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Abstract

The coupling of a single atom to a high-finesse optical cavity enables efficient information
exchange between material and photonic quantum bits. In this thesis, it is demonstrated
that an atom-cavity system is a quantum memory for polarization qubits encoded in
single photons. Based on this ability, an elementary quantum network comprised of two
independent quantum memories separated by 21 m is realized, and two different approaches
to quantum communication are investigated. First, the direct transfer of quantum states
between the two network nodes is demonstrated. To this end, the atomic state of the sender
is mapped onto the polarization of a single photon. By using an optical fiber, the photon is
directed to the receiver site where it is finally stored in the atom. In a second experiment,
quantum states are transferred between the atoms using teleportation. Initially, sender and
receiver share an entangled atom-photon state. The state of the sender is then mapped
onto another photon. Conditioned on the outcome of a Bell-state measurement of the two
photons, the atom at the receiver site is projected onto the state of the sender atom. The
utilization of an optical cavity to enhance the coupling between light and matter results in
high success probabilities of the explored protocols. This demonstrates that cavity-based
systems are promising candidates for the realization of more complex quantum networks.

Kurzfassung

Die Kopplung eines einzelnen Atoms an einen optischen Resonator hoher Finesse ermöglicht
einen sehr effizienten Informationsaustausch zwischen materiellen und photonischen Quan-
tenbits. In der vorliegenden Arbeit wird gezeigt, dass ein Atom-Resonator-System ein
Quantenspeicher für Polarisationsqubits einzelner Photonen ist. Darauf aufbauend wird
ein elementares Quantennetzwerk aus zwei unabhängigen Quantenspeichern mit einer
Entfernung von 21 m realisiert und es werden zwei unterschiedliche Ansätze zur Quan-
tenkommunikation untersucht. Zunächst wird der direkte Transfer von Quantenzuständen
zwischen den beiden Netzwerkknoten demonstriert. Der atomare Zustand des Senders wird
hierbei auf die Polarisation eines einzelnen Photons übertragen. Mittels einer optischen
Faser wird dieses Photon zur Empfängerseite geführt, wo es im Atom gespeichert wird.
In einem zweiten Experiment werden Quantenzustände mittels Teleportation zwischen
den beiden Atomen transferiert. Hierzu wird zunächst ein verschränkter Atom-Photon-
Zustand zwischen Sender und Empfänger erzeugt. Der Zustand des Senders wird auf ein
weiteres Photon übertragen. Konditioniert auf das Ergebnis einer Bell-Zustands-Messung
zwischen den beiden Photonen wird das Atom auf der Empfängerseite auf den Zustand
des Senderatoms projiziert. Die Verwendung optischer Resonatoren zur Erhöhung der
Kopplung zwischen Licht und Materie resultiert in hohen Erfolgswahrscheinlichkeiten
der untersuchten Protokolle. Dies demonstriert, dass die Verwendung resonatorbasierter
Systeme ein vielversprechender Ansatz für die Realisierung komplexerer Quantennetzwerke
ist.
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1. Introduction

Quantum mechanics has grown into one of the fundamental pillars of modern physics,
broadening our understanding of nature and triggering the development of new technologies.
For example, technologies such as the laser [1], nuclear magnetic resonance spectroscopy [2]
and atomic clocks [3] have already entered our everyday life. Recently a new field of
research has arisen, quantum engineering, in which the principles of quantum mechanics
are directly employed to manipulate the physical world at the quantum level [4]. Examples
of fields which have emanated from quantum engineering include quantum metrology [5],
the design of artificial quantum systems [6–9], quantum communication [10] and quantum
computation [11].

These latter two fields aim to combine methods of classical information processing with
fundamental effects of quantum mechanics. The superposition principle is employed to
create a novel form of information, quantum information, that potentially improves the
acquisition, transmission and processing of data [12]. As early as 1982, Richard Feynman
pointed out that the simulation of quantum systems is intractable with a classical computer,
as the size of its Hilbert space scales exponentially with the number of degrees of freedom
of a quantum system [13]. He conjectured that quantum physics could be exploited to
efficiently simulate other quantum systems [14]. Similarly, controllable quantum systems
can be used to design a quantum computer [15, 16] which has the potential to dramatically
outperform its classical counterpart in solving certain problems [17, 18]. At the same
time—in contrast to classical information which can be implemented robustly using digital
architectures—quantum information is very fragile. As a consequence, methods and
technologies for the processing and communication of quantum information have to meet
demands profoundly different from their classical counterparts. The development of such
technologies is a main challenge of today’s quantum optics research.

Along these lines, an important and already advanced application originating from quan-
tum engineering is quantum key distribution, a means to achieve unconditionally secure
communication of information [19,20]. Its security is guaranteed by a fundamental princi-
ple of quantum physics—the no-cloning theorem [21]. The presence of an eavesdropper
unavoidably leaves marks that can be detected by the communicating parties during the
protocol. Even with an eavesdropper present, secure communication can be guaranteed by
modifying the shared key [22].

In order to implement the aforementioned technologies, the ability to faithfully transfer
quantum information between potentially remote sites is essential. For classical information,
the approach would be to copy and transmit the information, allowing for a new transmission
attempt should the previous one fail. Alternatively, repeaters can be used to amplify the
signal at intermediate locations. While the aforementioned no-cloning theorem allows for the
secure distribution of keys, it prevents the use of classical methods for the communication
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2 Introduction

of quantum information. Any attempt to measure a quantum state results in an irreversible
projection of the state. Therefore, only partial information about an unknown state can be
gained, rendering a classical amplification scheme impossible. Consequently, the faithful
transfer of quantum information requires a coherent communication channel, in which
the quantum states are not disturbed, i.e. they must be decoupled from the environment.
Optical photons are the natural choice for the transmission of quantum information.
They can be transmitted with relatively low losses and they are compatible with existing
telecommunication fiber technology. Their polarization degree of freedom forms an excellent
qubit, as decoherence is small in optical fibers and in free space. For simple point-to-point
connections, consisting of a send-only emitter and a receive-only detector, the use of
purely photonic systems is sufficient and has already found commercial applications in
quantum cryptography systems [23,24]. In order to fully exploit the promising capabilities
of quantum information processing, the transfer of quantum states between functional
network nodes that are able to send, receive and store quantum information is required.
All these properties are provided by optical quantum memories [25, 26]. At the same time,
a reversible and efficient interface between the memory and the communication channels
is essential. Connecting these nodes leads to the quantum mechanical counterpart of a
network—a quantum network [27].

The implementation of quantum network nodes and an efficient interface with photonic
channels is a major challenge and different approaches are currently being pursued. Systems
which are intensely studied include ensembles of particles consisting of gas-phase atoms
[25, 28, 29] or solid-state systems [8, 30]. Collective effects in these systems lead to an
enhanced interaction between light and matter, however the protocols for generating single
excitations are inherently probabilistic [31]. Other strong contenders are single emitters,
such as atoms [32], quantum dots [33] or nitrogen-vacancy centers in diamonds [34, 35],
which allow for single-photon emission [36] and quantum gate operations [37–39], and
which are scalable to larger architectures [40]. Single emitters usually interact only weakly
with single photons, also resulting in inherently probabilistic information exchange and
low success rates. In particular, the reversible quantum-state mapping between a photon
and a single emitter in free space is highly inefficient. In their seminal work [41], Ignacio
Cirac, Peter Zoller, Jeff Kimble, and Hideo Mabuchi proposed in 1997 to overcome these
problems using network nodes based on single emitters embedded in optical cavities, thus
enabling a deterministic approach for the transfer of quantum states between quantum
memories. Besides the existence of a deterministic scheme for quantum communication,
the use of single particles is appealing as they can be addressed individually, allowing for
the realization of deterministic quantum gates [37–39]. In particular, single atoms are very
promising for future applications as they are among the physical systems with the longest
coherence times [42].

This thesis makes a significant contribution towards a universal quantum network. We
have experimentally realized the prototype of an elementary quantum network based on
single atoms embedded in optical cavities. Quantum information is exchanged between
the stationary nodes in two different ways: Directly, by employing the aforementioned
deterministic scheme [41]. And indirectly, by implementing a teleportation protocol using
entanglement, a Bell-state measurement and a classical communication channel [43]. The
use of high-finesse cavities enables dynamic control of coherent dark states and allows
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for an in-principle deterministic and reversible exchange of quantum states between light
and matter, thereby representing a highly efficient interface between a single atom and a
photon.

In a first experiment, building on the recently achieved faithful mapping of the polarization
of a coherent light pulse onto the internal state of a single atom [44], the polarization of a
single photon is mapped onto an atom, and back onto a single photon. This experiment is
the first to demonstrate the coherent transfer of a qubit encoded in a single photon onto
a single atom and meets all requirements for an optical quantum memory [25, 26]. The
same mechanism is exploited in a second experiment, in which the transfer of quantum
information between two distant and independent nodes is achieved by exchanging single
photons [45]. This direct quantum state transfer is especially appealing for quantum
communication as it is the conceptually most fundamental way to connect different nodes.
Because it is intrinsically deterministic, it is a promising approach to realize quantum
networks over short distances.

The inevitable losses in any quantum channel render the direct state transfer impractical
for global distances. Nevertheless, long-distance quantum communication can be achieved
using a quantum repeater architecture [46]. In this scheme, entanglement between distant
locations is established by first entangling adjacent nodes at intermediate stations and
then performing entanglement swapping [47]. Thereby, the time it takes to distribute
entanglement scales only polynomially with distance, rather than exponentially. The
transfer of a quantum state between the two distant nodes can then be achieved using
quantum teleportation that exploits the previously established entanglement link as a
resource [43]. Once entanglement has been built up, neither the efficiency nor the fidelity
of the state transfer depends on the distance. In another experiment presented in this
thesis, we perform quantum teleportation between two distant atomic nodes [48]. The
strong light-matter interaction provided by the cavities allows us to share an entangled
two-particle state efficiently between the two nodes and to implement an all-optical Bell-
state measurement. This results in success probabilities exceeding previous demonstrations
of long-distance matter-matter teleportation by several orders of magnitude.

This thesis is organized as follows: In chapter 2 the atom-cavity systems forming the two
nodes of the elementary network are described. Chapter 3 summarizes the theory for the
characterization of quantum states and processes. In chapter 4 the faithful transfer of
arbitrary quantum states between the atoms over a distance of 21 m via the exchange of
single photons is described. Chapter 5 contains the experiment on quantum teleportation
of arbitrary qubit states between the two atoms.





2. Atom-cavity systems for quantum
networking

The experiments presented in this thesis demonstrate the exchange of quantum bits between
optical quantum memories at remote locations. Each memory consists of a single neutral
87Rb atom quasi permanently trapped at the center of a high-finesse optical cavity. The
systems are located in different laboratories with a distance of 21 m between the atoms
and operate independently. Because the systems have already been described in detail in
previous PhD theses [49–52], only an overview of the most important parts and changes to
the setups are presented.

The presence of the cavity increases the light-matter interaction strength and enables an
efficient and coherent coupling between the atom and single photons in the cavity. By
using control laser fields, the motion of the atom can be cooled [53, 54] and its internal
states can be manipulated [50,52]. High resolution imaging of the atoms allows us to detect
the number and position of the trapped atoms [50]. A feedback mechanism controls the
position of the atom with micrometer precision and restarts the experimental sequence
once the atom is lost [55].

2.1. The atomic qubit

87Rb is an alkali metal and thus has only a single valence electron. This results in a
relatively simple level structure and makes it suitable for standard laser-cooling techniques.
The nuclear spin of this specific isotope is I = 3/2, leading to a ground state 52S1/2 with
two hyperfine states F = 1 and F = 2. The D1 and D2 transitions from the ground states
to the excited states 52P1/2 and 52P3/2 have transition wavelengths of 780 nm and 795 nm,
respectively, and are easily accessible with standard diode lasers. Details on the full level
structure of the two D-lines can be found in Appendix A.

The Zeeman manifold of the stable hyperfine ground states is used to encode the atomic
qubits. The Zeeman quantum number mF refers to the projection of the total angular
momentum onto the quantization axis z, which we define to coincide with the optical
axis of the cavity. We use different qubit definitions in the two laboratories (Fig. 2.1a).
The qubit at node A (the “QGate” laboratory) is encoded in |↓〉A ≡ |F = 2,mF = −1〉
and |↑〉A ≡ |F = 2,mF = +1〉, whereas at node B (the “Pistol” laboratory) the qubit is
encoded in |↓〉B ≡ |F = 1,mF = −1〉 and |↑〉B ≡ |F = 1,mF = +1〉. The qubit basis states
{|↓〉 , |↑〉} form a pseudo-spin-1/2 system and are therefore referred to as the “spin-down”
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Figure 2.1.: Physical implementation of the atomic qubits at the two nodes. a) The
qubit at node A is encoded in the states |↓〉A ≡ |F = 2,mF = −1〉 and |↑〉A ≡ |F = 2,mF = +1〉,
whereas at node B the qubit is encoded in |↓〉B ≡ |F = 1,mF = −1〉 and |↑〉B ≡ |F = 1,mF = +1〉.
b) Bloch sphere representation of the atomic qubit states. The basis states |↓〉 and |↑〉, which are
eigenstates of σz, are located on the poles. The eigenstates of σx (|↓x〉 , |↑x〉) and σy (|↓y〉 , |↑y〉) lie
on the equator.

and “spin-up” states. The basis states are eigenstates of the Pauli operator1 σz and are
energetically degenerate in the absence of a magnetic field. Any pure qubit state can be
written as a superposition of these basis states and can be visualized as a point on the
surface of the Bloch sphere [56] (Fig. 2.1b). The eigenstates of the Pauli operators define
the six cardinal points of the sphere.

To pump and manipulate the atom we use external cavity diode lasers and a Ti:Sa
laser as light sources. All lasers are stabilized to a frequency comb [51] using beat-
lock schemes [57, 58], enabling precise locking to an absolutely accurate frequency. The
comb teeth are equally spaced with a distance of 250 MHz. Fine-tuning of the individual
frequencies of the light fields is achieved using acousto-optical modulators (AOM). With
the help of the AOMs, also the power and temporal shape of the fields can be adjusted.
The light is combined by using fiber-based beam splitters and is directed to the vacuum
chamber, containing the atom-cavity system, using optical fibers.

2.2. The optical cavity

The core of the system is a high-finesse optical cavity (Fig. 2.2). In 2009 one of the
cavities (the “QGate”) was completely renewed as it suffered from a mirror defect and
accompanying high scattering losses [49]. After replacing the cavity, both systems now
possess approximately the same parameters which are listed in the following table [51,59]:

1The Pauli operators are defined in the computational basis {|↓〉 , |↑〉} as:

σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 ≡ σx =

(
0 1
1 0

)
, σ2 ≡ σy =

(
0 −i
i 0

)
, σ3 ≡ σz =

(
1 0
0 −1

)
.
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node A (“QGate”) node B (“Pistol”)

mirror distance l(µm) 486± 0.002 495± 0.002
radius of curvature R(mm) 50 50

mode waist w0,c(µm)1 30 30
mirror transmissions T1/T2(ppm) 5.9/99 2/101

free spectral range FSR(GHz) 309± 1 303± 1
line width ∆ν = κ/π(MHz) 4.9± 0.1 5.4± 0.1

finesse F 60800± 1300 56000± 1000
round-trip loss Lrt = 2π/F 103± 2 112± 2

One important property of the cavities is that the transmission of the mirrors is asymmetric
(T2 � T1), such that photons inside the cavity exit the resonator preferentially through
one mirror. In combination with low losses, this leads to a high outcoupling efficiency of
approximately 90 % into one single free-space optical mode.

The coupling strength between atom and light, and the coupling of both to the environment
can be characterized by three parameters. For a given transition with energy ~ωc, the
coherent coupling g between atom and cavity is determined by the strength of the atomic
transition µge, the mode volume V and the position of the atom with respect to the cavity
mode ψc(~r):

g(~r) = g0 ·ψc(~r) =

√
ωc

2ε0V ~
µgeψc(~r), (2.1)

where ε0 is the vacuum permittivity. In case of the TEM00 mode, the atom-cavity coupling
is spatially modulated by

ψc(~r) = cos
(ωc
c
z
)

exp

(
−x

2 + y2

w2
0,c

)
, (2.2)

with the speed of light c. To achieve high coupling, the mode volume and therefore,
for a given radius of curvature, the mirror distance needs to be as small as possible.
The value of l ≈ 0.5 mm in our system is a compromise between a small cavity length
and the need for convenient transversal optical access. For the experimentally relevant
transition 5S1/2 |F = 1〉 ↔ 5P3/2 |F = 1〉, the maximum achievable atom-cavity coupling
is g0/2π = 5.1 MHz. Because the atom is not tightly confined along the cavity axis,
the coupling constant fluctuates in time and leads to an average coupling geff that is
approximately a factor of two smaller than the maximum value.

The losses of the system are described by the decay rate of the excited atomic state
(γ/2π = 3 MHz) and the decay rate of the resonator field (κ/2π ≈ 2.5 MHz). The resulting

cooperativity Ceff =
g2
eff

2γκ & 0.3 indicates that the system is in the intermediate coupling
regime of cavity QED.

A cylindrically shaped piezo tube controls the distance between the cavity mirrors and
therefore allows for precise tuning of the resonance frequency of the cavity. It is stabilized
to a diode laser that is resonant with the cavity, but detuned from the atomic resonance

1The mode waist is calculated from the the radius of curvature and the mirror distance.
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Figure 2.2.: Inside the vacuum chamber. a) Sketch of the atom-cavity system [59]. b)
Photomontage, showing the actual system and the relevant laser beams. 1© Atoms are cooled in a
magneto-optical trap (MOT) and guided into the cavity 3© where they are finally trapped using
a standing-wave dipole trap 2©. The cavity is composed of two coned mirrors facing each other.
A laser beam 4© from the side allows for cooling and manipulation of the atoms. Photons 5© are
coupled into and out of the cavity using the higher transmissive mirror.

by several nanometers, using the Pound-Drever-Hall technique [60]. The cavity at node A
is stabilized to a laser operating at 771 nm. For the experiments described in chapter 4,
the cavity at node B is stabilized to a laser with a wavelength of 785 nm, whereas for the
experiments in chapter 5 a wavelength of 769 nm is used.

2.3. Loading and trapping of single atoms

This section explains the setup used for loading and trapping of single atoms at node A for
the experiment described in section 5. The setup at node A used for the experiments from
section 4 was presented in [59]. A detailed description of the setup used at node B can be
found in [51].

Every experimental sequence starts by loading a cloud of cold 87Rb atoms in a magneto-
optical trap (MOT). A diode-pumped, solid-state laser provides light with a wavelength
of 1064 nm to create a far-off-resonance trap (FORT). It has a focus between the MOT
and the cavity, and acts as an optical tweezer that guides atoms into the cavity region.
This transport typically takes 100 ms. After this time, a second beam that is retroreflected
forms a one-dimensional optical lattice along the direction of the beam. A sketch of the
optical path of the trapping beams is shown in Fig. 2.3. The light is split into two paths
using an electro-optical modulator (EOM) and a polarizing beam-splitter (PBS). The
beams are coupled into special high-power fibers. This has two advantages. First, any drift
of the beam position in front of the fibers does not influence the optical lattice, as the
laser power behind the fibers is actively stabilized using the EOM and an acousto-optical
modulator (AOM) as actuators. Additionally, in case of laser replacement or change of
the optics, no realignment is necessary. Second, the light at the output of the fibers forms
a good TEM00-mode. This avoids any detrimental effects of bad beam profiles on the
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Figure 2.3.: Setup for the far-off-resonance dipole trap. Light from the laser is split into
two paths (orange: transfer trap, red: standing-wave trap) using an EOM and a PBS. At the same
time, the EOM serves to stabilize the power of the transfer trap. An AOM is used to stabilize the
power of the standing-wave trap. The focus diameters and the Rayleigh lengths of the two traps
are adjusted by two telescopes. By choosing different divergences of the beams, the position of the
foci can independently be adjusted. Using a first lens (L) with a focal length of 15 cm, the beams
are focused into the vacuum chamber, and collimated with a second lens behind the chamber. The
beam of the standing-wave trap is retroreflected. A tiltable glass plate (GP) is used to shift the
lattice along the axis of the beam. The inset shows a typical fluorescence image of a single atom.

geometry of the traps. For retroreflection of the beam, a cat-eye configuration is used:
A lens focuses the beam onto a flat mirror. Placing the mirror in the focal plane of that
lens guarantees that the reflected beam matches the mode of the incoming beam. This
dramatically simplifies the adjustment of the lattice and makes it less sensitive to acoustic
noise and thermal drifts.

In addition to the far-off-resonance trap, which forms a standing-wave potential perpendic-
ular to the cavity axis, the light that is used to stabilize the resonator length provides a
standing-wave potential along the cavity axis. The parameters of the traps are summarized
in the following table:

FORT cavity trap

wavelength 1064 nm 771 nm
mode waist 16 µm 30 µm

Rayleigh length 0.8 mm 3.6 mm
trap depth 1.5 mK/W 6.6 mK/W

Typical power 2 W 40 mW

In order to trap the atoms as long as possible, repetitive intervals of cooling with near-
resonant light on the closed transition F = 2↔ F ′ = 3 and a repumper on the transition
F = 1↔ F ′ = 2 have to be applied. This leads to a Sisyphus-like cooling force [53] that
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enables trapping times on the order of one minute, depending on the specific experimental
protocol [59].

The atoms can be monitored using a high-resolution imaging system. The central cavity
region is imaged onto an EM-CCD camera using an objective with a numerical aperture of
0.4 [50,61]. A large part of fluorescence light is collected by the objective. A typical image
for an exposure time of ∼ 500 ms is shown as an inset in Fig. 2.3. The imaging system
allows us to detect the presence and the position of a single atom. With the help of a
tiltable glass plate in front of the retro-reflecting mirror, the atom can be positioned along
the dipole trap axis with micrometer precision [55]. Once the atom is lost, the experiment
is restarted by loading a MOT and a new transfer attempt.

2.4. Compensating offset magnetic fields

Precise control of the magnetic field at the position of the atoms is essential for all
experiments based on qubits encoded in atomic Zeeman states [62]. Fluctuations of the
magnetic field lead to decoherence as the relative phase between the qubit eigenstates
varies in time. Residual constant magnetic fields lead to an in general unwanted phase
evolution and must be minimized. By using a magnetic field sensor that is located directly
below the vacuum chamber, constant fields and fluctuations up to a frequency of 1 kHz can
be detected with a sensitivity of 1 mG. The sensor is of great help when it comes to the
identification of disturbance sources that cause magnetic field fluctuations, for example
power supplies near the vacuum chamber [59].

The method of microwave spectroscopy allows us to measure the magnetic field directly at
the location of the atoms [51, 63]. A small external magnetic field B leads to a shift of the
Zeeman states with quantum number mF by

∆E = µBgFmFB, (2.3)

with µB = e~
2me

being the Bohr magneton. The Landé factors gF have opposite signs for the
two ground states: gF=1 = −1/2 and gF=2 = 1/2. Consequently, there exist seven possible
transition frequencies between the states F = 1 and F = 2. To measure the magnetic field
at the position of the atom, the atom is first prepared in F = 1. A microwave pulse with a
length of typically 1 ms induces the transition from F = 1 to F = 2 if the frequency of the
microwave matches the resonance frequency of one of the possible transitions. The efficiency
of the transfer is determined by measuring the population in F = 2 using cavity enhanced
fluorescence detection [64] or photon generation. For the spectroscopic measurement, this
scheme is repeated for several seconds during which the frequency of the microwave is
gradually changed (see Fig. 2.4b). Offset magnetic fields can be compensated using three
pairs of Helmholtz coils surrounding the vacuum chamber. One possible procedure to
minimize the field is to measure spectra for different settings of the magnetic field and
find the optimal setting iteratively. As this is a time consuming task, we implemented
an alternative method that directly yields the value for the compensating field we have
to apply, by performing only three scans. Instead of scanning the microwave frequency
for a given magnetic field, one can also scan the magnetic field at a constant frequency
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Figure 2.4.: Microwave spectroscopy. a) Transfer probability on the transition F = 1→ F = 2
induced by a microwave field as a function of the microwave frequency and an externally applied
magnetic field according to Eq. (2.3) with gFµB = 0.7 MHz/G. b) Transfer probability as a function
of the microwave frequency for a constant magnetic field of 200 mG. c) Transfer probability as a
function of the magnetic field for a constant microwave frequency of 250 kHz.

(Fig. 2.4a). An example of the resulting transfer probability as a function of the field is
shown in Fig. 2.4c. At the point of symmetry, the magnetic field along the scanned axis is
zero. This scan has to be repeated once for each direction in space. A compensation of the
magnetic field in all directions can be performed within a few minutes. After compensating
the magnetic field, it is possible to achieve a single peak in the spectroscopic measurement.
The width is ∼ 10 kHz, corresponding to residual magnetic field fluctuations of ∼ 3 mG. To
maintain this small magnetic offset field, the scan must be repeated regularly every few
hours to compensate for long-term drifts of the field.

2.5. Analyzing the polarization of a single photon

Central to experiments with polarization qubits is the ability to reconstruct the polarization
state of an ensemble of identical single photons. Such a measurement can be realized using
a quarter-wave plate (λ/4), a half-wave plate (λ/2), a polarizing beam splitter (PBS) and
two single-photon detectors (Fig. 2.5a). Because any polarization state of light can be
transformed into horizontal (H) or vertical (V ) polarization, an arbitrary polarization and
its orthogonal complement can be measured with a single-photon detector in both output
ports of the PBS [65]. The two orthogonal polarizations define the measurement basis and
are set by the orientation of the waveplates. Due to the projective nature of the quantum
mechanical measurement one has to perform one and the same measurement on identical
copies of the photon to gain enough information about the polarization.
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Single-photon 
counting modules

PBS

2 4

ρ ρ

a) b)

IFL

TDC

Figure 2.5.: Setup for the detection of the polarization of single photons. a) The settings
of the waveplates define the measurement basis. Single-photon counting modules monitor the output
ports of the PBS. Two lenses (L) focus the light onto the sensitive area of the detector. Interference
filters (IF) suppress stray light. The output of the single-photon detectors are connected to a
time-to-digital converter (TDC). b) Throughout this thesis, the depicted symbol is used for the
setup shown in a).

The PBS has an extinction ratio of 1/1000 in transmission and 1/200 for reflected light. The
waveplates have a measured deviation from the desired retardation of < λ/400. Overall, the
quality of the polarization optics corresponds to a negligible degradation of the measured
fidelities. To switch quickly and reproducibly between different settings of the measurement
basis, the waveplates are mounted in motorized rotation stages. To suppress stray light and
light from the laser used for the stabilization of the cavity, interference filters are placed
behind the output of the cavities and in front of the detectors. In the experiments presented
in this thesis, different types of single-photon counting modules (SPCM) are used. The
detectors SPCM-ARQ16 (Perkin&Elmer) have a quantum efficiency of about 50 . . . 65 % and
a dark-count rate of 25 Hz, whereas the detectors COUNT (Laser Components) typically
have a slightly higher quantum efficiency (55 . . . 60 %) and a lower dark-count rate (10 Hz).
A detected photon results in a TTL-pulse that is registered by a time-to-digital converter
(TDC)2. The temporal resolution of the detection system is 2 ns.

In this thesis, the symbol depicted in Fig. 2.5b is used to represent the described apparatus
for polarization detection.

2.6. Connecting two systems

The two laboratories are connected optically by a fiber of 60 m length with anti-reflection
coated end-facets.

In each setup, an FPGA-based digital pattern generator is used to control the timing of the
laser pulses and the data recording of the single photon detectors. The jitter between digital
pulses within a sequence is small compared to the temporal resolution of the detection
system. The two generators are synchronized to one another to ensure relative accuracy
between the experimental runs in the two systems.

2FastComtec P7888



3. Tomography of quantum states and
quantum processes

In this thesis, experiments are presented in which qubits are stored in a single atom or
transferred between two single atoms. In all of these experiments an initial quantum
state is transformed into an output state. These transformations can be abstracted as
quantum processes. It is possible to quantify such a process by measuring the output states
for a finite set of input states. Using the method of quantum process tomography it is
then possible to predict the outcome of the process for any input state, even if it has not
been tested explicitly. In this section, a description of quantum processes and process
tomography is given. We restrict ourselves to the relevant case of single qubits.

3.1. Quantum processes of single qubits

A quantum process is the transformation of an initial quantum state ρin (either pure
or mixed) into another state ρout. In general, such a transformation is described by a
completely positive map E [56]:

ρin → ρout = E (ρin) . (3.1)

Once the function E is known, the outcome of the corresponding quantum process can be
predicted for any initial quantum state. In general, the map E is not unitary as it can
also describe loss and decoherence mechanisms. It is convenient to assume that E does not
necessarily preserve the trace. A physical quantum process, however, must not increase
the trace, i.e. 0 ≤ Tr[E(ρ)] ≤ 1 for any state ρ. The (normalized) output state for such a
process is then

ρout =
E (ρin)

Tr [E (ρin)]
. (3.2)

Tr [E (ρin)] is the probability to find the output state in the Hilbert space H of the qubit.
The normalization according to Eq. (3.2) is implicitly performed in any post-selective
measurement, as for example in our experiments which rely on the detection of single
photons. During reconstruction of the output states, only those events are considered where
a signal was actually present. In that case, Tr [E (ρin)] is the probability to not loose the
photon during the process, where ρin describes the photonic state. If the losses occurring
in the process are independent of the input state, i.e. Tr [E (ρin)] is the same for all ρin,
then ρout ∝ E(ρin). In that case, we refer to this process as also being trace preserving.

13
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A useful representation of E in the case of qubit states is provided by the process matrix χ:

E (ρin) =
3∑

m,n=0

χmnσmρinσn, (3.3)

with the Pauli matrices σi. The matrix χ is positive Hermitian by construction and
describes the process completely. If the quantum process is the identity operation, i.e.
ρout = ρin, all elements of χ are zero except for χ00 being equal to 1. Depolarization and
dephasing during the process results in the appearance of other diagonal elements, and a
reduction of the element χ00. A phase rotation of the qubit leads to non-vanishing elements
χ30, χ03 and χ33 [59]. If the process is a unitary transformation that can be described by
one of the Pauli operators σi, the corresponding diagonal element χii of the process matrix
is equal to 1, while all other elements are equal to zero.

3.2. Single qubit tomography

Any qubit density matrix can be written as a superposition of the Pauli matrices [66]:

ρ =
1

2
σ0 +

1

2

3∑
i=1

Siσi, (3.4)

with the Stokes parameters Si. The vector ~S = (S1,S2,S3) is called the Stokes vector and
describes the state ρ in the three-dimensional Stokes space (see section 3.4). The Stokes
parameters can be calculated from the density matrix:

Si = Tr [σiρ] . (3.5)

For all pure states the norm of the vector is |~S| = 1, while for mixed states the norm
is |~S| < 1. In analogy to the measurement of the polarization state of light, the state
of a qubit can be determined from a set of measurements in three bases. Let p|↓i〉(p|↑i〉)
be the probability to find the result |↓i〉 (|↑i〉), when the state ρ is measured in the basis
{|↓i〉 , |↑i〉}. These probabilities are related to the Stokes parameters by1 [65,67]

S0 = p|↓x〉 + p|↑x〉 = p|↓y〉 + p|↑y〉 = p|↓z〉 + p|↑z〉 = 1

S1 = p|↓x〉 − p|↑x〉
S2 = p|↓y〉 − p|↑y〉
S3 = p|↓z〉 − p|↑z〉.

(3.6)

To experimentally determine these probabilities, one has to perform measurements on an
ensemble of identical quantum states ρ. Let N|↓i〉(N|↑i〉) be the number of detected events
of the result |↓i〉 (|↑i〉). The normalized Stokes parameters can then be calculated using

p|↓i〉 =
N|↓i〉

N|↓i〉 +N|↑i〉
, p|↑i〉 =

N|↑i〉

N|↓i〉 +N|↑i〉
. (3.7)

1The relations from Eq. (3.6) can readily be derived using Eq. (3.5), and p|↓i〉 = 〈↓i| ρ |↓i〉 and p|↑i〉 =
〈↑i| ρ |↑i〉.



3.3 Quantum process tomography 15

From the experimentally determined Stokes vector ~S, the corresponding quantum state of
the qubit can be reconstructed using Eq. (3.4). A measurement of the Stokes parameters
is therefore equivalent to a reconstruction of the qubit density matrix. This procedure is
called quantum state tomography [65,67].

The described formalism applies to both, atomic and photonic qubits. In the experiments
presented in this thesis, detection of atomic qubit states is performed by mapping them
onto polarization states of single photons. The polarization is then detected using the
setup described in section 2.5. The relationship between atomic and photonic qubits is
given in Appendix B.

3.2.1. State fidelity and visibility

The state fidelity Fs between an input state ρin and an output state ρout is defined as the
overlap between these two states:

Fs (ρin,ρout) = Tr

[√√
ρinρout

√
ρin

]2

. (3.8)

In case of the input state being pure (ρin = |ψ〉 〈ψ|), this expression can be simplified to

Fs (|ψ〉 ,ρout) = 〈ψ| ρout |ψ〉 . (3.9)

In this case, the fidelity is the expectation value of ρout in the state |ψ〉.

If the qubit state is measured in the basis {|ψ〉 , |ψ⊥〉}, the visibility V|ψ〉 is defined as the
ratio between the number of detected events N as follows:

V|ψ〉 =
N|ψ〉 −N|ψ⊥〉
N|ψ〉 +N|ψ⊥〉

. (3.10)

For a qubit, the visibility is related to the fidelity by

F(|ψ〉 ,ρout) =
1

2

(
1 + V|ψ〉

)
. (3.11)

3.3. Quantum process tomography

3.3.1. Tomography of trace-preserving processes

Assuming a trace-preserving process, E can be experimentally determined according to the
following recipe known as standard quantum process tomography [68]:

� Prepare a set of four linear independent input states {ρj = |ψj〉 〈ψj |}, i.e. a set that
forms a complete basis of the space of 2× 2 matrices. Such a set is for example given
by the states |↓〉 , |↓x〉 , |↑x〉 and |↓y〉.

� Apply the (unknown) process described by E to each ρj = |ψj〉 〈ψj |.
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� Reconstruct the output states E(ρj) by performing quantum state tomography as
described in section 3.2.

With this set of reconstructed output states it is possible to find an estimator for χ either
analytically by inverting the set of linear equations from Eq. (3.3) [68,69], or numerically
by using four or more input states and a maximum-likelihood approach [70,71]. Performing
complete state tomography requires the preparation of a series of identical realizations of
E(ρj), and consequently the repeated execution of the aforementioned steps.

One way to compare two processes described by completely positive maps D and E , is to
average the fidelity Fs (D(ρin),E(ρin)) between the output states over all pure input states
ρin = |ψ〉 〈ψ|,

F =

∫
|ψ〉

dψFs (D(ρin),E(ρin)) =

∫
|ψ〉

dψ 〈ψ|U † [E(|ψ〉 〈ψ|)]U |ψ〉 , (3.12)

where the last expression holds if the reference process D is a unitary process described
by the operator U . Typically, the process E is compared with the identity operation, i.e.
U = 1 and D(ρin) = ρin. If E is known, F can be calculated using Eq. (3.12). On the
assumption of a trace-preserving process, the average state fidelity can be determined using
four pure states forming a regular tetrahedron, or six states forming a regular octahedron
on the Bloch sphere [72]:

F =
1

N

∑
tetrahedron/
octahedron

Fs

(
UρinU

†,E(ρin)
)
. (3.13)

If a tetrahedron (octahedron) is used, it is N = 4(6). A related figure of merit is the process
fidelity Fproc. It compares two quantum processes described by corresponding process
matrices χ and Λ and is defined as [73]

Fproc = Tr

[√√
χΛ
√
χ

]2

. (3.14)

It is related to the average state fidelity by

F =
1

3
(2Fproc + 1) . (3.15)

3.3.2. Tomography of non-trace-preserving processes

If the process E exhibits state-dependent losses, it does in general not preserve the trace of
the input density matrices. The output states then have to be normalized using Eq. (3.2). A
reconstruction of the process matrix χ using a complete basis consisting of four input states
as in the case of trace-preserving processes is only possible if the success probabilities for
these input states are known [74,75]. In practice, however, a measurement of the efficiencies
is prone to errors, as intensity fluctuations falsify the results. Alternatively, instead of using
a complete basis set, a set of six states {|Bj〉} that form three mutually unbiased bases of
the Hilbert space can be used as input states. For example, the eigenstates of the three
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Pauli matrices |↓〉 , |↑〉 , |↓x〉 , |↑x〉 , |↓y〉 and |↑y〉, which correspond to the six cardinal points
on the surface of the Bloch sphere, form such a set. By means of a maximum-likelihood
method, the process matrix is correctly reconstructed without prior knowledge of the
individual success probabilities.

The expressions for the average state fidelity and the process fidelity from Eq. (3.13) and
Eq. (3.14), are only valid for trace-preserving processes. In the following, these formulas
are generalized to non-trace-preserving processes.

As mentioned above, the trace of the output density matrix of a non-trace-preserving
process is the probability of obtaining the output state E(ρ) for a given input state ρ. Using
Eq. (3.3), it can be written as [76]

Tr [E(ρ)] = Tr

[∑
m,n

χmnσmρσn

]
= Tr [Pρ] , (3.16)

with the semidefinite positive Hermitian operator

P =
∑
m,n

χmnσnσm ≤ 1. (3.17)

If the process E , described by the process matrix χ, does not preserve the trace, the
relation P < 1 holds. Because of Tr[σnσm] = 2δmn, the condition for the process being
non-trace-preserving can equivalently be expressed as Tr[χ] = 1

2Tr[P] < 1. Because P is
Hermitian it can be diagonalized and therefore be written as P =

∑
i λi |λi〉 〈λi| with the

eigenstates |λi〉 and corresponding eigenvalues λi. Eq. (3.16) then becomes

Tr [Pρ] =
∑
i

∑
k

〈λi| ρ |λk〉 〈λk| ρ |λi〉 = λ1 〈λ1| ρ |λ1〉+ λ2 〈λ2| ρ |λ2〉 . (3.18)

The success probabilities for input states that are eigenstates of P are thus the corresponding
eigenvalues λ1 and λ2, respectively. Input states that are in a superposition of the eigenstates
with equal amplitudes all have the same success probability of 1

2(λ1 +λ2). Once the process
matrix has been experimentally determined using quantum process tomography, the
operator P can be calculated according to Eq. (3.17). Input states that are oriented along
the eigenvectors of this operator are subjected to pure damping, i.e. they preserve their
orientation in Stokes space but have different probabilities (λ1 and λ2) of being transmitted
through the process. States that do not coincide with one of the eigenstates are subjected
to damping and rotation that do not preserve angles.

The expression for the process fidelity as given in Eq. (3.14) is generalized by normalizing
the matrices χ and Λ by dividing them by their respective traces [74],

Fproc =
Tr
[√√

χΛ
√
χ
]2

Tr[χ]Tr[Λ]
= Tr

[√√
χ′Λ′

√
χ′
]2

, (3.19)

with χ′ = χ
Tr[χ] and Λ′ = Λ

Tr[Λ] . The processes described by χ′ and Λ′ can be regarded as
trace preserving. However, they do not correspond to a physical quantum process since
the success probability is larger than 1 for some input states (the corresponding operator
P has at least one eigenvalue larger than 1).
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To generalize Eq. (3.13), we use the theory of “state 2-designs”. A state 2-design is a set of
K states {|ψj〉 ∈ H, j = 1 . . .K} satisfying [77,78]∫

dψ 〈ψ| A1 |ψ〉 〈ψ| A2 |ψ〉 =
1

K

K∑
j=1

〈ψj | A1 |ψj〉 〈ψj | A2 |ψj〉 , (3.20)

for all operators A1,A2. By making the substitutions A1 = 1 and A2 = U † E(|ψ〉〈ψ|)
Tr[E(|ψ〉〈ψ|)]U it

immediately follows:

F =

∫
|ψ〉

dψ 〈ψ|U † E(|ψ〉 〈ψ|)
Tr[E(|ψ〉 〈ψ|)]

U |ψ〉 =
1

K

K∑
j=1

〈ψj |U †
E(|ψ〉 〈ψ|)

Tr[E(|ψ〉 〈ψ|)]
U |ψj〉 . (3.21)

For the case of single qubits, a 2-design is formed by the six eigenstates of the Pauli
operators σx, σy and σz [79]. These eigenstates form a set of three mutually unbiased bases.
The extension of Eq. (3.13) to the case of non-trace-preserving processes is therefore to
average over the output states that are normalized by their respective traces. The relation
in Eq. (3.15) remains valid [80].

3.4. Visualization of quantum states and processes

Single qubit processes can be visualized using the Bloch sphere. As was mentioned in
section 3.2, any qubit density matrix can be described in the three-dimensional Stokes
space using the Stokes vector ~S [Eq. (3.4)]. Pure states with |~S| = 1 lie on the surface of
the unit Bloch sphere, while mixed states (|~S| < 1) are located inside the unit sphere. For
completely mixed states, the density matrix is ρ = 1

212 = 1
2σ0 and consequently ~S = 0.

These states are therefore at the center of the sphere.

Performing a complete tomography of a qubit process is equivalent to reconstructing the
Bloch sphere. In the typical case, the input states are a set of discrete pure states. The
corresponding Bloch sphere is therefore the unit sphere. As explained above, quantum
state tomography of the output states of a complete set of input states results in a complete
quantum process tomography and fully characterizes the process. The resulting Bloch
sphere allows for an intuitive graphical representation of the process by showing the effect of
the process on arbitrary input states. If the process is trace preserving, the transformation
of the states in Stokes space can be described by

~S
E−→ M~S + ~c.

The matrix M induces a compression and rotation of the sphere, which is shifted along
the vector ~c. Non-trace-preservation leads to anisotropic deformations. An example of a
quantum process in Stokes space is shown in Fig. 3.1.

The description of quantum processes is of course not restricted to atomic qubits. Indeed,
the same formalism applies also to photonic qubits. In the context of polarization states
of light, the term Poincaré sphere rather than Bloch sphere is used. In the experiment
described in this thesis, the reversible mapping between atomic spin-states and photonic
polarization-states is demonstrated. Therefore, a one-to-one correspondence between
Poincaré and Bloch sphere exists (see Appendix B), and they are treated equivalently.
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Figure 3.1.: Visualization of a quantum process for qubits. Any qubit state can be
represented by a point in Stokes space (colored spheres). Pure states lie on the surface of the unit
Bloch sphere, mixed states lie inside. The qubit eigenstates |↓〉 and |↑〉 lie on the poles. The figure
shows an example of a quantum process acting on pure input states. The effect on arbitrary input
states is immediately visible from the deformation and rotation of the sphere.

3.5. Characterization of entanglement

One of the most remarkable and counterintuitive features of quantum mechanics is the
existence of entanglement. The notion of entanglement was defined by Erwin Schrödinger
and he stated in a seminal work in 1935 [81]: “I would not call [entanglement] one but
rather the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought.” Besides its fundamental importance for the
understanding of nature, entanglement is of high relevance in the context of quantum
communication [43,82] and quantum metrology [5].

The experiments presented in this thesis solely deal with bipartite entanglement. Consider
two particles A and B with corresponding Hilbert spaces HA and HB. A state ρ from the
two-particle Hilbert space H = HA ⊗HB is called separable, if it can be expressed in the
form

ρ =
∑
i

piρ
A
i ⊗ ρB

i , (3.22)

with
∑

i pi = 1 and pi ≥ 0. ρA
i (ρB

i ) is a density operator that describes the single-particle
state in HA(HB). A state ρ is said to be entangled, if and only if it is not separable.

Criteria exist that enable us to experimentally test whether a state ρ is entangled or
separable. The most obvious way is to reconstruct the density matrix of the two-particle
state ρ. This can be done by first reconstructing the individual single-particle states by
means of quantum state tomography (see section 3.2), and then correlating measurement
results obtained in different bases (see for example [50]). The degree of entanglement
can then be quantified by means of several measures [83, 84]. Furthermore, the fidelity,
which measures the overlap of the generated with an assumed ideal entangled state, can
be computed. If the fidelity is above a certain threshold, the state ρ is non-separable.
While the full density matrix provides complete information about the quantum state, its
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tomographic reconstruction requires a big experimental effort. In the case of a two-qubit
state, correlation measurements in nine different combinations of basis settings are required.

It is, however, possible to detect whether a given state is entangled or not with fewer
number of measurements, using a so-called entanglement witness [85]. An entanglement
witness W is a Hermitian operator with the following properties:

� Tr[Wρ] < 0 if ρ is entangled,

� Tr[Wρsep] ≥ 0 for all separable states ρsep.

It is worth mentioning that for a given operator W entangled states with Tr[Wρ] ≥ 0
exist. The condition Tr[Wρ] < 0 therefore is a sufficient condition for entanglement, it
is, however, not necessary. To construct such an operator W, a priori knowledge of the
ideally generated state is required. In the case of the maximally entangled Bell state
|Ψ−〉 = 1√

2
(|↓z↑z〉 − |↑z↓z〉), with the qubit basis states {|↓z〉 , |↑z〉},

W =
1

2
(|↓z↓z〉 〈↓z↓z|+ |↑z↑z〉 〈↑z↑z|+ |↓y↓y〉 〈↓y↓y|+ |↑y↑y〉 〈↑y↑y|

+ |↓x↓x〉 〈↓x↓x|+ |↑x↑x〉 〈↑x↑x| − 1)
(3.23)

is an entanglement witness [52,86,87]. For example |↓i↓i〉 〈↓i↓i| is the projector onto the
pure two-qubit state |↓i↓i〉, in which both qubits point into the same direction i in Stokes
space. Projective measurements of ρ now allow us to determine the expectation value of
W. Let p|↓i↓i〉(p|↑i↑i〉) be the probability of detecting both qubits in the state |↓i〉 (|↑i〉),
when the individual qubits are measured in the basis {|↓i〉 , |↑i〉}. The expectation value
then becomes

〈W〉 = Tr[Wρ] =
1

2

(
p|↓z↓z〉 + p|↑z↑z〉 + p|↓y↓y〉 + p|↑y↑y〉

+p|↓x↓x〉 + p|↑x↑x〉 − 1
)
.

(3.24)

〈W〉 can consequently be determined by measuring correlations in only three different
bases.

The witness 〈W〉 is directly related to the fidelity, defined as the overlap between the
generated state ρ and the ideal state |Ψ−〉 [cf. Eq. (3.9)]: F(|Ψ−〉 ,ρ) = 〈Ψ−| ρ |Ψ−〉. It can
readily be shown that [52]

F =
1

2
− 〈W〉 . (3.25)

A state with F > 1/2, and equivalently 〈W〉 < 0, indicates non-separability of the measured
state.



4. Direct quantum state transfer

The content of this chapter has partially been published in:
An elementary quantum network of single atoms in optical cavities.
S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa,
J. Bochmann and G. Rempe, Nature 484, 195 (2012).

The ability to map a quantum state from a single atom onto a single photon and vice versa,
is an essential ingredient for the realization of a quantum network based on atoms and
photons [27]. A first step towards this goal was the experiment described in [88] where
a weak coherent laser pulse was stored in a single Cs atom. The first demonstration of
storage and retrieval of a qubit in a single atom was achieved in our experiment [44] by
mapping the polarization of a coherent pulse onto the internal state of a single atom, and
back onto the polarization of a single photon [89]. The next step is the experimental
demonstration of the storage process using true single photons, which is covered in this
chapter. By exploiting this technique, the realization of a prototypical quantum network is
demonstrated. Quantum information is transferred between two atoms, each coupled to a
high-finesse optical cavity, via the exchange of single photons [41]. An arbitrary qubit state,
stored in atomic Zeeman states, is mapped onto the polarization of a single photon. This
photon is sent to the second atom located in another laboratory, where it is coherently
absorbed by the atom. This completes the qubit transfer from one atom to the other.

In the first part of this chapter, the theoretical background for the generation and absorption
of single photons in an atom-cavity system based on a stimulated Raman adiabatic passage
is briefly explained. After demonstrating the coherent storage of single photons in a single
atom, the experimental implementation of the state transfer is described and the results
are discussed.

4.1. Generation and storage of single photons using an adiabatic
passage

The strong light-matter interaction between a single photon and a single atom, provided
by an optical cavity, can be exploited to efficiently transfer atomic onto photonic states
and vice versa. By employing a vacuum-stimulated Raman adiabatic passage (vSTIRAP),
a single photon is coherently generated in a well-defined spatial mode of the cavity [90].
Atom-cavity systems can therefore serve as highly efficient single-photon sources [91,92].
The same mechanism can be used to coherently store photons, impinging onto the cavity,
in an atom. To understand the principle of the vSTIRAP, the description is first restricted
to a three-level system in a Λ-type configuration (Fig. 4.1). In addition, any dissipation
in terms of coupling to the environment is initially neglected. We consider an atom with
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Figure 4.1.: Atom with a Λ-type level scheme coupled to a cavity and an external laser
field. A classical laser field with Rabi frequency ΩL couples the atomic ground state |u〉 to the
excited state |e〉. The mode of the cavity with vacuum Rabi-frequency 2g couples the ground state
|g〉 to the excited state |e〉. ∆L (∆C) is the detuning of the laser (cavity) field to the respective
transition. a) Single-photon generation. After initializing the system in |u,0〉, a vSTIRAP
drives the system to the state |g,1〉, thereby creating a single excitation of the cavity field. The
excitation decays with a rate κ. This results in a single photon being emitted in a well-defined
spatial mode. The scheme can be repeated by re-initializing the system in |u,0〉. b) Single-photon
storage. The system is initially prepared in the state |g,0〉. A photon entering the cavity, along
with a control field, drives an adiabatic passage to the state |u,0〉.

two electronic ground-states |g〉 and |u〉, and one excited state |e〉. The mode of the cavity
couples the states |g〉 and |e〉 with the vacuum Rabi-frequency 2g. An external laser field
couples the state |u〉 to the excited state |e〉 with control Rabi-frequency ΩL. ∆C and ∆L

are the detunings from the respective transition. The excited state is chosen to be the
state with zero energy. Transforming the system to the interaction-picture and using the
rotating-wave approximation results in the interaction Hamiltonian [93]

Hint = −~
(
gσega+

Ωc

2
σeu + H.c.

)
. (4.1)

The atomic and cavity part of the Hamiltonian read

Hatom = −~∆Lσuu, Hcavity = −~∆Ca
†a. (4.2)

The operator σfi = |f〉 〈i| couples the atomic states |i〉 and |f〉 for i 6= f . For i = f it is
the population operator. a (a†) is the annihilation (creation) operator of a photon in the
cavity. The state of the combined atom-cavity system is a product state |x,n〉 with the
atomic state |x〉 (x ∈ {g, u, e}), and |n〉 (n ∈ N) representing the number of quanta in the
cavity. In the following, we restrict ourselves to the subspace with zero or one excitation
in the cavity (n = 0,1). In the basis {|g,1〉 , |u,0〉 , |e,0〉} the matrix representation of the
Hamiltonian is

H = Hatom +Hcavity +Hint = −~
2

2∆C 0 2g
0 2∆L ΩL

2g ΩL 0

 . (4.3)
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In the case of two-photon resonance (∆L = ∆C = ∆), one eigenstate of the Hamiltonian is
found to be the dark state

|ϕ0〉 = cos(θ) |u,0〉 − sin(θ) |g,1〉 . (4.4)

It is called dark because it does not contain any contribution of the excited state |e〉. As
long as the system remains in this state, no light can be emitted via spontaneous decay;
the atom stays “dark”. The mixing angle

tan(θ) =
ΩL

2g
(4.5)

determines the relative amplitude between the states |u,0〉 and |g,1〉. For ΩL/2g → 0 the
dark state is equal to |u,0〉, while in the other limiting case ΩL/2g →∞ it is equal to |g,1〉.

The idea of photon generation is to initialize the system in |u,0〉 and then to transfer the
system to the state |g,1〉 via an adiabatic passage (Fig. 4.1a):

|u,0〉
ΩL/2g→∞−−−−−−→ |g,1〉 . (4.6)

This results in a single excitation of the cavity field. The dynamics of the photon generation
process is governed by an interplay of temporal amplitude of the control field, atomic
transition strengths and frequency detunings [92]. In the idealized description, all dissipative
processes have been disregarded. In the real-world experiment, however, the atom and
the cavity couple to an external reservoir with rates γ and κ respectively. The cavity
decay leads to dissipation of excited states |n〉 to the vacuum state |0〉 with rate κ. This
mechanism couples cavity excitations to well-defined free-space modes. Similarly, excited
atomic states decay to the ground states with a rate γ. In the vSTIRAP scheme the
transfer of Eq. (4.6) has to occur adiabatically, such that the system remains in the dark
state |ϕ0〉 at all times. The condition for adiabaticity can be expressed as follows [93]:

g2

γ
� θ̇ +

κ

2
. (4.7)

This relation requires the cooperativity C to be larger than 1, and the mixing angle θ
to change slowly in time. If the condition is not fulfilled, the dark state |ϕ0〉 is not an
eigenstate at all times and the excited state |e〉 can be populated. This leads to spontaneous
atomic decay and loss of photons into free space.

An important feature of the vSTIRAP is that it allows several important properties
of the photons to be controlled. The detuning ∆ directly sets the frequency of the
emitted photons [94], while the temporal envelope of the applied control laser pulse ΩL(t)
determines the temporal envelope of the photonic wave packet [95]. Moreover, by state-
selective coupling of the atom to the cavity it is possible to produce photons with a
pre-defined polarization [96,97]. Similarly, quantum states can be mapped coherently from
atomic spin-states onto photonic polarization-states [44]. This wide range of possibilities
enabled by the vSTIRAP makes it extremely useful in quantum information experiments.
In particular, the adiabatic passage can be employed to generate entanglement between
an atom and a photon [89, 98]. This will be used to prepare the atomic qubit in the
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state-transfer experiment (section 4.3). Moreover, such a hybrid entangled state is the
basis for the distribution of entanglement over large distances, as the photonic part of the
state can be transferred to remote locations with high speed and low losses. This is an
essential ingredient in the teleportation experiment described in chapter 5.

The task of mapping a photonic onto an atomic state can be conceived as the time-reversal
of the photon-generation process (Fig. 4.1b). To this end, the atom is initially prepared in
|g〉 rather than in |u〉, and the control field is turned on with a Rabi-frequency ΩL � 2g.
Decreasing the Rabi-frequency of the control laser adiabatically while a photon is in the
cavity drives the system via an adiabatic passage and results in the state |u,0〉:

|g,1〉
ΩL/2g→0−−−−−→ |u,0〉 . (4.8)

The atomic state is transferred from |g〉 to |u〉 and the photon is annihilated.

4.2. A single-atom quantum memory

In this chapter, the implementation of an optical quantum memory based on a single atom
coupled to a cavity is explained. We use one of the atom-cavity systems to generate a stream
of single photons (node B) and store them coherently in the atom of the second apparatus
(node A). After a user-defined storage time, the atom is read out by transferring the atomic
state onto the polarization state of a single photon. We analyze the storage-retrieval
process by performing quantum process tomography. The measured efficiency and fidelity
are compatible with the values obtained from measurements with coherent pulses [44].

Before the experimental implementation and results are discussed, a concise theoretical
description of the storage and readout process is given.

4.2.1. Coherent mapping between photonic and atomic states

As was described in section 4.1, the adiabatic passage can be used to efficiently and
coherently map single photons onto a single atom. To map a polarization qubit and
not only a photonic excitation onto the single atom, the scheme must be extended to a
double Λ-type system (Fig. 4.2a). The qubit of the photon is encoded in a superposition of
right-circular (|�〉) and left-circular (|	〉) polarization. The cavity supports two frequency-
degenerate and orthogonal polarization modes. We define the quantization axis to be the
cavity axis thus the two modes are circular polarizations, which correspond to atomic σ+

and σ− transitions:

|Ψphoton〉 = α |�〉+ β |	〉 −→ α
∣∣σ−〉+ β

∣∣σ+
〉
, (4.9)

with complex parameters α and β, and |α|2 + |β|2 = 1. In order to store the photonic qubit
in the atom, the σ± components have to be mapped coherently onto atomic states. Figure
4.2a shows the implementation of the storage scheme in 87Rb. A photon with a polarization
corresponding to a σ± transition couples the state 5S1/2 |F = 1,mF = 0〉 to the state

5P3/2 |F = 1,mF = ±1〉′, while the control field couples the states 5S1/2 |F = 2,mF = ±1〉
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Figure 4.2.: A single-atom quantum memory implemented in 87Rb. a) After preparing
the atom in |1,0〉, the polarization of a single photon is mapped onto a superposition of the states
|2,± 1〉 using a vSTIRAP. The polarization components σ± couple the initial state to the excited
states |1,± 1〉′. These states in turn are coupled to the ground states |2,± 1〉 by the π-polarized
control field. b) Readout of the atom maps the superposition of |2,± 1〉 onto a superposition of
the polarization components σ±.

and 5P3/2 |F = 1,mF = ±1〉′. This forms two Λ-type systems with a commonly shared
ground state |1,0〉.

Storage is accomplished by preparing the atom in |1,0〉 and driving a STIRAP with initially
one photon and a control laser field with ΩL � 2g. According to Eq. (4.8), ramping the
control Rabi-frequency down to zero causes a change of the atomic hyperfine state and
the annihilation of the photon. Therefore, the components of the photon driving the
σ± transitions are mapped onto the atomic states |2,± 1〉. Because the two pathways
are indistinguishable, no information about the incident polarization is gained and the
state does not collapse. This results in phase preservation of the superposition state
from Eq. (4.9). We thus denote this mapping process as coherent storage. A photon in
a superposition of |�〉 and |	〉 is consequently mapped onto an atomic superposition
according to

α |�〉+ β |	〉 −→ α |2,− 1〉+ β |2,+ 1〉 . (4.10)

To read out the qubit, the storage process is reversed (Fig. 4.2b). After an arbitrary storage
time the Rabi frequency of the control laser is increased, driving a vSTIRAP according to
Eq. (4.6). Consequently the atomic superposition α |2,− 1〉+ β |2,+ 1〉 is converted back
onto the polarization of another photon with polarization state α |�〉+ β |	〉.

4.2.2. Experimental setup

After the theoretical description of the coherent mapping between atomic and photonic
states, we now experimentally demonstrate that single photons can be stored in and
retrieved from a single atom while preserving their polarization state. To this end, we
generate single photons in one atom-cavity system (node B) and coherently store them in
the second system (node A). The cavity and the control field are in two-photon resonance
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Figure 4.3.: Setup for the characterization of the single-atom quantum memory with
single photons. Unpolarized single photons are generated at node B using vSTIRAP (red).
These photons are sent to the laboratory of node A via an optical fiber with a length of 60 m. A
combination of a polarizer (P) and a waveplate (WP) sets the polarization of the photons. The
polarized photons are coherently absorbed in the atom at node A. After storage, the atomic state is
measured by mapping it onto the polarization of another single photon (orange) and detecting the
polarization. Polarization compensation is achieved using half-wave (λ/2) and quarter-wave (λ/4)
plates.

(∆C = ∆L), and are 170 MHz blue detuned with respect to the transition of the free atom
at both nodes. The Stark shifts of the relevant transitions are 150 MHz (|2,± 1〉 ↔ |1,± 1〉′
at node A) and 120 MHz (|2,0〉 ↔ |1,0〉′ at node B), respectively. The control laser and
cavity resonance are therefore effectively 20 MHz (node A) and 50 MHz (node B) blue
detuned from the atom.

A sketch of the setup used to connect the systems and to detect the polarization state of
the photons read out from atom A is shown in Fig. 4.3. The two laboratories are linked by
an optical fiber with a total length of 60 m. In order to characterize the storage process
by means of quantum process tomography, it is necessary to measure the output of the
memory for a set of specific input states (see section 3.3). Since we generate single photons
with random polarization at node B using vSTIRAP (see section 4.1 and 4.3.1.1), we use a
combination of a polarizer and waveplates (either λ/4, λ/2, or both) to set the polarization
of the incoming photons to a well-defined value. Obviously, the use of the polarizer reduces
the rate of incoming photons by a factor of 2. The polarized photons are sent to the cavity
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at node A via another fiber with a length of 10 m. To be able to connect the two cavity
modes and to detect light coming from the cavity at node A, a non-polarizing beam splitter
(NPBS) is placed in between the two fibers. 50 % of the light coming from node B is
directed to node A, while 50 % of the light coming from node A is directed to the detection
setup. Thus, light read out from atom A after the storage process and light emitted from
node B that is reflected off the cavity at node A can be detected and analyzed.

Compensation of unwanted polarization rotations. During transmission of the photon
between the two atoms and during transmission of the read-out photon from node B to the
detectors, it experiences a change in polarization as some optical components in the beam
path are birefringent. The overall change in polarization is a unitary transformation and
can therefore be compensated using waveplates. Two combinations of waveplates, each
comprised of two quarter-wave and one half-wave plate (see Fig. 4.3), are used to reverse
this transformation. To calibrate the compensation, we use polarizers with well-defined
settings as a reference, which we place at the output of the cavities. The waveplates are
adjusted such that the polarization of light emerging from node B behind the polarizer is
the same as in front of the cavity at node A. At the same time, the polarization of light
in front of the detection setup has to be the same as the polarization of light emerging
from node A behind the polarizer. The compensation has to be performed for two different
polarizer settings, corresponding to polarization states which encompass a right angle with
respect to each other on the Poincaré sphere, e.g. H and D [99].

4.2.3. Experimental implementation

The experimental sequence used for photon storage is shown in the inset of Fig. 4.4. The
individual steps are explained in the following.

Optical pumping at node A. The storage scheme described in section 4.2.1 requires
the atom to be initialized in the state |1,0〉. We achieve this by optical pumping. The
transition |1,0〉 ↔ |1,0〉′ is forbidden due to dipole selection rules (see for example [100]),
whereas for the states |1,± 1〉 a π-transition to the F ′ = 1 states is allowed. By applying a
π-polarized laser resonant with the F = 1↔ F ′ = 1 transition on the D2-line, the atomic
population consequently accumulates in |1,0〉. As the atom can also decay to F = 2, we
apply a π-polarized repump laser resonant with the transition F = 2 ↔ F ′ = 1. This
brings population from the F = 2 states back into the cycle of optical pumping. The
repumper is in two-photon resonance with the cavity field and 20 MHz blue detuned from
the Stark-shifted atomic F = 2↔ F = 1 transition. In the experiment, we apply a sequence
of five consecutive pulses with a length of 2 µs each. The efficiency of the process, i.e.
the fraction of population in the state |1,0〉 after optical pumping, can be experimentally
estimated and is found to be > 90 % [59].

Photon generation at node B. After pumping atom B into the state |2,0〉, the generation
of a single photon into the cavity mode is triggered by applying a π-polarized control laser
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Figure 4.4.: Storage and retrieval of single photons in a single atom. Integrated arrival
time histograms of photons for the storage (0 µs - 1.5 µs) and readout process (2.5 µs - 4.5 µs). The
blue bars correspond to the reference photon, which is reflected off the cavity while the control field
is switched off. The data shown in orange are recorded during storage and readout. A part of the
photon is reflected off the cavity without storage. The inset shows a schematic of the experimental
sequence of the quantum memory at node A, including optical pumping, storage and cooling. The
experiment is repeated at a rate of 5 kHz.

pulse onto the atom, which is in two-photon resonance with the cavity1. The procedure of
optical pumping and photon generation is performed twice. The first photon is intended to
be stored in the atom of node A. The second photon is reflected off the cavity at node A
without storage and serves as a reference to determine the storage efficiency. The photon
generation efficiency into the cavity mode was measured to be 33 %. With a probability of
15 %, this photon is transmitted through the optics (including two fibers, the polarizer and
the NPBS) to the cavity at node A.

Storage. After optical pumping, the control laser at node A is switched on. As soon as
the photon from node B enters the cavity at node A, the control intensity is ramped down.
The temporal course of the Rabi-frequency follows approximately a cos2-function with a

1Details on optical pumping to |2,0〉 can be found in section 4.3.2 and [52].



4.2 A single-atom quantum memory 29

total switching time of ∼ 0.5 µs. The timing of the control ramp is adjusted with respect
to the arrival time of the photon and is optimized for maximum storage efficiency. During
this stage, the polarization of the photon is mapped onto a superposition of the atomic
Zeeman states |2,± 1〉 [Eq. (4.10)].

Readout. After a chosen storage time of 2.5 µs, the control field is ramped up again and
a single photon is generated. Thereby, the qubit stored in the atom is mapped back onto
the polarization of the photon. Its polarization state is then detected and compared with
the polarization of the original photon to analyze the fidelity of the quantum memory.

4.2.4. Experimental results

Efficiency

An important figure of merit of a quantum memory is the efficiency of the storage and
retrieval process. We determine its value by comparing the number of read-out photons
with the number of reference photons. Reference photons impinging onto the cavity enter
the resonator and experience losses due to absorption and transmission through the high-
reflective mirror. These photons leave the cavity from the high-transmissive mirror with a
measured probability of 0.75. Transmission losses from the cavity to the detectors are the
same for both, read-out photons and reference photons. The signal of the reference must
therefore be scaled by the factor 1/0.75.

Figure 4.4 shows the arrival-time histogram of photons for the quantum memory experiment.
The data are integrated over a total measurement time of ∼ 12 h. The ratio of the counts
from the read-out photon (within the depicted evaluation interval with a length of 1 µs)
to the counts from the reference photon (blue bars) is measured to be (14.1 ± 0.8) %.
Rescaling the reference counts by the factor of 1/0.75 results in a storage-retrieval efficiency
of (10.6± 0.7) %. This value is the probability for a single photon that is in front of the
cavity to be stored, retrieved and to leave the cavity through the output coupler. This
value therefore characterizes not only the efficiency of the storage-retrieval process in the
atom, but of the whole memory, comprised of atom and cavity. With an independently
measured photon production efficiency of 60 % at node A, the storage efficiency can be
estimated to be 18 %.

Fidelity

In order to determine the fidelity of the storage and retrieval process, we use a set of
four input polarization states |H〉, |V 〉, |A〉 and |L〉, and measure the corresponding
photonic output density matrices using quantum state tomography (section 3.2). Under the
assumption of a trace-preserving process, the Bloch sphere and the process matrix can be
reconstructed by means of process tomography (Fig. 4.5). The average state fidelity with
respect to the ideal input states is measured to be F = (92.2± 0.4) %, and clearly exceeds
the value of 2/3 that could be achieved by a classical intercept and resend method [101].
The dominant element in the process matrix is χ00, representing the good preservation of
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Figure 4.5.: Quantum process tomography of the single-atom quantum memory. The
data are shown for the retrieved photons after storage in the atom. a) Reconstructed Bloch sphere.
The small deformation of the unit sphere proves that the coherence of the polarization states
is well-preserved during the storage and retrieval process. b) Absolute value of the elements of
the corresponding process matrix. The dominant element χ00 indicates that the process is well
described by the identity operation. The dashed bar corresponds to the matrix element of the
identity operation (χ00 = 1).

coherence during storage and readout. It can be seen from the reconstructed Bloch sphere
that the measured output states are close to the ideal input states. The main deviation
from the unit sphere (corresponding to an ideal quantum process) is a small loss in volume.

In the first demonstration of the single-atom quantum memory using weak coherent
pulses, an average fidelity of 93 % was achieved [44]. After optimizing the process of optical
pumping, this value could be increased to ≈ 98 %. The obtained fidelity for the measurement
with single photons, however, is significantly smaller. This fact can be explained by the
relatively low rate of detected photons after readout of the memory and resulting increased
influence of non-perfect optical pumping to F = 1. The probability to detect a photon
after storage and retrieval per experimental run is approximately Pp = 1 · 10−3. This value
results from the probabilities of the individual steps in the protocol, including photon
generation at node B, transmission to the cavity at node A, storage and retrieval of the
photon, and measurement in the single-photon detector. Occasionally it happens that after
optical pumping, atom A remains in the hyperfine state F = 2. This may result in the
generation of a photon in the readout process, which has a polarization independent of
the incoming photon. The probability for this event to occur was measured by performing
the experimental protocol as shown in Fig. 4.4 without an incoming photon. We find that
with a probability of Pd = 1 · 10−4 a signal in the detector is registered. As this is an
experimentally determined value, it already includes electronic dark-counts that occur
with a probability of ≈ 1.5 · 10−5 within the 1 µs long evaluation interval. The percentage
of detrimental events relative to events stemming from storing single photons is thus
Pd/Pp = 10 %. By assuming that a photon generated from an atom that has not been
properly optically pumped is randomly polarized, this results in a decrease of the fidelity
by 5 percentage points. The low overall count rate can therefore explain the reduction
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Figure 4.6.: Storage-retrieval fidelity for different evaluation intervals. a) Numerical
simulations of the wave packet envelope of single photons generated into the cavity for different
initial atomic states of the F = 2 manifold. The temporal evolution depends on the quantum
number mF . The inset shows the atomic levels and couplings used in the simulation (see Appendix
C for details). The efficiencies are 70 % (mF = 0), 48 % (mF = ±1) and 56 % (mF = ±2). b)
Experimentally obtained fidelities for different subsets of the read-out photon data (cf. Fig. 4.4).
By cutting the photon at earlier positions, the fidelity is increased.

of the fidelity compared to measurements with coherent pulses. This in turn means that
the performance of the storage process with single photons compared to the previous
demonstration with coherent pulses [44] is about the same.

The fidelity is limited by non-perfect optical pumping of atom A to the state |1,0〉 before
storage. Off-resonant excitations of excited F ′ = 0 and F ′ = 2 states ultimately limit
the quality of the pumping process. In addition, a not perfectly π-polarized laser causes
deviations from the ideal transition scheme shown in Fig. 4.2. Both effects may lead to
a preparation of the atom in the states |1,± 1〉. In the ideal storage scheme, the atom is
transferred to a superposition of the states |2,± 1〉. The aforementioned imperfections,
however, can result in the population of the other Zeeman states of the F = 2 manifold.
The polarization of photons read out from these states is in general uncorrelated to the
polarization of the stored photon. Non-ideal optical pumping thus reduces the measured
storage-retrieval fidelity. Because the transition strength of the control field depends on
the quantum number mF , the dynamics of the photon emission process depends on the
atomic state. This is illustrated with a simulation of the photon generation process2,
shown in Fig. 4.6a. Photons emitted from the states |2,± 1〉 have a nearly symmetric shape
and represent the largest contribution to the measured read-out photons (see Fig. 4.4 and
Fig. 4.6b). In contrast, population of the states mF = 0 and mF = ±2 leads to delayed
photon emission. The reason is that the control field, which couples the states F = 2 and
F ′ = 1, is near-resonant with respect to the excited states |1,± 1〉′ and is off-resonant to the
states |1,0〉′ and |2,± 2〉′. By post-selecting subsets of data based on early photon arrival
times it is therefore possible to filter out those events in which the atom was transferred

2Details on the simulation can be found in Appendix C.
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to the states |2,0〉 or |2,± 2〉 during storage. As was discussed above, population of these
states is caused by non-ideal optical pumping. The mentioned post selection therefore
removes events in which initialization to |1,0〉 was not perfect. This filtering is demonstrated
with data of the read-out photons of the storage experiment. The resulting fidelities for
different evaluation intervals is shown in Fig. 4.6b. For example, by taking only 0.4 µs of the
read-out photon into account, the fidelity has a value of (94.2± 0.6) %. By performing no
post selection and taking 2.2 µs of the data into account, the measured fidelity is reduced to
(87.9± 0.4) %. This clearly demonstrates that delayed photon emission leads to a decreased
fidelity as expected from the discussion above.

4.3. Quantum state transfer between single atoms

In the previous section the reversible mapping of a quantum state between a single photon
and a single atom with high fidelity was demonstrated. This process is the essential
ingredient for a quantum network in which individual atomic nodes are connected via the
exchange of photons. Such a connection between two individual atoms at distant locations
is demonstrated in this chapter. Initially, the atom at node B holds a qubit |ϕ〉B. This
state is mapped coherently to the polarization state of a single photon. The photon is then
transmitted to the receiver at node A. At the receiving site, the polarization of the photon
is mapped onto the internal atomic state and the transfer of the qubit |ϕ〉B from atom B
to atom A is thereby completed. This direct quantum state transfer between two remote
atoms is demonstrated in the following.

The first part of this chapter explains how the atom at the sender site is prepared in
a well-defined qubit state using a projective measurement. The second part covers the
description of the experimental implementation. Finally, the efficiency and the fidelity of
the state transfer is analyzed and discussed.

4.3.1. Initialization of the atomic qubit

To perform tomography of the state transfer process, we prepare atom B in a well-defined
qubit state and analyze the transferred state at atom A using state tomography (see section
3.3). The qubit at node B can be written as a superposition of two states:

|ϕ〉B = α |↓〉B + β |↑〉B , |α|2 + |β|2 = 1. (4.11)

Physically, qubit B is encoded in the states |↓〉B ≡ |F = 1,mF = −1〉B and |↑〉B ≡
|F = 1,mF = +1〉B of the 87Rb ground state 5S1/2. In order to prepare the state |ϕ〉B, first
entanglement between the spin state of the atom and the polarization state of a single
photon is generated. As a second step, this photon is measured in a polarization-sensitive
detector. This heralds the projection of the atom onto a well-defined state. In the following,
this preparation technique is described in detail.
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Figure 4.7.: Atomic state preparation via a projective measurement. a) Entanglement
is generated between the spin state of a single atom and the polarization of a single photon. The
atom is initialized in the state |2,0〉. A π-polarized control laser pulse near-resonant with the
F = 2 ↔ F ′ = 1 transition drives an adiabatic passage along two possible paths (σ±), thereby
generating entanglement between the atomic Zeeman state and the photonic polarization. b) The
photon is measured in a detection setup (see section 2.5). This projects the atom into a well-defined
state, depending on the basis and the measurement outcome (Tab. 4.1).

4.3.1.1. Generation of atom-photon entanglement

The adiabatic passage described in section 4.1 can be exploited to efficiently create single
photons that are entangled with the spin state of a single atom [52,89,98]. To this end, the
scheme with three levels is extended to the configuration shown in Fig. 4.7a. The cavity
is near-resonant with the F = 1↔ F ′ = 1 transition on the D2-line3. Atom B is initially
prepared in the state |F = 2,mF = 0〉. Application of a π-polarized control field that is on
two-photon resonance with the cavity (∆C = ∆L) couples this state to |F = 1,mF = 0〉′.
This drives an adiabatic passage and consequently the emission of a single photon B′ from
the cavity. There are two equally probable and indistinguishable paths for the passage.
The first one is the transfer to the atomic |1,− 1〉 state while emitting a |	〉 photon, the
second one is the transfer to the state |1,+ 1〉 upon emission of a |�〉 photon. This results
in a superposition of the two paths and therefore the maximally entangled Bell state

∣∣Ψ−B⊗B′
〉

=
1√
2

(|↓〉B |	〉B′ − |↑〉B |�〉B′) , (4.12)

between the internal state of the atom and the polarization of the photon. The relative
phase between the two terms is given by the Clebsch-Gordan coefficients of the involved
atomic transitions.

3The scheme to generate entanglement works for both, the D1 and the D2-line [52]. In the experiments
described here, the D2-line is used for the generation of entanglement due to its higher coupling strengths
on the relevant transitions.
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4.3.1.2. Projective measurement

The photon B′ is sent to a detection setup (see Fig. 4.7b), where it is registered in one
of the two single-photon detectors. Let |ϕd〉 = αd |�〉+ βd |	〉 describe the state that is
measured by one of the detectors. The parameters αd and βd are set by the orientation of
the waveplates in front of the polarizing beam splitter (see Tab. 4.1). For example, the state
H corresponds to αd = βd = 1/

√
2. A registered photon in the detector that corresponds

to the state |ϕd〉 projects
∣∣Ψ−B⊗B′

〉
onto (after renormalization):

(α∗d 〈�|+ β∗d 〈	|)
∣∣Ψ−B⊗B′

〉
−→ β∗d |↓〉B − α

∗
d |↑〉B ≡ |ϕ〉B . (4.13)

The density matrix of the state |ϕ〉B in terms of αd and βd reads:

|ϕ〉B 〈ϕ|B =

(
|βd|2 −α∗dβd
−αdβ∗d |αd|2

)
. (4.14)

A registered photon in one of the detectors thus heralds the preparation of a well-defined
atomic state (see Tab. 4.1). As the outcome of the measurement is random and the detection
efficiency is smaller than 1, this preparation is a probabilistic process.

Obviously, the quality of the preparation stage depends on the fidelity of the entangled
atom-photon state. To find a relation between the fidelity of the initially entangled atom-
photon state and the fidelity of the atomic state prepared by the projective measurement,
we assume that a non-unity fidelity of the entangled state can be described by a partially
mixed state. The density matrix of the atom-photon state ρent then reads

ρent = pent

∣∣Ψ−B⊗B′
〉 〈

Ψ−B⊗B′

∣∣+
1

4
(1− pent)14. (4.15)

pent is the probability that the entangled state is the ideal, maximally entangled Bell state∣∣Ψ−B⊗B′
〉
. The entanglement fidelity with respect to the ideal state is then

Fent =
〈
Ψ−B⊗B′

∣∣ ρent

∣∣Ψ−B⊗B′
〉

=
1

4
+

3

4
pent. (4.16)

We are interested in the atomic state after the photonic part of ρent has been measured.
The density matrix of the projected system, ρm, can be calculated using the formula4 [56]

ρm =
PmρentPm

Tr [Pmρent]
, (4.17)

where Pm is a Hermitian operator that describes the measurement. It is a projection
operator that acts on the state space of the system being measured. Here, the photonic
part of ρent is measured to be in the state |ϕd〉, while the atomic part is left unaffected.
The operator Pm for the total system is thus

Pm = 12 ⊗ |ϕd〉 〈ϕd| . (4.18)

4After projection of the atom-photon state the photon is destroyed. The calculation of ρm, however,
assumes the photon being in the eigenstate of the measurement operator. The correct result for the
atomic state is obtained after taking the partial trace in Eq. (4.20).
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Polarization αd βd Atomic qubit

R (�) 1 0 |↑〉
L (	) 0 1 |↓〉

H 1/
√

2 1/
√

2 |↑x〉 = 1√
2

(|↓〉 − |↑〉)
V 1/

√
2 −1/

√
2 |↓x〉 = 1√

2
(|↓〉+ |↑〉)

D 1/
√

2 i/
√

2 |↓y〉 = 1√
2

(|↓〉+ i |↑〉)
A 1/

√
2 −i/

√
2 |↑y〉 = 1√

2
(|↓〉 − i |↑〉)

Table 4.1.: Outcome of the polar-
ization measurement and resulting
atomic state after projecting the en-
tangled state of Eq. (4.12) accord-
ing to Eq. (4.13).

Evaluating the expression from Eq. (4.17) results in

ρm =pent


|αd|2|βd|2 αdβ

∗
d |βd|2 −αdβ∗d |αd|2 −α2

d(β
∗
d)2

α∗dβd|βd|2 |βd|4 −|αd|2|βd|2 −αdβ∗d |βd|2
−α∗dβd|αd|2 −|αd|2|βd|2 |αd|4 αdβ

∗
d |αd|2

−(α∗d)
2β2
d −α∗dβd|βd|2 α∗dβd|αd|2 |αd|2|βd|2


+

1

4
(1− pent) [12 ⊗ |ϕd〉 〈ϕd|] ,

(4.19)

where the matrix is written in the basis {|↓�〉 , |↓	〉 , |↑�〉 , |↑	〉}. Because we are only
interested in the atomic part of the state, we have to take the partial trace over the photonic
subsystem:

ρB = TrB′ [ρm] = pent

(
|βd|2 −α∗dβd
−αdβ∗d |αd|2

)
+

1

2
(1− pent)12

= pent |ϕ〉B 〈ϕ|B +
1

2
(1− pent)12.

(4.20)

The fidelity with respect to the state |ϕ〉B finally becomes

Fsp = Tr [|ϕ〉B ,ρB] =
1

4
(3pent + 1) =

1

3
(2Fent + 1) . (4.21)

The result is a simple linear relation between the entanglement fidelity and the state fidelity.

4.3.2. Experimental sequence and implementation

In this section, the individual steps to realize the direct quantum state transfer are described
(see Fig. 4.8 and Fig. 4.9). Each experimental run starts with the probabilistic loading of
single atoms from a MOT into the cavity in both systems. As soon as a single atom is
present in each cavity the protocol is started.

State preparation at node B

The atomic qubit at node B is initialized using the probabilistic scheme described in section
4.3.1. To generate entanglement between the atom and a photon, preparation of the atom
in the state |2,0〉 is required. This is achieved by optical pumping. A π-polarized laser that
is near-resonant with the F = 2↔ F ′ = 2 transition on the D1-line pumps the atom to
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Figure 4.8.: Protocol to demonstrate the direct quantum state transfer. a) At node B,
a qubit is encoded in the states |↓〉B ≡ |1,− 1〉B and |↑〉B ≡ |1,+ 1〉B of a single atom. State
preparation is achieved using a projective measurement. b) The qubit is mapped onto the
polarization of a single photon, which is sent to node A. c) The photonic polarization is mapped
onto a superposition of Zeeman states of atom A, thereby completing the quantum state transfer
between the atoms. d) Atomic state detection of atom A is performed by mapping the internal
state onto the polarization of a photon which is subsequently detected.

the desired state: Because the transition |2,0〉 ↔ |2,0〉′ is not allowed according to dipole
selection-rules [100], population accumulates in |2,0〉. As the F = 2↔ F ′ = 2 transition
is not closed, population can also decay to F = 1. Another laser that is near-resonant
with the F = 1↔ F ′ = 2 transition on the D2-line serves as a repumper. The cavity and
the control field are 170 MHz blue detuned with respect to the transition of the free atom.
Because the atom experiences a Stark shift of 120 MHz in the present standing-wave trap,
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Figure 4.9.: Schematic of the experimental sequence for the demonstration of the
direct state transfer. First, the individual atoms are prepared in the states |1,0〉 (node A) and
|2,0〉 (node B) using optical pumping. The atomic qubit at node B is then initialized by generating
atom-photon entanglement and subsequent detection of the photon. This state is mapped onto a
photon, which is coherently absorbed in atom A. The state of atom A is detected by mapping its
state onto the polarization of another single photon. After each experimental sequence, a cooling
interval (≈ 150 µs ) is applied to the atoms.

the control laser and cavity resonance are effectively 50 MHz blue detuned from the atom.
The fields used for optical pumping are blue detuned by approximately 20 MHz.

Following optical pumping a π-polarized control laser pulse, coupling the F = 2↔ F ′ = 1
states of the D2-line, is applied to the atom and triggers the generation of a single photon
in the cavity and ideally results in the entangled state of Eq. (4.12). The photonic part of
this state is measured in a polarization-sensitive detection setup (Fig. 4.8a). The outcome
of this measurement heralds the successful preparation of the atom in a well-defined state
(see Tab. 4.1).

The fidelity of the preparation can be estimated by measuring the entanglement fidelity
and using Eq. (4.21). We achieve this by mapping the atom-photon entanglement onto
a photon-photon entanglement [52, 89, 98]. The application of a π-polarized laser pulse
coupling the states F = 1↔ F ′ = 1 drives a vSTIRAP and triggers the emission of another
photon. The photons are detected in three different polarization bases. Correlating these
measurement results allows us to determine the entanglement witness and therefore the
fidelity with the |Ψ−〉 Bell state (see section 3.5). We find an average value of Fent = 93 %,
corresponding to a fidelity of the initial state of FB = 95 %.

Optical pumping at node A

Atom A is initialized in state |1,0〉 using the procedure described in section 4.2.3. The
fidelity of the quantum memory is determined by storing and retrieving weak coherent
pulses with a mean photon number of 1 [44]. Measurements with a set of well-defined
polarization states allow us to perform process tomography of the storage and retrieval
process, as was done with single photons in section 4.2 [44, 59]. The use of coherent pulses
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to analyze the performance of the memory is much more convenient than the use of single
photons. The average fidelity over the measurement time of ∼ 12 hours is found to be
Fs = 95 %.

Quantum state transfer

We apply another adiabatic passage using a π-polarized control laser pulse that is near-
resonant with the F = 1 ↔ F ′ = 1 transition and in resonance with the cavity field at
node B. This maps the atomic qubit of node B onto the polarization of a single photon
(Fig. 4.8b):

α |↓〉B + β |↑〉B −→ α |�〉+ β |	〉 .

This process leaves the atom in state |1,0〉. The mapping process is the same as we use to
characterize the fidelity of the entangled state (see above). The quality of this process is
thus included in the aforementioned fidelity of FB = 95 %. The photon is sent to atom A
via the optical fiber. As soon as it enters the cavity of node A, the power of the control field
is ramped down to zero. The temporal course of the control power follows approximately a
cos2-shape with a total switching time of ∼ 1µs. This drives a STIRAP and coherently
maps the photon onto the atom, thereby completing the transfer of the quantum state
(Fig. 4.8c).

State detection

To verify the state transfer, the state of atom A is read out by mapping it onto the
polarization of another single photon (Fig. 4.8d). This enables us to measure the atomic
quantum state by detecting the photon in a polarization-sensitive detection setup. To
perform complete quantum process tomography, we compare the set of six states {|Bi〉} =
{|↓〉 , |↑〉 , |↓x〉 , |↑x〉 , |↓y〉 , |↑y〉}, initially prepared at node B and forming three mutually
unbiased bases, with the read-out states from node A (see section 3.3).

State preparation and state detection are performed in independent detection setups (see
Fig. 4.12). To prepare the input states, we switch between three different settings of the
measurement basis in detection setup 2: H/V,D/A and R/L. A first photon emitted from
node B and registered in one of the detectors heralds the initialization of the atomic qubit B
in a well-defined state (see section 4.3.1 and Tab. 4.1). To reconstruct the state of the atomic
qubit at node A after the state transfer is finished, we perform complete state tomography
by measuring the read-out photons from node A in three different bases (H/V,D/A and
R/L) in detection setup 1. Thus, measurements of nine different combinations of the bases
in the two detection setups are required.

4.3.3. Experimental setup

As becomes clear from the steps involved in the protocol, the first photon from node B,
enabling the initialization of the atomic qubit, must be directed to a detection setup, while
the second photon must be coupled into the cavity of node A. Additionally, a photon from
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node A that is used for state detection must be directed to another detection setup. To this
end, a fast-moving mirror is used to switch the network between two configurations. The
network nodes are either connected directly by a fiber path or the nodes are disconnected
and photons coming from each node are guided to separate detection setups. The principle
is illustrated in Fig. 4.10.

To implement a mirror that is able to switch between the two configurations within a few
microseconds, we use a commercially available computer hard disk [102]. Equidistant slits
with a rectangular shape are milled close to the edge of the disk (see Fig. 4.11a). The disk is
gold coated such that the remaining bars between the slits reflect impinging light efficiently.
Because the disk rotates at a constant speed of 7200 revolutions per minute, the length of
the bars determines the time during which the disk is in the “reflecting mode”. It is chosen
such that this time is ≈ 5 µs. Adjacent bars have a temporal distance of 200 µs. This
allows us to run the experimental protocol at a rate of 5 kHz. The temporal dependence of
the reflection properties of the disk is shown in Fig. 4.11b. The reflected light is detected
at the output of a fiber. Therefore, the measured reflection already includes the fiber
coupling efficiency. The different colors correspond to light reflected from a set of randomly
chosen bars. The slight variations in the length of the bars are due to imperfections during
manufacturing of the slits. They are, however, small compared to the average length of
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Figure 4.11.: A fast-moving mirror based on a computer hard disk. a) Sketch of the
rotating disk. A first photon is transmitted through a slit, a second, later one is reflected off one of
the bars. b) Fiber coupling efficiency (including reflection) for different bars of the disk. The disk
rotates at a speed of 7200 revolutions per minute.
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Figure 4.12.: Experimental setup used to perform the direct quantum state transfer.
A single photon that is entangled with atom B is measured in detection setup 2 (solid red line).
This projects atom B into a well-defined state. This state is mapped onto the polarization of
another single photon that is transmitted to the cavity at node A and coherently absorbed in the
atom (dashed red line). To measure the state of atom A after the state transfer is completed, a
vSTIRAP maps this state onto the polarization of a photon, which is measured in detection setup 1
(orange line). Waveplates (λ/2, λ/4) are used to compensate for unwanted polarization rotations.
RD: Rotating disk that serves as a fast-moving mirror (cf. Fig. 4.11).

the bars. The differences of the measured reflection as a function of time are caused by
the surface of the disk not being perfectly flat. The average coupling efficiency (including
reflection off the disk) is ≈ 60 % and, most importantly, no polarizing effects could be
observed. A light barrier, made up of an auxiliary laser and a photodiode, generates a
digital signal that is used to trigger the experimental sequence in both laboratories. This
ensures that the experiments are synchronized with respect to the state of the rotating
disk.

A detailed sketch of the setup that is used to connect the two laboratories and to perform
the projective state preparation and state detection is shown in Fig. 4.12. Compensation of
unwanted polarization rotations is performed using waveplates as was explained in section
4.2.2. The polarization behind the cavity at node B must match the polarization in front of
the cavity at node A and the polarization in front of detection setup 2. At the same time,
the polarization behind the cavity at node A must be the same as in front of detection
setup 1.
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4.3.4. Experimental results

Efficiency

The probability of the state transfer to succeed is given by the probability to generate a
single photon at node B, and to transmit it to and store it at node A. ηB is the efficiency for
the generation of a single photon into the cavity mode of node B, and S is the probability
of atom A to coherently absorb a photon that impinges onto the cavity. Conditioned on
the successful initialization of atom B (see section 4.3.1), the probability Ptrans to transfer
the state of atom B to atom A is

Ptrans = ηBToutTABS, (4.22)

where Tout = 0.9 is the directionality of the cavity and TAB is the transmission probability
between the cavities. While the photon generation efficiency ηB and the transmission
TAB can easily be inferred from independent measurements, determination of the storage
efficiency S is tricky. Because of the fast-moving mirror, a reference photon as in the
memory experiment described in section 4.2.4 cannot be used. Therefore, the storage
efficiency S must be calculated indirectly. This is done by tracing back the storage efficiency
to quantities that are experimentally accessible.

The photon that is entangled with atom B and used for state preparation is generated with
an efficiency ηB1. The probability ηDB1 to detect this first photon in detection setup 2 is

ηDB1 = ηB1Toutε
D
B , (4.23)

with εDB being the probability to detect a single photon that has left the cavity. εDB includes
transmission losses and the quantum efficiency of the detectors. After the state transfer,
the state of atom A is read out by mapping it onto the polarization of a photon. The
overall probability to detect a read-out photon from atom A is

ηDA = PtransηAToutε
D
A . (4.24)

After a successful state transfer (with probability Ptrans), the atom-photon state mapping
results in the generation of a single photon with efficiency ηA. The photon is eventually
detected with a probability of εDA . A quantity that can be measured is the ratio ηDA /η

D
B1, as

both, the read-out photon from node A as well as the photon from node B used for state
preparation, are registered by the single-photon detectors:

ηDA
ηDB1

=
ηBToutTABSηAε

D
A

ηB1εDB
⇔ S =

ηDA
ηDB1

ηB1ε
D
B

ηBηAεDAToutTAB
. (4.25)

Using the values given in Table 4.2 and ηDA /η
D
B1 = 4.2 · 10−3, the storage efficiency is

calculated to be S = 22.5 %. With the help of Eq. (4.22), we then find the probability for a
state transfer to succeed to be Ptrans = 0.24 %.

It must be noted that the Rabi frequency of the control field used to read out atom
B, and consequently the value of ηB, is deliberately kept low to suppress off-resonant
excitations to the nearby state |0,0〉′. This state is only 72 MHz detuned from the transition
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Quantity Value Meaning

ηB1 0.4 Generation efficiency of photon 1 at node B.
ηB 0.03 Generation efficiency of photon 2 at node B.
ηA 0.6 Generation efficiency of the read-out photon at node A.
εDB 0.34 Detection efficiency at node B. Includes fiber coupling, transmission

losses and quantum efficiency of the detectors.
εDA 0.39 Detection efficiency at node A. Includes fiber coupling, transmission

losses and quantum efficiency of the detectors.
Tout 0.9 Outcoupling efficiency of the cavities into one single mode.
TAB 0.4 Transmission between node B and A. Measured from before fiber

input at node B to fiber output at node A. Includes reflection off
the fast-moving mirror.

Table 4.2.: Efficiencies for the individual steps involved in the state transfer experiment.

F = 1 ↔ F ′ = 1, which is addressed by the control laser to generate the photon (see
Appendix A). It could therefore happen that accidentally randomly polarized photons are
emitted, which would then spoil the measured fidelity. The comparatively low generation
efficiency reduces the state-transfer probability in the current implementation.

As the experiment is repeated at a rate of frep = 5 kHz, the state transfer efficiency could
theoretically allow for a rate of transferred states of approximately 10 Hz. Taking into
account that not always a single atom is present in both labs, this rate is reduced. For the
current data that were taken over ∼ 18 h, the combined duty cycle (that is the fraction of
time during which a single atom is trapped and localized at the center of the cavity mode
of both nodes) was measured to be D ≈ 0.2. This results in an effective rate for the state
transfer of 2 per second.

The above calculation assumes that atom B has already been initialized by projective state
preparation. This requires the generation and detection of one single photon from atom
B. The probability of this preparation stage is given by Pprep = ηB1Toutε

D
B = 12 %. After

the state transfer is finished, the state of atom A is read out by mapping its spin state
onto the polarization of another photon, which is subsequently detected. The probability
of the state detection is Pdet = ηAToutε

D
A = 21 %. The probability of a successfully verified

attempt, each consisting of state preparation at node B, quantum state transfer and state
detection at node A is Pc = PprepPtransPdet = 6 · 10−5. The overall rate of verified attempts
is then PcD · 5 kHz ≈ 3 per minute.

Fidelity

The crucial benchmark for any qubit state transfer is that the qubit at the sender site has
a large fidelity with the qubit at the receiver site. The individual fidelities of the output
states with the set of six ideal input states {|Bi〉} are listed in Tab. 4.3. The average state
fidelity is found to be F = (83.7± 0.9) %.

Using the reconstructed output states, we perform complete process tomography (section
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Input state Fidelity (%)

|↓〉 85.1± 2.3

|↑〉 85.2± 2.3

|↓y〉 = 1√
2

(|↓〉+ i |↑〉) 78.9± 2.2

|↑y〉 = 1√
2

(|↓〉 − i |↑〉) 86.0± 1.8

|↓x〉 = 1√
2

(|↓〉+ |↑〉) 83.2± 2.3

|↑x〉 = 1√
2

(|↓〉 − |↑〉) 83.5± 2.2

Average 83.7± 0.9

Table 4.3.: Individual state fidelities of atom A
after state transfer for six mutually unbiased input
states of node B. The quoted errors are the statistical
standard error.

3.3). The resulting Bloch sphere, visualizing the effect of the process on arbitrary input
states, and the process matrix χ are shown in Fig. 4.13. The process fidelity that we obtain
from a maximum-likelihood fit is Fproc = χ00 = 75.5 %. This corresponds to an average
state fidelity of 83.7 %, which is in excellent agreement with F obtained from the individual
states. This proves the very good quality of the fit. The fidelity clearly exceeds the classical
threshold of 2/3.

The measured fidelity contains imperfections of the individual steps used to perform and
analyze the direct state transfer. Non-perfect state preparation at node B and unwanted
events during state detection at node A, caused by non-perfect optical pumping and
detector dark counts, reduce the measured value. To estimate the influence of these two
imperfections on the total fidelity, we assume that the initially prepared state at node B,
ρB, can be expressed as a partially mixed state

ρB = pB |ϕ〉 〈ϕ|+
1

2
(1− pB)12, (4.26)

with pB being the probability that the ideal state |ϕ〉 has been prepared. The state fidelity
is FB = 〈ϕ| ρB |ϕ〉 = 1

2 (pB + 1). The storage process of this state in atom A is now modeled
as follows: The memory transforms the pure part of Eq. (4.26) into the partially mixed
state ρ = ps |ϕ〉 〈ϕ|+ 1

2(1− ps)12, with the probability for perfect storage ps being related
to the fidelity of the memory by Fs = 1

2 (ps + 1). The mixed part of the input state remains
mixed after storage and retrieval from the memory. The photonic output state of the
memory at node A then becomes

ρout = pBps |ϕ〉 〈ϕ|+
1

2
(1− pBps)12. (4.27)

As was explained in section 4.2.4, with a probability of Pd = 10−4 a photon with random
polarization is registered during state detection of atom A. The reason is non-perfect
optical pumping at node A, where the atom remains in the ground state F = 2. This may
lead to the production of a photon during readout even when no photon was stored. Pd

also includes electronic dark-counts. The probability for a joint occurrence between this
deleterious event and a photon being detected during state preparation5, which heralds

5The probabilities for correlated detections between an electronic dark-count during state preparation and
a signal during state detection, as well as correlations between two dark-counts are several orders of
magnitude smaller and are therefore neglected.
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Figure 4.13.: Quantum process tomography results. The figure shows two equivalent repre-
sentations of the tomography result. a) Visualization of the process in Stokes space. The sphere
shows the effect of the process on arbitrary input states. The colored spheres correspond to the
reconstructed output states for the six input states {|Bi〉}. b) Reconstructed process matrix χ. The
dominant element is χ00. The dashed bar corresponds to the matrix element of the ideal process
(χ00 = 1).

the successful initialization, is PdPprep = 1.2 · 10−5. As derived above, the probability for
the occurrence of an event that is taken into account for evaluation is Pc = 6 · 10−5. The
percentage of spurious events is therefore pd = PdPprep/Pc = 20 %. The output state is
accompanied by these random events and the detected state thus is

ρdet = pBps(1− pd) |ϕ〉 〈ϕ|+ 1

2
[(1− pBps(1− pd)]12. (4.28)

The independently measured values FB = 95 % and Fs = 95 % (see section 4.3.2) cor-
respond to pB = ps = 0.9. The fidelity of the state ρdet is Fdet = 〈ϕ| ρdet |ϕ〉 =
1
2 (pBps(1− pd) + 1) = 82.4 % and agrees very well with the measured average state fidelity
of F = 83.7 %.

As was already discussed in section 4.2.4 for the quantum memory experiment, the fidelity
may be increased by improving the process of optical pumping at both nodes. First, this
would enhance the fidelity of the storage and retrieval process at node A and would reduce
the number of spurious events caused by non-perfect hyperfine pumping. Second, also
the fidelity of the atom-photon entangled state and consequently the fidelity of the qubit
preparation at node B would increase.

4.4. Generation of remote atom-atom entanglement

The previously demonstrated transfer of a quantum state by transmission of a single photon
can be employed to generate entanglement between two distant atoms. This requires the
combination of two steps. First, entanglement between an atom and a photon is generated
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locally at node B. Second, the photon is sent to the atom at node A where it is coherently
absorbed, thereby converting the atom-photon entanglement into entanglement between
the two atoms. The fidelity of the generated state with respect to the ideal |Ψ−〉 Bell
state is determined by reconstructing the density matrix of the entangled state. We find a
value of F = (85.0± 1.3) %, which clearly exceeds the classical limit of 50 %. The success
probability of entanglement creation is given by the product of the photon generation
efficiency at node B, the probability with which the photon is delivered to node A and its
storage efficiency at node A. We find a value of 2 % for the combined process, yielding
a rate of ∼ 30 entanglement creations per second. Compared to experiments with single
particles in free space [103], the efficiency is increased by six orders of magnitude, while
the rate is increased by four orders of magnitude.

Another important figure of merit for the characterization of entangled states is its coherence
time. After entanglement generation, we observe non-classical correlations for up to 100 µs.
The entanglement distribution time is ∼ 1 µs, and is given by the time needed to generate a
single photon at node B, transmit it to and store it at node A. The coherence time exceeds
this time by two orders of magnitude and translates into a maximum possible entangled
node distance of a 20 km optical fiber path.

A detailed analysis of this experiment will be subject of another PhD thesis by one of my
colleagues.





5. Quantum teleportation

The content of this chapter has partially been published in:
Efficient teleportation between remote single-atom quantum memories.
C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe and S. Ritter, Physical Review
Letters 110, 140403 (2013).

The experiments described in the previous chapter demonstrate the faithful transfer of
qubits between nodes in a quantum network using the direct transmission of a photon. The
elegance of this protocol stems from its simplicity, as it only requires the transfer of a single
photon carrying the information. However, the efficiency of the protocol drops exponentially
with the distance between the nodes. In addition, it is in general more difficult to maintain
a high fidelity with increasing distance, because even the small interaction of the photon
with the environment causes irreversible decoherence and dephasing. A possible solution
to this problem is based on the use of quantum repeaters [31,46] to establish entanglement
between widely separated nodes. This entanglement can then be used as a resource for
the transfer of quantum information via teleportation [43, 104, 105] (see Fig. 5.1). This
results in the communication time for the quantum information to scale only polynomially
with distance [29]. Moreover, the quantum state to be transferred does not have to travel
the whole distance via an error-prone channel, but is teleported “through” a quantum
channel that is generated in a heralded way. Any loss that occurs while establishing the
entanglement does not affect the fidelity of the state transfer.

A simple numerical example illustrates the need for such a device. Assume we want
to transfer a qubit from Munich to Hamburg (distance ∼ 600 km). The transmission
probability T for photons through an optical fiber with length L is

T = 10−
αL
10 , (5.1)

where α is the absorption coefficient. Suppose that photons at the telecom wavelength of
1550 nm, at which absorption is minimized (α = 0.2 dB/km), are used. Even with a perfect
single-photon source in Munich operating at a rate of 10 GHz the rate of arriving photons
in Hamburg would be less than one per minute.

In the repeater scheme, first adjacent quantum memories are entangled pairwise in parallel
using a repeat-until-success scheme. Then, entanglement swapping [47] between these links
is performed to generate entanglement between remote stations (Fig. 5.1b). The time it
takes to establish entanglement scales polynomially with distance [29]. At large distances,
a quantum repeater will therefore outperform any direct entanglement generation attempt,
which scales exponentially. As the quantum information is naturally distributed using
photonic carriers, the ability to generate atom-photon entanglement is an indispensable
prerequisite. The additional elements required for a quantum repeater will add extra

47
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Figure 5.1.: Quantum state transfer using teleportation in a quantum repeater archi-
tecture. a) Alice wants to transfer a quantum state |ϕ〉, stored in a quantum memory, over a long
distance L to Bob. b) Long-distance entanglement between Alice and Bob is generated by first
entangling memories at intermediate locations and successive entanglement swapping operations.
c), d) This entanglement link is then used as a resource for teleportation: A Bell-state measurement
(BSM) between Alice’s quantum state and one part of the entangled pair, together with classical
communication of the BSM result, allows Bob to recover the state |ϕ〉 at his site.

sources of errors, resulting in a decrease of fidelity. Thus, in a practical repeater scheme,
entanglement purification is necessary to obtain highly entangled states from a large number
of less entangled ones [104,106,107].

In this chapter, we demonstrate quantum teleportation between remote single-atom quan-
tum memories. The atoms are coupled to high-finesse optical cavities, enabling us to
efficiently generate atom-photon entanglement and to efficiently map atomic onto photonic
qubits. The required Bell-state measurement is implemented using linear optics and photon
detection only.

The chapter is organized as follows. First, the general principle of quantum teleportation
is reviewed. The specific implementation of the protocol in our experiment requires the
detection of the Bell state of two photons. This is achieved using two-photon interference.
Therefore, the physics of this effect is discussed, with a focus on time-resolved two-photon
interference, which allows us to implement a herald for teleportation events with increased
fidelity. After explaining the protocol that we use to teleport qubits between two atoms



5.1 Principle of quantum teleportation 49

trapped in optical cavities, the experimental implementation is described in detail. The
teleportation channel is analyzed by performing a complete quantum process tomography,
whose results are discussed.

5.1. Principle of quantum teleportation

The teleportation protocol aims at the transfer of quantum information between two
separate parties. The sender at node A (called Alice) holds a potentially unknown qubit
state |ϕ〉A. She aims to send this state to the remote receiver at node B (called Bob). For
any classical information the approach would be to copy and transmit it via a classical
communication channel, allowing for a new transmission attempt should the previous
one fail. Similarly, a classical repeater copies and amplifies the signal at intermediate
locations. Quantum mechanics forbids to create a perfect copy of a quantum state due to
the no-cloning theorem [21]. Nevertheless, one could still try to measure the quantum state
and send this result to the receiver. For this scenario, the maximum achievable average
state fidelity is 2/3 [101]. This is due to the fact that with a single measurement it is only
possible to extract partial information of the actual quantum state. The classical limit for
the process fidelity is 1/2.

In quantum teleportation, sender and receiver need to share an entangled pair. By
performing a Bell-state measurement and classical communication of the measurement
result, it is then possible to use this entanglement to transfer the initial quantum state
from Alice to Bob. The qubit |ϕ〉A held by Alice is a superposition of two basis states |↓〉A
and |↑〉A:

|ϕ〉A = α |↓〉A + β |↑〉A , (5.2)

with complex parameters α and β, and |α|2 + |β|2 = 1. In the teleportation protocol
originally proposed in [43], Bob holds a qubit that is maximally entangled with an ancilla
qubit C. The latter is in possession of Alice (see Fig. 5.2). We assume this state to be the
|Ψ−〉 Bell state1: ∣∣Ψ−〉

BC
=

1√
2

(|↓〉B |↑〉C − |↑〉B |↓〉C) . (5.3)

The three-particle state of the qubits A, B and C is

|ϕ〉A ⊗
∣∣Ψ−〉

BC
= (α |↓〉A + β |↑〉A)⊗ 1√

2
(|↓〉B |↑〉C − |↑〉B |↓〉C) . (5.4)

This can be rewritten in terms of the four maximally entangled Bell states |Φ±〉AC =
1√
2

(|↓〉A |↓〉C ± |↑〉A |↑〉C) and |Ψ±〉AC = 1√
2

(|↓〉A |↑〉C ± |↑〉A |↓〉C) of A and C:

|ϕ〉A
∣∣Ψ−〉

BC
=

1

2

(∣∣Φ+
〉

AC
σxσz |ϕ〉B

)
+

1

2

(∣∣Φ−〉
AC

σx |ϕ〉B
)

− 1

2

(∣∣Ψ+
〉

AC
σz |ϕ〉B

)
− 1

2

(∣∣Ψ−〉
AC
|ϕ〉B

)
.

(5.5)

1Quantum teleportation is not restricted to this specific state. Indeed, any maximally entangled state
would work. More general, any bipartite entangled state that violates the CHSH inequality is useful for
teleportation [108], the reverse statement, however, is in general not true [109].



50 Quantum teleportation

Figure 5.2.: Principle of quantum tele-
portation. Alice (A) holds a quantum state
|ϕ〉A that she aims to teleport to Bob (B). He
sends an ancilla qubit C that is entangled with
his qubit over to Alice. She then performs
a Bell-state measurement (BSM) between her
qubit and the ancilla. The result of this mea-
surement is communicated to Bob via a classi-
cal channel. Depending on the outcome of the
BSM, Bob performs a unitary operation U on
his qubit to recover the state |ϕ〉. If the result
of the BSM is the |Ψ−〉 Bell state, the initial
state is directly recovered, i.e. U = 1.
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A joint Bell-state measurement of the qubits A and C, i.e. a projective measurement onto
the states |Φ±〉AC and |Ψ±〉AC, projects Bob’s qubit onto the initial state |ϕ〉 of Alice’s
qubit up to a unitary transformation, expressed in terms of the Pauli operators σx and
σz, and an irrelevant global phase. σx corresponds to a spin flip, whereas σz induces a
phase change of π in the qubit |ϕ〉. The exact transformation depends on the detected Bell
state. As the outcome of the projective Bell-state measurement is random, Alice needs
to communicate the result of her measurement (2 bits of classical information encoding
one out of the four possible results) to Bob. He then uses this information to perform the
inverse unitary transformation, thereby retrieving the initial state from Alice. If the result
of the Bell-state measurement is the |Ψ−〉AC state, the necessary operation is the identity
operation, i.e. Bob needs to do nothing since the initial state is directly recovered.

After teleportation, Alice’s node is disentangled from the system. It is therefore not possible
for Alice to retrieve any information about her state after teleportation has been completed.
It is important to mention that neither the quantum channel (the shared entangled pair)
nor the classical communication channel alone carries any information about the quantum
state to be teleported. It is the combination of both that is necessary for a successful state
transfer.

Since its proposal in 1993, quantum teleportation was successfully implemented in various
physical systems. The first realization was achieved with photonic qubits in 1997 [110–112].
Because of their prospects in quantum computation [113] and communication [10], purely
photonic systems are still an active field of research. One important application is the
distribution of secret keys in quantum cryptography. Teleportation can help to extend the
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distance over which keys can be distributed in a quantum-relay configuration2 [114,115],
however still with a limited maximal range [116]. Recently, the current record in distance of
143 km has been demonstrated by teleporting photonic quantum states between two Canary
Islands [117]. The current approach to bridge even larger distances is to use free-space
transmission [118, 119] with the ultimate goal to use outer space as the communication
channel [120]. Without atmosphere, the photonic states would be subjected to less harmful
effects that cause loss and decoherence, compared to fiber-based or earth-bound line-of-sight
transmission. Regarding the physical implementation of the photonic qubit, robustness
against inevitable loss during propagation is essential. A widely used degree of freedom is
polarization3, however, teleportation between photons using time-bin qubits has also been
demonstrated [122]. Qubits encoded in either of these two discrete degrees of freedom are
robust, in the sense that photon loss does not compromise the fidelity but only reduces
the efficiency of the protocol. Other studied degrees of freedom for the encoding of
quantum information are continuous variables [123]. While they allow for the realization of
deterministic protocols [112,124,125], transmission losses induce inevitable decoherence
and limit the achievable fidelity [126,127].

Purely photonic systems cannot be utilized for the implementation of a quantum repeater
because quantum memories require a material quantum system to be involved. Teleportation
between material qubits was first achieved with trapped ions using a deterministic protocol
[128, 129], albeit over a distance limited to a few micrometers owing to the short-range
Coulomb interaction. More recently, deterministic teleportation between artificial qubits
on the same chip has been realized [130]. As was mentioned above, the transfer of quantum
information over large distances requires the combination of stationary quantum memories
and entanglement between light and matter (see Tab. 5.1). Along these lines, quantum
teleportation from light onto an ensemble of atoms has been demonstrated [124,131]. The
first experiment demonstrating teleportation between remote material systems was between
two single ions separated by about one meter [132]. The low efficiency due to the limited
light-matter interaction in free space, however, prevents scaling of that approach to larger
networks.

So far, experiments on long-distance teleportation suffered from low success probabilities.
The collection efficiency of single photons generated by single emitters in free space consti-
tutes a significant bottleneck towards the achievement of macroscopic success probabilities.
There are two approaches to overcome this fundamental problem. The first is to take
advantage of collective excitations that lead to an enhanced coupling to light and directed
emission of photons [135–137]. This was used in a recent experiment, which demonstrated
teleportation between two cold atomic ensembles at a distance of approximately 1 m [134].
The second approach, which is the one we pursue, is to embed single atoms in optical
cavities. This dramatically increases the light-matter coupling and enables a coherent

2A quantum relay works in the same way as a quantum repeater only without memories and entanglement
purification. It can therefore not help to beat the exponential scaling of transmission losses, but can
increase the signal-to-noise ratio in QKD protocols.

3An interesting observation in this context is, that radiation from the Big Bang is still partially polarized
[121], indicating the potential of polarization qubits in terms of decoherence.
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Sender Receiver Reference Distance Efficiency Rate Fidelity

Atom Atom [133] ∼nm 1 1© n/a ∼ 0.9
[128,129] ∼ µm 1 1© ∼ 300 s−1 ∼ 0.8
[132] 1 m 2.2 · 10−8 1/12 min−1 0.9
[48] 2© 21 m 0.1 % 10 s−1 ∼ 0.8

Photon Ensemble [131] 7 m 10−6 n/a n/a 3©
Ensemble Ensemble [134] 1 m 0.5 · 10−4 n/a 0.95

SSQC SSQC [130] 6 mm 0.7 1© 40 · 103 s−1 0.73

Table 5.1.: Experimental demonstrations of teleportation of discrete qubits involving
quantum memories. Remarks: 1© deterministic scheme, 2© this work, 3© No full process
tomography is performed. Quantum nature of the teleportation channel is not unambiguously
proven. SSQC: Solid state quantum circuit.

exchange between the internal state of an atom and the polarization of a photon. Moreover,
it leads to preferred emission of photons into one well-defined spatial mode.

In the teleportation experiment described in this chapter, we aim to transfer a qubit from
an atom at node A (the sender) to an atom at node B (the receiver), which is located in
another laboratory at a distance of 21 m. We generate a single photon at node B in a way
that the photonic polarization is entangled with the internal Zeeman state of the atom.
The qubit state of node A is coherently mapped onto the polarization of another photon.
The Bell-state measurement is then performed between the two photons.

5.2. Optical Bell-state analyzer for polarization qubits

The central ingredient in the teleportation protocol is the Bell-state measurement between
the qubit of the sender and one part of the entangled pair [cf. Eq. (5.5)]. In our implemen-
tation, we perform this measurement between photonic-polarization qubits by employing
two-photon interference and polarization-sensitive photodetection [138,139].

In section 5.2.1, the theoretical background of the effect of two-photon interference is
reviewed. A simplified model that allows us to understand the basic principle of this effect
is presented. Following the description of the implementation of the Bell-state analyzer
with linear optics and single-photon detectors in section 5.2.2, the model for two-photon
interference is extended in section 5.2.3 to deal with imperfections in the experiment and
to take temporal aspects into account.

5.2.1. Fundamentals of two-photon interference

We use the Fock-state picture to describe the effect of two-photon quantum interference. In
this picture, the spatio-temporal mode i of the electromagnetic field is expressed in terms
of states |n〉, with n being the number of photons in the mode. The photon-creation and
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Figure 5.3.: Two-photon interference on a non-
polarizing beam splitter. Single photons enter the
beam splitter in the modes 1 and 2. The NPBS mixes
the input modes and gives rise to interference.

-annihilation operators a†i (ai) create (annihilate) a single photon in the mode i. These
operators obey the bosonic commutation relations

[ai, aj ] = 0, [a†i , a
†
j ] = 0,

[ai, a
†
i ] = 1, [ai, a

†
j ] = 0,

for orthogonal modes4 i and j. We write the photonic quantum state as |Ψ〉 = |ni,mj〉,
with ni(mj) being the number of quanta in the mode i(j).

We consider the situation shown in Fig. 5.3. Two single photons in the same temporal
mode impinge on a non-polarizing beam splitter (NPBS), one in each of the spatial modes
1 and 2. As known from classical optics, the beam splitter mixes these input modes to
output modes 3 and 4 [140]. In quantum mechanics this corresponds to a unitary evolution
of the field operators described by the unitary operator U :(

a3

a4

)
= U

(
a1

a2

)
U † = B

(
a1

a2

)
. (5.6)

For an ideal and symmetric beam splitter the unitary matrix B reads [141]:

B =
1√
2

(
1 1
−1 1

)
. (5.7)

The negative sign in the element B21 corresponds to a phase shift of π that a classical light
wave experiences upon reflection off a beam splitter relative to a wave that is transmitted5.

The input state |Ψin〉 can be written in terms of creation operators that act on the vacuum
state |0〉 ≡ |01,02〉:

|Ψin〉 = |11,12〉 = a†1a
†
2 |0〉 . (5.8)

In the Schrödinger picture, the action of the NPBS is a unitary operation U that evolves
the initial state into an output state according to6

|Ψout〉 = U |Ψin〉 = U
(
a†1a
†
2

)
|0〉 =

(
Ua†1U

†
)(

Ua†2U
†
)
|0〉 . (5.9)

4Modes in different ports of the NPBS are orthogonal.

5The entries in the off-diagonal elements of the matrix B are a matter of definition. In general, the phase
difference between reflected and transmitted part must be equal to π [142].

6In the Schrödinger picture the modes themselves do not change. This means that modes 1 and 2 describe
both, the input and output modes.
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Figure 5.4.: Illustration of two-photon interference on a beam splitter. If two photons
impinge on the beam splitter, one in each input mode, there are four possible paths for the photons to
pass through the beam splitter. In the first two cases, the photons leave from the same output port.
In the last two cases, the photons leave from different ports. The last two cases are indistinguishable
and their amplitudes have opposite signs, so that they interfere destructively.

The last conversion uses U †U = 1 and U |0〉 = U † |0〉 = |0〉. Using Eq. (5.6), this becomes

|Ψout〉 =
1√
2

[(
a†1

)2
−
(
a†2

)2
+ a†1a

†
2 − a

†
2a
†
1

]
|0〉 . (5.10)

The meaning of this equation is illustrated in Fig. 5.4. Each term corresponds to one
possible path of the two photons passing through the beam splitter. The states created
by a†1a

†
2 and a†2a

†
1 are identical and interfere destructively due to their relative phase of π.

This quantum interference effect is known as the Hong-Ou-Mandel effect [143]: identical
photons impinging on a non-polarizing beam splitter coalesce, so that the output state
becomes

|Ψout〉 =
1√
2

[|21,02〉 − |01,22〉] . (5.11)

The two photons leave the beam splitter paired from only one (random) output port.
Therefore, the strategy to experimentally verify the Hong-Ou-Mandel effect is to measure
correlations between photon detections in the two output ports of the beam splitter.
The absence of coincident photodetections then proves the underlying effect of quantum
interference.

This effect can also be seen as a consequence of the bosonic nature of the photons. The last
two terms of Eq. (5.10) are equal to the bosonic commutator [a†1, a

†
2] and therefore vanish.

In case of fermions, the first two terms of Eq. (5.10) would be equal to zero, resulting in
anti-coalescence of the particles.

5.2.2. Linear-optics Bell-state analyzer

After we analyzed the interference of two single photons at a beam splitter, we will now
broaden the focus and analyze the interference properties of non-separable polarization
states. This will conclude in the identification of an NPBS as a powerful Bell-state
filter [138,139].

The four Bell states {|Ψ±〉 , |Φ±〉} form a basis of the four-dimensional Hilbert space of a
two-qubit system, the so-called Bell basis [144]. The |Ψ−〉 state is antisymmetric, whereas
the other three are symmetric under particle exchange. The total wavefunction describing
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two photons must obey bosonic quantum statistics, i.e. it has to be symmetric under
exchange of the two photons. Considering the spatial and polarization degree of freedom,
there are two possibilities to achieve this symmetry: Either both parts are symmetric or
both parts are antisymmetric. This results in four possible input states at the NPBS:∣∣Ψ−〉

total
=
∣∣Ψ−〉

pol
⊗ 1√

2
(|11,12〉 − |12,11〉) =

∣∣Ψ−〉
pol
⊗ |Ψas〉sp∣∣Ψ+

〉
total

=
∣∣Ψ+

〉
pol
⊗ 1√

2
(|11,12〉+ |12,11〉) =

∣∣Ψ+
〉

pol
⊗ |Ψs〉sp∣∣Φ−〉

total
=
∣∣Φ−〉

pol
⊗ 1√

2
(|11,12〉+ |12,11〉) =

∣∣Φ−〉
pol
⊗ |Ψs〉sp∣∣Φ+

〉
total

=
∣∣Φ+

〉
pol
⊗ 1√

2
(|11,12〉+ |12,11〉) =

∣∣Φ+
〉

pol
⊗ |Ψs〉sp .

The subscripts pol and sp denote the polarization and spatial part of the wave function.
All of these four states are symmetric. The state |Ψ−〉total is the only one that has an
antisymmetric spatial part |Ψas〉sp while the other three are accompanied by a symmetric
spatial part |Ψs〉sp. Using the unitary beam splitter transformation from Eq. (5.7), it
immediately follows that a symmetric spatial part leads to Hong-Ou-Mandel interference
(coalescence) while an antisymmetric spatial part leads to photons always leaving the beam
splitter from different output ports (anti-coalescence):

U |Ψs〉sp =
1√
2

(|11,11〉 − |12,12〉) (coalescence)

U |Ψas〉sp =
1√
2

(|11,12〉 − |12,11〉) (anti-coalescence).

Consequently, if a pair of photons leaves the beam splitter from different ports, their
spatial wavefunction must have been antisymmetric. In this case, owing to the bosonic
nature of photons, their polarization state must have been antisymmetric as well. For
photons leaving the beam splitter from the same output port, their polarization state is
either |Ψ+〉pol , |Φ−〉pol or |Φ+〉pol. Of these states, the |Ψ+〉pol state has the unique feature
that it leads to correlations between orthogonal polarization states of the two photons.
Polarization-sensitive detection of the photons, for example by placing a polarizing beam
splitter and two single-photon detectors in each output port of the NPBS, thus allows us
to additionally identify the |Ψ+〉pol state. A sketch of such a Bell-state analyzer is shown
in Fig. 5.5. Correlations between orthogonal polarizations in different output ports of the
NPBS correspond to the |Ψ−〉pol state. Correlations between orthogonal polarizations in

the same output port of the NPBS correspond to the |Ψ+〉pol state. Photons in the states

|Φ−〉pol and |Φ+〉pol leave the NPBS from the same output port. As these photons possess
identical polarizations, there is no way to unambiguously identify these states using only
linear optics.

The ability of the NPBS to filter |Ψ−〉pol states can also be understood intuitively. Assuming
perfect Hong-Ou-Mandel interference, photons leaving from different ports must have been
orthogonally polarized (otherwise the interference results in photons leaving the beam
splitter in pairs). The beam splitter erases the which-way information of the photons such
that behind the beam splitter it is impossible to tell which photon has passed through the
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Figure 5.5.: Scheme of an all-optical Bell-
state analyzer for polarization qubits.
Two photons are superimposed on an NPBS.
A PBS and two single-photon detectors in each
output port of the NPBS allow us to discrim-
inate between horizontally (H) and vertically
(V) polarized photons. Correlations between
different detectors (indicated by the wires) ei-
ther herald a |Ψ−〉pol or a |Ψ+〉pol state. Cor-
relations between detectors corresponding to
parallel polarized photons in different output
ports of the NPBS only occur if the two-photon
interference is not perfect.

NPBS

H VV H

PBSPBS

 ψ ˃+  ψ ˃+

 ψ ˃-  ψ ˃-

beam splitter along which path. As a consequence, the state behind the beam splitter is a
superposition of these two pathways with a relative phase of π, given by the matrix from
Eq. (5.7).

The representation of the Bell states depends on the chosen polarization basis. In our
case, we use the H/V -basis, corresponding to the atomic basis {|↓x〉 , |↑x〉} (see Appendix
B). This differs from the computational basis {|↓〉 , |↑〉} corresponding to the polarization
basis R/L, which was used in the derivation of Eq. (5.5). Rewriting Eq. (5.5) with the
Bell states defined in the basis {|↓x〉 , |↑x〉} [|Φ±〉AC = 1√

2
(|↓x〉A |↓x〉C ± |↑x〉A |↑x〉C) and

|Ψ±〉AC = 1√
2

(|↓x〉A |↑x〉C ± |↑x〉A |↓x〉C)] results in:

|ϕ〉A
∣∣Ψ−〉

BC
=

1

2

(∣∣Φ+
〉

AC
σxσz |ϕ〉B

)
− 1

2

(∣∣Φ−〉
AC

σz |ϕ〉B
)

+
1

2

(∣∣Ψ+
〉

AC
σx |ϕ〉B

)
− 1

2

(∣∣Ψ−〉
AC
|ϕ〉B

)
.

(5.12)

Therefore, detection of a |Ψ+〉 event in the described Bell-state analyzer during the
teleportation protocol projects the state of atom B to the state σx |ϕ〉B. Because the |Ψ−〉
is invariant under change of the qubit basis, detection of this state always directly heralds
the successful state transfer, independent of the measurement basis.

In the teleportation protocol (see section 5.3.1), the photon at one input of the NPBS is
randomly polarized as it is part of an entangled Bell state. Therefore, each of the four
outcomes of the Bell-state measurement is equally probable. As only two out of the four
photonic Bell states can be identified unambiguously, the maximum achievable efficiency for
teleportation using a linear-optics Bell-state measurement is limited to 50 % [145]. Because
only detection of the |Ψ−〉 Bell state directly projects the receiver state to the input state,
teleportation without a local operation at the receiver site is limited to an efficiency of 1/4.
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5.2.3. Time-resolved two-photon interference

The simple model of two-photon interference presented in section 5.2.1 assumes that the
photons are identical in all their properties, i.e. in polarization, frequency and temporal
mode. This assumption, however, is not fulfilled in our experiment. To explain our results,
the model is extended according to previous studies [141,146]. Special emphasis is put on
the ability to evaluate the effect of two-photon interference in a time-resolved manner. The
photonic wave packets generated in our system typically exceed the temporal resolution
of the detection system. Therefore, the interference properties of single photons can be
studied “within their wave packet”. This serves as a diagnostic tool for coherence properties
in quantum interference experiments.

The operator a† defined above creates a single photon with a delta-like frequency spectrum
and is thus not defined in time. While the use of these operators allows for an understanding
of the physics of interference between two identical photons, a quantitative description of
non-identical photons requires a realistic model of the photonic modes. Such modes can in
general be described by a complex function ξ with real amplitude ε and phase φ:

ξk(q) = εk(q) e−iφk(q) . (5.13)

This spatio-temporal mode function depends on the spatio-temporal coordinate q = t− z/c.
We are interested in the mode function at the position of the NPBS, which we set to z = 0,
so that q = t. The index k is used to label the modes. The corresponding operator that
creates a single photon in the mode ξk is denoted by c†k:∣∣1ξk〉 = c†k |0〉 . (5.14)

We now investigate correlations between the output modes of the beam splitter. For this
purpose we use a second-order correlation function that is defined as [147]

G(2)(t1,t2) = Tr [ρinA3,4(t1,t2)] , (5.15)

with the input state ρin and the operator

A3,4 = a†3a
†
4a4a3. (5.16)

G(2)(t1,t2) is the quantum mechanical version of the classical intensity correlation function
〈I1(t1)I2(t2)〉t.

The detection and analysis of two-photon interference requires the measurement of corre-
lations between two detection events in different output ports of the beam splitter. The
probability to detect such a correlation is given by the joint-detection probability P (2). This
quantity is the probability to detect a first photon at time t0 in one output port of the
NPBS and a second photon at a time t0 + τ in the other port. For our purposes, only
the time difference τ is relevant. In the case of photons with a temporal length that is
large compared to the temporal resolution tres of the detectors, P (2)(τ) is related to the
second-order correlation function by

P (2)(τ) = ηDtres

∫
dt0G

(2)(t0,t0 + τ). (5.17)
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ηD is the product of the quantum efficiencies of the two detectors.

To gain some insight about the joint-detection probability P (2)(τ) we discuss two important
examples.

Identically polarized photons. We consider two photons in the mode ξk with paral-
lel polarizations, one at each input k of the NPBS. The input state then reads ρin =∣∣1ξ1,1ξ2

〉 〈
1ξ1,1ξ2

∣∣. By using Eq. (5.14) and Eq. (5.15) it can be shown that [141]

G
(2)
‖ (t1,t2) =

1

4
|ξ1(t1)ξ2(t2)− ξ2(t1)ξ1(t2)|2 . (5.18)

If the mode functions are identical, i.e. ξ1(t) = ξ2(t) for all times t, G
(2)
‖ and consequently

P
(2)
‖ (τ) is zero for all values of τ . This is the result of perfect Hong-Ou-Mandel interference,

according to Eq. (5.11). Different mode functions lead to values greater than zero for G
(2)
‖ .

For τ = t2 − t1 = 0, however, the correlation function is always zero even if the mode
functions differ.

Perpendicularly polarized photons. We now assume the photons to have orthogonal
polarizations. The state of the photons is then not only described by the mode function,
but also by the state of polarization, for example l and ↔. With the input state ρin =∣∣∣1ξ↔1 ,1ξl2〉〈1ξ

↔
1 ,1ξ

l
2

∣∣∣, the correlation function is calculated to be [141]

G
(2)
⊥ (t1,t2) =

1

4

(
|ξ1(t1)ξ2(t2)|2 + |ξ1(t2)ξ2(t1)|2

)
. (5.19)

G
(2)
⊥ is always larger than zero, unless either ξ1(t) or ξ2(t) is equal to zero at all times.

As becomes clear from these examples, perfect Hong-Ou-Mandel interference is only observed
for parallel polarized photons with identical mode functions (i.e. perfectly indistinguishable
photons). Any mismatch in the mode functions leads to a reduction of this coalescence
effect. In the case of orthogonal polarizations, the photons are fully distinguishable and do
not show interference. To derive a figure of merit for the degree of two-photon interference,
we compare the number of interfering photons with the number of non-interfering photons.
A convenient way to achieve this, is to measure the correlation function for photons with
orthogonal polarization as a reference. Comparing the correlation function for parallel
polarized photons to the reference directly yields a figure of merit for the indistinguishability
of the photons. We define the contrast C(τ) as

C(τ) = 1−
P

(2)
‖ (τ)

P
(2)
⊥ (τ)

=
P

(2)
⊥ (τ)− P (2)

‖ (τ)

P
(2)
⊥ (τ)

. (5.20)

Integrated over the whole photonic wavepacket the integrated contrast becomes

C = 1−

∫
P

(2)
‖ (τ)dτ∫
P

(2)
⊥ (τ)dτ

. (5.21)
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P
(2)
‖ is only smaller than P

(2)
⊥ if the photons interfere destructively. Consequently, a

contrast C > 0 unambiguously proves quantum interference and that the photons are, at
least partially, indistinguishable.

To measure the correlation functions we have to prepare an ensemble of photonic input
states ρin =

∣∣1ξ1,1ξ2

〉 〈
1ξ1,1ξ2

∣∣ and average over correlations between detection events in
different NPBS ports of the whole ensemble. This requires a perfect single-photon source
as only then all photons in the ensemble can be described by the same state vector |1ξ〉.
In a realistic experiment, a stream of single photons shows a variation (or jitter) in the
parameters of the mode function, so-called shot-to-shot variations. Let ϑ describe one or
more parameters that are affected by jitter. The variation of ϑ in the ensemble can be
described by a normalized distribution function f(ϑ). The density operator of such an
ensemble is then written as [140]

ρ =

∫
dϑf(ϑ) |1ξ〉 〈1ξ| . (5.22)

At the input of the beam splitter, there are two photon streams (one at each input port)
such that the input state becomes

ρin =

∫∫
dϑ1dϑ2f1(ϑ1)f2(ϑ2)

∣∣1ξ1,1ξ2

〉 〈
1ξ1,1ξ2

∣∣ . (5.23)

For the following discussion we assume a Gaussian envelope for the photonic mode functions:

ξk(t) =
4

√
2

πδt2
exp

[
−(t− τk)2

δt2

]
exp [iωk(t− τk)] . (5.24)

δt is the half 1/ e-width of the Gaussian envelope7 and is called the photon length. ωk is the
frequency of the photon and τk its emission time. This time is equivalent to the time where
the mode function has its maximum at the position of the beam splitter. Furthermore we
assume that both streams show Gaussian variations in the emission time, characterized by
the same width ∆τ of the distribution. The jitter can then be described by a variation of
the arrival-time delay δτ = τ2 − τ1 (equivalent to a delay of the emission times) between
the two photons using the normalized Gaussian distribution

f(δτ) =
1√
π∆τ

exp

[
− δτ

2

∆τ2

]
. (5.25)

By using Eq. (5.23), Eq. (5.17) and Eq. (5.15), the joint-detection probability for parallel
and orthogonally polarized photons can be calculated8:

P
(2)
‖ (τ) =

1

2
√
π
√
δt2 + ∆τ2

(
1− exp

[
− τ2

δt2 + δt4/∆τ2

])
· exp

[
− τ2

δt2 + ∆τ2

]
(5.26)

P
(2)
⊥ (τ) =

1

2
√
π
√
δt2 + ∆τ2

exp

[
− τ2

δt2 + ∆τ2

]
. (5.27)

7The full width at half-maximum (FWHM) is related to δt by FWHM = 2
√

ln(2)δt.

8The quantum efficiency ηD and the resolution tres of the detectors are ignored as these quantities cancel
out when the contrast is calculated.
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Figure 5.6.: Joint-detection proba-
bility as a function of the detection-
time difference τ for photon streams
that show a variation in their emis-
sion time. The figure shows the joint-
detection probability for orthogonally po-
larized photons (red dashed line) accord-
ing to Eq. (5.27) and for parallel polarized
photons (blue dashed line) according to
Eq. (5.26). The variation of the emission
time is ∆τ = 1.5δt.

-4 -2 0 2 4

0.05

0.1

0.15

0.2

2T2

2T1

P(2)(τ)
┴

║

P(2)(τ)

Detection-time di�erence τ (δt)

Jo
in

t-
de

te
ct

io
n 

pr
ob

ab
ili

ty

0

This result is plotted in Fig. 5.6. The width T1 of the Gaussian-shaped peak for the case of
orthogonally polarized photons is the result of convoluting the photonic wave packet with
width δt, with the distribution function of the arrival-time variation with width ∆τ :

T1 =
√
δt2 + ∆τ2. (5.28)

The presence of arrival-time variations results in a characteristic double peak structure of
the joint-detection probability of identically polarized photons. The width of the dip in the

function P
(2)
‖ (τ) is given by the temporal distance between the maxima of the two peaks:

T2 =

√
δt2 +

δt4

∆τ2
=

δt

∆τ
T1. (5.29)

By assuming that a variation in the emission time is the main mechanism reducing the
interference contrast, it is therefore possible to determine the width of this jitter ∆τ as
well as the actual length of the individual photon wavepackets δt. The integrated contrast
becomes

C =
δt√

δt2 + ∆τ2
. (5.30)

The occurrence of emission-time jitter thus reduces the achievable contrast.

5.3. Teleportation between remote single atoms

After the theoretical foundations have been laid, we now turn to the implementation of
our teleportation experiment. Following the description of the specific protocol, a simple
formula relating the fidelity of the teleportation process to the fidelities of entanglement
generation, state mapping and interference contrast is derived. Subsequently, the exper-
imental implementation is explained in detail and it is described how the vSTIRAP is
employed to generate indistinguishable photons from the independent systems. This is
a crucial step for the optical Bell-state measurement and the quality of the two-photon
interference is discussed. After a detailed description of the experimental steps involved in
the teleportation protocol, the chapter concludes with the discussion of the results.
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5.3.1. Teleportation protocol

The employed protocol to perform and to analyze quantum teleportation consists of five
steps (see Fig. 5.7):

� Preparation of the qubit at node A.

� Generation of atom-photon entanglement at node B.

� State mapping of atom A onto a photon A′.

� Bell-state measurement between the two photons.

� State detection at node B.

Initially, atom A is prepared in a qubit state |ϕ〉A = α |↓〉A +β |↑〉A. This is the state we aim
to teleport to atom B. State preparation is achieved by mapping the polarization of a weak
coherent pulse onto the spin state of the atom using a STIRAP [44]. Entanglement between
the spin state of atom B and the polarization of an ancilla photon C is generated using the
scheme described in section 4.3.1.1, which ideally results in the maximally entangled state

∣∣Ψ−〉
BC

=
1√
2

(|↓〉B |	〉C − |↑〉B |�〉C) . (5.31)

Photon C is sent to node A via an optical fiber, where the required Bell-state measurement
is performed. For this purpose, the state of atom A is mapped onto the polarization of
another photon A′. This allows us to perform an all-optical Bell-state measurement as
was explained in section 5.2. According to Eq. (5.12), detecting the joint-polarization state
|Ψ−〉A′C of the two photons directly heralds the successful state transfer from atom A to
atom B. This heralding signal has to be communicated to node B to indicate that the state
transfer succeeded. In our setup, it is moreover possible to identify the |Ψ+〉A′C state in
the Bell-state measurement, which heralds the projection of atom B onto the state σx |ϕ〉B.
In this case, the initial qubit from node A up to a phase flip is retrieved.

In order to characterize the fidelity of the teleportation protocol, the state of atom B is
measured after a heralding event has been registered. For this purpose, the state of atom B
is transferred to another photon B′ and quantum state tomography of its polarization state
is performed for six different initial states at node A that form three mutually unbiased
bases. As explained in section 3.3, combining these measurements enable a complete
process tomography of the teleportation channel.

5.3.2. Teleportation fidelity

The fidelity of the overall process depends on the quality of the aforementioned steps. In
this section, a simple model to estimate the teleportation fidelity as a function of the
fidelity of these individual steps is derived.

We first define the combined fidelity of state preparation and state mapping as the overlap
of the ideal state |ϕ〉 we intend to prepare, with the measured photonic polarization after
state preparation and mapping ρA′ : FA = 〈ϕ| ρA′ |ϕ〉. We assume that errors made at node
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Figure 5.7.: Protocol for quantum teleportation between two remote atoms. At each
node, a single atom is quasi-permanently trapped at the center of the cavity. a) Atom A is initialized
in the state |ϕ〉A by storing a coherent pulse with well-defined polarization. b) Entanglement is
generated between atom B and an ancilla photon C. The atomic qubit at node A is mapped onto a
photonic qubit A′. c) A Bell-state measurement (BSM) between the photons A′ and C is performed.
Detection of a |Ψ−〉 event heralds a successful state transfer. d) For detection of the state at node
B, the atomic state is mapped onto the polarization of a single photon B′, whose polarization is
subsequently analyzed.

A during state preparation and mapping result in the photonic state A′ being partially
mixed, such that it can be written in the form

ρA′ = pA |ϕ〉 〈ϕ|+
1

2
(1− pA)12.

pA is the probability that the state preparation and mapping results in the ideal state,
and 12 denotes the identity operator in two dimensions. Using the definition of the state
fidelity [Eq. (3.9)], the relation between pA and the fidelity becomes

FA = 〈ϕ| ρA′ |ϕ〉 =
1

2
(pA + 1). (5.32)
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Similarly, we assume that the entangled state is of the form

ρent = pent

∣∣Ψ−〉 〈Ψ−∣∣+
1

4
(1− pent)14,

where pent denotes the probability that the read-out atom-photon state is the ideal,
maximally entangled Bell state |Ψ−〉. In this case, the entanglement fidelity is

Fent =
〈
Ψ−
∣∣ ρent

∣∣Ψ−〉 =
1

4
+

3

4
pent. (5.33)

We are interested in the state fidelity of atom B after teleportation. Let pw be the probability
for a wrong result during state detection, i.e. an event that reduces the visibility according
to Eq. (3.10). Consequently, 1− pw is the probability to obtain a correct result. By using
Eq. (3.11), the state fidelity at node B after teleportation can then be expressed as

FB =
1

2

(
1 +

(1− pw)− pw

(1− pw) + pw

)
= 1− pw. (5.34)

The quality of two-photon interference affects the quality of the Bell-state measurement
and is characterized by the interference contrast C (see section 5.2.3). According to

the discussion in section 5.2.3, the ratio P
(2)
‖ /P

(2)
⊥ is the probability that a photon pair

impinging on the beam splitter does not show Hong-Ou-Mandel interference. Consequently,

the contrast C = 1− P (2)
‖ /P

(2)
⊥ is the probability that the photon pair does show Hong-

Ou-Mandel interference. Following this argument, C is the probability for the case that
a detected correlation in the Bell-state analyzer signaling a |Ψ−〉 event has been caused
by two photons that have actually been in the |Ψ−〉 state. Particular emphasis has to be
put on the fact that the influence of the interference contrast on the teleportation fidelity
depends on the input state at node A. From the mutually unbiased basis states {|Bi〉}, the
states |↓x〉 and |↑x〉 are special because they are mapped onto eigenpolarizations of the
detection basis of the Bell-state analyzer, H and V (see Appendix B). In this case, there is
no need to detect the symmetry of the state, as classical polarization correlations between
photons that did not interfere are sufficient to herald the projection of atom B onto the
state initially prepared at atom A. Therefore, the fidelity is independent of the interference
contrast. To make this point more clear, we consider the case where the initial state of
atom A is |↓x〉. This state is mapped to a photon with polarization |H〉, which is jointly
measured with a photon coming from node B in the Bell-state analyzer. Detection of a
|Ψ−〉 event (i.e. a correlation between H and V in different ports of the NPBS) signals
that the two photons have been in orthogonal polarization states. Because the photon
from node A was in the state |H〉, the signal in the V detector must have been caused by
the photon from node B, independent of the interference between the two photons. Even if
the polarization state of the photon from node B is correlated only classically with the spin
state of atom B with respect to the H/V basis, the detection event projects the atom at
node B onto the state |↓x〉. Classical correlations in the H/V basis refer to the polarization
V (H) being correlated with the atomic state |↓x〉 (|↑x〉), while polarizations states from the
other mutually unbiased bases D/A and R/L being uncorrelated with the corresponding
atomic state.
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We first analyze the teleportation fidelity F⊥B for the four input states |↓〉 , |↑〉 , |↓y〉 , |↑y〉.
The probability that the teleportation protocol succeeds is the product of the success
probabilities of the individual steps. Following the preceding discussion, the probability
for the protocol to succeed upon detection of a |Ψ−〉 correlation is CpentpA. We assume,
that whenever the teleportation protocol fails in spite of detection of a |Ψ−〉 correlation
(because of no interference or no entanglement or incorrect state preparation), the result of
the state detection at node B is independent of the state we intended to prepare at node
A, resulting in a fidelity of 1/2. This yields,

pw =
1

2
(1− CpentpA) . (5.35)

Using Eq. (5.34) we find:

F⊥B =
1

2
+

1

2
CpentpA. (5.36)

Using the expressions for pA and pent from Eq. (5.32) and Eq. (5.33), respectively, this can
be written as

F⊥B =
1

2
+

4

3
C

(
Fent −

1

4

)(
FA −

1

2

)
. (5.37)

An analogous analysis for the eigenpolarizations of the Bell-state analyzer |↓x〉 and |↑x〉,
leads to

F‖B =
1

2
+

4

3

(
Fent −

1

4

)(
FA −

1

2

)
. (5.38)

This corresponds to the result from Eq. (5.37) with C = 1 and is independent of the

interference contrast. Averaging over F⊥B and F‖B for the six states {|Bi〉} results in the
average state fidelity at node B after teleportation:

F =
1

2
+

8

9

(
C +

1

2

)(
Fent −

1

4

)(
FA −

1

2

)
. (5.39)

5.3.3. Experimental setup

After discussing the protocol and the fidelity, we now turn to the experimental imple-
mentation of quantum teleportation. Figure 5.8 shows a schematic of the experimental
setup. In each system, single atoms are quasi-permanently trapped in a cavity using optical
dipole traps (see chapter 2). The depths of the traps are different at the two nodes. The
corresponding Stark shifts of the relevant transitions are 150 MHz (|2,± 1〉 ↔ |1,± 1〉′ at
node A) and 115 MHz (|2,0〉 ↔ |1,0〉′ at node B), respectively. The π-polarized control
laser fields that couple the hyperfine ground-state F = 2 to the excited hyperfine state
F ′ = 1 have a detuning of 173 MHz with respect to the free atoms at both nodes. Taking
the Stark shifts into account, the control fields are 23 MHz (node A) and 58 MHz (node B)
blue detuned from the atomic transition. Both cavity fields couple the F = 1↔ F ′ = 1
transition and are in two-photon resonance with the control field.

The output modes of the cavities are coupled to single-mode fibers that direct the photons
to the Bell-state analyzer, which is located in laboratory A. The output of these fibers is
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Figure 5.8.: Experimental setup for teleportation between two remote single atoms.
The state of atom A is mapped onto the polarization of a single photon A′. At node B, entanglement
is generated between the atom and a photon C. The two photons are coupled into single-mode fibers
and are directed to the Bell-state analyzer located in laboratory A. The photons are superimposed
on a fiber-based NPBS, whose output ports are monitored with four single-photon counting modules
which are connected to a time-to-digital converter (TDC). This allows us to perform a time-resolved
joint Bell-state measurement of the photons. The state of atom B after teleportation is determined
by generating another photon B′ and measuring its polarization. Polarization compensation of the
overall optical paths is achieved by using fiber-based polarization controllers (PC) and combinations
of half-wave (λ/2) and quarter-wave (λ/4) plates. To initialize atom A, a coherent laser pulse,
which polarization is set by two waveplates, is mapped onto the atomic spin state using STIRAP.
The laser is coupled into the cavity using reflection off an interference filter (IF).

free-space coupled into a fiber-based NPBS9. The beam splitter is the central element of
the Bell-state analyzer and its quality sets an upper bound for the achievable interference
contrast and hence for the achievable teleportation fidelity. The ratio between transmission
T and reflection R of the beam splitter is % = T/R = 1.1. This corresponds to a maximal

achievable fringe visibility for a classical interference experiment of V =
2
√
%

%+1 = 99.88 %10.
The visibility was measured using classical light fields to be > 99 %, proving that the
beam splitter is well suited for interference experiments. Each output port of the NPBS is
monitored using a combination of a PBS and two single-photon counting modules (SPCM).

9Gould, Corning PureMode HI 780-5/125

10The measured intensity in one output port of a beam splitter for two classical optical fields with relative
phase ϕ after interfering at the beam splitter is I(ϕ) ∝ 1

2
+
√
TR cos(ϕ). The fringe visibility is defined

as V = Imax−Imin
Imax+Imin

. With Imax = I(0) and Imin = I(π) the given formula for V can readily be derived.
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The electronic pulses generated by the photon counters are recorded by a time-to-digital
converter (TDC). From these data, correlation histograms between each combination of
detector pairs can be created. There are in total six types of correlations between two
different detectors in the depicted setup: H1V1, H2V2, H1H2, V1V2, H1V2 and V1H2 (for the
labeling of the detectors see Fig. 5.8). According to section 5.2, correlations of the type
H1V2 and V1H2 correspond to a detection of the |Ψ−〉 state, whereas correlations of the
type H1V1 and H2V2 correspond to the state |Ψ+〉.

Compensation of unwanted polarization rotations. The optical components in the light
path connecting the two laboratories lead to an unwanted rotation of the polarization of
the light traveling along that path. This rotation must be compensated in order to measure
in well-defined bases in both systems. To this end, we use half- and quarter-wave plates as
well as in-line fiber polarization controllers that utilize bend-induced birefringence. These
devices allow us to implement arbitrary rotations of the polarization state of light, thereby
compensating any unwanted rotations in the overall setup (see section 4.2.2). To calibrate
the compensation, we adjust the polarization controllers and waveplates such that light
emerging from the cavities has the same polarization in both output ports of the NPBS, as
well as in front of the polarization detector at node B.

5.3.4. Implementation of the protocol

In this section, the specific implementation of the individual steps involved in the telepor-
tation protocol is explained. Each experimental run starts with the probabilistic loading of
single atoms from a MOT into the cavity in both systems. As soon as a single atom is
present in each cavity the protocol shown in Fig. 5.9 is started. It contains all the steps
mentioned in section 5.3.1, which are explained in detail in the following.

State preparation at node A

To prepare the atomic state at node A, the polarization of a coherent laser pulse is mapped
onto the spin state of the atom using a STIRAP (Fig. 5.7a). The laser is coupled into
the high-transmissive mirror of cavity A after reflection off an interference filter. It was
verified that the filter has no polarizing effect on the reflected light. The polarization of
the light pulse and therefore the subsequent state of the atom is set by a half-wave and a
quarter-wave plate.

Before the actual preparation is started, the atom is pumped to the hyperfine ground-state
F = 2 and a π-polarized control laser pulse is applied to generate a single photon that
is used as a reference for the evaluation of the data. By evaluating the g(2)-correlation
function of this photon it is possible to post-selectively discard experimental runs in which
accidentally two or more atoms were trapped. The signature of a multi-atom event is
g(2)(0) being significantly larger than zero. During evaluation of the data, experimental
runs with g(2)(0) > 0.25 are rejected. Additionally, this reference is used to estimate the
efficiency of the state preparation process. Also at node B an additional photon in each
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Figure 5.9.: Schematic of the experimental sequence for teleportation between two
remote atoms. After generation of a single photon at node A, which is used as a reference for
measuring the teleportation efficiency, the individual atoms are initialized by optical pumping.
Thereafter, the atomic state of atom A is mapped onto the polarization of a single photon and
entanglement between atom B and a single photon is generated. After detecting the state of atom
B, a cooling interval (≈ 80 µs) is applied to the atoms.

experimental run is generated (not shown in Fig. 5.9). The same criterion as for node A to
discard multi-atom events is applied to node B.

Atom A is initialized in the state |ϕ〉A = α |↓〉A +β |↑〉A. The qubit basis states are encoded
in |↓〉A ≡ |F = 2,mF = −1〉A and |↑〉A ≡ |F = 2,mF = +1〉A. For this purpose, we employ
the scheme described in section 4.2.1 to coherently map the polarization of a photon onto
the atomic state. To achieve a high efficiency, we map the polarization of a coherent laser
pulse with n̄ ≈ 5 instead of a single photon onto the atom. This dramatically increases the
preparation probability to almost unity, while the fidelity is not affected. To faithfully store
the polarization and to maximize the efficiency, it is necessary to optically pump the atom
into the state |1,0〉. By applying a π-polarized laser resonant with the F = 1 ↔ F ′ = 1
transition and a repump laser near-resonant with F = 2↔ F ′ = 1, the atomic population
accumulates in |1,0〉 (see section 4.2.3). The light fields are applied simultaneously for a
period of 5 µs. After pumping the atom, the control laser is switched on. The coherent
laser pulse with a full width at half maximum of 280 ns, which is resonant with the cavity
transition around F = 1 ↔ F ′ = 1 is sent onto the high-transmissive mirror. As soon
as the pulse impinges onto the cavity, the Rabi frequency of the control laser is ramped
down on a timescale of 300 ns. This maps the polarization state onto the atomic spin state
[Eq. (4.10)]. The relative delay between the pulse and the switch-off time of the control is
optimized for maximum storage efficiency [59].

To estimate the efficiency and the fidelity of the state preparation process, the atomic state
is mapped onto the polarization of a single photon, which is measured with single-photon
detectors locally in laboratory A. The efficiency is defined as the probability with which
the atom is transferred from F = 1 to F = 2 in the storage process. This value can be
measured by comparing the integrated counts of the reference photon with the integrated
counts of the read-out photon. After optimization, a preparation efficiency close to unity
was achieved. Due to long-term drifts in the course of the teleportation measurement



68 Quantum teleportation

(approximately 60 hours), however, we find a reduced average preparation efficiency of
73 %. The reason is probably a slight drift of the control laser frequency with respect to the
frequency of the cavity field. Variations on the order of a few 100 kHz already have a large
impact on the storage efficiency [59], and consequently result in a reduced preparation
efficiency. Another possible effect is a drift of the position of the dipole trap. This results
in a drift of the Stark shift and the position of the atom with respect to the cavity mode.
Both lead to a change of the dynamics of the STIRAP and consequently of the dynamics
of the mapping process [148]. A reduced efficiency of the state preparation, however, does
not necessarily affect the fidelity. The good quality of the preparation process is verified by
measuring the fidelity of the read-out photon, defined as the overlap with the ideal state
we intend to prepare. For the six mutually unbiased basis states, {|Bi〉}, we find an average
fidelity of FA ≈ 95 %.

Generation of atom-photon entanglement at node B

At node B, entanglement between the spin of the atom and the polarization of a photon C is
generated using the scheme described in section 4.3.1.1 (Fig. 5.7b). After pumping the atom
to the state |2,0〉, a π-polarized laser pulse that is in two-photon resonance with the cavity
field couples the states F = 2↔ F ′ = 1 and drives a vSTIRAP which ideally results in the
entangled atom-photon state of Eq. (5.31). The fidelity of the experimentally generated
state with the ideal |Ψ−〉 state is determined by mapping the atomic state onto a photonic
polarization state using another vSTIRAP triggered by a π-polarized control pulse coupling
the states F = 1↔ F ′ = 1. Measuring correlations between the polarizations of the two
photons allows us to measure the entanglement witness and therefore the entanglement
fidelity (see section 4.3.2). The result of this measurement therefore includes imperfections
during mapping the state of atom B onto the photon. In the current experiment, the
average value, including long-term drifts over 60 hours, is measured to be Fent = 89 %.

Bell-state measurement

Photon C is directed to the Bell-state analyzer located in laboratory A. The qubit stored in
atom A is mapped onto the polarization state of a photon A′. This is achieved by applying
a control laser pulse, which is near-resonant with the transition F = 2↔ F ′ = 1 and in
two-photon resonance with the cavity field, onto atom A. The photon is sent to the second
input port of the Bell-state analyzer. Detection of a |Ψ−〉 event for the joint Bell-state of
the two photons heralds the successful teleportation from atom A to atom B.

State detection

The state of atom B after teleportation is measured by mapping the atomic spin-state onto
the polarization of a photon B′ (Fig. 5.7d). This is accomplished by applying a π-polarized
control pulse, which is in resonance with the frequency of the cavity field (near-resonant
with the atomic F = 1↔ F ′ = 1 transition). This triggers the emission of a photon. By
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using a detection setup (section 2.5) located in laboratory B, quantum state tomography
of the photon and thus indirectly of the atom is performed.

Because the scheme used for the detection of the atomic state is the same as for the
determination of the entanglement witness, imperfections during state detection are already
included in the above quoted value for the entanglement fidelity Fent.

5.3.5. Single photons made to interfere

In order to observe quantum interference and to perform a high-fidelity Bell-state mea-
surement, it is crucial that the photons are indistinguishable, i.e. equal in polarization and
frequency, and equal in their spatio-temporal mode. Because the photons emerge from
independent sources, this is a very delicate task.

The spatial overlap is guaranteed by using a fiber-based beam splitter as described in
section 5.3.3. The temporal profile and the frequency of the photonic wave packets can be
controlled during the cavity-assisted photon generation process using an adiabatic passage.
The physics of this process was already described in detail in section 4.1 and we will only
focus on the particular implementation of the photon generation process employed in the
teleportation protocol here.

Frequency. In order to generate photons of identical frequency, the control laser frequen-
cies in both laboratories must be the same. To achieve this, the control lasers (a Ti:Sa
laser at node A and a diode laser at node B, see chapter 2) are referenced to the output of
a frequency comb that serves as an absolute frequency standard [51]. We check the relative
frequency of the two lasers by detection of a beat note. The full 1/ e-width of the spectral
power density of the beat signal is 2δν = 800 kHz and represents an estimation of residual
relative frequency fluctuations. Assuming a Gaussian frequency distribution, a formula for
the achievable integrated contrast can be derived [146]:

C =
1

1 + π2δt2δν2
.

As can immediately be seen from this equation, for photon lengths δt that are short
compared to the inverse width of residual frequency variations δν, a frequency jitter has
only a small impact on the contrast. In the present experiments we generate photons with
a full width at half maximum of ≈ 250 ns. The achievable contrast is then C ≈ 97 %.
Frequency jitter therefore has only a small influence on the quality of the two-photon
interference.

Temporal shape. The temporal shape of the photonic wave packets can be engineered
by adjusting the temporal shape of the control fields [95,149]. As was discussed in section
4.1, the dynamics of the vSTIRAP depends on the strengths of the atomic transitions,
the atom-cavity coupling and the detuning of the control laser with respect to the atomic
resonance. Even if these parameters differ at the two nodes, photons with identical temporal
envelope can be generated by choosing a suitable shape of the applied control laser pulse.
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Figure 5.10.: Temporal shaping
of single photon wave packets.
Solid lines are measured data of en-
semble averages. Dashed lines show
approximately the applied control
laser intensities. By choosing differ-
ent slopes of the temporal course of
the laser intensity (indicated by dif-
ferent colors) the photon length can
be adjusted.
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We aim to generate photons with a Gaussian profile, as this shape is proven to be most
robust against fluctuations in the temporal mode in terms of the interference contrast [150].
We therefore apply a shape of the control laser intensity that approximately follows a
sin2-function in time and settles at a constant value. Figure 5.10 shows three arrival-time
histograms recorded with the single-photon detectors. They represent envelopes of photon
wave packets for control pulse shapes that differ in the steepness of the leading edge. The
maximum value of the laser power was set to 20 µW for all shapes. The data shown in the
figure demonstrate that the length of the symmetric photonic wave packet can be adjusted
over a wide range without affecting the efficiency with which the photons are generated.

It must be noted that the measured arrival-time histograms always represent ensemble
averages over independently generated photons. Thus, from these data no conclusions
can be drawn about the individual photons and the underlying distribution of the photon
shapes. In fact, it will turn out that these shot-to-shot variations in the photon generation
process lead to a reduction of the interference contrast (see section 5.3.6).

Phase. As opposed to interference of classical optical fields, no interferometric stability
on the scale of the wavelength is required for interfering single photons. Small shifts
(� δt) between two photons do not influence the interference contrast. However, a phase
shift within a photonic wave packet might have a measurable effect [151]. Such shifts can
be caused by fluctuations in the optical fibers. Because the photons are short (< 0.3 µs)
compared to the timescale of acoustic noise (≥ 100 µs), which could induce phase distortions
in the fibers, we do not expect any influence of phase fluctuations on the interference
contrast.

Synchronization. Because the optical Bell-state measurement requires photons in the
same temporal mode, an accurate control of the timing of the experimental sequence is
indispensable. In each setup, a digital pattern generator is used to control the precise
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timing of the laser pulses (see chapter 2). System A hereby takes over the task of the
master clock. Along with the start of the protocol at node A, an electronic signal is sent
to the pattern generator at node B to trigger the start of the protocol at node B. This
guarantees relative temporal stability between the two experiments.

Signal propagation time. Any delay of the signals between the single-photon detectors
and the TDC leads to an inaccurate measurement of the detection-time differences. As this
reduces the achievable interference contrast, the discrepancies between signal propagation
times have to be kept as small as possible. To measure the propagation times we use a
weak, short coherent laser pulse with a steep, linear rising edge (≈ 20 ns)11 and couple
it into one port of the fiber-based NPBS. The light pulse triggers all photon counters
simultaneously. The relative signal propagation times can then be measured with high
accuracy at the TDC. After adjusting the relative signal delay by changing cable lengths in
the different paths, the residual arrival time differences of the electronic signals is measured
to be < 3 ns.

5.3.6. Two-photon quantum interference

According to the theoretical treatment in section 5.2.3, a measurement of correlations
between detectors in different output ports of the NPBS for parallel and orthogonally polar-
ized photons (non-interfering case as a reference) is necessary to determine the interference
contrast [see Eq. (5.20)]. This can for example be achieved by placing polarization filters
in front of the NPBS to prepare photons of well-defined polarization and performing the
interference experiment for parallel and orthogonally polarized photons. Our approach,
however, uses randomly polarized photons (i.e. they are in a statistical mixture of polar-
izations) at one input (from node B) and photons with a fixed polarization at the second
input (from node A). When the photons are detected in the Bell-state analyzer, they are
projected onto certain polarizations. We thus refer to the correlations of the type H1H2

and V1V2 as the joint detection probability for parallel polarized photons P
(2)
‖ , and to the

correlations of the type H1V2 and V1H2 as the joint detection probability for orthogonally

polarized photons P
(2)
⊥ . Experimentally, the contrast is calculated according to Eq. (5.20),

C = 1−
P

(2)
‖

P
(2)
⊥

= 1− Nc(H1H2) +Nc(V1V2)

Nc(H1V2) +Nc(V1H2)
, (5.40)

where Nc(j) denotes the number of detected correlations of the type j. This of course
assumes identical efficiencies of all four detectors. For unequal detector efficiencies εk
(k = H1,V1,H2,V2) the measured contrast becomes

C = 1−
P

(2)
‖ (εH1εH2 + εV 1εV 2)

P
(2)
⊥ (εH1εV 2 + εV 1εH2)

= 1−
P

(2)
‖

P
(2)
⊥

r1r2 + 1

r1 + r2
, (5.41)

11Generated with a fiber-based electro-optical amplitude-modulator with a bandwidth of 10 GHz.
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Figure 5.11.: a) Arrival-time histograms of photons emerging from node A (red) and
node B (black). The full width at half maximum of the two nearly Gaussian-shaped photons is
250 ns. b)-d) Joint-detection probability for parallel (blue filled bars) and orthogonally
(black open bars) polarized photons. The correlation histograms are shown for different
evaluation intervals as defined by the dashed green lines in the arrival time histogram in a). The
evaluation interval always starts at time zero.

with r1 = εH1/εV 1 and r2 = εH2/εV 2. Therefore, only differences in the same output port
of the NPBS are of relevance. In our setup, we measure r1 = 1.07 and r2 = 0.91 so that
the correction factor on the right-hand side of Eq. (5.41) becomes 0.997. The influence of
detector efficiencies is small and is neglected in the following. Consequently, Eq. (5.40) is
used to determine the contrast. Because the polarization of the photons from node B is
random, both types of correlations (parallel and orthogonal) are equally probable. The
measured correlation functions are therefore correctly normalized.

The vSTIRAP is employed to generate photons with identical envelopes at both nodes
(Fig. 5.11a) by tuning the temporal shape of the applied control laser pulse (see section 5.3.5
and Fig. 5.10). The full width at half maximum of the integrated arrival-time histograms is
250 ns and the temporal overlap of the Gaussian shaped envelopes is almost perfect. The
overlap integral computed between the envelope of the histograms has a value of > 99 %,
when evaluating photons with an arrival time of up to 600 ns. The slight deviation in the
falling edge of the pulse is due to non-perfect state preparation of the atom at node A (cf.
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Figure 5.12.: Numerical simulation of photon generation and two-photon interference.
a) Examples of single-photon wave packets for different detunings ∆ of the control and cavity field
from the atomic resonance (solid black, red and blue lines). The ensemble average (dashed green
line) is computed using a Monte Carlo method, according to the measured Stark shift variation of
8 MHz. b) Joint-detection probability for parallel and orthogonally polarized photons, computed
for the same ensemble average as in a).

section 4.2.4). Events with an arrival time later than 600 ns are discarded in the following.

Figure 5.11b shows the joint-detection probability for parallel P
(2)
‖ (τ) and orthogonal

polarizations P
(2)
⊥ (τ) as a function of the detection time difference τ , where only photons

within an evaluation interval of 600 ns of the wave packet envelopes are considered. The
integrated contrast C as defined in Eq. (5.21) for the data shown in Fig. 5.11b is 63.6 %
and clearly proves the quantum nature of the two-photon interference. Restricting the
evaluation interval further by discarding detection events at the end of the photon, the
contrast can be increased. The values for an interval of 500 ns and 400 ns are C = 78 %
and C = 90.5 %, respectively.

The measured dependence of the joint-detection probability on the detection-time difference
for parallel and orthogonally polarized photons is now discussed. It can be explained by
variations in the emission time of individual single photon wave packets (see section 5.2.3).
To gain more insight into the physical mechanism causing these variations and their impact
on the interference contrast, we perform a numerical simulation. The finite temperature of
the atoms inside the trapping potential leads to fluctuating Stark shifts and consequently
to fluctuating detunings of the control and cavity field with respect to the atomic transition.
This detuning in turn affects the temporal dynamics of the photon generation process
(see section 4.1). The Stark shift variations result in an inhomogeneous broadening of
the atomic linewidth. By performing spectroscopy of the trapped atom, we find this
broadening to be 8 MHz. Details on the simulation can be found in Appendix C. The
principle is as follows: First, single-photon wave packets are simulated by solving the
master equation of the system. Then, the integral of Eq. (5.17) is computed numerically
for parallel and orthogonal polarizations using Eq. (5.18) and Eq. (5.19). Using a Monte

Carlo method, the ensemble averages of the wave packets and of P
(2)
‖ (τ) and P

(2)
⊥ (τ)

according to the measured distribution of the Stark shift is calculated. The result is shown
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Figure 5.13.: Time-resolved two-photon interference. a) Result of the time-resolved corre-
lation measurement for photons with parallel (blue filled bars) and orthogonal (black open bars)
polarization in opposite output ports of the NPBS. The number of coincidences between photons

with the same polarization is strongly suppressed. The red data points show the ratio P
(2)
‖ /P

(2)
⊥ for

each pair of binned correlations. The error bars indicate the statistical standard error. b) Integrated
interference contrast C(T ) [red points, Eq. (5.42)] and relative number of evaluated counts (blue
diamonds) as a function of the maximal detection time difference for a two-photon correlation in
different output ports of the NPBS. By post-selecting on short detection time differences, the inter-
ference contrast can be greatly enhanced. All statistical error bars are smaller than the respective
symbols. The data in a) and b) are shown for a coincidence interval of 600 ns (cf. Fig. 5.11).

in Fig. 5.12. The ensemble average of the photonic wave packet (Fig. 5.12a) corresponds to
the measured arrival-time histogram shown in Fig. 5.11a. The calculated joint-detection
probabilities (Fig. 5.12b) yield an interference contrast of 75 %, which is higher than what
is experimentally observed. Nevertheless, although the calculations are based on simplified
assumptions, for example with respect to the motion of the atoms (see Appendix C),
the result exhibits good qualitative agreement with the measured data (Fig. 5.11b). We
therefore conclude, that the finite temperature of the atom is the major contribution to
the non-perfect interference contrast.

In accordance with the theoretical expectation, the number of correlations between detectors
in different output ports of the NPBS and with identical polarization is almost zero for a
small time interval around τ = 0 (Fig. 5.13a). For larger intervals the integrated contrast is
reduced, as fluctuations in the temporal modes as well as possible frequency differences [94]
between the photons play a more significant role (red data points in Fig. 5.13a). Similar to
the definition of the contrast in Eq. (5.21), an integrated contrast with limited bounds is
defined:

C(T ) = 1−

∫ T
−T P

(2)
‖ (τ)dτ∫ T

−T P
(2)
⊥ (τ)dτ

. (5.42)

The symmetric integration limit T defines a coincidence time window within which events
are considered for evaluating the interference contrast. Figure 5.13b shows the integrated
contrast C(T ) as a function of the time window T . By reducing the width of the time
window it is possible to increase the interference contrast to almost unity. For time
differences shorter than 20 ns, the contrast is 98.9 %. This proves that the Bell-state
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analyzer is well aligned and that each cavity system emits true single photons. At the
same time, the number of events contributing to the evaluation of the contrast naturally
decreases.

The dependence of the interference contrast on both, the evaluation interval (cf. Fig. 5.11)
and the detection time difference is shown in Fig. 5.14.

The dependence of the contrast on the detection time difference leads to a strategy to
increase the teleportation fidelity. Using the detection time difference between two photons
as an additional heralding condition results in a dramatic increase of the interference
contrast, and consequently of the teleportation fidelity (see section 5.3.2). The reduced
number of events contributing to the Bell-state measurement then leads to a decreased
efficiency of the teleportation protocol.

5.3.7. Teleportation results

After we analyzed the interference properties of the photons, and thereby the quality of
the optical Bell-state measurement, we now turn to the discussion of the results of the
teleportation experiment.

The integrated arrival-time histogram of the photons used in the Bell-state measurement
is shown in Fig. 5.11a. We evaluate photon correlations in the interval from 0 to 0.6 µs.
Detection of a correlation that corresponds to the |Ψ−〉 state heralds a successful state
transfer and projects atom B directly onto the state of atom A. For the time being, we
apply no additional heralding condition by setting no restriction on the detection time
difference within the evaluation interval.

5.3.7.1. Efficiency

We can only detect two of the four equally probable Bell states and do not apply an inverse
unitary rotation that would be needed in case of a |Ψ+〉 event. The efficiency of our scheme,
conditioned on a |Ψ−〉 detection, is thus intrinsically limited to 1/4. The relevant factors
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Quantity Value Meaning

ηA 0.39 Photon generation efficiency at node A.
ηB 0.25 Photon generation efficiency at node B.
TA 0.62 Probability for a photon from node A to be transmitted to a

detector in the Bell-state analyzer.
TB 0.24 Probability for a photon from node B to be transmitted to a

detector in the Bell-state analyzer. Includes additional NPBS and
one additional fiber compared to TA.

εD 0.55 Quantum efficiencies of the single-photon detectors.
Tout 0.9 Outcoupling efficiency of the cavities into one single mode.

Table 5.2.: Efficiencies of the individual steps involved in the teleportation experiment.

yielding the teleportation efficiency are given in Table 5.2. Tout is the outcoupling efficiency
of the cavities into one single free-space mode, TA/B is the probability for a photon from

node A/B to be transmitted to the Bell-state analyzer and εD is the quantum efficiency
of the single-photon detectors. The probability to detect an intracavity photon in the
Bell-state analyzer is then given by P det

A/B = ToutTA/Bε
D for node A and B, respectively.

With the photon generation efficiencies ηA and ηB, the probability to register a photon
in one of the detectors per photon-production attempt becomes ξA = ηAP

det
A = 0.12 and

ξB = ηBP
det
B = 0.03, respectively. The probability for a detected two-photon correlation

is then ξAξB = 0.36 %. Consequently, the probability to register a |Ψ−〉 Bell state is
1
4ξAξB = 0.09 %. The probability to detect a dark count in one of the detectors within
the evaluation interval of 0.6 µs is ∼ 10−5. The probability of a dark count together with
a single photon from either of the two atoms to trigger a |Ψ−〉 event is on the order of
10−6. As this number is three orders of magnitude smaller than the success probability of
the teleportation protocol, the contribution of dark counts to the result of the Bell-state
measurement does not play a role.

The experiment is repeated at a rate of 10 kHz. When a single atom is trapped in each of
the cavities, the rate of teleportation events is 10 per second. The duty cycle (the fraction
of time during which a single atom is trapped in both systems) is approximately 0.25,
averaged over the whole measurement time of 60 hours. This results in an effective rate
of heralded teleportation events of ∼ 2 per second. Including state preparation of qubit
A (efficiency 73 %, see section 5.3.4) and detection of state B (efficiency 2.4 %, including
generation of the mapping photon and its detection), we find the rate of evaluated events
for the tomography to be 0.6 per minute. The contribution of dark counts during state
detection is again negligible.

5.3.7.2. Fidelity

In order to characterize the fidelity of the teleportation protocol, we perform complete
quantum process tomography (see section 3.3). For this purpose, we use a set of six states
{|Bi〉} = {|↓〉 , |↑〉 , |↓x〉 , |↑x〉 , |↓y〉 , |↑y〉} forming three mutually unbiased bases as input
states at node A. For each input state, quantum state tomography of the corresponding
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Input state Fidelity (%)

|↓〉 74.5± 2.6

|↑〉 72.3± 2.8

|↓y〉 = 1√
2

(|↓〉+ i |↑〉) 73.0± 3.0

|↑y〉 = 1√
2

(|↓〉 − i |↑〉) 75.0± 3.0

|↓x〉 = 1√
2

(|↓〉+ |↑〉) 88.6± 2.3

|↑x〉 = 1√
2

(|↓〉 − |↑〉) 90.2± 2.5

Average 78.9± 1.1
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˃y

˃x
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Figure 5.15.: Quantum process tomography of the teleportation channel. The table
shows the individual state fidelities of node B after teleportation, for six mutually unbiased input
states of node A. The quoted errors are the statistical standard error. Right: Visualization of the
process in Stokes space. The size of the colored ellipsoids represents the statistical standard error.

output state at node B after teleportation conditioned on a |Ψ−〉 detection in the Bell-state
measurement is performed. The resulting state fidelities with respect to the six different
input states which are assumed to be ideal, 〈Bi| ρB′ |Bi〉, are listed in the table in Fig. 5.15.
We find for the average state fidelity F = (78.9 ± 1.1) %, a value that is more than
ten standard deviations above the threshold of 2/3 that could be achieved by classical
means [101]. The measured fidelity includes imperfections during state preparation and
readout of node A, and the atom-to-photon state mapping employed for state readout at
node B, and is therefore a lower bound to the fidelity of the teleportation itself (section
5.3.2). It can clearly be seen that the fidelities for the input states |↓x〉 and |↑x〉 are
significantly higher than for the remaining four states, as was discussed in section 5.3.2.

To perform process tomography on the teleportation channel, we take the output density
matrices of all six input states {|Bi〉} into account. The process matrix is reconstructed
with respect to the Pauli operators σi using the maximum-likelihood technique. We find
that the underlying process is not trace-preserving. Therefore, the results from section
3.3.2 are used to compute the fidelity. The fact that the tomography yields a non-trace-
preserving process will be discussed in section 5.3.7.4. The process fidelity is found to be
Fproc = (68.6± 1.0) %. From this value, the average state fidelity can be computed using
Eq. (3.15) to be (79.1±1.1) %. This value agrees with the average state fidelity obtained from
the individual state fidelities and therefore proves the quality of the maximum-likelihood
fit. Figure 5.15 shows the effect of the process on all possible input states in Stokes space.
The reconstructed sphere is obtained using the process matrix, which was calculated using
the maximum-likelihood approach. The aforementioned differences between the states
{|↓x〉 , |↑x〉} and {|↓〉 , |↑〉 , |↓y〉 , |↑y〉} results in the ellipticity of the sphere.

The measured overall fidelity depends on the quality of the individual steps employed in the
protocol. The interference contrast is C = 64 % (section 5.3.6). The fidelity of the entangled
state is Fent = 89 % and the fidelity of the state preparation of atom A is FA = 95 %
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(section 5.3.4). According to the discussion in section 5.3.2, the expected teleportation
fidelity is F = 79.2 %. This value is in excellent agreement with the experimentally obtained
fidelity.

5.3.7.3. Time-resolved Bell-state measurement

As was discussed in section 5.3.6, the time-resolved Bell-state measurement allows us to
implement an additional heralding condition by using only correlations between photons
with detection-time differences that do not exceed a certain value. For short detection-time
differences, the interference contrast increases (see Fig. 5.13). Because the achievable
average teleportation fidelity directly depends on the contrast, see Eq. (5.39), the fidelity
is consequently also increased. For example, reducing the coincidence time window to
80 ns increases the contrast to 92.8 % and the average fidelity of the teleported states to
F = (88.0± 1.5) %. At the same time, the efficiency is reduced to 0.04 %. Correspondingly,
the reconstructed Bloch sphere shown in Fig. 5.16a has an increased volume compared
with the one shown in Fig. 5.15. Figure 5.16b shows the process matrix as an alternative
representation of the teleportation process. The dominant element is χ00 = 0.652 and
proves the good preservation of coherence during the protocol. The non-trace-preservation
of the process results in the trace of the matrix being smaller than 1: Tr[χ] = 0.792. The
value of of χ00 corresponds to a process fidelity of the non-trace-preserving process of
Fproc = χ00/Tr[χ] = 82.3 % [Eq. (3.19)]. The calculated average state fidelity obtained
from Fproc and Eq. (3.15) is 88.2 % and agrees with the measured average state fidelity F .

In accordance with the model for the teleportation fidelity derived in section 5.3.2, the

a) b)˃
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Figure 5.16.: Quantum process tomography of the teleportation channel with temporal
heralding. a) Visualization of the process in Stokes space. The size of the colored ellipsoids
represents the statistical standard error. b) Absolute values of the reconstructed process matrix χ.
The dashed bar corresponds to the matrix of the ideal process (χ00 = 1).
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Figure 5.17.: Teleportation fidelity as a function of the interference contrast. Increas-
ing the contrast by using the time-resolved Bell-state measurement increases the fidelity of the
teleportation protocol. Black triangles are measured average fidelities for the two input states |↓x〉
and |↑x〉. The blue diamonds are averages over the other four input states |↓〉 , |↑〉 , |↓y〉, and |↑y〉.
The red points represent the mean fidelity averaged over all six input states. The lines are the
theoretical expectations according to the model presented in section 5.3.2.

relation between the fidelity and the contrast depends on the input state. Figure 5.17
shows the average fidelity for the states {|↓〉 , |↑〉 , |↓y〉 , |↑y〉} (blue), the average fidelity
for the states {|↓x〉 , |↑x〉} (black) and the average for all six input states (red). The lines
correspond to the theoretical prediction according to Eq. (5.37), Eq. (5.38) and Eq. (5.39)
with the independently measured values Fent = 89 % and FA = 95 % (see section 5.3.4).
Without a free parameter, the model exhibits excellent agreement with the measured data.

The second type of correlations that can be identified with the Bell-state analyzer is the
|Ψ+〉 state. It does not, however, project the receiver atom to the state of the sender
atom |ϕ〉, but induces a unitary rotation σx [see Eq. (5.12)]. To complete the teleportation
process, we would have to reverse this rotation by applying the inverse unitary operation.
In our experiment, this step is missing. Nevertheless, we can compute the fidelity with
respect to the states {σx |Bi〉}. This gives an upper bound for the teleportation fidelity
via |Ψ+〉. Conditioned on a |Ψ+〉 correlation in the Bell-state measurement, we find an
average state fidelity of F = (82.4 ± 1.1) %, which is slightly higher than the value we
obtain for |Ψ−〉. Applying the additional heralding condition by reducing the coincidence
window to 80 ns increases the fidelity to (91.2± 1.2) %. The reconstructed Bloch sphere
and the process matrix for this case are shown in Fig. 5.18. The missing local operation
σx manifests itself in a rotation of the reconstructed Bloch sphere by π around the axis
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Figure 5.18.: Quantum process tomography of the teleportation channel with temporal
heralding, conditioned on the detection of a |Ψ+〉 Bell state. a) Visualization of the process
in Stokes space. The unitary operation σx, corresponding to a rotation by π around the axis defined
by the states |↓x〉 and |↑x〉, is clearly visible. The size of the colored ellipsoids represents the
statistical standard error. b) Absolute values of the reconstructed process matrix χ. The dashed
bar corresponds to the matrix element of the ideal process including the unitary operation σx
(χ11 = 1).

defined by the states |↓x〉 and |↑x〉. The dominant element of the reconstructed process
matrix is χ11 as expected from Eq. (3.3).

5.3.7.4. Non-trace-preservation of the process

As was already mentioned in the discussion of the tomography results, we find the telepor-
tation process to be non-trace-preserving. From the process matrix χ that we obtain for the
measurement shown in Fig. 5.15, the trace is Tr[χ] = 0.79 < 1. Following the theoretical
treatment in section 3.3.2, the operator P defined in Eq. (3.17) can be used to characterize
a non-trace-preserving process. For the aforementioned process matrix χ this operator
reads

P =

(
0.801 −0.184 + 0.094i

−0.184− 0.094i 0.785

)
. (5.43)

This matrix is Hermitian and has the eigenvalues λ1 = 1 and λ2 = 0.59, with corresponding
eigenvectors |λ1〉 and |λ2〉. The eigenvectors are illustrated in Stokes space in Fig. 5.19a.
They lie on the equator of the unit Bloch sphere and correspond to linearly polarized
photonic states that are rotated with respect to the states H and V by 14◦. According to
the theoretical treatment in section 3.3.2, input states of the quantum process, i.e. states
initially prepared at node A, that are equal to |λ1〉 or |λ2〉 are teleported with different
probabilities, λ1 and λ2, respectively. Input states that are superpositions of |λ1〉 and |λ2〉
are shifted towards the eigenstate with the larger eigenvalue λ1. The eigenstates coincide
to a good approximation with the states |↑x〉 and |↓x〉. This is the reason for the fact that
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Figure 5.19.: Non-trace preservation of the teleportation process. a) The two eigenstates
|λ1〉 , |λ2〉 of the matrix P from Eq. (5.43) are shown in Stokes space (blue spheres). b) Bloch sphere
from Fig. 5.16 viewed along the z-axis. It can clearly be seen that the states {|↓〉 , |↑〉 , |↓y〉 , |↑y〉}
are shifted towards the state |λ1〉.

the reconstructed states corresponding to the input states {|↓〉 , |↑〉 , |↓y〉 , |↑y〉} are shifted
towards the state |↑x〉 (see Fig. 5.15-5.18 and Fig. 5.19b).

There are several possible reasons that can explain that the overall process does not preserve
the trace. It could for example be some optical elements that have a slight polarizing
effect. Another possibility is birefringence of the cavities. This effect would lead to a
dependence of the resonance frequency of the cavity on the polarization of the mode, and
results in different photon generation efficiencies for different polarizations. If, for example,
the two eigenmodes of the birefringent cavity coincide with the polarization states H and
V , and the frequency of the control field matches the resonance frequency of the mode
corresponding to V -polarization, the generation efficiency of V -polarized photons is larger
than the efficiency of H-polarized photons. In this case, the atom-photon mapping would
distort the assignment between atomic and photonic qubits (Fig. B.2 in Appendix B) in
such a way, that the qubit states are shifted towards |↑x〉. At node A, a birefringent
resonator would therefore distort the state to be teleported during the atom-to-photon
mapping process, which is used to implement the optical Bell-state measurement. However,
the birefringence of the cavity of node A was measured and the effect was found to be
small compared to the linewidth of the cavity [59]. Due to the aforementioned effect on
the atom-to-photon mapping, birefringence of the cavity at node B would also affect the
generated atom-photon entangled state, as well as the atom-to-photon state mapping
during readout of the receiver qubit at node B. This in turn would lead to a distortion of
the measured teleported states. A detailed quantitative analysis of the birefringence of this
resonator might be of interest for future investigations.





6. Summary and outlook

In this thesis, the faithful transfer of quantum information between two single atoms at a
distance of 21 m is demonstrated using the complementary methods of direct quantum state
transfer and quantum teleportation. Each atom is trapped at the center of a high-finesse
optical cavity, resulting in a highly efficient interface between light and matter. The two
atom-cavity systems are located in different laboratories and are operated independently
of one another. In the first part of the thesis, the light-matter interface is exploited to
realize a direct quantum state transfer using single photons as information carriers. Our
results constitute the first direct coupling of two distant single quantum emitters via
single photons. In the second part, quantum teleportation of arbitrary qubits between two
distant atoms is demonstrated. The direct transfer is the conceptually most simple way to
communicate between material qubits and is in principle deterministic. This approach will
be advantageous for realizations of quantum networks on the meter to kilometer scale, where
the direct transport of material qubits and the state transfer using microwave photons would
be a formidable challenge. Teleportation on the other hand, requires the implementation
of a more sophisticated protocol, but has the advantage that it is intrinsically heralded
and can be implemented in quantum repeater architectures, which allow for quantum
communication on a global scale. The distance between the communication parties of 21 m
represents the current record for matter-matter teleportation.

In the following, the two experiments are compared with respect to efficiency and fidelity
of the state transfer. Moreover, potential improvements of our setup and prospects of
cavity-based quantum networks are discussed.

For the direct transfer, the probability to successfully communicate a state between the
two atoms is 0.2 %. One limitation of the efficiency in the current implementation is the
photon generation efficiency at the sender site, which is deliberately kept low to suppress
off-resonant excitations to nearby hyperfine states. This problem is not present for qubits
encoded in the F = 2 manifold and could be circumvented by a local transfer of the qubit
from F = 1 to the F = 2 manifold using optical Raman or microwave pulses. Since single-
photon generation efficiencies of 60 % have been observed in our setup [92], an increase
of the transfer efficiency by one order of magnitude seems feasible. For the teleportation
experiment, the measured efficiency is 0.1 %. Compared to previous realizations with single
atoms in free space, the use of cavities boosts the overall efficiency by almost five orders of
magnitude [132]. It is now only two orders of magnitude away from the maximum value of
50 % that can be achieved with linear-optics schemes [145]. In our experiment, the efficiency
is not predominantly limited by the single-photon generation and collection efficiency, but
by the requirement to transmit and detect two photons simultaneously, which is inherent in
the optical Bell-state measurement. Taking the experimental rates of 5 kHz for the direct
transfer and 10 kHz for teleportation into account, both schemes would allow for a possible
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rate of 10 transferred qubits per second in the current implementation. Our experiments
puts quantum communication between material qubits into a regime where the time needed
for a successful transmission event (about 0.1 s, corresponding to the transfer rate of 10 Hz)
is shorter than coherence times observed in single atoms [152]. This is an indispensable
requirement in quantum repeater architectures to maintain coherence in the individual
nodes while long-distance entanglement is built up using a repeat-until-success scheme.

One limitation of the efficiencies in the described experiments is the moderate atom-cavity
coupling strength g. Efficiencies approaching unity for the atom-to-photon and the photon-
to-atom state mapping processes may be accomplished when the cavity mode volume is
decreased. This can be achieved for example by using fiber-based optical cavities [153,154],
which are currently an active and exciting field of research. Moreover, the efficiency of
the storage process, and consequently the efficiency of the direct state transfer, could be
increased by impedance matching [148]. By elaborately selecting the temporal shape of
the control laser, the amount of light reflected off the cavity can be further minimized. In
addition, trapping an ensemble of atoms in the cavity would allow us to employ collective
effects to dramatically increase the storage efficiency [155]. The last approach, however,
would dismiss the advantages of single-particle network nodes.

We analyze both, direct transfer and teleportation, using quantum process tomography.
Fidelities exceeding the classical threshold of 2/3 prove the quantum nature of the underlying
processes. The fidelity of the direct transfer was found to be 84 %, while for the teleportation
we achieve a fidelity of 79 %. In both experiments, non-perfect state preparation of the
atoms limits the achievable fidelity. In the teleportation experiment, non-perfect interference
of the photons is an additional source of error. By implementing an additional heralding
condition based on a time-resolved Bell-state measurement, the influence of this effect can be
minimized. We achieve a fidelity of up to 88 %, while reducing the efficiency to 0.04 %. The
fidelities of both schemes could be enhanced by improving optical pumping, which is used to
initialize the atoms for photon storage and entanglement generation. Additionally, cooling
the atoms to their motional ground state [54] would minimize variations of the atom-cavity
coupling strength and of the Stark shift. As this would improve the indistinguishability of
the generated single photons, the teleportation fidelity would increase.

The aforementioned increase of the teleportation fidelity by using a time-resolved Bell-
state measurement is a universal technique and can be employed in any optical Bell-state
measurement with sufficient temporal resolution. Using vSTIRAP for photon production
allows us to tune the frequency of the emitted photons and consequently allows for the
creation of frequency-matched photons even though the transition frequencies at the
two nodes are different, for example due to different environmental influences. In our
setup, the atomic transitions differ by six atomic linewidths due to the different Stark
shifts induced by the dipole traps. This demonstrates the ability to teleport a quantum
state between non-identical memories and opens up new perspectives for solid-state-based
approaches to quantum networks. These systems, such as quantum dots or nitrogen-vacancy
centers in diamond, generally suffer from different transition frequencies of sender and
receiver [156–159].

The current implementation of the direct state transfer does not include a herald. For our
system based on single-atom cavity nodes, however, the implementation is conceptually
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straightforward [160]. The successful storage process is associated with a change of
the atomic hyperfine state. The depopulation of the initial state can then be probed
spectroscopically, using cavity-assisted hyperfine state detection [64, 161, 162]. As the
splitting between the two hyperfine ground states in 87Rb is large, optical probing of the
F = 1 population on the closed transition F = 1↔ F ′ = 0 should leave the qubit stored
in F = 2 unaltered. The main challenge is to detect the population in F = 1 with high
fidelity before off-resonant excitations lead to decay into F = 2, that is, with only a few
scattered photons. As numerical simulations show, the implementation is challenging with
our cavities. It is, however, certainly feasible with current cavity technology [162].

The efficiency of our current implementation of the Bell-state measurement used for
teleportation is limited. It is, however, possible to perform a complete and deterministic
Bell-state measurement in our system [160, 163]. This requires the implementation of a
deterministic controlled-NOT gate between the sender atom and the photonic part of the
entangled Bell pair. The protocol could be implemented as follows [160]: Two atoms are
trapped simultaneously in the cavity of the sender. The qubit to be teleported is stored in
one of the atoms. Entanglement is generated between the second atom and the atom of
the receiver [45,164]. The interaction of the two atoms with the cavity mode can now be
employed to perform the controlled-NOT gate between the atoms, by mapping the state of
the first atom onto the second atom [165]. Subsequent detection of the state of the second
atom [64,161,162] completes the Bell-state measurement. As this scheme discriminates all
four Bell states, it is in principle deterministic. The proposed protocol requires the ability
to trap and individually address two single atoms in one cavity.

Our results demonstrate that cavity-based systems are very promising candidates for the
realization of quantum networks with arbitrary topologies. The current network could be
extended to more complex geometries with more than two nodes by using only classical
optics. The direct state transfer has also been exploited to generate entanglement between
two distant single atoms. By creating entanglement between an atom and a photon
as a first step, and then transferring the photon to and storing it in the distant atom,
entanglement between the two atoms can be generated [45]. The demonstrated optical
Bell-state measurement in the teleportation experiment can also be applied to perform
entanglement swapping [47, 103, 164] as required for the experimental realization of a
quantum repeater. The use of cavities and the resulting success probabilities offer a clear
perspective for scalability, thus paving the way towards large-scale quantum networks.
Moreover, our approach to quantum teleportation allows for the implementation of a
complete and deterministic Bell-state measurement that would be an important step
towards the realization of a quantum repeater for long-distance quantum communication.





A. Level structure of the 87Rb D1 and D2

line

F=1

F’=1

F=2

52S1/2

52P1/2

52P3/2

F’=3
F’=2

F’=0

F’=1
F’=2

D
   (

78
0n

m
)

D
   (

79
5n

m
)

6.835 GHz

814.5 MHz

72.2 MHz
156.9 MHz
266.7 MHz

2

1

mF-2 -1 0 1 32-3

Figure A.1.: Detailed level structure of the 87Rb D1and D2 line [100]. The shown structure
is not to scale.
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B. Atomic qubit and photonic polarization

A σ−(σ+) transition is defined as a transition that decreases (increases) the magnetic
quantum number mF by 1 upon absorption of a photon. A π transition leaves mF unchanged.
The quantization axis of the system is chosen to be the cavity axis. π transitions can
be driven by shining in light along a direction that is perpendicular to the cavity axis,
and linearly polarized along that axis. The helicity of photons propagating along the
quantization axis is defined with respect to the opposite direction of the beam propagation.
Right-handed polarization (R) rotates clockwise, while left-handed polarization (L) rotates
counter-clockwise. R(L) polarized light drives σ−(σ+) transitions.

σ - π

mF 0

mF’ -1 0 1

σ+

σ- σ+

π

a) b)

Figure B.1.: Definition of the quantization axis. a) The polarization components σ± are
defined with respect to the atomic transition. b) Polarization components in the laboratory frame
of reference.

Atomic qubit Composition Photon polarization

|↓〉 |R〉 (|�〉)
|↑〉 |L〉 (|	〉)
|↓x〉 1√

2
(|↓〉+ |↑〉) |H〉 = 1√

2
(|�〉+ |	〉)

|↑x〉 1√
2

(|↓〉 − |↑〉) |V 〉 = 1√
2

(|�〉 − |	〉)
|↓y〉 1√

2
(|↓〉+ i |↑〉) |D〉 = 1√

2
(|�〉+ i |	〉)

|↑y〉 1√
2

(|↓〉 − i |↑〉) |A〉 = 1√
2

(|�〉 − i |	〉)

Table B.1.: Definition of atomic and photonic qubits. The photonic polarization in the right
column is the polarization state of a photon that is emitted from an atom in the corresponding
state. Equivalently, if a properly initialized atom absorbs a photon with a fixed polarization, the
final atomic state is the corresponding one from the left column.
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Figure B.2 shows the equivalence between atomic spin states and photonic polarization
states. Bloch and Poincaré sphere are treated equivalently.
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Figure B.2.: Correspondence between the Bloch sphere (left) and the Poincaré sphere
(right). Atom-photon mapping transfers atomic onto photonic qubits. Photon-atom mapping does
the reverse process (cf. Tab. B.1).



C. Numerical simulations

C.1. Dynamics of the atom-cavity system

The temporal evolution of the atom-cavity state ρ(t) is governed by the master equation [166]

d

dt
ρ(t) = − i

~
[H(t),ρ(t)] + L [ρ(t)] . (C.1)

The first term of the right-hand side describes the coherent evolution of the state according
to the Hamilton operator H(t). The coupling of the atomic states and of the cavity field to
the environment is described by the Lindblad operator L. The Hamiltonian is comprised
of a stationary and an interaction part: H = Hstat +Hint. We transform the system to
a frame that rotates with the frequency of the control laser ωL and neglect fast-rotating
terms (rotating-wave-approximation). In the rotating frame, the energy of the atomic
ground states are raised by the laser frequency.

The stationary Hamiltonian contains an atomic and a cavity part:

Hstat = Hatom +Hcavity =
∑
g,e

(∆L |g〉 〈g|+ ∆e |e〉 〈e|) + ∆LCa
†a. (C.2)

The atomic part is a sum over all ground states |g〉 and excited states |e〉. ∆L = ω0 − ωL
is the detuning of the laser with respect to an excited state with frequency ω0 that serves
as the reference level with zero energy. ∆e = ω0 − ωe is the frequency of the excited state
ωe with respect to the reference state. ∆LC = ωC − ωL is the detuning of the cavity field
with respect to the rotating frame. If the control laser is in two-photon resonance with the
cavity, it is ∆LC = 0.

The interaction part describes the coupling between atomic states (induced by a control
laser with Rabi frequency Ω) and the coupling between the atom and the cavity field
(induced by the atom-cavity coupling g):

Hint =
∑
g,e

gge |g〉 〈e| a† +
1

2
Ωge |g〉 〈e|+ H.c. (C.3)

The coupling strengths gge and Ωge depend on the matrix element of the respective transition
|g〉 ↔ |e〉 [100]. The atom-cavity coupling on the F = 1↔ F ′ = 1 transition of the D2 line
is g0/2π = 5.1 MHz. The cavity couples atomic states with mF → mF ± 1 (σ± transitions).
Because the atom is not in its motional ground state, it moves considerably along the cavity
axis. This is taken into account by assuming a reduced coupling constant g = 0.6g0 [51].
The control field with Rabi frequency Ω drives π-transitions from the ground states with
F = 2 to the excited states.
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C.2 Monte Carlo simulation of two-photon interference 91

The Lindblad operator L describes the decay of excited atomic and cavity states:

L [ρ(t)] =
∑
ge

γeg (2 |g〉 〈e| ρ |e〉 〈g| − |e〉 〈e| ρ− ρ |e〉 |e〉)

+ κ
(

2aρa† − a†aρ− ρa†a
)
.

(C.4)

The master equation is solved in Python using QuTiP [167]. To minimize computation
time, the Fock space of the cavity is restricted to maximally one excitation.

The simulated photonic wave packets in Fig. 4.6a are computed for different initial atomic
states. Figure C.1 shows the atomic level structure used in the calculation. A detailed
analysis of the Stark shifts induced by the π-polarized light of the FORT [168], results
in differential shifts of excited states with different quantum numbers F ′ and mF ′ . The
simulation starts with an empty cavity and the atom in state |2,mF 〉. A control pulse with
a sin2-shape is switched on. After 800 ns it settles at a Rabi frequency of Ω/2π = 14 MHz
on the transition |2,0〉 ↔ |1,0〉′. Control and cavity field are both 20 MHz blue detuned
from the excited atomic state |1,± 1〉′. All atomic ground states and the excited states of
the F ′ = 1 and F ′ = 2 manifolds are considered in the simulation. Figure 4.6a shows the
expectation value of the number operator of the cavity field

〈
a†a
〉

as a function of time.
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Figure C.1.: Atomic level structure used in
the simulation in section 4.2.4. The different
energies of the Zeeman states are caused by differ-
ential Stark shifts induced by the dipole trap.

C.2. Monte Carlo simulation of two-photon interference

A spectroscopic measurement of the linewidth of a single atom inside the optical dipole trap
yields a Lorentzian shaped profile with a full width at half maximum of 14 MHz. Given
the natural linewidth of 6 MHz, this means that the atomic resonance is inhomogeneously
broadened by 8 MHz. We thus assume a Lorentz distribution of Stark shifts for the atom
in the dipole trap:

f(∆) =
1

wπ
(

1 + (∆−∆0)2

w2

) , (C.5)

with a width 2w/2π = 8 MHz around the mean value ∆0/2π = 20 MHz. Photonic wave
packets for different detunings ∆ = ∆L are precomputed by solving the master equation.
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We assume the control field to be in two-photon resonance with the cavity field (∆LC = 0).
The initial condition of the system is an empty cavity and the atomic state is |2,+ 1〉. The
control pulse has a sin2-shape and settles after 700 ns at a Rabi frequency of 25 MHz on
the transition |2,0〉 ↔ |1,0〉′. All atomic ground states and the excited states of the F ′ = 1
manifold are considered. Three examples of simulated photons are shown in Fig. 5.12a.
The ensemble average is computed using a Monte Carlo method. Random numbers are
generated from the Lorentz distribution f(∆). Each number corresponds to a detuning
value. By summing over many photons according to the random detunings, the ensemble
average is obtained.

The simulation of two-photon interference is performed by repeating the following steps:

� Generate two independent random numbers from the Lorentz distribution f(∆).

� Compute G
(2)
‖ and G

(2)
⊥ [Eq. (5.18) and Eq. (5.19)] for a pair of precomputed photonic

wave packets for Stark shifts ∆ corresponding to the random numbers.

� Compute P
(2)
⊥ and P

(2)
‖ by solving the integral of Eq. (5.17) numerically.

For the computation of G
(2)
‖ and G

(2)
⊥ , only the interval between 0 and 0.6 µs of the photonic

wave packets, as in the evaluation of the measured data, is taken into account (cf. 5.12a).
By repeating these steps several times (10000 times for the result shown in Fig. 5.12), the
joint-detection probabilities as a function of the detection-time difference in Fig. 5.12b are
obtained.

It must be noted, that the used model is very simple. It assumes, that the atom does not
move during the process of single-photon generation, i.e. the coupling g and the detuning
(Stark shift) are assumed to be constant during vSTIRAP. A more rigorous model would
have to include a temporal varying coupling and detuning. Moreover, the model disregards
any influence of frequency fluctuations as well as frequency differences of the photons,
which could be caused by non-adiabatic corrections in the photon generation process [93].
Nevertheless, the simple model exhibits good qualitative agreement with the measurement
result.
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[57] M. Prevedelli, F. T. G. M and T. W. Hänsch. Phase Locking of Grating Tuned Diode
Lasers. Appl Phys B 60, S241–S248 (1995).

[58] N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke and R.-H. Rinkleff. A simple
scheme for precise relative frequency stabilization of lasers. Applied Physics B: Lasers



Bibliography 97

and Optics 88, 21–28 (2007).

[59] H. P. Specht. Einzelatom-Quantenspeicher für Polarisations-Qubits. Ph.D. Thesis,
Max-Planck-Institut für Quantenoptik / Technische Universität München (2010).

[60] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley
and H. Ward. Laser phase and frequency stabilization using an optical resonator.
Applied Physics B: Lasers and Optics 31, 97–105 (1983).

[61] M. Hijlkema. Single photons from a single atom trapped in a high-finesse optical
cavity. Ph.D. Thesis, Max-Planck-Institut für Quantenoptik / Technische Universität
München (2007).

[62] W. Rosenfeld, J. Volz, M. Weber and H. Weinfurter. Coherence of a qubit stored
in Zeeman levels of a single optically trapped atom. Physical Review A 84, 022343
(2011).

[63] C. Guhl. Zustandsdetektion einzelner Atome in einem optischen Resonator ho-
her Finesse. Diploma Thesis, Max-Planck-Institut für Quantenoptik / Technische
Universität München (2009).
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an Optical Fiber Cavity. Physical Review Letters 110, 043003 (2013).

[155] P. F. Herskind, A. Dantan, J. P. Marler, M. Albert and M. Drewsen. Realization
of collective strong coupling with ion Coulomb crystals in an optical cavity. Nature
Physics 5, 494–498 (2009).

[156] R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie and A. J. Shields.
Two-photon interference of the emission from electrically tunable remote quantum
dots. Nature Photonics 4, 632–635 (2010).

[157] R. Lettow, Y. L. a. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger and
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