be in F ′ because their frequency after
the insertion is lower than before f(p)′ = k

n+1 <
k
n = f(p) < θ, so that they

cannot exceed the minimum support threshold θ. Contrary, all patterns in
set P2 are frequent, because their frequency increases and thus cannot drop
below the minimum support threshold. Set P1 includes patterns that may
become infrequent, because they do not occur in the new instance and thus
their frequency can drop below the minimum support threshold. Set P3, in
contrast, holds all patterns that were not frequent before, but may become
frequent, because their frequency is increased by the new instance. Thus,
F ′ consists of patterns in P1, P2, P3: F ′ ⊆ P1 ∪ P2 ∪ P3. �

Next, all MFPs must be identified. A pattern pr ∈ F ′ is a MFP for all
frequent patterns p ∈ F ′ that are more general than pr: p ∈ G(pr). If an old
MFP pr was in P2, there are two possibilities when a new instance arrives:
either the new instance In+1 covers pr or not. In the second case, pr will
stay MFP (condition (1)) – no pattern in P2 can be larger. In the first case,
again two cases apply: In+1 is equal to the pattern, then pr will also stay
MFP or In+1 is a superpattern of pr. Then, pr is still frequent but may not

96 CHAPTER 6. AUGEMENTED ITEMSET TREES

become maximal, because a superpattern of pr can become frequent. This
may be true for all patterns p∗r ’between’ pr and In+1: In+1 � p∗r ≺ pr. For
this situation condition (2) applies, the set of the new MFP is derived from
the new instance In+1. To avoid that, F ′ is inspected whether a pattern is
not maximal anymore. If pr ∈ P1, it may become infrequent, but some p
may nevertheless be frequent. In this case, following condition (1) a depth
first search (DFS) is conducted that tests each subset of pr until a new MFP
p′r is found: p′r ∈ G(pr). Finally, only patterns p ∈ P3 remain that are now
frequent, where no MFP was identified yet. As only patterns that occurred
in the new instance p ∈ G(pIn+1) may become frequent (condition (2)), the
new MFP is also a subpattern of pIn+1 and is identified via DFS.

6.4 Main idea of the used data structure

The basic assumption of the approach is that the updated MFPs are deter-
mined by the MFPs known up to that point and patterns covered by the
new instance. The proof is ommitted here due to space constraints but is
similarily shown for other approaches [54, 75]. Intuitively, it is clear that no
new MFP can emerge if it was neither in the old set of MFPs nor in the new
instance. The data structure that makes use of this property is called Aug-
mented Itemset Tree (AIST). Figure 6.2 shows the main idea of an AIST:
It consists of a pattern tree (right part) and a headerTable (left part). It
is a mixture of FP-trees [41] and ISTs [39] and designed to fulfill two main
requirements: (1) quick look-ups for patterns and (2) quick subset checks.
Each node represents a pattern with the last item being ιj , where the iden-
tifier j of a node corresponds to item ιj . The first requirement is solved by
using an itemset-tree like structure: nodes follow a canonical ordering in the
tree (top-down arrows), i.e., the parent of a node n has a smaller identifier
than n itself. To cope with the second constraint, each node is linked to
another one with the same identifier but of smaller or equal tree level. This
sets up a list (nextNodeList) that connects all patterns sharing item ιj ,
ordered by decreasing tree level. This idea was already used in FP-trees and
reduces unnecessary subset checks. A headerTable stores the first link for
each item ιj . Although it is a mixture of two known data types, it is still
different from them. FP-trees are not canonically ordered and ISTs do not
include cross-links between patterns sharing items. The combination of the
two concepts enables efficient mining of MFPs in an online setting.

6.5 Definition of the AIST

The purpose of the AIST is to keep track of all relevant patterns, i.e., MFPs
or former MFPs. Since the AIST is not forced to store all possible (subset)
patterns, it saves a lot of space and is also computationally more efficient.

6.5. DEFINITION OF THE AIST 97

Figure 6.2: AIST scheme. Left: HeaderTable with the first links for each
item ι. Dashed arrows indicate the nextNodeList. Right: pattern tree.

As stated above, the required data structure must support the following
operations: (1) store patterns of itemsets and (2) quick subset checks, for
(a) frequency updates and (b) maximality checks. The first requirement
is fulfilled by the canonically ordered nodes, which represent patterns. In
the following, the nodes are therefore called pattern nodes (PNode). A
PNode representing a pattern with prefix p and the last item ι is denoted
by [p]ι, with [] being the empty pattern (root). A PNode possesses several
properties:

• Identifier([p]ι): the last item identifier ι

• Level([p]ι): the number of items in [p]ι

• Freq([p]ι): the number of instances covered by [p]ι

• Maximal([p]ι): true, if [p]ι is frequent and maximal

• NextNode([p]ι): a link to its next node [p′]ι

• Parent([p]ι): a link to [p′]ι′ = p

• Children([p]ι): a set of links to its children

The entry ’nextNode([p]ι)’ points to the next PNode ([p′]ι) that also includes
item ι. Moreover, node [p′]ι is always of lower or equal level than [p]ι:
Level([p]ι) ≥ Level([p′]ι. Following the ’nextNode([p]ι)’ links ensures that
(1) no larger itemsets and (2) no itemset not sharing at least the last item are
examined. This design supports the second requirement. The headerTable

98 CHAPTER 6. AUGEMENTED ITEMSET TREES

stores the initial pointer for an identifier’s nextNodeList, i.e. the PNode
with the highest level containing identifier ι:

H(ι) = argmax[p]ι(level([p]ι))

. The pattern tree of an AIST can be defined recursively: it is empty or
it consists of a PNode r and an empty or nonempty list of pattern trees
t1, . . . , tn (list of children). Each PNode ri is connected to r by an edge
(parent link) and ri’s identifier is strictly greater than r’s. The root of
the AIST is the PNode of level 0, with an empty identifier, thus being the
empty pattern. Each PNode represents the pattern that consists of its own
identifier and all identifiers of its parents.

6.5.1 InsertPattern

Roughly speaking, the algorithm works as follows (cf. Algorithm 8): For
each instance, the maximal occurring pattern (namely the pattern that in-
cludes all items from the instance [Algorithm 8 lines 3 to 5]) is inserted
into the AIST and if it is frequent, added to the set of MFPs (Algorithm
8 line 11). If not, it serves as a candidate for the MFP search (cf. Section
6.5.2) which is conducted subsequently. Last, all former MFPs are inspected
whether they are still frequent and, if not, they again serve as candidates.
This implies that subsequently the set of MFPs is updated. As the insertion
of patterns is a major step in this procedure, it will now be presented in
detail. Each item ι of the occurring pattern P is inserted in the AIST one
by one, canonically ordered. Inserting means that either a new node [p]ι is
created, if there is no path [p] with child ι, or that the frequency of [p]ι is in-
creased by freq. Beginning at the root, it is checked whether there already
exists an item in the children’s list of the current node [p] with identifier
ι. If this is not the case, a new child [p]ι is created with the given item ι
and prefix [p]. Subsequently, the link nextNode([p]ι) is set, i.e., the node
[p]ι is inserted into the nextNodeList of item ι. Then, the frequency of the
pattern is increased by the given frequency count (freq, usually one) plus
the frequency counts of all supersets (retrieved by method setNextNode).
Subsequently, all subset frequencies are also increased by freq, in order to
preserve consistency. This is done in function UpdateMoreGeneralCounts.
If the current pattern pi is a MFP, it is added to the set containing all MFPs.

Example: Let the AIST of Figure 6.2 be given where pattern {1, 3, 4}
is observed. As all items are subsequently inserted into the tree, for item
ι = 1 the root (which is the current node) is examined whether it has a
child ι = 1. This is true, the current node is set to []1 and its frequency is
increased. The next item is ι = 3. Because []1 has no child [1]3, this node
is created and added (with frequency 1) to the children list of []1. Then,

6.5. DEFINITION OF THE AIST 99

Algorithm 8 InsertPattern

Require: pattern (canonically ordered) P , int freq
1: active = AIST.root
2: for each item ι ∈ P do
3: if !(active has child [p]ι) then
4: create [p]ι and add [p]ι to active’s children
5: SetNextNode([p]ι)
6: end if
7: node = child [p]ι of active
8: node.increaseFrequency(freq)
9: UpdateMoreGeneralCounts(node, freq)

10: if isMFP(node) then
11: addToMFPs(node)
12: end if
13: active = node
14: end for

it is inserted in the nextNodeList of ι = 3, which is after [1, 2]3. It has
no successor, because no other pattern containing item 3 is currently stored
in the AIST. During this insertion, the exclusive counts of all supersets are
derived (cf. the paragraph on SetNextNode), which is then added to the
frequency of [1]3. Next, item ι = 4 (level 3) is inserted in the same manner.
Its place in the nextNodeList of ι = 4 is after [1, 2, 3]4 (level 4) and before
[1]4 (level 2). Finally, the AIST has an additional path [1, 3]4.

SetNextNode

The method SetNextNode (Algorithm 9) finds the correct predecessor and
successor for a PNode [p]ι in the nextNodeList. Additionally, the fre-
quencies of all supersets are summed up and finally added to [p]ι’s fre-
quency. Starting at the headerTable’s entry for item ι, all nextNode links
are followed until the first PNode [p′]ι with Level([p′]ι) ≤ Level([p]ι) is
reached. Then the pointer of NextNode([p]ι) is set to [p′]ι and the pointer
ofNextNode([p′]ι’s predecessor) to [p]ι. While following theNextNodeList,
the visited PNodes [p′′]ι are explored whether they are supersets of [p]ι and
provide a frequency strictly greater than the elements [p′]ι that are already
in the set SsP . If this is the case, they are added to the set of [p]ι’s su-
persets (SsP). (cf. Algorithm 10). When the final position [p∗]ι of [p]ι in
the NextNodeList is determined, SsP holds all supersets of [p]ι and their
exclusive frequencies, respectively. This means that the count of all occur-
rences of the pattern has the count of all occurrences of their superpatterns
substracted. Thus the counts of subpatterns are not repeatedly counted.
The sum is then added to the frequency of [p]ι.

100 CHAPTER 6. AUGEMENTED ITEMSET TREES

Algorithm 9 SetNextNode

Require: AIST, PNode [p]ι
SsP = �
if Headertable contains [p]ι.Identifier then

if Headertable([p]ι.Identifier).Level < [p]ι.Identifier.Level) then
[p]ι.nextNode = Headertable([p]ι.Identifier)
Headertable(I.Identifier) = [p]ι

else
active = Headertable([p]ι.Identifier)
if active.isSuperpatternOf([p]ι) then

updateSsP (active)
end if
while active.hasNextNode() do

if active.nextNode.Level > [p]ι.Level then
active = active.nextNode
if active.isSuperpatternOf([p]ι) then

updateSsP (active)
end if

end if
end while
[p]ι.NextNode = active.nextNode
active.NextNode = [p]ι
[p]ι.freq = SsP .freq

end if
else

Headertable(I.ID) := I
end if

Algorithm 10 UpdateSsP

Require: SsP , PNode [p′′]ι
if [p′′]ι.isSuperpatternOf([p]ι) then

for each pattern [p′]ι in SsP do
if [p′]ι.freq < [p′′]ι.freq then
SsP = (SsP ∩ [p′′]ι)

end if
end for

end if

Example: Reconsider the example of Section 6.5.1, where the PNode
p = [1, 3]4 was inserted in the AIST. When inserting item ι = 3 (or 4 respec-
tively) a new PNode is created, for which the position in the NextNodeList

6.5. DEFINITION OF THE AIST 101

Algorithm 11 UpdateMoreGeneralCounts

Require: PNode I, int freq
active = I
while active.hasNextNode do

active = active.getNextNode
if active.sharesPrefix == unknown then

if checkSubsetcontainment(I, active) then
active.increaseFrequency(freq)
if isMFP(active) and ! isMFP(PNode) then

addToMFPs(active)
end if
if isMFP(active) and isMFP(PNodeRep) then

deleteFromMFP(active)
end if

end if
end if

end while

must be found. To do so, the first entry of the headerTable for item 3
is retrieved: [1, 2]3. Because its level (3) is higher than the level of the
node to be inserted (2), the nextNodeList is followed until a node with
equal or lower level. But because there is no next node, NextNode([1, 2]3)
links to [1]3. When inserting item 4, node [1]4 is of lower level. Thus,
NextNode([1, 2, 3]4) is updated to [1, 3]4 and NextNode([1, 3]4) is set to
[1]4. Each visited PNode is examined to determine whether or not it is a
superset of the new PNode. This is the case for PNode p = [1, 2]3 (and
[1, 2, 3]4), so that they are inserted in SsP along with their frequency (let
this be 3). Imagine that SsP would already comprise a PNode p′ which is a
superset of p. Then p is only stored if freq(p′)−freq(p) > 0. The rationale
behind this is that only maximal patterns and their frequencies are stored
and thus lead to a much smaller SsP . To further illustrate this rationale,
consider the insertion of [1]4 of an AIST that already stores the patterns
[1, 2, 3], 4, [1, 3], 4 and [1, 2], 4 all with frequency counts 2. This induces that
the items 1, 2, 3 and 4 always occur together and that it is sufficient to
store the maximal itemset without the loss of counts. Thus only [1, 2, 3], 4
is stored in the SsP . However, after the correct place for p is found, all fre-
quencies of the patterns in SsP are summed up and added to the frequency
of p. The frequency of [1, 3]4 thus equals 4.

UpdateMoreGeneralCounts

The next step in the insertion procedure is to increase the frequency of
[p]ι’s subsets (cf. Algorithm 11). By following the nextNode links, one

102 CHAPTER 6. AUGEMENTED ITEMSET TREES

can decide whether or not another pattern in the AIST is a subset of [p]ι:
[p′]ι ≺ [p]ι. To speed up the subset check, a flag called sharesPrefix is
introduced. The intuition behind this flag is that due to the canonical or-
dering in the tree, subset-checks can be reduced to look-ups, if the parent of
a PNode [p′]ι was already visited during the insertion. It can take the values
{unknown, true, false} and indicates whether the node [p′]ι was already vis-
ited during the insertion process. The subfunction checkSubsetcontainment
returns true, if [p′]ι’s sharesPrefix flag is true and false, respectively.
Then, Node [p]ι is updated with this result. If [p′]ι was not yet visited
(unknown is returned) a complete check for subset containment is per-
formed, by subsequent parent comparisons.

Example: Reconsider the tree in Figure 6.2 where pattern p = {1, 3, 4}
was inserted. Subsequent to its own frequency adaptation, each subpattern’s
frequency must be updated as well. Here, the sharesPrefix-flag of the
PNode []1 on the path to [1, 3]4 has already been set to true. When updating
all subsets of pattern [1, 3]4, the first PNode considered is [1]4, because it is
the first PNode after p in p’s nextNodeList. The parent of [1]4 is PNode []1
and thus sharesPrefix is set to true. This also implies that [1]4 is a subset
of [1, 2, 3]4, because its prefix [1] is a subset and the last item, 4 is equal.
Therefore, its frequency is increased by p’s frequency. The second PNode in
the list is [2]4 with parent []2. Here the flag sharesPrefix is unknown and
a full subset check must be performed. It will return false und thus [2]4’s
frequency is not increased. The last PNode to check is []4 with the root as
father where sharesPrefix is also set to true. It is therefore a subset of
[1, 3]4, and again its frequency is increased.

6.5.2 Deleting MFPs

After a new pattern [p]ι was inserted in the AIST, all MFPs pr have to be
checked if they are still frequent and maximal. If there is a new pattern
p′r, which is more specific, pr is only deleted from the list of MFPs. How-
ever, if the minsup constraint for pr is not fulfilled anymore, it also has to be
deleted from the MFPs list, and moreover, subsets of the pattern can still be
frequent and are therefore examined concerning frequency and maximality.
In general, a pattern of length l has l subsets of length (l − 1) that, in this
case, must be checked one after another. Ideally, the enumeration of subsets
follows a depth first search strategy so that if a frequent subset [p′]ι is found,
all further subsets of [p′]ι can be pruned away from the search space. To en-
sure both, completeness and non-redundancy during the generation process,
the search is implemented in the following way: All subsets of [p]ι are cre-
ated by deleting the IdxToDeleteth largest item of [p]ι. If subset [p′]ι is not
frequent, all subsets of [p′]ι are explored. Each created pattern is inserted

6.6. EXPERIMENTS 103

in the AIST with frequency zero falling back to Algorithm 8. Frequency
zero assures that no subsets are incorrectly incremented. In contrast, the
count of all supersets is added to the pattern. Subsequently, the resulting
node can be treated as any other node. However, this generation may also
include candidates covering items which are not frequent anymore. This
may lead to many unnecessary tests of subsets, because patterns containing
infrequent one-patterns cannot be frequent. Thus, excluding even few items
can drastically reduce the search space. In order to find such items, each
entry in the header table is checked whether it is frequent or not. Then, the
initial candidate for each MFP is the MFP itself, where all infrequent items
are excluded. This guarantees that all maximal frequent subsets are found
without considering useless subsets.

Example: To illustrate this strategy, imagine that a maximal pattern
[1, 3]4 becomes infrequent, but two of its 2-subpatterns are frequent. The
search starts from pattern p = {1, 3, 4} (which is also the candidate, be-
cause all one-items are frequent) and creates the first pattern to be tested:
{1, 3} (the last item is removed). Because it is frequent, its subpatterns
{1} and {3} are pruned away from the search space. The next pattern is
{1, 4} which turns out to be infrequent. Therefore, the next pattern is cre-
ated: {4}, which is again frequent. Pattern {1} is omitted here, because it
would have been enumerated after {1, 3}. Then, the last pattern’s ({3, 4})
frequency is calculated, and this is again frequent. Because {3, 4} is now
also maximal frequent, pattern {4} is deleted from the MFPs list. As no
more patterns are to be evaluated, search stops with a complete set of new
MFPs.

6.6 Experiments

6.6.1 Data sets

The first data set is the diagnostic data introduced in Section 3.1.2. To de-
rive different sized data sets, instances were randomly sampled of the whole
data set with 170,375 instances.
Second, 18 data sets were generated by the IBM data set generator [2] which
is implemented in the (T)ARTool [66]. They cover a different number of pat-
terns (P ∈ {50, 100, 1000}), average transaction lengths (AT ∈ {5, 10, 15})
and average pattern length (AP ∈ {2, 4, 6}).1 For each P , six data sets
(DS) with parameters (P,AT,AP) were generated, assuring that AP is at
most half of AT : DS1 = (50, 5, 2), DS2 = (50, 10, 2), DS3 = (50, 10, 4), . . .,
DS18 = (1000, 15, 6). Each data set holds 10,000 instances and consists of
100 attributes, resulting in differently sparse data sets, with different trans-
action and pattern lengths. These data sets were used to test the behavior

1The parameters were set following the suggestions in the original publication.

104 CHAPTER 6. AUGEMENTED ITEMSET TREES

Figure 6.3: Runtime depending on the number of instances of the disease
data set with a minimum support of 0.1

of the algorithm for different pattern and transaction lengths for different
types of data sets. For scalability experiments, testing the performance
for different sizes of input instances, data sets with up to 2M transactions
(P : 20, AT : 5, AP : 3) were generated, including either 10(I10) or 30(I30)
attributes. Because they were each generated from scratch, they exhibit dif-
ferent distributions of patterns. Note that in all these data sets, an instance
is composed of several patterns and also called a transaction.

6.6.2 Empirical evaluation

To evaluate the proposed method, the runtime and the size of the AIST
depending on the number of input instances, varying minimum support and
different data set characteristics are displayed. Moreover, a comparison to
three established methods for frequent itemset mining is drawn. Each of
the following experiments was conducted on a 2.2 GHz machine with 1GB
RAM. The AIST was implemented in Java.

A first evaluation compares the AIST to other pattern mining algorithms.
The runtimes of AIST-based MFP mining, compared to the standard Apri-
ori, FP-growth, LCM2 (a batch MFP miner) approach and a version of
CanTree are presented. A comparison against e.g., Moment, SWIM and

2Implementations from C. Borgelt and T. Uno, http://fimi.ua.ac.be/src/

6.6. EXPERIMENTS 105

Figure 6.4: Runtime for different data set sizes

DISC is not conducted, because these algorithms were created for a dif-
ferent problem setting where instances may be observed more than once.
Figure 6.3 presents the performance of miners for an increasing data set
size. As we are particularly interested in an online setting, the right hand
side of Figure 6.3 with more than 80,000 instances is most important. Note
that runtimes below 0.1s are not displayed in the figure, because of the
logarithmic scale. The runtimes show that, while A-priori is slower than
the AIST approach, FP-growth and LCM (FP-growth is displayed exem-
plarily) are more effective than the AIST. However, these three methods
only calculate the MFP after all instances were observed. When applying
Apriori, FP-growth and LCM to the incremental case, by repeatedly mining
the current set of MFPs, they are significantly slower than the proposed
approach, despite their very efficient mining and search strategies (LCM
is slightly better than FP-Growth). In fact, every batch algorithm that is
applied repeatedly, will result in excessive runtimes: If the data set size is
10l, the number of batch runs also grows exponentially with l, because it
has to be repeated 10l times. Next to that, the data set must be accessed
for each run, which can result in additional memory problems if the set be-
comes large (l ≥ 6). Thus, a ‘repeated batch’ approach is not appropriate
large data sets. As a last algorithm for the runtime comparison, CanTree
[55] was exemplarily chosen from the group of algorithms that incrementally
mine updated databases. It outperforms several other algorithms and has
a similar underlying data structure as the AIST. Thus, we interpreted the

106 CHAPTER 6. AUGEMENTED ITEMSET TREES

Minimum support 0.1 0.08 0.06 0.04 0.02

Runtime (s) ∼ 1 ∼ 1 2 7 >60

Table 6.1: Runtimes for different values of minimum support for 42,565
instances of the disease data set

problem setting as an initially empty database where as many updates take
place as instances are in the data set (data stream setting). Although it
is better than the FP-growth approach, it is still not faster than the AIST
implementation. This is mainly due to the repeated creation of projected
databases on which it mines the frequent patterns. This is indeed very effi-
cient when only few updates take place, but slows down the mining process
for many database updates.
The second evaluation targets the runtime for different numbers of minimum
support. Table 6.1 gives the runtime, beginning at a minimum support of
0.1 (larger values always resulted in a runtime below one second). The run-
time increases for smaller values for the minimum support, because more
MFPs are found, which must be updated. This can be very expensive when
large patterns become infrequent.
A third experiment examines the behavior of the algorithm for different data
set types. Table 6.2 displays the runtime for the IBM data sets. The best
runtimes are achieved for small transaction sizes consisting of few patterns
(column 1, 7 and 13). In contrast, for great transactions that additionally
consist of many small frequent patterns, the search may be very expensive
(column 4, 10 and 16): If patterns in the data are small but the current
candidate c is large, a worst case search time of O(2|c|) may happen. How-
ever, long transactions with few, but large patterns can be mined more
efficiently, because much less candidates are inspected. Additionally, these
numbers show that denser data sets not necessarily lead to a longer run-
time, but that the transaction and pattern lengths restrict the algorithm
to either transactions of few large patterns or sparse data sets with small
instances. Next, we address the algorithm’s scalability. Figure 6.4 shows
the runtime for several large data sets and different minimum support val-
ues. The two data set I10 Minsup 0.1 and I10 Minsup 0.1 2G are both
data sets with 10 attributes, where the minimum support is set to 0.1. The
difference is that the curve I10 Minsup 0.1 is composed of different data
sets, (for each data set size a new data set was created), while the second
curve displays the subsequent runtimes of the 2 million instances (one data
set only). The first curve shows how the runtime varies between random
data sets, while the second displays the runtime, when more and more in-
stances of the same data set are taken into account. All data sets (except
I10 Minsup 0.1 2G) show that larger data sets may not necessarily result in
longer runtimes. Again, this is due to the distribution of patterns in the data

6.6. EXPERIMENTS 107

P 50 100
Density

AT 5 10 15 5 10 15
AP 2 2 4 2 4 6 2 2 4 2 4 6

Runtime (s) 0 14 9 98 55 48 0 18 11 188 43 50

P 1000
Density

AT 5 10 15
AP 2 2 4 2 4 6

Runtime (s) 1 18 11 43 42 50

Table 6.2: Runtimes for the IBM data sets. Each block represents the data
set created using a fixed P. The first line gives the transaction size of the
data set, while the second line shows the pattern size (cf. Section 6.6.1). The
maximal and minimal values per P-block are indicated in bold. P: Number
of Patters, AT: transaction size, AP: pattern size

set. Large, but infrequent patterns as well as many MFPs may increase the
runtime. Take curves I30 Minsup 0.5 and I10 Minsup 0.5 as an example:
using more attributes does not necessarily induce a higher runtime (com-
pare Number of Instances = 105 vs. Number of Instances = 2 ∗ 105).
The distribution of frequent patterns and the average size is crucial for the
success of the algorithm. However, the runtime of one large data set for
successive operation steps (I10 Minsup 0.1 2G) shows the expected linear
runtime for increasing data set sizes.
The last two evaluations examine first, the size of the AIST and second,
the corresponding memory requirement for different data sizes and densi-
ties. Figure 6.5 gives the successive sizes of the AIST for the IBM data sets
and shows the influence of the specific data set parameters AP , AT and P .
Note that for a better visualization not every curve is displayed. Moreover,
Figure 6.6 shows how the size of the AIST is influenced by different numbers
of attributes in the data. Considering P (number of patterns), the size of
the AIST grows with more patterns (cf. Figure 6.5). The lines of (5 50 2),
(5 100 2) and (5 1000 2) clearly show this relation. This is of course trivial,
the more patterns exists in the data, the more nodes must be present to
capture them. The opposite is the case for the average pattern size (AP).
The larger AP , the smaller the tree becomes: the search for larger patterns
is quicker, because fewer candidate patterns have to be created and tested.
The graphs (15 100 2), (15 100 4) and (15 100 6) show this relationship. The
AIST of (15 100 6) is the smallest. The influence of AT is illustrated by lines
(5 100 2), (10 100 2) and (15 100 2). The greater the average transaction
size, the larger the AIST. The reason for this lies in the creation of data. A
transaction consists of frequent patterns, the larger the predefined size for
a transaction, the more patterns are in it. Then, the AIST has to separate

108 CHAPTER 6. AUGEMENTED ITEMSET TREES

Figure 6.5: Number of nodes of the AIST for different data set parameters.
The numbers in brackets correspond to (AT, P, AP) as described in Section
6.6.1. The first point for each line indicates the value for 100 instances.

Figure 6.6: Number of nodes of the AIST for 2G data sets and different
values of minimum support

6.6. EXPERIMENTS 109

these patterns again, which means that small subsets of large transactions
have to be found. To do so, many nodes have to be created and evaluated.
Now let us consider how the size of an AIST depends on the number of
attributes in the data set. Each data set in Figure 6.5 has 100 attributes,
while the data sets of Figure 6.6 contain 30 and 10 attributes. The ranges of
the AIST sizes vary between 104 − 105 for data sets with 100, 103 − 104 for
30 and below 103 for 10 attributes, respectively. The explanation for this
is that despite only a subset of possible patterns is evaluated, the patterns
created for a data set vary stronger for many attributes, which increases
the AIST. However, data sets with many attributes may nevertheless result
in a smaller tree, if the transaction size or pattern size is appropriate. A
further question is, whether the size of the AIST will saturate after a certain
number of instances and how fast it is growing. At first glance, for small
values of P the AIST is not growing extraordinarily for more than 7,000
patterns (cf. Figure 6.5 (5 50 2)). It seems that all important patterns are
already incorporated into the tree and only few new patterns are added.
Although this limit cannot be observed for the remaining curves, the slope
for each curve is decreasing steadily. This also suggests that even for more
difficult data sets the AIST will reach a steady level. If only few attributes
are present in a data set, saturation is reached very quickly. Figure 6.6 gives
an example for that, the final AIST for data set I10 is created after only a
few hundred examples.
Considering the initial increase of the curve, one exceptional large one shows
graph (15 50 2). It is the steepest ‘start’ for all presented data sets. In fact,
(15 50 4) should be smaller than (15 100 4), because it has less patterns,
but the same average transaction and pattern size. A possible explanation
for this is that the more patterns were created for a data set, the higher the
chance that these patterns overlap (they share items). Then the overlapping
parts seem to be frequent maximal patterns in the beginning, because they
occur frequently. However, later they will turn out to be infrequent or not
maximal. Thus the slope of (15 100 4) and (15 1000 4) (not illustrated) is
significantly greater than for (15 50 4). The size of the their AISTs will ex-
ceed the one of (15 50 4) after approximately 20*103 and 15*103 instances,
respectively. In general, one can expect that the size of an AIST initially
grows quicker for large transaction sizes and small pattern sizes.
Concerning the size of the AIST dependent on the minimum support, Fig-
ure 6.6 shows that the AIST increases for lower minimum supports (cf.
I30 0.5 2G vs. I30 0.1 2G). Candidates are greater if the minimum support
is low, which again increases the search space. Then more candidates must
be incorporated into the AIST. Although these findings give a hint for the
size and the growth rate for an AIST, its final size is of course also dependent
on the actual patterns in the data set, the minimum support and the order
of the instances. A good example for this is given by (10 100 2) and (10 100
4). Their size is nearly equal, instead of (10 100 2) being larger. The reason

110 CHAPTER 6. AUGEMENTED ITEMSET TREES

for this can be that most of the patterns of (10 100 2) are detected early or
that a better ordering of the instances may lead to a more compact AIST.
The last experiment adresses the memory requirement of the AIST (not il-
lustrated). We computed the RAM usage for the AIST-task while processing
the I30 0.5 2G data set. The time between RAM allocation increases dur-
ing the process and the final RAM allocation is 50KB for the whole AIST.
Altogether, these experiments lead to the conclusion that the AIST is an
appropriate data structure for large frequent patterns and can be applied to
different types of data sets. In particular for larger patterns, the savings can
be marked. Consider a standard bottom up search strategy that needs to
explore nearly the whole pattern space to find the MFPs. For data sets of
100 attributes about 1.27*1030 frequent patterns must be evaluated. Com-
paring this number to the sizes of the resulting AISTs, savings of several
orders of magnitude can be observed. However, the fewer attributes, the less
savings are achieved, for 30 attributes 99.99% of the search can be omitted,
while it is only 50% for a data set of 10 attributes. These numbers may be
further reduced, when the patterns are small (|p| < 1

2 ∗ |I|). Then a bottom
up search strategy may be more appropriate.

6.7 Conclusion

We introduced a data structure that allows for instance-incremental mining
for maximal frequent patterns (MFPs). Our setting differs from related set-
tings [18, 63, 20, 32] in that we assume that instances arrive one by one, are
not stored, and MFPs of the complete datastream are desired. Combining
an IST-like data structure with FP-tree elements in a data structure called
AIST (augmented itemset tree), we ensure that the MFPs are up to date
for each new instance at any point in time. Nodes (patterns) containing the
same item are connected and thus the number of necessary subset checks,
while updating the frequencies of observed patterns, is decreased. To eval-
uate the proposed algorithm, we examined the runtime and the size of the
AIST depending on the number of input instances, minimum support values,
data set characteristics and compared it to several alternative approaches.
We conclude that this method can be applied to very large binary data sets
when maximal frequent itemsets can be expected to be large. In future work,
we plan to adapt and use the AIST for batch-incremental mining. Second,
we want to apply the AIST in an MFP-based clustering (which gave us the
main motivation for developing the data structure for this setting in the first
place), where MFPs are the representers of clusters. Here, the successive
and quick update of MFPs should be useful for efficiently extracting the
main properties of clusters for very large binary data sets.

Chapter 7

Using Constraints on the
Attribute Level for PRTA
Induction (CSPRTA)

Like in other machine learning models, background knowledge should be
incorporated into the learning process of PRTAs. This is especially use-
ful in the domain of disease pattern analyses. There, physicians or other
medical experts often want to concentrate on their individual area of exper-
tise. Moreover, they are only interested in a specific question, e.g. how a
certain subgroup of patients behaves or develops. In the domain of PRTA
induction, a physician may want to examine how a specific group of pa-
tients corresponds to a treatment compared to another group. Therefore,
the induction process must be provided with a definition of the group(s) of
interest. Then, the resulting paths (or states of the groups) can be evalu-
ated by the physician and differences in the developement of patients are
displayed. As such definitions in the medical domain often rely on patient
characteristic descriptions that correspond to the level of attributes, the
constraints must also be defined and implemented at the attribute level. In
this chapter, we first introduce constraints on the attribute level and then
present an implementation for the induction of automata by an attribute
constrained clustering (ACC). Last, we show how the constraints alter the
resulting states of the automaton. Related work and further details about
the scalability, extensibility and generality will be given in the next section,
while this chaper focuses mainly on the applicability for the detection of
automata.

7.1 Main Idea of Attribute Level Constraints

As described above, in the medical domain there is a strong need to describe
groups of patients, which is of course done by their characteristics. Further-

111

112 CHAPTER 7. ACC IN PRTA INDUCTION

more, such a description should be used to guide the expected results of a
data evaluation step. Therefore, we propose to use a new type of constraint:
attribute level constraints (cf. Section 8) that specify how instances having a
certain characteristic should be treated in the PRTA induction process. Fre-
quently, groups of patients having the same characteristics should be found,
which induces that all patients with the specific characteristics should be
put in the same cluster. Then, a physician can inspect the distribution of
the remaining attributes in the resulting cluster. Thus, the first proposed
constraint is the must-link (ml) constraint that ‘collects’ all patients that
share a specific set of properties and forms a cluster with them. However,
there is one problem: How to deal with patients that do not have the spec-
ified characteristics but are similar to this set of patients. In the case that
only the patients that show the specific characteristics are to be combined,
then this condition should also be expressed by a constraint. Therefore,
the second proposed constraint is the must-link-exclusive (mlx) constraint
that ensures that only patients that satisfy the given condition are grouped
together. This is of course a very strict condition, but is necessary in the
case when only the described group of patients is of interest. A formal de-
scription of these two constraints is given in Section 8.2.2 and 8.2.3, so that
only an informal description of the problem setting is given here.

7.1.1 Problem Setting

Let D = {(x1
1, . . . , x

1
m), . . . , (xn1 , . . . , x

n
m)} be a data set of binary instances

(xij ∈ {0, 1}), m being the number of attributes and n the number of in-
stances. Additionally, a set of attribute-level constraints Φ is provided. A
constraint ϕ ∈ Φ is in general any formula in propositional logic ranging
over the propositional variables x1 to xm. In the remainder of the chapter,
the values 1 and 0 are interpreted as Boolean truth values, true and false.
Although the propositional formulae could take any form in general (also
normal forms, for instance), we restrict ourselves to conjunctions in the fol-
lowing. In a formula, an unnegated literal xi means that the value of that
variable has to be 1 in an instance, whereas a negated literal ¬xi means
that the variable has to take the value 0. For each attribute-level constraint
ϕ ∈ Φ and instance xi, expression ϕ(xi) returns whether instance xi fulfills
constraint ϕ, i.e. the instance is a model [37] for the constraint

ϕ(xi) = 1 ⇔ xi |= ϕ . (7.1)

If this is the case, we say that instance xi is in the scope of constraint
ϕ. Function z(Φ, C) returns whether a clustering C satisfies the specified
constraint set Φ. The conditions in which the constraints are satisfied are
given in the following sections for each specific constraint type. Moreover,
a clustering can be scored with an objective function f : C → R according
to its quality. The overall goal is to induce an automaton that includes k

7.2. IMPLEMENTATION 113

states (that correspond to clusters) for the data set D such that the k states
satisfy the provided attribute-level constraints, z(Φ, C) = true, and that f
is maximized.

7.2 Implementation

This section shows how the two proposed constraints ml and mlx can be
implemented in the PRTA induction. As there are already several methods
proposed to derive a PRTA from data, this section focuses on the online
induction method with a previous PTA construction (cf. Chapter 5).

7.2.1 Implementation of must-link

This section shows how the ml constraints can be used in the induction of
PRTAs. Therefore, the algorithm SPRTA is adapted to incorporate con-
straints (CSPRTA), which is introduced in the following (cf. Algorithm 12).
To incorporate constraints on the attribute level in the SPRTA algorithm,

Algorithm 12 CSPRTAml (Histories H, double θ)

1: PTA pta = createPTA(H)
2: clustering = initConstrAssignment(Φml)
3: for all xi ∈ pta do
4: if ∃ϕj ∈ Φml | xi � ϕj then
5: assignInstanceToCluster(cj , clustering[ϕj .belongsToCluster()])
6: else
7: k = fNC(xi, C)
8: if k 6= −1 then
9: C[k].addInstance(xi, θ)

10: else
11: k = C.addNewCluster();
12: C[k].addInstance(xi, θ)
13: end if
14: end if
15: end for
16: validateAssignments(pta, C)
17: for all Cj ∈ C do
18: mergeAllInstancesOfCluster(Cj)
19: end for

two adaptations have to be made. First, after the PTA creation, there is
one cluster created to which exactly one constraint belongs: the constraint is
assigned to that cluster. The reason for this is that the mlx constraint does
not allow incorporate instances that do not entail it. To avoid a merge of two
states (where one of them does not entail the constraint) and a subsequent

114 CHAPTER 7. ACC IN PRTA INDUCTION

reallocation of the corresponding instances, the constraints are assigned to
clusters right at the beginning of the induction process. As the implemen-
tation for the ml constraint should the same, this is also implemented in
the same way for these constraints. This also ensures that all instances that
entail the ml constraint are put in one cluster, but still allows that other
instances are grouped with them. Additionally, each cluster is only assigned
one constraint. The reason for this is that we assume that the user ex-
pects one cluster for each given constraint. Therefore, if a cluster had more
than one constraint, then the final number of constrained clusters would be
too small. The second adaptation takes place in the online clustering step.
Then, each instance is evaluated as to whether it entails one of the given
constraints. If this is the case, the instance is immediately placed in the
cluster to which the constraint belongs. If an instance entails more than
one constraint, it is placed in the first constrained cluster that is found. All
instances that are not in the scope of a constraint are placed in the nearest
cluster. However, in the last step, the validation of the assignments, only
instances that do not entail a constraint are considered for reassignement.
This ensures that each instance is placed to its corresponding constraint.

Algorithm 13 CSIPRTAmlx (Histories H, double θ)

1: PTA pta = createPTA(H)
2: clustering = initConstrAssignment(Φml)
3: for all xi ∈ pta do
4: if ∃ϕj ∈ Φmlx | xi � ϕj then
5: assignInstanceToCluster(cj , clustering[ϕj .belongsToCluster()])
6: else
7: k = fNC(xi, C)
8: if k 6= −1 then
9: while violatesConstraint(xi, clustering.getΦmlx()) do

10: clustering = fNC(xi, clustering, p++)
11: end while
12: C[k].addInstance(xi, θ)
13: else
14: k = C.addNewCluster();
15: C[k].addInstance(xi, θ)
16: end if
17: end if
18: end for
19: validateAssignments(pta, C)
20: for all Cj ∈ C do
21: mergeAllInstancesOfCluster(Cj)
22: end for

7.3. EXPERIMENTS 115

7.2.2 Implementation of must-link-exclusive

As another interesting constraint, the mlx should be incorporated into the
CSIPRTA algorithm. The difference between the mlx and the ml constraint
is that only instances that are in the scope of the mlx constraint may be,
and must be, placed in the cluster. On the other hand, a cluster with an
ml constraint can also have instances outside of its scope assigned to it.
Such a constraint creates clusters of instances that share a specific amount
of characteristics, which may be interesting to the user. Algorithm 13 shows
how such constraints can be used in the induction of PRTAs. In addition to
the adaptations of the ml constraint, there is another evaluation to satisfy
all mlx constraints. This is shown in lines 9 to 10. If an instance should
be placed in a mlx-constrained cluster, this instance must not violate the
constraint, i.e. it must be in the scope of the constraint. If this is not
the case, the instance must also not be placed in the corresponding cluster.
Then, the nearest cluster in line is retrieved and again checked whether the
instance violates the constraint. This is repeated until a cluster is found
in which the instance may be placed. If there is no such a cluster, a new
cluster is created and the instance is placed into this one. The remaining
part of the algorithm corresponds to the SIPRTA algorithm.

7.3 Experiments

This section focuses on the results of the experiments when using such at-
tribute level constraints for the induction of automata. Moreover, ways to
define manageable constraints will be discussed. However, there is one algo-
rithmic adaptation to show the power of constraints. Here, we do not make
use of the validateAssignments which is mainly used to correct instances
that we misplaced in ’wrong’ clusters in the beginning of the clustering step,
where the cluster-size condition (cf. Section 5.1.3) was not yet as strict as
in the end. In contrast, when constraints are included, the user restricts the
placement of instances a priori such that a misplacement cannot take place.

7.3.1 Synthetic Constraints

The first experiment addresses the behavior of the synthetic automaton that
includes constraints. To show the applicability of the attribute constraints,
we first created an automaton without constraints. This automaton is illus-
trated in Figure 7.1a. It shows that although the algorithm is capable of
identifying the correct maximum frequent patterns per state, there are many
wrong transitions and some states are blurred due to the inclusion of events
that should in fact be place in other states. One example for this problem
is state 3 which combines some states from state 1. This is ascribed to the
initial phase of the clustering, where event [3, 5, 8, 10] shares two items with

116 CHAPTER 7. ACC IN PRTA INDUCTION

(a) Result for the unconstrained SPRTA
algorithm without the validate assignment
procedure. The representer (MFP) for
each state is shown in brackets.

(b) Result of the CSPRTA algorithm for
the synthetic data set and constraint mle1.

(c) Result of the CSPRTA algorithm for
the synthetic data set and constraints mle1
and mle2.

(d) Result of the CSPRTA algorithm for
the synthetic data set and constraints mle1,
mle2, mle3 and mle4.

Figure 7.1: Resulting automata by a stepwise inclusion of the constraints

events [3,5] that are placed in a small cluster. Then [3, 5, 8, 10] may therefore
be assigned to the same cluster. The same is true for state 7. Neverthe-
less, attribute constraints can be used to address this problem. Therefore,
we first introduce a constraint that collects all events [3, 5, 8, 10] into one
state: mle1 = (3 ∧ 5 ∧ 8 ∧ 10) and thus separates states 3 and 1. Figure
7.1b shows that the inclusion of this single constraint erases four erroneous
transitions and also makes the distinction of profiles better. But still, there
is one problem with state 6 – one transition to state 5 is missing (as well
as the transition to state 7). Moreover, the distinction between state 9 and
state 10 is difficult when considering the profiles, which is due to the fact
that there are some events clustered to state 9 that should have been with
state 5. To fix these two problems we introduce three more constraints:

• mle2 = (1 ∧ 3 ∧ 9 ∧ 10)

• mle3 = (2 ∧ 5 ∧ 6 ∧ 7 ∧ 8 ∧ 9)

7.3. EXPERIMENTS 117

• mle4 = (2 ∧ 5 ∧ 6 ∧ 7).

They are included in the CSPRTA algorithm in two steps. Figure 7.1c shows
that this was quite a good choice, because the missing transitions from state
6 appear again as well as their correct direction. However, using the mlx
constraint also comes with a drawback here: an additional state appeared
that comprises events 〈1, 2,∗ 〉 and 〈1,∗ , 9, 10〉 which are deviations of states
10 and 6. [1,9,10] cannot be included in state 6 because of the mlx constraint
and probably by accident [1,2] is also included in this state. However, the
frequency counts of this node as well as the transition probabilities would
suggest to the user that this node is an exception. Now mlx3 and mlx4

should be included in the model, because state 9 holds some events of state
10. Note that the single inclusion of mlx4 would not result in a correct
model, because then, states 9 and 5 would be combined into a single one as
the profile of state 9 is a subset of state 5. Therefore, a constraint that also
combines the events of state 5 is needed. Figure 7.1d shows the result of
this operation. The structure of the automaton is nearly correct, but still
there are three remaining transitions that are wrong. One experiment to test
whether it is possible to leave out, e.g. mlx2 showed that this is not possible
because then states 8 and 6 would be placed in one cluster. Summarizing
these experiments, one can see that constraints may improve the final model.
Interestingly, they mainly do not influence the resulting profiles or states’
representers but rather the transitions, by avoiding erroneous assignments
of events during the beginning phase of the SPRTA clustering step. Second,
literals that can express that an attribute is not present should be used to
constrain ’small’ states. This would be very helpful to identify states having
only one or two attributes in their profile, like e.g., state 4. If constraints
would be used that only include few positive literals (’small’ constraints)
then too many events would be clustered together and the final result would
be misleading. Therefore, the creation of constraints must be done very
carefully. Then, for such small automata it is not useful to incorporate must
link constraints, although they are capable of summarizing all necessary
instances: In an early timepoint of the clustering process, there may be
other nodes that should not be put in that cluster, but are, because they
are still just similar enough. Finally, there are still some transitions that
are not yet correct. This shows that constraints may guide the induction
process, but are not capable to guarantee correct results.

7.3.2 Yeast Constraints

This section shows how the yeast automaton can be constrained. First,
Figure 7.2 shows the resulting automaton, when SPRTA is run without the
validateAssignments procedure. Although the cyclic structure is of course
visible, first note that two states are highly similar (state 3 and state 5).
Secondly, there is an additional transition from state 5 to state 3 (dashed

118 CHAPTER 7. ACC IN PRTA INDUCTION

Figure 7.2: Resulting automaton when no constraints are used. The dashed
transition destroys the unique ’direction’ of the process.

transition). The main problem that arises is that the overall ’flow direction’
of the automaton is destroyed here. While cycles of degree one (a node is
connected to itsself) show that a cell can stay in a certain stage for a while,
this transition means that the cell can ’return’ to a stage, which is not true.
Besides, the short cut from state 2 to state 6 also makes no sense because
it skips the evident coexpression of gene 2 and gene 7. This is due to the
fact that the algorithm is not able to distinguish the events that share a
subset of genes 2, 3, 5 and 7. Essentially, states 3 and 5 share the same
itemsets, so that such wrong transitions occur. However, the situtation
is more complicated, as genes 3 and 5 are coexpressed in timepoints 23
and 24 (cf. Figure 3.2), although the remaining timepoints indicate that
gene 5 should follow gene 3 and that they are rarely coexpressed. The
same problems can be found for states 8 and 9. Therefore, we propose to
constrain the automaton using two constraints: The first one should make
the distinction between states 3 to 6 easier, while the second one should
introduce knowledge about the gene expression sequence of genes 1, 4 and
6:

• mle1 = (1 ∧ 4 ∧ 6)

• mle2 = (2 ∧ 3 ∧ 7)

Running CSPRTA with these two constraints results in an automaton that
also has eight states, but is more reasonable in the way the transitions are
located. First, there are no more backward transitions and second, the
states’ profiles are much easier to distinguish. State 5 now shows that genes

7.3. EXPERIMENTS 119

genes
1 2 3 4 5 6 7

Mfp 1 •
Mfp 2 •
Mfp 3u • • • •
Mfp 3c • • •
Mfp 4 • •
Mfp 5 • • •
Mfp 6 • • •
Mfp 7 • • • •
Mfp 8 • •

Table 7.1: Maximal frequent patterns for the yeast data set; with and with-
out constraints. Note that Mfp4 was identified for the constrained automa-
ton (c), while Mfp3 was induced in the unconstrained (u) one.

Figure 7.3: Result of the constrained yeast automaton

120 CHAPTER 7. ACC IN PRTA INDUCTION

Element Name Interpretation

WBC ratio of white blood cells
HGB Haemoglobine
HCT ratio of solid blood

components
RBC ratio of red blood cells
PLT ratio of blood plates
CRP C-reactive protein inflammation indicator, risk

factor for heart attacks (HA)
LDH Lactat-Dehydrogenase organ destruction indicator
CRE Creatinine bladder problems indicator
GOT Aspartat-Aminotransferase liver problems, acute oxygen

undersupply, heart attack
GPT Alanin-Aminotransferase liver problems
UN blood urea nitrogen protein degradation, (HA) ind.

Table 7.2: Elements of the blood count and their interpretation

2,5 and 7 often occur together after genes 2,3 and 7 occured together. State
4 indicates that gene 3 is not necessarily replaced immediately by gene 5
but that there may also be a timespan, where neither gene 3 nor gene 5
is active. Then, states 7 and 8 also show that genes 1,4 and 6 frequently
occur together before gene 6 is switched off. Table 7.1 displays the maximal
frequent patterns of both automata. It is very interesting that the SPRTA
approach and the CSPRTA approach identify nearly the same representers
per cluster, but still CSPRTA manages to identify the transitions better.

7.3.3 Hepatitis Constraints

The Hepatitis data set is a rather hard one for the given algorithm of au-
tomata induction. This is due to the fact that it is dense, i.e. each instance
consists of many attributes. When running the induction algorithm without
constraints, one also sees that there are many clusters having several max-
imum frequent patterns as representers. Therefore, the constraints should
focus on the combination of interesting similar patterns to first reduce the
number of resulting clusters and to focus on a special kind of patients. The
attributes that are used in this data set are again summarized in Table 7.2.
One interesting question for a physician would be to compare patients with a
bad blood count to ones having a normal blood count. The frequency distri-
bution of the values shows that there are quite a few patients that have a nor-
mal blood count (normal values of WBC, HGB, HCT, RBC and PLT), but
there are also patients that have values that are too low, e.g. HGB. In con-
trast, excessively high values values are rare, cf. for example HGB and HCT,
there are only 2 cases where they are too high. Therefore, we define a state

7.3. EXPERIMENTS 121

Figure 7.4: Comparison of patients having a normal (group 1) and a bad
blood count (group 2). Red bars indicate the frequency of the blood count
elements for group 2, while the green bars show the distribution for group
1.

’bad blood count’ (BBC) that summarizes patients with low values for HGB,
HCT and RBC (PLT and WBC were left out because of their low frequency)
and a state ’normal blood count’ (NBC): mle1 = (HGBL∧HCTL∧RBCL),
mle2 = (HGBN ∧HCTN ∧RBCN ∧WBCN). Figure 7.4 shows the result of
this comparison analysis, i.e. the profiles of the resulting constrained states
are shown. Both states contain many events (NBC: 544, BBC: 709) and are
highly connected to other states (34 and 35 outgoing and 33 / 38 incoming
transitions). However, patients with BBC also show abnormal blood count
values for the remaining elements. Notably, they are the only ones were high
(low) values for CRP (UN) can be observed. Moreover, BBC-patients also
suffer from a high GOT-value more frequently than NBC-patients, which
shows an acute oxygen undersupply, which may, e.g. cause a heart attack.
This leads to another interesting question: how do patients look that have
a high risk of a heart attack (the GOT and UN values are high). Therefore,
we designed another constraint that captures patients with these properties:
mle3 = (GOTH ∧ UNH). The resulting state combines 136 events and has
33 (34) out (incoming) transitions. These patients also show a high value
of LDH that also indicates some kind of organ damage. Interestingly, the
CRP-value is probably low, which shows that there are no current inflam-
mations.
Although these analyses give a good overview of the comorbidities of the
patients, another interesting analysis would be to observe their progression.
However, this data set remains unsuited for this problem, because the re-
sulting states are all highly connected among each other so that no obvious
paths can be seen. Nevertheless, this data set gives a very good impression
of how medically interesting constraints can be formed and inspected by
using the CSPRTA methodology.

122 CHAPTER 7. ACC IN PRTA INDUCTION

Figure 7.5: Profile of patients having a high risk of heart attack (UN and
CRP are high and colored in red)

7.4 Conclusion

In this chapter we showed how the two attribute level constraints must-link
and must-link-exclusive can be incorporated and used in the SPRTA envi-
ronment. Therefore, we adopted the implementation details presented in
Chapter 8 to fit the SPRTA algorithm. Most importantly, we showed in
the experimental part, how to design constraints, their benefits and short-
comings on three different types of data. Using very specific constraints,
i.e. constraints that consist of many literals, seems to lead to understand-
able results. Including only a small number of literals instead, may blur
the resulting automaton. Besides, using must-link-exclusive constraints is
easier than the must-link constraints, as the user can directly form expected
states. Moreover, attribute constraints seem not to work for the correction
of the states’ profiles, but work well for the correction of transitional er-
rors. Altogether, including attribute level constraints may be well suited for
the evaluation of specific groups of events, but still the constraints must be
carefully designed.

Chapter 8

Attribute Constrained
Clustering

Clustering is a frequently used method to analyze and segment data sets
and for many applications, users wish to include their knowledge about the
expected result. Including such background knowledge in the form of con-
straints may improve the clustering result or even drastically reduce the
runtime. This is why researchers addressed the problem of defining and
evaluating different types of constraints [100] in various cluster algorithms
in the past decade. The first idea of such constraints was to restrict the
instances that must (must-link) or may not (cannot-link) be grouped into a
cluster. This type of constraint is called instance-level constraint. However,
background knowledge is not only present on the instance level. There also
is domain knowledge that can be expressed without even knowing specific
instances of a given data set. Therefore, we introduce a new type of con-
straints: constraints on the attribute level, i.e. the properties of the instances
in a cluster are described instead of the relationships between the instances
themselves. We call this type of constrained clustering attribute-constrained
clustering (ACC) [77].1 This type of constraint has one additional bene-
fit compared to the known instance-level constraints: the representation of
background knowledge is much more compact when given on the attribute
level and thus addresses one important factor of constrained mining [24].
Although the approach is not restricted to it, we focus on constraints that
specify how instances with given attribute characteristics must be combined.
In summary, the contributions of this chapter are as follows:

• First, we introduce must-Link and must-Link-Excl constraints on the
attribute level in Section 8.2.

• Second, the direct incorporation into a popular clustering algorithm
(k-Medoids) is presented (cf. Sections 8.2.2 and 8.2.3).

1This is an extension of previous work [11].

123

124 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

• Moreover, constraints on the attribute level are shown to be more
compact (Section 8.3.3) than on the instance level and experimentally
demonstrated to be useful when the background knowledge can be
expressed by instance characteristics (Section 8.3).

• Last, the relation to the well known instance-level constraints is es-
tablished for each type of attribute-level constraint (cf. Sections 8.2.2
and 8.2.3).

8.1 Related Work

The first clustering constraints in the literature were so-called must-link and
cannot-Link constraints, which were incorporated into several algorithms,
e.g. k-Means [100] and divisive clustering [50]. One main goal was to spec-
ify the types of constraints and to show how heuristics can be used to find
a near-optimal clustering solution that satisfies all constraints. This was in-
vestigated, e.g. in the context of the k-Means algorithm [24, 25]. Especially
the use of must-Link and cannot-Link constraints as well as cluster distance
constraints were evaluated as to whether there exists a partition that satis-
fies the given constraints and if it is actually possible to find it. Moreover,
the scalability of must-Link and cannot-Link constraints and the modifica-
tion of clustering approaches using the nearest-representative property were
studied [89]. Although it is acknowledged that attribute-level constraints
are important [101], they have not yet been explored extensively. One ap-
proach applied one type of attribute-level constraint to co-clustering [71, 70].
The proposed algorithm uses local bi-sets that are clustered to a final so-
lution. In the clustering procedure, a k-Means-like process evaluates local
anti-patterns for their correctness. The proposed constraint is not defined
in general, but for specific attributes only, and may only be extended to
pairs of attributes. In particular, the constraint can only be applied if the
corresponding attribute is ordered, like a time stamp for the instance. More-
over, the attribute must be numeric and thus, the constraint may be defined
on an interval or non-interval scale. A similar constraint setting is used
to also define range-constraints on attributes in a cluster [23]. Again, the
constraint is applied on a single numeric attribute and the constraints are
not associated, i.e. they are independent of each other. To sum up, work
in this area so far introduces constraints on the attribute level, but only
links pairs of attributes at most, and not sets in general. Additionally, the
constraints were incorporated into co-clustering, while this chapter aims for
regular clustering, as we cannot guarantee to find optimal co-clusters. An-
other type of constraints are cluster-level constraints [64]. The basic idea is
to select clusters for a clustering out of a set of predefined possible clusters.
The constraint then can define, e.g., which clusters must be incorporated in
the clustering or how large, complete or disjoint clusters may become. A

8.2. CONSTRAINTS ON THE ATTRIBUTE LEVEL 125

last approach to drive the clustering process is to define that patterns in
general (e.g., frequent itemsets) should be found in the final clusters [85].
Although this approach also describes characteristics of clusters, no data
set specific knowledge can be provided to the mining algorithm. In sum-
mary, attribute-level constraints are restricted in their expressiveness so far.
In this chapter, we extend attribute-level constraints to a general form such
that each attribute may be involved in a constraint. Additionally, we specify
problem settings that benefit from such constraints.

8.2 Constraints on the Attribute Level

This section first introduces the necessary notation. Then, the proposed
constraints are formally defined including a running example. Subsequently,
variations of the k-Medoids algorithm that incorporate the attribute-level
constraints directly are presented.

8.2.1 Problem Description

Let D = {(x1
1, . . . , x

1
m), . . . , (xn1 , . . . , x

n
m)} be a data set of binary instances

(xij ∈ {0, 1}), m being the number of attributes and n the number of in-
stances. Additionally, a set of attribute-level constraints Φ is provided. A
constraint ϕ ∈ Φ is in general any formula in propositional logic ranging
over the propositional variables x1 to xm. In the remainder of the chapter,
the values 1 and 0 are interpreted as Boolean truth values, true and false.
Although the propositional formulae could take any form in general (also
normal forms, for instance), we restrict ourselves to conjunctions in the fol-
lowing. In a formula, an unnegated literal xi means that the value of that
variable has to be 1 in an instance, whereas a negated literal ¬xi means
that the variable has to take the value 0. For each attribute-level constraint
ϕ ∈ Φ and instance xi, expression ϕ(xi) returns whether instance xi fulfills
constraint ϕ, i.e. the instance is a model [37] for the constraint

ϕ(xi) = 1 ⇔ xi |= ϕ . (8.1)

If this is the case, we say that instance xi is in the scope of constraint ϕ.
The task is, to group the instances xi ∈ D into a clustering that satisfies
the given attribute-level constraints. A clustering C consists of k clusters
C = {C1, . . . , Ck}, where each cluster is a set of instances Ci ⊆ D. Func-
tion z(Φ, C) returns whether a clustering C satisfies the specified constraint
set Φ. The conditions in which the constraints are satisfied, are given in
the following sections for each specific constraint type. Moreover, a clus-
tering can be scored with an objective function f : C → R according to its
quality. The precise definition of this function depends on the application
domain. As an example one could consider the intra or inter cluster distance

126 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

or the silhouette coefficient [48]. Although constraints can be used in any
clustering scheme, this chapter presents how they can be included in the
k-Medoids [48] algorithm. K-Medoids was chosen because it is a standard

Algorithm 14 k-Medoids (Dataset D, int k)

1: medoidsChange = true
2: clustering = initializeClusterMedoid(k,D)
3: while medoidsChange do
4: for each Ii ∈ D do
5: clustering = assignToNearestCluster(Ii, clustering)
6: end for
7: medoidsChange = calculateNewMedoids(clustering)
8: end while

clustering algorithm that is fast, easy to modify and because it was fre-
quently considered in the field of constrained mining. Algorithm 14 shows
the corresponding pseudocode. Summarizing, the overall goal is to find k
clusters for the data set D such that they satisfy the provided attribute-level
constraints, z(Φ, C) = true, and that f is maximized.

8.2.2 Must-Link

The first constraint, must-Link (ml), describes which instances must be
clustered together due to their attribute characteristics. It is defined via the
logical formula given in Equation (8.2).

ϕ = ml(x1 ∧ . . . ∧ xm) (8.2)

A clustering C satisfies a set of must-Link constraints Φml, if and only if all
instances that are in the scope of a specific constraint ϕi ∈ Φml are grouped
into one cluster:

z(Φml, C) = true⇔
∀ϕi ∈ Φml ∃Cl ∈ C ∀xk ∈ D : xk |= ϕi → xk ∈ Cl (8.3)

The must-Link constraint specifies that instances that are in the scope of a
constraint ϕi must be grouped in the same cluster Cl. Additionally, instances
that are not in the scope of the constraint but are nearest to it, may also be
grouped in that cluster. So, each cluster Cl contains the instances satisfying
the constraint and additionally the closest instances:

Cl = {xk | xk |= ϕi} ∪ {xj | min
C∈C

d(xj , C) = Cl}

Then, the must-Link ϕi is related to that cluster Cl. This relation is the key
point to include attribute-level constraints in the clustering process. Each

8.2. CONSTRAINTS ON THE ATTRIBUTE LEVEL 127

instance can be checked whether it is in the scope of the ml constraint re-
lated to the clustering. An instance is in the scope of a must-Link constraint,
if it is a model for the constraint (cf. Formula 8.1), i.e. it has the necessary
attribute setting.
Note that this type of constraint can also be related to the domain of
instance-level constraints. More precisely, every attribute-level constraint ϕi
induces, for pairs of instances xk and xj within the scope of the constraint,
a set of instance-level must-link constraints {mustLink(xk, xj) | xk |= ϕi ∧
xj |= ϕi}. However, the ml constraint is not transformed into an instance
level constraint but directly incorporated into the clustering process. Algo-
rithm 15 shows the two main modifications necessary for the incorporation
of must-Link constraints in the k-Medoids algorithm. The first adaptation
ensures that no initial medoid is in the scope of more than one must-Link
constraint (line 2), which guarantees that each constraint is only related to
one cluster. The second modification takes place in the clustering step. If
an instances is in the scope of exactly one ml constraint ϕj (line 6), which is
already assigned to a cluster, then the instance will immediately be placed
in the corresponding cluster. If several constraints apply, the one with the
nearest corresponding medoid is chosen for assignment. If the instances are

Algorithm 15 ml-k-Medoids (data set D, int k, ml constraints Φml)

1: medoidsChange = true
2: (clustering, assignedConstraints) =

initializeClusterMedoid(k,D,Φml)
3: while medoidsChange do
4: for all xi ∈ D do
5: for all ϕj ∈ assignedConstraints do
6: if xi � ϕj then
7: assignToConstrainedCluster(xi, clustering, ϕj)
8: belongstoCluster(xi) = true
9: end if

10: end for
11: if ! belongsToCluster(xi) then
12: clustering = assignToNearestCluster(xi, clustering)
13: for all ϕk ∈ unAssignedConstraints do
14: if xi � ϕk then
15: assignConstraintToCluster(ϕk, clustering)
16: end if
17: end for
18: end if
19: end for
20: medoidsChange = calculateNewMedoids(clustering)
21: end while

128 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

not in the scope of a related constraint (line 12), the usual assignment is
conducted. Last, each constraint that is not yet assigned to a cluster is
inspected whether the instance is in its scope. If this is the case, the con-
straint is related to that cluster. In the following iterations, all instances
that are in the scope of this constraint are then grouped into that cluster.
Consider the following example: Let the database D comprise the following
instances: D = {x1, . . . , x5}, where x1 = (1, 1, 0, 1, 0), x2 = (1, 1, 0, 0, 0),
x3 = (0, 1, 0, 0, 0), x4 = (0, 0, 1, 0, 1) and x5 = (0, 0, 0, 0, 1). These instances
are to be grouped into two clusters (k = 2) and one must-Link constraint is
provided: ϕ1 = ml(x1 ∧ x2). Let instances x1 and x4 be the initial medoids
of the clustering. As instance x1 is already in the scope of the must-Link
constraint, it is related to cluster 1. Due to the constraint, instance x2 is
also grouped into cluster 1. The remaining instances are assigned without
considering the constraint. Instance x3 belongs to cluster 1, instance x5 to
cluster 2. The resulting clustering C is thus C = {{x1, x2, x3}, {x4, x5}}.
This constraint can be used to group instances that share one or several
properties, no matter how the remaining attributes look like.

8.2.3 Must-Link-Excl

The second constraint, must-Link-Excl (mlx), is a modification of the must-
Link constraint in a way that it not only defines which instances must be
grouped together but moreover, which instances must not belong to this
group. Equation 8.4 shows when a clustering C satisfies such a constraint
set Φmlx. This is the case, if only instances that are in the scope of a
mlx-constraint ϕi ∈ Φmlx are combined into a cluster.

z(Φmlx, C) = true⇔
∀ϕi ∈ Φmlx ∃Cl ∈ C : ∀xk ∈ Cl : xk |= ϕi ∧
@Cj ∈ C : Cj 6= Cl : ∃xm ∈ Cj : xm |= ϕi

(8.4)

Again, this constraint can also be expressed by a set of instance-level con-
straints, more precisely, a set of must-Link and cannot-Link constraints:

{mustLink(xk, xj) | xk � ϕi ∧ xj � ϕi} ∪
{cannotLink(xk, xj) | xk � ϕi ∧ xj 2 ϕi}

The first part is again a must-Link constraint which specifies that instances
which possess the given characteristics must be grouped together. However,
for all instances that are not in the scope of the constraint, a cannot-Link
constraint is induced. In this case the instance cannot be grouped to the
cluster, it violates the constraint. Note, that although each attribute-level
constraint can be transformed into an instance-level constraint, the opposite
is not the case.
Again, the attribute-level constraint mlx is used in the clustering process:

8.2. CONSTRAINTS ON THE ATTRIBUTE LEVEL 129

all instances which are in the scope of the constraint are clustered together.
In other other words, each cluster Cl contains exclusively the instances sat-
isfied by the constraint ϕi: Cl = {xk | xk |= ϕi}. The scope of a mlx
constraint is defined as an ml constraint. Algorithm 16 shows how to in-
clude the mlx attribute-level constraint in the k-Medoids algorithm. The

Algorithm 16 mlx-k-Medoids (data set D, int k, mlx constraints Φmlx)

1: medoidsChange = true
2: clustering = initializeClusterMedoid(k,D,Φmlx)
3: while medoidsChange do
4: for all xi ∈ D do
5: p = 1
6: if ∃ϕj ∈ Φmlx | xi � ϕj then
7: assignInstanceToCluster(cj , clustering[ϕj .belongsToCluster()])
8: else
9: clustering = findNearestCluster(xi, clustering, p)

10: while violatesConstraint(xi, clustering.getΦmlx()) do
11: clustering = findNearestCluster(xi, clustering, p++)
12: end while
13: end if
14: end for
15: medoidsChange = calculateNewMedoids(clustering)
16: end while

initialization is dependent on the given constraints. As each cluster with a
related must-Link-Excl constraint can only include instances that are in its
scope, each mlx constraint must belong to a separate cluster. Thus, during
the initialization, each constraint is related to a cluster that consists of a
medoid that also must be in the scope of the constraint. Then, each remain-
ing instance (from line 3) is evaluated whether it is in the scope of a mlx
constraint ϕj . If this is the case, it is assigned to the corresponding cluster.
The main adaptation to include must-Link-Excl constraints is shown in line
9 to line 12, where the assigment of an instance to a cluster is not only
dependent on the distance to its medoid but also if its assignment would
violate the constraint. While this is the case, the second (or further) near-
est cluster is chosen for assignment. If no such an assigment can be found,
the algorithm stops. To illustrate this type of constraint, again consider
database D = {x1, . . . , x5} from the previous example. The clustering size
is set to two (k = 2) and the provided constraint is ϕ1 = mlx(x5 ∧ ¬x3).
Let instance x1 and x5 be the initial medoids of the clustering. Instance x5

is in the scope of the must-Link-Excl constraint, therefore this constraint is
related to cluster two. Instance x4, which is similar to instance x5, cannot
be grouped in cluster two because it violates the constraint (x4

3 = 1). Thus
it must be assigned to cluster one. Last, all other examples are assigned to

130 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

the clusters without considering the constraints because they are not in its
scope. Instance x3 and x2 belong to cluster 1. The resulting clustering C is
thus C = {{x1, x2, x3, x4}, {x5}}.

8.2.4 Convergence of Attribute Constrained Clustering

Another question when using this type of attributes is whether the proposed
algorithms terminate. As k-Medoids is proven to converge (condition 1)
an evaluation of the inclusion of the ml or mlx constraints is necessary.
This can be shown by contradiction: If there is an instance that is in the
scope of a constraint ϕi, ϕi is related to the cluster to which the instance
is assigned. If there is no such instance, the constraint is not considered
for the clustering process. Then, all instances that are also in the scope
of ϕi are as well assigned to this cluster (in the same iteration or at most
one iteration later). Thus for all instances in the scope of ϕi the algorithm
always finds a solution (even in at most two iterations). Moreover, the
assignment of theses instances remains fixed for the rest of the clustering
process. The remaining instances are clustered via the standard k-Medoids
procedure. If there was no possibility to find a solution for the remaining
instances, then the standard k-Medoids would not terminate. However, this
is a contradiction to condition 1 and thus, the algorithms must terminate.

8.2.5 Extension of Attribute Constrained Clustering

Although the constraints in this work are defined and applied on binary data
only, an extension to non-binary data is straightforward. To do so, literals xi
mean that the value of that variable is in relation to a constant in an instance,
whereas a negated literal ¬xi means that the variable is not in relation with
that constant: xl ⇔ xil

⊙
c, where c ∈ < and

⊙
∈ {<,5,=,=, >}. must-

Link and must-Link-Excl can then be used as described above.

8.3 Experiments

This section first introduces the synthetic datasets that were created for
the experiments. Second, an evaluation measure is presented and last, the
experimental results are shown. For each constraint, the dependency on
four parameters is evaluated: the number of attributes an instance con-
sists of (numAttr), the number of attributes that are used in the constraint
(numFixedAttr), the number of constraints in the data set (numConstraints)
and finally, the number of instances in such a data set (numInstances). As
this part of the thesis is focused on binary instances, the Hamming distance
was chosen for the clustering process. It captures the proportion of dissim-
ilarity between two instances x and y (cf. Equation 8.5), where n01 (n10) is

8.3. EXPERIMENTS 131

(a) Data must-Link (b) Data must-Link-Excl

Figure 8.1: Synthetic data set idea - 8.1a: The three circles represent uncon-
strained clusters, while the two dashed circles denote constrained clusters.
The ml-constrained clusters have a much larger diameter than the uncon-
strained clusters. Cluster overlaps are allowed in the given setting. 8.1b:
The constrained clusters (filled) may overlap with the unconstrained clusters
so that a separation of the instances becomes harder. The boxes represent
exemplary medoids, a dashed line indicates a mlx constraint – they are
similar but not equal.

the number of attributes that are equal to 1 (0) in instance x and equal to
0 (1) in instance y.

d(x, y) =
n01 + n10

numAttr
(8.5)

8.3.1 Data Sets

To evaluate the proposed constraints, synthetic data sets were created. The
basic idea for the must-Link constraint is that it can connect instances
which are very far apart but nevertheless belong to the same cluster. Then,
a must-Link constraint can help to find their connection by a small attribute
description. To show the use of a must-Link-Excl constraint, overlapping
clusters are an interesting case. Many standard approaches cannot separate
them, but including a must-Link-Excl constraint allows specifying which in-
stances must belong to another cluster. Figure 8.1 illustrates these ideas.
Clusters with must-Link constraints (Fig. 8.1a) are larger (big diameter)
but are held together by the constraint. In contrast, unconstrained clusters
are more compact. The data sets for must-Link-Excl constraints consist
of overlapping clusters (cf. Figure 8.1b) that cannot be separated with an
unconstrained clustering. For each data set a predefined clustering is as-
sumed that consists of k clusters, of which numConstraints clusters are

132 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

Parameter Abbrv Default Min Max

numAttr A 100 20 1000
numFixedAttr F 4 1 60
numConstraints C 4 1 20
numInstances I 1000 40 1000

Table 8.1: Overview of the chosen parameter setting. For each parameter a
default value is given and their ranges, respectively.

constrained. For each unconstrained cluster a medoid of length numAttr
is created that is at least interMedoidDist apart from the other medoids.
The parameter prob gives the probability of ones (xji = 1) in the medoid.
Second, numConstraints constrained medoids are created. The parame-
ter numFixedAttr defines how many literals are included in the constraint.
Next, instances for the unconstrained clusters are generated, by varying the
medoid of the corresponding cluster so that they are no more than smallDist
apart from their medoid. For constrained clusters, they must not be more
than bigDist apart and moreover, must be in the scope of the constraint
that is related to that cluster. Altogether, numInstances instances are
induced, where a cluster contains on average numInstances (resp. k) in-
stances. For the must-Link-Excl constrained clusters, the medoids are not
created independently like it is the case for must-Link data sets. Instead,
the constrained cluster medoids are derived from the unconstrained cluster
medoids such that the resulting medoids are similar and the clusters overlap.
To examine the quality of the clustering depending on the different ranges of
the parameters, data sets with different parameter settings were generated.
Table 8.3.1 summarizes these parameters’ settings with their default val-
ues and the corresponding ranges. Throughout the value of the parameters
prob (0.3), smallDist (0.1), bigDist (0.5), interMedoidDist (0.02) and k
(20) were left fixed. Altogether, for each constraint (ml, mlx) and parame-
ter value, 20 datasets were created, to take into account the variance among
data sets.

8.3.2 Evaluation of Constrained Clustering

To evaluate the resulting clustering, the Adjusted Rand Index [46] (ARI)
is measured. It is an adjusted version of the Rand Index [50] (RI) as de-
scribed in section 3.2. A second quality parameter is the change in runtime
and iterations, respectively, when the constraints are incorporated into the
clustering process. Due to the ordering dependency and the random initial-
ization procedure of the k-Medoids algorithm, each experiment was repeated
10 times to eliminate incidental effects. Altogether, this gives 200 test results
for each parameter value and constraint.

8.3. EXPERIMENTS 133

8.3.3 Constraint Specification Costs

To illustrate the specification savings of attribute-level constraint compared
to the standard instance-level constraints, assume the standard data set
setting with four constraints and 1000 instances. On average, each cluster
contains 50 instances so that for a clustering with instance-level must-link
constraints at least 200 constraints had to be provided (4 constrained clusters
* 50 instances) to make sure that all instances of the constrained clusters are
grouped appropriately. Comparing this to the number of attribute-level con-
straints (4), the constraint specification compression is evident. Moreover,
during the clustering process with instance-level constraints, each instance
must be compared against all instances of each cluster, whether there applies
an instance-level constraint. In the worst case, this results in O(n2) checks
(let n be the number of instances). Comparing this to attribute constrained
clustering, only O(|C| ∗n) scope checks have to be performed (let |C| be the
number of clusters), as only the related attribute-level constraint is tested
against each instance. Especially for large datasets and few clusters, using
attribute constraints can thus result in large savings of runtime.

8.3.4 Results must-Link and must-Link-Excl

This section presents the resulting ARI and runtimes depending on the four
varied parameters. For each evaluation, two figures are given. The first
compares the ARI, when must-Link constraints are used for the clustering
or not respectively (left figure), while the other one shows the improvement
of the ARI for must-Link-Excl constraints. For every parameter value an
error bar (Q25-quantile, mean, Q75-quantile) is shown. Below each figure
the parameter settings for I, A, C, F and k are given. To judge the effect
of the constrained clustering on the runtime, a subsequent table gives the
runtime and the number of iterations (rounds) that were needed for the
clustering with or without using the constraints.

Results numAttr

Figure 8.2 shows the ARI depending on the instance size. The x-axis gives
the number of attributes an instance consists of, which is varied between
20 and 1000. The clustering process is more difficult for small instances, no
matter whether constraints are used or not. For higher dimensions, the clus-
tering results become better but do not exceed an ARI of 0.83 (when using
ml-constraints) and 0.80 (without ml-constraints), respectively. Using mlx
constraints leads to better results than without constraints, for all instance
dimensions. Considering ml constraints, only in small dimensions informa-
tion can be gained from constraints. Comparing the ml and mlx constraints,
a higher information gain can be observed for the mlx constraints (the differ-
ence of the ARIs is higher). Table 8.3.4 shows the runtime and the number

134 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

(a) Comparison must-Link

(b) Comparison must-Link-Excl

Figure 8.2: Resulting ARI for different instance sizes (number of attributes)
(I = 1000, A = -, C = 4 , F = 4, k = 20)

of rounds that were needed for the clustering. The larger the instances,
the longer needs the clustering. This is mainly due to the longer instance
comparison time, which of course increases for higher dimension. In fact,
the clustering becomes easier for higher dimension for ml constraints, be-

8.3. EXPERIMENTS 135

A 20 40 60 80 100 200 400 600 800 1000

t ml 0.44 0.91 0.98 1.1 1.19 1.97 4.38 6.33 8.43 10.10
t 0.38 0.84 0.97 1.09 1.21 2.1 4.44 6.69 9.03 11.43

R ml 1.92 4.29 4.09 4.13 3.92 3.65 3.82 3.63 3.55 3.48
R 1.22 3.97 4.32 4.26 4.24 4.02 3.88 3.81 3.75 3.71

t mlx 0.67 1.07 1.19 1.27 1.32 1.89 3.3 4.7 6.31 7.71
t 0.65 1.08 1.19 1.34 1.41 1.81 2.94 4.12 5.19 6.8

R mlx 2 4.04 4.22 4.09 3.91 3.81 3.54 3.67 3.67 3.54
R 1.3 3.88 4.08 4.11 3.99 3.75 3.57 3.62 3.36 3.55

Table 8.2: Resulting runtime (s) and number of iterations (R) for different
numAttr

cause instances can be distinguished better. Thus, the larger the instances’
dimensions, the more a clustering can benefit from ml constraints in terms
of runtime. In contrast, mlx constraints lead to a slightly higher runtime.
An explanation for this is that the initial assignment for an instance may
be revised because it violates a constraint. Thus, additional computations
have to be conducted. The number of rounds needed is decreased in higher
dimension for both constraint types.

Results numConstraints

Figure 8.3 shows how the number of constraints that are used in the cluster-
ing influence the resulting ARI. If only few constraints are given, k-Medoids
still gives a good solution. This is a result of the data creation process. Un-
constrained clusters are quite dense so that the grouping of the instances is
straightforward. The more constraints are included, the more separated the
instances become. Then, the cluster assignment without constraints is more
and more difficult. In contrast, for a data set that contains very scattered
instances (numFixedAttr → 20), the constraints are of much greater value
to the clustering. The highest ARI-gain is observed for a large number of
constraints. Concerning runtime and number of rounds, Table 8.3.4 shows
that the runtime is not heavily affected by the inclusion of more constraints.
In contrast, fewer rounds are needed to finish the clustering. The time that
is saved by fewer rounds is consumed to process the constraints. Using the
constraints is beneficial for both types of constraints, and the more con-
straints are used, the more savings can be achieved.

Results numFixedAttr

Figure 8.4 shows how the number of attribute that are included in a con-
straint influences the ARI. During the data creation process, this number

136 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

(a) Comparison must-Link

(b) Comparison must-Link-Excl

Figure 8.3: Resulting ARI for clusterings with a different number of con-
straints (I = 1000, A = 100, C = - , F = 4, k = 20)

8.3. EXPERIMENTS 137

C 1 2 4 5 7 8 10 11 13 14

t ml 1.16 1.31 1.21 1.21 1.18 1.19 1.2 1.17 1.12 1.13
t 1.23 1.28 1.24 1.27 1.23 1.28 1.29 1.23 1.24 1.2

r ml 4.11 3.94 3.9 3.83 3.79 3.67 3.52 3.54 3.42 3.29
r 4.22 4.33 4.24 4.42 4.22 4.37 4.29 4.11 4.1 4.09

t mlx 1.38 1.36 1.41 1.37 1.39 1.42 1.32 1.21 1.18 1.18
t 1.41 1.41 1.48 1.44 1.45 1.45 1.46 1.46 1.56 1.59

r mlx 4.1 4 3.95 3.92 3.76 3.63 3.54 3.46 3.28 3.12
r 4.08 4 4.03 3.92 3.77 3.76 3.67 3.6 3.44 3.45

C 16 17 19 20

t ml 0.99 1 0.89 0.84
t 1.23 1.23 1.18 1.15

r ml 3.06 3.02 2.81 2.73
r 4.14 4.16 4 3.86

t mlx 1.18 1.14 1.09 0.99
t 1.61 1.61 1.61 1.43

r mlx 2.89 2.64 2.44 2
r 3.39 3.14 3.15 3.06

Table 8.3: Resulting runtime (s) and number of iterations for different
numConstraints

specified the similarity of the instances within a cluster, because if an at-
tribute is used for a constraint, its value will always be equal for all instances
in the cluster. Overall, the constraints provide some additional information
for the clustering, which is evident especially for mlx constraints. The best
improvement can be observed when only few attributes are included in the
constraints. Then, the higher variability in the instances is a problem for
the unconstrained k-Medoids clustering. That is why the most improvement
over a standard approach is to be found for small numbers of numFixedAttr.
The ARI-gain decreases for higher values of numFixedAttr, because then
the instances become more and more similar so that k-Medoids is also able
to induce the correct clustering. How the runtime and number of rounds
is affected by the inclusion of more attributes in the constraints is pre-
sented in Table 8.3.4. For must-Link constraints, the runtime increases
with higher values of numFixedAttr, no matter whether the constraints are
considered or not. Here, the unconstrained clustering is even comparable
in the runtime. Although the runtime does not increase much for must-
Link-Excl constraints, the runtime is also comparable to the case when no
constraints are considered. The number of rounds is the same for all values
of numFixedAttr, when using constraints, but slightly decreased for the
standard approach. This can be explained by the fact that the separation

138 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

(a) Comparison must-Link

(b) Comparison must-Link-Excl

Figure 8.4: Resulting ARI for a different number of attributes that are
included in a constraint (I = 1000, A = 100, C = 4 , F = -, k = 20)

8.3. EXPERIMENTS 139

F 2 4 6 8 10 15 20 25 30 35

t ml 1.17 1.22 1.21 1.23 1.23 1.21 1.28 1.23 1.24 1.26
t 1.19 1.23 1.24 1.22 1.23 1.25 1.24 1.24 1.25 1.27

r ml 3.85 3.86 3.81 3.94 3.98 3.81 3.96 3.92 3.9 3.92
r 4.28 4.23 4.26 4.17 4.22 4.21 4.12 4.09 4.1 4.1

t mlx 1.36 1.32 1.34 1.38 1.37 1.34 1.34 1.34 1.36 1.39
t 1.42 1.37 1.4 1.37 1.38 1.4 1.39 1.43 1.42 1.48

r mlx 3.85 3.99 4 3.91 3.97 3.94 3.87 3.88 3.9 3.89
r 3.97 3.94 3.96 3.91 3.89 3.96 3.92 4.01 3.96 4.07

F 40 45 50 55 60

t ml 1.25 1.29 1.37 1.37 1.39
t 1.26 1.3 1.3 1.32 1.34

r ml 3.85 3.78 3.93 3.89 4.03
r 4.05 4.05 4 4.09 4.1

t mlx 1.36 1.4 1.42 1.36 1.4
t 1.45 1.43 1.43 1.43 1.43

r mlx 3.88 3.84 4.03 3.9 3.92
r 4.16 4 4.01 4.12 4.08

Table 8.4: Resulting runtime (s) and number of iterations for different
numFixedAttr

of the instances becomes easier, because more fixed attributes mean that
the resulting instances are more similar. Thus, the standard clustering con-
verges earlier. However, in most cases the constrained clustering needs fewer
rounds than the standard clustering approach.

Results numInstances

Figure 8.5 shows the ARI for differently sized data sets. The data sets
include from 40 to 4000 instances each. The inclusion of both types
of constraints is beneficial. Throughout the parameter values, an average
improvement of 4.2% (ml) and 12% (mlx) can be observed. The biggest
improvement was achieved for small data sets (ml: 6.8% and mlx: 15% re-
spectively) but no general trend can be inferred from these numbers. Table
8.3.4 shows that larger datasets increase the runtime and iterations. The
inclusion of constraints is beneficial for the runtime and rounds. Both are
lower when compared to the standard clustering approach.

140 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

(a) Comparison must-Link

(b) Comparison must-Link-Excl

Figure 8.5: Resulting ARI for a different number of instances (I = -, A =
100, C = 4 , F = 4, k = 20)

8.3. EXPERIMENTS 141

I 40 60 100 200 400 600 800 1000 2000 4000

t ml 0.1 0.15 0.2 0.3 0.58 0.69 0.89 1.2 3.48 13.72
t 0.11 0.14 0.2 0.34 0.64 0.75 1 1.29 3.69 14.74

r ml 2.71 3.12 3.44 3.52 3.75 3.84 3.85 3.94 4.01 4.02
r 2.81 3.32 3.56 3.9 4.05 4.22 4.37 4.3 4.3 4.26

t mlx 0.1 0.14 0.19 0.31 0.62 0.84 1.07 1.31 3.29 11.87
t 0.1 0.14 0.16 0.31 0.6 0.82 1.09 1.37 3.75 14.34

r mlx 2.71 3.16 3.35 3.62 3.69 3.77 3.98 3.88 3.91 3.86
r 2.84 3.17 3.41 3.67 3.67 3.87 3.94 3.85 4.08 3.88

Table 8.5: Resulting runtime (s) in second and number of iterations for
different numInstances

Results on the Real-World Data Set

A last experiment shows the applicability of the constraints on a real-world
data set. The UCI zoo data set2 was chosen for this experiment. It con-
tains 101 binary instances that describe animals. Additionally, the corre-
sponding cluster membership (the biological class) is included. Six con-
straints were created using biological background knowledge about the sim-
ilarities of animals and the given attributes: ml1(milk), ml2(feathers),
ml3(fins ∧ eggs), ml4(4Legs ∧ toothed ∧ eggs), ml5(6Legs ∧ breathes),
ml6(¬backbone ∧ ¬breathes). The same constraints were also created for
the mlx type. Then, sets of constraints were created, including one to six
constraints each, in order to show the individual contribution for each con-
straint as well as the benefit of their combinations. For each possible com-
bination, a separate constraint set was constructed and then used for the
clustering process. Again, the clustering was repeated 50 times for each con-
straint set. Figure 8.6a shows the mean ARI for each constraint set size as
well as the baseline result when no constraints are considered. The leftmost
point(s) (above 1) give the average ARI when the constraint set consists of
only one constraint, while the point(s) above 2 show the average ARI for
the combination of two constraints each. The results indicate that the more
constraints are applied, the better is the clustering quality. However, not
every constraint or constraint combination performs equally well. Figure
8.6b gives the mean ARI for each mlx constraint and their combinations.
Although the general trend shows that the inclusion of such constraints is
beneficial, there exist constraints (and combinations) that do not improve
the result notably. Especially the inclusion of constraints mlx3 and mlx6

only leads to small improvements. Most significantly, the constraint mlx6

alone even decreases the ARI compared to the baseline (leftmost point in

2http : //archive.ics.uci.edu/ml/datasets/Zoo

142 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

(a) Mean ARI for constraint sets

(b) ARI for individual mlx constraint sets

Figure 8.6: ARI for the Zoo data set. (I = 101, A = 23, C = 1-6 , F = 1-3,
k = 7)

8.4. CONCLUSION 143

Figure 8.6b). This shows that such constraints (as every other type of con-
straints) must be defined very carefully, but may significantly improve the
clustering performance.

8.4 Conclusion

In this chapter we transferred the notions of the instance-level constraints
must-Link and cannot-Link to the attribute level, where the cannot-Link
effectively becomes a new type of constraint: must-Link-Excl. An adapta-
tion of the well-known k-Medoids algorithm was presented that is able to
incorporate the provided constraints. Each constraint was evaluated con-
cerning several parameters. The results indicate that it is not only possible
to define constraints on the attribute level, but also that they may be very
beneficial in the clustering process. Moreover, we discussed on which types
of clustering problems the constraints should be applied and how much the
specification costs can be reduced compared to standard instance-level con-
straints. For future work, we would like to consider the combination of the
presented constraints, how this combination will affect the runtime and how
a probably NP-hard problem (like for other constraint clusterers [26]) can be
avoided. Moreover, we would like to examine how constraints that express,
e.g. the amount of shared attributes between clusters, can be formalized
and incorporated into the constrained mining process.

144 CHAPTER 8. ATTRIBUTE CONSTRAINED CLUSTERING

Chapter 9

An Online Approach for
PRTA Induction (OPRTA)

The recent creation of massive time labeled data sets (or event sequences
[69]) in all areas of sciences and industry increases the need for scalable
methods that induce models for any kind of underlying processes. Espe-
cially models that automatically induce the main elements of such processes
(e.g., events) are very interesting for time-cause analyses. Important appli-
cation areas include, amongst others, the analysis of disease progressions and
disease patterns [67]. Probabilistic real time automata are a new graphical
model to represent such processes. They automatically induce states and
transitions based only on the data set. Moreover, they enable insights into
the temporal relationships [97] and probabilities of change from one state to
the next. The induction of PRTAs is currently based on the state merging
method [78], which is considered state of the art in automata induction.
However, this also includes the creation of a prefix tree acceptor (PTA) and
a subsequent clustering step. For massive data sets both of these steps can
become very time and memory consuming. Using an online approach is a
straightforward solution for this problem and can be solved easily for the
clustering step. However, how to achieve the PTA creation is still unknown.
We tackle this problem by transforming both steps into online versions [82].
Each instance of the data set is first converted into a PRTA, which is then
merged with a pre-existing one. The merge step is based on a clustering that
uses maximum frequent patterns as representatives. We chose this cluster-
ing strategy to identify very homogeneous states, i.e. states that combine
events having the same co-occurring characteristics. Moreover, this enables
the incremental creation of PRTAs for data streams, which may arise, e.g. in
sensor networks. The method is also able to deal with concept drift in such
data streams, i.e. the PRTA is able to detect and to model a shift in the
underlying process by the creation (or deletion) of states and transitions.
Similar to existing work [61] this is done if a new event type is detected
or when a state becomes out of date. We show that this method produces

145

146 CHAPTER 9. ONLINE PRTA INDUCTION

stable and informative automata that can be computed in reasonable time.
In summary, our contribution is threefold:

1. We propose an online method for PRTA induction (OPRTA) that can
be used for massive data sets.

2. We present adaptations of the method for data sets with concept drift.

3. We show three real world applications of the method along with the
insights that can be gained from the resulting model.

This chapter first defines the problem setting (Section 9.1), the model and
explains the online approach, which is extensively evaluated in Section 9.2.

9.1 Online Induction of PRTAs Based on MFP
Clustering

This section first introduces the problem, which is followed by an informal
description of the solution. This is then formalized in Section 9.1.3. Last,
Section 9.1.4 explains how the proposed method can be used when concept
drift is present.

9.1.1 Problem Setting

The task is to model a timed language model of data set D. Let D be a
database of histories Hi: D = {h1, . . . , hn}. A history hi is a sequence of
timed events hi = (~e1, t1) (~e2, t2) . . . (~el, tl). The event sequence is ordered
corresponding to the time label (tj) of the events. Note that the time labels
need not necessarily form equal intervals, thus a varying amount of time
can pass between successive events. An event ei is a binary vector ~ei =
(ai1, ai2, . . . , aij) consisting of j attributes, where aij is equal to one if the
attribute was observed in this event.1 Data set D is to be modeled by a
probabilistic real time automaton (PRTA) A PRTA is a directed graph and
defined as follows.

Definition
A PRTA Γ is a tuple Γ = (Q,

∑
, T, S, F), where

• Q is a finite set of states

• Σ is a finite set of events

• T is a finite set of transitions

• S = Q is the set of start states

• F = Q is the set of final states
1This is similar to the notation of itemsets and thus an event can also be regarded as

an itemset.

9.1. ONLINE INDUCTIONOF PRTAS BASEDONMFP CLUSTERING147

Figure 9.1: Example data set

A state qi ∈ Q is a pair 〈Ei, ~fi〉 where Ei is its set of events (Ei = {~ek : ~ek ∈
Ci}) and ~fi is an attribute vector called its profile. Σ are all events ~e that are
observed in the input data. A transition t ∈ T is a tuple 〈q, q′, TL, φ, p〉 where
q, q′ ∈ Q are the source and target states, TL = ∆(Ei, Ej) and φ is a delay
guard defined by an interval [t1, t2] with t1, t2 ∈ N. p defines a probability p ∈
[0, 1] that this transition occurs. A PRTA that is also able to model concept
drift (denoted by PRTAC) is defined as tuple Γ = (Q,

∑
, T, S, F, Z), where

Z gives for each state and transition the number of timesteps that have
elapsed since their last observation: Z = {(o ⊆ Q ∪ T, k ∈ N+)}.

9.1.2 Overview of the Approach

In this section, the general procedure of how to induce PRTAs online is given.
The main idea of the online induction is that each new history is added
incrementally to the existing PRTA. The histories hi ∈ H are observed one
by one. First, each history hi is transformed into a ‘path’-PRTA, where
there is only one predecessor and one successor for each node (exactly the
events that occurred in the history). This PRTA is then collapsed into a
PRTA Γ, i.e. all nodes nl ∈ Q sharing the same profile are merged into
one state. Then, each state nl of Γ is compared to the states Q′ of a pre-
existing PRTA Γ′ that is built from all previous histories hl(l < i). If node
nl belongs to state qj ∈ Q′, then node nl is merged with state qj . The
function fNN that identifies such a state qj is described in Section 9.1.3.
Such a merge also induces that all incoming transitions from state qj are
incorporated into Γ′. If the sucessor node nl+1 of nl of the PRTA Γ is
also merged with a state qj+1 of the PRTA, then the transition tn is linked
between qj and qj+1. If there is already a transition ts, then it is updated
with the information of tn. However, if there is no state qj of Γ′ that state
nl belongs to, nl is only added to Q′. This also induces that there may be no
transition from nl to the remaining states of Q′. To clarify this procedure,
consider the following example. Figure 9.1 shows a set of histories consisting
of events {α, β, γ, δ, ε, λ, ν, ξ, o}. As the histories are observed one by one,
history h1 is considered first. Figure 9.2 illustrates this process. First, the

148 CHAPTER 9. ONLINE PRTA INDUCTION

Figure 9.2: Example for the online induction of a PRTA. Left: Subsequent
collapsed histories (Γ). Right: Resulting automaton (Γ′) when merged with
new collapsed history (Γ)

history h1 is transformed into a PRTA Γ1 (the figure does not illustrate the
transformation of the history in the path automaton), which is followed by
the collapse step: all nodes of h1 having the same profile ~f are merged, which
results in Γ1. The last step is to find similar nodes in the pre-existing PRTA.
As there is no existing automaton for the first instance, Γ1 is equal to Γ′1.
Then, the processing of h1 is finished and history h2 can be incorporated
into the PRTA. Again, the compression is the first step, but cannot be
conducted as there are no identical nodes in the history. Thus, Γ2 remains
a sequence of states. Then, each state of Γ2 is compared to Γ′1 whether
there is a state qj it belongs to. This is true for the states that correspond
to the events λ, γ and α: α ∈ Γ2 belongs to state α ∈ Γ′1, because they
have the same profile, which is also true for γ ∈ Γ2 and γ ∈ Γ′1; λ ∈ Γ2

belongs to state β ∈ Γ′1 because they have a similar profile. (In Figure
9.2, the corresponding states of Γ2 and Γ′1 are shaded equally.) The last
step is then to merge the states of Γ2 with the states of Γ′1, resulting in
an updated PRTA Γ′2: all states in Γ2 that do not have a corresponding
state in Γ′1 are added to Γ′1, including all their transitions. The others are
merged including their transitions. E.g., transition t′ = 〈β, γ, T ′L, φ′, p′〉 of
the PRTA Γ′1 and transition t = 〈λ, γ, TL, φ, p〉 of the PRTA Γ2 are merged
to a final transition t′′ = 〈β, γ, T ′′L, φ′′, p′′〉 in the PRTA Γ′2. The state β
then contains two events β and λ, but is still labeled with β, because we
assume that λ ≺ β. Moreover, the delay guard φ and the probability p of

9.1. ONLINE INDUCTIONOF PRTAS BASEDONMFP CLUSTERING149

the transitions are adjusted accordingly. Then the third and fourth history
is processed in the same manner. The final automaton is given on the lower
right side of the figure. It consists of seven states and 12 transitions. Note
that the initial nine events are collapsed into seven states because β and λ
as well as α and o are merged into one state due to their similarity. In the
next section, we will explain formally how the transformation of the history
in a PRTA is done and how states of Γ and Γ′ are compared.

9.1.3 Creating the PRTA Online

The PRTA is created online by first converting the history into a PRTA Γ
(compression step) and then merging the states of Γ with a PRTA Γ′ that
models all previous histories. Let dataset D comprise a set of histories H:
D = {h1, . . . , hn} as described in Section 9.1.1. Each history hi is converted
into a PRTA Γ in two steps: first, for each event ~ej a state qij = 〈{~ej}, ~ej〉
is created QΓ =

⋃
qij . Then, each state qij is connected to its successor via

a transition:

∀(~ej , ~ej+1) : isSuccessorIn(hi, ~ej , ~ej+1)

∃ tj ∈ TΓ :

〈qij , qij+1,∆(Eij , Eij+1), [tj+1 − tj , tj+1 − tj], 1.0〉
(9.1)

, which creates the set of transitions in Γ: TΓ =
⋃
tj . In a next step, this

PRTA Γ is collapsed, i.e. all states sharing the same event are merged into
one state. For simplicity, let the new state q′ be described by the set of
states it consists of q′ = {qi, . . . , qj}. Then, each state of the compressed
PRTA can be described as follows:

∀q′ ∈ QΓ :qi, qj ∈ q′ → qi.E = qj .E ∧
qi ∈ q′k, qj ∈ q′l, k 6= l→ qi.E 6= qj .E

(9.2)

Including the compressed PRTA Γ into the PRTA that models all previ-
ous histories Γ′ = (Q′,Σ′, T ′, S′, F ′) gives the resulting PRTA Γ′. First,
all observed events are added to the alphabet of Γ′ and second, all states
and transitions are merged if appropriate Γ′: Γ′ = (merge(Q′, Q),Σ′ ∩
Σ,merge(T ′, T), S′, F ′). Function fNN identifies which two states qi and
qj may be merged and is explained in more detail in Section 9.1.3. Func-
tion merge(Q′, Q) that defines how a merged state is created, is defined in
Equation 9.3

merge(Q′, Q) =

∀(qi, qj) : qi ∈ Q′, qj ∈ Q, qi.E = qj .E : merge(qi, qj),
(9.3)

, where the method merge(qi, qj) combines all profiles ~fi, ~fj of the states

qi, qj into one single profile ~fk by their weighted mean:

150 CHAPTER 9. ONLINE PRTA INDUCTION

~fk =
1∑

qi∈Q∩Q′ |Ei|
∑

qi∈Q∩Q′

|Ei| × ~fi

The merge of the states also induces the merge of transitions, if appropriate.
Last, the automaton can also be applied to data sets with concept drift.
Here, elements of the automaton may become out of date. Therefore, the
list Z is updated for each event in the history hi: let z ∈ Z be (k, q), where
k is a timepoint and q is a set of states:

∀ (~eij , tij) ∈ hi :

∃ z = (k, q) : k = ti ∧ @ z′ = (k′, q′) : ~eij ∈ q′, k′ > k

→ z = k, q ∪ ~eij
(9.4)

Thus, the most recent timepoint is kept for each event and the corresponding
states. Last, all states that exceed the minimum time constraint are deleted
from the PRTA Γ′′.

∀ q ∈ Q′′ :
∃ z = (k, q) : qi ∈ q ∧ k ≥ minTime
→ Q = Q\qi, T = T\t :

t = 〈qi, qj , TL, φ, p〉 ∨ t = 〈qj , qi, TL, φ, p〉

(9.5)

Algorithm 17 summarizes this procedure: For each history, a PRTA is cre-
ated and compressed. Then, each state of this PRTA may be merged with a
state of the pre-existing PRTA. Last, if concept drift is taken into account,
the timelist is updated and outdated states and transitions are deleted from
the PRTA.
The time complexity of this approach is a sum of the collapse step and the
clustering step. In the worst case O(n2) comparisons must be performed
to check whether a state of history hi can be merged with another state of
history hi. Next, for each state of Γ, the most similar state in Γ′ is retrieved,
which costs O(n ∗m). Therefore, the total complexity of the algorithm is
O(n2 + n ∗m).

Function fNN

Function fNN identifies whether there is a state q that is similar to a state
qij in history hi. This is the case if qij covers a large fraction of the frequent
patterns of state q. The identification of frequent shared properties (corre-
sponding to the minimum support threshold ms) is achieved by comparing q
to the set of maximal frequent patterns (MFPs) of all nodes in qij . This set
is updated incrementally via the AIST data structure (cf. Chapter 6)[76].
Function fNN computes the fraction of shared properties between q and qij
of history hi. If the maximal fraction exceeds a minimum overlap threshold,
qij is merged with state q.

9.1. ONLINE INDUCTIONOF PRTAS BASEDONMFP CLUSTERING151

Algorithm 17 InducePRTA (D, minsup ∈ [0, 1], minTime ∈ N,
ConceptDrift ∈ {0, 1})

1: Γ′ = (Q = {},Σ{}, T = {}, S = {}, F = {}, Z = {})
2: for all hi ∈ H do
3: PRTA Γ = createPRTA(hi) // cf. Equation 9.1
4: Γ = compressPRTA (Γ) // cf. Equation 9.2
5: for all qij ∈ hi do
6: State q = fNN(qij , Q, minsup) // cf. Sec. 9.1.3
7: if q 6= {} then
8: Γ′ = merge(Γ′,q, qij) // cf. Equation 9.3
9: end if

10: end for
11: if ConceptDrift then
12: Z = updateTimeList(hi) // cf. Equation 9.4
13: Γ′ = deleteOldNodes(Z, minTime) // cf. Eq. 9.5
14: end if
15: end for

9.1.4 Adaptation For an Unbounded Data Set With Concept
Drift

The presented algorithm can be adapted for unbounded data streams with
concept drift. Concept drift means that the underlying true concept (here
assumed as an automaton) changes as time goes by and thus, elements of the
automaton become out of date. In the following section the characteristics
of such a data stream setting are described. Moreover, the definition of when
an element of an automaton is out of date will be introduced.

The Repeated World Data Stream Setting

The basic question is how a change of a concept can be observed, where one
essential element is how time is monitored. Often, processes are recorded
in successive time intervals. Then, a data bag is created with these mea-
surements. In the current problem setting, such a bag is a set of histories
which is additionally labeled with a time stamp. Such measurements are
repeated in equal intervals, which explain the term repeated world setting.
As an example, consider the monitoring of a multivariate process of a com-
pany within one week, where at the end of the week the set of histories is
collected and transferred. Then, an updated model can be learned with this
data bag. In the repeated world setting, concept drift is observed, when
elements of the automaton do no longer occur in recent bags but only in
older ones. Of course, there may also be new elements of an automaton.
This may be the case, e.g. if a process changed within the company (maybe
due to a change in the personnel). Then some states or transitions may dis-

152 CHAPTER 9. ONLINE PRTA INDUCTION

Figure 9.3: Illustration of the data stream (repeated world) setting. Left:
data stream illustration (bags). Right: Resulting automata for the data
stream. Added and deleted elements of the automaton are drawn with
dashed lines.

appear, while others arise. Thus, the change of the automaton reflects how
whole processes change over time. In the repeated world, the updates of the
automaton are based on the new bags of histories (left part of Figure 9.3).
The first important property is that each history in each bag may begin at
timepoint t0, i.e. the first event was observed at timepoint t0. This also
suggests that there exist two timelines. One is the ordering of the events
(horizontal timeline) within one history, the second timeline shows in which
order the bags arrive (vertical timeline). This also defines the time threshold
o when an element is out of date. This is the case, when an event was last
observed too long ago. As an example consider state 7. This state does
occur in bag one but not in bag two. Thus, it is out of date when bag 3
is observed (o being set to 1) and is therefore deleted. This shows that the
time to evaluate whether one state is out of date is dependent on the time
of the bag and not the timestamp in the history.

9.1. ONLINE INDUCTIONOF PRTAS BASEDONMFP CLUSTERING153

Figure 9.4: Continuous world setting

The Continuous World Data Stream Setting

However, a change of the concept can be observed in another way, when one
set of histories is monitored continuously. There, the set of histories is known
up-front but it is unknown, which history will be updated with the next data
set and how many new events a history will provide. Such a world is then
called continuous world. As an example for such a world consider the ongoing
recording of fixed population of patients, where each patient record (and so
his history) is extended with each physicians visit. In such a world, a change
of the concept is observed, if there are elements of the automaton that have
not been observed for a long time within all histories. The last observation
is the last absolute time point of any history for this element. Note that the
set of updates of the histories may also vary in its length. It may contain
only the observations for the next timepoint in line, but it also can contain
updates over several timepoints. Figure 9.4 shows the continuous world
setting. In the continuous world, time is measured absolutely, i.e. the time
stamp for each event is equal to its last observation within the whole data
set. As the data stream progresses, updates for histories are delivered (e.g.,
for H3), or new histories are started (e.g., for H7). For example, the last
observation for state 7 of the automaton is t1. As more and more data is

154 CHAPTER 9. ONLINE PRTA INDUCTION

recorded, state 7 is not observed anymore and thus is out of date at time
point t2. Therefore, it is removed from the automaton. The same is true for
transition q1 → q1 (not illustrated in the histories). As time progresses, a
new state 7∗ (indicated by dashed circles) is observed and also included in
the data set. Note that these are updates and thus there is only one time
line and the time stamp always increase.

Algorithmic Adjustments

To adapt the presented algorithm for concept drift, each element (states and
transitions) of the automaton must be annotated with a label that shows
when this element was observed the last time. If such an element then be-
comes out of date, it must be deleted from the automaton. How this is
achieved in detail is presented in the following.

Repeated World Adjustments Beginning with the automaton that is
(also incrementally) created with a first bag of histories, the algorithm re-
ceives updates of histories (bags) as input. Thus, each update comes along
with a label that defines the current time stamp. In the repeated world,
histories are loaded in bags and processed like in the standard incremental
setting. Additionally, each element of the automaton is assigned a time-
stamp that defines when it was observed the last time: A PRTA that is also
able to model concept drift is defined as tuple Γ = (Q,

∑
, T, S, F, Z) (cf.

Section 9.1.1), where Z is a mapping that gives for each state and transi-
tion the number of timesteps that have elapsed since their last observation:
Z = {(o ∈ Q ∪ T, k ∈ N+)}. The timepoint is the timestamp of the bag
and not the timestamp of the history because the change of the whole pro-
cess shall be explored. Each history update is integrated as described above
into the existing automaton. Additionally, the last observation timepoint
of the elements (state or transition) which are covered during the integra-
tion process is updated to the current bag timepoint. This is achieved by a
simple hash structure. After all histories of the bag are processed, outdated
elements are deleted from the automaton. This is the case if the element’s
time stamp is too old compared to the current bag’s time stamp. Note that
the threshold o, when an element is out of date, is specified by the user.

Continuous World Adjustments Beginning with the automaton that
is created (also incrementally) with a first set of histories, the algorithm
receives updates of specific histories as input: For each history the set of
newly observed events is given as input. This includes that the last event
of the history is the first event of the history-update so that the starting
point for each history can be deduced. Each history-update is integrated
as described before into the existing automaton. Additionally, each element

9.2. EXPERIMENTS 155

(state or transition) that is covered during the integration process is up-
dated to the most recent element observation time point. After each history
update was processed, outdated elements are again deleted from the au-
tomaton. However, if the data source cannot store the last event of each
history, the implementation of this setting may be expensive. Then, this
assignment must be done within the automaton’s structure. Therefore, we
do not concentrate on this setting in the experimental section but only on
the repeated world setting.

9.2 Experiments

This section presents stability results, the performance on real world data
sets and finally shows how the algorithms works on a data set with concept
drift.

9.2.1 Performance on Stream Setting Without Concept Drift

This section addresses the algorithm’s stability, which will be tested on
the synthetic data set and then shown on real world data sets. For the
stability experiments, first, a bootstrap analysis presents how often the true
underlying structure of the automaton is rediscovered. Second, we show how
the size of the histories influences these results. Last, we present how the
runtime of the algorithm and the final number of states depends on the three
standard parameters input data size, history length and minimum support.
To show the applicability of such a model, we applied the algorithm on
several real world data sets. Note that we will not address the quality of the
clustering because this was already evaluated in Chapter 5.

Stability Analysis

This section shows the results of the experiment in a bootstrap evaluation.
The task is to extract the correct structure of a predefined automaton (cf.
Section 3.1.1). To compare the final automaton to the predefined one, the
measures ∆States, LStates and the F -Measure, introduced in Section 3.2, are
taken into account.

Rediscovery of a Known Automaton The results of the bootstrap
analysis for the synthetic data set indicate that the proposed solution is
able to find the correct number of states and transitions although it tends
to create to many states (cf. Figure 9.5b). Additionally, the distance from
the induced states to their closest original is also very small (cf. Figure
9.5d). Comparing these results to the PRTA induction with a previous
PTA-creation 5 (Figures 9.5a to 9.5e), a minimal performance decrease can
be observed, which is owed to the fact that not all events are observable right

156 CHAPTER 9. ONLINE PRTA INDUCTION

●●●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●

●

●●●●

●●●

●●

●

●●●●●

●

●

●

●●

●

●●

●●

●● ●●●

●

●●●●●

●

●

●

●●

●●●●

●

●

●

●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●● ●●●

●

●

●

●

●

●

●● ●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●●●

●●●●●●●

●●●

●●●

●●●●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●●

●

●●●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●

●●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●●●●●●●

●

●

●

●

●●

●

●

●

●●●●●● ●●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●●●●

−
8

−
6

−
4

−
2

0
2

4

	sampling with replacement
percentage sampled

di
ffe

re
nc

e
in

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(a) ∆States

●●●

●

●●●●

●

●

●

●●

●●●●●●

●

●

●●

●●

●

● ●●●●●●

●

●●

●

●●●●●●●●

●

●●●

●●

●

●●

●●

●

●●

●●●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●●

●

●●●

●●●

●

●

●

●●

●

●●●●

●

●●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●●

●●

●

●●●

●

●

●●●

●●●●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●●

●●●

●●●

●

●●●●

●

●●

●●

●●●●●●

●

●●●

●

●

●

●●

●●

●●●

●

●

●

●●●●●●

●●●

●

●

●

●●

●●

●●

●●●●

●

●

●●●

●

●

●

●●●

●●

●●

●●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●●●●●●●

●

●●

●●

●

●

●●●●●●●

●

●●●●●●

●●

●●

●

●●●●●●●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●●●● ●

●

●

●●●

●

●

●

●

●●●● ●●

●

●

●

●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●

●●

●

●●●●●

●

●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

−
8

−
6

−
4

−
2

0
2

4

	sampling with replacement
percentage sampled

di
ffe

re
nc

e
in

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(b) ∆States

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

	sampling with replacement
percentage sampled

eu
cl

id
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(c) LStates

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

	sampling with replacement
percentage sampled

eu
cl

id
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

0 10 20 30 40 50 60 70 80 90 100

(d) LStates

F−Measure

F
re

qu
en

cy

0.6 0.7 0.8 0.9 1.0

0
20

40
60

80
10

0
12

0
14

0

(e) F-Measure of learned transitions

F−Measure

F
re

qu
en

cy

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0
50

10
0

15
0

(f) F-Measure of learned transitions

Figure 9.5: Accuracy of the induced PRTA compared to an approach using
a PTA [76]. Figures 9.5a - 9.5e show the results when including a previous
PTA construction, Figures 5.7b - 5.7f show the results for the proposed
approach.

9.2. EXPERIMENTS 157

History length (ds = 10000) Data set size (hl = 100)

hl runtime #states ds runtime #states

10 3.9 21.5 100 0.96 12.5
50 10.8 23.6 1000 2.96 18.9

100 21.1 25.6 5000 10.17 22.7
500 137.8 28.0 10000 20.96 25.6

1000 419.5 30.3 50000 191.76 26.5
100000 725.27 29.9

Table 9.1: Runtime (sec) and number of states for different history lengths
and data set sizes

at the beginning and thus, the online approach is introducing errors at the
beginning. Overall, the accuracy loss compared to an approach that uses a
PTA creation are almost negligible. In contrast, the online approach is able
to include more information than the batch approach and may thus produce
much more specific profiles and more accurate transition probabilities. A
further investigation concerning the RR of a state shows that all states are
learned well except state 7 (not illustrated). This may be due to the small
transition probability from state 6 to state 7 and its high similarity to state
2, so that the events of this state are only rarely observed, or often misplaced
in a wrong cluster.

Influence of the History Length We repeated the bootstrap analysis
to evaluate the influence of the history length (hl) on the number of final
states and their profiles’ accuracy. Therefore, data sets having different
history lengths (100, 1000, 10000) have been used. Figure 9.6 illustrates
that the longer the histories, the better the induced profiles match those of
the original automaton. However, this comes along with many more states
(cf. Figure 9.6a). This can be explained by more exceptions that are present
in the data for longer histories.

Number of States and Runtime Depending on History Length,
Minimum Support and Data Set Size The next evaluation addresses
the algorithm’s dependency on its main parameters: data set size ds, mini-
mum support ms and history length (hl). We calculate the runtime and final
number of states for 10 different data sets of the synthetic automaton for
each value of hl, ds and ms. The standard parameter values are ms = 0.5,
hl = 100 an ds = 10000. Table 9.1 gives the final average number of states
and runtime (in sec) for different values of hl and ds, while Figure 9.7 illus-
trates the behavior for various minimum supports over all data sets. Table
9.1 shows that the actual runtime is linearly dependent on hl and also nearly
linear with increasing ds. For both parameters, the number of final states

158 CHAPTER 9. ONLINE PRTA INDUCTION

0

10

20

30

40

50

	Sampling with replacement
Percentage sampled

E
uc

lid
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

5 15 25 35 45 55 65 75 85 95

(a) ∆States for all history lengths

0.0

0.1

0.2

0.3

0.4

0.5

0.6

	Sampling with replacement
Percentage sampled

E
uc

lid
ea

n
di

st
an

ce
 to

 o
rig

in
al

 s
ta

te
s

5 15 25 35 45 55 65 75 85 95

(b) LStates for all history lengths

Figure 9.6: Stability of the online algorithm for the proposed approach
((yellow, green, blue): hl = (100, 1000, 10000)) Difference of states (Top)
and Euclidean distance (Bottom) for the induced automaton to the true
automaton structure.

9.2. EXPERIMENTS 159

15

20

25

30

Minimum Support

R
un

tim
e

(g
re

en
)

an
d

N
um

be
r

of
 S

ta
te

s
(g

ol
d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 9.7: Number of final states (yellow) in the automaton and the corre-
sponding average runtime in sec (green) for a varying minimum support.

increases, which is to be expected as the more data is present, the more
exceptions (and thus new patterns) occur. For such exceptions new states
are created. However, the final number of states is quite small compared
to the number of events in the data set (10,000,000), which shows that the
algorithm can compress the patterns in the data. Figure 9.7 illustrates that
the runtime is quite stable with different numbers of ms, while the number
of final states decreases. This can be explained by the fact that if the min-
imum support increases, more and more instances in a cluster must cover
the representative pattern. This can only be achieved if the representative
pattern is small. Then, more instances cover this pattern and are added to
the cluster. Therefore, fewer clusters are found.

Runtime Comparison of the Approach To illustrate the advantages
of the genuine online approach, we compared its runtime (cf. Table 9.1) to
the approach that first creates a PTA and subsequently runs the proposed
online clustering (cf. Chapter 5)[76]. Such an approach needs 2,6 s on
average (hl = 100) for ds = 100, 333 s for ds = 1000 and already 9 hours for
ds = 5000. This extreme difference is mainly due to the merging procedure,
which takes very long. However, even the creation of the histories, the PTA
and the subsequent clustering lasts approximately 17 s, which is still above
the runtime of the online approach.

160 CHAPTER 9. ONLINE PRTA INDUCTION

Hepatitis data set

ds 50 100 200 400 600 900 1K 1236

s 6 11 18 37 54 75 81 90

Disease group data set

ds 100 1K 5K 10K 50K 100K 147656

s 1 1 2 2 8 24 51

Table 9.2: Runtime (sec) on the Hepatitis data set for different data set
sizes (ds)

Performance on the Real World Data Sets

This section presents results of the proposed method for real world medical
and biological data sets. Therefore, the Hepatitis, disease group and yeast
data set have been used and their results are now discussed consecutively.
First, the runtime of the approach is tested on the Hepatitis data set. Table
9.2 gives the results and shows that even for such a ‘hard’ (because it has a
lot of attributes and long histories) data set, the runtime is reasonably low.
Note that although the number of instances is only 1236, this Hepatitis data
set includes 52,520 single events, due to the long histories. The main time
consuming step here is the clustering and not the collapse method. The re-
sulting automaton can be used to foresee how the blood values will develop
based on the current blood values.
The same evaluation was run for the first disease group data set (P10), for
which the runtime is also shown in Table 9.2 (lower part). Here, the algo-
rithm is faster as there are less attributes and shorter histories given. Again,
the runtime is reasonable for the given application. Interestingly, the algo-
rithm identifies a stable number of states (52) for data sets with more than
5000 histories. When applying our approach on the second disease group
data set (P01), the resulting automaton identifies 181 states within a total
runtime of about 2 minutes. This shows that even with a larger number of
attributes, the approach is still fast. Moreover, the number of states does
also not increase for data sets larger than 5000 histories. The stable num-
ber of states for both data sets suggests that all important patterns in the
data have been found. Although the final number of transitions increases
for larger data sets, the ratio of new transitions decreases. We thus can
expect that even the number of transitions will be fixed at a certain data
set size. PRTA learning based on DIANA clustering [76] is not included in
this comparison as even for the smallest data set it runs out of memory and
needs longer than the online approach on the largest data set.
Regarding the structural properties of the resulting automaton for data set
P10, we observe that most states have short representatives (MFPs): mostly,
they consist of one to three DGs. The full profile then comprises the repre-

9.2. EXPERIMENTS 161

sentative DGs and may additionally have exceptional DGs. 20% of the states
cover more than 50 events, while about the same amount captures less than
5 events. There are no states with no in/outgoing transitions except two
states, which shows that different disease phases of different persons have
been well combined in the automaton. Thus, the automaton is a generaliza-
tion of the individual patient histories. There are also several hubs, which
combine events that share very frequent DGs. Moreover, plenty of excep-
tional DGs are found in the profiles of the hubs. Such a state reflects very
frequent disease phases along with all possible comorbidities. However, the
additional diseases may be regarded as random side effects as their do not
occur as often as the main disease. Overall, many states focus on the DGs
hypertension, diabetes or heart problems, i.e. these DGs have a frequency
of more than 90% in the resulting profile. This makes sense in a way as
these are also the most common diseases, which are then represented along
with their accompanying diseases. The transitions in this automaton reflect
the probability of a change in the disease status, i.e. whether new diseases
arise or others are cured or not coded anymore. For the most hubs there is
no one main transition, but several having a moderate probability. Non-hub
states, in contrast, are associated with such a main transition but this can
still be regarded as a random effect, because there are not so many patient
histories included. Overall, the automaton shows which disease patterns
exist in this specific population and how probable transitions from one to
another disease status can be.
The last experiment addresses the biological knowledge that can be inferred
from such an automaton. Figure 9.8 is the final automaton for the yeast data
set. The states’ profiles show which gene is active at which timepoint and
therefore, the metabolism of the cell. The overall structure of the automaton
shows that the cell in this experiment undergoes a cycle in the gene expres-
sion. This is known to be the cell cycle. Besides, a known resting phase is
modeled by the delay guard (ϕ = [1, 2]) on transition 1 to 2 that shows that
the cell can either step forward to the very next cell stage or wait. All these
experiments show that a PRTA can correctly identify the stages of life in a
population or of individuals, annotate them with important properties and
can thus reflect the dynamics in such systems.

9.2.2 Performance on Stream Setting With Concept Drift

Finally, the approach is tested in a setting with concept drift. Therefore,
we created a data set that is based on three different underlying automata
that are derived from the one shown in Figure 3.1. This illustrates the
repeated world (cf. Section 9.1.4) setting, where after a certain time span
the underlying process changes, i.e. different automata should be found. The
first automaton is the standard automaton. For the second one (the second
concept), state 7 was deleted as well as transitions 1 → 1 and 3 → 4. The

162 CHAPTER 9. ONLINE PRTA INDUCTION

Figure 9.8: Result of the approach on the yeast data set. The black and
white squares represent the values of the genes in the state’s profile. The
darker, the higher its values.

ds 100 500 1000 5000 10000 50000 100000

s 1 2.3 3.4 11 23 202 745

Table 9.3: Mean runtime (in seconds) for the data set including concept
drift for different data set sizes (ds)

second derived automaton (concept three) includes a state 7∗ with profile
[4,8] and additional transitions. Using these concepts, the first bag of the
data set is created by using the original automaton, the second and the
third bag with the first and second derived automaton (cf. Figure 9.3,
right). Then, the algorithm was applied with o = 1 (cf. Section 9.1.4). The
concept changes are well identified for small error ratios (not illustrated).
As for larger error ratios the clustering is also harder, the quality of the
inferred automata decreases. Table 9.3 shows how the search for concept
drift affects the runtime. The runtime is only slightly longer than for the
approach that does not account for concept drift. We thus can conclude
that the approach may also be valuable for problems with concept drift.

9.3 Conclusion

In this chapter, we introduced a method to induce PRTAs online. Therefore,
we leave out the PTA construction step and instead collapse the histories

9.3. CONCLUSION 163

before merging them with a pre-existing PRTA. Still, this merging is based
on an online clustering method. Besides, we discuss how this approach can
handle data streams with concept drift. The experiments on synthetic and
real world data sets showed that the method is stable, scalable and can cap-
ture patterns from the application domain. Most importantly, we discussed
the application of this method for the induction of PRTAs on health care
data. The resulting automaton reflects the progression of diseases within a
whole population along with the probabilities of health status changes. For
future work, we first want to improve the accuracy of transitions, for which
up to now the false positive rate is still too high. Therefore, we consider a
hypothesis test that defines whether a transition having a very small prob-
ability is more likely noise or an exception in the data. Finally, we want to
apply the automaton on large gene expression data sets that cover expres-
sion ratios over a long time period in order to discover different cell stages
on a more detailed level.

164 CHAPTER 9. ONLINE PRTA INDUCTION

Chapter 10

Summary and Outlook

In the last chapter of this thesis, the main contributions are summarized
and an outlook on possible future research is given.

10.1 Summary

This thesis is concerned with the induction of process models for multivariate
time series, e.g. the progression of diseases within a population. There, a
model is desired for the development of the health status (combination of
diseases) of each individual. The main problems are that the model should
be easy to understand, e.g. by a graphical representation, it should be
able to model process cycles, give probabilities of generalized events, and
incorporate time. Therefore, we have introduced a new type of model to
mine patterns in processes. Until now, processes were mainly described
by models like HMMs or Petri Nets, which address important aspects of
process mining. However, some features of each model, e.g. the ability to
model time (cf. Chapter 2), have not yet been included in the corresponding
other model types.

1. Our first contribution is an approach to identify a probabilistic graph-
ical model (a probabilistic real time automaton [PRTA]) that (a) is
able to automatically identify multi-variate events in a given process
log, (b) allows for the inclusion of time-dependent queries, (c) can
represent cycles if they are to be found in the data and, (d) is able to
identify (at least up to a certain level) events in the presence of noise.

2. Secondly, this approach was enhanced to be able to handle large data
sets. This was done by first,

• introducing a data structure (augmented itemset tree [AIST]) to
efficiently mine maximal frequent patterns in data streams. The
main feature of this approach is that (a) it focuses on mining online

165

166 CHAPTER 10. SUMMARY AND OUTLOOK

sparse datasets (having nevertheless many features) with (b) large
frequent patterns and (c) for which the set of maximal frequent
patterns shall be extracted after each new instance.

• Then, this data structure was applied within the PRTA-framework
(scalable PRTA (SPRTA)), in particular to handle the special dataset
characteristics, which are, sparseness, high dimensionality and mag-
nitude. Using the AIST for the induction of PRTAs instead of the
previously used Diana-based approach, resulted in faster runtimes,
better discriminable profiles and even in a better capability to iden-
tify predefined model structures.

3. Third, we investigated how to include user constraints into a PRTA.
The challenge here was to find a way to express specific types of con-
straints and incorporate them into the PRTA framework. This had
not been described nor used before.

• Our first step was to provide a language to describe constraints at
the attribute level for clustering, i.e. the user may describe the prop-
erties of the resulting clusters. In contrast to previous constraints,
this type of condition may cause lower specification cost compared
to using, e.g. instance-level constraints.

• Having introduced and evaluated the new type of constraint, we
presented a method to incorporate them in the SPRTA framework.
We showed how they can be used next to the maximal frequent pat-
tern based clustering procedure (constrained SPRTA (CSPRTA)).
Experiments using such constraints show their applicability in the
domain of biology and medicine.

4. Last, we extended the SPRTA-approach to handle data streams of
process logs. The first problem was to eliminate the step of the PTA-
creation, upon which the clustering depends. Second, we addressed
concept drift, which occurs frequently in data streams. Both aspects
have been included in the SPRTA approach which resulted in the on-
line PRTA (OPRTA) method.

We hope PRTAs cannot only be applied in the presented applications
but may also be adopted to fit other application problems. Certainly, there
are ways to incorporate some of the PRTA’s features into HMMs or Petri
nets so that an even better understanding and modeling of processes can be
achieved. Then, each of these models will be able to model one aspect of
process mining best so that a combination of all of these models may reflect
every aspect of the process.

10.2. OUTLOOK 167

10.2 Outlook

Although the initial PRTA-induction method was improved in several as-
pects, there is ample room for further research. In this work, we have
addressed a specific problem setting of the medical domain with a specific
data set. This data set is very large, has many attributes, but is neverthe-
less sparse. For such a data set the SPRTA is very well adapted. However,
for denser datasets (one could think of a population which is very sick), the
SPRTA framework is not appropriate because the space of frequent patterns
cannot be examined in an efficient manner. For denser data sets, one may
thus either adopt the AIST framework or incorporate another frequent pat-
tern miner.
Besides, if the AIST data structure should be applied to other problems
that need a much smaller minimum frequency threshold, it must also be
improved as it is currently not able to handle thresholds smaller than 0.08
efficiently. Using closed sets may be a first idea to tackle this problem.
Regarding the inclusion of background knowledge, there may of course also
exist constraints that still cannot be expressed in the given language. That
may be the case if a constraint cannot be expressed by basic logical expres-
sions but needs a higher level of logic (e.g. including functions). Consider,
for example, that all instances with a specific number of attributes must be
put in one cluster. Besides, another natural extension in this field would be
to provide a constraint that disallows an instance being clustered in a group
because of a combined condition regarding its characteristics.
In general, the (S|O)PRTA framework should be further tested on other do-
mains, to validate its applicability. We think that there are still quite a few
improvements possible to increase the PRTA’s expressive power. Therefore,
we already thought about learning relations on the transitions that may
summarize or even generalize the events that are annotated on the transi-
tions. Logical learning would certainly fit very well for this problem.
Additionally, we have already started to include a statistical test to separate
noise from exceptions in the data. This hypothesis test was incorporated
into the PRTA-framework by Verwer et al. [96]. First results are encourag-
ing and show that it may be possible to detect exceptions and keep them
in the profiles, rather than to discard them. Finally, we hope that this type
of model complements the set of existing process models and finds many
applications.

168 CHAPTER 10. SUMMARY AND OUTLOOK

Chapter 11

Bibliography

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules
between sets of items in large databases. In SIGMOD ’93: Proceedings
of the 1993 ACM SIGMOD international conference on Management
of data 1993, pages 207–216. ACM, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In VLDB ’94: Proceedings of the 20th Inter-
national Conference on Very Large Data Bases, pages 487–499, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[3] H. Ahonen, H. Mannila, and E. Nikunen. Forming grammars for struc-
tured documents: an application of grammatical inference. In ICGI
’94: Proceedings of the Second International Colloquium on Gram-
matical Inference and Applications, pages 153–167. Springer-Verlag,
1994.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[5] D. Arlia and M. Coppola. Experiments in parallel clustering with
DBSCAN. In Euro-Par ’01: Proceedings of the 7th International Euro-
Par Conference Manchester on Parallel Processing, pages 326–331.
Springer-Verlag, 2001.

[6] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains. The Annals of Mathematical Statistics, 41(1):164–
171, 1970.

[7] J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based min-
ing of formal concepts in transactional data. In Proceedings of the
Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia
Conference, PAKDD 2004, pages 615–624. Springer-Verlag, 2004.

169

170 CHAPTER 11. BIBLIOGRAPHY

[8] S. Blachon, R. Pensa, J. Besson, C. Robardet, J.-F. Boulicaut, and
O. Gandrillon. Clustering formal concepts to discover biologically rel-
evant knowledge from gene expression data. In Silico Biology, 7(4-
5):467–83, 2007.

[9] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style
learning of nfa. In Proceedings of the 21st international jont conference
on Artifical intelligence, IJCAI’09, pages 1004–1009, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[10] W. Boomsma, J. Kent, K. Mardia, C. Taylor, and T. Hamelryck.
Graphical models and directional statistics capture protein structure.
Interdisciplinary Statistics and Bioinformatics, pages 91–94, 2006.

[11] E. Brändle. Bachelor thesis: A framework for attribute-constrained
clustering, 2010.

[12] R. C. Carrasco and J. Oncina. Learning stochastic regular grammars
by means of a state merging method. In Proceedings of the Second
International Colloquium on Grammatical Inference and Applications,
pages 139–152, London, UK, 1994. Springer-Verlag.

[13] R. C. Carrasco and J. Oncina. Learning deterministic regular gram-
mars from stochastic samples in polynomial time. RAIRO (Theoretical
Informatics and Applications), 33:1–20, 1999.

[14] J. Castro and R. Gavaldà. Towards feasible PAC-learning of proba-
bilistic deterministic finite automata. In Proceedings of the 9th inter-
national colloquium on Grammatical Inference: Algorithms and Appli-
cations, ICGI ’08, pages 163–174, Berlin, Heidelberg, 2008. Springer-
Verlag.

[15] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Closed patterns
meet n-ary relations. ACM Transactions on Knowledge Discovery from
Data, 3:1–36, 2009.

[16] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong. Maintenance of dis-
covered association rules in large databases: An incremental updating
technique. In Proceedings of the Twelfth International Conference on
Data Engineering (ICDE), pages 106–114. IEEE Computer Society,
1996.

[17] W. Cheung and O. R. Zaiane. Incremental mining of frequent patterns
without candidate generation or support. In IDEAS ’03: Proceedings
of the 7th International Database Engineering and Applications Sym-
posium 2003, pages 111–116. IEEE Computer Society, 2003.

171

[18] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Moment: Maintaining
closed frequent itemsets over a stream sliding window. In Proceedings
of the fourth IEEE International Conference on Data Mining, pages
59–66. IEEE Computer Society, 2004.

[19] K. C. Chipman and A. K. Singh. Using stochastic causal trees to aug-
ment Bayesian networks for modeling eQTL datasets. BMC Bioinfor-
matics, 12:7, 2011.

[20] D.-Y. Chiu, Y.-H. Wu, and A. Chen. Efficient frequent sequence min-
ing by a dynamic strategy switching algorithm. The VLDB Journal,
18:303–327, 2009.

[21] A. Clark. Towards general algorithms for grammatical inference. In
Algorithmic Learning Theory, pages 11–30, 2010.

[22] A. Clark and F. Thollard. PAC-learnability of probabilistic determin-
istic finite state automata. Journal of Machine Learning Research,
5:473–497, Dec. 2004.

[23] B.-R. Dai, C.-R. Lin, and M.-S. Chen. Constrained data clustering
by depth control and progressive constraint relaxation. The VLDB
Journal, 16(2):201–217, 2007.

[24] I. Davidson and S. Ravi. The complexity of non-hierarchical clus-
tering with instance and cluster level constraints. Data Mining and
Knowledge Discovery, 14:25–61, 2007.

[25] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility
issues and the k-means algorithm. In Proceedings of the fifth SIAM
Data Mining Conference, pages 138–149, 2005.

[26] I. Davidson and S. S. Ravi. Towards efficient and improved hierarchical
clustering with instance and cluster level constraints. Technical report,
State University of New York, Albany, 2005.

[27] C. de la Higuera. A bibliographical study of grammatical inference.
Pattern Recognition, 38(9):1332–1348, September 2005.

[28] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and
A. J. M. M. Weijters. Process mining: Extending the α-algorithm to
mine short loops. In Beta Working Paper Series Eindhoven University
of Technology, 2004.

[29] C. Dima. Real-time automata. Journal of Automata, Languages and
Combinatorics, 6(1):3–24, 2001.

172 CHAPTER 11. BIBLIOGRAPHY

[30] P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic au-
tomata and hidden Markov models: probability distributions, learning
models and induction algorithms. Pattern Recognition, 38(9):1349–
1371, Sept. 2005.

[31] S. Džeroski, V. Gjorgjioski, I. Slavkov, and J. Struyf. Analysis of
time series data with predictive clustering trees. In Proceedings of
the 5th international conference on knowledge discovery in inductive
databases, KDID’06, pages 63–80. Springer-Verlag, 2007.

[32] A. Floratou, S. Tata, and J. M. Patel. Efficient and accurate discovery
of patterns in sequence datasets. In ICDE 2010: Proceedings of the
26th International Conference on Data Engineering, pages 461–472.
IEEE Computer Society, 2010.

[33] B. J. Frey and N. Jojic. A comparison of algorithms for inference
and learning in probabilistic graphical models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27:1392 – 1416, 2005.

[34] N. Friedman, I. Nachman, and D. Peér. Learning bayesian network
structure from massive datasets: The ”sparse candidate” algorithm.
In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 206–215, 1999.

[35] M. Fukuzaki, M. Seki, H. Kashima, and J. Sese. Finding itemset-
sharing patterns in a large itemset-associated graph. In Proceedings of
the 14th Pacific-Asia conference on Advances in Knowledge Discovery
and Data (2), volume 6119 of Lecture Notes in Computer Science,
pages 147–159, 2010.

[36] R. Gavaldà, P. W. Keller, J. Pineau, and D. Precup. PAC-learning of
Markov Models with hidden state. In 17th European Conference on
Machine Learning 2006 (ECML 2006), pages 150–161, 2006.

[37] H. Gensler. Introduction to Logic. Routledge, 2001.

[38] Z. Ghahramani. Learning dynamic Bayesian networks. In Adaptive
Processing of Sequences and Data Structures, pages 168–197. Springer-
Verlag, 1998.

[39] A. Hafez, J. Deogun, and V. V. Raghavan. The item-set tree: A data
structure for data mining. In DaWaK ’99: Data Warehousing and
Knowledge Discovery, pages 183–192. Springer, 1999.

[40] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2006.

173

[41] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD
international conference on management of data, pages 1–12. ACM,
2000.

[42] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2 edition,
2009.

[43] C. D. L. Higuera and J. Oncina. Learning probabilistic finite au-
tomata. In Grammatical Inference: Algorithms and Applications, Pro-
ceedings of the International Conference on Grammatical Inference
(ICGI 04), volume 3264 of LNAI, pages 175–186. Springer-Verlag,
2004.

[44] C. D. L. Higuera, J. Oncina, and E. Vidal. Identification of DFA: data-
dependent vs. data-independent algorithms. In Proceedings of the 3rd
International Colloquium on Grammatical Inference: Learning Syntax
from Sentences, pages 313–325. Springer-Verlag, 1996.

[45] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian
model averaging: A tutorial. Statistical science, 14(4):382–417, 1999.

[46] L. Hubert and P. Arabie. Comparing partitions. Journal of Classifi-
cation, (1):193–218, 1985.

[47] J. Kalbfleisch. Probability and Statistical Inference: Vol. 2: Statistical
Inference. Springer, 1985.

[48] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. An intro-
duction to cluster analysis. Wiley, 1990.

[49] K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards dis-
covering structural signatures of protein folds based on logical Hidden
Markov Models. In R. Altman, A. Dunker, L. Hunter, T. Jung, and
T. Klein, editors, Proceedings of the Pacific Symposium on Biocom-
puting (PSB-03), pages 192–203. World Scientific, 2003.

[50] H. A. Kestler, J. M. Kraus, G. Palm, and F. Schwenker. On the effects
of constraints in semi-supervised hierarchical clustering. In Artificial
Neural Networks in Pattern Recognition, pages 57–66. Springer, 2006.

[51] R. Kindermann and J. L. Shell. Markov Random Fields and Their Ap-
plications (Contemporary Mathematics; V.1). American Mathematical
Society, 1980.

[52] R. Küffner, T. Petri, L. Windhager, and R. Zimmer. Petri nets with
Fuzzy Logic (PNFL): Reverse engineering and parametrization. PLoS
One, 5:e12807, 09 2010.

174 CHAPTER 11. BIBLIOGRAPHY

[53] D. Lee and W. Lee. Finding maximal frequent itemsets over online
data streams adaptively. In Proceedings of the Fifth IEEE Interna-
tional Conference on Data (ICDM 2005), pages 266–273, 2005.

[54] H.-S. Lee. Incremental association mining based on maximal itemsets.
In R. Khosla, R. J. Howlett, and L. C. Jain, editors, KES (1), volume
3681 of Lecture Notes in Computer Science, pages 365–371. Springer,
2005.

[55] C. K.-S. Leung, Q. I. Khan, Z. Li, and T. Hoque. Cantree: a canonical-
order tree for incremental frequent-pattern mining. Knowledge and
Information Systems, 11(3):287–311, 2007.

[56] E. Levin and R. Pieraccini. Dynamic planar warping for optical char-
acter recognition. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, volume 3, pages 149–152.
IEEE Computer Society, 1992.

[57] H. Li, Z. Wei, and J. Maris. A hidden Markov random field model
for genome-wide association studies. Biostatistics, 11(1):139–150, Jan.
2010.

[58] H.-F. Li, S.-Y. Lee, and M.-K. Shan. Online mining (recently) maximal
frequent itemsets over data streams. In Proceedings of the 15th Inter-
national Workshop on Research Issues in Data Engineering: Stream
Data Mining and Applications, RIDE ’05, pages 11–18, 2005.

[59] W. Lian, D. W. Cheung, and S. M. Yiu. Maintenance of maximal
frequent itemsets in large databases. In Proceedings of the 2007 ACM
Symposium on Applied Computing, SAC ’07, pages 388–392. ACM,
2007.

[60] H.-A. Loeliger. An Introduction to factor graphs. IEEE Signal Pro-
cessing Magazine, 21(1):28–41, Jan. 2004.

[61] M. M. Masud, T. Al-Khateeb, L. Khan, C. C. Aggarwal, J. Gao,
J. Han, and B. M. Thuraisingham. Detecting recurring and novel
classes in concept-drifting data streams. In D. J. Cook, J. Pei,
W. Wang, O. R. Zäıane, and X. Wu, editors, 11th IEEE International
Conference on Data Mining, ICDM 2011, pages 1176–1181, 2011.

[62] B. Merialdo, J. Jiten, and B. Huet. Multi-dimensional dependency-
tree hidden Markov models. In ICASSP 2006, 31st IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2006.

[63] B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and Mining Fre-
quent Patterns from Large Windows over Data Streams. In ICDE ’08:

175

Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, pages 179–188. IEEE Computer Society, 2008.

[64] M. Mueller and S. Kramer. Integer linear programming models for
constrained clustering. In B. Pfahringer, G. Holmes, and A. Hoffmann,
editors, Discovery Science, volume 6332 of Lecture Notes in Computer
Science, pages 159–173. Springer, 2010.

[65] H. Nam, K. Lee, and D. Lee. Identification of temporal association
rules from time-series microarray data sets. BMC Bioinformatics,
10(Suppl 3):S6, 2009.

[66] A. Omari, R. Langer, and S. Conrad. Tartool: A temporal dataset gen-
erator for market basket analysis. In Advanced Data Mining and Ap-
plications, volume 5139 of Lecture Notes in Computer Science, pages
400–410. Springer, 2008.

[67] D. Patnaik, P. Butler, N. Ramakrishnan, L. Parida, B. J. Keller, and
D. A. Hanauer. Experiences with mining temporal event sequences
from electronic medical records: initial successes and some challenges.
In C. Apté, J. Ghosh, and P. Smyth, editors, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD2011), pages 360–368, 2011.

[68] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., 1988.

[69] H.-K. Peng, P. Wu, J. Zhu, and J. Y. Zhang. Helix: Unsupervised
grammar induction for structured activity recognition. In D. J. Cook,
J. Pei, W. Wang, O. R. Zäıane, and X. Wu, editors, 11th IEEE Inter-
national Conference on Data Mining, ICDM 2011, pages 1194–1199,
2011.

[70] R. Pensa, J.-F. Boulicaut, F. Cordero, and M. Atzori. Co-clustering
numerical data under user-defined constraints. Statistical Analysis and
Data Mining, 3(1):38–55, 2010.

[71] R. Pensa, C. Robardet, and J. F. Boulicaut. Constraint-driven co-
clustering of 0/1 data. In S. Basu, I. Davidson, and K. Wagstaff,
editors, Constrained Clustering: Advances in Algorithms, Theory and
Applications, pages 123–148. Chapman & Hall/CRC Press, 2008.

[72] L. R. Rabiner. A tutorial on Hidden Markov Models and selected ap-
plications in speech recognition. In Proceedings of the IEEE Readings
in speech recognition, volume 77, pages 257–286. Morgan Kaufmann
Publishers Inc., 1989.

176 CHAPTER 11. BIBLIOGRAPHY

[73] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage
of acyclic probabilistic finite automata. In COLT ’95 Proceedings of
the eighth annual conference on computational learning theory, pages
31–40. ACM Press, 1995.

[74] M. Rowicka, A. Kudlicki, B. P. Tu, and Z. Otwinowski. High-
resolution timing of cell cycle-regulated gene expression. Proceedings
of the National Academy of Sciences of the United States of America,
104(43):16892–16897, 2007.

[75] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm
for mining association rules in large databases. In U. Dayal, P. M. D.
Gray, and S. Nishio, editors, VLDB’95, Proceedings of 21th Interna-
tional Conference on Very Large Data Bases, pages 432–444. Morgan
Kaufmann, 1995.

[76] J. Schmidt, S. Ansorge, and S. Kramer. Scalable induction of prob-
abilistic real-time automata using maximum frequent pattern based
clustering. In Proceedings of the twelfth SIAM International Confer-
ence on Data Mining, SIAM DM’12, pages 272–283. Omnipress, 2012.

[77] J. Schmidt, E. Braendle, and S. Kramer. Clustering with attribute-
level constraints. In Proceedings of the 2011 IEEE International Con-
ference on Data Mining, pages 1206 – 1211. Springer-Verlag, 2011.

[78] J. Schmidt, A. Ghorbani, A. Hapfelmeier, and S. Kramer. Learning
probabilistic real time automata from multi attribute event logs. In-
telligent Data Analysis - Special Issue, 7(1), 2013.

[79] J. Schmidt, A. Hapfelmeier, W.-D. Schmidt, and U. Wollina. Improv-
ing wound score classification with limited remission spectra. Inter-
national Wound Journal, 9(2):189–98, 2012.

[80] J. Schmidt and S. Kramer. The augmented itemset tree: a data struc-
ture for online maximum frequent pattern mining. In Proceedings of
the 14th International Conference on Discovery Science, DS’11, pages
277–291. Springer-Verlag, 2011.

[81] J. Schmidt and S. Kramer. Learning Probabilistc Real Time Au-
tomata From Multi-Attribute Event Logs. TUM Technical Report
TUM-I1117, 2011.

[82] J. Schmidt and S. Kramer. Online induction of probabilistic real time
automata. In B. Goethals and G. Webb, editors, Proceedings of the
IEEE International Conference on Data Mining, 2012, pages 625–634.
IEEE Computer Society, 2012.

177

[83] M. Seeland, T. Girschick, F. Buchwald, and S. Kramer. Online struc-
tural graph clustering using frequent subgraph mining. In J. Balcazar,
F. Bonchi, A. Gionis, and M. Sebag, editors, Proceedings of the Euro-
pean Conference of Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, volume 3, pages 213–228, 2010.

[84] J. Sempere and P. Garćıa. A characterization of even linear lan-
guages and its application to the learning problem. In R. Carrasco
and J. Oncina, editors, Grammatical Inference and Applications, vol-
ume 862 of Lecture Notes in Computer Science, pages 38–44. Springer
Berlin/Heidelberg, 1994.

[85] J. Sese and S. Morishita. Itemset classified clustering. In Proceedings of
the 8th European Conference on Principles and Practice of Knowledge
Discovery in Databases, PKDD ’04, pages 398–409. Springer, 2004.

[86] S. Siddiqi, G. J. Gordon, and A. Moore. Fast state discovery for HMM
model selection and learning. In Proceedings of the Twelfth Interna-
tional Conference on Artificial Intelligence and Statistics, pages 40–47,
2007.

[87] M. Stoelinga. An introduction to probabilistic automata. Bulletin of
the European Association for Theoretical Computer Science, 78:176–
198, 2002.

[88] F. Thollard, P. Dupont, and C. d. l. Higuera. Probabilistic DFA in-
ference using Kullback-Leibler divergence and minimality. In Proceed-
ings of the Seventeenth International Conference on Machine Learn-
ing, ICML ’00, pages 975–982. Morgan Kaufmann Publishers Inc.,
2000.

[89] A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han.
Constraint-based clustering in large databases. In Proceedings of
the 8th International Conference on Database Theory, pages 405–419.
Springer, 2001.

[90] P. Valtchev, R. Missaoui, and R. Godin. A framework for incremental
generation of closed itemsets. Discrete Applied Mathematics, 156:924
– 949, 2008.

[91] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji. Generating fre-
quent itemsets incrementally: two novel approaches based on galois
lattice theory. Journal of Experimental & Theoretical Artificial Intel-
ligence, 14(2-3):115–142, 2002.

[92] W. van der Aalst, B. van Dongen, C. Günther, R. S. Mans, A. K. A.
de Medeiros, A. Rozinat, V. Rubin, M. Song, H. M. W. E. Verbeek,

178 CHAPTER 11. BIBLIOGRAPHY

and A. J. M. M. Weijters. ProM 4.0: Comprehensive support for
real process analysis. In J. Kleijn and A. Yakovlev, editors, ICATPN,
volume 4546 of Lecture Notes in Computer Science, pages 484–494.
Springer, 2007.

[93] W. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: A survey of issues and
approaches. Data & Knowledge Engineering, 47(2):237 – 267, 2003.

[94] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16:1128–1142, September 2004.

[95] S. Verwer and M. De Weerdt. An algorithm for learning real-time
automata. In M. van Someren, S. Katrenko, and P. Adriaans, editors,
Proceedings of the Sixteenth Annual Machine Learning Conference of
Belgium and the Netherlands (Benelearn), pages 128–135, 2007.

[96] S. Verwer, M. de Weerdt, and C. Witteveen. A likelihood-ratio test for
identifying probabilistic deterministic real-time automata from posi-
tive data. In J. M. Sempere and P. Garćıa, editors, ICGI’10 Proceed-
ings of the 10th international colloquium conference on grammatical
inference: theoretical results and applications, Lecture Notes in Com-
puter Science, pages 203–216, 2010.

[97] S. Verwer, M. de Weerdt, and C. Witteveen. The efficiency of iden-
tifying timed automata and the power of clocks. Special Issue: 3rd
International Conference on Language and Automata Theory and Ap-
plications (LATA 2009), 209(3):606–625, 2011.

[98] S. E. Verwer, M. M. de Weerdt, and C. Witteveen. Identifying an
automaton model for timed data. In Y. Saeys, E. Tsiporkova, B. D.
Baets, and Y. van de Peer, editors, Proceedings of the Annual Ma-
chine Learning Conference of Belgium and the Netherlands (Bene-
learn), pages 57–64, 2006.

[99] S. E. Verwer, M. M. de Weerdt, and C. Witteveen. Efficiently learn-
ing simple timed automata. In W. Bridewell, T. Calders, A. K.
de Medeiros, S. Kramer, M. Pechenizkiy, and L. Todorovski, editors,
Proceedings of the Second International Workshop on the Induction of
Process Models at ECML PKDD, pages 61–68, 2008.

[100] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained
k-means clustering with background knowledge. In Proceedings of
18th International Conference on Machine Learning (ICML-01), pages
577–584. Morgan Kaufmann, 2001.

179

[101] K. L. Wagstaff. Value, cost, and sharing: open issues in constrained
clustering. In KDID’06: Proceedings of the 5th international con-
ference on knowledge discovery in inductive databases, pages 1–10.
Springer, 2007.

[102] L. Wen, J. Wang, and J. Sun. Detecting implicit dependencies between
tasks from event logs. In X. Zhou, J. Li, H. Shen, M. Kitsuregawa,
and Y. Zhang, editors, Frontiers of WWW Research and Development
- APWeb 2006, volume 3841 of Lecture Notes in Computer Science,
pages 591–603. Springer, 2006.

[103] L. Wen, J. Wang, and J. Sun. Mining invisible tasks from event logs.
In G. Dong, X. Lin, W. Wang, Y. Yang, and J. Yu, editors, Advances
in Data and Web Management, volume 4505 of Lecture Notes in Com-
puter Science, pages 358–365. Springer, 2007.

[104] L. Windhager and R. Zimmer. Intuitive modeling of dynamic systems
with Petri nets and fuzzy logic. In German Conference on Bioinfor-
matics, pages 106–115, 2008.

[105] H. Yao, C. Butz, and H. Hamilton. Causal discovery. In The Data
Mining and Knowledge Discovery Handbook, volume 9, pages 945–955.
Springer, 2005.

[106] M. Young-Lai, F. W. Tompa, and R. Mooney. Stochastic grammatical
inference of text database structure. Machine Learning, 40:111–137,
August 2000.

