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Abstract

In this thesis we consider continuous time GARCH models. Klüppelberg et al. (2004)
suggested a new approach to obtain a continuous time GARCH model based on a
discrete time GARCH model. We give an insight into some extensions of the continu-
ous time GARCH model and their properties. These models are the COGARCH(p, q)
model, the exponential COGARCH(p, q) model and asymmetric COGARCH models
like the continuous time GJR GARCH(1, 1) model. Furthermore, we introduce estima-
tion methods for the determination for the parameters of these models. A moment es-
timator method developed by Haug et al. (2007) and the pseudo-maximum likelihood
method of Maller et al. (2008) are discussed. We extended this method for the case of
a COGARCH(1, 1) process driven by a compound Poisson process with random time
points. Both the simulation methods of the different continuous time GARCH models
and the estimation methods of their parameters are implemented in R and summarized
in the package cogarch. We offer a detailed explanation of this R package and provide
several examples for their application in this thesis.
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Chapter 1

Introduction

In the field of financial time series the volatility of the price process is of great inter-
est. Due to future developments of the stock market, for example. In financial time
series the phenomenon of volatility clustering can be observed, i.e. extreme returns
are followed by other extreme returns. Over years, volatility was modeled under the
assumption of constant volatility. The development of discrete time models for chang-
ing volatility by Engle (1982) and Bollerslev (1986) was a milestone in the analysis of
financial time series. Engle (1982) developed the famous ARCH (autoregressive condi-
tionally heteroscedastic) model and Bollerslev (1986) introduced the generalization of
this model - the GARCH (generalized ARCH) model. Models with generalized autore-
gressive conditional heteroscedasticity provide the volatility by the previous values of
the process. The GARCH model captures the main characteristics of financial data, the
”stylized facts”.

Nowadays, nearly all data available can be recorded. Considering for example trad-
ing transactions, every single transaction is recorded. This growing amount of avail-
able data is called ”high-frequency-data”, as it is not recorded in fixed time intervals
only. Taking the data only at fixed time intervals neglects some of the information
which is available. In order to analyse and model this huge amount of data, which
can be unequally spaced in time, an extension from discrete time models to continu-
ous time models is necessary. Several attempts have been made to define a continuous
time GARCH model that covers the properties of the discrete time GARCH model.

A first approach to create a continuous time GARCH model goes back to Nel-
son (1990). He tried to extend the discrete-time model by making diffusion approx-
imations. In his paper, he tried to bridge the gap between continuous time nonlin-
ear stochastic differential systems and their relation with ARCH stochastic difference
equation systems. Discrete time GARCH models have only one source of uncertainty
(randomness), whereas stochastic volatility models like the model of Nelson (1990)
have two sources of uncertainty. Furthermore, the continuous time stochastic volatility
model of Barndorff-Nielsen and Shepard (2001) models the volatility with an Ornstein-
Uhlenbeck process driven by a Lévy process. Modelling jumps with this model is pos-
sible but it contains two independent stochastic processes.
The new approach of Klüppelberg et al. (2004) includes only one source of uncertainty.
The idea for the construction of their continuous time GARCH(1, 1) model (COGA-

1



2 CHAPTER 1. INTRODUCTION

RCH model) is to preserve the structure and the main characteristics of a discrete time
GARCH model. The COGARCH(1, 1) model is obtained with a discrete time GARCH
model and depends on a driving Lévy process. Brockwell et al. (2006) generalized this
model for 1 ≤ p ≤ q.

Another typical characteristic of financial time data is the so-called Leverage effect.
This means that volatility tends to increase after neagtive shocks and to decrease af-
ter positive ones. Like in the discrete time case, the COGARCH model cannot model
this phenomenon. Therefore, some extensions have been developed. Based on the dis-
crete time EGARCH model proposed by Nelson (1990), the exponential COGARCH
model has been introduced by Haug (2006). Furthermore, Ding et al. (1993) defined an
asymmetric continuous time GARCH model - the APARCH model.

Regarding the discrete time GARCH models, several packages for the analysis of
those models are provided by the R Core Team (2012). In this thesis, a new package,
called cogarch package, which can be used for the analysis of continuous GARCH mod-
els, is introduced.

Aim and Structure of this thesis

The aim of this thesis is to give an overview of the different continuous time GARCH
models and to explain and illustrate the implementation of the R package cogarch. In
the beginning we give an introduction on the theory of Lévy processes in Chapter 2,
which we will utilize in this thesis. Especially we will focus on the compound Pois-
son and the Variance Gamma process. The introduction of the continuous time process
developed by Klüppelberg et al. (2004) follows in Chapter 3. Using their approach,
it is possible to develop the continuous time GARCH model (COGARCH) based on
the discrete time GARCH model, developed by Bollerslev (1986). We summarize some
properties like stationarity and moments of this model. Furthermore, we consider two
examples of COGARCH(1, 1) processes - the first process driven by a compound Pois-
son process and the second one driven by a Variance Gamma process. In Chapter 3.1.4,
we give an insight in the extension of the COGARCH model to p, q > 1 introduced
by Brockwell et al. (2006). In Chapter 3.2, two different estimation methods are pro-
posed. First, the moment estimation method developed by Haug et al. (2007) is consid-
ered. The proposed estimation algorithm is basis of the corresponding function imple-
mented in R. We then give a detailed description of the pseudo-maximum-likelihood
(PML) method, which can be used for irregularly spaced time series. This method is
based on an approximation of the continuous time GARCH process by an embedded
sequence of discrete time GARCH series, which converge in probability to the continu-
ous time model in the Skorokhod metric. In Chapter 3.2.3, we extend the PML method
to a ”modified” PML method. This modified method can be applied to random time
points, e.g. the random jumptimes of a compound Poisson process. We conclude the
chapter about estimation methods with a simulation study in Chapter 3.3. In Chapter
4, we give an overview of the exponential COGARCH (ECOGARCH) model, devel-
oped by Haug (2006).We provide some examples in the end of this chapter for further
insights. Following, we summarize the approach for an asymmetric continuous time
GARCH model in Chapter 5. Lee (2010) developed such an asymmetric model - the
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continuous time APARCH model, which is based on a discrete time APARCH model.
The PML method for the (symmetric) continuous time GARCH model can be adjusted
to the (asymmetric) continuous GJR GARCH model as shown by Mayr (2013). Again,
the chapter is concluded by a small simulation study, see Chapter 5.2.3. In Chapter 6
we explain the implementation of our R package cogarch, see also the Appendix for the
documentation of each function. We explain the different simulation and estimation
functions. Furthermore, we give a small example how to use each of these functions.
In the last Chapter of this thesis, we use the asymmetric PML method to fit a GJR
GARCH(1, 1) model to the increments of windspeed data.



Chapter 2

Lévy Processes

For the construction of a continuous time version of the discrete time GARCH process
we will replace the innovations in the discrete time GARCH model with the increments
of a Lévy process. Therefore we start with a short introduction on some facts on Lévy
processes as a basis for this thesis.
The following chapter is based on Applebaum (2009). More details, examples and the
corresponding proofs can be found there. For further information on Lévy processes
Sato (1999) and Kyprianou (2006) can be recommended.

Definition 2.1 Let (Ω,F , P) be a probability space. A real-valued stochastic process L :=
(Lt)t≥0 is a Lévy process if

(L1) L0 = 0 a.s.,

(L2) L has independent increments: Lt − Ls is independent of {Lu : u ≤ s} for
0 ≤ s ≤ t < ∞,

(L3) L has stationary increments: Lt − Ls is equal in distribution to Lt−s for
0 ≤ s ≤ t < ∞,

(L4) L is stochastically continuous: lim
t→s

P(|Lt − Ls| > ε) = 0.

Some important examples of Lévy processes are the Brownian motion, the Pois-
son process and the compound Poisson process, which we describe in the following
examples. First we give an example of a standard Brownian motion.

Example 2.2 (Standard Brownian motion) (Applebaum (2009, Example 1.3.8))
A standard Brownian motion in R is a Lévy process B = (Bt)t≥0 for which,

(i) Bt ∼ N (0, t) for every t ≥ 0 and

(ii) B has continuous paths.

A sample path of a standard Brownian motion can be seen in Figure 2.1.
The compound Poisson processes uses a Poisson processes as a basis. A Possion pro-

cess is defined as follows.
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Figure 2.1: Standard Brownian Motion

Example 2.3 (Poisson process) (Applebaum (2009, Example 1.3.9))
A Possion process of intensity λ > 0 is a Lévy process N taking values in N0 wherein each
Nt ∼ π(λt)), with π(·) the Posisson distribution, so that we have

P(Nt = n) =
(λt)n

n!
e−λt,

for each n ∈N0.
The sample paths of N are clearly piecewise constant on finite intervals with jump discontinu-
ities of size 1 at each of the random times (Tn, n ∈ N), where T0 := 0 and Tn := inf{t ≥
0; Nt = n}. A sample path of a Poisson process with rate λ = 1 is displayed in Figure 2.2.

Now we are ready to continue with further details on the compound Poisson pro-
cess.

Example 2.4 (Compound Poisson process) (Applebaum (2009, Example 1.3.10))
We have a Poisson process N for t ≥ 0 and parameter λ > 0, cf. Example 2.3. If this process is
independent of an i.i.d. (independent and identically distributed) sequence of random variables
(Yi)i∈N, then a compound Poisson process L is defined as

Lt =
Nt

∑
i=1

Yi, t ≥ 0.

The compound Poisson process has jumps with random size instead of the constant jumps of
size 1 of a Poisson process.

In Figure 2.3 we simulated a sample path of a compound Poisson process with λ = 2
and normally distributed jumpsizes with µ = 0 and σ = 1. In Chapter 6 we describe
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Figure 2.2: Poisson Process with intensity λ = 1
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Figure 2.3: Compound Poisson process with λ = 2 and normally distributed jumpsizes
with µ = 0 and σ = 1 on the time interval [0, 10].

how such a simulation can be implemented in R. In order to simulate the process on
a random grid, we assume that the time intervals of the jumps are i.i.d. exponentially
distributed random variables with a specified rate.

Another example we are going to use is the Variance Gamma process, see also
Chapter 6.

Example 2.5 (Variance Gamma process)
Due to Madan et al. (1998, Section 2) a Variance Gamma process is obtained by evaluating
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Brownian motion with drift at a random time given by a Gamma process. Let a Brownian
motion with drift θ and variance σ be defined as

b(t, θ, σ) = θt + σB(t),

where B(t) is a standard Brownian motion.
The time change of the Brownian motion is done with respect to a Gamma process (Ht)t≥0 with
parameters a, b > 0, such that each of the i.i.d increments is Gamma distributed with density

fHt(x) =
bat

Γ(at)
xat−1e−bx,

for x ≥ 0, where Γ(·) denotes the Gamma function. Then the Variance Gamma process V :=
(Vt)t≥0 with parameters σ > 0, τ > 0 and θ ∈ R can be obtained by

Vt := θHt + σBHt , (2.1)

where (Bt)t≥0 is a standard Brownian motion and (Ht)t≥0 a Gamma process with parameters
a = 1/τ and b = 1/τ.
The characteristic function of V for t ≥ 0 is then given by

E(eiuVt) =

(
1− iuθτ +

1
2

σ2τu2
)−t/τ

, (2.2)

for u ∈ R. In Madan et al. (1998, Equation (13)) the Lévy measure νV has been defined as

νV(dx) =


µ2

n
τn

exp(− µn
τn |x|)
|x| dx, for x < 0,

µ2
p

τp

exp(− µp
τp |x|)
|x| dx, for x > 0,

(2.3)

with

µp =
1
2

√
θ2 +

2σ2

τ
+

θ

2
,

µn =
1
2

√
θ2 +

2σ2

τ
− θ

2
,

τp =

(
1
2

√
θ2 +

2σ2

τ
+

θ

2

)2

τ,

τn =

(
1
2

√
θ2 +

2σ2

τ
− θ

2

)2

τ.

Inserting µp, µn, τp and τn in (2.3) gives for x < 0

νV(x) =
1

τ|x| exp

− 1(
1
2

√
θ2 + 2σ2

τ − θ
2

)
τ

|x|

 dx
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=
1
τ︸︷︷︸

=:C

1
|x| exp

x

(√
1
4

θ2τ2 +
1
2

σ2τ − θτ

2

)−1

︸ ︷︷ ︸
=:G

 dx,

and for x > 0,

νV(x) =
1

τx
exp

− 1(
1
2

√
θ2 + 2σ2

τ + θ
2

)
τ

x

 dx

=
1
τ︸︷︷︸

=:C

1
x

exp

−x

(√
1
4

θ2τ2 +
1
2

σ2τ +
θτ

2

)−1

︸ ︷︷ ︸
=:M

 dx.

Thus, we can express the Lévy measure νV as

νV(dx) =

{
C exp(Gx)|x|−1dx, for x < 0,
C exp(−Mx)x−1dx, for x > 0,

(2.4)

with

C = 1/τ, G =

(√
1
4

θ2τ2 +
1
2

σ2τ − 1
2

θτ

)−1

and M =

(√
1
4

θ2τ2 +
1
2

σ2τ +
1
2

θτ

)−1

,

cf. Haug (2006, Example 1.1.7).
Furthermore the mean and the variance of V at time t ≥ 0 are given by

E(Vt) = θt and Var = (θ2τ + σ2)t. (2.5)

In Chapter 6 we are going to describe how to simulate a sample path of a Variance
Gamma process in more detail. For an example of a simulated sample path of a Vari-
ance Gamma process with parameters σ = 0.3, θ = −0.03 and τ = 0.5 see Figure
2.4.

Through the 1960s and 1970s Lévy processes have been referred to as processes with
stationary independent increments. Through a complete characterisation of infinitely di-
visible distributions, Lévy characterised the general class of processes with station-
ary independent increments in 1934. Later, Khintchine (1937) and Itô (1942) dealt with
Lévy’s original proof and provided further simplification1. We continue with further
details about the link between Lévy processes and infinitely divisible distributions,
and their definition.
Applebaum (2009) defines infinite divisibility in Chapter 1.2.2 as follows.

1Kyprianou (2006, Chapter 1.1)
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Figure 2.4: Variance Gamma process with σ = 0.3, θ = −0.03, τ = 0.5.

Definition 2.6 Let X be a real-valued random variable. We say that X has an infinitely di-
visible distribution if for each n ∈ N there exist i.i.d. random variables Y(n)

1 , . . . , Y(n)
n such

that
X d

= Y(n)
1 + · · ·+ Y(n)

n , (2.6)

where d
= denotes equality in distribution.

In addition we recall the definition of a characteristic function, as we will use it
below.

Definition 2.7 (Applebaum (2009, Ch. 1.1.6))
Let X be a random variable defined on (Ω,F , P) and taking values in R with the probability
law µX. Its characteristic function ϕX is defined by

ϕX(u) = E(eiuX) =
∫

Ω
eiuX(ω)P(dω) =

∫
R

eiuxµX(dx), (2.7)

for each u ∈ R.

According to Proposition 1.2.6 in Applebaum (2009) the following two statements
are equivalent:

– X is infinitely divisible, i.e. has an infinitely divisible distribution;

– ϕX has a nth root that is itself the characteristic function of a random variable, for
each n ∈ N. That is ϕX(u) = (ϕn(u))n where ϕn is the characteristic function of
a random variable.

In Applebaum (2009, Chapter 1.2.3) you can find some examples of infinitely di-
visible distributions: e.g. the Normal distribution, the Poisson distribution or the com-
pound Poisson distribution.
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Example 2.8 (Poisson random variables) (Applebaum (2009, Example 1.2.9))
Let us consider a random variable X taking values in n ∈N0 with

P(X = n) =
λn

n!
e−λ.

In this case we have E(X) = Var(X) = λ. The calculation of the characteristic function ϕX
yields

ϕX(u) = E(eiuX) =
∞

∑
n=0

eiun λn

n!
e−λ = e−λ

∞

∑
n=0

(λeiu)n

n!
= eλ(eiu−1) = (e

λ
n (e

iu−1))n. (2.8)

Which, considering Definition 2.6, implies that X is infinitely divisible with each Y(n)
k ∼ π(λ

n ),
for 1 ≤ k ≤ n, n ∈N and π(·) the Poisson distribution.

Considering a Lévy process L, we can re-write it as

Lt = Lt + L t
n
− L t

n
+ L 2t

n
∓ · · · − L (n−1)t

n
= L t

n
+ (L 2t

n
− L t

n
) + · · ·+ (Lt − L (n−1)t

n
). (2.9)

As Lt has stationary independent increments, it follows that the summands on the right
hand side of Equation 2.9 are i.i.d. random variables. Therefore we can conclude that
Lt has an infinitely divisible distribution for each t ≥ 0. So any Lévy process can be
associated with an infinitely divisible distribution.

But given an infinitely divisible distribution, we would like to know if it is pos-
sible to construct a Lévy process L, such that L1 has that distribution2. We will see
that by the Lévy-Khintchine formula for Lévy processes, or also called the Lévy-Khintchine
representation, it is possible to give a characterisation of every infinitely divisible distri-
bution through its characteristic function3. According to Applebaum (2009, Overview
and Theorem 1.3.3) any Lévy process has a specific form of its characteristic function,
as it has stationary independent increments – the Lévy-Khintchine representation4.

Theorem 2.9 (Lévy-Khintchine)
If L is a Lévy process, then for all t ≥ 0, u ∈ R the Lévy-Khintchine formula is given by

E(eiuLt) = etψL(u) (2.10)

where
ψL(u) = iuγL −

1
2

σ2
Lu2 +

∫
R
[eiux − 1− iux1[−1,1](x)]νL(dx), (2.11)

with γL ∈ R, σL > 0 and νL a measure on R satisfying

νL({0}) = 0 and
∫

R
(|x|2 ∧ 1)νL(dx) < ∞. (2.12)

2Kyprianou (2006, Chapter 1.1) and Applebaum (2009, Proposition 1.3.1)
3Sato (1999, Theorem 8.1)
4Applebaum (2009, Theorem 1.2.14 and Equation (1.19))
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We call νL the Lévy measure of L. Furthermore the representation of the Lévy-Khintchine
formula in Theorem 2.9 by γL, σL and νL is unique. This triplet (γL, σL, νL) is called the
characteristic triplet of L. The map ψL (2.11) is known as the Lévy symbol or Lévy
exponent.

Remark 2.10 According to Applebaum (2009, Chapter 1.2.4) it follows from Equation (2.12)
that for a Lévy measure νL we have νL((−ε, ε)c) < ∞ for all ε > 0. In this case we have a
finite activity Lévy process, e.g a compound Poisson process, see Example 2.4. On the other
hand it is possible to have νL(R) = ∞, which implies a Lévy process with infinite activity.
For example a Variance Gamma process has infinity activity, i.e. it has an infinte number of
jumps in any time interval, see Example 2.5.

Later we will denote the jumps of a Lévy process by ∆Lt := Lt − Lt−, where Lt− is
the left limit of the sample path of L at time t > 0, that is defined as below.

Definition 2.11 (Applebaum (2009, Chapter 2.9 Appendix))
For 0 ≤ s ≤ t we define the left limit Lt− as

Lt− := lim Ls
s↑t

(2.13)

Additionally we are going to use the abbreviations ”càdlàg” and ”càglàd”, which are
defined as follows.

Definition 2.12 (càdlàg/ càglàd)
The term ”càdlàg” stands for the French ”continue à droite limité a gauche”. A stochastic
process (Xt)t≥0 is called càdlàg if it has right continuous sample paths and limits on the left
almost surely.
Analogously ”càglàd” is the short form of ”continue à gauche limité a droite”, i.e. (Xt)t≥0 is
càglàd if it has left continuous sample paths and limits on the right almost surely.

According to Applebaum (2009, Theorem 2.1.8) every Lévy process has a càdlàg mod-
ification that is itself a Lévy process.

In order to give the definition of the Lévy-Itô decomposition we need to introduce
some notations.5 Regarding the jump process ∆L := (∆Lt)t≥0 of the Lévy process L, we
can define a random measure counting the jumps of L of a specific size. For 0 ≤ t < ∞
and A ∈ B(R) define

NL(t, A) = #{0 ≤ s < t; ∆Ls ∈ A} = ∑
0≤s<t

1{∆Ls∈A}.

Due to Applebaum (2009, Chapter 2.3.1) the measure NL is a Poisson random mea-
sure, which implies that:

(i) For each t > 0, ω ∈ Ω, NL(t, ·)(ω) is a counting measure on B(R\{0}).
5The following can be found in Haug (2006, Preliminaries) and is based on Applebaum (2009, Chap-

ter 2.3.1 and 2.3.2).
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(ii) For each A bounded away from 0 (NL(t, A), t ≥ 0) is a Poisson process with
intensity E(NL(1, A)), where A ∈ B(R) is said to be bounded away from 0 if
0 /∈ A.

The intensity of the Poisson process (NL(t, A), t ≥ 0), A ∈ B(R\{0}), describes
the expected number, per unit time, of jumps with size belonging to A, and defines a
measure on B(R\{0}) which is equal to νL, i.e.

νL(A) = E(NL(1, A)).

This measure νL is called Lévy measure and is the same as in Theorem 2.9. Furthermore
define for each t ≥ 0 and A bounded away from 0 the compensated Poisson random
measure by

ÑL(t, A) = NL(t, A)− tνL(A). (2.14)

In (Applebaum (2009, Theorem 2.4.16)) the following Definition for the Lévy-Itô
decomposition of the sample path of L into continuous and jump part can be found. For
this, the concept of integration with respect to a Poisson random measure is necessary.
For details see Chapter 2.3.2 of Applebaum (2009).

Definition 2.13 (The Lévy-Itô decomposition)
If L is a Lévy process, then there exists γL ∈ R, a Brownian motion B with variance σ2

L and an
independent Poisson random measure NL on R+ ×R\{0} sucht that, for each t ≥ 0

Lt = γLt + Bt +
∫
|x|<1

xÑL(t, dx) +
∫
|x|≥1

xNL(t, dx), (2.15)

where γL = E
(

L1 −
∫
|x|≥1 xNL(1, dx)

)
.



Chapter 3

Continuous time GARCH Processes

3.1 COGARCH Process

In order to model stochastic volatility there have been different approaches to find
a suitable model. For example, Barndorff-Nielsen and Shepard (2001) developed a
stochastic volatility model, where the volatility process (σ2

t )t≥0 is described by an
Ornstein-Uhlenbeck (OU) type process, which is driven by a Lévy process (Lt)t≥0. For
further information see also Barndorff-Nielsen and Shepard (2002).
In this thesis we will focus on a completely new approach: the continuous time
GARCH(1, 1) (”COGARCH”) model. This model has been developed by Klüppelberg
et al. (2004) as an extension of the discrete time GARCH model. The following will be
based on their paper, including the proofs necessary for the following. The generalized
case of a continuous time GARCH model can be found in Brockwell et al. (2006), and
see Chadraa (2010) for details.

We are going to introduce the continuous time GARCH type models below. First we
will have a look at the discrete time GARCH(1, 1) model as we will see that it can be
extended to the continuous time GARCH(1, 1) model. The discrete time GARCH(1,1)
process developed by Bollerslev (1986) was defined as

Yn = εnσn (3.1)

σ2
n = β + λY2

n−1 + δσ2
n−1, n ∈N, (3.2)

with the parameters β > 0, λ ≥ 0, δ ≥ 0 and where (εn)n∈N is an i.i.d. innovation
sequence. The abbreviation GARCH stands for ”Generalised Autoregressive Condi-
tional Heteroscedasticity”. These models are able to incorporate ”feedback” between
an observation and its volatility. Autoregressive indicates that past observations and
the past volatilities have an impact on the present value of the volatility and there-
fore on the present observation, which is referred to as the ”autoregressive aspect” of
the recursion formula (3.1). Furthermore conditional heteroscedasticity means that we
have a time-varying, non-constant, conditional volatility. The setting of non-constant
volatility is more realistic. In financial time series we can observe that more extreme
observations lead to large fluctuations in the volatility. In the general ARCH setting,
the conditional volatility not only depends on the past observations but also on the

13
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past conditional volatilities. Moreover Equation (3.1) is specifying the ”mean level”
process (the observed data) and Equation (3.2) models the conditional volatility pro-
cess, which is time dependent and randomly fluctuating.6 The GARCH(1, 1) model
captures the main characteristics of financial data, the ”stylized facts”, see Remark 3.1.

Remark 3.1 (Stylized Facts)(McNeil et al. (2005, Chapter 4.1.1))
Considering data of financial time series such as log-returns on indexes or exchange rates, a
collection of empirical observations, known as stylized facts, can be noticed. A version of
these facts is as follows.

• Return series are not i.i.d. although they show little serial correlation.

• Series of absolute or squared returns show profound serial correlation.

• Conditional expected returns are close to zero.

• Volatility appears to vary over time.

• Return series are leptokurtic (i.e. more narrow in the center, but longer and heavier tails
than the normal distribution) or heavy-tailed.

• Extreme returns appear in clusters (volatility clustering).

With the GARCH(1, 1) model it is possible to analyse financial time series data
which has equidistant time data, e.g. one data record per day or every 5 minutes. But
on account of the fast development of higher and higher memory capacities of comput-
ers, it has been possible to record more and more data during the last years. Consid-
ering for example trading transactions, every single transaction is recorded nowadays.
We refer to this growing amount of data as ”high-frequency data”. This amount of data
is not recorded in fixed time intervals only. Taking this data only on fixed time inter-
vals neglects some of the information which is available. In order to analyse and model
this huge amount of data, which can be irregularly spaced in time, an extension from
discrete time models to continuous time models is necessary.
A first approach to create a continuous time GARCH model goes back to Nelson (1990).
He tried to extend the discrete-time model by making diffusion approximations. In his
paper, he tried to bridge the gap on the relation between continuous time nonlinear
stochastic differential systems and the ARCH stochastic difference equation systems.
He realised his approach by developing conditions under which ARCH stochastic dif-
ference equation systems converge in distribution to Itô processes as the length of the
discrete-time intervals between the observations goes to zero.7 His limiting diffusion
model is:

dYt = σtdB(1)
t , t ≥ 0,

where σt, the volatility process, satisfies

dσ2
t = (β− ησ2

t )dt + φσ2
t dB(2)

t ,

6cf. Klüppelberg et al. (2011, p.3)
7cf. Nelson (1990, p.8).
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where B(1) and B(2) are independent Brownian motions, and β > 0, η ≥ 0 and φ ≥ 0
are constants.8 Discrete time GARCH models have only one source of uncertainty (ran-
domness), whereas stochastic volatility models like the model of Nelson (1990), de-
scribed above, have two sources of uncertainty due to the two independent Brownian
motions. Further information on approaches to create continuous time GARCH mod-
els can be found in the paper of Drost and Werker (1996).
The problem of such diffusion limits to discrete time GARCH models is that many of
the features of the discrete time GARCH models (see Remark 3.1) are lost. Fasen et al.
(2006) showed in their paper that classical stochastic volatility models driven by Brow-
nian motion can model heavy tails, but obviously they are not able to model volatility
jumps. As empirical volatility has upwards jumps, it seems to make sense to choose a
model driven by a Lévy process, due to its ability of modelling such jumps. 9

The approach of Klüppelberg et al. (2004) includes only one source of uncertainty
(two of the same kind). The increments of a Lévy process replace the innovations of
a discrete time GARCH model. Additionally it contains the autoregressive property
which can be found in the discrete time case.

As mentioned above in this chapter, the idea of Klüppelberg et al. (2004) for the
construction of a continuous time GARCH model is to preserve the structure and the
main characteristics of a discrete time GARCH model, e.g. the ”stylized facts”, see
Remark 3.1. Furthermore it is possible to obtain information about the stationarity, the
moments and properties of the tails of this model.

As a motivation to obtain a continuous time GARCH model based on a discrete
time GARCH model, we now have a closer look at the volatility term of the discrete
time GARCH model. Thus we continue with a modification of the volatility term of the
discrete time GARCH model. From equation (3.2) we obtain recursively

σ2
n = β + λY2

n−1 + δσ2
n−1

= β + (δ + λε2
n−1)σ

2
n−1

= β
n−1

∑
i=0

n−1

∏
j=i+1

(δ + λε2
j ) + σ2

0

n−1

∏
j=0

(δ + λε2
j ), (3.3)

(cf. Klüppelberg et al. (2004, Eq.(2.4) and Eq.(2.5)) and Zapp (2004, p.11)). Then by
writing the sums of (3.3) as an integral, we can re-write equation (3.3) as

σ2
n = β

∫ n

0
exp

 n−1

∑
j=bsc+1

log(δ + λε2
j )

 ds + σ2
0 exp

(
n−1

∑
j=0

log(δ + λε2
j )

)

= exp

(
n−1

∑
j=0

log(δ + λε2
j )

)[
σ2

0 + β
∫ n

0
exp

(
−
bsc
∑
j=0

log(δ + λε2
j )

)
ds

]

= exp

(
n−1

∑
j=0

log(δ(1 +
λ

δ
ε2

j ))

)[
σ2

0 + β
∫ n

0
exp

(
−
bsc
∑
j=0

log(δ(1 +
λ

δ
ε2

j ))

)
ds

]
8cf. Klüppelberg et al. (2011, p.4,5).
9cf. the abstract of Fasen et al. (2006).
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= exp

n log(δ)︸ ︷︷ ︸
=−η

+
n−1

∑
j=0

log(1 +
λ

δ︸︷︷︸
=ϕ

ε2
j )



×

σ2
0 + β

∫ n

0
exp

− log(δ)︸ ︷︷ ︸
=η

(bsc+ 1)−
bsc
∑
j=0

log(1 +
λ

δ︸︷︷︸
=ϕ

ε2
j )

 ds


= exp

(
−nη +

n−1

∑
j=0

log(1 + ϕε2
j )

)

×
[

σ2
0 + β

∫ n

0
exp

(
η(bsc+ 1)−

bsc
∑
j=0

log(1 + ϕε2
j )

)
ds

]
(3.4)

This representation gives the opportunity to replace the innovations εj by the jumps
∆Lt as defined in Chapter 2.

Regarding the equation (3.4) we define the càdlàg process (Xt)t≥0 as

Xt = ηt− ∑
0<s≤t

log(1 + ϕ(∆Ls)
2), t ≥ 0, (3.5)

with η, ϕ > 0.10 And moreover let the left-continuous volatility process be defined by

σ2
t− =

(
β
∫ t

0
eXs ds + σ2

0

)
e−Xt− , t ≥ 0, (3.6)

assuming that β > 0 and σ0 < ∞ almost surely (a.s.) and independent of (Lt)t≥0.
Inserting Xt in (3.6) we can see the analogy to (3.4):

σ2
t− =

(
β
∫ t

0
exp

(
ηs− ∑

0<u≤s
log(1 + ϕ(∆Lu)

2)

)
ds + σ2

0

)

× exp

(
−ηt + ∑

0<u≤t−
log(1 + ϕ(∆Lu)

2)

)
.

As stated in Klüppelberg et al. (2011, p.6)11 the integrated continuous time GARCH
process (Gt)t≥0 can then be defined as the SDE

dGt = σt−dLt, G0 = 0, (3.7)

where the volatility process (σ2
t )t≥0 satisfies

dσ2
t = (β− ησ2

t−)dt + ϕσ2
t−d[L, L]dt . (3.8)

10Compared to Equation (3.3) of (Klüppelberg et al. (2004, p.7)) we used the following reparameteri-
zation: η = − log δ and ϕ = λ/δ with 0 < δ < 1 and λ ≥ 0.

11Originally the definition is given in (Klüppelberg et al. (2004, p.7)). But here we use σt− instead of
σt.
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With the left limit σ2
t− we denote the volatility at time t without the jump at time t.

And σ2
t is the volatility including the jump at time t accordingly. Furthermore [L, L]dt =

∑0<s<t(∆Ls)2, t ≥ 0, is the discrete part of the quadratic variation process12 ([L, L]t)t≥0
of the Lévy process L. The process (Gt)t≥0 is càdlàg and jumps at the same time as L
does. The size of its jump at time t is denoted by ∆Gt = σt−∆Lt, t ≥ 0.

Regarding the special structure of (Xt)t≥0 we give Proposition 3.2, from which we
see that (Xt)t≥0 is a Lévy process according to its definition in (3.5), and has no positive
jumps.

Proposition 3.2 (Klüppelberg et al. (2004, Proposition 3.1))
The process (Xt)t≥0 is a spectrally negative Lévy process of bounded variation with drift γX,0 =
− log δ = η, Gaussian component σ2

X = 0, and Lévy measure νX given by

νX([0, ∞)) = 0 and νX = ((−∞,−x]) = νL({y ∈ R : |y| ≥
√
(ex − 1)δ/ϕ}), x > 0.

Furthermore, according to Klüppelberg et al. (2011, p.7), returns over time intervals
of fixed length r > 0 are denoted by

G(r)
t := Gt − Gt−r =

∫
(t−r,t]

σs−dLs, t ≥ r, (3.9)

so that (G(r)
ri )i∈N describes an equidistant sequence of non-overlapping returns. Calcu-

lating the corresponding quantity for the volatility yields

σ
2(r)
ri := σ2

ri − σ2
r(i−1) =

∫
(r(i−1),ri]

((β− ησ2
s )ds + ϕσ2

s−d[L, L]ds )

= βr− η
∫
(r(i−1),ri]

σ2
s ds + ϕ

∫
(r(i−1),ri]

σ2
s−d[L, L]ds (3.10)

It is worth noting that the stochastic process∫
(0,t]

σ2
s−d[L, L]ds = ∑

0<s≤t
σ2

s−(∆Ls)
2, t ≥ 0, (3.11)

is the discrete part of the quadratic variation [G, G]t of G, which satisfies

[G, G]t =
∫ t

0
σ2

s−d[L, L]s.

Thus
∫
(r(i−1),ri] σ2

s−d[L, L]ds in (3.10) corresponds to the jump part of the quadratic vari-
ation of G accumulated during (r(i− 1), ri].

Now we are going to have a look at some stationarity properties of the volatil-
ity process (σ2

t )t≥0. As reference see Theorem 3.1, Theorem 3.2 and Corollary 3.1 of
Klüppelberg et al. (2004).

12For a definition of quadratic variation, see for example Protter (2005, p.277).
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Theorem 3.3 (Klüppelberg et al. (2004, Theorem 3.1))
Suppose ∫

R
log(1 +

λ

δ
y2)νL(dy) < − log δ (3.12)

(which, since δ > 0, incorporates the requirement that the integral be finite). Then σ2
t

D→ σ2
∞,

as t→ ∞, for a finite random variable σ∞ satisfying

σ2
∞

D
= β

∫ ∞

0
e−Xt dt.

Conversely, if (3.12) does not hold, then σ2
t

P→ ∞ as t→ ∞.13

Moreover, the next Theorem states that (σ2
t )t≥0 is Markovian and further that, if the

process is started at σ2
0

D
= σ2

∞, it is strictly stationary.

Theorem 3.4 (Klüppelberg et al. (2004, Theorem 3.2))
The volatility process (σ2

t )t≥0, as given in (3.6), is a time homogeneous Markov process. More-

over, if the limit variable σ2
∞ in Theorem 3.3 exists and σ2

0
D
= σ2

∞, independent of (Lt)t≥0, then
(σ2

t )t≥0 is strictly stationary.

For the process Gt =
∫ t

0 σs−dLs, t ≥ 0, note that for any 0 ≤ y < t,

Gt = Gy +
∫ t

y+
σs−dLs, t ≥ 0.

Here (σs)y<s≤t depends on the past until time y only through σy, and the integrator is
independent of this past. From Theorem 3.4 we thus obtain:

Corollary 3.5 (Klüppelberg et al. (2004, Corollary 3.1))
The bivariate process (σt, Gt)t≥0 is Markovian. If (σ2

t )t≥0 is the stationary version of the pro-

cess with σ2
0

D
= σ2

∞, then (Gt)t≥0 is a process with stationary increments, i.e. the increment
process (G(r)

t )t≥0, see (3.9), is stationary for each fixed r > 0.

3.1.1 Second order properties of the volatility process

According to Klüppelberg et al. (2004, Section 4) it is possible to derive moments and
the autocorrelation function of the stochastic volatility process (σ2

t )t≥0. We will need
the Laplace transform which is defined as E(e−sXt) = etΨ(s).

Lemma 3.6 (Klüppelberg et al. (2004, Lemma 4.1))
Keep c > 0 throughout.

13Here ” D→” means ”convergence in distribution” and ” P→” means ”convergence in probability”. Anal-

ogously ” D
=” denotes ”equal in distribution”.
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(a) Let λ > 0. Then the Laplace transform E(e−cXt) of Xt at c is finite for some t > 0, or,
equivalently, for all t > 0, if and only if E(L2c

1 ) < ∞.

(b) When E(e−cX1) < ∞, define Ψ(c) = ΨX(c) = log E(e−cX1). Then |Ψ(c)| < ∞,
E(e−cXt) = etΨ(c), and

Ψ(c) = c log δ +
∫

R
((1 + (λ/δ)y2)c − 1)νL(dy). (3.13)

(c) If E(L2
1) < ∞ and Ψ(1) < 0, then (3.12) holds, and σ2

t converges in distribution to a
finite random variable.

(d) If Ψ(c) < 0 for some c > 0, then Ψ(d) < 0 for all 0 < d < c.

We will use the Laplace exponent Ψ(c) in (3.13) denoted with the parameters
η := − log δ and ϕ := λ/δ as follows.

Ψ(c) = −ηc +
∫

R
((1 + ϕy2)c − 1)νL(dy), c > 0. (3.14)

From Lemma 3.6 (a) we know that E(e−cXt) < ∞ for all t > 0, if and only if E(L2c
1 ) < ∞,

which is equivalent to a finite integral in (3.14). Assuming E(L2c
1 ) < ∞ and Ψ(c) < 0

for some c > 0, Klüppelberg et al. (2006) showed in Section 4.1, Lemma 1 (d) that
then there exists a stationary version of the volatility process. In the next Proposition
Klüppelberg et al. (2004) calculated the first two moments and the autocovariance func-
tion of (σ2

t )t≥0 in terms of the Laplace exponent Ψ. Furthermore they showed that the
autocovariance function decreases exponentially fast with the lag.

Proposition 3.7 (Klüppelberg et al. (2004, Proposition 4.1))
Let λ > 0, t > 0, h ≥ 0.

(a) E(σ2
t ) < ∞ if and only if E(L2

1) < ∞ and E(σ2
0 ) < ∞. If this is, then

E(σ2
t ) =

β

−Ψ(1)
+

(
E(σ2

0 ) +
β

Ψ(1)

)
etΨ(1), (3.15)

where for Ψ(1) = 0 the righthand side has to be interpreted as its limit as Ψ(1)→ 0, i.e.
E(σ2

t ) = βt + E(σ2
0 ).

(b) E(σ4
t ) < ∞ if and only if E(L4

1) < ∞ and E(σ4
0 ) < ∞. In that case, the following

formulae hold (with a suitable interpretation as a limit if some of the denominators are
zero):

E(σ4
t ) =

2β2

Ψ(1)Ψ(2)
+

2β2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
(3.16)

+ 2βE(σ2
0 )

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
+ E(σ4

0 )e
tΨ(2), (3.17)

Cov(σ2
t , σ2

t+h) = Var(σ2
t )e

hΨ(1). (3.18)
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In the following we consider the stationary version of a volatility process.
The k-th moment of σ2

∞ is finite if and only if E(L2k
1 ) < ∞ and Ψ(k) < 0, k ∈ N, see

Klüppelberg et al. (2004), Proposition 4.2. Therefore it is possible to obtain the mean

and second moment of σ2
∞. The first two moments of the stationary process (with σ2

0
D
=

σ2
∞), then are

E(σ2
∞) =

β

−Ψ(1)
, (3.19)

E(σ4
∞) =

2β2

Ψ(1)Ψ(2)
, (3.20)

provided E(L2k
1 ) < ∞ and Ψ(k) < 0, with k = 1 for (3.19) and k = 2 for (3.20),

respectively.
And the autocovariance function of the stationary volatility process satisfies

Cov(σ2
t , σ2

t+h) = β2
(

2
Ψ(1)Ψ(2)

− 1
Ψ2(1)

)
ehΨ(1), t, h ≥ 0,

provided E(L4
1) < ∞ and Ψ(2) < ∞, cf. Klüppelberg et al. (2004, Corollary 4.1) and

Klüppelberg et al. (2006, Section 4.1, Theorem 3). Due to the stationarity of the volatility
process, we have for E(L4

1) < ∞ and Ψ(2) < 0

E(σ2
t ) =

β

|Ψ(1)| and E(σ4
t ) =

2β2

|Ψ(1)Ψ(2)| ,

Cov(σ2
t , σ2

t+h) = β2
(

2
Ψ(1)Ψ(2)

− 1
Ψ2(1)

)
e−h|Ψ(1)| = Var(σ2

t )e
−h|Ψ(1)|, t, h ≥ 0.

Econometric literature suggests that volatility is quite persistent, which would imply
that e−|Ψ(1)| is close to 1; i.e. Ψ(1) < 0 near 0. This should be kept in mind, when
estimating the model parameters, see Chapter 3.2.14

3.1.2 Second order properties of the continuous GARCH process

In the following we consider second order properties of the increments of (Gt)t≥0.
Recall the notation of (G(r)

t )t≥0, which is denoted as in (3.9),

G(r)
t = Gt − Gt−r, t ≥ r > 0.

We still assume to have a stationary version of the volatility process. By Corollary 3.5
this implies strict stationarity of (G(r)

t )t≥0. In Proposition 3.8 we introduce the moments
of this process, which are independent of t by stationarity.

Proposition 3.8 (Haug et al. (2007, Proposition 2.1))
Suppose that the Lévy process (Lt)t≥0 has finite variance (i.e. E(L2

1) < ∞) and zero mean

14cf. Haug et al. (2007, Remark 2.3).
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(i.e. E(L1) = 0), and that Ψ(1) < 0. Let (σ2
t )t≥0 be the stationary volatility process, so that

(Gt)t≥0 has stationary increments. Then E(G2
t ) < ∞ for all t ≥ 0, and for every t, h ≥ r > 0

it holds

E(G(r)
t ) = 0, E(G(r)

t )2 =
βr
|Ψ(1)|E(L2

1), Cov(G(r)
t , G(r)

t+h) = 0. (3.21)

If further E(L4
1) < ∞ and Ψ(2) < 0, then E(G4

t ) < ∞ for all t ≥ 0 and, if additionally the
Lévy measure νL of L is such that

∫
R

x3νL(dx) = 0, then it holds for every t, h ≥ r > 0

E(G(r)
t )4 = 6E(L2

1)
β2

Ψ(1)2 (2ηϕ−1 + 2σ2
L −E(L2

1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
r− 1− e−r|Ψ(1)|

|Ψ(1)|

)
+

2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r + 3

β2

Ψ(1)2 (E(L2
1))

2r2 (3.22)

and

Cov((G(r)
t ))2, (G(r)

t+h)
2) = E(L2

1)
β2

|Ψ(1)|3 (2ηϕ−1 + 2σ2
L −E(L2

1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
×
(

1− e−r|Ψ(1)|
)(

er|Ψ(1)| − 1
)

e−h|Ψ(1)| > 0. (3.23)

For a proof of this proposition, we refer to Appendix A of Haug et al. (2007). Moreover
Proposition 3.8 tells us that the returns are uncorrelated, while the squared returns are
correlated. The autocorrelation function of the squared returns decays exponentially.15

3.1.3 Examples of COGARCH(1, 1) processes

In this chapter we have a closer look on two examples of COGARCH(1, 1) processes.
The first one will be a COGARCH(1, 1) process driven by a compound Poisson process.
The other one will be a COGARCH(1, 1) process driven by a Variance Gamma process.
Thus, we will consider Lévy processes with finite and infinite activity, see Remark 2.10.
The following is based on Chapter 2.4 of Haug (2006).

Compound Poisson COGARCH(1, 1)

A compound Process L has been introduced in Example 2.4 and is of the form

Lt =
Nt

∑
i=1

Yi, t ≥ 0,

where N = (Nt)t≥0 is a Poisson process with jump rate λ > 0, and (Yi)i∈N are i.i.d.
random variables, independent of N. There is no Brownian motion component, thus

15cf. Klüppelberg et al. (2006, Section 4.2).
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σ2
L = 0. We introduce a random variable Y with the same distribution function as Yi,

denoted by FY. The Lèvy measure of L is νL(dx) = λFY(dx). Using this information,
we can calculate the Laplace exponent from (3.14). We get

Ψ(c) = −ηs + λ
∫

R
((1 + ϕy2)c − 1)FY(dy),

and thus,

Ψ(1) = −η + λ
∫

R
((1 + ϕy2)1 − 1)FY(dy)

= −η + λϕ
∫

R
y2FY(dy)

= −η + ϕλE(Y2)

Ψ(2) = −2η + λ
∫

R
((1 + ϕy2)2 − 1)FY(dy)

= −2η + λ
∫

R
((1 + 2ϕy2 + ϕ2y4)− 1)FY(dy)

= −2η + 2λϕ
∫

R
y2FY(dy) + λϕ2

∫
R

y4FY(dy)

= −2η + 2λϕE(Y2) + λϕ2E(Y4).

If we assume E(L1) = 0 and Var(L1) = E(L2
1) = 1, we must have E(Y2) = 1/λ.

Inserting this in Ψ(1) and Ψ(2) yields

Ψ(1) = −η + ϕ, (3.24)

Ψ(2) = 2(ϕ− η) + ϕ2E(Y4)/E(Y2). (3.25)

In Chapter 3.2 we will need the Laplace exponents Ψ(1) and Ψ(2) in order to check if
the chosen parameters fulfill some conditions, see conditions (H1) to (H5) in Chapter
3.2.

In Figure 3.1 we plotted simulated sample paths for the time interval [0, 1000] of the
compound Poisson COGARCH(1, 1) process G, the log-return data G(1), the volatility
process σ2 and the driving Lévy process L with jump rate λ = 1 andN (0, 1) distributed
jumps. We used the parameters β = 0.04, η = 0.053, ϕ = 0.038 and the rate λ = 1.
It can be observed that the sample path of G and L only differ by their jump sizes.
Furthermore the property of volatility clustering, which can be observed in real data
(see Remark 3.1), can be discovered here.

Moreover it is possible to estimate the jump rate λ from the discretised data G(1)
i .

With z(n) we denote the number of intervals, where G does not change, i.e. z(n) =
∑n

i=1 1{G(1)
i =0}. This implies that a fine enough observation grid is required.

Proposition 3.9 (Haug (2006, Proposition 2.4.2))
Let (Lt)t≥0 be a compound Poisson process with continuous jump distribution FY and jump
rate λ > 0. Then

λ̂n := − log
(

z(n)
n

)
a.s→ λ, n→ ∞,



3.1. COGARCH PROCESS 23

Figure 3.1: Simulation of a compound Poisson driven COGARCH(1, 1) process (Gt)
with parameters β = 0.04, η = 0.053, ϕ = 0.038, rate= 1 and standard normally
distributed jumpsizes (first), log-return process (G(1)

t )(second), volatility process (σ2
t )

(third) and driving compound Poisson process (Lt)0≤t≤1000 with jump rate 1 and
N (0, 1)-distributed jumps (last).
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and √
n(λ̂n − λ)

d→ N (0, eλ(1− e−λ)), n→ ∞.

Variance Gamma COGARCH(1, 1)

The Variance Gamma process has been introduced in Example 2.5. Again the Lévy
process has no Brownian component, i.e. σ2

L = 0. Furthermore we assume E(L1) =
0 and Var(L1) = 1. Thus, with the mean and the variance of the Variance Gamma
process, given in (2.5), we can conclude that we have θ = 0 and σ = 1. Moreover it
follows from (2.2) that the characteristic function at time t ≥ 0 is given by

E(eiuLt) =

(
1 +

u2

2C

)−tC

.

And the Lévy measure νL, defined in (2.4), is then of the form

νL(dx) =
C
|x| exp

(
−(2C)1/2|x|

)
dx, x 6= 0. (3.26)

The Laplace exponent can be calculated by inserting (3.26) in (3.14),

Ψ(1) = −η + ϕ
∫

R
x2 C
|x| e

−
√

2C|x|dx︸ ︷︷ ︸
=1

= −η + ϕ (3.27)

and

Ψ(2) = −2η +
∫

R
((1 + ϕx2)2 − 1)

C
|x| e

−
√

2C|x|dx (3.28)

= −2η +
∫

R
(2ϕx2 + ϕ2x4)

C
|x| e

−
√

2C|x|dx (3.29)

= −2η + 2ϕ
∫

R
x2 C
|x| e

−
√

2C|x|dx︸ ︷︷ ︸
=1

+ϕ2
∫

R
x4 C
|x| e

−
√

2C|x|dx. (3.30)

As the last integral of (3.30) is∫
R

x4 C
|x| e

−
√

2C|x|dx = C
∫

R
x3e−

√
2C|x|dx

= 2C
∫ ∞

0
x3e−

√
2C|x|dx = 2C

3!
√

2C
4 =

3
C

,

we have
Ψ(2) = −2η + 2ϕ + 3ϕ2C−1. (3.31)

In Figure 3.2 we plotted simulated sample paths for the time interval [0, 1000] of the
Variance Gamma COGARCH(1, 1) process G, the log-return process G(1), the volatility
process σ2 and the driving Lévy process L.
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Figure 3.2: Simulation of a Variance Gamma driven COGARCH(1, 1) process (Gt) with
parameters β = 0.04, η = 0.053, ϕ = 0.038 (first), log-return process (G(1)

t )(second),
volatility process (σ2

t ) (third) and driving Variance Gamma process (Lt)0≤t≤1000 with
parameters θ = 0, σ = 1 and τ = 1 (last).
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3.1.4 COGARCH(p, q) Process

We implemented the simulation of a COGARCH process not only for p = q = 1 but
also for the more general case where q ≥ p ≥ 1. Therefore we give an overview of the
extension to COGARCH(p, q) by Brockwell et al. (2006).

Definition 3.10 (Chadraa (2010, Definition 2.1))
If p and q are integers such that q ≥ p ≥ 1, α0 > 0, α1, . . . , αp ∈ R, β1, . . . , βq ∈ R, αp 6= 0,
βq 6= 0 and αp+1 = · · · = αq = 0, we define the (q× q) matrix B and the vectors a and e by

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
−βq −βq−1 −βq−2 . . . −β1

 ,

a =


α1
α2
...

αq−1
αq

 , e =


0
0
...
0
1

 ,

with B := −β1 if q = 1. Then if L = (Lt)t≥0 is a Lévy process with nontrivial Lévy measure,
we define the (left-continuous) volatility process V = (Vt)t≥0 with parameters B, a, α0 and
driving Lévy process L by

Vt = α0 + a′Y t−, , t > 0, V0 = α0 + a′Y0,

where the state process Y = (Y t)t≥0 is the unique càdlàg solution of the stochastic differential
equation

dY t = BY t−dt + e(α0 + a′Y t−)d[L, L]dt , (3.32)

with initial value Y0, independent of the driving Lévy process (Lt)t≥0. If the process (Vt)t≥0 is
strictly stationary and nonnegative almost surely, we say that G = (Gt)t≥0 given by

dGt =
√

VtdLt, , t > 0, G0 = 0,

is a COGARCH(p, q) process with parameters B, a,α0 and driving Lévy process L.

From standard theorems on stochastic differential equations (e.g. Protter (2005,
Chapter V, Theorem 7)) it follows that there is in fact a unique solution of (3.32) for any
starting random vector Y0. The stochastic integrals are interpreted with respect to the
filtration (Ft)t≥0, which is defined to be the smallest right-continuous filtration such
that F0 contains all the P-null sets of F ; (Lt)t≥0 is adapted and Y0 is F0-measurable.

The volatility process (Vt)t≥0 specified in Definiton 3.10 is strictly stationary under
the conditions given in Theorem 3.11. Assume that the matrix B can be diagonalized.
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Since the only eigenvectors corresponding to the eigenvalue λi are constant multiples
of [1, λi, λ2

i , . . . , λ
q−1
i ]′, this is equivalent to the assumption that the eigenvalues of B

are distinct. Let S be a matrix such that S−1BS is a diagonal matrix, for example,

S =


1 · · · 1

λ1 · · · λq
... · · · ...

λ
q−1
1 · · · λ

q−1
q


For this particular choice, S−1BS = diag(λ1, . . . , λq), where diag(·) denotes a diagonal
matrix with the eigenvalues on its diagonal.

Theorem 3.11 (Brockwell et al. (2006, Theorem 3.1))
Let (Y t)t≥0 be the state process of the COGARCH(p, q) process with parameters B, a, and α0.
Suppose that all the eigenvalues of B are distinct. Let L be a Lévy process with nontrivial Lévy
measure νL and suppose there is some r ∈ [1, ∞) such that∫

R
log(1 + ||S−1ea′S||ry2)dνL(y) < −λ (3.33)

for some matrix S such that S−1BS is diagonal. Then Y t converges in distribution to a finite

random variable Y∞, as t → ∞. It follows that if Y0
d
= Y∞, then (Y t)t≥0 and (Vt)t≥0 are

strictly stationary.

We need some conditions which ensure that V is nonnegative to ensure that G is
well-defined. In the following Theorem 3.12 it will be shown that if a′eBte ≥ 0 for all
t ≥ 0 and Y0 is such that V is strictly stationary, then V is nonnegative with probability
1.

Theorem 3.12 (Brockwell et al. (2006, Theorem 5.1))

(a) Let (Y t)t≥0 be the state vector of a COGARCH(p, q) volatility process (Vt)t≥0 with
parameters B, a, and α0 > 0. Let γ ≥ −α0 be a real constant. Suppose that the following
two conditions hold:

a′eBte ≥ 0 ∀t ≥ 0, (3.34)

a′eBtY0 ≥ γ a.s. ∀t ≥ 0. (3.35)

Then for any driving Lévy process, with probability 1,

Vt ≥ α0 + γ ≥ 0 t ≥ 0.

Conversely, if either (3.35) fails or (3.35) holds with γ > −α0 and (3.34) fails, then there
exists a driving compound Poisson process L and t0 ≥ 0 such that P(Vt0 < 0) > 0.

(b) Suppose that all eigenvalues of B are distinct and that (3.33) and (3.34) both hold. Then
with probability 1 the stationary COGARCH(p, q) volatility process (Vt)t≥0 satisfies

Vt ≥ α0 > 0 ∀t ≥ 0.
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For the stationary COGARCH volatility process or for the process with Y0 = 0, the condition
(3.34) alone is sufficient for almost sure nonnegativity.

As an example, we simulate a COGARCH(1, 3) process driven by a compound
Poisson process with jump rate 1 and normally distributed jumps with mean 0 and
variance 0.74. The chosen coefficients are α0 = α1 = 1, β1 = 1.2, β2 = 0.48 + π2 and
β3 = 0.064 + 0.4π2. We check the eigenvalues of B, they should all be negative, which
is satified for: −0.4, −0.4 + πi and −0.4− πi. In Brockwell et al. (2006, Section 7) they
chose the same parameters as we did and checked if the conditions for a nonnegative
volatility process are satisfied. For detailed information on those conditions we there-
fore refer to their paper, especially Proposition 4.1 and Theorem 5.2. In Figure 3.3 we
simulated a sample path of G with the parameters specified above (top). The plot in
the center of Figure 3.3 shows the differenced process G(1)

t and in the bottom plot the
volatility process σ2 for t = 1 : 1000 is shown.

Figure 3.3: Simulated compound Poisson driven COGARCH(1, 3) with jump rate 1,
normally distributed jumps with mean 0 and variance 0.74, and parameters α0 = α1 =
1, β1 = 1.2, β2 = 0.48 + π2 and β3 = 0.064 + 0.4π2. Top: process Gt, center: increments
G(1)

t and bottom: volatility process (Vt = σ2
t ).
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3.2 Estimators

The aim of this chapter is the estimation of the model parameters (β, η, ϕ). We intro-
duce two possible estimation methods. The first is a method of moments estimation.
To apply this method we assume to have a sample of equally spaced data. In order to
get estimates for unequally spaced data, we introduce a second method which uses a
pseudo maximum likelihood (PML) estimation. Throughout this chapter we assume
that the driving Lévy process has no Gaussian part, i.e. that σ2

L = 0. This chapter is
based on the papers of Haug et al. (2007), Klüppelberg et al. (2011) and Maller et al.
(2008).

3.2.1 Moment Estimators

We assume that we have a sample of equally spaced returns. In order to get data
equally spaced in time, we need to discretise the continuous time GARCH onto a dis-
crete grid over a finite time interval. The data should be given as described in (3.9).
The model parameters (β, η, ϕ) can then be estimated by matching the empirical au-
tocorrelations and moments to their theoretical counterparts given in Proposition 3.8.
The next result shows that the parameters are identifiable by this estimation proce-
dure for driving Lévy processes L as in Proposition 3.8. We assume throughout that
E(L1) = 0 and E(L2

1) = 1. For simplicity we set r = 1.

Theorem 3.13 (Haug et al. (2007, Theorem 3.1))
Suppose (Lt)t≥0 is a Lévy process such that E(L1) = 0, Var(L1) = 1, the variance σ2

L of the
Brownian motion component of L is known with σ2

L = 0, E(L4
1) < ∞ and

∫
R

x3νL(dx) = 0.

Assume also that Ψ(2) < 0, and denote by (G(1)
i )i∈N the stationary increment process of the

COGARCH(1, 1) process with parameters β, η, ϕ > 0. Let µ, γ(0), k, p > 0 be constants such
that

E((G(1)
i )2) = µ,

Var((G(1)
i )2) = γ(0),

ρ(h) = Corr((G(1)
i )2, (G(1)

i+h)
2) = ke−hp, h ∈N.

Define

M1 := γ(0)− 2µ2 − 6
1− p− e−p

(1− ep)(1− e−p)
kγ(0), (3.36)

M2 :=
2kγ(0)p

M1(ep − 1)(1− e−p)
. (3.37)

Then M1, M2 > 0, and the parameters β, η, ϕ are uniquely determined by µ, γ(0), k and p,
and are given by the formulas

β = pµ, (3.38)

ϕ = p
√

1 + M2 − p, (3.39)
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η = p
√

1 + M2(1− σ2
L) + pσ2

L = p + ϕ(1− σ2
L). (3.40)

The proof of this Theorem can be found in Haug et al. (2007).
We conclude from (3.38)-(3.40) that our model parameter vector (β, η, ϕ) is a contin-

uous function of the first two moments µ, γ(0) and the parameters of the autocorrela-
tion function p and k. Hence, by continuity, consistency of the moment estimators will
immediately imply consistency of the corresponding plug-in estimates for (β, η, ϕ).

Estimation Algorithm

As a next step we present an estimation algorithm. In Chapter 6 we are going to use
this algorithm in order to implement a program for estimating the model parameters
with the R-Code 6.10. Furthermore we are going to conduct a simluation study in 3.3.
The parameters are estimated under following assumptions:

(H1) We have in time equally spaced observations Gi, i = 0, . . . , n, of the integrated
COGARCH as defined and parameterised in (3.7) and (3.8), assumed to be in its
stationary regime. This yields return data G(1)

i = Gi − Gi−1, i = 1, . . . , n.

(H2) E(L1) = 0 and E(L2
1) = 1, i.e. (σ2

t )t≥0 can be interpreted as the volatility.

(H3) The driving Lévy process has no Gaussian part, i.e. σ2
L = 0.

(H4)
∫

R
x3νL(dx) = 0, E(L4

1) < ∞ and Ψ(2) < 0. This assumptions ensure that the
moment E(σ4

t ) of the stationary volatility process exists. (We know that the mo-
ment E(σ2k

t ) of the stationary volatility process exists if and only if E(L2k
1 ) < ∞

and Ψ(k) < ∞, see Proposition 3.7.)

We define the parameter vectors θ := (p, k) and ϑ := (β, η, ϕ), where k and p are as in
Theorem 3.13, and proceed as follows.

(1) Calculate the moment estimator µ̂n of µ as

µ̂n :=
1
n

n

∑
i=1

(G
(1)
i )2,

and for fixed d ≥ 2 the empirical autocovariances γ̂n := (γ̂n(0), γ̂n(1), . . . , γ̂n(d))>

as

γ̂n(h) :=
1
n

n−h

∑
i=1

((G(1)
i+h)

2 − µ̂n)((G
(1)
i )2 − µ̂n), h = 0, . . . , d.
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(2) Compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), . . . , γ̂n(d)/γ̂n(0))>.

(3) For fixed d ≥ 2 define the mapping H : Rd+2
+ → R by

H(ρ̂n, θ) :=
d

∑
h=1

(log(ρ̂n(h))− log(k) + ph)2.

Compute the least square estimator

θ̂n := argminθ∈R2
+

H(ρ̂n, θ).

(4) Define the mapping J : R4
+ → [0, ∞)3 by

J(µ, γ(0), θ) :=

{
(pµ, p

√
1 + M2 − p, p

√
1 + M2), if p, M2 > 0,

(0, 0, 0), otherwise ,

where M2 is defined as in Theorem 3.13. Finally compute the estimator

ϑ̂n = J(µ̂n, γ̂n(0), θ̂n).

As stated in Haug (2006), Remark 2.2.1, we know that under the chosen conditions,
ρ(h) > 0 for all h ∈ N. Also, M1 and M2 are strictly positive. This does not imply
that the corresponding empirical estimates are strictly positive. From Theorem 3.16 it
will follow that the above estimators are strongly consistent. Therefore, all sufficiently
large sample paths will have strictly positive empirical estimates and all parameter es-
timates are well-defined.
Furthermore, for a stationary model the parameter p has to be strictly positive. Com-
puting the unrestricted minimum of H(ρ̂n, θ) leads to

p̂∗n := −
∑d

h=1

(
log(ρ̂n(h))− log(ρ̂n)

) (
h− d+1

2

)
∑d

h=1

(
h− d+1

2

)2 (3.41)

k̂n := exp
{

log(ρ̂n) +
d + 1

2
ρ̂∗n

}
, (3.42)

with log(ρ̂n) := 1
d ∑d

h=1 log (ρ̂n(h)) and ρ̂∗n may be negative. Therefore we define the
estimator of p as

p̂n := max{ p̂∗n, 0} (3.43)

and take p̂n = 0 as an indication that the data is non-stationary. Defining the mapping
S : Rd+1

+ → R2
+ by the equations and noting that ρ̂n(h) = γ̂n(h)/γ̂n(0) presents the

least squares estimator θ̂n := (k̂n, p̂n) as a function of γ̂n:

θ̂n = S(γ̂n). (3.44)
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Asymptotic Properties

To conclude this chapter about moment estimators, we review some asymptotic prop-
erties of the moment estimators. This part will be a summary of Haug (2006), Chapter
2.3.

The following Corollary will imply strong consistency of the estimator ϑ̂n, as stated
in (3.45) below.

Corollary 3.14 (Haug (2006, Corollary 2.3.6))
Suppose that (Lt)t≥0 is such that E(L4

1) < ∞ and the parameters of the COGARCH(1, 1)
process satisfy Ψ(2) < 0. Let σ2 := (σ2

t )t≥0 be the strictly stationary volatility process given
as solution to (3.8). Then we obtain for n→ ∞

µ̂n
a.s
= µ, γ̂n

a.s
= γ.

In order to obtain asymptotic normality of the empirical estimates we give Proposition
3.15. This Proposition includes an additional assumption which requires for G a finite
moment of higher order than the eighth, which is the case if E(L8+δ

1 ) < ∞ and the
(4 + δ)-moment of the volatility is finite, i.e. Ψ(4 + δ) < 0.

Proposition 3.15 (Haug (2006, Proposition 2.3.7))
Suppose that (Lt)t≥0 is such that E(L4

1) < ∞ and the parameters of the COGARCH(1, 1)
process satisfy Ψ(2) < 0. Let σ2 := (σ2

t )t≥0 be the strictly stationary volatility process given
as solution to (3.8). Assume further

(H5) There exists a positive constant δ > 0 such that E
(

G8+δ
1

)
< ∞.

Then as n→ ∞,
√

n
([

µ̂n
γ̂n

]
−
[

µ
γ

])
d→ Nd+2(0, Σ),

where the covariance Σ has components

Σk+2,l+2 =Cov((G(1)
1 )2(G(1)

1+k)
2, (G(1)

1 )2(G(1)
1+l)

2)

+ 2
∞

∑
j=1

Cov((G(1)
1 )2(G(1)

1+k)
2, (G(1)

1+j)
2(G(1)

1+l+j)
2)

for k, l = 0, . . . , d,

Σ1,k+2 = Cov((G(1)
1 )2, (G(1)

1 )2(G(1)
1+k)

2) + 2
∞

∑
j=1

Cov((G(1)
1 )2, (G(1)

1+j)
2(G(1)

1+k+j)
2)

for k = 0, . . . , d and Σ1,1 = γ(0) + 2 ∑∞
h=1 kγe−ph, with kγ := Cov((G(1)

i )2, (G(1)
i+1)

2)ep.
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By Theorem 3.16 the strong consistency of the estimator ϑ̂n follows. Furthermore it
gives asymptotic normality of the parameter estimates. The true parameter vector and
the corresponding moments are indicated by ϑ0, µ0 and γ0 respectively. And Pϑ0 de-
notes the probability measure with respect to the parameter vector ϑ0.

Theorem 3.16 (Haug (2006, Theorem 2.3.9))
Suppose that (Lt)t≥0 is such that E(L4

1) < ∞ and the parameters of the COGARCH(1, 1)
process satisfy Ψ(2) < 0. Let σ2 := (σ2

t )t≥0 be the strictly stationary volatility process given
as solution to (3.8). Assume that (H1)-(H4) are satisfied. For S(γ) as in (3.44), define the
mapping Q : Rd+2 → R3 by (µ, γ>) 7→ Q((µ, γ>)) := J(µ, γ(0), S(γ)). Then as n→ ∞,

ϑ̂n
a.s.→ ϑ0. (3.45)

Assume additionally (H5). Then, under Pϑ0 , as n→ ∞,
√

n(ϑ̂n − ϑ0)
d→ ∂(µ,γ)Q((µ0, γ0))Nd+2(0, Σ), (3.46)

where Σ is as in Proposition 3.15 and with (µ, γ) ∈ Rd+2 the derivative is denoted by

∂(µ,γ)Q((µ0, γ0)) = (∂1Q((µ0, γ0)), ∂2Q((µ0, γ0)), . . . , ∂d+2Q((µ0, γ0)))

=
(

∂µQ((µ0, γ0)), ∂γ(0)Q((µ0, γ0)), . . . , ∂γ(d)Q((µ0, γ0))
)

.

Estimation of the volatility σ2
t

Given the estimated parameters ϑ̂n the volatility process can be calculated recursively.
For r = 1 we have with (3.10),

σ2
i = σ2

i−1 + β− η
∫
(i−1,i]

σ2
s ds + ϕ ∑

i−1<s≤i
σ2

s (∆Ls)
2, i ∈N. (3.47)

Since σs is latent variable and ∆Ls is usually not observable, we have to approximate
the integral and the sum on the right hand side of (3.47). We use a simple Euler ap-
proximation for the integral ∫

(i−1,i]
σ2

s ds ≈ σ2
i−1, i ∈N. (3.48)

As we observe G only at integer times, we approximate

∑
i−1<s≤i

σ2
s (∆Ls)

2 ≈ (Gi − Gi−1)
2 = (G(1)

i )2, i ∈N. (3.49)

With the approximations (3.48) and (3.49), the volatility process (σ2
t )t≥0 can be calcu-

lated recursively by

σ̂i
2 = σ̂2

i−1 + β̂− η̂σ̂2
i−1 + ϕ̂(G(1)

i )2 (3.50)

= β̂ + (1− η̂)σ̂2
i−1 + ϕ̂(G(1)

i )2, i ∈N. (3.51)

We require that 0 < η < 1 because σ̂i defines the conditional variance of a discrete time
GARCH(1, 1) model, see (3.2).
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3.2.2 Pseudo-Maximum Likelihood Method

In this chapter, we focus on a pseudo-maximum likelihood (PML) method. With this
method, it should be possible to consider not only equally spaced (in time) data, but
also in time unequally spaced data. This approach has been developed by Maller et al.
(2008) in their paper ”GARCH modelling in continuous time for irregularly spaced
time series data”. They show how to fit the continuous time GARCH model to irreg-
ularly spaced time series data using discrete-time GARCH methodology, by approxi-
mating the COGARCH with an embedded sequence of discrete time GARCH series. In
Chapter 3.2.2 we introduce a method of fitting this model to data which is irregularly
spaced in time. Therefore we need to discretize the continuous time volatility process
as we describe in Chapter 3.2.2. For the discrete approximation of the continuous time
GARCH a ”first jump” approximation, described in Chapter 3.2.2, is used.

The ”First Jump” Approximation for a Lévy Process

In the following part, we present the results stated in Section 2. and 3. of Maller and
Szimayer (2007)16.

The following setup is assumed. Let (Ω,F , P) be a completed probability space
on which a real-valued Lévy process L := (Lt)t≥0, L0 = 0, with càdlàg paths is de-
fined. Let FL = (Ft)t≥0 be the right-continuous filtration generated by L, and assume
F0 contains all P-nullsets, and that F∞ = F . Furthermore σ2

L = 0, i.e. no Brownian
component is present and L is therefore a pure jump process. The Lévy process L is
characterized by its Lévy triplet (γL, 0, νL), where γL ∈ R and νL(·) is the Lévy mea-
sure, see (2.12), and γL is a constant obtained under the standard truncation function
x 7→ 1[−1,1](x). The jumps of L are denoted as in Chapter 2: ∆Lt = Lt − Lt−, for t ≥ 0
(with L0− = 0). Let

νL(x) = νL((x, ∞)) + νL((−∞,−x]), x > 0, (3.52)

denote the tail of νL(·). L is to be approximated on a finite time interval [0, T], 0 < T <
∞, partitioned into Nn not necessarily equally spaced time intervals. Let (Nn)n∈N be
an increasing sequence of integers diverging to infinity as n → ∞. For each n ∈ N,
form a deterministic partition 0 = t0(n) < t1(n) < · · · < tNn(n) = T of [0, T]. Then,
two approximating processes to L are constructed in Maller and Szimayer (2007).

The first approximation, Lt(n) for n ∈ N is formed by taking the first jump, if
one occurs, of Lt in each time subinterval (tj−1(n), tj(n)], j = 1, 2, . . . , Nn, where the
jump sizes are bounded away from 0, then discretizing (”binning”) these jumps to get
an approximating process which takes only a finite number of values on a finite state
space. The state space does not include 0, as we must avoide the possible singularity in
νL at 0. If no jumps occur in a subinterval, Lt(n) remains constant in that subinterval.

A second approximating process, Lt(n), n ∈ N, is then taken as the discrete skele-
ton of Lt(n) on the time grid (tj(n))j=0,1,...,Nn . This means Lt(n) is obtained from Lt(n)
by delaying its jump in an interval to the next following point on the grid, see (3.55).

16The summarized results can be found in Klüppelberg et al. (2011, Section 5.2).
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The time and space intervals are allowed to shrink and the state space to expand
at appropriate rates, so as to get convergence of Lt(n) and Lt(n) to Lt, as n → ∞, in
various modes.

Take two sequences of real numbers (mn)n∈N and (Mn)n∈N, satisfying 1 > mn ↓ 0
and 1 < Mn ↑ ∞, as n → ∞. The first approximating process, Lt(n), takes discrete
values in the set

J(n) = [−Mn,−mn) ∪ (mn, Mn], n ∈N.

To construct it, denote the time of the first jump with magnitude in (mn, Mn] in interval
j by,

τj(n) := inf {t : tj−1(n) < t ≤ tj(n); ∆Lt ∈ J(n)}, for 1 ≤ j ≤ Nn,

where the infimum over the empty set is defined as ∞. Then decompose L as

Lt = γLnt + L(1)
t (n) + L(2)

t (n) + L(3)
t (n), for 0 ≤ t ≤ T, (3.53)

where for all n ≥ 1 and 0 ≤ t ≤ T:

L(1)
t (n) = a.s lim

ε↓0

(
∑

0<s≤t
∆Ls1{ε<|∆Ls|≤mn} − t

∫
ε<|x|≤mn

xνL(dx)

)
,

L(2)
t (n) = ∑

0<s≤t
∆Ls1{Mn<|∆Ls|},

L(3)
t (n) = ∑

0<s≤t
∆Ls1{mn<|∆Ls|≤Mn},

and
γLn = γL −

∫
mn<|x|≤1

xνL(dx).

Equation (3.53) is a variant of the Lévy-Itô decomposition, cf. Definition 2.13, in which,
for each n, L(1)

t (n) is a compensated ”small jump” martingale, and L(2)
t (n) and L(3)

t (n)
might be thought of as ”large jumps” and ”medium jumps”, respectively.

With no assumptions on L, Maller and Szimayer (2007) show that, for j = 1, 2,
limn→∞ supo≤t≤T L(j)

t (n) = 0 a.s. and L(3)
t (n) can be further decomposed as follows:

L(3)
t (n) = L(3,1)

t (n) + L(3,2)
t (n),

where

L(3,2)
t (n) =

Nn

∑
j=1

1{τj(n)≤t}∆L(3)
τj(n)

.

Thus L(3,2)
t (n) is the sum of the sizes of the first jump of Lt in each subinterval

whose magnitude is in (mn, Mn], where such jumps occur, while L(3,1)
t (n) collects, over

all subintervals, the sizes of those jumps with magnitudes in (mn, Mn] (except for the
first jump), provided at least two such jumps occur in a subinterval.

Since we allow for the possibility that L has ”infinite activity”, that is, that
νL(R\{0}) = ∞, see Remark 2.10, we need a restriction on how fast mn may tend to the
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possible singularity of νL at 0, by comparison with the speed at which the time mesh
shrinks. With appropriate assumptions, limn→∞ sup0≤t≤T |L

(3,1)
t (n)| = 0 in probability,

in L1, or, alternatively, in almost sure sense. This leaves L(3.2)
t (n) as the predominant

component, asymptotically, of L, and the penultimate step is to approximate it by a
process L(n) that lives on a finite state space. So we discretize the state space J(n) with
a grid of mesh size ∆(n) > 0, where ∆(n)↘ 0 as n→ ∞, and set

Lt(n) = γLn +
Nn

∑
j=1

1{τj(n)≤t}

∆L(3)
τj(n)

∆(n)

∆(n). (3.54)

(By bxc the integer part of x ∈ R is denoted.) Again under certain conditions, the
difference between L(3,2)(n) and L(n) disappears, asymptotically, in the L1 or almost
sure sense, uniformly in 0 ≤ t ≤ T. Thus L(n) approximates L, in the sense that the
distance between them as measured by the supremum metric tends to 0 in L1 or almost
surely, in our setup.

The second approximation, L(n), is obtained by evaluating L(n) on the same dis-
crete time grid as we have used so far. Thus L(n) is the piecewise constant process
defined by

Lt(n) = Ltj−1(n)(n), when tj−1(n) ≤ t ≤ tj(n), j = 1, 2, . . . , Nn, (3.55)

and with LT(n) = LT(n). Because the original jumps are displaced in time in L(n),
we no longer expect convergence to L in the supremum metric. Instead, we obtain
limn→∞ ρ(L(n), L) = 0, where ρ(·, ·) denotes the Skorokhod J1 distance 17 in D[0, T],
see Theorem 3.18. The processes L(n) approximate L, pointwise, in probability, but not
uniformly in 0 ≤ t ≤ T. However, the convergence in probability in the Skorokhod
topology suffices for certain applications that we discuss later.

All in all, the discrete approximation scheme can be conceptualized as follows. With
∆L(3)

τj(n)
the sizes of the first jump of of Lt in each interval j, j = 1, 2, . . . , whose size is

in (mn, Mn], are denoted. By k = k(j, n, ∆(n)) the (integer) number of times that ∆n
divides the jump ∆L(3)

τj(n)
is defined. If there exists a jump ∆L(3)

τj(n)
with magnitude in

(mn, Mn] in interval j, take the first jump and replace it by k∆(n), where ∆(n) denotes
the mesh size of the grid. If there is no such jump, take k = 0. In order to get (3.54) add
up over all such jumps up to time t (and add in γLnt) to get Lt(n)). The paths of Lt(n)
are step functions which jump at most once per subinterval. Evaluating the paths at
the times of the discrete time grid (taking the skeleton of Lt(n)) consequently yields
a càdlàg process Lt(n) with discrete and finite state space which is constant between
grid points. It might seem surprising at first that taking only the first jump in each
subinterval of a discretization of the time axis provides sufficient information, in a

17The Skorokhod J1 distance between two processes Xt, Yt in D[0, T] is defined by ρ(X, Y) =

infλ∈Λ

{
sup0≤t≤T

∣∣∣Xt −Yλ(t)

∣∣∣+ sup0≤t≤T |λ(t)− t|
}

, where Λ is the set of strictly increasing contin-
uous functions λ on [0, T], with λ(0) = 0 and λ(T) = T.
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sense, to approximate even an infinite activity Lévy process. However, this does occur
if we let the mesh sizes tend to zero fast enough, as specified by (3.56) below.

Now we state the theorems from Maller and Szimayer (2007, Section 3), which pro-
vide the convergence of Lt(n) and Lt(n) to Lt. In the following, let FL, FL(n) and FL(n)

be natural filtrations generated by (Lt)t≥0, (Lt(n))t≥0 and (Lt(n))t≥0, respectively. Our
construction clearly gives inclusion of the filtrations, that is, for each n ≥ 1

FL(n) ⊆ FL(n) ⊆ FL.

Recall from (3.52) that νL denotes the tail of the Lévy measure of Lt. Let

∆t(n) := max
1≤j≤n

(tj(n)− tj−1(n)).

The main result for Lt(n) is the following Theorem.

Theorem 3.17 (Maller and Szimayer (2007, Theorem 3.1(a)))
Suppose

lim
n→∞

∆t(n)ν2
L(mn) = 0 and lim

n→∞
∆(n)νL(mn). (3.56)

Then
sup

0≤t≤T
|Lt(n)− Lt| P→ 0, as n→ ∞.

Next we consider the second approximating process, Lt(n), as defined in (3.55).
With a view to applications, we need the following property. The processess (Lt(n))n∈N

are said to satisfy Aldous’ criterion for tightness if:

∀ε > 0 : lim
δ↘0

lim sup
n→∞

sup
σ,τ∈S0,T(n),σ≤τ≤σ+δ

P(|Lτ(n)− Lσ(n)| ≥ ε) = 0,

where St,T(n) is the set of FL(n)-stopping times taking values in [0, T], for 0 ≤ t ≤ T. Let
D[0, T] be the space of càdlàg real-valued functions on [0, T] and ρ(·, ·) the Skorokhod
J1 distance between two processes in D[0, T]. The main result regarding Lt(n) is:

Theorem 3.18 Assume that Condition (3.56) of Theorem 3.17 holds. Then:

• ρ(L(n), L) P→ 0 as n→ ∞;

• the sequence (Lt(n))n∈N satisfies Aldous’ criterion for tightness.

A Discrete Approximation to the COGARCH

The following about the discrete approximation to the COGARCH can be found in
Maller et al. (2008, Section 2.1) and in Klüppelberg et al. (2011, Section 5.3). They
demonstrate how to approximate a COGARCH pair (G(t), σ(t))t≥0 with an embed-
ded sequence of discrete time GARCH pairs, (Gn(t), σn(t))t≥0, using the first jump
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approximation developed in the section before. After appropriate rescaling to match
the discrete and continuous time parameter sets Gn will be shown to converge to G in
a quite strong sense, as the approximating grid grows finer. It is assumed that L has
finite variance and mean 0.

Fix T > 0, and take deterministic sequences (Nn)n≥1 with limn→∞ Nn = ∞ and
0 = t0(n) < t1(n) < · · · < tNn(n) = T, and, for each n = 1, 2, . . . , divide [0, T]
into Nn subintervals of length ∆ti(n) := ti(n) − ti−1(n) for i = 1, 2, . . . , Nn. Assume
∆t(n) := maxi=1,...,Nn ∆ti(n)→ 0 as n→ ∞ and define for each n = 1, 2, . . . , a discrete-
time process (Gi,n)i=1,...,Nn satisfying

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)εi,n, i = 1, 2, . . . , Nn, (3.57)

where G0,n = G(0) = 0 and the variance σ2
i,n follows the recursion

σ2
i,n = β∆ti(n) + (1 + ϕ∆ti(n)ε2

i,n)e
−η∆ti(n)σ2

i−1,n, i = 1, 2, . . . , Nn. (3.58)

Here, the innovations (εi,n)i=1,...,Nn , n ∈ N, are constructed using a ”first jump” ap-
proximation to the Lévy process as follows. Since we assume a finite variance for L,
we only need a single sequence 1 ≥ mn ↓ 0 bounding the jumps of L away from 0.
We assume it satisfies limn→∞ ∆t(n)ν2

L(mn) = 0, where νL(x) =
∫
|y|>x νL(dy) is the tail

of νL. Such a sequence always exists, as limx↓0 x2νL(x) = 0 for any Lévy measure. Fix
n ≥ 1 and define stopping times τi,n by

τi,n = inf{t ∈ [ti−1(n), ti(n)) : |∆Lt| ≥ mn}, i = 1, . . . , Nn. (3.59)

Thus, τi,n is the time of the first jump of L in the ith interval where the jump magnitude
exceeds mn, if such a jump occurs.

By the strong Markov property,
(
1{τi,n<∞}∆L(τi,n)

)
i=1,...,Nn

is, for each n = 1, 2, . . . ,

a sequence of independent random variables, with distribution specified by:

ν(dx)1{|x|>mn}
ν(mn)

(
1− e−∆ti(n)ν(mn)

)
, x ∈ R\{0}, i = 1, 2, . . . , Nn,

and with mass e−∆ti(n)ν(mn) at 0. These random variables have finite mean κi(n), and
variance, ξi(n), say, since E(L2

1) is finite. The innovations series (εi,n)i=1,...,Nn required
for (3.57) is now defined by

εi,n =
1{τi,n<∞}∆L(τi,n)− κi(n)

ξi(n)
, i = 1, 2, . . . , Nn.

For each n ∈ N, the εi,n are independent random variables with E(ε1,n) = 0 and
Var(ε1,n) = 1. Finally, in (3.58), we take σ2

0,n = σ2
0 , independent of the εi,n.

Remark 3.19 Equations (3.57) and (3.58) specify a GARCH(1, 1)-type recursion in the fol-
lowing sense. In the ordinary discrete time GARCH(1, 1) series, the volatility sequence satisfies
(3.2), i.e.

σ2
i = β + (1 + (λ/δ)ε2

i−1)δσ2
i−1. (3.60)
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When the time grid is equally spaced, so ∆ti(n) = ∆t(n), i = 1, 2, . . . , Nn, (3.58) is equivalent
to (3.60), after rescaling by ∆ti(n) and a reparametrisation from (β, ϕ, η) to (β, λ, δ). Equation
(3.57) becomes a rescaled GARCH equation for the differenced sequence Gi,n − Gi−1,n. More
generally, with an unequally spaced time grid, if the series are scaled as in (3.57) and (3.58),
convergence to the COGARCH is obtained as follows.

Embed the discrete time-time processes G·,n and σ2
·,n into continuous time versions

Gn and σ2
n defined by

Gn(t) := Gi,n and σ2
n(t) := σ2

i,n, when t ∈ [ti−1(n), ti(n)), 0 ≥ t ≥ T, (3.61)

with Gn(0) = 0. The processes Gn and σn are in D[0, T].

Theorem 3.20 (Maller et al. (2008, Theorem 2.1))
In the above setup, the Skorokhod distance between the processes (G, σ2) defined by (3.7) and
(3.8), and the discretized, piecewise constant processes (Gn, σ2

n)n≥1 defined by (3.61), converge
in probability to 0 as n→ ∞, that is

ρ((Gn, σ2
n), (G, σ2))

P→ 0, as n→ ∞. (3.62)

Consequently, we also have convergence in distribution in D[0, T] ×D[0, T] : (Gn, σ2
n)

D→
(G, σ2) as n→ ∞.

Estimation Algorithm

The following deals with the application of the discrete approximation to the continu-
ous time GARCH process in order to find a method of fitting the model to unequally
spaced time series data. Therefore, Maller et al. (2008) use the methodology developed
for the dicrete-time GARCH. Klüppelberg et al. (2011) summarized the approach in an
estimation algorithm, which is as follows (cf. Klüppelberg et al. (2011, Section 5.4.1)).
The parameters are estimated under the following assumptions:

(H1) Suppose given observations Gti , 0 = t0 < t1 < · · · < tN = T, on the integrated
COGARCH as defined and parameterised in (3.7) and (3.8), assumed to be in its
stationary regime.

(H2) The (ti) are assumed fixed (non-random) time points.

(H3) E(L1) = 0 and E(L2
1) = 1; i.e. σ2 can be interpreted as the volatility.

(H4) The driving Lévy process has no Gaussian part, i.e. σ2
L = 0.

Then we proceed as follows.
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(1) Let Yi = Gti −Gti−1 denote the observed increments and put ∆ti := ti− ti−1. Then
from (3.7) we can write

Yi =
∫ ti

ti−1

σs−dLs, (3.63)

compare (3.9) for r = 1.

(2) We can use a pseudo-maximum likelihood (PML) method to estimate the param-
eters (β, η, ϕ) from the observed Y1, Y2, . . . , YN. The pseudo-likelihood function
can be derived as follows. Because (σt)t≥0 is Markovian (see Theorem 3.4), Yi is
conditionally independent of Yi−1, Yi−2, . . . , given Fti−1 . We have E(Yi|Fti−1) =
E(Yi) = E(Gti − Gti−1) = 0 for the conditional expectation of Yi, and for the
conditional variance,

ρ2
i := E(Y2

i |Fti−1) =

(
σ2

ti−1
− β

η − ϕ

)(
e(ϕ−η)∆ti − 1

ϕ− η

)
+

β∆ti

η − ϕ
. (3.64)

For the calculation of E(Y2
i |Fti−1) we can proceed as follows.18 In the proof of

Lemma 4.1, Klüppelberg et al. (2004) showed that

E(σ2
t+h|Ft) = (σ2

t −E(σ2
0 ))e

hΨ(1) + E(σ2
h). (3.65)

Furthermore in the proof of Proposition 5.1 they calculated that

E((G(r)
h )2|Fr) := Er((G

(r)
h )2)

= E(L2
1)
∫ h+r

h
Er(σ

2
s )ds

= (σ2
r −E(σ2

0 ))E(L2
1)
∫ r

0
e−sΨ(1)dsehΨ(1) + E(σ2

0 )E(L2
1)r. (3.66)

Using (3.66) we obtain

E(Y2
i |Fti−1) = E((Gti − Gti−1)

2|Fti−1)

= E((G(∆ti)
ti

)2|Fti−1)

= E(L2
1)
∫ ti

ti−1

E(σ2
s |Fti−1)ds (3.67)

For E(σ2
s |Fti−1) we get

E(σ2
s |Fti−1)

(3.65)
= (σ2

ti−1
−E(σ2

0 ))e
Ψ(1)(s−ti−1) + E(σ2

s−ti−1
). (3.68)

Furthermore we have∫ ti

ti−1

E(σ2
s−ti−1

)ds =
∫ ti

ti−1

(
β

−Ψ(1)
+
(
E(σ2

0 ) +
β

Ψ(1)
)
e(s−ti−1)Ψ(1)

)
ds

18We give the calculation of E(Y2
i |Fti−1) very detailed as (3.64) slightly differs from Equation (3.2) in

Maller et al. (2008).
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= ∆ti
β

−Ψ(1)
+
(
E(σ2

0 ) +
β

Ψ(1)
) ∫ ti

ti−1

e(s−ti−1)Ψ(1)ds

= ∆ti
β

−Ψ(1)
+
(
E(σ2

0 ) +
β

Ψ(1)
)( e∆tiΨ(1) − 1

Ψ(1)

)
. (3.69)

By inserting (3.68) in (3.67) and using (3.69) we have

E(L2
1)
∫ ti

ti−1

E(σ2
s |Fti−1)ds

= E(L2
1)(σ

2
ti−1
−E(σ2

0 ))
∫ ti

ti−1

e(s−ti−1)Ψ(1)ds + E(L2
1)
∫ ti

ti−1

E(σ2
s−ti−1

)ds

= E(L2
1)(σ

2
ti−1
−E(σ2

0 ))

(
e(ti−ti−1)Ψ(1) − 1

Ψ(1)

)
+ E(L2

1)
∫ ti

ti−1

E(σ2
s−ti−1

)ds

= E(L2
1)(σ

2
ti−1
−E(σ2

0 ))

(
e∆tiΨ(1) − 1

Ψ(1)

)
+ E(L2

1)(∆ti
β

−Ψ(1)
+ (E(σ2

0 ) +
β

Ψ(1)
)

(
e∆tiΨ(1) − 1

Ψ(1)

)
)

= E(L2
1)∆ti

β

−Ψ(1)
+ E(L2

1)

(
e∆tiΨ(1) − 1

Ψ(1)

)
(σ2

ti−1
−E(σ2

0 ) + E(σ2
0 ) +

β

Ψ(1)
)

= E(L2
1)∆ti

β

−Ψ(1)
+ E(L2

1)

(
e∆tiΨ(1) − 1

Ψ(1)

)
(σ2

ti−1
− β

−Ψ(1)
) (3.70)

We know by (3.14) that Ψ(1) = −η1 +
∫

R
((1 + ϕx2)1 − 1)νL(dx) =

−η + ϕ
∫

R
x2νL(dx) = −η + ϕ, as we assumed E(L2

1) =
∫

R
x2νL(dx) = 1. Then

we put this in (3.69) in order to obtain (3.64) as follows,

E(Y2
i |Fti−1) = E(L2

1)∆ti
β

−Ψ(1)
+ E(L2

1)

(
e∆tiΨ(1) − 1

Ψ(1)

)
(σ2

ti−1
− β

−Ψ(1)
)

= E(L2
1)∆ti

β

η − ϕ
+ E(L2

1)

(
e∆ti(ϕ−η) − 1

ϕ− η

)
(σ2

ti−1
− β

η − ϕ
)

= ∆ti
β

η − ϕ
+

(
e∆ti(ϕ−η) − 1

ϕ− η

)
(σ2

ti−1
− β

η − ϕ
) (3.71)

To ensure stationarity, we take E(σ2
0 ) = β/(η − ϕ), with η > ϕ.

(3) Applying the PML method, we assume that the Yi are conditionally N(0, ρ2
i ),

19

and use recursive conditioning to write a pseudo-log-likelihood function for the
observations Y1, Y2, . . . , YN as

LN = LN(β, η, ϕ) = −1
2

N

∑
i=1

(
Y2

i
ρ2

i

)
− 1

2

N

∑
i=1

log(ρ2
i )−

N
2

log(2π). (3.72)

19Here the Gaussian lig-likelihood is used as a contrast function. See Andersen (2009, p. 849) for de-
tails.



42 CHAPTER 3. CONTINUOUS TIME GARCH PROCESSES

The pseudo-log-likelihood function (3.72) can be calculated as follows. As the Yi
are conditionally N (0, ρ2

i ), we have

f (yi) =
1√

2πρ2
i

exp
(
− 1

2
y2

i
ρ2

i

)
. (3.73)

Thus, we have the likelihood function

LN(θ) := LN(β, η, ϕ) =
N

∏
i=1

(
1√

2πρ2
i

exp
(
− 1

2
Y2

i
ρ2

i

))
. (3.74)

Finally we get (3.72) by

LN = LN(β, η, ϕ) = log(LN)

= log

(
N

∏
i=1

(
1√

2πρ2
i

exp
(
− 1

2
Y2

i
ρ2

i

)))

=
N

∑
i=1

(
− 1

2
log(2πρ2

i )−
1
2

Y2
i

ρ2
i

)

= −1
2

N

∑
i=1

Y2
i

ρ2
i
− 1

2

N

∑
i=1

log(ρ2
i )−

N
2

log(2π).

(4) We must substitute an approximation for ρ2
i in (3.72), hence, we need such for

σti−1 in (3.64). From (3.57), we have Gi,n − Gi−1,n = σi−1,n
√

∆ti(n)εi,n. We use this
in order to see how we can write (3.58) in the present notation, we get

σ2
i,n = β∆ti(n) + (1 + ϕ∆ti(n)ε2

i,n)exp(−η∆ti(n))σi−1,n

= β∆ti(n) + exp(−η∆ti(n))σi−1,n + ϕ exp(−η∆ti(n))∆ti(n)ε2
i,nσi−1,n︸ ︷︷ ︸

(3.57)
= (Gi,n−Gi−1,n)2

(3.75)

Now we discretise the continuous time volatility process just as was done in The-
orem 3.20. As Yi = Gti − Gti−1 , (3.58) reads, in the present notation,

σ2
i = β∆ti + e−η∆ti σ2

i−1 + ϕe−η∆tiY2
i . (3.76)

(5) Finally, note that (3.76) is a GARCH-type recursion, so, after substituting σ2
i−1 for

σti−1 in (3.64), and the resulting modified ρ2
i in (3.72), we can think of (3.72) as

the pseudo-log-likelihood function for fitting a GARCH model to the unequally
spaced series.

This algorithm is implemented in Chapter 6.2.2. Taking β/(η − ϕ) as a starting value
for σ2

0 , we can maximize the functionLN, see (3.72), to get pseudo-maximum likelihood
estimates (PMLEs) of (β, η, ϕ). In the implemented PML function the first step is to
calculate σ2

i in (3.76) recursively. Then the ρ2
i can be calculated by (3.79) and plugged

into (3.72).
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3.2.3 Modified PML

In Chapter 3.2.2, we assumed that the time points ti, i = 0, . . . , N, are fixed, non-
random time points. For random time points this approach did not work. Therefore,
we modify this assumption to construct a ”modified” PML method in this chapter.
Suppose we have observations Gti , 0 = t0 < t1 < · · · < tN = T, on the integrated
COGARCH as defined and parameterized in (3.7) and (3.8), assumed to be in its sta-
tionary regime. Furthermore, we assume that the driving Lévy process of the COGA-
RCH process is a compound Poisson process with the rate λ. We then have an expo-
nential distribution for the ∆ti, i = 0, . . . , N, since they will be the interarrival times
of the driving compound Poisson process of the COGARCH(1, 1) process. This means
we do not have non-random time points like before, but we can simulate these random
time points. Therefore, we assume to know the information contained in Fti−1 ∪ (∆ti).

In Chapter 3.2.2, we calculated E(Y2
i |Fti−1), where Fti−1 includes the information

we have up to time ti−1. This means we do not know what ∆ti looks like. Now, we
additionally calculate E(Y2

i |Fti−1) = E(E(Y2
i |Fti−1 ∪ (∆ti))|Fti−1) by using (3.71).

E(E(Y2
i |Fti−1 ∪ (∆ti))|Fti−1) =

= E

(
β

η − ϕ
∆ti +

(
σ2

ti−1
− β

η − ϕ

)(
e(ϕ−η)∆ti − 1

ϕ− η

)∣∣∣∣∣Fti−1

)

=
β

η − ϕ
E
(
∆ti|Fti−1

)
+

(
σ2

ti−1
− β

η − ϕ

)
E

(
e(ϕ−η)∆ti − 1

ϕ− η

∣∣∣∣∣Fti−1

)

=
β

η − ϕ
E (∆ti) +

(
σ2

ti−1
− β

η − ϕ

) E
(

e(ϕ−η)∆ti
)
− 1

ϕ− η
(3.77)

We assumed that the driving Lévy process is a compound Poisson process with the

rate λ, we know that ∆t1, . . . , ∆tn
i.i.d∼ Exp(λ). Therefore we have E(∆ti) = 1/λ and we

can calculate E
(

e(ϕ−η)∆ti
)

. We use the moment generating function, which is defined
by

MX(t) := E(etX).
For X ∼ Exp(λ), MX(t) = λ/(λ− t) follows. Thus we have

E
(

e(ϕ−η)∆ti
)
=

λ

λ− (ϕ− η)
=

λ

λ + η − ϕ
, (3.78)

and therefore (3.77) turns into

E(E(Y2
i |Fti−1 ∪ (∆ti))|Fti−1) =

=
β

λ(η − ϕ)
+

(
σ2

ti−1
− β

η − ϕ

)
1

ϕ− η

(
λ

λ + η − ϕ
− 1
)

. (3.79)

Recall from above that ∆t1, . . . , ∆tn
i.i.d∼ Exp(λ). Therefore we can use the maximum

likelihood estimate for the rate λ. Thus it can be estimated by

λ̂ =
1

1
n ∑n

i=1 ∆ti
. (3.80)
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In the implementation of the PML method, see Chapter 6.2.2, it will be the first step
to estimate λ̂. Moreover we will use (3.79) for the calculation of ρ2

i .
In Chapter 3.3 where we conduct a simulation study, we also applied the ”modi-

fied” PML method. The results of the outcome of this estimation can be found in Table
3.9.

3.3 Simulation study

In order to illustrate the theory we introduced before, we now conduct a simulation
study. The following simulations and estimations are based on the examples intro-
duced in Chapter 3.1.3. The COGARCH processes are either driven by a compound
Poisson or a Variance Gamma Lévy process. We will use two different approaches to
estimate the parameters of the models: the moment estimation method (cf. Chapter
3.2.1) and the pseudo-maximum likelihood (PML) method (cf. Chapter 3.2.2).

In order to get an overview of the examples and their results in the following, we
give a short overview in Table 3.1.

Compound Poisson COGARCH(1, 1) process

In Chapter 3.1.3, some properties of the compound Poisson COGARCH(1, 1) process
have been reviewed, e.g. the Laplace exponents Ψ(1) in (3.24) and Ψ(2) in (3.25). In
order to apply the estimation methods, some assumptions have to be fulfilled. See
Chapter 3.2.1 (H1)-(H5) and Chapter 3.2.2 (H1)-(H4).
For the moment estimation method it is required that E(L1) = 0 and Var(L1) =
E(L2

1) = 1. Therefore, in (3.25) we must have E(Y2) = 1/λ, where Y denotes the
jumpsizes. Moreover, the condition

∫
R

x3νL(dx) = 0 yields E(Y3) = 0. The condition
Ψ(2) < 0 leads to ϕ2 < 2(η − ϕ)E(Y2)/E(Y4). Condition (H5) requires for G a finite
moment of higher order than the eighth, which is the case if E(L8+δ

1 ) < ∞, δ > 0, and
the (4 + δ)-moment of the volatility is finite, i.e. Ψ(4 + δ) < 0. The (8 + δ)-moment of
L will be finite if E(Y8+δ) < ∞. The volatility will have a finite fourth moment if

Ψ(4) = 4(ϕ− η) + 6λϕ2E(Y4) + 4λϕ3E(Y6) + λϕ4E(Y8)

is negative.20

We are going to simulate a COGARCH(1, 1) process driven by a compound Poisson
Lévy process. We then have a look at the parameters estimated by Algorithm 3.2.1. To
apply this Algorithm, in time equally spaced observations are necessary. The function
cogarch_sim used for the simulation of a COGARCH process, gives as an output the
values (Gti) at the random jumptimes ti ≥ 0 for i = 1, . . . , n, n ∈N. As these times are
not equally spaced, it is possible to apply the function prevTick. This gives the values
of the COGARCH process at a specified time-grid by previous tick interpolation. For
more details on the approach of the implemented programs see Chapter 6.
In the simulations of a COGARCH(1, 1) process driven by a compound Poisson Lévy

20cf. Haug (2006, Chapter 2.4.1).
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No. Parameters Lévy
Process

n Method Type Table

1 β = 1
η = 0.06
ϕ = 0.0425

cp 5000 Moment Est.
(equally spaced)

Estimated
values

3.2

2 β = 1
η = 0.06
ϕ = 0.0425

cp 20000 Moment Est.
(equally spaced)

Estimated
values

3.3

Residuals 3.4
3 β = 1

η = 0.06
ϕ = 0.0425

cp 5000 PML
(equally spaced)

Estimated
values

3.5

Residuals 3.6
4 β = 1

η = 0.06
ϕ = 0.0425

cp 20000 PML
(unequally
spaced)

Estimated
values

3.7

5 β = 1
η = 0.06
ϕ = 0.0425

cp 5000 PML
(unequally
spaced)

Estimated
values

3.8

6 β = 0.05
η = 0.06
ϕ = 0.04

cp 5000 ”modified” PML
(unequally
spaced)

Estimated
values

3.9

λ = 1 Estimated
values

3.10

7 β = 0.04
η = 0.053
ϕ = 0.038

vg 1000 Moment Est.
(equally spaced)

Estimated
values

3.11

8 β = 0.04
η = 0.053
ϕ = 0.038

vg 1000 PML
(equally spaced)

Estimated
values

3.12

9 β = 0.07
η = 0.06
ϕ = 0.04

vg 1000 Moment Est.
(equally spaced)

Estimated
values

3.13

10 β = 0.07
η = 0.06
ϕ = 0.04

vg 1000 PML
(equally spaced)

Estimated
values

3.14

Table 3.1: Overview of Examples
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process, the parameters are first chosen as β = 1, η = 0.06 and ϕ = 0.0425. So we
get Ψ(1) = −0.0175 and Ψ(2) = −0.02958. In the assumptions of Proposition 3.8 we
demand that Ψ(1) < 0 and Ψ(2) < 0 should be fulfilled, which is the case for the pa-
rameters chosen. Moreover we choose the jumps to be standard normally distributed
and λ = 1. In this case all the assumptions stated in Chapter 3.2.1 are satisfied.

We simulate 900 samples of n = 5000 equidistant observations G(1)
i , i = 1, . . . , n.

Table 3.2 summarizes β̂, η̂ and ϕ̂ the mean, the bias, the relative bias, the mean squared
error (MSE), the mean absolute error (MAE), the median and the bias of the median
for the estimated parameters. Compared to the true parameters β = 1, η = 0.06 and

n=5000 β̂ η̂ ϕ̂
Mean 0.91513 0.05193 0.03599
Bias -0.08487 -0.00807 -0.00651
Rel. Bias -0.08487 -0.13457 -0.15323
MSE 0.14928 0.00041 0.00023
MAE 0.30852 0.01657 0.01247
Median 0.88923 0.05007 0.03419
Bias Median -0.11077 -0.00993 -0.00831
MSE Median 0.07176 0.00022 0.00013
MAE Median 0.26788 0.01477 0.01130

Table 3.2: Estimated mean, bias, relative bias, MSE, MAE, median, bias of the median,
MSE of the median and MAE of the median for β̂, η̂ and ϕ̂ of 900 samples estimated
with the Moment Estimator Method. The true values are β = 1, η = 0.06 and ϕ =
0.0425.

ϕ = 0.0425 the mean values for the estimated parameters do not differ very much.
Both the MSE and the MAE values are the highest for the estimator β̂. We included the
median values in order to see if the mean parameter estimates are influenced by some
outliers, see the boxplots in Figure 3.5. The Figure on the lefthand side confirms that
the estimator β̂ varies the most, i.e. has some huge outliers. Comparing the true values
for β, η and φ (marked by a dotted horizontal line) to the median of the estimated
values β̂, η̂ and φ̂, we observe that they are quite close.
Furthermore, we simulated 900 samples of n = 20000 equidistant observations G(1)

i ,
i = 1, . . . , n. The outcomes can be found in Table 3.3. Estimating the parameters for
a longer time horizon leads to better estimation results, see for example the median
values for the estimators in Table 3.3.

In the following we would like to conduct a residual analysis. Therefore, we need
the estimated values of σ̂2

t . In Chapter 3.2.1, it has been described how the volatility
process σ̂2

t can be estimated. We take the parameters β̂, η̂ and ϕ̂ as estimated for our
example above. We estimate them by both methods, the moment estimation and the
PML method. Then, in order to calculate the volatility process recursively, we plug in
those estimators and the squared returns of the process in (3.51). As starting value σ2

0
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n=20000 β̂ η̂ ϕ̂
Mean 0.92295 0.05450 0.03831
Bias -0.07705 -0.00550 -0.00419
Rel. Bias -0.07705 -0.09170 -0.09858
MSE 0.04296 0.00016 0.00010
MAE 0.16669 0.01032 0.00818
Median 0.92020 0.05319 0.03703
Bias Median -0.07980 -0.00681 -0.00547
MSE Median 0.02145 0.00009 0.00006
MAE Median 0.14645 0.00942 0.00749

Table 3.3: Estimated mean, bias, relative bias, MSE, MAE, median, bias of the median,
MSE of the median and MAE of the median for β̂, η̂ and ϕ̂ of 900 samples estimated
with the Moment Estimator Method. The true values are β = 1, η = 0.06 and ϕ =
0.0425.

we choose 21 σ2
0 = β̂/η̂ In Figure 3.4 the sample paths of σ2

t (black) and of σ̂2
t (blue)

of our example can be found. The plot on the top of this figure corresponds to the
parameters estimated by the moment estimation method and the plot on the bottom
to the parameters estimated by the PML method. By a residual analysis22 we investi-
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Figure 3.4: Sample paths of σ2
t (black) and σ̂2

t (blue) of one simulation, where the true
values were β = 1, η = 0.06 and ϕ = 0.0425 for a moment estimation (top) and a PML
estimation (bottom).

gate the goodness of fit of our estimation method. The estimates residuals are given
by G(1)

i /σ̂i−1 for i = 1, . . . , n. In Table 3.4 the mean, MSE, MAE and the correspond-

21We choose σ2
0 like this because in Definition 3.10 the volatility process was defined as V0 = α0 + a′Y0.

And for Y0 = 0, V0 = α0 = β/η follows.
22This analysis is conducted analogously to Haug et al. (2007, Section 4.1).
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n=20000 mean(G(1)
n /σ̂n−1) std(G(1)

n /σ̂n−1) skewness(G(1)
n /σ̂n−1)

Mean -0.00020 (0.00024) 1.01027 (0.00019) -0.00238 (0.00178)
MSE 0.00005 (3·10−6) 0.00014 (6·10−6) 0.00286 (0.00014)
MAE 0.00570 (0.00015) 0.01027 (0.00019) 0.04227 (0.00109)

Table 3.4: Estimated mean, MSE and MAE for the mean, standard deviation and skew-
ness of the residuals with corresponding estimated standard deviations in brackets.

ing standard deviations for the mean, the standard deviation and the skewness of the
residuals G(1)

i /σ̂i−1 based on 900 simulations can be found. Since we assumed a sym-
metric jump distribution with zero mean, the residuals should be symmetric around
zero and their mean should be close to zero. Furthermore we expect the standard de-
viation to be close to one. The skewness should also be close to zero. Therefore the
outcomes indicate a reasonable fit.

Analogously we estimate the parameters with the PML Method. In Table 3.5 the
outcomes of the estimation for those 900 samples of n = 5000 equally spaced time-
points can be found. Like the mean of the parameters estimated by the moment esti-
mation method before, the mean of the parameters obtained by the PML approach is
not too different from the true parameter values. Table 3.6 summarizes the outcomes of

n=5000 β̂ η̂ ϕ̂
Mean 0.99036 0.04816 0.03098
Bias -0.00964 -0.01184 -0.0115
Rel. Bias -0.00964 -0.19731 -0.27097
MSE 0.08902 0.00023 0.00017
MAE 0.23388 0.01330 0.01182
Median 0.94971 0.04743 0.03071
Bias Median -0.05029 -0.01257 -0.01179
MSE Median 0.04025 0.00017 0.00014
MAE Median 0.20063 0.01289 0.01180

Table 3.5: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the PML Method. The true values are β = 1, η = 0.06 and ϕ = 0.0425.

the analysis of the residuals. Additionally having a look at Figure 3.5 which shows the
boxplots of both examples studied, we see that in this case there is no big difference in
the outcomes of the two estimation approaches. In the to row of Figure 3.5 the boxplots
for β̂ are displayed. In the bottom row the boxplots of η̂ (left in each plot) and ϕ̂ (right in
each plot) can bee seen. On the lefthand side the parameters estimated via the moment
estimation method are shown. On the righthand side we applied the PML method. By
a small horizontal dotted line the true values for β, η and ϕ are indicated. In both cases
this line is very close to the median (fat horizontal line in the middle of the box) which
can be found in Table 3.2 and 3.5 respectively.

Furthermore we applied the PML method to unequally spaced data. Therefore
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n=5000 mean(G(1)
n /σ̂n−1) std(G(1)

n /σ̂n−1) skewness(G(1)
n /σ̂n−1)

Mean -0.00012 (0.00048) 0.99911 (0.00010) -0.00022 (0.00341)
MSE 0.00021 (0.00001) 0.00001 (5 · 10−7) 0.01045 (0.00055)
MAE 0.01141 (0.00029) 0.00240 (0.00006) 0.08081 (0.00209)

Table 3.6: Estimated mean, MSE and MAE for the mean, standard deviation and skew-
ness of the residuals with corresponding estimated standard deviations in brackets.
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Figure 3.5: Boxplots of the estimated parameters β̂, η̂ and ϕ̂ of 900 samples estimated
with the Moment Estimator Method (left) and with the PML Method (right). The true
values are β = 1, η = 0.06 and ϕ = 0.0425.
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n=5000 β̂ η̂ ϕ̂
Mean 0.93023 0.04605 0.03013
Bias -0.06977 -0.01395 -0.01237
Rel. Bias -0.06977 -0.23242 -0.29104
MSE 0.03083 0.00022 0.00017
MAE 0.14193 0.01398 0.01237
Median 0.91911 0.04589 0.03013
Bias Median -0.08089 -0.01411 -0.01237
MSE Median 0.01572 0.00020 0.00015
MAE Median 0.12538 0.01411 0.01237

Table 3.7: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the PML Method for data observed at irregularly spaced time points. The true values
are β = 1, η = 0.06 and ϕ = 0.0425.

we simulated 900 samples over the time interval [0, 5000] and the same parameters
as above: β = 1, η = 0.06 and ϕ = 0.0425. To get the values of the correspond-
ing COGARCH(1, 1) process at unequally spaced time points, we will use the func-
tion prevTick. As a first step we simulate a COGARCH(1, 1) process by the func-
tion cogarch_sim, then we specify a time grid with unequally spaced times where we
would like to observe the process for. In our example, we specified uniform distributed
times with values 0.5, 1 and 1.5 which occur with the probabilities 0.3, 0.4 and 0.3. With
the prevTick function we get the values for these times by previous tick interpolation.
We then apply the PML estimation method to obtain estimated parameter values. The
outcome of this estimation is displayed in Table 3.7. Compared to the PML estimation
we conducted before, see Table 3.5, we get estimation results of similar quality. This
shows that the PML method can be applied to data observed at irregularly spaced
time points as well. Furthermore, we estimate the parameters with the PML method
for the same setting as above, but for a larger period of time, t ∈ [0, 20000]. In Table 3.8
we see that the results of the estimators become slightly better.

In Chapter 3.2.3 we computed E(E(Y2
i |Fti−1 ∪ (∆ti))|Fti−1) for a compound Poisson

driven COGARCH process. We considered this quantity because if Fti−1 is given, ∆ti
is not known. Therefore, we modified the PML estimation function and estimated the
parameters. The input parameters are chosen slightly different as before: β = 0.05,
η = 0.06 and ϕ = 0.04. The outcome is summarized in Table 3.9. Moreover λ̂ has been
estimated for each of the samples. In Table 3.10 the outcomes are shown. The mean
and the median of the estimates are very close to the input parameter for λ. The bias
and MSE values are very small. Therefore, we can conclude to have a good estimator
for λ as expected. Having a look at Figure 3.6. we can observe in the boxplots of the
estimated parameters that the median (and the mean) of all three parameters lie below
the true parameter values. Comparing these boxplots to the boxplots of our examples
before, it can be observed that the variation, i.e. the size of the ”box”, is bigger for all
parameters. Before, β̂ had the largest variation whereas in this example η̂ and ϕ̂ vary
more than before.
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n=20000 β̂ η̂ ϕ̂
Mean 0.93120 0.04613 0.03018
Bias -0.06880 -0.01388 -0.01232
Rel. Bias -0.06880 -0.23125 -0.28990
MSE 0.03182 0.00022 0.00016
MAE 0.14573 0.01390 0.01232
Median 0.91852 0.04572 0.03013
Bias Median -0.08148 -0.01428 -0.01237
MSE Median 0.01667 0.00020 0.00015
MAE Median 0.12913 0.01428 0.01237

Table 3.8: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the PML Method for data observed at irregularly spaced time points. The true values
are β = 1, η = 0.06 and ϕ = 0.0425.

n=5000 β̂ η̂ ϕ̂
Mean 0.03991 0.05320 0.03643
Bias -0.01009 -0.00680 -0.00357
Rel. Bias -0.20181 -0.11331 -0.08935
MSE 0.00017 0.00009 0.00004
MAE 0.01124 0.00805 0.00491
Median 0.03948 0.05289 0.03635
Bias Median -0.01052 -0.00711 -0.00365
MSE Median 0.00012 0.00006 0.00002
MAE Median 0.01075 0.00747 0.00428

Table 3.9: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the ”modified PML Method” for in time unequally spaced data (random jumptimes).
The true values are β = 0.05, η = 0.06 and ϕ = 0.04.

Variance Gamma COGARCH(1, 1) process

Analogoue to the approach we followed in the compound Poisson case, we proceed in
the Variance Gamma COGARCH process. In Tables 3.11 and 3.12 the estimation results
for 900 simulations can be found. In both cases the time period has been chosen as t in
[0, 1000]. The input parameters have been β = 0.04, η = 0.053 and ϕ = 0.038. For this
example we chose the input parameter of β smaller than before, to see if we get better
estimation results.

Again we estimated the model parameters by the moment estimator method at first
and then by the PML method. The values for β̂, η̂ and ϕ̂ estimated by the moment esti-
mation method, are close to the true parameter values, see Table 3.11. Having a look at
the outcomes of the PML estimation in Table 3.12 the mean values do not look promis-
ing. But due to the median values it is obvious that the mean has been influenced by
huge outliers. Additionally, this can be observed in the boxplots in Figure 3.7.

Furthermore we generated sample paths of a COGARCH(1, 1) process with differ-
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n=5000 λ̂
Mean 0.99991
Bias -0.00009
Rel. Bias -0.00009
MSE 0.00018
MAE 0.01054
Median 0.99997
Bias Median -0.00003
MSE Median 0.00018
MAE Median 0.00869

Table 3.10: Estimated mean, bias, relative bias, MSE, MAE, median, bias median, MSE
median, MAE median for λ̂ and corresponding standard deviations in brackets. The
true value is λ = 1.

n=1000 β̂ η̂ ϕ̂
Mean 0.04535 0.04477 0.02633
Bias 0.00535 -0.00823 -0.01167
Rel. Bias 0.13386 -0.15524 -0.30702
MSE 0.00301 0.00233 0.00091
MAE 0.04163 0.03879 0.02432
Median 0.02741 0.03670 0.02350
Bias Median -0.01259 -0.01630 -0.01450
MSE Median 0.00160 0.00159 0.00049
MAE Median 0.04000 0.03992 0.02207

Table 3.11: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the Moment Estimator Method. The true values are β = 0.04, η = 0.053 and ϕ = 0.038.

ent input parameters β = 0.07, η = 0.06 and ϕ = 0.04 and estimated the parameters of
them. We receive the results displayed in Tables 3.13 (moment estimation method) and
3.14 (PML method). In this example the median values of the estimates is closer to the
input parameters with the PML estimation method.
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n=1000 β̂ η̂ ϕ̂
Mean 0.14185 0.1291 0.06835
Bias 0.10185 0.07610 0.03035
Rel. Bias 2.54625 1.43582 0.79879
MSE 0.18269 0.22265 0.13558
MAE 0.10783 0.09188 0.05154
Median 0.05786 0.05232 0.02864
Bias Median 0.01786 -0.00068 -0.00936
MSE Median 0.00036 0.00034 0.00022
MAE Median 0.01903 0.01834 0.01493

Table 3.12: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the PML Method for in time equally spaced data. The true values are β = 0.04, η =
0.053 and ϕ = 0.038.

n=1000 β̂ η̂ ϕ̂
Mean 0.05945 0.04680 0.02944
Bias -0.01055 -0.01320 -0.01056
Rel. Bias -0.15076 -0.22004 -0.26392
MSE 0.00526 0.00291 0.00132
MAE 0.05724 0.04194 0.02642
Median 0.03616 0.03704 0.02461
Bias Median -0.03384 -0.02296 -0.01539
MSE Median 0.00361 0.001560 0.00055
MAE Median 0.06007 0.03949 0.02340

Table 3.13: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the Moment Estimation Method. The true values are β = 0.07, η = 0.06 and ϕ = 0.04.

n=1000 β̂ η̂ ϕ̂
Mean 0.23024 0.14917 0.03018
Bias 0.16024 0.08917 -0.00982
Rel. Bias 2.28919 1.48620 -0.24552
MSE 0.45940 0.25534 0.00011
MAE 0.17454 0.10809 0.00983
Median 0.10237 0.06015 0.03013
Bias Median 0.03237 0.00015 -0.00987
MSE Median 0.00138 0.00048 0.00010
MAE Median 0.03718 0.02197 0.00987

Table 3.14: Estimated mean, relative bias and MSE for β̂, η̂ and ϕ̂ of 900 samples with
the PML Method. The true values are β = 0.07, η = 0.06 and ϕ = 0.04.
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Figure 3.6: Boxplots of the estimated parameters β̂, η̂ and ϕ̂ of 900 samples estimated
with the modified PML Method. The true values are β = 0.05, η = 0.06 and ϕ = 0.04.
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Figure 3.7: Boxplots of the estimated parameters β̂, η̂ and ϕ̂ of 900 samples estimated
with the Moment Estimator Method (left) and with the PML Method (right). The true
values are β = 0.04, η = 0.053 and ϕ = 0.038.



Chapter 4

Exponential COGARCH Processes

When observing financial data, e.g stock returns, some main characteristics can be
found, see Remark 3.1. One of these is that stock returns seem to be negatively cor-
related with changes in the volatility, i.e. that volatility tends to increase after neagtive
shocks and to decrease after positive ones. This effect is called leverage effect and can
not be modeled by a GARCH type process without further extensions.23 In order to
model this effect (the leverage effect), Nelson (1991) defined the exponential GARCH
(EGARCH) process.
This whole chapter is based on the Paper of Haug and Czado (2007).

4.1 Discrete Time EGARCH Process

Definition 4.1 (Haug and Czado (2007, p.2,3))
The process (Xn)n∈Z of the form Xn = σnεn, n ∈ Z, where (εn)n∈Z is an i.i.d. sequence with
E(ε1) = 0 and Var(ε1) = 1, is called an EGARCH process, if the volatility process (σn)n∈Z

satisfies

log(σ2
n) = µ +

∞

∑
k=1

βk f (εn−k),

where f : R→ R is some measurable real valued deterministic function, µ ∈ R and (βk)k∈N

are real coefficients such that E(| f (εn)|) < ∞, Var( f (εn)) < ∞ and ∑∞
k=1 |βk| < ∞.

Furthermore, Nelson (1991) suggested a finite parameter model by modeling the
log-volatility as an ARMA(q, p− 1) process instead of an infinite moving average pro-
cess. This leads to the EGARCH(p, q) model, which is defined as follows.

Definition 4.2 (Haug and Czado (2007, p.3))
Let p, q ∈ N, µ, α1, . . . , αqβ1, . . . , βp ∈ R, suppose αq 6= 0, βp 6= 0 and that the au-
toregressive polynomial φ(z) := 1 − α1z − · · · − αqzq and the moving average polynomial
ψ(z) := β1 + β2z+ · · ·+ βpzp−1 have no common zeros and that φ 6= 0 on {z ∈ C||z| ≤ 1}.

23cf. Haug and Czado (2007), Introduction

55
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Let (εn)n∈Z be an i.i.d. sequence with E(ε1) = 0 and Var(ε1) = 1, and let f (·) be such that
E(| f (εn)|) < ∞ and Var( f (εn)) < ∞. Then (Xn)n∈Z, where Xn = σnεn and

log(σ2
n) = µ +

p

∑
k=1

βk f (εn−k) +
q

∑
k=1

αk log(σ2
n−k) (4.1)

is called an EGARCH(p, q) process.

Due to Nelson (1991), f (εn) must be a function of the magnitude and the sign of εn,
in order to achieve the asymmetric relation between the stock returns and the volatility.
Therefore he proposed the following function

f (εn) := θεn + γ[|εn| −E(|εn|)], (4.2)

with real coefficients θ and γ. We see that f (εn) is piecewise linear in εn and has slope
θ + γ for positive shocks εn and θ − γ for negative ones. Therefore f (εn) allows the
volatility process (σ2

n)n∈Z to respond asymmetrically to positive and negative jumps
in the stock price.

4.2 Exponential COGARCH Process

Analogously to the idea of Klüppelberg et al. (2004) where the continuous time GARCH
process has been constructed based on the discrete time GARCH process, Haug and
Czado (2007) developed a continuous time analogue of the discrete time EGARCH(p, q)
process. As in Klüppelberg et al. (2004), we will replace the noise variables εn by the
increments of a Lévy process L = (Lt)t≥0.

We consider a Lévy process L defined on a probability space (Ω,F , P) with jumps
∆Lt = Lt − Lt−, zero mean and finite variance. Recall from (2.14) the definition of the
compensated random measure associate to the Poisson random measure: ÑL(t, dx) =
NL(x, dx)− tνL(dx), t ≥ 0.

For the continuous time model the driving noise process will be constructed similar
to the discrete time case. For a Lévy process L with E(L1) = 0 and E(L2

1) < ∞ the
driving process M of the log-volatility process is defined by

Mt :=
∫

R\{0}
|h(x)|ÑL(t, dx), t ≥ 0, (4.3)

with h(x) := θx + γ|x| and θ, γ ∈ R.

Remark 4.3 (Haug and Czado (2007, Remark 1))
(i) The process M defined by (4.3) is by construction a process with independent and stationary
increments and by Theorem 4.3.4 in Applebaum (2009) well defined if∫

R
|h(x)|2νL(dx) < ∞. (4.4)

Condition (4.4) is satisfied since νL is a Lévy measure and L has finite variance. By Equation
(2.9) of Applebaum (2009) the characteristic triplet of M is (γM, 0, νM), where νM := νL ◦ h−1
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is the Lévy measure of M and γM := −
∫
|x|>1 xνM(dx). The precise form of νM depends on

the sign and size of θ and γ and is given in the following formulas:

νM((−∞,−x]) =


νL([− x

θ+γ , ∞)) + νL((−∞,− x
θ−γ ]), −γ > θ > γ

νL((−∞,− x
θ−γ ]), −θ < γ < θ

νL([− x
θ+γ , ∞)) −θ > γ > θ

0 −γ < θ < γ

and

νM([x, ∞)) =


νL([

x
θ+γ , ∞)) + νL((−∞, x

θ−γ ]), −γ < θ < γ

νL((−∞, x
θ−γ ]), −θ > γ > θ

νL([
x

θ+γ , ∞)) −θ < γ < θ

0 −γ > θ > γ

for x > 0. One recognizes that M is a spectrally negative24 Lévy process for γ < θ < −γ, i.e.
M has only negative jumps, and a spectrally positive Lévy process for −γ < θ < γ.
(ii) In case the jump part of L is of finite variation, M is a Lévy process of finite variation with
Lévy-Itô decomposition

Mt := ∑
0<s≤t

[θ∆Ls + γ|∆Ls|]− Ct, t > 0,

where C := γ
∫

R
|x|νL(dx).

In the following definition the exponential COGARCH(p, q) process is stated by speci-
fying the log-volatility process as a continuous time ARMA(q, p− 1) process, denoted
by CARMA(p, q) process25.

Definition 4.4 (Haug and Czado (2007, Definition 1))
Let L be a zero mean Lévy process with Lévy measure νL such that

∫
|x|≥1 x2νL(dx). Then we de-

fine the exponential COGARCH(p, q) process G, shortly ECOGARCH(p, q), as the stochastic
process satisfying

dGt := σt−dLt, t > 0, G0 = 0, (4.5)

where the log-volatility process log(σ2) = (log(σ2
t ))t≥0 is a CARMA(q, p− 1) process, 1 ≤

p ≤ q, with mean µ ∈ R and state space representation

log(σ2
t ) := µ + b>Xt, t > 0, log(σ2

0 ) = µ + b>X0 (4.6)
dXt := AXtdt + 1qdMt, t > 0 (4.7)

24A spectrally negative Lévy process X is a process that contains only negative jumps, i.e.
νX((−∞, 0]) = 0 and a spectrally positive process is a process that contains only positive jumps, i.e.
νX([0, ∞)) = 0 .

25For details on CARMA processes see e.g.Brockwell and Marquardt (2005).
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where X0 ∈ Rq is independent of the driving Lévy process M. The q × q matrix A and the
vectors b ∈ Rq and 1q ∈ Rq are defined by

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
−aq −aq−1 −aq−2 . . . −a1

 , b =


b1
b2
...

bq−1
bq

 , 1q =


0
0
...
0
1

 (4.8)

with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0 and bp+1 = · · · = bq = 0.

As defined in Chapter 3, we refer to G and G(r) as the (log-)price process and (log-)
return process, respectively. Also σ2 and log(σ2) will be the notation for the volatility
process and log-volatility process, respectively.

Remark 4.5 (Haug and Czado (2007, Remark 2)) The solution of the continuous time state
space model (4.6) and (4.7) has the representation

log(σ2
t ) = µ + b>eAtX0 +

∫ t

0
b>eA(t−u)1qdMu, t > 0.

The next Proposition gives conditions for the strict stationarity of log(σ2) and σ2.

Proposition 4.6 (Haug and Czado (2007, Proposition 3.1))
Let σ2 and G be as in Definition 4.4, with θ and γ not both equal to zero. If the eigenvalues of A
all have negative real parts and X0 has the same distribution as

∫ ∞
0 eAu1qdMu, then log(σ2)

and σ2 are strictly stationary.

Corollary 4.7 (Haug and Czado (2007, Corollary 1))
If σ2 is strictly stationary, then G has strictly stationary increments.

The following remark summarizes some properties of the volatility process. For the
simulation of an ECOGARCH(p, q) process we have to check if the parameters need to
satisfy any constraints in order to get a positive volatility process. Furthermore, it is of
interest in which case the volatility process contains jumps.

Remark 4.8 (Haug and Czado (2007, Remark 3))
(i) If q ≥ p + 1 the log-volatility process is (q − p − 1) times differentiable, which follows
from the state space representation of log(σ2), and hence the volatility process has continuous
sample paths. In particular the volatility will only contain jumps for p = q.
(ii) The volatility of the ECOGARCH(p, q) process is positive by definition. Therefore, the
parameters do not need to satisfy any constraints to assure positivity of the volatility. This is not
the case for the COGARCH(p, q) model, see Chapter 3.1.4. For higher order COGARCH(p, q)
processes these conditions become quite difficult to check (see Theorem 5.1 in Brockwell et al.
(2006)).
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4.3 Examples of ECOGARCH(p, q) processes

Our first example is an ECOGARCH(1, 1) process26. The process is driven by a Lévy
process L with Lévy process symbol

ΨL(u) = −
u2

2
+
∫

R
(eiux − 1)λΦ0,1/λ(dx),

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and
variance 1/λ. This means that L is the sum of a standard Brownian motion W and
the compound Poisson process Jt = ∑Nt

k=1 Zk, t ≥ 0, where (Nt)t∈R is an independent
Poisson process with intensity λ > 0 and jump times (Tk)k∈Z. The Poisson process N is
also independent from the i.i.d. sequence of jump sizes (Zk)k∈Z, with Z1 ∼ N (0, 1/λ).
The Lévy process M is then given by

Mt =
Nt

∑
k=1

[θZk + γ|Zk|]− Ct, t > 0,

with

C = γ
∫

R|x|λΦ0,1/λ(dx)

= γ
∫

R|x|λ 1√
2π 1

λ

exp
{
−λx2

2

}
dx

= 2γ
∫ ∞

0
x

λ√
2π 1

λ

exp
{
−λx2

2

}
dx

= γ
2√
2π 1

λ

∫ ∞

0
xλ exp

{
−λx2

2

}
dx︸ ︷︷ ︸[

− exp{− λx2
2 }
]∞

0
=1

=

√
2λ

π
γ.

M−t, t ≥ 0 is defined analogously. If we just consider the case where θ < −γ < 0, then
the Lévy measure νM of M is defined by

νM((−∞,−x]) = λΦ0,1/λ

(
[− x

θ + γ
, ∞)

)
, x > 0,

on the negative half real line and by

νM([x, ∞)) = λΦ0,1/λ((−∞,
x

θ − γ
]), x > 0,

26This example is based on Example 1. of Haug and Czado (2007).
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Figure 4.1: Simulated sample paths of J (upper row) and M (lower row), with parameters
θ = −0.2, γ = 0.1, λ = 1 and standard normally distributed jumps over three different
time scales.

on the positive half real line.
Figure 4.1 displayes the sample paths of the processes J and M over three different

time scales. The upper row of Figure 4.1 is a compound Poisson process with standard
normally distributed jumps and intensity λ = 1. The lower row shows the process M
with parameters θ = −0.2 and γ = 0.1. It can be observed that if J jumps upwards,
then M jumps down and the other way round. If J is constant, then M moves down
due to the drift.

With Remark 4.5 the log-volatility process is of the form

log(σ2
t ) = µ + b1e−a1tX0 +

∫ t

0
b1e−a1(t−s)dMs

= µ + b1e−a1tX0 +
Nt

∑
k=1

b1e−a1(t−Tk)[θZk + γ|Zk|]− C
b1

a1
(1− e−a1t),

for t > 0, and the log-price process is given by

Gt =
∫ t

0
σs−dWs

Nt

∑
k=1

σTk−Zk, t > 0, G0 = 0,

with jump times Tk, k ∈N.
For the simulation of a sample path of the log-price process G and the log-volatility

process log(σ2) over the time interval [0, T] we will follow the steps of the Algorithm
implemented in Chapter 6.3. The results of such a simulation are shown in Figure
4.2(a). Therefore, we use the simulation of an ECOGARCH(1, 1) process driven by a
compound Poisson Lévy process with parameters a1 = −0.1, b1 = 1, µ = −4, θ = −0.2,
γ = 0.1, λ = 1 and standard normally distributed jumps from the example above (cf.
Figure 4.1). Comparing the path of log-price process G = (Gt)t≥0 with the paths of the
driving Lévy process L = (Lt)t≥0 we can see that G jumps at the same time as L does.
Furthermore comparing L and M = (Mt)t≥0 we can observe the asymmetry, i.e. if L
jumps up, then M jumps down and the other way round. From the paths of the returns
G(r)

t and the volatility process σ2
t , we can see that the volatility increases after large
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negative returns and decreases after a large positive return. This effect is known as the
leverage effect which has been introduced at the beginning of Chapter 4. Moreover,
we simulated a sample path of an ECOGARCH process with higher order of p and q.
As an example a sample path of an ECOGARCH(2, 2) process driven by a compound
Poisson Lévy process with parameters a1 = −0.1, b1 = 1, µ = −4, θ = −0.2, γ = 0.1,
λ = 1 and standard normally distributed jumps is shown in Figure 4.2(b).

The two examples before assumed p and q of the same order. In order to see what
is happening for p < q, we simulated an ECOGARCH process with p = 2 and q = 3,
which can be found in Figure 4.3.

Due to Remark 4.8(i) the volatility will only contain jumps for p = q. In order to
see this property, we have a closer look at the volatility processes of two ECOGARCH
processes, one with p = q and the other one with q > p. In Figure 4.4 the volatility pro-
cesses of an ECOGARCH(1, 1) process (left) and of an ECOGARCH(2, 3) process (right)
can be observed for two different time scales. We examine the volatility processes for
jumps. Especially in the bottom row of Figure 4.4, it is obvious that the volatility of the
ECOGARCH process for p = q = 1 (left) contains jumps, but for p = 2 and q = 3 (right)
it does not.

For the simulation of an ECOGARCH(p, q) process we can use the function ecogarch_sim.
First, we have to choose some parameters. They should be chosen in a way that we get
a strictly stationary volatility process. Therefore we are going to check that the eigen-
values of A, which includes the chosen parameters a1, . . . , aq, all have negative real
parts. Due to Proposition 4.6 the volatility is then strictly stationary.
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Figure 4.3: Simulation of a compound Poisson driven ECOGARCH(2, 3) process with
parameters a1 = −3, a2 = −2, a3 = −1, b1 = b2 = 1, µ = −4, θ = −0.2, γ = 0.1, λ = 1
and standard normally distributed jumps.

Figure 4.4: Comparison of the volatility processes of an ECOGARCH(1, 1) (left) and
an ECOGARCH(2, 3) (right) process for different time scales. The parameters for the
ECOGARCH(1, 1) are a1 = −0.1, b1 = 1 and for the ECOGARCH(2, 3) a1 = −3,
a2 = −2, a3 = −1, b1 = b2 = 1 and for both cases µ = −4, θ = −0.2, γ = 0.1, λ = 1.



Chapter 5

Asymmetric COGARCH Processes

In this chapter, some asymmetric continous time extensions of the GARCH model will
be considered. We focus especially on the (asymmetric) GJR-COGARCH(1, 1) model.
This chapter is based on the master’s thesis of Mayr (2013). We refer to this thesis for
more details and the proofs of the following.

5.1 APARCH Process

5.1.1 Discrete Time APARCH

The (symmetric) GARCH model cannot model the so-called leverage effect which can
be found in return data. Due to Nelson (1991), the leverage effect is the phenomenon
that a negative shock increases the future volatility more than a positive one of the
same size. In order to take this effect into account several discrete time models have
been introduced. Nelson (1991) developed for example the exponential GARCH model
(EGARCH), see Chapter 4. Furthermore the Threshold GARCH model was introc-
duced by Rabemananjara and Zakoian (1993) and Zakoian (1994), and Glosten et al.
(1993) suggested the so-called GJR-Modell. In Ding et al. (1993) they introduced the
Asymmetric Power ARCH (APARCH) model. This model includes asymmetric mod-
els like the GJR and the Threshold GARCH model but also the symmetric GARCH
model. 27 It is defined as follows.

Definition 5.1 (?, Section 6)
Let (εn)n∈N be a sequence of i.i.d. random variables such that E (εn) = 0 and Var(εn) =
1. The process (Yn)n∈N is called Asymmetric Power ARCH(p, q), (APARCH(p, q)) if it is
satisfying an equation of the following form.

Yn = εnσn (5.1)

σδ
n = θ +

q

∑
i=1

αih(Yn−i) +
p

∑
j=1

β jσ
δ
n−j, (5.2)

with h(x) = (|x| − γx)δ, θ > 0, δ > 0, αi ≥ 0, βi ≥ 0 and |γi| < 1.
27cf. Chapter 4 in Mayr (2013).

64
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Remark 5.2 (Mayr (2013, Remark 4.2))
The function h(x) = (|x| − γx)δ from Definition 5.1 is strictly positive for all x ∈ R\{0}
and δ > 0, as due to the condition |γ| < 1 it holds |x| > γx.

The APARCH model, defined in (5.1) and (5.2) with h(x) = (|x| − γx)δ includes the
following models.

• GARCH model: For δ = 2, γi = 0 for i = 1, . . . , q and h(x) = x2 we obtain the
discrete time GARCH model.

• Threshold GARCH model: By inserting δ = 1 in h(x) it follows h(x) = (|x| − γx)
and

σn = θ +
q

∑
i=1

α+i Yn−i1{Yn−i>0} −
q

∑
i=1

γ−i Yn−i1{Yn−i<0} +
p

∑
j=1

β jσn−j,

with α+i = αi(1−γi) and γ−i = αi(1+γi), see Rabemananjara and Zakoian (1993)
and Zakoian (1994).

• GJR model: For δ = 2 we have h(x) = (|x| − γx)2 and get the GJR model from
Glosten et al. (1993) which is named after its authors Glosten, Jagannathan und
Runkle.
For 0 ≤ γi < 1 we obtain the GJR model,

σ2
n = θ +

q

∑
i=1

α∗i Y2
n−i +

p

∑
j=1

β jσ
2
n−j +

q

∑
i=1

γ∗i 1{Yn−i<0}Y
2
n−i,

with α∗i = αi(1− γi)
2 and γ∗i = 4αiγi.

For −1 < γi < 0 the GJR model is given by

σ2
n = θ +

q

∑
i=1

α∗i Y2
n−i +

p

∑
j=1

β jσ
2
n−j +

q

∑
i=1

γ∗i 1{Yn−i>0}Y
2
n−i,

with α∗i = αi(1 + γi)
2 and γ∗i = −4αiγi.

5.1.2 Continuous Time APARCH

As we have seen in Chapter 3.1, it is possible to construct a continuous time GARCH
model from a discrete time GARCH model. The same approach can be used to get a
continuous time APARCH model based on a discrete time APARCH model. This has
been shown in Lee (2010) and Lee (2012), where also some properties of this continuous
time version can be found. Based on these papers Mayr (2013) states the APARCH(1, 1)
model with its moments, stationarity and mixing properties in Chapter 4.2.

Inserting p = q = 1 in the discrete time APARCH(p, q) equations (5.1) and (5.2)
leads to the discrete time APARCH(1, 1) process,

Yn = εnσn, σδ
n = θ + α (|Yn−1| − γYn−1)

δ + βσδ
n−1, (5.3)
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where h(x) = (|x| − γx)δ, θ > 0, δ > 0, α ≥ 0, β ≥ 0 and |γ| < 1.
The idea is to proceed as in the GARCH case. That is to replace the innovations of

the discrete time APARCH through the increments of a Lévy process. Therefore, the
volatility process should relay only on the innovations:

σδ
n = θ + α (|Yn−1| − γYn−1)

δ + βσδ
n−1

= θ + α (|εn−1σn−1| − γεn−1σn−1)
δ + βσδ

n−1

= θ + α (|εn−1| − γεn−1)
δ σδ

n−1 + βσδ
n−1

= θ + (αh(εn−1) + β) σδ
n−1. (5.4)

Through iteration of (5.4) it follows

σδ
n = θ + (β + αh(εn−1)) σδ

n−1

= θ + (β + αh(εn−1))
(

θ + (β + αh(εn−2)) σδ
n−2

)
= · · ·

= θ
n−1

∑
i=0

n−1

∏
j=i+1

(
β + αh(ε j)

)
+ σδ

0

n−1

∏
j=0

(β + αh(ε j))

= θ
∫ n

0
exp

 n−1

∑
j=bsc+1

log
(

β + αh(ε j)
)ds + σδ

0 exp

(
n−1

∑
j=0

log
(

β + αh(ε j)
))

= θ
∫ n

0
exp

 n−1

∑
j=bsc+1

(
log β + log

(
1 +

α

β
h(ε j)

))ds

+ σδ
0 exp

(
n−1

∑
j=0

(
log β + log

(
1 +

α

β
h(ε j)

)))

= θ
∫ n

0
exp

(n− bsc) log β +
n−1

∑
j=bsc+1

(
log
(

1 +
α

β
h(ε j)

))ds

+ σδ
0 exp

(
n−1

∑
j=0

(
log β + log

(
1 +

α

β
h(ε j)

)))
(5.5)

Then, in order to obtain a continuous time version like for the COGARCH process
in Chapter 3.1, the innovations ε j are replaced by the increments of the Lévy process
L = (Lt)t≥0 with Lévy measure νL 6= 0. Regarding (5.5), a càdlàg process is defined as
follows

Xt = −t log β− ∑
0<s≤t

log
(

1 +
(

α

β

)
h(∆Ls)

)
, t ≥ 0, (5.6)

where θ > 0, α > 0, 0 < β < 1, |γ| < 1, δ > 0 and h(x) = (|x| − γx)δ. With σδ
0 a finite

positive random variable independent of (Lt)t≥0, define the left-continuous volatility
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process analogously to (5.5) by

σδ
t =

(
θ
∫ t

0
eXs ds + σδ

0

)
e−Xt− , t ≥ 0. (5.7)

Define the integrated continuous time APARCH(1, 1) process G = (Gt)t≥0 as the
càdlàg process satisfying

dGt = σt−dLt, t ≥ 0, G0 = 0. (5.8)

The process G jumps at the same time as L does, with jump size ∆Gt = σt∆Lt, t ≥ 0.

Continuous Time GJR GARCH Process

It is possible to obtain a continuous time version of the discrete time GJR GARCH
model with the method of Klüppelberg et al. (2004). In Chapter 6.2, Mayr (2013) showed
the following. Recall from Definition 5.1 the discrete time APARCH(1, 1) process. For
δ = 2 it includes the GJR GARCH model, cf. Ding et al. (1993). This can be shown by
setting the parameters p = q = 1, δ = 2, θ = a > 0, α = b > 0, β = c ∈ (0, 1) and
γ = d ∈ (0, 1). Equation (5.2) implies

σ2
i = a + b (|Yi−1| − dYi−1)

2 + cσ2
i−1

= a + b (|εi−1σi−1| − dεi−1σi−1)
2 + cσ2

i−1

= a + bε2
i−1σ2

i−1 − 2bd|εi−1σi−1|εi−1σi−1 + bd2ε2
i−1σ2

i−1 + cσ2
i−1

= a + b(1− d)2ε2
i−1σ2

i−11{εi−1≥0} + b(1 + d)2ε2
i−1σ2

i−11{εi−1<0} + cσ2
i−1.

For b∗ = b(1 − d)2 > 0 and d∗ = b(1 + d)2 > 0 the continuous time GJR GARCH
process follows.

σ2
i = a + b∗ε2

i−1σ2
i−11{εi−1≥0} + d∗ε2

i−1σ2
i−11{εi−1<0} + cσ2

i−1. (5.9)

With (5.9) a continuous time version of the volatility process can be obtained, based on
the approach of Klüppelberg et al. (2004).

σ2
i = a + b∗ε2

i−1σ2
i−11{εi−1≥0} + d∗ε2

i−1σ2
i−11{εi−1<0} + cσ2

i−1

= a +
(

c +
(

b∗1{εi−1≥0} + d∗1{εi−1<0}
)

ε2
i−1

)
σ2

i−1

= a +
(

c +
(

b∗1{εi−1≥0} + d∗1{εi−1<0}
)

ε2
i−1

)
×
(

a +
(

c +
(

b∗1{εi−2≥0} + d∗1{εi−2<0}
)

ε2
i−2

))
σ2

i−2

= a + a
[(

c +
(

b∗1{εi−1≥0} + d∗1{εi−1<0}
)

ε2
i−1

)
+
(

c +
(

b∗1{εi−1≥0}+

+d∗1{εi−1<0}
)

ε2
i−1

) (
c +

(
b∗1{εi−2≥0} + d∗1{εi−2<0}

)
ε2

i−2

)]
σ2

i−2

= . . .
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= a
i−1

∑
j=0

i−1

∏
k=j+1

(
c +

(
b∗1{εk≥0} + d∗1{εk<0}

)
ε2

k

)
(5.10)

+ σ2
0

i−1

∏
k=0

(
c +

(
b∗1{εk≥0} + d∗1{εk<0}

)
ε2

k

)

= a
∫ i

0
exp

 i−1

∑
k=bsc+1

log
(

c +
(

b∗1{εk≥0} + d∗1{εk<0}
)

ε2
k

) ds

+ σ2
0 exp

(
i−1

∑
k=0

log
(

c +
(

b∗1{εk≥0} + d∗1{εk<0}
)

ε2
k

))
(5.11)

= a
∫ i

0
exp

 i−1

∑
k=bsc+1

(
log c + log

(
1 +

b∗1{εk≥0} + d∗1{ε<0}
c

ε2
k

))ds

+ σ2
0 exp

(
i−1

∑
k=0

(
log c + log

(
1 +

b∗1{εk≥0} + d∗1{ε<0}
c

ε2
k

)))

= a
∫ i

0
exp

(i− bsc) log c +
i−1

∑
k=bsc+1

(
log
(

1 +
b∗1{εk≥0} + d∗1{ε<0}

c
ε2

k

))ds

+ σ2
0 exp

(
i−1

∑
k=0

(
log c + log

(
1 +

b∗1{εk≥0} + d∗1{ε<0}
c

ε2
k

)))
(5.12)

This is well-defined as in (5.11) it holds that c +
(

b∗1{εk≥0} + d∗1{εk<0}
)

ε2
k > 0. The

process X = (X(t))t≥0 is defined by

Xt = −t log c− ∑
0≤s≤t

log

1 +

(
b∗1{∆L(s)≥0} + d∗1{∆L(s)<0}

)
c

(∆Ls)
2

.

Choosing the parameters c = e−η, b = ϕe−η, ϕ > 0 and d = γ ∈ (0, 1) it follows that
b∗ = b(1− d)2 = ϕe−η(1− γ)2 and d∗ = b(1 + d)2 = ϕe−η(1 + γ)2. We can write

Xt = ηt− ∑
0≤s≤t

log
(

1 +
[
(1− γ)21{∆Ls≥0} + (1 + γ)21{∆Ls<0}

]
ϕ(∆Ls)

2
)

. (5.13)

With (5.11) and a = β the volatility process σ2 =
(
σ2

t
)

t≥0 can now be defined as

σ2
t =

(
θ
∫ t

0
eXs ds + σ2

0

)
e−Xt , t ≥ 0, (5.14)

The integrated continuous time GJR GARCH process G = (Gt)t≥0 is defined by

Gt =
∫ t

0
σs−dLs, t ≥ 0. (5.15)
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We will use the continuous time GJR GARCH(1, 1) process for the simulations and
estimations in the following.

It is possible to obtain a stochastic differential equation for the continuous time
APARCH process.

Theorem 5.3 The process
(
σδ

t
)

t≥0 satisfies the stochastic differential equation

dσδ
t+ = θdt + σδ

t eXt−d
(

e−Xt
)

, t > 0, (5.16)

and we have

σδ
t = σδ

0 + θt + log β
∫ t

0
σδ

s ds +
α

β ∑
0<s≤t

σδ
s h(∆Ls), t ≥ 0. (5.17)

For δ = 2 we obtain the continuous time GJR GARCH(1, 1) process. Equation (5.17)
can then be written as

σ2
t = σ2

0 + θt + log β
∫ t

0
σ2

s ds +
α

β ∑
0<s≤t

σ2
s h(∆Ls), (5.18)

with h(x) = (|x| − γx)2. For h(∆Ls) we obtain

h(∆Ls) = (|∆Ls| − γ∆Ls)
2

= ∆L2
s − 2γ|∆Ls|∆Ls + γ2∆L2

s

= (1 + γ2)∆L2
s − γ|∆Ls|∆Ls

= (1 + γ2)∆L2
s − 2γ∆L2

s1{∆Ls≥0} + 2γ∆L2
s1{∆Ls<0}

= (1 + γ2 − 2γ)∆L2
s1{∆Ls≥0} + (1 + γ2 + 2γ)∆L2

s1{∆Ls<0}
= (1− γ)2∆L2

s1{∆Ls≥0} + (1 + γ)2∆L2
s1{∆Ls<0} (5.19)

By inserting (5.19) in (5.18) and reparameterize (5.18) with θ = β, log(β) = −η and
α/β = ϕ we obatin

σ2
t = σ2

0 + βt− η
∫ t

0
σ2

s ds

+ ∑
0<s≤t

ϕ
[
(1− γ)21{∆Ls≥0} + (1 + γ)21{∆Ls<0}

]
︸ ︷︷ ︸

=:ϕ∗

σ2
s ∆L2

s (5.20)

Futhermore, we give some properties of the continuous time APARCH model. Based
on Klüppelberg et al. (2004, Theorem 3.1), Mayr (2013) stated a stability condition for
the volatility process

(
σδ

t
)

t≥0 of the continuous time APARCH process and defines σδ
∞.

Theorem 5.4 (Mayr (2013, Theorem 4.6))
Suppose ∫

R
log
(

1 +
α

β
h(y)

)
νL(dy) < − log β. (5.21)
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Then σδ
t

D−→ σδ
∞ as t→ ∞, for a finite random variable σδ

∞ satisfying

σδ
∞

D
= θ

∫ ∞

0
e−Xt dt. (5.22)

Conversely, if (5.21) does not hold, then σδ
t

P−→ ∞ as t→ ∞.

Next, based on (Klüppelberg et al., 2004, Theorem 3.2) and Lee (2012) the following
Theorem is proved in Mayr (2013, Theorem 4.7).

Theorem 5.5 The processes
(
σδ

t
)

t≥0 and
(
σδ

t , Gt
)

t≥0 are time homogeneous Markov processes.

If σδ
0

D
= σδ

∞ and σδ
0 are independent of (Lt)t≥0, then σδ

t is strictly stationary and (Gt)t≥0 is a
process with stationary increments.

From (5.7) it follows that the moments of the volatility process (σδ
t )t≥0 correspond

to certain exponential moments of (Xt)t≥0. Lemma 5.6 specifies this relationship.

Lemma 5.6 (Mayr (2013, Lemma 4.8))
Keep c > 0 throughout.

(a) Let α > 0. Then the Laplace transform E
(
e−cXt

)
of Xt at c is finite for some t > 0, or,

equivalently, for all t > 0, if and only if E
(
|L1|δc) < ∞.

(b) When E
(
e−cX1

)
< ∞, define Ψ(c) as Ψ(c) = ΨX(c) = log E

(
e−cX1

)
. Then |Ψ(c)| <

∞, E
(
e−cXt

)
= etΨ(c), and

Ψ(c) = c log(β) +
∫

R

((
1 +

α

β
h(y)

)c
− 1
)

νL(dy), (5.23)

where Ψ(c) is the Laplace exponent of the Laplace transform E
(
e−cXt

)
= etΨ(c) of the

auxiliary process X.

(c) If E
(
|L1|δ

)
< ∞ and Ψ(1) < 0, then

∫
R

log
(

1 +
α

β
h(y)

)
νL(dy) < − log β, (5.24)

holds, and σδ
t

D−→ σδ
∞ if t→ ∞, for a finite random variable σδ

∞, with σδ
∞

D
= θ

∫ ∞
0 e−Xt dt.

(d) If Ψ(c) < 0 for some c > 0, then Ψ(d) < 0 for all 0 < d < c.

Furthermore, it is possible to state the first two moments and the autocovariance
function of the volatility process

(
σδ

t
)

t≥0 in terms of Ψ.

Proposition 5.7 Let α > 0, t > 0, h ≥ 0.
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(i) E
(
σδ

t
)
< ∞ if and only if E

(
|L1|δ

)
< ∞ and E

(
σδ

0
)
< ∞. If this is the case, then

E
(

σδ
t

)
=

θ

−Ψ(1)
+

(
E
(

σδ
0

)
+

θ

Ψ(1)

)
etΨ(1), (5.25)

where for Ψ(1) = 0 the righthand side has to be interpreted as its limit as Ψ(1)→ 0, i.e.
E
(
σδ

t
)
= θt + E

(
σδ

0
)
.

(ii) E
(
σ2δ

t
)
< ∞ if and only if E

(
|L1|2δ

)
< ∞ and E

(
σ2δ

0
)
< ∞. In that case, the following

formulae hold

E
(

σ2δ
t

)
=

2θ2

Ψ(1)Ψ(2)
+

2θ2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)

+ 2θE
(

σδ
0

)( etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)

)
+ E

(
σ2δ

0

)
etΨ(2), (5.26)

Cov
(

σδ
t , σδ

t+h

)
= Var

(
σδ

t

)
ehΨ(1). (5.27)

In the following the moments of the continuous time APARCH model should be
considered. It is not known how to calculate the moments for every δ > 0. Therefore,
only models with δ = 2 will be considered in the following. The integrated APARCH
process was defined to satisfy dGt = σtdLt for t > 0, i.e G jumps at the same time
L does and has jumps of size ∆Gt = σt∆Lt. This definition implies that for any fixed
timepoint t all moments of ∆Gt are zero. But it makes sense to calculate moments for
the increments of G in arbitrary time intervals. The increments of G are denoted by
G(r)

t and for r > 0

G(r)
t := Gt+r − Gt =

∫ t+r

t+
σsds, t ≥ 0.

In Theorem 5.8 the moments of the increments G(r)
t are calculated.

Theorem 5.8 (Mayr (2013, Theorem 4.14))
Suppose (Lt)t≥0 is a quadratic pure jump process (i.e. σ2

L = 0), with E
(

L2
1
)

< ∞ and
E (L1) = 0. For the Laplace exponent from (5.23) it holds that Ψ(1) < 0. Let

(
σ2

t
)

t≥0 be

the stationary volatility process from (5.17) with σ2
∞

D
= σ2

0 . Then for any t ≥ 0 and h ≥ r > 0,

E
(

G(r)
t

)
= 0, (5.28)

E

((
G(r)

t

)2
)
=

θr
−Ψ(1)

E
(

L2
1

)
, (5.29)

Cov
(

G(r)
t , G(r)

t+h

)
= 0. (5.30)

Assume further that E
(

L4
1
)
< ∞ and Ψ(2) < 0. Then

Cov
((

G(r)
t

)2
,
(

G(r)
t+h

)2
)
=

(
e−rΨ(1) − 1
−Ψ(1)

)
E
(

L2
1

)
Cov

(
G2

r , σ2
r

)
ehΨ(1). (5.31)
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Where

Cov
(

G2
t , σ2

t

)
=

(
β

α

)
var

(
σ2

0

)(
1− etΨ(1) − log β

(
1− etΨ(1)

−Ψ(1)

))
. (5.32)

For the COGARCH(1, 1) process and the GJR GARCH(1, 1) process the righthand side of
(5.32) is strictly positive, if α > 0, E

(
|L1|8

)
< ∞, Ψ(4) < 0,

∫
[−1,1] |x|νL(dx) < 0 and∫

R
x3νL(dx) = 0.

In the first plot of Figure 5.1(a), a simulated sample path of a continuous time GJR
GARCH(1, 1) process, (Gt)t>0, driven by a compound Poisson process with λ = 1
and standard normally distributed jumps is shown. The parameters were chosen as
β = 0.04, η = 0.053, ϕ = 0.038 and γ = 0.3. Furthermore, the returns (G(1)

t )t>0 of this
process are displayed in the second plot from the top. In the third plot from the top, the
volatility process (σ2

t )t>0 can be observed. Finally, the sample paths of a (compound
Poisson) Lévy process are plotted in the figure on the bottom. As a comparison we will
simulate a symmetric COGARCH(1, 1) process driven by the same Lévy process as the
continuous time GJR GARCH(1, 1) process in Figure 5.1(a).The corresponding sample
paths can be seen in Figure 5.1(b). By the choice of the parameter γ the asymmetry of
the process is influenced. If a large value (between 0 and 1) is chosen for γ, the negative
jumps of the driving Lévy process are weighted more then positive jumps of the same
size. For γ = 0 positive and negative jumps are weighted equally and we then get
symmetric COGARCH model. In Figures 5.1(a) and 5.1(b) the influence of γ on the
asymmetry of the process can be observed.

The plot of the volatility process in Figure 5.1(a) seems to contain two paths. There-
fore, we have a look at a smaller range of time in Figure 5.2. In the plot on the top we
can observe the volatility process of the symmetric COGARCH(1, 1) process (blue line)
of our example before. The volatility process of the continuous time GJR GARCH(1, 1)
process is displayed by the black dots. In the bottom plot the jumpsizes of the under-
lying Lévy process are shown. For a positive jump we see that at the next point in time
the volatility process of the asymmetric model is below the volatility process of the
symmetric model. And for a negative jump it lies above the volatility process of the
symmetric model.

In order to illustrate the effect of different chosen values for the parameter γ, we
simulated the continuous time GJR GARCH(1, 1) model for γ = {0, 0.2, 0.3, 0.4}. Fig-
ure 5.3(a) shows the sample paths of the continuous time GJR GARCH(1, 1) process
(Gt)t≥0 for different γ. We can observe the different weighting according to positive or
negative jumps in the plots. In Figure 5.3(b) the returns (G(1)

t )t≥0 are displayed. There
we can observe bigger volatility clustering, the larger we choose the value for γ. The
volatility processes for γ = {0, 0.2, 0.3, 0.4} can be found in Figure 5.4. It is obvious
that positive and negative jumps are weighted differently. A negative jump has more
impact on the volatility process than a positive one. This leads to the effect that in the
plot it seem to be two paths again. See Figure 5.2 for an explanation.
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Figure 5.2: Comparison of the volatility process σ2
t of a symmetric COGARCH(1, 1)

process driven by a compound Poisson process with standard normally distributed
jumps and λ = 1 (blue) and the volatility process of a continuous time GJR
GARCH(1, 1) process (black dots) with parameters β = 1, η = 0.06, ϕ = 0.0425 and
γ = 0.8 (top). And the jumpsizes ∆Lt (bottom).

5.2 Estimation method for the GJR COGARCH

In this chapter, we first approximate the continuous time GJR GARCH(1, 1) process
by a discrete time model. Then we use this approximation to get a discretization of
the continuous time volatility process. Finally we state an estimation method which
can be apply to unequally space asymmetric data. The finite sample properties of this
estimator are analysed in a small simulation study.

5.2.1 Approximating the continuous time GJR GARCH process

Mayr (2013) showed in Chapters 6 and 7 that the approach introduced in the paper
of Maller et al. (2008) can be used for the continuous time GJR GARCH(1, 1) model.
This chapter is based on these chapters. The aim of this chapter is to define - based
on a continuous time GJR GARCH(1, 1) process G - discrete time GJR GARCH(1, 1)
processes Gn = (Gn(t))t≥0, n = 1, 2, . . . , which approximate the continuous time GJR
GARCH(1, 1) process G. After appropriate rescaling to match the discrete and contin-
uous time parameters, it will be shown that the discrete time process (Gn)n converges
in probability to the continuous time process G in the Skorokhod metric.

We can then continue to approximate the continuous time GJR GARCH(1, 1) pro-
cess, as described before for the COGARCH(1, 1) process in Chapter 3.2.2 based on
Maller et al. (2008, Section 2.1).
Fix T > 0, and take deterministic sequences (Nn)n≥1 with limn→∞ Nn = ∞ and 0 =
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Figure 5.4: Volatility processes of a continuous time GJR GARCH(1, 1) process driven
by a compound Poisson process with λ = 1 and standard normally distributed jumps.
The parameters were chosen as β = 0.04, η = 0.053, ϕ = 0.038 and γ = {0, 0.2, 0.3, 0.4}
((top)-(bottom)).
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t0(n) < t1(n) < · · · < tNn(n) = T, and, for each n = 1, 2, . . . , divide [0, T] into Nn
subintervals of length ∆ti(n) := ti(n)− ti−1(n) for i = 1, 2, . . . , Nn. Assume ∆t(n) :=
maxi=1,...,Nn ∆ti(n) → 0 as n → ∞ and define for each n = 1, 2, . . . , a discrete-time
process (Gi,n)i=1,...,Nn satisfying

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)εi,n, i = 1, 2, . . . , Nn, (5.33)

where G0,n = G0 = 0. The volatility σ2
i,n can be described through the following recur-

sion

σ2
i,n =θ∆ti(n) + e−η∆ti(n)σ2

i−1,n

×
(

1 + [(1− γ)21{εi−1,n≥0} + (1 + γ)21{εi−1,n<0}]ϕ∆tiε
2
i−1,n

)
. (5.34)

Equations (5.33) and (5.34) describe a GJR GARCH(1, 1) similar recursion. If we choose
for all time subintervals the same length, i.e. ∆ti(n) = ∆t(n), i = 1, 2, . . . , Nn, then, after
rescaling with ∆t(n) and appropriate reparametrization, (5.34) is equivalent to (5.9).
For the reparametrization of the parameters from (θ, η, ϕ, γ) to (a, b∗, c, d∗) we choose
a = θ, b∗ = b(1− d)2 = ϕe−η(1− γ)2, c = e−η and d∗ = b(1 + d)2 = ϕe−η(1 + γ)2 as
before.

The innovations (εi,n)i=1,...,Nn , i ∈ N are constructed using a ”first jump” approxi-
mation of the Lévy process, as introduced for the COGARCH case in Chapter 3.2.2. In
the stopping time defined in (3.59) only the value of the jump size |∆Lt| is considered.
For the continuous time GJR GARCH(1, 1) model it is of impact if the driving Lévy
process jumps up or down. Due to the asymmetry of the model there is a difference in
weighting positive and negative jumps. Therefore we have to observe additionally if
the jump is positive or negative.

Analogously to the COGARCH case, the discrete time processes G·,n and σ2
·,n are

embedded into the continuous time versions Gn and σ2
n defined by

Gn(t) := Gi,n and σ2
n(t) := σ2

i,n, when t ∈ [ti−1(n), ti(n)), 0 ≤ t ≤ T, (5.35)

with Gn(0) = 0. In Theorem 5.9 the convergence of the discrete time processes to the
continuous time processes is specified.

Theorem 5.9 (Mayr (2013, Theorem 6.6))
Let the processes (G, σ2) be defined as in (5.7) and (5.8). Moreover (Gn, σ2

n)n≥1 defined as
in (5.35). Then the Skorokhod distance between the processes and the discretized, piecewise
constant processes converges in probability to 0 as n→ ∞, i.e

ρ((Gn, σ2
n), (G, σ2))

P→ 0 as n→ ∞. (5.36)

Consequently, we also have convergence in distribution in D[0, T]×D[0, T].
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5.2.2 Pseudo-Maximum Likelihood Method

In Section 3 of Maller et al. (2008), they suggested a method of fitting a continuous
time GARCH process to unequally spaced time data. We introduced this method (PML
method) in Chapter 3.2.2. It is possible to use this approach with modified equations
(3.64), (3.74) and (3.76) for a continuous time GJR GARCH(1, 1) model as we will show
in the following.28

Suppose having observations Gti at the timepoints 0 = t0 < t1 < · · · < tN =
T on the integrated continuous time GJR GARCH. Furthermore, it is assumed that
the integrated continuous time GJR GARCH process is in its stationary regime and
the timepoints {ti} are fixed (non-random). Let Yi = Gti − Gti−1 denote the observed
returns and let ∆ti = ti − ti−1. Then

Yi =
∫ ti

ti−1

σs−dLs,

where L is a Lévy process with E(L1) = 0 and E(L2
1) = 1 assumed.

We would like to use the PML method to estimate the parameters (β, η, ϕ, γ) from
the observed Y1, Y2, . . . , YN. The return Yi is conditionally independent from
Yi−1, Yi−2, . . . , given Fti−1 , as (σ2

t )t≥0 is a Markov process, cf. Theorem 5.5. Like be-
fore it holds for the conditional expectation E(Yt|Fti−1) = 0 and for the conditional
variance we have, as in (3.70)

ρ2
i = E(Y2

i |Fti−1) = E(L2
1)∆ti

β

−Ψ(1)
+ E(L2

1)

(
e∆tiΨ(1) − 1

Ψ(1)

)(
σ2

ti−1
− β

−Ψ(1)

)
.

(5.37)
Consequently, we only have to calculate Ψ(1) for the continuous time GJR GARCH
process with h(x) = (|x| − γx)2. With Lemma 5.6 and the reparametrization log(β) =
−η and α

β = ϕ, the Laplace exponent for the continuous time GJR GARCH model can
be calculated by

Ψ(c) = −ηc +
∫

R
((1 + ϕ(|y| − γy)2)c − 1)νL(dy).

In order to calculate Ψ(1) for the continuous time GJR GARCH model we restrict
ourselves to symmetric jump distributions for the driving Lévy process. Assuming∫

R
y2νL(dy) = E(L2

1) = 1 and a symmetric jump distribution we get

Ψ(1) = −η +
∫

R
((1 + ϕ(|y| − γy)2)− 1)νL(dy)

= −η + ϕ
∫

R
(|y| − γy)2νL(dy)

= −η + ϕ
∫

R
(|y|2 − 2γ|y|y + γ2y2)νL(dy)

= −η + ϕ

(
(1 + γ2)

∫
R

y2νL(dy)− 2γ
∫

R
|y|yνL(dy)

)
28This has been developed based on the theory of Mayr (2013).
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= −η + ϕ(1 + γ2). (5.38)

Inserting (5.38) in (5.37) we get

ρ2
i = E(Y2

i |Fti−1)

= ∆ti
β

−Ψ(1)
+

(
e∆tiΨ(1) − 1

Ψ(1)

)(
σ2

ti−1
− β

−Ψ(1)

)
= ∆ti

β

η − ϕ(1 + γ2)
+

(
e∆ti(−η+ϕ(1+γ2)) − 1
−η + ϕ(1 + γ2)

)(
σ2

ti−1
− β

η − ϕ(1 + γ2)

)
(5.39)

Applying the PML method, we assume the Yi are conditionally N (0, ρ2
i ). Analogously

to (3.72) we obtain the following pseudo-log-likelihood function for Y1, Y2, . . . , YN

LN = LN(β, η, ϕ) = −1
2

N

∑
i=1

(
Y2

i
ρ2

i

)
− 1

2

N

∑
i=1

log(ρ2
i )−

N
2

log(2π), (5.40)

with ρ2
i from (5.39). In order to implement this method, we will need a calculable quan-

tity for ρ2
i . Therefore we discretize the continuous time volatility process as it was done

in Theorem 5.9. Thus, (5.34) is in the present notation, with β = θ, of the following
form,

σ2
i = β∆ti +

(
1 + [(1− γ)21{εi−1≥0} + (1 + γ)21{εi−1<0}]ϕ∆tiε

2
i−1

)
e−η∆ti σ2

i−1

= β∆ti + e−η∆ti σ2
i−1 + [(1− γ)21{εi−1≥0} + (1 + γ)21{εi−1<0}]ϕe−η∆ti ∆tiε

2
i−1σ2

i−1

= β∆ti + e−η∆ti σ2
i−1 + [(1− γ)21{εi−1≥0} + (1 + γ)21{εi−1<0}]ϕe−η∆tiY2

i . (5.41)

5.2.3 Simulation Study

We apply the estimation approach introduced above to simulated samples of a contin-
uous time GJR GARCH(1, 1) process. For n = 5000, we simulated 900 samples with
input parameters β = 0.04, η = 0.053, ϕ = 0.038 and γ = 0.3. Then, we apply the
moment estimation method in order to get starting values for β, η and ϕ. As it is not
possible to apply the moment estimation method to estimate all the parameters for the
GJR GARCH model, we chose γ = 0.3. We can use those parameters as starting values
for the PML method introduced above and implemented in Chapter 6.4. In Table 5.1
the results are shown. The means of the estimators β̂, η̂ and ϕ̂ are close to the input
parameters and therefore the estimation method worked quite well. The mean of the
estimators γ̂ does not look so good. The input parameter has been γ = 0.3, but the
mean of the estimated values γ̂ is 0.16645 and it is not influenced by large outliers as
the median is 0.15601. If we choose gamma = 0.7 for example, the estimated values for
γ̂ are equally small as in our example with γ = 0.3.
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n=5000 β̂ η̂ ϕ̂ γ̂
Mean 0.04739 0.04457 0.02980 0.16645
Bias 0.00739 -0.00843 -0.00821 -0.13355
Rel. Bias 0.18472 -0.15908 -0.21595 -0.44517
MSE 0.00036 0.00017 0.00012 0.03112
MAE 0.01208 0.01102 0.00912 0.15356
Median 0.04258 0.04318 0.02939 0.15601
Bias Median 0.00258 -0.00982 -0.00861 -0.14399
MSE Median 6 · 10−5 0.00011 7 · 10−5 0.02222
MAE Median 0.00777 0.01035 0.00872 0.15356

Table 5.1: Estimated mean, bias, relative bias, MSE, MAE, median, bias of the median,
MSE of the median and MAE of the median for β̂, η̂ and ϕ̂ of 900 samples with the PML
Method for in time unequally spaced asymmetric data. The true values are β = 0.04,
η = 0.053, ϕ = 0.038 and γ = 0.3.



Chapter 6

Implementation in R

In Chapter 3 we introduced continuous time GARCH models and tried to estimate
their parameters. Furthermore, we simulated sample paths of the ECOGARCH(p, q)
process in Chapter 4. In Chapter 5 we had a look at the simulation and estimation of
an asymmetric continuous time model: the continuous time GJR GARCH(1, 1) model.
Based on the theory, we are going to present some useful implementations of these
models using the program R (R Core Team (2012)). In the following, we state some
functions written in R-code and explain the corresponding approach. All of these func-
tions are summarized in the R-package cogarch. For the documentation of this package
see Appendix A.2.

6.1 Simulation of a continuous time GARCH process

We start with the simulation of a COGARCH(1, 1) process. The simulation of such a
process can be conducted with the function cogarch_sim. The COGARCH process can
be based on different Lévy processes, so it is possible to choose either a compound Pois-
son process or a Variance Gamma Process. These processes can be simulated with the
functions compoundPoisson or vargamma. Moreover, we simulated a COGARCH(p, q)
process with a compound Poisson process as driving Lévy process in Chapter 3.1.4.
For the simulation of a COGARCH process with p, q ≥ 1 the function cogarch_pq_sim

can be used, see Chapter 6.1.4.

6.1.1 Simulation of a compound Poisson process

We already introduced the compound Poisson process in Example 2.4. In Figure 2.3 a
simulated sample path of a compound Poisson processes with λ = 2 and standard
normally distributed jumpsizes is shown. This has been generated by the function
compoundPoisson, which can be found in R-Code A.1. the following arguments should
be specified as input: the considered points of a time grid are stated by the vector
t. Additionally the rate which corresponds to the intensity λ and the distribution of the
jumpsizes with its mean and variance can be chosen. For example, distribution=”normal”,
mean= 0 and var= 1 (i.e. N (µ = 0, σ = 1)) can be specified as input parameters. Ad-
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ditionally the Bernoulli and the Uniform distribution with different mean and variance
are implemented in this function. The function starts with a simulation of the random
jumptimes ti, i = 1, . . . , N. From these random jumptimes we get the random time in-
tervals, ∆t = ti− ti−1, which are i.i.d. exponentially distributed random variables with
the selected rate. As an output we get a matrix including the ”jumptimes”, the ”values
of ∆Lt” and the ”values of Lt”.
R-Code 6.1 shows how to use this function in order to simulate and then plot a com-
pound Poisson process.
# i n p u t p a r a m e t e r s
t<−0 : 1 0
r a t e<−1
d i s t r i b u t i o n<−”normal” # j u m p s i z e s a r e n o r m a l l y d i s t r i b u t e d
mean<−0
var<−1

# s i m u l a t i o n
s e t . seed ( 1 2 3 ) # c h o o s e any random s e e d
output<−compoundPoisson ( 0 : 1 0 , ra te , d i s t r i b u t i o n , mean , var )
jumptimes<−output [ , 1 ]
no<−length ( jumptimes )
max<−c e i l i n g ( jumptimes [ no ] ) +1

# p l o t j u m p s i z e s d e l t a Lt and Lt
plot ( s tepfun ( c ( jumptimes ) , c ( 0 , output [ , 2 ] ) , r i g h t =FALSE) , v e r t i c a l s =FALSE , pch =20 , xlab=” t ” ,

ylab=expression ( Delta∗L [ t ] ) , xlim=c ( 0 ,max ) , xaxs=” i ” ) # p l o t j u m p s i z e s d e l t a Lt
plot ( s tepfun ( c ( jumptimes ) , c ( 0 , output [ , 3 ] ) , r i g h t =FALSE) , v e r t i c a l s =FALSE , pch =20 , xlab=” t ” ,

ylab=expression ( L [ t ] ) , xlim=c ( 0 ,max ) , xaxs=” i ” ) # p l o t Lt

R-Code 6.1: Example compound Poisson Process

6.1.2 Simulation of a Variance Gamma process

A further example of a Lévy process is the Variance Gamma (VG) process. We already
introduced this kind of process in Example 2.5.
Madan et al. (1998) state that a Variance Gamma process can be obtained by evaluating
a Brownian motion with drift at a random time given by a Gamma process. The ap-
proach we use for simulating such a process is taken from Schoutens (2003). The idea is
to sample a standard Brownian Motion and a Gamma process in order to get a sample
path of a VG process. First we simulate the sample path of a Gamma process (Ht)t≥0,
such that each Ht follows a Γ(at, b) law, with density

fHt(x) =
bat

Γ(at)
xat−1e−bx, (6.1)

where Γ(·) denotes the Gamma function. The process is simulated over a time grid
{n∆t, n = 0, 1, . . . }. By generating Γ(a∆t, b) distributed random variables gn, n ≥ 0 ,
we can approximate the Gamma process by

H0 := 0, Hn∆t = H(n−1)∆t + gn. (6.2)

Finally we can get the VG process (Vt)t≥0 with parameters σ > 0, τ > 0 and θ ∈ R by

Vt := θHt + σBGt , (6.3)

where (Bt)t≥0 is a standard Brownian motion with drift given by a Gamma process
(Ht)t≥0 with parameters a = 1/τ and b = 1/τ.
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An example of a simulated VG process with σ = 0.3, θ = −0.03, τ = 0.5 and grid
size ∆t = 0.01 on the time interval [0, 10] is shown in Figure 2.4.

In order to simulate this kind of process the function vargamma29 of R-Code A.2 can
be used. Our example can be generated by R-Code 6.2 which uses this function.
sigma <− 0 . 3
t h e t a <− −0.03
nu <− 0 . 5
t <− seq ( 0 , 1 , 0 . 1 )
gs <− 0 .00001

s e t . seed ( 1 2 3 )
output <− vargamma ( sigma , nu , theta , t , gs )
plot ( output [ , 1 ] , output [ , 2 ] , type=”p” , cex =0 .01 , xlab=” t ” , ylab=expression (V[ t ] ) , xlim=c ( 0 , 1 0 ) , xaxs=” i ” )

R-Code 6.2: Example Variance Gamma Process

6.1.3 Simulation of a COGARCH(1,1) process

As mentioned before the Lévy process used for the simulation of a COGARCH(1, 1)
process can be selected. It can be either a compound Poisson process or a Variance
Gamma process. Consequently, it is possible to perform this simulation (see R-Code
6.3) based on R-Code A.1 or A.2. To understand the approach of the COGARCH(1, 1)
simulation we should have a look at the concept of the Euler scheme, also called the
Euler-Maruyama scheme.

Euler scheme

The Euler scheme30 is an extension of the Euler method for solving ordinary differen-
tial equations to solve stochastic differential equations (SDEs) numerically. Its idea is
the following. Let the Itô process {Xt, 0 ≤ t ≤ T} be a given solution of the stochastic
differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dWt,

with initial deterministic value Xt0 = X0 and the discretization ΠN = ΠN([0, T]) of
the interval [0, T], 0 = t0 < t1 · · · < tN = T. We set Yi := Yti and Wi := Wti for a
Wiener process. The Euler scheme of X is a continuous stochastic process Y satisfying
the iterative scheme

Yi+1 = Yi + b(ti, Yi)(∆ti) + σ(ti, Yi)∆Wi, (6.4)

for i = 0, 1, . . . , N − 1, with Y0 = X0. By ∆ti we denote the time increments ti+1 − ti.
Analogously, we have the N (0, ∆ti)-distributed increments of the Wiener process W
on the time interval [ti, ti+1], denoted by ∆Wi = Wi+1 −Wi. In order to simulate the
process Y, it can be seen from Equation (6.4) that a simulation of the increments of the

29Pay attention to the fact that in the function vargamma the parameter τ is denoted by the input
parameter nu.

30see Kloeden and Platen (2011, Chapter 10.2), Iacus (2008, Chapter 2) and Protter and Talay (1997) for
details and examples.
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Wiener process is sufficent. The Euler scheme is strongly convergent of order γ = 0.5
and weakly convergent of order β = 1. 31

In Brockwell et al. (2006), Theorem 2.2, it has been demonstrated that if p = q = 1,
the solution of the COGARCH(p, q) SDEs coincides with the solution of the
COGARCH(1, 1) SDEs of Klüppelberg et al. (2004).32 Thus, we can use this result, ad-
justed with our parameters, to apply the Euler scheme.
For the case p = q = 1 we find in the proof of Theorem 2.2 in Brockwell et al. (2006)
the following equations:

dYt = −ηYt−dt + Vtd[L, L](d)t and Vt =
β

η
+ ϕYt−, (6.5)

and it follows that

dVt = ϕdYt = −ϕη
Vt − β/η

ϕ
dt + ϕVtd[L, L](d)t .

Hence we have

Vt =
β

η
ηt− η

∫ t

0
Vsds + ϕ ∑

0<s≤t
Vs∆L2

s + V0. (6.6)

Equation (6.6) is also satisfied for the volatility process (σ2
t )t≥0 of Equation (3.6), as we

have

σ2
t =

β

η
ηt− η

∫ t

0
σ2

s ds + ϕ ∑
0<s≤t

σ2
s ∆L2

s + σ2
0

= βt− η
∫ t

0
σ2

s ds + ϕ ∑
0<s≤t

σ2
s ∆L2

s + σ2
0 . (6.7)

Compare Equation (6.7) with Equation (3.8) of Proposition 3.2 in Klüppelberg et al.
(2004), where η = −log(δ) and ϕ = λ

δ . Now we are ready to apply the Euler scheme to
Equation (6.5). We have b(t, Yt) = −ηYt− and σ(t, Yt) = Vt with Vt =

β
η + ϕYt−. With

Equation (6.4) we can conclude

Yi+1 = Yi − ηYi−∆ti + Vi∆L2
i and Vi =

β

η
+ ϕYi−, (6.8)

with V0 = β/η and Y0 = 0. In the corresponding R-Code 6.3, we first simulate the
driving Lévy process for a small interval of time. As mentioned before, it is possible

31Cf. Iacus (2008, p.61 and 62): A time-discretized approximation Yδ of a continuous time process
Y, with δ the maximum time increment of the discretization, is said to be of general strong order of
convergence γ to Y if for any fixed time horizon T it holds true that E|Yδ(T)− Y(T)| ≤ Cδγ, ∀δ < δ0,
with δ0 > 0 and C constant not depending on δ. Moreover, Yδ is said to converge weakly of order β to
Y if for any fixed time horizon T and any 2(β + 1) continuous differentiable function g of polynomial
growth, it holds true that |Eg(Y(T))− Eg(Yδ(T))| ≤ Cδβ, ∀δ < δ0, with δ0 > 0 and C a constant not
depending on δ.

32Also compare Chapter 3.1 in this master’s thesis.
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to choose either a compound Poisson process (via Lp=”cp”) or a Variance Gamma
process (via Lp=”vg”). In this step the random jumptimes of the chosen Lévy process
are also simulated. As a next step we initialize the Yi+1 by Yi, the volatility Vi by voli

and ∆Gt by g. Afterwards, we conduct a simulation of the driving Lévy process and
its random jumptimes for the whole time interval chosen by the input parameter t.
Then we calculate vol, where vol[1]<-voli, Y, where Y[1]<-Yi and delta_G, where
delta_G[1]<-g. Finally we obtain the desired COGARCH(1, 1) process Gt by using
the cumulated sum of the ∆Gt.
cogarch sim<−function ( t =0 :10 , beta =1 , e ta =0 .05 , phi =0 .03 ,Lp=”cp” , r a t e =1 , d i s t r i b u t i o n =”normal” ,mean=0 , var =1 , sigma =1 ,nu = 0 . 5 , t h e t a

=1 , gs = 0 . 0 1 )
{# Simulation of a COGARCH(1,1) process driven by a compound Poisson or a Variance Gamma Lévy process

#Input: t - fixed time grid

# beta,eta,phi - Input parameters for the cogarch process, have to be positive

# Lp - driving Lévy process: either "cp"=compound Poisson or ""vg"= Variance Gamma

# rate - intensity of the compound Poisson Levy process

# distribution - jump size distribution, e.g "normal"

# mean,var - mean and variance of specified jump distribution

# sigma, nu, theta - parameters for Variance Gamma process (for E(L 1)=0 and E(L 1^2)=1 choose theta=0 and sigma=1)

# gs - time grid size

#Output: G - COGARCH(1,1) process

# vol - volatility process

# Lt - driving Lévy process

# delta Lt - jumps of Lévy process

# randomjumptimes - random jumptimes

#use the Euler-Maruyama scheme in order to get a numerical solution for a SDE

#See the Book: Peter E. Kloeden: "Numerical solution of stochastic differential equations"

t<−s o r t ( t )
n t<−length ( t )

#find starting values

i f ( Lp==”cp” ){
index<−1

}e lse i f ( Lp==”vg” ){
index<−2

}e lse{
stop ( ”No val id Levy process s p e c i f i e d ! S e l e c t ’ cp ’ or ’ vg ’ . ” )

}
switch ( index ,

{output cp<−compoundPoisson ( 0 : 1 0 , ra te , d i s t r i b u t i o n , mean , var ) #calls the function compoundPoisson with output c(randomjumptimes

,randomjumpsizes,Lt)

r t<−output cp [ , 1 ] #randomjumptimes

#delta rt<−rt[2:N]-rt[1:(N-1)] #randomjumpintervals, delta ti

d e l t a r t<−output cp [ , 4 ] #randomjumpintervals, delta ti

d e l t a Lt<−output cp [ , 2 ] #randomjumpsizes, delta Lti

Lt<−output cp [ , 3 ] #L t

} ,
{output vg<−vargamma ( 0 : 1 0 , sigma , nu , theta , gs ) #calls the function varGamma with output timesequence and V

Lt<−output vg [ , 2 ]
r t<−output vg [ , 1 ]
nv<−length ( Lt )
nt<−length ( r t )

#increments of the process

d e l t a Lt<−Lt [ 2 : nv]−Lt [ 1 : ( nv−1) ]
d e l t a r t<−r t [ 2 : nt]− r t [ 1 : ( nt−1) ]
}

)
n<−length ( d e l t a Lt )

d e l t a Lt 0<−c ( 0 , d e l t a Lt [ 1 : ( n−1) ] ) #used for sigma t-, i.e. the sigma t without the jump at time t !

#start value volatility, for state process set Y=0 in the beginning and therefore for the observation process: V = beta / eta +

phi∗Y = beta / eta
v o l i<−beta / e ta

#state space process

Yi<−0
g<−0

for ( k in 1 : n ){
Yi<−Yi−e ta∗Yi∗d e l t a r t [ k]+ v o l i∗d e l t a Lt 0 [ k ] ˆ 2 # delta Lt hat null im ersten Vektoreintrag, daher erhalte sigma t-

v o l i<−beta / e ta+phi∗Yi
g<−g+sqr t ( v o l i )∗d e l t a Lt [ k ]

}

#-----------------------------------------------

#obtain values via Euler approximation

switch ( index ,
{output cp new<−compoundPoisson ( t , ra te , d i s t r i b u t i o n , mean , var ) #calls function compoundPoisson

r t new<−output cp new [ , 1 ] #randomjumptimes

d e l t a r t new<−output cp new [ , 4 ]



86 CHAPTER 6. IMPLEMENTATION IN R

d e l t a Lt new<−output cp new [ , 2 ] #randomjumpsizes, delta Lti

Lt new<−output cp new [ , 3 ] #L t

} ,
{output vg new<−vargamma ( t , sigma , nu , theta , gs ) #calls the function varGamma with output timesequence and V

Lt new<−output vg new [ , 2 ]
r t new<−output vg new [ , 1 ]
nvn<−length ( Lt new)
ntn<−length ( r t new)

#increments of the process

d e l t a Lt new<−Lt new [ 2 : nvn]−Lt new [ 1 : ( nvn−1) ]
d e l t a r t new<−r t new [ 2 : ntn]− r t new [ 1 : ( ntn−1) ]
}

)

nn<−length ( d e l t a Lt new)
#add again 0 as first entry of delta Lt new in order to get sigma t- !
d e l t a Lt new 0<−c ( 0 , d e l t a Lt new [ 1 : ( nn−1) ] ) #length nn

#volatility

vol<−vector ( length =(nn ) )
vol [ 1 ]<−v o l i

#state space

Y<−vector ( length =(nn ) )
Y[ 1 ]<−Yi

for ( k in 1 : nn ){

Y[ k+1]<−Y[ k]− e ta∗Y[ k ]∗d e l t a r t new[ k]+ vol [ k ]∗d e l t a Lt new 0[ k ] ˆ 2
vol [ k+1]<−beta / e ta+phi∗Y[ k ]

}

d e l t a G<−vector ( length=length ( vol ) ) #length(vol)=nn+1 mit nn=length(delta Lt new)

d e l t a G[ 1 ]<−g
s<−sqr t ( vol [ 1 : ( length ( vol )−1) ] ) #length=nn

d e l t a G[ 2 : length ( vol ) ]<−s∗d e l t a Lt new [ 1 : nn ] #length=nn

G<−cumsum( d e l t a G) #length=nn+1

switch ( index ,
{output<−cbind (G, vol , c ( 0 , Lt new) , c ( 0 , d e l t a Lt new) , c ( 0 , r t new) )

colnames ( output )<−c ( ”G” , ” vol ” , ” Lt ” , ” d e l t a Lt ” , ”randomjumptimes” )
} ,
{output<−cbind (G, vol , Lt new , c ( 0 , d e l t a Lt new) , r t new)

colnames ( output )<−c ( ”G” , ” vol ” , ” Lt ” , ” d e l t a Lt ” , ”randomjumptimes” )
}

)
return ( output )

}

R-Code 6.3: Simulation of a COGARCH(1, 1) process

As the function cogarch_sim needs several input parameters, we give an exam-
ple for better understanding how to use this function. In R-Code 6.4 we provide an
example of the simulation of a COGARCH(1, 1) process driven by a compound Pois-
son process with λ = 1 and standard normally distributed jumps. The parameters are
β = 0.04, η = 0.053 and ϕ = 0.038. Moreover, this example can be used to reproduce
the plots shown in Figure 3.1.
#input parameters

t<−0 :100
beta<−0 . 0 4
e ta<−0 .053
phi<−0 .038

Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1

#simulation

s e t . seed ( 1 0 0 ) #chosen any random number

output <− cogarch sim ( t , beta , eta , phi , Lp=”cp” , ra te , d i s t r i b u t i o n , mean , var ) #compound Poisson

G<−output [ , 1 ]
vol<−output [ , 2 ]
Lt<−output [ , 3 ]
d e l t a Lt<−output [ , 4 ]
r t<−output [ , 5 ]

#plots

#par(mfrow=c(4,1))

plot ( r t , Lt , type=” l ” , xlim=c ( 0 , 1 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( L [ t ] ) )
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plot ( r t ,G, type=” l ” , xlim=c ( 0 , 1 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression (G[ t ] ) )
plot ( r t , vol , type=” l ” , xlim=c ( 0 , 1 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( sigma [ t ] ) )
plot ( r t , d e l t a Lt , type=” l ” , xlim=c ( 0 , 1 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( paste ( Delta , L [ t ] , sep=”” ) ) )

R-Code 6.4: Simulation of a COGARCH(1, 1) process with a compound Poisson Lévy
process

In R-Code 6.5 a simulation of a COGARCH(1, 1) process driven by a Variance Gamma
process with parameters σ = 0.3, θ = −0.03 and τ = 0.3 can be found. The gridsize is
chosen to be 0.001.

#input parameters

t<−0 :100
beta<−0 . 0 4
e ta<−0 .053
phi<−0 .038

Lp=”vg” #variance gamma process, Lp="vg"

sigma<− 0 . 3
t h e t a<− −0.03
nu<−0 . 3
gs<−0 .001

#simulation

s e t . seed ( 1 0 0 ) #chosen any random number

output c<−cogarch sim ( t , beta , eta , phi , Lp=”vg” , sigma , nu , theta , gs ) #variance gamma

#plots analogously to the Example of the Simulation of a COGARCH(1,1) process with a compound Poisson Lévy process

R-Code 6.5: Simulation of a COGARCH(1, 1) process with a Variance Gamma Lévy
process

6.1.4 Simulation of a COGARCH(p, q) process

For the simulation of a COGARCH(p, q) process, introduced in Chapter 3.1.4, we mod-
ified the function cogarch_sim for p, q > 1. First we tried to apply the Euler scheme
analogously to Chapter 6.1.3. As this approach was not successful we now use the
following equation to obtain Yi+1,

Yi+1 = eB∆tiYi + eVi∆L2
i .

And the volatility process is calculated by

Vi+1 = α0 + AYi.

In R-code 6.6 the function cogarch_pq_sim is shown.
cogarch pq sim<−function ( t =0 :10 , a0 =0 .04 , a =0 .038 , b=−0.053 ,Lp=”cp” , r a t e =1 , d i s t r i b u t i o n =”normal” ,mean=0 , var =1){
#Simulation of a COGARCH(p,q) process

#Input: t - time grid

# a0 - start value

# a=[alpha 1,alpha 2,...,alpha {p-1},alpha p], where alpha 1=phi

# b=[-beta 1,-beta 2,...,-beta {q-1},-beta q], where beta 1=eta and if q=1: b=[-beta 1]

# Lp - driving Lévy process: "cp"=compound Poisson process

# rate - intensity of the compound Poisson process

# distribution - jump size distribution, e.g "normal"

# mean,var - mean and variance of specified jump distribution

#Output: G - COGARCH(p,q) process

# vol - volatility process

# Lt - driving Lévy process

# delta Lt - jumps of Lévy process

# randomjumptimes - random jumptimes

# eig - eigenvalues of matrix B

t<−s o r t ( t )
n t<−length ( t )
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#initialize matrix A and vectors b,e

q=length ( b )
B=matrix ( 0 , q , q )
i f ( q>1){

for ( i in 1 : ( q−1) ){
B [ i , i +1]<−1
}}

B [ q , ]<−b [ q : 1 ]
e ig<−eigen ( B ) $ value
r e i g<−Re ( e ig )
for ( i in 1 : q ){
i f ( r e i g [ i ]>0){

stop ( ” P o s i t i v e eigenvalues ! Please s p e c i f y d i f f e r e n t values f o r b ! ” )
}}

e<−rep ( 0 , length=q )
e [ q ]<−1

A<−rep ( 0 , length=q )
p<−length ( a )
A[ 1 : p ]<−a
#----------------------------------

output cp<−compoundPoisson ( 0 : 1 0 , ra te , d i s t r i b u t i o n , mean , var ) #calls the function compoundPoisson with output c(

randomjumptimes,randomjumpsizes,Lt)

r t<−output cp [ , 1 ] #randomjumptimes

d e l t a r t<−output cp [ , 4 ] #randomjumpintervals, delta ti

d e l t a Lt<−output cp [ , 2 ] #randomjumpsizes, delta Lti

Lt<−output cp [ , 3 ] #L t

n<−length ( d e l t a Lt )

d e l t a Lt 0<−c ( 0 , d e l t a Lt [ 1 : ( n−1) ] ) #used for sigma t-, i.e. the sigma t without the jump at time t !

#---------------------------------------

yi<−matrix ( 0 , q , n )
g<−rep ( 0 , length=n )

v o l i<−a0
yi [ , 1 ]<−rep ( 1 , length=q )

for ( k in 1 : n ){
yi [ , 1 ] = as . numeric (expm( B∗d e l t a r t [ k ] )%∗%yi [ , 1 ] ) + v o l i∗d e l t a Lt 0 [ k ] ˆ 2∗e
v o l i<−( a0+ t (A)%∗%yi [ , 1 ] )
g [ 1 ]<−g [1 ]+ sqr t ( v o l i )∗d e l t a Lt [ k ]
}

#---------------------

output cp new<−compoundPoisson ( t , ra te , d i s t r i b u t i o n , mean , var ) #calls function compoundPoisson

r t new<−output cp new [ , 1 ] #randomjumptimes

#NN<−length(rt new)

#delta rt new<−rt new[2:NN]-rt new[1:(NN-1)] #randomjumpintervals, delta ti

d e l t a r t new<−output cp new [ , 4 ]
d e l t a Lt new<−output cp new [ , 2 ] #randomjumpsizes, delta Lti

Lt new<−output cp new [ , 3 ] #L t

nn<−length ( d e l t a Lt new)
#add again 0 as first entry of delta Lt new in order to get sigma t- !
d e l t a Lt new 0<−c ( 0 , d e l t a Lt new [ 1 : ( nn−1) ] ) #length nn

#volatility

vol<−vector ( length =(nn+1) )
vol [ 1 ]<−v o l i

y<−matrix ( 0 , q , ( nn+1) )
y [ , 1 ]<−yi [ , 1 ]

for ( k in 1 : nn ){
y [ , k+1]= as . numeric (expm( B∗d e l t a r t new[ k ] )%∗%y [ , k ] ) +vol [ k ]∗d e l t a Lt new 0[ k ] ˆ 2∗e
vol [ k+1]<−( a0+ t (A)%∗%y [ , k ] )

}

d e l t a G<−vector ( length=length ( vol ) ) #length(vol)=nn+1 mit nn=length(delta Lt new)

d e l t a G[ 1 ]<−g [ 1 ]
s<−sqr t ( vol [ 1 : ( length ( vol )−1) ] ) #length=nn

d e l t a G[ 2 : length ( vol ) ]<−s∗d e l t a Lt new [ 1 : nn ] #length=nn

G<−cumsum( d e l t a G) #length=nn+1

return ( l i s t (G, vol , Lt new , d e l t a Lt new , r t new , e ig ) )
}

R-Code 6.6: Simulation of a COGARCH(p, q) process

The Example in R-Code 6.7 describes the simulation of a COGARCH(1, 3) process.
t =0:500
a0=1
a=c ( 1 )
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b=c (−1.2 ,−0.48−pi ˆ2 ,−0.064−0.4∗pi ˆ 2 )
Lp=”cp”
r a t e =1
d i s t r i b u t i o n =”normal”
mean=0
var=1
output<−cogarch pq sim ( t , a0 , a , b , Lp , ra te , d i s t r i b u t i o n , mean , var )
G<−u n l i s t ( output [ [ 1 ] ] )
vol<−u n l i s t ( output [ [ 2 ] ] )
Lt<−u n l i s t ( output [ [ 3 ] ] )
d e l t a Lt<−u n l i s t ( output [ [ 4 ] ] )
r t<−u n l i s t ( output [ [ 5 ] ] )
e ig<−u n l i s t ( output [ [ 6 ] ] )

#plots

par ( mfrow=c ( 4 , 1 ) )
plot ( c ( 0 , r t ) ,G, cex = 0 . 1 , xaxs=” i ” , xlim=c ( 0 , 5 0 0 ) , x lab=” t ” )
plot ( r t , d i f f (G) , type=”h” , xaxs=” i ” , xlim=c ( 0 , 5 0 0 ) , ylab=expression (Gˆ{ ( 1 ) }) , x lab=” t ” )
plot ( c ( 0 , r t ) , vol , cex = 0 . 1 , xaxs=” i ” , xlim=c ( 0 , 5 0 0 ) , ylab=expression ( sigma ˆ 2 ) , x lab=” t ” )
plot ( r t , Lt , cex = 0 . 1 , xaxs=” i ” , xlim=c ( 0 , 5 0 0 ) , x lab=” t ” )

R-Code 6.7: Simulation of a COGARCH(p, q) process with a compound Poisson Lévy
process

6.2 Estimation of the COGARCH(1, 1) process

In 3.2 we gave an overview on estimation methods which can be used for estimating
the parameters of the COGARCH(1, 1) model. In this chapter, we will explain how this
could be done with R functions.

6.2.1 Method of Moment Estimators

It is of great interest to estimate the parameters of the COGARCH model. For equally
spaced data we can use the method of moments estimation. The background of this
method has been given in Chapter 3.2.1.

To conduct an estimation with the method of moment estimators we need the input
process to be equally spaced in time. The output of a simulation of the COGARCH(1, 1)
process with the function cogarch_sim is not equally spaced in time. We get the ran-
dom jumptimes and the values of the process G at these random jumptimes. In order
to specify a time grid which is equally spaced and get the values of G at these equally
spaced times, we introduce the function prevTick in R-Code 6.8. This function trans-
forms the time series X, e.g. the process G, at the irregular time points it into a ho-
mogeneous time series y at the specified time points t. This is done with previous tick
interpolation. That means in order to get the value for the timepoint ti, i = 1, . . . , N, of
the specified time grid, we take the value of the process X at the irregular time point it
which is smaller than or equal to the time point ti.
prevTick <−
function ( t , i t , X){

#transforms the time series X, observed at the irregular time points it,

#into a homogeneous time series y at regularly time points t

#uses previous tick interpolation

#-> i.e it takes the value of the maximal irregular time point<= regular time point t

l t<−length ( t )
y<−rep ( 0 , l t )
l i t<−length ( i t )

for ( i in 1 : l t ){
m<−which ( i t<=t [ i ] )
max<−max (m)
y [ i ]<−X[max ]
}
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return ( y )
}

R-Code 6.8: PrevTick function

In R-Code 6.9 we give an example for the usage of the function prevTick. We spec-
ified an equally spaced time grid in the interval [0, 100]. It is also possible to trans-
form the process to any specified time grid, e.g. the time intervals between the ti could
be uniformly distributed (use the following command to generate these time points
t<-c(0,cumsum(sample(c(.5,1,1.5),100,replace=TRUE,prob=c(.3,.4,.3))))).
#simulate compoundPoissonprocessCOGARCH

t<−0 :100 #equally spaced time grid

beta<−0 . 0 4
e ta<−0 .053
phi<−0 .038
Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1
output<−cogarch sim ( t , beta , eta , phi , Lp=”cp” , ra te , d i s t r i b u t i o n , mean , var )

G<−output [ , 1 ]
vol<−output [ , 2 ]
Lt<−output [ , 3 ]
d e l t a Lt<−output [ , 4 ]
r t<−output [ , 5 ]

#use function prevTick to get data on the specified time grid t

i t<−r t #random jumptimes

X<−G
pt<−prevTick ( t , i t , X) output : process G at s p e c i f i e d time grid t

R-Code 6.9: Simulation of a COGARCH(1, 1) process with a compound Poisson
process and transformation of the process to an equally spaced time grid with the
function prevTick.

In the following, we give the R-Code 6.10 which estimates the parameters β, η and ϕ
of a COGARCH process according to Theorem 3.13 and the estimation algorithm given
in the end of Chapter 3.2.1. The function est_cogarch_ret needs returns (G(1)

t )t≥0
(equally spaced in time) as an input. The number of lags is chosen to be d ≈ √n,
where n is the number or returns, see page 11 in Haug et al. (2007). The number of
lags d is taken into account by the robust linear regression we perfom to estimate the
parameters of the model. Moreover, the resulting estimates are less sensitive to outliers
in the data.33

e s t cogarch r e t <−
function ( r ){
#Estimation of parameters with Moment Estimation Method

#r<−(G[2:n]-G[1:(n-1)])
#input: r =EQUALLY spaced Cogarch11 process returns with Lévy process: compound Poisson or variance gamma

# #d=lags ,choose d=sqrt(n)

#output: betahat,etahat,phihat,p,k

n<−length ( r )
d<−f l o o r ( sqr t ( n ) ) #number of lags, see p.11 of paper ’Estimating the COGARCH(1,1) model-a first go’

s=1
#define output vectors

m1<−0
m2<−0
p<−0
k<−0
betahat<−0
e t a h a t<−0
phihat<−0
y<−rep ( 0 , ( d+1) ) #vector for acf

#calculate the squared returns

33cf. Haug et al. (2007, p.12).
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r<−r ˆ2

nr<−length ( r )

#moments

mu<−mean ( r ) #mean

gamma<−mean ( r ˆ 2 ) #variance

#m1<−mu #first moments

#m2<−gamma #second moments

#calculate autocovariances and autocorrelations

muhat<−mu∗rep ( 1 , nr ) #row vector

g0<−sum ( ( r−muhat )∗ ( r−muhat ) ) / nr

for ( h in 0 : d ){
u<−nr−h
y [ h+1]<−sum ( ( r [ ( 1+ h ) : nr]−mu∗rep ( 1 , u ) )∗ ( r [ 1 : u]−mu∗rep ( 1 , u ) ) )

}
y<−y / ( nr∗g0 ) #empirical autocorrelation

a c f r<−y [ 2 : ( d+1) ] #analogously to Matlab program

#regression least square method to obtain k and p

n a c f r pos<−which ( ac f r >0) #rows with positive acfr entry

z<−log ( a c f r [ n a c f r pos ] )
X<−(−n a c f r pos )
#par<−lm(z ˜ X) #model with intercept=log(k), X=p

require (MASS)
par<−rlm ( z ˜X) #robust regression

par1<−as . numeric ( par$ c o e f f i c i e n t s [ 1 ] )
par2<−as . numeric ( par$ c o e f f i c i e n t s [ 2 ] )
k<−exp ( par1 )
p<−par2
################

i f ( p>0){
betahat<−p∗mu

M1<−gamma−2∗muˆ2−6∗((1−p−exp(−p ) ) / ((1−exp ( p ) )∗(1−exp(−p ) ) ) )∗k∗gamma
M2<−(2∗k∗gamma∗p ) / (M1∗ ( exp ( p )−1)∗(1−exp(−p ) ) )

i f (M2>0){
phihat<−p∗sqr t (1+M2)−p
e t a h a t<−p∗sqr t (1+M2)

}e lse{
c<−rep ( 0 , length ( s ) )
c<−1
#stop("M2<=0 ! ")

}
}e lse{

cp<−rep ( 0 , length ( s ) )
cp<−1
#stop("p<=0 ! ")

}

#}#end of "for m=1:s"

e s t<−matrix ( 0 , nrow=5 , ncol =1)
e s t<−rbind ( betahat , e tahat , phihat , p , k ) #estimated values

return ( e s t )
}

R-Code 6.10: Estimation of the parameters of a COGARCH(1, 1) process

The function est_cogarch_ret can be used as demonstrated in R-Code 6.11. The first
step is the simulation of a COGARCH(1, 1) process driven by a compound Poisson
process with standard normally distributed jumps and λ = 1. We then obtain data
on an equally spaced time grid with the function prevTick and calculate the returns
of this data. Finally we estimate the parameters of the COGARCH(1, 1) process. The
estimated parameters β̂, η̂ and ϕ̂ should be close to the original input parameters β =
0.04, η = 0.05 and ϕ = 0.03. For examples and their estimation results see Chapter 3.3.
#parameters

beta<−0 . 0 4
e ta<−0 . 0 5
phi<−0 . 0 3

t<−0 :1000
Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1
#simulated cogarch process
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output<−cogarch sim ( t , beta , eta , phi , Lp=”cp” , ra te , d i s t r i b u t i o n , mean , var ) #compound Poisson

G<−output [ , 1 ]
vol<−output [ , 2 ]
Lt<−output [ , 3 ]
d e l t a Lt<−output [ , 4 ]
r t<−output [ , 5 ]

#get equally spaced data

i t<−r t
X<−G
pt<−prevTick ( t , i t , X)
G<−pt
n<−length (G)
r<−(G[ 2 : n]−G[ 1 : ( n−1) ] )
nr<−length ( r )
r<−(G[ 2 : length (G) ]−G[ 1 : ( length (G)−1) ] )

#estimate parameters

e s t i m a t e s<−e s t cogarch r e t ( r )
betahat<−e s t i m a t e s [ 1 , ]
e t a h a t<−e s t i m a t e s [ 2 , ]
phihat<−e s t i m a t e s [ 3 , ]
p<−e s t i m a t e s [ 4 , ]
k<−e s t i m a t e s [ 5 , ]

ev<−c ( betahat , e tahat , phihat ) #estimated values

ov<−c ( beta , eta , phi ) #original values

R-Code 6.11: Estimation via the Moment Estimation Method.

Furthermore the package cogarch contains the estimation function est_cogarch, see R-
Code A.5. Analogously to the function est_cogarch_ret, R-Code 6.10, this function es-
timates the parameters with the moment estimation method. The difference is, that this
function needs a matrix containing N > 1 in time equally spaced COGARCH(1, 1) pro-
cesses as an input. This matrix can be generated using the functions Cogarch_cp_Npaths
for the simulation of N COGARCH(1, 1) processes driven by a compound Poisson pro-
cess (see R-Code A.3) or Cogarch_vg_Npaths for N COGARCH(1, 1) processes driven
by a Variance Gamma process (see R-Code A.4).

6.2.2 Pseudo-Maximum Likelihood Method

Another method for estimating the model parameters has been introduced in Chapter
3.2.2. The Pseudo-Maximum Likelihood (PML) method can be applied to data which is
equally or unequally spaced in time. In Chapter 3.2.2 we introduced the estimation al-
gorithm developed by Maller et al. (2008) and summarized in Klüppelberg et al. (2011,
Section 5.4.1). We have to ensure that the assumptions (H1)-(H4) are fulfilled. Espe-
cially, we have to transform any simulated COGARCH process to fixed (non-random)
time points via the function prevTick before we can apply the PML method. To use
this method for random time points we introduced a modified PML method in Chap-
ter 3.2.3. The modified PML method can be applied for observations of a COGARCH
process driven by a compound Poisson process. The function pml_cp, see R-Code 6.14,
is explained below.

”Normal” PML

Now we have a look at the ”normal” PML function, see R-Code 6.12. The output of
this function is the negative of the pseudo-log-likelihood function specified in (3.72).
The input parameter of this function is a vector x containing some starting values β,
η and ϕ for the maximization of the pseudo-log-likelihood function. The recursion in
(3.76) takes σ2

0 = β/(η − ϕ) with η > ϕ as its starting value to ensure stationarity. We
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insert the values from σ2
i in (3.64) to obtain the values of ρ2

i and finally the pseudo-log-
likelihood function (3.72).
pml<−function ( x ){

#Pseudo-Maximum Likelihood function

#Input: x - vector with parameters beta, eta, phi (can be estimated by Moment Estimation Method first)

#Output: LL - Pseudo-Maximum Likelihood function

beta= x [ 1 ]
e ta=x [ 2 ]
phi=x [ 3 ]

#start value: sigma0=sigma0^2

sigma0<−beta / ( eta−phi )
sigma<−rep ( 0 , length=Nt )
rho<−rep ( 0 , length=Nt )
L=rep ( 0 , Nt )

rho [ 1 ]<−( beta∗d e l t a t [ 1 ] ) / ( eta−phi )
sigma [ 1 ]<−beta∗d e l t a t [ 1 ] + exp(− e ta∗d e l t a t [ 1 ] )∗ ( beta / ( eta−phi ) ) +phi∗exp(− e ta∗d e l t a t [ 1 ] )∗r [ 1 ] ˆ 2

for ( i in 2 : ( Nt ) ){
#sigma^2 here defined as sigma

sigma [ i ]<−beta∗d e l t a t [ i ]+ exp(− e ta∗d e l t a t [ i ] )∗sigma [ i −1]+phi∗exp(− e ta∗d e l t a t [ i ] )∗r [ i ] ˆ 2
}

rho [ 1 0 1 : ( Nt ) ]<−( sigma [ 1 0 0 : ( Nt−1)]−beta / ( eta−phi ) )∗ ( ( exp (−( eta−phi )∗d e l t a t [ 1 0 1 : ( Nt ) ] )−1) / ( phi−e ta ) ) +( beta∗d e l t a t [ 1 0 1 : ( Nt ) ] )
/ ( eta−phi )

L<−0 . 5∗ ( r [ 1 0 1 : ( Nt ) ] ˆ 2 / rho [ 1 0 1 : ( Nt ) ] ) +0.5∗log ( rho [ 1 0 1 : ( Nt ) ] )

LL = sum( L )

LL<−LL+(Nt / 2)∗log (2∗pi ) #add last term of likelihood function

return ( LL )
}

R-Code 6.12: Estimation of the parameters of a continuous time GARCH(1, 1) process
with the PML Method

In R-Code 6.13 we illustrate the approach to get the PML estimates of (β, η, ϕ). The
times are assumed to be irregularly spaced. To obtain the simulated COGARCH(1, 1)
process driven by a compound Poisson process at the specified time points we use the
function prevTick again. The pml function needs ∆ti, i = 1, . . . , N and the returns G(1)

t
as an input. Furthermore, we specify the constraints of our parameters via the matrix
A and the vector d. These are β, η and ϕ > 0 and η > ϕ. The output of the pml function
is the negative log-likelihood function and therefore we minimize this function with
constrOptim to get the estimated values of β, η and ϕ.
t<−c ( 0 ,cumsum( sample ( c ( . 5 , 1 , 1 . 5 ) , 1000 , replace=TRUE, prob=c ( . 3 , . 4 , . 3 ) ) ) )
beta=1
eta =0.06
phi =0.0425

Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1
#simulated cogarch process

output<−cogarch sim ( t , beta , eta , phi , Lp , ra te , d i s t r i b u t i o n , mean , var , sigma , nu , theta , gs )
G<−output [ , 1 ]
r t<−output [ , 5 ]

#get data on the time grid specified by t

i t<−r t
X<−G
pt<−prevTick ( t , i t , X)
G<−pt
n<−length (G)
r<−(G[ 2 : n]−G[ 1 : ( n−1) ] ) #returns

nr<−length ( r )

#PML method

par<−c ( beta , eta , phi ) #starting values for the optimization

d e l t a t<−t [ 2 : length ( t ) ]− t [ 1 : ( length ( t )−1) ]
Nt<−length ( d e l t a t )
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A<−matrix ( c ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , −1 ) , ncol =3 ,byrow=T )
d<−c ( 0 . 0 0 0 0 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 )
m<− constrOptim ( par , pml , NULL , ui = A, c i = d )
e s t i m a t e s pml<−m$par
betahat<−e s t i m a t e s pml [ 1 ]
e t a h a t<−e s t i m a t e s pml [ 2 ]
phihat<−e s t i m a t e s pml [ 3 ]

e s t i m a t e s<−c ( betahat , e tahat , phihat )

R-Code 6.13: Estimation via the PML Method.

”Modified” PML

In Chapter 3.2.3 we introduced a PML approach for simulated (random) time points.
For the case of a compound Poisson process as driving Lévy process we calculated a
”modified” conditional variance in (3.79). Furthermore, we showed how we can obtain
λ̂ due to the i.i.d exponentially distributed ∆ti, i = 1, . . . , n with rate λ. The function
pml_cp includes the estimation of λ̂ and the modified ρ2

i , see R-Code 6.14.
pml cp<−function ( x ){
#Pseudo-Maximum Likelihood function for the compound Poisson case

#Input: x - vector with parameters beta, eta, phi (can be estimated by Moment Estimation Method first)

#Output: LL - Pseudo-Maximum Likelihood function

#estimate lambda

#delta t i are the time changes, which are exponentially distributed with parameter lambda

sum d e l t a t<−sum( d e l t a t [ 1 : length ( d e l t a t ) ] )
lambdahat<−length ( d e l t a t ) / sum d e l t a t

#pml

beta= x [ 1 ]
e ta=x [ 2 ]
phi=x [ 3 ]

#start value: sigma0=sigma0^2

sigma0<−beta / ( eta−phi )
sigma<−rep ( 0 , length=Nt )
rho<−rep ( 0 , length=Nt )
L=rep ( 0 , Nt )

rho [ 1 ]<−( beta∗lambdahat ) / ( eta−phi )
sigma [ 1 ]<−beta∗d e l t a t [ 1 ] + exp(− e ta∗d e l t a t [ 1 ] )∗ ( beta / ( eta−phi ) ) +phi∗exp(− e ta∗d e l t a t [ 1 ] )∗r [ 1 ] ˆ 2

for ( i in 2 : ( Nt ) ){
#sigma^2 here defined as sigma

sigma [ i ]<−beta∗d e l t a t [ i ]+ exp(− e ta∗d e l t a t [ i ] )∗sigma [ i −1]+phi∗exp(− e ta∗d e l t a t [ i ] )∗r [ i ] ˆ 2
}

rho [ 1 0 1 : ( Nt ) ]<−( sigma [ 1 0 0 : ( Nt−1)]−beta / ( eta−phi ) )∗ ( ( ( lambdahat / ( lambdahat+eta−phi ) )−1) / ( phi−e ta ) ) +( beta∗lambdahat ) / ( eta−
phi )

L<−0 . 5∗ ( r [ 1 0 1 : ( Nt ) ] ˆ 2 / rho [ 1 0 1 : ( Nt ) ] ) +0.5∗log ( rho [ 1 0 1 : ( Nt ) ] )

LL = sum( L )

LL<−LL+(Nt / 2)∗log (2∗pi ) #add last term of likelihood function

return ( LL )
}

R-Code 6.14: Estimation of the parameters of a continuous time GARCH(1, 1) process
with the modified PML Method

We implemented the function pml_cp for a compound Poisson process as driving Lévy
process for a COGARCH(1, 1) process. In R-Code 6.15 we give an example on how
this function can be applied. We simulate a COGARCH(1, 1) process driven by a com-
pound Poisson process with standard normally distributed jumps and rate λ = 1, like
in R-Code 6.13. We then use the function prevTick to get the values of the COGARCH
process at the specified grid. Then we calculate the MLE of λ to obtain λ̂. This step is
also implemented in the beginning of the function pml_cp. We inserted the additional
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calculation of λ̂ as the output of the estimation procedure is only a vector containing
the estimated parameters β̂, η̂ and ϕ̂.
t<−c ( 0 ,cumsum( sample ( c ( . 5 , 1 , 1 . 5 ) , 1000 , replace=TRUE, prob=c ( . 3 , . 4 , . 3 ) ) ) )
beta=1
eta =0.06
phi =0.0425

Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1
#simulated cogarch process

output<−cogarch sim ( t , beta , eta , phi , Lp , ra te , d i s t r i b u t i o n , mean , var , sigma , nu , theta , gs )
G<−output [ , 1 ]
r t<−output [ , 5 ]

#get data on the time grid specified by t

i t<−r t
X<−G
pt<−prevTick ( t , i t , X)
G<−pt
n<−length (G)
r<−(G[ 2 : n]−G[ 1 : ( n−1) ] ) #returns

nr<−length ( r )

#PML method

par<−c ( beta , eta , phi ) #starting values for the optimization

d e l t a t<−t [ 2 : length ( t ) ]− t [ 1 : ( length ( t )−1) ]
Nt<−length ( d e l t a t )

#calculate lambdahat

sum d e l t a t<−sum( d e l t a t [ 1 : length ( d e l t a t ) ] )
lambdahat<−length ( d e l t a t ) / sum d e l t a t

A<−matrix ( c ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , −1 ) , ncol =3 ,byrow=T )
d<−c ( 0 . 0 0 0 0 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 )
m<− constrOptim ( par , pml cp , NULL , ui = A, c i = d )
e s t i m a t e s pml<−m$par
betahat<−e s t i m a t e s pml [ 1 ]
e t a h a t<−e s t i m a t e s pml [ 2 ]
phihat<−e s t i m a t e s pml [ 3 ]

e s t i m a t e s<−c ( betahat , e tahat , phihat , lambdahat )

R-Code 6.15: Estimation via the modified PML Method.

6.3 Simulation of an ECOGARCH(p, q) process

For the simulation of an ECOGARCH process we again use an Euler approximation
(see 6.1.3) for the approximation of the state space process Xt. The ECOGARCH(p, q)
process is defined as in Chapter 4. The simulation of a sample path of the log-price
process G and the log-volatility process log(σ2) over a time interval [0, T] is done in
the following steps.

(1) Choose observation times 0 = t0 < t1 < · · · < tn ≤ T, possibly random.

(2) Simulate the jump times (Tk), k = 1, . . . , nT, with nT := max{k ∈N : Tk ≤ T}, of
the compound Poisson process34 J.

(3) Approximate the state process (4.7) of the log-volatility by a stochastic Euler
scheme.

34Here we only consider the case where the ECOGARCH process is driven by a compound Poisson
process.
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(4) Compute an approximation Ĝ via the recursion

Ĝti = Ĝti−1 + σti−1−W̃i +

Nti

∑
k=Nti−1+1

√
exp{µ + b>X̂Tk−}Zk, (6.9)

where W̃i ∼ N (0, ti − ti−1) and X̂Tk− is the Euler approximation without the
jump ∆MTk .

This steps can be found in the implementation of the function ecogarch_sim in R-Code
6.16.
ecogarch sim<−function ( t =0 :10 , a=−0.1 ,b=1 ,mu=−1, t h e t a =−0.2 ,gamma= 0 . 1 , r a t e =1 ,mean=0 , var =1){

#Simulation Ecogarch(p,q) process driven by a compound Poisson process

#Input: t - fixed time grid

# a,b - alpha and beta values corresponding to p and q, respectively

# a has to be a negative vector, i.e a=c(-a q,-a {q-1},...,-a 1)

# mu,theta,gamma - parameters for M

# rate - intensity of the compound Poisson Levy process

# mean,var - mean and variance of specified jump distribution

#Output: List including: G - logprice process on a specified grid (prevTick applied)

# GexpTime -logprice process on times including random jump times

# logsigmaexpTime - log(sigma) process on random jumptimes

# Ylimleft - log(sigma) process on times including random jump times without jump

# Y - log(sigma) process on times including random jump times with jump

# Tylimleft - ordered times including random jump times

# Brownian - Brownian motion

# Mt - Lévy process M t

# Lt - compound Poisson Lévy process with specified rate, normally distributed jumps with mean and

var as specified

# TM - first column: times including random jump times, second column: M t

# sigmaJump - volatility process, i.e exp(Y)

#initialize matrix A and vectors b,e

q=length ( a )
A=matrix ( 0 , q , q )
i f ( q>1){

for ( i in 1 : ( q−1) ){
A[ i , i +1]<−1
}}

A[ q , ]<−a [ q : 1 ]

#test if the eigenvalues are negative

e ig<−eigen (A) $ values
r e i g<−Re ( e ig )
for ( i in 1 : q ){

i f ( r e i g [ i ]>0){
stop ( ” P o s i t i v e eigenvalues ! Please s p e c i f y d i f f e r e n t values f o r a ! ” )

}}

e<−rep ( 0 , length=q )
e [ q ]<−1

B<−rep ( 0 , length=q )
p<−length ( b )
B [ 1 : p ]<−b
#----------------------------------------

#compound Poisson

#generate randomjumptimes----------------------------------

t<−s o r t ( t ) #sort vector t

nt<−length ( t ) #number of timepoints

I<−t [ 2 : nt]− t [ 1 : ( nt−1) ] #timeintervals

NI<−length ( I ) #vector with lengths of timeintervals

#heuristic for number of jump times needed to cover t

nmax <− c e i l i n g ( t [ nt ] ∗2∗ r a t e )
maxtime <− t [ nt ] #maximal entry of time, i.e. last timepoint

randomjumpintervals <− rexp (nmax , r a t e = r a t e )
randomjumptimes<−cumsum( randomjumpintervals )

va l id t imes=TRUE
k=1

while ( va l id t imes )
{ i f ( randomjumptimes [ length ( randomjumptimes )]>maxtime ){

i f ( randomjumptimes [ k]< maxtime ){
randomjumptimes [ k ]<−randomjumptimes [ k ]
k<−k+1

}e lse{
randomjumptimes<−randomjumptimes [ 1 : k ]
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n<−length ( randomjumptimes )
va l id t imes=F

}
}e lse{

#if not enough intervals to cover all t, extend the vector with exponentially distributed rvs

randomjumpintervals2<−rexp (nmax , r a t e = r a t e )
randomjumptimes<−c ( randomjumptimes , cumsum( randomjumpintervals2 ) )

}
}
#generate jumps----------

std<−sqr t ( var )
Levy<− rnorm ( n , mean , s td ) #normally distributed with mean and sigma=sqrt(var)

#generate equidistant times

t equi<−seq ( 0 , maxtime , by = 0 . 1 )
#add randomjumptimes to vector

t a l l<−c ( tequi , randomjumptimes )
#no jumps at tequi

zerojump<−rep ( 0 , length=length ( t equi ) )
#add zerojump and M to Mall

L a l l<−c ( zerojump , Levy )
#generate matrix with columns time and M, then sort after time column

TM<−cbind ( t a l l , L a l l )
TM<−TM[ order (TM[ , 1 ] ) , ]
#Levy process Lt

Lt<−cumsum(TM[ , 2 ] )

#calculate the constant C (for compound Poisson)

C=gamma∗sqr t (2∗ r a t e / pi )
#calculate Lévy process Mt

M<−t h e t a∗Levy+gamma∗abs ( Levy ) #berechne die Mt zu den randomjumptimes für die wir Levy generiert haben

#add zerojump and M to Mall

Mall<−c ( zerojump ,M)
#generate matrix with columns time and M, then sort after time column

TM<−cbind ( t a l l , Mall )
TM<−TM[ order (TM[ , 1 ] ) , ]

#indices of the jumptimes in TM

isprung<−which (TM[ , 2 ] ! =0)
N<−length (TM[ , 1 ] ) #length time

#calculate Mt

TI<−c (TM[ 1 , 1 ] , (TM[ 2 :N,1]−TM[ 1 : (N−1) , 1 ] ) ) #timeintervals

TM[ , 2 ]<−TM[ ,2]−C∗TI
D r i f t<−−C∗TI

Mt<−cumsum(TM[ , 2 ] )

#plot(TM[,1],Mt,type="l")

#plot(Lt,type="l")

#---------------------------------------------------

#calculate Xt with Euler approximation

X<−matrix ( 0 , q ,N+1)
X l i m l e f t<−matrix ( 0 , q ,N+1)

indexsprung=1
for ( j in 1 :N){

i f ( j ==isprung [ indexsprung ] ){
X[ , j +1]<−X[ , j ]+ TI [ j ]∗ (A%∗%X[ , j ] ) +TM[ j , 2 ]∗e
X l i m l e f t [ , j +1]<−X[ , j ]+ TI [ j ]∗ (A%∗%X[ , j ] ) + D r i f t [ j ]∗e
indexsprung=min ( indexsprung +1 , length ( isprung ) )

}e lse{
X[ , j +1]<−X[ , j ]+ TI [ j ]∗ (A%∗%X[ , j ] ) +TM[ j , 2 ]∗e
X l i m l e f t [ , j +1]<−X[ , j ]+ TI [ j ]∗ (A%∗%X[ , j ] ) +TM[ j , 2 ]∗e

}
}

#----------------------------------

#calculate Yt=log(sigma t^2)

Y<−matrix ( 0 , 1 ,N)
Y l i m l e f t<−matrix ( 0 , 1 ,N)

i f ( q==1){
Y<−B∗X [ , ( 2 : (N+1) ) ]+mu
Y l i m l e f t<−B∗X l i m l e f t [ , ( 2 : (N+1) ) ]+mu

}e lse{
Y<−B%∗%X [ , ( 2 : (N+1) ) ]+mu
Y l i m l e f t<−B%∗%X l i m l e f t [ , ( 2 : (N+1) ) ]+mu}

T y l i m l e f t<−TM[ , 1 ]

#volatility with jump

sigmaJump<−exp (Y)

#logvolatility

logsigmaexpTime<−Y l i m l e f t [ isprung ]
#logsigma<−prevTick(t,c(0,Tylimleft),c(mu,Y))

#generate Levynoise Brownian+jump

Levynoise<−rnorm (N, mean , sqr t ( TI ) )
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Brownian<−cumsum( Levynoise )

Levynoise [ isprung ]<−Levynoise [ isprung ]+Levy

Lt<−cumsum( Levynoise )
#logprice process

GexpTime<−cumsum( sqr t ( exp ( Y l i m l e f t ) )∗Levynoise )

G=prevTick ( t , c ( 0 ,TM[ , 1 ] ) , c ( 0 , GexpTime ) ) #function prevTick puts G on a specified time grid t

return ( l i s t (G, GexpTime , logsigmaexpTime , Yl imle f t , Y , Tyl imle f t , Brownian , Mt , Lt ,TM, sigmaJump ) )

}

R-Code 6.16: Simulation of an ECOGARCH(p, q) process

An example of the application of the function ecogarch_sim for the simulation of
an ECOGARCH(p, q) process can be found in R-Code 6.17

t =0:100
a=c (−0.1 ,−0.3)
b=c ( 1 , 1 )
mu=−4
t h e t a =−0.2
gamma=0.1
r a t e =1
mean=0
var=1

output<−ecogarch sim ( t , a , b ,mu, theta , gamma , ra te , mean , var )
G<−u n l i s t ( output [ [ 1 ] ] )
GexpTime<−u n l i s t ( output [ [ 2 ] ] )
logsigmaexpTime<−u n l i s t ( output [ [ 3 ] ] )
Y l i m l e f t<−u n l i s t ( output [ [ 4 ] ] )
Y<−u n l i s t ( output [ [ 5 ] ] )
T y l i m l e f t<−u n l i s t ( output [ [ 6 ] ] )
Brownian<−u n l i s t ( output [ [ 7 ] ] )
Mt<−u n l i s t ( output [ [ 8 ] ] )
Lt<−u n l i s t ( output [ [ 9 ] ] )
TM<−u n l i s t ( output [ [ 1 0 ] ] )
sigmaJump<−u n l i s t ( output [ [ 1 1 ] ] )

#plots

par ( mfrow=c ( 5 , 1 ) ,mar=c ( 1 . 8 , 4 . 5 , 1 , 1 ) )
plot (TM[ , 1 ] , Lt , cex =0 .01 , ylab=expression ( L [ t ] ) , xaxs=” i ” , xlim=c ( 0 , 1 0 0 ) )
plot (TM[ , 1 ] , Mt , cex =0 .01 , ylab=expression (M[ t ] ) , xaxs=” i ” , xlim=c ( 0 , 1 0 0 ) )
plot (TM[ , 1 ] , GexpTime , cex =0 .01 , ylab=expression (G[ t ] ) , xaxs=” i ” , xlim=c ( 0 , 1 0 0 ) )
plot (TM[ , 1 ] , c ( 0 , ( GexpTime [ 2 : length ( GexpTime ) ]−GexpTime [ 1 : ( length ( GexpTime )−1) ] ) ) ,
type=” l ” , ylab=expression (G[ t ] ˆ ( r ) ) , xaxs=” i ” , xlim=c ( 0 , 1 0 0 ) )
plot (TM[ , 1 ] , sigmaJump , cex =0 .01 , ylab=expression ( sigma [ t ] ˆ 2 ) , xaxs=” i ” , xlim=c ( 0 , 1 0 0 ) )

R-Code 6.17: Simulation of an ECOGARCH(p, q) process driven by a compound
Poisson process.

6.4 Simulation and Estimation of a GJR COGARCH(1, 1)
process

This chapter is based on the theory introduced in Chapter 5. We implemented the func-
tion cogarch_sim_assym, see R-Code 6.18, for the simulation of a continuous time GJR
GARCH(1, 1) model. Furthermore, we extended the PML method for the estimation
of the parameters β, η, ϕ and γ of an asymmetric continuous time model, explicitly
the continuous time GJR GARCH(1, 1) model. The estimation can be done with the
function pml_asym, see R-Code 6.20.
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6.4.1 Simulation of a continuous time GJR GARCH(1, 1) process

For the simulation of the continuous time GJR GARCH(1, 1) model we modified the
simulation function for the symmetric COGARCH(1, 1) process.
In Chapter 6.1.3 we showed how we can use the Euler scheme to get an approximation
of the volatility process of the symmetric COGARCH(1, 1) model. Analoguously to
(6.5), (6.6) and (6.7) we can get equations which can be approximated with the Euler
scheme.

For the equations

dYt = −ηYt−dt + Vtd[L, L](d)t and Vt =
β

η
+ ϕ∗Yt−, (6.10)

with ϕ∗ = ϕ
(
(1− γ)2

1{∆Ls>0} + (1 + γ)2
1{∆Ls<0}

)
, it follows that

dVt = ϕ∗Yt = −ϕ∗η
Vt − β/η

ϕ∗
dt + ϕ∗Vtd[L, L](d)t

= −ηVtdt + βdt + ϕ∗Vtd[L, L](d)t .

Hence we have

Vt = βt− η
∫ t

0
Vsds + ϕ∗ ∑

0<s≤t
Vs∆Ls + V0. (6.11)

Equation (6.11) is also satisfied for the volatility process (σ2
t )t≥0 of Equation (5.20), as

we have

σ2
t = βt− η

∫ t

0
σ2

s ds + ϕ∗ ∑
0<s≤t

σ2
s ∆Ls + σ2

0 . (6.12)

If we compare this equation to (6.7) we can observe that they coincide except of the
parameters ϕ and ϕ∗ respectively. Therefore, the Euler scheme can be applied to (6.10)
analogously as it has been applied to Equation (6.5). We get

Yi+1 = Yi − ηYi−∆ti + Vi∆L2
i and Vi =

β

η
+ ϕ∗Yi−, (6.13)

with V0 = β/η and Y0 = 0. In the corresponding R-Code 6.18 of the function
cogarch_sim_assym we first simulate the driving Lévy process for a small amount of
time points. We choose via the input arguments either a compound Poisson or a Vari-
ance Gamma process. We then initialize the Yi+1 by Yi, the volatility Vi by voli and ∆Gt
by g. Afterwards we conduct a simulation of the driving Lévy process and its random
jumptimes for the whole time interval chosen by the input parameter t. We then calcu-
late vol, where vol[1]<-voli, Y, where Y[1]<-Yi and delta_G, where delta_G[1]<-g.
Finally we obtain the desired continuous time GJR GARCH(1, 1) process Gt by using
the cumulated sum of the ∆Gt. The function cogarch_sim_assym, see R-Code 6.18, co-
incides with the function cogarch_sim, see R-Code 6.3, except of the parameters ϕ and
ϕ∗ respectively.
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cogarch sim assym<−function ( t =0 :10 , beta =1 , e ta =0 .05 , phi =0 .03 ,gamma= 0 . 4 ,Lp=”cp” , r a t e =1 , d i s t r i b u t i o n =”normal” ,mean=0 , var =1 , sigma
=1 ,nu = 0 . 5 , t h e t a =1 , gs = 0 . 0 1 )

{
t<−s o r t ( t )
n t<−length ( t )

#find starting values

i f ( Lp==”cp” ){
index<−1

}e lse i f ( Lp==”vg” ){
index<−2

}e lse{
stop ( ”No val id Levy process s p e c i f i e d ! S e l e c t ’ cp ’ or ’ vg ’ . ” )

}
switch ( index ,

{output cp<−compoundPoisson ( 0 : 1 0 , ra te , d i s t r i b u t i o n , mean , var ) #calls the function compoundPoisson with output c(randomjumptimes

,randomjumpsizes,Lt)

r t<−output cp [ , 1 ] #randomjumptimes

#delta rt<−rt[2:N]-rt[1:(N-1)] #randomjumpintervals, delta ti

d e l t a r t<−output cp [ , 4 ] #randomjumpintervals, delta ti

d e l t a Lt<−output cp [ , 2 ] #randomjumpsizes, delta Lti

Lt<−output cp [ , 3 ] #L t

} ,
{output vg<−vargamma ( 0 : 1 0 , sigma , nu , theta , gs ) #calls the function varGamma with output timesequence and V

Lt<−output vg [ , 2 ]
r t<−output vg [ , 1 ]
nv<−length ( Lt )
nt<−length ( r t )

#increments of the process

d e l t a Lt<−Lt [ 2 : nv]−Lt [ 1 : ( nv−1) ]
d e l t a r t<−r t [ 2 : nt]− r t [ 1 : ( nt−1) ]
}

)

n<−length ( d e l t a Lt )

d e l t a Lt 0<−c ( 0 , d e l t a Lt [ 1 : ( n−1) ] ) #used for sigma t-, i.e. the sigma t without the jump at time t !

#asymmetric COGARCH gamma definieren

term<−rep ( 0 , length=length ( d e l t a Lt 0 ) )
for ( i in 1 : length ( d e l t a Lt 0 ) ){
i f ( d e l t a Lt 0 [ i ] < 0){

term [ i ]<−phi∗(1+gamma) ˆ2
}e lse{

term [ i ]<−phi∗(1−gamma) ˆ2
}}

phi neu<−rep ( 0 , length=length ( d e l t a Lt 0 ) )
phi neu<−term

########

#start value volatility, for state process set Y=0 in the beginning and therefore for the observation process: V = beta / eta +

phi∗Y = beta / eta
v o l i<−beta / e ta

#state space process

Yi<−0
g<−0

for ( k in 1 : n ){

Yi<−Yi−e ta∗Yi∗d e l t a r t [ k]+ v o l i∗d e l t a Lt 0 [ k ] ˆ 2 # delta Lt hat null im ersten Vektoreintrag, daher erhalte sigma t-

v o l i<−beta / e ta+phi neu [ k ]∗Yi
g<−g+sqr t ( v o l i )∗d e l t a Lt [ k ]

}

#-----------------------------------------------

#obtain values via Euler approximation

switch ( index ,
{output cp new<−compoundPoisson ( t , ra te , d i s t r i b u t i o n , mean , var ) #calls function compoundPoisson

r t new<−output cp new [ , 1 ] #randomjumptimes

#NN<−length(rt new)

#delta rt new<−rt new[2:NN]-rt new[1:(NN-1)] #randomjumpintervals, delta ti

d e l t a r t new<−output cp new [ , 4 ]
d e l t a Lt new<−output cp new [ , 2 ] #randomjumpsizes, delta Lti

Lt new<−output cp new [ , 3 ] #L t

} ,
{output vg new<−vargamma ( t , sigma , nu , theta , gs ) #calls the function varGamma with output timesequence and V

Lt new<−output vg new [ , 2 ]
r t new<−output vg new [ , 1 ]
nvn<−length ( Lt new)
ntn<−length ( r t new)

#increments of the process

d e l t a Lt new<−Lt new [ 2 : nvn]−Lt new [ 1 : ( nvn−1) ]
d e l t a r t new<−r t new [ 2 : ntn]− r t new [ 1 : ( ntn−1) ]

}
)
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nn<−length ( d e l t a Lt new)
#add again 0 as first entry of delta Lt new in order to get sigma t- !
d e l t a Lt new 0<−c ( 0 , d e l t a Lt new [ 1 : ( nn−1) ] ) #length nn

#asymmetric COGARCH gamma definieren !
term<−rep ( 0 , length=length ( d e l t a Lt new 0) )
for ( i in 1 : length ( d e l t a Lt new 0) ){

i f ( d e l t a Lt new 0[ i ] < 0){
term [ i ]<−phi∗(1+gamma) ˆ2

}e lse{
term [ i ]<−phi∗(1−gamma) ˆ2

}}
phi neu<−rep ( 0 , length=length ( d e l t a Lt new 0) )
phi neu<−term

#volatility

vol<−vector ( length=length ( nn ) )
vol [ 1 ]<−v o l i

#state space

Y<−vector ( length=length ( nn ) )
Y[ 1 ]<−Yi

for ( k in 1 : nn ){

Y[ k+1]<−Y[ k]− e ta∗Y[ k ]∗d e l t a r t new[ k]+ vol [ k ]∗d e l t a Lt new 0[ k ] ˆ 2
vol [ k+1]<−beta / e ta+phi neu [ k ]∗Y[ k ]

}

d e l t a G<−vector ( length=length ( vol ) ) #length(vol)=nn+1 mit nn=length(delta Lt new)

d e l t a G[ 1 ]<−g
s<−sqr t ( vol [ 1 : ( length ( vol )−1) ] ) #length=nn

d e l t a G[ 2 : length ( vol ) ]<−s∗d e l t a Lt new [ 1 : nn ] #length=nn

G<−cumsum( d e l t a G) #length=nn+1

switch ( index ,
{output<−cbind (G, vol , c ( 0 , Lt new) , c ( 0 , d e l t a Lt new) , c ( 0 , r t new) )

colnames ( output )<−c ( ”G” , ” vol ” , ” Lt ” , ” d e l t a Lt ” , ”randomjumptimes” )
} ,
{output<−cbind (G, vol , Lt new , c ( 0 , d e l t a Lt new) , r t new)

colnames ( output )<−c ( ”G” , ” vol ” , ” Lt ” , ” d e l t a Lt ” , ”randomjumptimes” )
}

)
return ( output )

}

R-Code 6.18: Simulation of a continuous time GJR GARCH(1, 1) process

A simulation of a sample path of a continuous time GJR GARCH(1, 1) process
driven by a Variance Gamma process can be conducted as in R-Code 6.19.

t<−0 :500
beta =0.08
e ta =0.06
phi =0.04
gamma=0.6

Lp=”vg” #Variance Gamma process

sigma<− 1
t h e t a<− 0
nu<−1
gs<−0 . 0 1

output<−cogarch sim assym ( t , beta , eta , phi , gamma , Lp , ra te , d i s t r i b u t i o n , mean , var , sigma , nu , theta , gs )
G<−output [ , 1 ]
vol<−output [ , 2 ]
Lt<−output [ , 3 ]
d e l t a Lt<−output [ , 4 ]
r t<−output [ , 5 ]

#plots

par ( mfrow=c ( 4 , 1 ) )
plot ( r t , Lt , cex = 0 . 1 , xlim=c ( 0 , 5 0 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( L [ t ] ) )
plot ( r t ,G, cex = 0 . 1 , xlim=c ( 0 , 5 0 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression (G[ t ] ) )
plot ( r t , vol , cex = 0 . 1 , xlim=c ( 0 , 5 0 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( sigma [ t ] ) )
plot ( r t , d e l t a Lt , type=”h” , xlim=c ( 0 , 5 0 0 ) , xaxs=” i ” , xlab=” t ” , ylab=expression ( paste ( Delta , L [ t ] , sep=”” ) ) )

R-Code 6.19: Simulation of a continuous time GJR GARCH(1, 1) process.
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6.4.2 Estimation of a continuous time GJR GARCH(1, 1) process

In Chapter 5.2 we introduced a pseudo-maximum-likelihood method for the estima-
tion of the parameters of a continuous time GJR GARCH(1, 1) process. We adjusted
the PML approach in Chapter 5.2.2 in order to apply it to the continuous time GJR
GARCH(1, 1) model. In R-Code 6.20 we provide the function pml_asym. If we compare
this function to the ”basic” PML function pml for COGARCH(1, 1) models, we see that
only the parameter ϕ is adjusted. For the ”asymmetric PML approach” we have to
modifiy the calculation of ρ2

i as provided in 5.39 and of σ2
i as stated in 5.41. There-

fore, we define in our function a new parameter ϕ∗ and replace the parameter ϕ in the
function pml with ϕ∗.
pml asym<−function ( x ){

#Pseudo-Maximum-Likelihood function for the continuous time GJR GARCH(1,1) model

#Input: x - vector with beta, eta, phi and gamma (beta, eta and phi can be estimated first with the Miment Estimation Method

)

#Output: LL - Pseudo-Maximum Likelihood function

beta= x [ 1 ]
e ta=x [ 2 ]
phi=x [ 3 ]
gamma=x [ 4 ]

#----------------------------

#assym

#check if return is positive or negative

term<−rep ( 0 , length=length ( r ) )
for ( i in 1 : length ( r ) ){

i f ( r [ i ] < 0){
term [ i ]<−phi∗(1+gamma) ˆ2

}e lse{
term [ i ]<−phi∗(1−gamma) ˆ2

}}
phi neu<−rep ( 0 , length=length ( r ) )
phi neu<−term

psi<−−e ta+phi∗(1+gamma ˆ 2 )
#----------------------------------

#start value: sigma0=sigma0^2

sigma0<−beta / (−ps i )
sigma<−rep ( 0 , length=Nt )
rho<−rep ( 0 , length=Nt )
L=rep ( 0 , Nt )

rho [ 1 ]<−( beta∗d e l t a t [ 1 ] ) / (−ps i )
sigma [ 1 ]<−beta∗d e l t a t [ 1 ] + exp(− e ta∗d e l t a t [ 1 ] )∗ ( beta / ( eta−phi ) ) +phi neu [ 1 ]∗exp(− e ta∗d e l t a t [ 1 ] )∗r [ 1 ] ˆ 2

for ( i in 2 : ( Nt ) ){
#sigma^2 here defined as sigma

sigma [ i ]<−beta∗d e l t a t [ i ]+ exp(− e ta∗d e l t a t [ i ] )∗sigma [ i −1]+phi neu [ i ]∗exp(− e ta∗d e l t a t [ i ] )∗r [ i ] ˆ 2
}

rho [ 1 0 1 : ( Nt ) ]<−( sigma [ 1 0 0 : ( Nt−1)]−beta / (−ps i ) )∗ ( ( exp ( ps i∗d e l t a t [ 1 0 1 : ( Nt ) ] ) −1) / ( ps i ) ) +( beta∗d e l t a t [ 1 0 1 : ( Nt ) ] ) / (−ps i )

L<−0 . 5∗ ( r [ 1 0 1 : ( Nt ) ] ˆ 2 / rho [ 1 0 1 : ( Nt ) ] ) +0.5∗log ( rho [ 1 0 1 : ( Nt ) ] )

LL = sum( L )

LL<−LL+(Nt / 2)∗log (2∗pi ) #add last term of likelihood function

return ( LL )
}

R-Code 6.20: Estimation of the parameters of a continuous time GJR GARCH(1, 1)
process with the PML Method

The function pml_asym can be used analogously to the pseudo-maximum-likelihood
function described in 6.2.2. In R-Code 6.21 we give an example how to estimate the pa-
rameters of a continuous time GJR GARCH(1, 1) model with this function.
t<−0 :1000
beta=1
eta =0.06
phi =0.0425
gamma=0.4
Lp=”cp” #compound Poisson process, Lp="cp"

r a t e<−1
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d i s t r i b u t i o n<−”normal” #jumpsizes are normally distributed

mean<−0
var<−1

output c<−cogarch sim assym ( t , beta , eta , phi , gamma , Lp , ra te , d i s t r i b u t i o n , mean , var , sigma , nu , theta , gs )
G<−output c [ , 1 ]
vol<−output c [ , 2 ]
Lt<−output c [ , 3 ]
d e l t a Lt<−output c [ , 4 ]
r t<−output c [ , 5 ]

N<−length (G)
r<−G[ 2 :N]−G[ 1 : (N−1) ]
nr<−length ( r )
d e l t a t<−r t [ 2 : length ( r t ) ]− r t [ 1 : ( length ( r t )−1) ] #for unequally spaced data

Nt<−length ( d e l t a t )

par<−c ( beta , eta , phi ,gamma)
A<−matrix ( c ( 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , −1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 ) , ncol =4 ,byrow=TRUE)
d<−c ( 0 . 0 0 0 0 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 0 1 , 0 . 0 1 , − 1 )
m<− constrOptim ( par , pml asym , NULL , ui = A, c i = d )
e s t i m a t e s<−m$par

R-Code 6.21: Estimationof the parameters of a continuous time GJR GARCH(1, 1)
process.



Chapter 7

Application to Data

In this chapter we consider turbulent windspeed data from the Brookhaven National
Laboratory. We will refer to this data as ”Brookhaven data” in the following. We will fit
a continuous time GJR GARCH(1, 1) model to this data set and apply the asymmetric
PML method introduced in Chapter 5.2.2 for the parameter estimation.

7.1 Data

The information about the data set is taken from Ferrazzano (2010). The data set con-
tains windspeed data from the Brookhaven National Laboratory, located in Upton,
New York on Long Island. It is a high frequency data set, recorded by Drhuva (2000).
The total Brookhaven data set consists of n = 20 · 106 measurements sampled at 5000Hz,
i.e. 5 · 103 points per second.

Ferrazzano and Fuchs (2013) proposed a method to estimate the increments ∆n
k X(ω)

(of the intermittency process X0(ω), . . . , X∆n(ω) on a equidistant grid) from an ob-
served sample V0(ω), . . . , Vn∆(ω) of the velocity V = (Vt)t∈R.35 This method - which,
in principle, can be seen as applying an auto-regressive filter - has been employed to
the Brookhaven data set. These estimates are treated then as if they were observed true
increments of the intermittency process. In the following, we refer to these increments
as ”(intermittency) data”.36

We will only consider the first 1 · 106 data points of the intermittency increments.
The series then covers a time interval of approximately 3 minutes (200 seconds). In
Figure 7.1 this data set can be seen. Furthermore we consider different time segments
of this data set. We will refer to the data set containing the first 1 · 106 data points
as Example 1, to the data set containing the data points in [1, 10000] as Example 2,
to the data set containing the data points in [50000, 60000] as Example 3, to the data
set containing the data points in [500000, 510000] as Example 4 and to the data set
containing the data points in [1, 100000] as Example 5.

35The velocity increments display a distinctive clustering, this phenomenon is called intermittency.
36Cf. Ueltzhöfer (2013, Chapter 6.3).
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Figure 7.1: Increments of the Brookhaven data where the time is given in seconds and
there are 5000 data points per second.

7.2 Parameter Estimation

We apply the asymmetric PML estimation method from Chapter 5.2.2 to our data sets
of the different time segements (referred to as Examples 1 - 5).

We start with Example 1 (containing the data points [1, 1000000]). In order to esti-
mate the parameters β̂, η̂, ϕ̂ and γ̂ we need some starting values for these parameters.
As the Brookhaven data is equally spaced in time, we can apply the moment estima-
tion method to get starting values for β̂, η̂ and ϕ̂. For γ̂ we choose 0.3 as a starting
value. Moreover, we had a look at Example 4∗ which corresponds to Example 4 but
uses γ̂ = 0.8. The results of the estimation are displayed in the first row of Table 7.1.
We can observe that the value of β̂ is very small. The lower boundary for it was set

Example β̂ η̂ ϕ̂ γ̂

1 1.3 · 10−6 0.05999 0.04999 0.01000
2 1.8 · 10−6 0.07007 0.06007 0.02506
3 3.0 · 10−7 0.02249 0.01824 0.12117
4 3.8 · 10−6 0.10884 0.09809 0.00002
4∗ 3.7 · 10−6 0.15995 0.15985 0.03636
5 4.2 · 10−7 0.02977 0.02681 0.00010

Table 7.1: Estimates of the different data sets

to 1 · 10−7. The value of β̂ obviously tends to this lower boundary. For γ̂ we have a
similar case, i.e. the value is equal to its lower boundary which was set to 0.01. For the
Example 4 and 5 this boundary was even lower (1 · 10−5) and again the estimated value
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tends to this boundary. For Example 2 we estimated the starting parameters with the
moment estimation method. The obtained values are β̂ = 0.000005, η̂ = 0.072199 and
ϕ̂ = 0.060064. We would like to see what the pseudo-log-likelihood function looks like
if we fix the values of β̂ and η̂ and vary the values of ϕ̂ and γ̂ between 0 and 1. The
result is shown in Figure 7.2(a). In this figure x denotes γ̂, y denotes ϕ̂ and z stands
for the log-likelihood value. The smallest value of the pseudo-log-likelihood function
is obtained when both ϕ̂ and γ̂ are very small. In Figure 7.2(b) we fixed ϕ̂ = 0.060064
and η̂ = 0.072199 and varied β̂ and γ̂ between 0 and 1. Again x denotes γ̂ and z stands
for the log-likelihood value and y denotes β̂.

(a) fixed β̂ = 0.000005 and η̂ = 0.072199
and variable ϕ̂ and γ̂ between 0 and 1.

(b) fixed ϕ̂ = 0.060064 and η̂ = 0.072199
and variable β̂ and γ̂ between 0 and 1.

Figure 7.2: Pseudo-log-likelihood function of Example 2.

Furthermore we calculated σ̂2 recursively. For Example 1 the values of σ̂2 can be
seen in Figure 7.3. Using these estimated values of the volatility process the residuals

Figure 7.3: σ̂2 of Brookhaven data
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Figure 7.4: Residuals of Brookhaven data

can be calculated. For Example 1 these are shown in Figure 7.4. The mean, standard
deviation and the skewness of the residuals of all our examples can be found in Table
7.2. Again Example 4∗ corresponds to Example 4, but γ̂ = 0.8 was chosen as a starting
value. The mean values of the residuals show for all examples are close to 0 according
to our model. The standard deviations of the residuals are close to 1 as expected for our
model. The skewness values of the residuals indicate that the residuals are significantly
skewed.

Example mean(G(1)
i /σ̂i−1) std(G(1)

i /σ̂i−1) skewness(G(1)
i /σ̂i−1)

1 -0.00079 1.04947 0.31473
2 0.00103 1.03068 0.28618
3 0.02577 1.01133 0.10719
4 -0.00521 1.01682 0.34661
4∗ -0.00078 1.01115 0.27702
5 0.00647 1.02874 0.24817

Table 7.2: Residuals of the different data sets

In Figure 7.3 the empirical autocorrelation functions (ACF) of the squared returns
(top) and of the squared residuals (bottom) for Example 1, i.e. 1 · 10−6 data points, are
plotted. We can observe significant correlations of the squared residuals. Additionally
we plotted the empirical autocorrelation functions for the other examples (2-5) in Fig-
ure 7.6. Again the top plot of each example displays the ACFs for the squared re-
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Figure 7.5: ACF of squared returns (top) and squared residuals (bottom) of 1.Mio data
points

turns and the bottom plot for the squared residuals, which are significantly correlated
again. We can conclude that this model does not perfectly fit to our data. In Chapter
5.2.3 we estimated the parameters of 5000 sample paths of the continuous time GJR
GARCH(1, 1). The estimated values for γ̂ already differed from the expected value of
0.3. Therefore it should be considered if it is possible to obtain better results by adding
some constraints to the otimization procedure or finding an approach to get a better
starting value for γ̂.
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(a) Example 2
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(b) Example 3
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(c) Example 4
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(d) Example 5

Figure 7.6: ACFs of squared returns (top of each plot) and squared residuals (bottom of
each plot) of different data sets.



Appendix A

A.1 Some R-Codes

R-Code A.1: Compound Poisson process
compoundPoisson <−
function ( t =0 :10 , r a t e =1 , d i s t r i b u t i o n =”normal” ,mean=0 , var =1){
#jumps arrive accordingly to a poisson process

#size of jumps is also random, with a specified probability distribution,

# sprung size independent of jump time and iid distributed with a specified distribution

#jumpintervals are random: deltaT n=T n-T (n-1) iid exponentialrvs

#Input: t- time grid

# rate - intensity of compound Poisson process

# distribution - jump size distribution, e.g. normal, uniform, bernoulli

# mean, var - mean and variance of the specified distribution

#Output: matrix with the jumptimes, values of delta Lt, Lt and length of jumptimes

#########################

t<−s o r t ( t ) #sort vector t

nt<−length ( t ) #number of timepoints

I<−t [ 2 : nt]− t [ 1 : ( nt−1) ] #timeintervals

NI<−length ( I ) #vector with lengths of timeintervals

#heuristic for number of jump times needed to cover t

nmax <− c e i l i n g ( t [ nt ] ∗2∗ r a t e )
maxtime <− t [ nt ] #maximal entry of time, i.e. last timepoint

#set up the matrix which will contain the sigmas for t

sigma . t . process . data <− matrix ( nrow = nt , ncol = 2)
sigma . t . process . data [ , 1 ] <− t #The t are in the first column

#Create the random jump times.

#Assume that deltaT n=T n-T (n-1) iid exponentialrvs and N t=max(n>=1:T n<=t)

#Generate nmax (defined as nmax <− ceiling(t[n] ∗ 2∗rate) random jump times distributed as exp(rate)

randomjumpintervals <− rexp (nmax , r a t e = r a t e ) #deltaT n are exponentially distributed (generate more intervals then

necessary ! )

#as long as it holds that: sum of the jumpintervals <= maxtime+1, write them into the vector

val id t imes=T
k<−1

while ( va l id t imes )
{randomjumptimes <− cumsum( randomjumpintervals )

i f ( randomjumptimes [nmax]>maxtime ){
i f ( randomjumptimes [ k]< maxtime ){

randomjumpintervals [ k ]<−randomjumpintervals [ k ]
randomjumptimes [ k ]<−randomjumptimes [ k ]
k<−k+1

}e lse{
randomjumpintervals<−randomjumpintervals [ 1 : ( k−1) ]
randomjumptimes<−randomjumptimes [ 1 : k ]
n<−length ( randomjumptimes )
va l id t imes=F

}
}e lse{

#if not enough intervals to cover all t, extend the vector with exponentially distributed rvs

randomjumpintervals<−c ( randomjumpintervals , rexp (nmax , r a t e = r a t e ) )
}
}

#Calculate the process Lt

i f ( d i s t r i b u t i o n == ”normal” ){
std<−sqr t ( var )
nrv<− rnorm ( n , mean , s td ) #normally distributed with mean and sigma=sqrt(var)

}e lse{

110
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i f ( d i s t r i b u t i o n ==” b e r n o u l l i ” ){
p <− mean #has to be <=1

nrv <− rbinom ( n , 1 , p ) #Bernoulli distributed

}e lse{
i f ( d i s t r i b u t i o n ==”uniform” ){

parameter1<−mean−sqr t (3∗var )
parameter2<−mean+sqr t (3∗var )

nrv <− runif ( n , parameter1 , parameter2 ) #uniform distributed

}e lse{
i f ( d i s t r i b u t i o n ==” binomial ” ){

parameter1<−round ( ( mean ˆ 2 ) / (mean−var ) ) #has to be in |N !
parameter2<−(mean−var ) / mean #has to be <=1

nrv <− rbinom ( n , parameter1 , parameter2 ) #binomial distributed

}e lse{
stop ( ”No val id d i s t r i b u t i o n f o r the jumps s p e c i f i e d ! ” )

}
}
}
}

#summation of the jumpsizes and write them in Lt[i]

Lt<− cumsum( nrv )

#output matrix with the jumptimes, values of delta Lt and values of Lt

output<−matrix ( c ( randomjumptimes , nrv , Lt , c ( randomjumpintervals , 0 ) ) , n )
#randomjumpsizes=delta Lt, T=randomjumpintervals incl. 0 (for the right dimensions of outputmatrix)

colnames ( output )<−c ( ”randomjumptimes” , ” d e l t a Lt ” , ” Lt ” , ”T” )
return ( output )
}

R-Code A.2: Variance Gamma Process
vargamma <−
function ( t =0 :10 , sigma =1 ,nu =0 .05 , t h e t a = 0 . 5 , gs = 0 . 0 1 ){

#simulation of a variance gamma process V with parameters sigma>0, nu>0 and theta

#TG: time change is done wrt a Gamma process which is defined as TG

#W TG: standard Brownian Motion

#

# V=theta∗TG+sigma∗W TG

#Input: parameters sigma, nu, theta, t, gs=gridsize

#Output: variance gamma process V and ts (sequence of small time grid)

###############

n<−length ( t )
t s<−seq ( 0 , t [ n ] , gs ) #generate timepoints on a very small grid

nt<−length ( t s )
d e l t a t s<−t s [ 2 : nt]− t s [ 1 : ( nt−1) ] #time intervals

nd<−length ( d e l t a t s )

g<−rgamma ( nd , shape =(1 / nu )∗d e l t a ts , s c a l e =nu ) #randomvariables which are gammadistributed with shapeparameter=(1 / nu)∗delta t

and scaleparameter=nu

TG<−vector ( length=length ( g ) +1)
TG[ 1 ]<−0
TG [ 2 : ( nd+1) ]<−cumsum( g ) #time changes are done wrt to gamma process

w<−rnorm ( nd , 0 , sqr t ( g ) ) #normal randomvariables with mean=0 and sigma=sqrt(g)

#w<−rnorm(nd,0,g) #g=TG[idelta t]-TG[(i-1)delta t]

W TG<−vector ( length=length (w) +1) #vector for standard brownian motion

W TG[ 1 ]<−0
W TG [ 2 : ( nd+1) ]<−cumsum(w)

V<−t h e t a∗TG+sigma∗W TG #variancegamma process

return ( cbind ( ts ,V) ) #return small timeintervalls and the variance gamma process

}

R-Code A.3: Simulate N sample paths of a COGARCH(1, 1) process driven by a com-
pound Poisson process
Cogarch cp Npaths<−function ( t =0 :10 ,N=5 , beta =1 , e ta =0 .05 , phi =0 .03 ,Lp=”cp” , r a t e =1 , d i s t r i b u t i o n =”normal” ,mean=0 , var =1){

#simulate N path of a cogarch11 process with compound Poisson levy process

#for fixed time grid (with prev tick program)

#Input: t - fixed time grid

# N - number of samples to be generated

# beta, eta, phi - parameters for cogarch process

# Lp - specify driving Lévy process: "cp"=compound Poisson

# rate - intensity lambda of cp

# distribution - distribution of jumps for cp : "normal"

# mean, var - mean and variance of specified jump distribution

#Output: G - cogarch11 process

# rt - jumptimes
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G<−matrix ( 0 , nrow=length ( t ) , ncol=N)
r t<−l i s t ( )

i<−0
while ( i<N){

output<−cogarch sim ( t , beta , eta , phi , Lp=”cp” , ra te , d i s t r i b u t i o n , mean , var ) #output:random jump times

i t<−output [ , 5 ] #irregular jump times of cogarch process

X<−output [ , 1 ] #simulated Cogarch process

pt<−prevTick ( t , i t , X) #uses function prevtick to get process at specified times t

G[ , i +1]<−pt
r t [ [ length ( r t ) + 1 ] ]<−i t
i<−i +1

}

return ( l i s t (G=G, r t = r t ) )
}

R-Code A.4: Simulate N sample paths of a COGARCH(1, 1) process driven by a Vari-
ance Gamma process
Cogarch vg Npaths<−function ( t =0 :10 ,N=5 , beta =1 , e ta =0 .05 , phi =0 .03 ,Lp=”vg” , sigma =1 ,nu = 0 . 3 , t h e t a =1 , gs = 0 . 0 1 ){

#simulate N path of a cogarch11 with variance gamma levy process

#for fixed time grid (with prev tick program)

#Input: t - fixed time grid

# N - number of samples to be generated

# beta, eta, phi - parameters for cogarch process

# Lp - specify driving Lévy process: "vg"=Variance Gamma

# sigma, nu, theta - parameters for Variance Gamma process (for E(L 1)=0 and E(L 1^2)=1 choose theta=0 and sigma=1)

# gs - gridsize

#Output: G - cogarch11 process

# rt - jumptimes

G<−matrix ( 0 , nrow=length ( t ) , ncol=N)
r t<−l i s t ( )

i<−0
while ( i<N){

output<−cogarch sim ( t , beta , eta , phi , Lp=”vg” , sigma , nu , theta , gs ) #output:random jump times !
#wenn compoundPoisson with exponentially distributed jumptimeintervals: output immer unterschiedlich lang, je nachdem

wieviele sprünge ! !
i t<−output [ , 5 ] #irregular jump times of cogarch process

X<−output [ , 1 ] #simulated Cogarch process

pt<−prevTick ( t , i t , X) #uses function prevtick

G[ , i +1]<−pt
r t [ [ length ( r t ) + 1 ] ]<−i t
i<−i +1

}

return ( l i s t (G=G, r t = r t ) )
}

R-Code A.5: Estimation of the parameters of a COGARCH(1, 1) process with N > 1
sample paths as an input
e s t cogarch <−
function (G){
#Estimation of parameters with moment estimation method

#input: G =EQUALLY spaced Cogarch11 process with Lévy process: compound Poisson or variance gamma

# with N>1

# #d=lags ,choose d=sqrt(n)

#output: betahat,etahat,phihat,p,k

#G has several columns

n<−dim (G) [ 1 ]
s<−dim (G) [ 2 ]
d<−f l o o r ( sqr t ( n ) ) #number of lags, see p.11 of paper ’Estimating the COGARCH(1,1) model-a first go’

#define output vectors

#value for every of the N simulated cogarch processes in a new column

m1<−matrix ( 0 , nrow=1 , ncol=s )
m2<−matrix ( 0 , nrow=1 , ncol=s )
p<−matrix ( 0 , nrow=1 , ncol=s )
k<−matrix ( 0 , nrow=1 , ncol=s )
betahat<−matrix ( 0 , nrow=1 , ncol=s )
e t a h a t<−matrix ( 0 , nrow=1 , ncol=s )
phihat<−matrix ( 0 , nrow=1 , ncol=s )
y<−rep ( 0 , ( d+1) ) #vector for acf
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#calculate the returns

for (m in 1 : s ){
r<−(G[ 2 : n ,m]−G[ 1 : ( n−1) ,m] ) ˆ2

nr<−length ( r )

#moments

mu<−mean ( r ) #mean

gamma<−mean ( r ˆ 2 ) #variance

m1[m]<−mu #first moments

m2[m]<−gamma #second moments

#####calculate autocovariances and autocorrelations

muhat<−mu∗rep ( 1 , nr ) #row vector

g0<−sum ( ( r−muhat )∗ ( r−muhat ) ) / nr

for ( h in 0 : d ){
u<−nr−h
y [ h+1]<−sum ( ( r [ ( 1+ h ) : nr]−mu∗rep ( 1 , u ) )∗ ( r [ 1 : u]−mu∗rep ( 1 , u ) ) )

}
y<−y / ( nr∗g0 ) #empirical autocorrelation

a c f r<−y [ 2 : ( d+1) ] #analogously to Matlab program

################

####regression least square method to obtain k and p

n a c f r pos<−which ( ac f r >0) #rows with positive acfr entry

z<−log ( a c f r [ n a c f r pos ] )
#X<−cbind(matrix(1,nrow=length(n acfr pos),ncol=1),-n acfr pos)

X<−(−n a c f r pos )
#par<−lm(z ˜ X) #model with intercept=log(k), X=p#

require (MASS)
par<−rlm ( z ˜X) #robust regression

par1<−as . numeric ( par$ c o e f f i c i e n t s [ 1 ] )
par2<−as . numeric ( par$ c o e f f i c i e n t s [ 2 ] )
k [m]<−exp ( par1 )
p [m]<−par2
################

i f ( p [m]>0){
betahat [m]<−p [m]∗mu

M1<−gamma−2∗muˆ2−6∗((1−p [m]−exp(−p [m] ) ) / ((1−exp ( p [m] ) )∗(1−exp(−p [m] ) ) ) )∗k [m]∗gamma
M2<−(2∗k [m]∗gamma∗p [m] ) / (M1∗ ( exp ( p [m] )−1)∗(1−exp(−p [m] ) ) )

i f (M2>0){
phihat [m]<−p [m]∗sqr t (1+M2)−p [m]
e t a h a t [m]<−p [m]∗sqr t (1+M2)
} e lse{

cm<−rep ( 0 , length ( s ) )
cm[m]<−1
#stop("M2<=0 ! ")

}
}e lse{

cp<−rep ( 0 , length ( s ) )
cp [m]<−1
#stop("p<=0 ! ")

}

}#end of "for m=1:s"

e s t<−matrix ( 0 , nrow=5 , ncol=s )
e s t<−rbind ( betahat , e tahat , phihat , p , k ) #estimated values

return ( e s t )
}
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cogarch-package Continuous Time GARCH Processes

Description

This package provides functions for the context of continuous time GARCH processes. It can be
used to simulate COGARCH(p,q) processes with different background Levy processes (compound
Poisson and Variance Gamma). There are functions to generate N equally spaced sample paths
of a COGARCH(1,1) process. Furthermore it is possible to simulate ECOGARCH(p,q) process
or an asymmetric continuous time GJR GARCH(1,1) process. Moreover the package provides
functions which can be used to estimated the model parameters. Forin time equally spaced data
the moment estimation method can be used. Additionally the estimation can be conducted via a
Pseudo-Maximum Likelihood (PML) estimation, which works also for data which is unequally
spaced in time. There is one pml function which can be applied under the assumption to have fixed
(non-random) timepoints. Without this assumption, i.e. we assume to have random timepoints like
all the jumptimes, it is possible to apply the function pml_cp for the compound Poisson case. For
more details on the theory and descriptions of the functions, see the master’s thesis, "Estimation of
COGARCH models and implementation in R"", 2013, of Marlit Granzer.

Details

Package: cogarch
Type: Package
Version: 0.1.3
Date: 2013-04-18
License: GPL-2

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.
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Cogarch_cp_Npaths 3

Cogarch_cp_Npaths N sample paths of a compound Poisson COGARCH(1,1) process

Description

Simulates N sample paths of a COGARCH(1,1) process with a compound Poisson process as back-
ground Levy process. Furthermore the function "prevTick" is used, i.e. the data is transfered to a
fixed time grid.

Usage

Cogarch_cp_Npaths(t=0:10,N=5,beta=1,eta=0.05,phi=0.03,Lp="cp",rate=1,
distribution="normal",mean=0,var=1)

Arguments

beta model parameter

eta model parameter

phi model parameter

N number of simulated sample paths

t time

Lp the background Levy process: "cp"=compound Poisson

rate necessary if Lp="cp", rate for the exponentially distributed time intervals

distribution necessary if Lp="cp", distribution of the jumpsizes

mean necessary if Lp="cp", mean of the distribution of the jumpsizes

var necessary if Lp="cp", variance of the distribution of the jumpsizes

Details

Simulates N sample paths of a COGARCH(1,1) process with a compound Poisson process as back-
ground Levy process . See "cogarch_sim" with Lp="cp" for further information. Furthermore the
function "prevTick"" is used, i.e. the data is transfered to a fixed time grid.

Value

G list with one of the N equally spaced sample paths in each of the N columns

rt random jump times

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.
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4 cogarch_pq_sim

Examples

N=3
t<-0:500
beta=0.05
eta=0.06
phi=0.04

Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1

output_cp<-Cogarch_cp_Npaths(t,N,beta,eta,phi,Lp,rate,distribution,mean,var)
G<-output_cp$G
rt<-output_cp$rt

#estimate parameters for the cogarch processes: Method of Moment Estimation
estimates_mm<-est_cogarch(G)#needs equally spaced data as an input
betahat<-estimates_mm[1,]
etahat<-estimates_mm[2,]
phihat<-estimates_mm[3,]
p<-estimates_mm[4,]
k<-estimates_mm[5,]

#mean
mb<-mean(betahat)
me<-mean(etahat)
mp<-mean(phihat)
ev_mm<-c(mb,me,mp) #estimated values
ov_mm<-c(beta,eta,phi) #original values

cogarch_pq_sim Simulation of a COGARCH(p,q) process

Description

Generates a sample path of a COGARCH(p,q) (p<=q) process with a compound Poisson process as
underlying background Levy process.

Usage

cogarch_pq_sim(t=0:10,a0=0.04,a=0.038,b=-0.053,Lp="cp",rate=1,
distribution="normal",mean=0,var=1)

Arguments

t time

a0 corresponds to alpha_0, in order to get a starting value for the volatility process

a vector of alpha_p, coefficients of model
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b vector of beta_q, coefficients of model

Lp choose Levy process: "cp"=compound Poisson

rate intensity of the cp Levy process

distribution distribution of the jumpsizes of the compound Poisson process, e.g. "normal"

mean mean of the jump distribution

var variance of the jump distribution

Details

Generates a sample path of a COGARCH(p,q) process with a compound Poisson process as under-
lying background Levy process.

Value

Output: List with the following entries:

G COGARCH(p,q) process

vol Volatility of the process (sigma)

c(0,Lt_new) driving Levy process
c(0,delta_Lt_new)

jumps sizes of Levy process

c(0,rt_new) random jumptimes

eig eigenvalues of matrix B

Author(s)

Marlit

References

Master’s thesis

Examples

t=0:500

a0=1
a=c(1)
b=c(-1.2,-0.48-pi^2,-0.064-0.4*pi^2)
Lp="cp"
rate=1
distribution="normal"
mean=0
var=1

output<-cogarch_pq_sim(t,a0,a,b,Lp,rate,distribution,mean,var)
G<-unlist(output[[1]])
vol<-unlist(output[[2]])
Lt<-unlist(output[[3]])
delta_Lt<-unlist(output[[4]])
rt<-unlist(output[[5]])
eig<-unlist(output[[6]])
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#plots
par(mfrow=c(4,1))
plot(c(0,rt),G,cex=0.1,xaxs="i",xlim=c(0,500),xlab="t")
plot(rt,diff(G),type="h",xaxs="i",xlim=c(0,500),ylab=expression(G^{(1)}),xlab="t")
plot(c(0,rt),vol,cex=0.1,xaxs="i",xlim=c(0,500),ylab=expression(sigma^2),xlab="t")
plot(rt,Lt,cex=0.1,xaxs="i",xlim=c(0,500),xlab="t")

cogarch_sim Simulation of a COGARCH(1,1) process

Description

Generates a sample path of a COGARCH(1,1) process with either a compound Poisson process or
a variance gamma process as underlying background Levy process.

Usage

cogarch_sim(t=0:10,beta=1,eta=0.05,phi=0.03,Lp="cp",rate=1,
distribution="normal",mean=0,var=1,sigma=1,nu=0.5,theta=1,gs=0.01)

Arguments

t time

beta model parameter

eta model parameter

phi model parameter

Lp choose Levy process: "cp"=compound Poisson or "vg"=variance gamma

rate intensity of the cp Levy process

distribution distribution of the jumpsizes of the compound Poisson process, e.g. "normal"

mean mean of the jump distribution

var variance of the jump distribution

sigma parameter for the variance gamma process

nu parameter for the variance gamma process

theta parameter for the variance gamma process

gs time grid size

Details

Generates a sample path of a COGARCH(1,1) process with either a compound Poisson process or
a variance gamma process as underlying background Levy process.
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Value

Output: Matrix with the following columns:

G COGARCH(1,1) process

vol Volatility of the process (sigma)

c(0,Lt_new) Levy process
c(0,delta_Lt_new)

jumps sizes of Levy process

c(0,rt_new) random jumptimes

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

# t<-0:100
# beta<-0.04
# eta<-0.053
# phi<-0.038
#
# #Compound Poisson driven COGARCH(1,1) process
# Lp="cp" #compound Poisson process, Lp="cp"
# rate<-1
# distribution<-"normal" #jumpsizes are normally distributed
# mean<-0
# var<-1
#
# set.seed(100)
# output<-cogarch_sim(t,beta,eta,phi,Lp="cp",rate,distribution,mean,var)
# G<-output[,1]
# vol<-output[,2]
# Lt<-output[,3]
# delta_Lt<-output[,4]
# rt<-output[,5]
#
# #plot
# par(mfrow=c(4,1))
# plot(rt,G,xlim=c(0,100),cex=0.1, xaxs="i",xlab="t",ylab=expression(G[t]))
# plot(rt,c(0,G[2:length(G)]-G[1:(length(G)-1)]),type="l",xlim=c(0,100), xaxs="i",
# xlab="t",ylab=expression(G[t]^(1)))
# plot(rt,vol,xlim=c(0,100), xaxs="i",cex=0.1,xlab="t",ylab=expression(sigma[t]^2))
# plot(rt,Lt,xlim=c(0,100),xaxs="i",cex=0.1,xlab="t",ylab=expression(L[t]))
#
# #----------------------------------------------
# t<-0:100
# beta<-0.04
# eta<-0.053
# phi<-0.038
#
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# #Variance-Gamma driven COGARCH(1,1) process
# Lp="vg" #variance-gamma process, Lp="vg"
# sigma<- 1
# theta<- 0
# nu<-1
# gs<-0.01
#
# set.seed(100)
# output<-cogarch_sim(t,beta,eta,phi,Lp="vg",sigma,nu,theta,gs)
# G<-output[,1]
# vol<-output[,2]
# Lt<-output[,3]
# delta_Lt<-output[,4]
# rt<-output[,5]
#
# #plot
# par(mfrow=c(4,1))
# plot(rt,G,xlim=c(0,100),cex=0.1, xaxs="i",xlab="t",ylab=expression(G[t]))
# plot(rt,c(0,G[2:length(G)]-G[1:(length(G)-1)]),type="l",xlim=c(0,100), xaxs="i",
# xlab="t",ylab=expression(G[t]^(1)))
# plot(rt,vol,xlim=c(0,100), xaxs="i",cex=0.1,xlab="t",ylab=expression(sigma[t]^2))
# plot(rt,Lt,xlim=c(0,100),xaxs="i",cex=0.1,xlab="t",ylab=expression(L[t]))

cogarch_sim_assym Simulation of Assymetric continuous time GJR GARCH(1,1) process

Description

Generates a sample path of an assymetric continuous time GJR GARCH(1,1) process with either a
compound Poisson process or a variance gamma process as underlying background Levy process.

Usage

cogarch_sim_assym(t=0:10,beta=1,eta=0.05,phi=0.03,gamma=0.4,Lp="cp",rate=1,
distribution="normal",mean=0,var=1,sigma=1,nu=0.5,theta=1,gs=0.01)

Arguments

t time
beta model parameter
eta model parameter
phi model parameter
gamma model parameter
Lp Levy process: "cp"=compound Poisson or "vg"-variance gamma
rate parameter for compound Poisson process
distribution distribution of the jumpsizes of the compound Poisson process
mean mean of the specified distribution
var var of the specified distribution
sigma parameter for the variance gamma process
nu parameter for the variance gamma process
theta parameter for the variance gamma process
gs gridsize
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Details

Generates a sample path of an asymmetric continuous time GJR GARCH(1,1) process with either a
compound Poisson process or a Varince-Gamma process as underlying background Levy process.

Value

Output: Matrix with the folowing columns:

G continuous time GJR GARCH(1,1) process

vol volatility of the process (sigma)

c(0,Lt_new) Levy process
c(0,delta_Lt_new)

jumps sizes of Levy process

c(0,rt_new) random jumptimes

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

t<-0:100
beta=1
eta=0.06
phi=0.04
gamma=0.3

Lp="cp" #compound Poisson process,
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1

#simulation
output<-cogarch_sim_assym(t,beta,eta,phi,gamma,Lp,rate,distribution,mean,var,sigma,nu,theta,gs)
G<-output[,1]
vol<-output[,2]
Lt<-output[,3]
delta_Lt<-output[,4]
rt<-output[,5]

#plots
par(mfrow=c(4,1))
plot(rt,Lt,type="l",xlim=c(0,100),xaxs="i",xlab="t",ylab=expression(L[t]))
plot(rt,G,type="l",xlim=c(0,100), xaxs="i",xlab="t",ylab=expression(G[t]))
plot(rt,vol,type="l",xlim=c(0,100), xaxs="i",xlab="t",ylab=expression(sigma[t]))
plot(rt,delta_Lt,type="l",xlim=c(0,100),xaxs="i",xlab="t",ylab=expression(paste(Delta,L[t],sep="")))
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Cogarch_vg_Npaths N sample paths of a variance gamma COGARCH(1,1) process

Description

Simulates N sample paths of a COGARCH(1,1) process with a variance gamma process as back-
ground Levy process. Furthermore the function "prevTick"" is used, i.e. the data is transfered to a
fixed time grid.

Usage

Cogarch_vg_Npaths(t=0:10,N=5,beta=1,eta=0.05,phi=0.03,Lp="vg",
sigma=1,nu=0.3,theta=1,gs=0.01)

Arguments

beta model parameter

eta model parameter

phi model parameter

N number of simulated sample paths

t time

Lp the background Levy process: "vg"=variance gamma

sigma parameter used to calculate the variance gamma process V<-theta*TG+sigma*W_TG

nu parameter used for the gamma distribution

theta parameter used to calculate the variance gamma process V<-theta*TG+sigma*W_TG

gs grid size

Details

Simulates N sample paths of a COGARCH(1,1) process with a variance gamma process as back-
ground Levy process . Furthermore the function "prevTick" is used, i.e. the data is transfered to a
fixed time grid.

Value

G list with one of the N equally spaced sample paths in each of the N columns

rt random jump times

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.
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Examples

N=3
t<-0:500
beta=0.05
eta=0.06
phi=0.04

Lp="vg" #variance-gamma process
sigma=1
nu=0.3
theta=0
gs=0.01

output_vg<-Cogarch_vg_Npaths(t,N,beta,eta,phi,Lp="vg",sigma,nu,theta,gs)
G<-output_vg$G
rt<-output_vg$rt

#estimate parameters for the cogarch processes: Method of Moment Estimation
estimates_mm<-est_cogarch(G)#needs equally spaced data as an input
betahat<-estimates_mm[1,]
etahat<-estimates_mm[2,]
phihat<-estimates_mm[3,]
p<-estimates_mm[4,]
k<-estimates_mm[5,]

#mean
mb<-mean(betahat)
me<-mean(etahat)
mp<-mean(phihat)
ev_mm<-c(mb,me,mp) #estimated values
ov_mm<-c(beta,eta,phi) #original values

compoundPoisson Simulation of a compound Poisson Levy process

Description

This function gives the possibility to simulate compound Poisson processes with different parame-
ters. It is possible to specify the jump distribution, e.g. "normally", "uniform",... and the mean and
the variance of the distribution. The jumpintervals are exponentially distributed with the specified
rate (intensity).

Usage

compoundPoisson(t, rate, distribution, mean, var)

Arguments

t time vector, e.g. t<-0:100
rate rate of exponentially distributed jumptimeintervals, correspondents to λ

distribution distribution for the jumpsizes, e.g "normal", "uniform"
mean mean of the specified distribution
var variance of the specified distribution
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Details

more details can be found in the Master’s thesis "Estimation of COGARCH models and implemen-
tation in R", 2013, Technische Universitaet Muenchen, Marlit Granzer.

Value
randomjumptimes

random times where the process jumps

nrv size of the jumps, i.e. delta_Lt

Lt compound Poisson Levy process Lt
randomjumpintervals

randomjumpintervals which are iid exponentially distributed with chosen rate

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

delta=0.95 #parameter
sigma0squared = 20 #parameter
rate=1
distribution<-"normal"
mean<-0 #mu
var<-1 #variance

output<-compoundPoisson(0:10,1,distribution,mean,var)

jumptimes<-output[,1]
no<-length(jumptimes)
max<-ceiling(jumptimes[no])+1

plot(stepfun(c(jumptimes),c(0,output[,2]),right=FALSE),verticals=FALSE,pch=20,xlab="t",
ylab=expression(L[t]),xlim=c(0,max),xaxs="i",main="") #plot jumpsizes delta_Lt

plot(stepfun(c(jumptimes),c(0,output[,3]),right=FALSE),verticals=FALSE,pch=20,xlab="t",
ylab=expression(L[t]),xlim=c(0,max),xaxs="i",main="") #plot Lt

ecogarch_sim Simulation of ECOGARCH(p,q) process

Description

Generates a sample path of an ECOGARCH(p,q) process with a compound Poisson process as
underlying background Levy process.
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Usage

ecogarch_sim(t=0:10,a=-0.1,b=1,mu=-1,theta=-0.2,gamma=0.1,rate=1,mean=0,var=1)

Arguments

t time

a alpha coefficients

b beta coefficients

mu parameter for process M

theta parameter for process M

gamma parameter for process M

rate parameter for compound Poisson process

mean mean of the normal distribution

var var of the normal distribution

Details

Generates a sample path of an ECOGARCH(p,q) process with a compound Poisson process as
underlying background Levy process.

Value

Output: List with the folowing columns:

G ECOGARCH(p,q) process, logprice process on a specified grid (prevTick ap-
plied)

GexpTime logprice process on times including random jump times
logsigmaexpTime

log(sigma) process on random jumptimes

Ylimleft log(sigma) process on times including random jump times without jump

Y log(sigma) process on times including random jump times with jump

Tylimleft ordered times including random jump times

Brownian Brownian motion with specified mean and sqrt(timeintervals) as variance

Mt Levy process Mt

Lt compound Poisson Levy process with specified rate, normally distributed jumps
with mean and variance as specified

TM first column: times including random jump times, second column: Mt

sigmaJump volatility process, i.e exp(Y)

Author(s)

Marlit Granzer

References

Master’s thesis
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Examples

t=0:100
a=c(-0.1,-0.3)
b=c(1,1)
mu=-4
theta=-0.2
gamma=0.1
rate=1
mean=0
var=1

output<-ecogarch_sim(t,a,b,mu,theta,gamma,rate,mean,var)
G<-unlist(output[[1]])
GexpTime<-unlist(output[[2]])
logsigmaexpTime<-unlist(output[[3]])
Ylimleft<-unlist(output[[4]])
Y<-unlist(output[[5]])
Tylimleft<-unlist(output[[6]])
Brownian<-unlist(output[[7]])
Mt<-unlist(output[[8]])
Lt<-unlist(output[[9]])
TM<-unlist(output[[10]])
sigmaJump<-unlist(output[[11]])

#plots
par(mfrow=c(5,1),mar=c(1.8,4.5,1,1))
plot(TM[,1],Lt,cex=0.01,ylab=expression(L[t]),xaxs="i",xlim=c(0,100))
plot(TM[,1],Mt,cex=0.01,ylab=expression(M[t]),xaxs="i",xlim=c(0,100))
plot(TM[,1],GexpTime,cex=0.01,ylab=expression(G[t]),xaxs="i",xlim=c(0,100))
plot(TM[,1],c(0,(GexpTime[2:length(GexpTime)]-GexpTime[1:(length(GexpTime)-1)])),

type="l",ylab=expression(G[t]^(r)),xaxs="i",xlim=c(0,100))
plot(TM[,1],sigmaJump,cex=0.01,ylab=expression(sigma[t]^2),xaxs="i",xlim=c(0,100))

est_cogarch Method of Moment Estimation

Description

Function estimates the parameters beta, eta and phi of a continuous time GARCH(1,1) process

Usage

est_cogarch(G)

Arguments

G Matrix with N sample paths of a COGARCH(1,1) process, see functions "Cog-
arch_cp_Npaths" or "Cogarch_vg_Npaths"

Details

Function estimates the parameters beta, eta and phi of a COGARCH(1,1) process, The input data G
has to be EQUALLY spaced!

A.2. DOCUMENTATION FOR THE R-PACKAGE 127



est_cogarch 15

Value

Returns a matrix with the following rows:

betahat estimates for beta

etahat estimates for eta

phihat estimates for phi

p positive constants

k positive constants

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

#parameters
beta<-0.04
eta<-0.053
phi<-0.038

t<-0:1000
N<-3
Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1

#simulation
output<-Cogarch_cp_Npaths(t,N,beta,eta,phi,Lp="cp",rate,distribution,mean,var) #compound poisson
#output G is already equally spaced as Cogarch_cp_Npaths includes the function prevTick()
G<-output$G

#estimate parameters for the cogarch processes
estimates<-est_cogarch(G)#needs equally spaced data as an input
betahat<-estimates[1,]
etahat<-estimates[2,]
phihat<-estimates[3,]
p<-estimates[4,]
k<-estimates[5,]

mb<-mean(betahat)
me<-mean(etahat)
mp<-mean(phihat)
ev<-c(mb,me,mp) #estimated values
ov<-c(beta,eta,phi) #original values
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est_cogarch_ret Method of moment estimation

Description

Function estimates the parameters beta, eta and phi of a continuous time GARCH(1,1) process.

Usage

est_cogarch_ret(r)

Arguments

r Returns of a COGARCH(1,1) process (equally spaced).

Details

Function estimates the parameters beta, eta and phi of a COGARCH(1,1) process, with the moment
estimation method. The input data r has to be EQUALLY spaced! (If not already equally spaced
you can use the "prevTick"" function to adjust it!)

Value

Returns a matrix with the following rows:

betahat estimates for beta

etahat estimates for eta

phihat estimates for phi

p positive constants

k positive constants

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

#parameters
beta<-0.04
eta<-0.053
phi<-0.038

t<-0:1000
Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
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var<-1
#simulated cogarch process
output_c<-cogarch_sim(t,beta,eta,phi,Lp="cp",rate,distribution,mean,var) #compound Poisson
G<-output_c[,1]
vol<-output_c[,2]
Lt<-output_c[,3]
delta_Lt<-output_c[,4]
rt<-output_c[,5]

#get equally spaced data
it<-rt
X<-G
pt<-prevTick(t,it,X)
G<-pt
n<-length(G)
r<-(G[2:n]-G[1:(n-1)])
nr<-length(r)
r<-(G[2:length(G)]-G[1:(length(G)-1)])

#estimate parameters
estimates<-est_cogarch_ret(r)
betahat<-estimates[1,]
etahat<-estimates[2,]
phihat<-estimates[3,]
p<-estimates[4,]
k<-estimates[5,]

ev<-c(betahat,etahat,phihat) #estimated values
ov<-c(beta,eta,phi) #original values

pml Estimation with a pseudo-maximum likelihood method (PML)

Description

Function estimates the parameters beta, eta and phi of a continuous time GARCH(1,1) process with
equally or unequally spaced data. The t_i are assumed fixed (non-random) timepoints.

Usage

pml(x)

Arguments

x input parameters beta, eta and phi.

Details

Function estimates the parameters beta, eta and phi of a COGARCH(1,1) process, The input data
r can be unequally spaced! Pay attention to the assumption of fixed (non-random) timepoints.
It the timepoints are random use function "pml_cp" for a compound Poisson process. Returns a
Loglikelihood function.
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Value

LL loglikelihood function

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

N=3
t<-0:500
beta=0.08
eta=0.06
phi=0.04

Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1

output<-cogarch_sim(t,beta,eta,phi,Lp,rate,
distribution,mean,var,sigma,nu,theta,gs)

G<-output[,1]
vol<-output[,2]
Lt<-output[,3]
delta_Lt<-output[,4]
rt<-output[,5]

#PML
par<-c(beta,eta,phi)

delta_t<-rt[2:length(rt)]-rt[1:(length(rt)-1)]
Nt<-length(delta_t)
n<-length(G)
r<-(G[2:n]-G[1:(n-1)])
nr<-length(r)

A<-matrix(c(1,0,0,0,1,0,0,0,1,0,1,-1),ncol=3,byrow=TRUE)
d<-c(0.000001,0.01,0.01,0.001)
m<- constrOptim(par,pml, NULL , ui = A, ci = d)
estimates_pml<-m$par
betahat<-estimates_pml[1]
etahat<-estimates_pml[2]
phihat<-estimates_pml[3]

estimates<-c(betahat,etahat,phihat)
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pml_asym Estimation with PML for asymmetric continuous time GJR
GARCH(1,1) model

Description

Function estimates the parameters beta, eta and phi of an asymmetric continuous time GJR GARCH(1,1)
process with equally or unequally spaced data.

Usage

pml_asym(x)

Arguments

x input parameters beta, eta, phi and gamma.

Details

Function estimates the parameters beta, eta and phi of an asymmetric continuous time GJR GARCH(1,1)
process. The returns (input data) r can be unequally spaced! The output of this function is a log-
likelihood function.

Value

LL loglikelihood function

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

t<-0:1000
beta=1
eta=0.06
phi=0.0425
gamma=0.4
Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1
output_c<-cogarch_sim_assym(t,beta,eta,phi,gamma,Lp,rate,distribution,mean,var,sigma,nu,theta,gs)
G<-output_c[,1]
vol<-output_c[,2]
Lt<-output_c[,3]
delta_Lt<-output_c[,4]
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rt<-output_c[,5]

N<-length(G)
r<-G[2:N]-G[1:(N-1)]
nr<-length(r)
delta_t<-rt[2:length(rt)]-rt[1:(length(rt)-1)] #for unequally spaced data
Nt<-length(delta_t)

par<-c(beta,eta,phi,gamma)
A<-matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,1,-1,0,0,0,0,1,0,0,0,-1),ncol=4,byrow=TRUE)
d<-c(0.000001,0.01,0.01,0.001,0.01,-1)
m<- constrOptim(par, pml_asym, NULL , ui = A, ci = d)
estimates<-m$par

pml_cp Estimation with PML for compound Poisson case

Description

Function estimates the parameters beta, eta and phi of a COGARCH(1,1) process driven by a com-
pound Poisson process with unequally spaced data, assumed all t_i are random but known.

Usage

pml_cp(x)

Arguments

x input parameters beta, eta and phi.

Details

Function estimates the parameters beta, eta and phi of COGARCH(1,1) process driven by a com-
pound Poisson process. The input data r can be unequally spaced! It is assumed that all t_i are
random but known. The output of this function is a loglikelihood function.

Value

LL loglikelihood function

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.
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Examples

beta=0.05
eta=0.06
phi=0.04

Lp="cp" #compound Poisson process, Lp="cp"
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1
t=0:5000

output<-cogarch_sim(t,beta,eta,phi,Lp,rate,distribution,mean,var,sigma,nu,theta,gs)
G<-output[,1]
rt<-output[,5]
n<-length(G)
r<-(G[2:n]-G[1:(n-1)])
nr<-length(r)
delta_t<-rt[2:length(rt)]-rt[1:(length(rt)-1)]
Nt<-length(delta_t)

#calculate lambdahat
sum_delta_t<-sum(delta_t[1:length(delta_t)])
lambdahat<-length(delta_t)/sum_delta_t

par<-c(beta,eta,phi)
A<-matrix(c(1,0,0,0,1,0,0,0,1,0,1,-1),ncol=3,byrow=TRUE)
d<-c(0.000001,0.001,0.001,0.0001)
m<- constrOptim(par,pml_cp, NULL , ui = A, ci = d)
estimates_pml<-m$par
betahat<-estimates_pml[1]
etahat<-estimates_pml[2]
phihat<-estimates_pml[3]

#estimated values
estimates<-c(betahat,etahat,phihat,lambdahat)

prevTick Previous Tick Interpolation

Description

Transforms the time series X, observed at the irregular time points it, into a homogeneous time
series Y at regularly time points t. uses previous tick interpolation -> i.e it takes the value of the
maximal irregular time point <= regular time point t

Usage

prevTick(t, it, X)
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Arguments

t equally spaced time points

it iregular spaced time points

X time series observed at the irregular time points

Details

Transforms the time series X, observed at the irregular time points it, into a homogeneous time
series Y at regularly time points t. uses previous tick interpolation -> i.e it takes the value of the
maximal irregular time point <= regular time point t

Value

y equally spaced data

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

t<-0:100 #fixed time grid

beta<-0.04
eta<-0.053
phi<-0.038
Lp="cp" #compound Poisson process
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1
output<-cogarch_sim(t,beta,eta,phi,Lp="cp",rate,distribution,mean,var)

G<-output[,1]
vol<-output[,2]
Lt<-output[,3]
delta_Lt<-output[,4]
rt<-output[,5]

#use prevTick
it<-rt #random jumptimes
X<-G

pt<-prevTick(t,it,X)

G<-pt #process at times of the specified time grid t
n<-length(G)
r<-(G[2:n]-G[1:(n-1)]) #returns
nr<-length(r)
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sigmahat Estimation of the volatility process

Description

Calculates sigmahat recursively.

Usage

sigmahat(r,betahat,etahat,phihat,gammahat,sym)

Arguments

r returns of the COGARCH process

betahat estimates for beta

etahat estimates for eta

phihat estimates for phi

gammahat estimates for gamma

sym TRUE for the symmetric COGARCH and FALSE for the asymmetric continu-
ous time GJR GARCH

Details

This function calculates recursively the estimate of the volatility process. It is possible to choose
if the estimated values of betahat, etahat and phihat come from a symmetric COGARCH (1,1)
process or from an asymmetric GJR GARCH(1,1) process (additionally gammahat) by choosing
either sym=TRUE or sym=FALSE.

Value

Returns

sigma sigmahat of a continuous time GARCH(1,1) process either symmetric or asym-
metric (GJR GARCH(1,1) process)

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.
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Examples

t<-0:1000
beta<-0.04
eta<-0.053
phi<-0.038
Lp="cp" #compound Poisson process
rate<-1
distribution<-"normal" #jumpsizes are normally distributed
mean<-0
var<-1

output_c<-cogarch_sim(t,beta,eta,phi,Lp="cp",rate,distribution,mean,var) #compound Poisson
G<-output_c[,1]
vol<-output_c[,2]
Lt<-output_c[,3]
delta_Lt<-output_c[,4]
rt<-output_c[,5]

r_diff<-diff(G)

x<-est_cogarch_ret(r_diff)
betahat<-x[1]
etahat<-x[2]
phihat<-x[3]

r<-r_diff
s<-sigmahat(r,betahat,etahat,phihat)

plot(rt,vol,xlim=c(0,1000),ylim=c(0,16), xaxs="i",yaxs="i",cex=0.1,
xlab="t",ylab=expression(sigma[t]^2))

lines(s,col=4)

vargamma Simulation of a Variance-Gamma Levy process

Description

Simulation of a Variance-Gamma Levy process

Usage

vargamma(t=0:10,sigma=1,nu=0.05,theta=0.5,gs=0.01)

Arguments

sigma parameter used to calculate the variance gamma process V<-theta*TG+sigma*W_TG

nu parameter used for the gamma distribution

theta parameter used to calculate the variance gamma process V<-theta*TG+sigma*W_TG

t time vector, e.g. t<-0:100

gs specifies size of the grid
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Value

ts timeintervals

V Variance Gamma process

Author(s)

Marlit Granzer

References

Marlit Granzer, Master’s thesis "Estimation of COGARCH models and implementation in R", 2013,
Technische Universitaet Muenchen.

Examples

t<-0:10
sigma=1
nu=1
theta=0
gs=0.01

output<-vargamma(t,sigma,nu,theta,gs)
t<-output[,1]
V<-output[,2]

#plot
plot(t,V,cex=0.1,xlab="t",ylab=expression(V[t]),xlim=c(0,10),xaxs="i")
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