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Abstract 

 

The hydroelastic response of pontoon-type very large floating structures (VLFS) is obtained 

by resolving the interaction between the surface waves and the floating elastic body. We carry 

out the analysis in the frequency domain, assuming that the surface waves can be described by 

a directional wave spectrum. The response spectra can then be computed by application of 

stationary random vibration analysis. Applying the modal expansion method, we obtain a 

discrete representation of the required transfer matrices for a finite number of frequencies, 

while the influence of the wave direction is obtained by numerical integration of the 

directional components of the spectrum. Moreover, assuming a Gaussian input, we can apply 

well known approximations to obtain the distribution of extremes. The method is applied to 

an example VLFS and the effect of different mean wave angles on the stochastic response is 

investigated. 
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1. Introduction 

Very large floating structure (VLFS) technology is an attractive approach to reclaim land 

from sea. These structures can and are already being used for floating bridges, floating piers, 

floating performance stages, floating fuel storage facilities, floating airports, even habitation, 

and other purposes [1]. The floating structure can be easily constructed, exploited, and 

relocated, expanded, or removed. These structures are cost-effective and environmentally 

friendly floating artificial islands. 

Pontoon-type VLFSs are relatively flexible floating structures that behave like giants 

plates resting on the sea surface. Owing to their flexibility and large dimensions, their 

response is governed by elastic deformations instead of rigid body motions. The hydroelastic 

response of VLFS is obtained by resolving the interaction between the surface waves and the 

floating elastic body. Various methods have been proposed for the hydroelastic analysis of 

VLFS [2]. One of the most widely used approaches for performing the hydroelastic analysis 

in the frequency domain is the modal expansion method [3] that utilizes the dry modes of the 

floating plate. In the open literature, however, the response is usually obtained for distinct 

wave frequencies and wave angles. In order to obtain a robust VLFS design against wave-

induced deformations and stresses, it is necessary to account for the stochastic nature of wind 

waves. However, there is limited published work on predicting the stochastic response of 

VLFS. Hamamoto [4] derived analytical expressions for the response of large circular floating 

structures subject to a spectrum of wave frequencies. Chen et al. [5-7] studied the influence of 

second-order effects of the structural geometry and wave forces on the response of VLFS 

under two irregular wave systems coming from different directions. 

In this paper, we develop a method for hydroelastic analysis of VLFS subject to a 

directional wave spectrum. The analysis is carried out in the frequency domain by application 

of the modal expansion method. The fluid domain is discretized by the boundary element 

method, while for the structure we use the finite element method derived from the Mindlin 

plate theory, that allows for the effects of transverse shear deformation and rotary inertia. The 

derived linear system allows for the application of linear random vibration theory for the 

evaluation of response spectra. Assuming that the wind wave can be described by a Gaussian 

process, we can estimate the distribution of extremes and hence obtain mean extreme values 

of response quantities that are relevant for design.  

 



3 

2. Hydroelastic analysis of VLFS 

2.1. Plate–water model 

Figure 1 shows the schematic diagram of the coupled plate–water problem. The VLFS has a 

length L, width B, height h and is assumed to be perfectly flat with free edges. A zero draft is 

assumed for simplicity. The water is treated as an ideal fluid (inviscid and incompressible) 

and its flow is irrotational. The water domain is denoted by . The symbols HB , F  and 

SB  represent the plate domain, the free water surface boundary and the seabed boundary, 

respectively. The free and undisturbed water surface is at z = 0 while the seabed is found at z 

= −H. Assuming an incident wave I with a circular frequency , height 2A and wave angle  

enters the computational domain, the water motion and plate deflection will oscillate in a 

steady state harmonic motion in the same frequency . The deflection w of the plate is 

measured from the free and undisturbed water surface. 

 

 
 

Figure 1. Schematic diagram of coupled plate–water problem (a) plan view (b) side view 
 
 
2.2. Equations of motion for floating plate 

The VLFS is modelled as an isotropic and elastic plate based on the Mindlin plate theory [8]. 

The motion of the Mindlin plate is represented by the vertical displacement  yxw , , the 

rotation  yxx ,  about the y-axis and the rotation  ,y x y  about the x-axis. The governing 

equations of motion for the Mindlin plate (after omitting the time factor tie  ) are given by 
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where    12/EG  is the shear modulus, 2  the shear correction factor taken as 5/6, p  

the mass density of the plate, h  the thickness of the plate,  3 2/ 12 1D Eh      the flexural 

rigidity, E  the Young’s modulus and   the Poisson ratio. The pressure  yxp ,  in Eq. (1) 

comprises the hydrostatic and hydrodynamic pressure, i.e. 

 

 ( , ) , ,0p x y gw i x y      on HB  (4) 

 

where   is the mass density of water, i  the imaginary number ( 1i   ), g  the gravitational 

acceleration and  , ,0x y  the velocity potential of water on undisturbed water surface. At 

the free edges of the floating plate, the bending moment, twisting moment and transverse 

shear force must vanish, i.e. 
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where s  and n  denote the tangential and normal directions to the cross-section of the plate, 

respectively. 
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2.3. Equations of motion for water 

The water is assumed to be an ideal fluid and has an irrotational flow so that a velocity 

potential exists. Thus the single frequency velocity potential of water must satisfy the 

Laplace’s equation [9] 

 

 2 ( , , ) 0x y z     in   (6) 

 

and the boundary conditions 
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Equation (7) implies that no gap exists between the plate and the water-free surface 

whereas Eq. (8) is derived from the linearized Bernoulli equation where the pressure is taken 

as zero at the water surface. Equation (9) is the boundary condition at the seabed which 

expresses impermeability, i.e. no fluid enters or leaves the seabed and hence the velocity 

component normal to the seabed is zero. 

The wave velocity potential must also satisfy the Sommerfeld radiation condition as 

x  [10] 
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where  , ,x y zx  and ∞  represents the artificial fluid boundary at infinity. The wave 

number k satisfies the dispersion relationship 
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and I  is the incident velocity potential given by 
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where A is the wave amplitude and   is the incident wave angle as shown in Fig. 1. 

 

2.4. Modal expansion of plate motion and water velocity potential 

Equations (1) and (4) indicate that the response of the plate  yxw ,  is coupled with the fluid 

motions or velocity potential  , ,x y z . On the other hand, the fluid motion can only be 

obtained when the plate deflection  yxw ,  is specified in the boundary condition at the fluid 

side of the fluid–structure interface, as given in Eq. (7). In order to decouple this fluid–

structure interaction problem into a hydrodynamic problem in terms of the velocity potential 

and a plate vibration problem in terms of the generalized displacements, we adopt the modal 

expansion method as proposed by Newman [3]. According to this method, the deflection of 

the plate  yxw ,  is expanded as a finite series of products of the modal functions  ,w
lc x y  

and corresponding complex amplitudes l : 
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where N  is the number of terms in the series. The single frequency velocity potential   of 

water can be separated into the diffracted part D  and the radiated part R  based on the linear 

potential theory. The radiated potential R  can be further decomposed as [11] 
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where  , ,l x y z  is the radiation potential corresponding to the unit-amplitude motion of the 

l-th modal function and l  is the complex amplitude which is assumed to be the same as those 

given in Eq. (13) [3]. The diffracted potential D  is taken as the sum of the incident potential 

I  and the scattered potential S  which represents the outgoing wave from the body. 
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2.5. Hydrodynamic analysis 

By substituting the expanded plate deflection and velocity potential [Eqs. (13) and (14)] into 

Eq. (6) and the boundary conditions [Eqs. (7) to (10)], we obtain the decoupled Laplace’s 

equation and boundary conditions for each of the uni-amplitude radiation potentials (i.e. for l 

= 1, 2, ..., N) and the diffraction potential (i.e. for l = D) 
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We then transform Eqs. (15) to (19) into an integral equation by using Green’s second 

identity [1]. The resulting boundary integral equation is 
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where  , ,x y zx  is the source point and  , ,  ξ  the field point.  ,G x ξ  is a free-

surface Green’s function for water of finite depth that satisfies the seabed boundary condition, 

water free surface boundary condition and boundary at infinity and is given by [12] 
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where mk  is a positive root number satisfying   2tanh /m mk k H g  , with 1m   and 

0k ik . 0K  is the modified Bessel function of the second kind and R  represents the 

horizontal distance between x  and ξ . 
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By further introducing the boundary conditions for zl   into Eq. (20), one obtains 
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The integral equation given by Eq. (22) can be solved by discretizing the surface of the 

boundary HB  using the boundary element method. Within this study the constant panel 

method [13] is applied. 

 

2.6. Solution for radiated and diffracted potentials 

By rearranging Eq. (22), the radiated potential R  and diffracted potential D  can be written 

in matrix forms as 
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where  G  is the global matrix for the Green’s function,  I  the identity matrix and wc    the 

matrix containing N eigenvectors (that corresponds to the deflection w  of the plate) obtained 

by performing a free vibration analysis on the Mindlin plate. The subscripts in Eqs. (23a) and 

(23b) denote the size of the matrix, where q is the total number of degrees of freedom in the 

plate domain and N the total number of modes. 

 

2.7. Solution for plate–water linear equation 

The plate equation is solved by using the finite element (FE) method with 8-node Mindlin 

plate elements that use the substitute shear strain method to avoid shear locking and spurious 

zero energy modes [14]. By assembling the coupled plate–water Eqs. (1)–(3) into the global 

form, we obtain 
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where fK   ,  sK ,  wK ,  M ,  wM  and  wC  are the global flexural stiffness matrix, 

global shear stiffness matrix, global restoring force matrix, global mass matrix, global added 

mass matrix and global added damping matrix, respectively. As discussed in Section 2.4, the 

displacement vector  w  may be expanded in an appropriate set of modes  c  as 
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Note that  c  can be obtained by performing a free vibration analysis on the Mindlin plate 

where   yx
T

wc c c c    . wc    is the matrix containing N eigenvectors corresponding to 

the plate deflection, xc    and yc 
   are the matrices containing N eigenvectors 

corresponding to the rotations about y and x-axes, respectively. By substituting Eq. (25) into 

Eq. (24), we obtain 
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where      T

DF c F  is the generalized exciting force. By using the computed velocity 

potentials [Eqs. (23a) and (23b)], the elements of the global matrices for the added mass 

 wM , the added damping  wC  and exciting force  DF  can be calculated by 
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Upon solving the coupled plate–water equation (26), we obtain the complex amplitudes 

   and then we back-substitute the amplitudes into Eq. (25) to obtain the deflection and 

rotations of the plate  w  and hence the stress resultants. 

 

3. Stochastic formulation 

3.1. Directional wave spectrum 

Assuming that the irregular (random) wind waves can be described by a zero mean stationary 

Gaussian process, they can be completely specified by the directional wave spectrum S(ω, θ), 

which represents the distribution of the wave energy in the frequency domain ω as well as in 

direction (wave angle) θ. The directional spectrum is generally expressed in terms of the one-

dimensional frequency spectrum S(ω) as 

 

     , |S S D      (28) 

 

where D(θ | ω) is the directional spreading function and represents the directional distribution 

of wave energy for a given frequency ω. The conditioning of D(θ | ω) on ω implies that the 

distribution of wave energy in direction (in general) varies with frequency. The function  

D(θ | ω) has the following normalization property 

 

 | 1D d




  


  (29) 

 

The sea surface η(x, y, t) can then be modeled by linear superposition of monochromatic 

waves of all possible frequencies approaching a point from all possible directions, i.e. 

 

   cos sin
, , Re j l j l j jli k x k y t

jl
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x y t A e
       

  
 
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where kj, ωj denote the wave number and corresponding frequency of the jth wave component 

travelling in the direction θl and εjl are independent random variables uniformly distributed in 

[0, 2π]. The amplitudes Ajl are obtained from the directional spectrum as 
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 2 ,jlA S        (31) 

 

where Δω and Δθ represent the change in wave frequency and in direction between two 

consecutive waves. In this study, we use the (one-sided) one-dimensional frequency spectrum 

proposed by Bretschneider and further developed by Mitsuyasu for the description of fully 

developed wind waves [15], i.e. 

 

 
5 4

2 4
1/3 1/3 1/30.257 exp 1.03

2 2BMS H T T
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 
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 (32) 

 

where H1/3 is the significant wave height and T1/3 is the significant wave period. Also, we 

assume independence of the directional distribution on the wave frequency and adopt the 

following directional spreading function given by Pierson et al. [16] 
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 (33) 

 

where   is the mean wave angle. 

 

3.2. Stochastic response 

The stochastic hydroelastic response of the VLFS is obtained by applying the linear random 

vibration theory. Following the approach adopted for the solution for a single frequency and 

wave angle, we first obtain the elements of the cross-spectral matrix  II q q
S 


    of the vector 

of incident potentials  
1I q



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       2 cos sin

,
,lj ljik x y

II Ij l
S H e S d


 


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

      (34) 

 

where lj l jx x x   and lj l jy y y   denote the difference of the x and y coordinates of the 

locations corresponding to the lth and jth degree of freedom, respectively. The function HI(ω) 

is the transfer function from the water surface elevation to the incident potential, given by 
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    cosh

coshI

k z Hg
H

kH
 


   (35) 

 

Furthermore, we obtain the cross-spectral matrix of the force vector as 

 

        *

FF F II Fq q
S H S H   


                 (36) 

 

where  *  denotes the conjugate transpose operator and the complex transfer matrix 

 F q q
H 


    is obtained by combination of Eqs. (23b) and (27c) as 

 

      1

4
q q

F q q

G
H i

z
 







 
       

I   (37) 

 

Finally, the cross-spectral matrix of the response is obtained as 

 

        *

ww w FF wq q
S H S H   


                 (38) 

 

The response transfer matrix  w q q
H 


    is given by: 

 

       Tw q N N qq q N N
H c H c 

  
         (39) 

 

where  
N N

H 


    is the harmonic transfer matrix, describing the modal response to a 

harmonic excitation, given by  Eq. (26) as 

 

                 1
2 2T

f s w w wN N N N
H c K K K M M i C c    



 
              (40) 

 

It should be noted that the inversion in Eq. (40) is trivial (i.e. the matrix to be inverted is 

diagonal), as the matrix  c  contains the uncoupled modes of the system. 
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A discrete representation of the matrix  wwS    is obtained using a finite number of 

frequencies. We can then compute the jth component of the vector of the mth spectral moment 

of the response  
1wm q




 in terms of the diagonal entries  
,ww j j

S     of  wwS    , as 

follows: 

 

   
,0

m
wm wwj j j

S d   


     (41) 

 

wherein the integration is performed numerically. The variance of the response can then be 

obtained by setting m = 0. 

 

3.3. Response of stress resultants 

Stress resultants are important in the practical design of VLFS. The stress resultants within a 

single Mindlin plate element of the floating plate can be calculated by expanding the 

displacement in the stress resultant–displacement relations using the obtained nodal 

displacements. The bending and twisting moments within the element e can be obtained as 

 

 

    

1

2

1 0

1 0

0 0

xx
e e

yy f

xy

M

M D B

M 






  
         
     

w  (42) 

 

where xxM , yyM and xyM  are the bending moments and twisting moment per unit length of 

the plate. The shear forces within the element e can be obtained as 

 

     2 1 0

0 1
e ex

s
y

Q
Gh B

Q


   
   

  
w  (43) 

 

where xQ , yQ  are the transverse shear forces per unit length of the plate. The elemental 

flexural strain-displacement matrix 
 e

fB    is given by 

 

 
1 2 83 24

e

f f f fB B B B


        (44a) 
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where 

 

0 0

0 0

0

i

i
fi

i i

dN

dx
dN

B
dy

dN dN

dy dx

 
 
 
 

     
 
 
 
 

 (44b) 

 

and the shear strain-displacement matrix   e

sB  is given by 

 

    1 2 82 24

e

s s s sB B B B


   (45a) 

 

where 

 

 
0

0

i
i

si
i

i

dN
N

dx
B

dN
N

dy

 
 
 
 
  

 (45b) 

 

where   1, 2, 8iN i    are the basis functions of the 8-node serendipity Mindlin plate 

element. Thus, the elemental transfer matrices for moments and shear forces can be expressed 

as 

 

   

 
 

 
   

 

1

2

1 0
1 0

0 0

xx

yy

xy

e

M
e e

M f

e

M

H

H D B

H





 




      
                   

  (46a) 

   

 
    2 1 0

0 1
x

y

e

eQ
e s

Q

H
Gh B

H






              

  (46b) 

 

By assembling the elemental transfer matrices, the global transfer matrices for moments and 

shear forces can then be obtained. Denoting the global transfer matrices of the moments and 
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shear forces by  MH     and  QH    , respectively, we can compute the cross-spectral 

matrices of the stress resultants as follows: 

 

        *

MM M ww MS H S H                    (47a) 

        *

QQ Q ww QS H S H                   (47b) 

 

The spectral moments of the stress resultants can then be obtained in a manner analogous to 

Eq. (41). 

 

3.4. Extreme value prediction 

In the design of VLFS, the knowledge of the distribution of maxima of response quantities 

over a certain time period is required in order to assess the serviceability and safety of the 

structure. The distribution of the maxima of any response quantity can be derived using its 

spectral moments, calculated by Eq. (41). Let Y(t) be the zero mean stationary Gaussian 

process that describes a response quantity at a certain node and let m  be its m-th spectral 

moment. The distribution ˆ ( )
( )

Y T
F y  of  ˆ( ) max ( ),0Y T Y t t T   , where T is the period of 

interest, can be expressed as follows [17]: 

 

 ˆ ( )
( ) exp ( )YY T

F y y T    (48) 

 

where ( )Y y  is the conditional rate of upcrossings of the level y given the event of no prior 

upcrossings. Also we should note that Eq. (48) neglects the probability of initial upcrossing of 

y. Assuming that the upcrossings of high levels are independent events, we can approximate 

( )Y y  with the unconditional upcrossing rate ( )Y y   given by: 

 

2

2( ) exp
2Y Y

Y

y
y 


   

  
 

  (49) 

 

where 0Y   is the standard deviation of Y and Y
  is the mean zero upcrossing rate given 

by: 
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2

0

1
2Y

  
    (50) 

 

The derived approximation is the well-known Poisson model which is shown to be 

asymptotically exact for large T. However, convergence to the Poisson model becomes slow 

for narrow-band processes. Vanmarcke [18] gives a more accurate model that accounts for the 

influence of the bandwidth. According to this model, the conditional upcrossing rate is 

approximated as follows: 

 

( ) ( ) ( )Y Yy y p y     (51) 

 

where 

 

1
2

2 0.6
1 2( ) 1 exp (1 ) 2 1 exp

2Y Y

y y
p y    


                    

 (52) 

 

wherein 1/2
1 1 0 2( )      is the bandwidth parameter which tends to unity for a narrow-band 

process. 

In code-based design applications, partial safety factors are applied to characteristic values 

of design quantities, such as displacements and bending moments and designs are checked 

against serviceability and safety limit-state requirements. Characteristic values are usually 

taken as the expected maxima of the design quantities over a time period that represents the 

duration of an extreme event. Accounting for the fact that ˆ( )Y T  follows asymptotically a type 

I extreme value distribution, we can approximate the expected maximum using the following 

expression [19] 

 

2
0

0

ˆE ( ) YY T y
y
       (53) 

 

where 0.577    is Euler’s constant and 0y  satisfies the following equation: 

 
2
0

02 ln ln ( )
2 Y

Y

y
T p y


      (54) 

Equation (54) can be solved for 0y  by applying an iterative procedure. 
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4. Numerical example 

The VLFS considered by Sim and Choi [20] is used as an example for this study. The length, 

width and height of the floating plate are 300, 60 and 2 m, respectively. The following 

material properties of the plate are assumed: Poisson’s ratio ν = 0.13, Young’s modulus E = 

1.19 × 1010 N/m2, and the mass density of the plate ρp = 256.25 kg/m3. The water density is ρ 

= 1025 kg/m3 and a water depth H = 58.5m. The finite element mesh of the plate, consisting 

of 2000 8-node Mindlin elements, is shown in Figure 2. A total number N = 30 of modes is 

chosen for the present study. The finite element mesh was chosen fine enough, from our 

experience with deterministic calculations, so that an accurate solution is obtained for each of 

the considered wave frequencies for the discrete representation of the transfer matrices.  

The chosen parameters for the spectrum of Eq. (32) are H1/3 = 2m, T1/3 = 6.3 sec. In the 

numerical examples, four cases of mean wave angle ,  namely (a) 0, (b) 30, (c) 60 and (d) 

90, are considered. In Figure 3, a plot of the utilized directional wave spectrum for o0   is 

shown. The four corner points (P1 to P4, as shown in Fig. 2) and the center point (P5, as 

shown in Fig. 2) are chosen to illustrate the stochastic behavior of the floating plate. 

 

 

 
 

Figure 2. Mesh of the plate 
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Figure 3. Plot of the applied directional wave spectrum for 0   
 

 

4.1. Stochastic response 

The response spectra of the vertical displacements at the five selected points (P1 to P5, as 

show in Fig. 2) of the floating structure are obtained as shown in Fig. 4. Figure 5 shows the 

standard deviation of the vertical displacement for the four mean wave angle cases 

considered. It can be seen that in general, the overall response of the floating plate increases 

as the mean wave angle increases from 0 to 90 degrees. In the four cases studied, larger 

responses are observed in the corner points than the center points. Due to the symmetry of the 

directional spreading function, we obtain symmetric response spectra for mean wave angle 

case (a) with respect to the x-axis and case (d) with respect to the y-axis, respectively, as the 

effects of oblique wave angles are balanced, as shown in Figs. 4(a) and 4(d). The same results 

are observed in the plot of the standard deviation of the response, as shown in Figs. 5(a) and 

5(d). Owing to this cancellation effect, the response results for these two mean wave angle 

cases are similar to those obtained by deterministic hydroelastic analysis using these two 

mean wave angles as distinct wave angles (see results in the Ref. [21] by Gao et al.). 
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Figure 4. Input spectrum BMS  and response spectra of the vertical displacements at 5 selected 

points for different mean wave angles 
 
 

However, for other mean wave angle cases, the effects of oblique wave angles cannot be 

balanced and hence result in different hydroelastic response for the same floating plate. 

Considering the mean wave angle case (b) for example, the response spectra as shown in Fig. 

4(b) is not symmetric, while the largest response is obtained at the corner point P4. This is due 

to the fact that in this case the directional spectrum includes a larger number of waves coming 

from other directions which trigger the twisting vibration modes of the plate. This effect can 

only be captured if a directional spectrum is considered. For the example case with mean 

wave angle of 30, neglecting the probability of occurrence of larger oblique wave angles 

would lead to significantly smaller variances. The same conclusion applies to the mean wave 

angle case (c), as shown in Fig. 4(c) and Fig. 5(c). 
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Figure 5. Standard deviations of the vertical displacements for different mean wave angles 

 
 
4.2. Response of stress resultants 

In Fig. 6 to Fig. 10, the standard deviations of the stress resultants xxM , yyM , xyM , xQ  and 

yQ  are plotted. 

Similar to the stochastic response of the displacements, symmetric responses are obtained 

for the stress resultants xxM , yyM , xyM , xQ  and yQ  in the cases of mean wave angle 0   

and 90   as shown in Figs. 6 to 10. The effect of directional wave is significant in the case 

of mean wave angle 60   as shown in Figs. 6(c) and 10(c), where larger standard 

deviations are obtained as compared to those for 0  . In deterministic analysis, however, 

smaller values of xxM  and xQ  are expected in the case of oblique waves because the 

dominating component (x-direction component) of the wave that results larger value of xxM  

and xQ  is compensated by the y-direction component. 
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The standard deviations of the moments yyM  and xyM  are smaller than those of the 

bending moment xxM , as shown in Figs. 6 to 8. This is due to the large aspect ratio of the 

floating plate which indicates that the hydroelastic response is significant when the waves are 

coming along the strong axis of the plate, i.e. the x-axis. In the case of mean wave angle 

90  , the motion of the plate is dominated by rigid body motion, as can been seen in Fig. 

5(d) and Fig. 7(d). However, it is still necessary to investigate the results of twisting moments 

xyM  in the case of oblique mean waves. As shown in Fig. 8(b) and 8(c), the magnitude of the 

standard deviation of twisting moments xyM  are in the same order as those of bending 

moments xxM  results shown in Fig. 6. Moreover, the results of twisting moments xyM  are 

larger for mean wave angle cases (b) and (c) than those for mean wave angle cases (a) and (d). 
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Figure 6. Standard deviation of xxM  for different mean wave angles 
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The blowups at the corners of the plate for the shear forces as shown in Fig. 9 and Fig. 10 

are due to the strong variations nature of shear forces near the free edges. As has been 

discussed by Ramesh et al. [22], the shear forces do not vanish at the free edges, especially at 

the free corner. However, this effect would not affect the overall observations of the spectra 

results for shear forces, because it only affects the small portion of the entire domain. 

Moreover, the exact results of shear forces at these affected regions are known to be vanished. 
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Figure 7. Standard deviation of yyM  for different mean wave angles 

 
 
 
 
 
 
 
 
 
 
 



23 

case (a) 0   case (b) 30   

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

-0.1
0

0.1
0

0.5

1

1.5

2

2.5

x/L

y/L


M

x
y

 [M
N

m
/m

]

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

-0.1
0

0.1
0

0.5

1

1.5

2

2.5

x/L

y/L


M

x
y

 [M
N

m
/m

]

case (c) 60   case (d) 90   

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

-0.1
0

0.1
0

0.5

1

1.5

2

2.5

x/L

y/L


M

x
y

 [M
N

m
/m

]

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

-0.1
0

0.1
0

0.5

1

1.5

2

2.5

x/L

y/L


M

x
y

 [M
N

m
/m

]

 
Figure 8. Standard deviation of xyM  for different mean wave angles 
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Figure 9. Standard deviation of xQ  for different mean wave angles 
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Figure 10. Standard deviation of yQ  for different mean wave angles 

 
 
4.3. Extreme value prediction 

The expected maxima of the response quantities are obtained based on the Vanmarcke 

approximation by applying Eq. (53). The period T  of interest is set to 2 hours. Figure 11 

shows examples of expected maxima of response quantities in the case of mean wave angle 

0  .  

The maximum value of the expected maximum of stress resultants is extracted for each 

case of mean wave angles. The results are plotted against the mean wave angle as shown in 

Fig. 12. It can be seen that bending moment xxM  and shear force xQ  are the two dominating 

components of the stress resultants. Large values of these two components are obtained in the 

cases of mean wave angle 60   and 75  . This implies that the worst scenario of the 

floating structure might be in the cases of these mean wave angles and this should be taken 

into account in the practical design. 
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Figure 11. Expected maximum of response quantities predicted by the Vanmarcke 
approximation for a 2 hours period for 0  . 
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Figure 12. Maximum value of extremes of stress resultants in terms of the mean wave angle 
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5. Concluding remarks 

Based on the linear random vibration theory, a framework for stochastic hydroelastic analysis 

of very large floating structures subjected to multidirectional irregular waves defined through 

a directional wave spectrum has been developed. The approach involves a discrete evaluation 

of the relevant transfer matrices through a numerical resolution of the fluid–structure 

interaction problem that combines the boundary element method for the fluid potential and the 

finite element method based on the Mindlin plate theory for the plate response. Spectra of 

response quantities are obtained as well as extreme responses, assuming a Gaussian input. 

The proposed method is applied to the stochastic analysis of a numerical example and the 

influence of the mean wave angle on the standard deviation and extreme values of response 

quantities is demonstrated. It is found that the hydroelastic behaviour of very large floating 

structures is greatly affected when considering a directional wave spectrum, which provides a 

realistic description of the sea state. The developed framework can be applied to the study of 

very large floating structures with non-rectangular shapes as well as to investigate the 

behavior of very large floating structures with flexible connector systems. Future extensions 

may include the response to non-stationary sea states as well as the application of nonlinear 

random vibration analysis to account for the effect of second order wave forces. 
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